WO2022067523A1 - 干扰上报的方法与装置 - Google Patents

干扰上报的方法与装置 Download PDF

Info

Publication number
WO2022067523A1
WO2022067523A1 PCT/CN2020/118885 CN2020118885W WO2022067523A1 WO 2022067523 A1 WO2022067523 A1 WO 2022067523A1 CN 2020118885 W CN2020118885 W CN 2020118885W WO 2022067523 A1 WO2022067523 A1 WO 2022067523A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
matrix
value
frequency resource
time
Prior art date
Application number
PCT/CN2020/118885
Other languages
English (en)
French (fr)
Inventor
李胜钰
官磊
李锐杰
苏桐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20955549.9A priority Critical patent/EP4207649A4/en
Priority to CN202080105563.0A priority patent/CN116250195A/zh
Priority to PCT/CN2020/118885 priority patent/WO2022067523A1/zh
Publication of WO2022067523A1 publication Critical patent/WO2022067523A1/zh
Priority to US18/190,426 priority patent/US20230232439A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/346TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading distributing total power among users or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present invention relates to the technical field of wireless communication, in particular to a method and device for reporting interference.
  • a major feature of the fifth generation (5th generation, 5G) mobile communication system compared with the fourth generation (4th generation, 4G) mobile communication system is the increase of ultra-reliable and low-latency communication (ultra-reliable and low-latency communication).
  • communications, URLLC URLLC
  • motion control services in smart factories require loopback delays within 1 millisecond.
  • Low latency means less chance of retransmission. Therefore, URLLC service data needs to adopt a relatively robust transmission scheme (eg, more resources) to ensure the reliability of transmission, which leads to a decrease in data transmission efficiency, thereby reducing system capacity.
  • a feasible method is to improve the accuracy of interference measurement, so as to improve the system capacity through link adaptation technology.
  • the embodiment of the present application provides an interference reporting method, so that a network device can obtain more accurate interference information, so that the network device can perform more accurate downlink data scheduling, thereby improving system capacity.
  • an interference reporting method is provided.
  • the network device sends first information to the terminal, where the first information indicates the first time-frequency resource.
  • the terminal performs measurement on the first time-frequency resource to obtain interference information of the terminal on N receiving antennas, where N is an integer greater than 1.
  • the terminal sends a first interference parameter to the network device on the second time-frequency resource, where the first interference parameter is determined according to the interference information.
  • the network device can recover the interference received by the terminal according to the first interference parameter fed back by the terminal, so that the network device can perform more accurate downlink data scheduling, thereby improving the system capacity.
  • the first interference parameter includes at least one of an interference layer number indication ILI, an interference matrix indication IMI, and an interference strength indication ISI, where the ILI indication values L, L is a non-negative integer less than or equal to N, the IMI is determined according to the first vector set ⁇ u 1 , u 2 ,..., u N ⁇ , the first vector set includes N vectors, and the ISI is determined according to the first vector set ⁇ u 1 , u 2 ,..., u N ⁇ A value set ⁇ 1 , ⁇ 2 ,..., ⁇ N ⁇ is determined, the first value set includes N values, and the first value set and the first vector set are determined according to the interference information , ⁇ 1 ⁇ 2 ⁇ ... ⁇ N .
  • the number of bits required for reporting interference information can be compressed, thereby reducing feedback overhead.
  • the interference information is an autocorrelation matrix R of interference signals received by the terminal on N receiving antennas, the first numerical value set and the first vector
  • the autocorrelation matrix reporting of the interference signal is split into singular value reporting and singular vector reporting, providing a simple and feasible method for reporting interference.
  • the existing framework for reporting channel state information can be maximized, That is, table-based quantization feedback is performed on singular values, and codebook-based quantization feedback is performed on singular vectors.
  • the L is equal to the number of elements ⁇ i in the first value set whose value is greater than or equal to the first threshold, and i is a positive integer less than or equal to N.
  • the ISI includes L interference strength values
  • the L interference strength values are based on the second set of numerical values It is determined that the second numerical value set includes L numerical values, and the elements in the second numerical value set The value of is equal to the ratio of the value of the element ⁇ j in the first value set to the first reference value, where j is a positive integer less than or equal to L.
  • the first reference value is configured by high-layer signaling; or, the first reference value is based on the receiving bandwidth, thermal noise power spectral density, and noise of the terminal is determined by at least one of the coefficients; or, the first reference value is the received power of the reference signal measured by the terminal; or, the first reference value is based on the first channel quality indicator CQI index and the first The mapping relationship is determined, and the first CQI index is the value of the CQI in the channel state information CSI report associated with the first interference parameter.
  • the value of the interference signal strength is first normalized to the first reference value, and the distribution of the interference signal strength on the real axis can be converted to the distribution in the area centered on the first reference value, which is convenient for subsequent design.
  • the quantization table by designing a quantization table with a value region centered on the first reference value, the interference signal strength can have a small quantization error near the first reference value.
  • the jth interference strength value in the L interference strength values is based on the elements in the second numerical value set The value of , and the second mapping relationship are determined; or, the first interference strength value is determined according to the elements in the second numerical value set Determined with the second mapping relationship, the rth interference strength value is based on the elements in the second value set and difference Determined with the third mapping relationship, wherein r is an integer greater than or equal to 2 and less than or equal to L. Because the value of the interference strength ⁇ 1 , ⁇ 2 ,..., ⁇ N decreases (or does not increase) as the subscript increases, so value ratio The value of is more concentrated, and under the same quantization bit, the Quantizing can provide smaller quantization errors.
  • the ISI includes L+1 interference strength values
  • the first interference strength value in the L+1 interference strength values is according to and the second mapping relationship is determined, the is based on the second set of values It is determined that the j+1 interference strength value in the L+1 interference strength values is based on the jth element in the second numerical value set the value of and difference determined with the sixth mapping relationship, the elements in the second value set is equal to the ratio of the element ⁇ j in the first value set to the first reference value, where j is a positive integer less than or equal to L.
  • the interference vector fed back by the terminal corresponds to the strength of the interference layer one-to-one, that is, only some interference vectors corresponding to the interference layer with relatively large interference strength are fed back, which can reduce the feedback overhead without restoring the interference signal to the network device.
  • the autocorrelation matrix of has a greater impact, so as to obtain a better trade-off between feedback accuracy and feedback overhead.
  • the first codebook includes N sub-codebooks, the i-th sub-codebook in the N sub-codebooks includes at least one matrix, and the i-th sub-codebook includes at least one matrix.
  • Each matrix in is an N ⁇ i-dimensional matrix; the IMI is the index of the second matrix in the Lth subcodebook in the first codebook in the Lth subcodebook, the The second matrix is the matrix with the smallest difference from the first interference matrix in the Lth subcodebook.
  • the terminal implements implicit feedback of the interference matrix by carrying the interference matrix to be fed back on the reference signal, and the network device can recover the second reference signal by estimating the equivalent channel matrix corresponding to the first reference signal and the second reference signal respectively.
  • the precoding matrix of that is, the interference matrix. Compared with codebook-based quantization feedback, this method can provide finer feedback of the interference matrix.
  • both the first reference signal and the second reference signal are sounding reference signals SRS.
  • the first interference parameter includes the ILI, and the first interference parameter further includes at least one of the IMI and the ISI.
  • the terminal encodes and modulates the second interference parameter, and sends the encoded and modulated second interference parameter to the network device on the third time-frequency resource.
  • the terminal encodes and modulates the third interference parameter, and sends the encoded and modulated third interference parameter to the network device on the fourth time-frequency resource.
  • the second interference parameter includes the ILI, and the bit length of the second interference parameter is predefined, and the third interference parameter is the first interference parameter except the second interference parameter.
  • the third time-frequency resource and the fourth time-frequency resource are part of the second time-frequency resource, and the third time-frequency resource is different from the fourth time-frequency resource.
  • the second interference parameter further includes the number of original information bits of the third interference parameter. Since the value of the number of interference layers L is not known in advance on the network device side, the network device does not know how many values the ISI sent by the terminal contains, nor does it know how many interference vectors (which subcodebook corresponds to) the IMI contains, so it does not know these The number of original information bits of the feedback parameter is difficult to decode accurately.
  • the terminal can first feed back the ILI (ie the second interference parameter), and after acquiring the ILI parameter, the network device can determine the original number of information bits of the subsequent ISI and IMI based on the ILI, which is convenient for the network device to understand the ILI and IMI. (ie the third interference parameter) for correct decoding.
  • the interference information is an autocorrelation matrix R of interference signals received by the terminal on N receiving antennas
  • the first interference parameter includes a triangular matrix of the matrix R2 where the matrix R2 is a quantization matrix of the matrix R1, and the matrix R1 is determined according to the matrix R and the second reference value.
  • the (s, t)-th element r1 s, t in the matrix R1 is the (s, t)-th element r s , t in the matrix R and the The ratio of the second reference value, wherein s and t are positive integers less than or equal to N.
  • the (s, t)-th element r2 s, t in the matrix R2 is based on the (s, t)-th element r1 s, t and The seventh mapping relationship is determined.
  • the (s,s)th element r2 s,s in the matrix R2 is based on the (s,s)th element r1 s,s and The eighth mapping relationship is determined; the (s, t)-th element r2 s, t in the matrix R2 is determined according to the (s, t)-th element r1 s, t in the matrix R1 and the seventh mapping relationship , or, the (s, t)th element r2 s, t in the matrix R2 is determined according to a s, t and the seventh mapping relationship, the Wherein, r1 s,s is the (s,s)th element in the matrix R1, r1 t,t is the (t,t)th element in the matrix R1, r1 s,t is the matrix The (s,t)th element in R1, s is not equal to t. Since the diagonal elements of the interference autocorrelation matrix are real numbers, a separate set of mapping relationships
  • the first time-frequency resource is used to carry the first channel state information reference signal CSI-RS or used to carry the first physical downlink shared channel PDSCH.
  • the first CSI-RS is a zero-power ZP CSI-RS; or, the first CSI-RS is a non-zero-power NZP CSI-RS, and the NZP The CSI-RS is also used to measure channel information; or, the first CSI-RS is a non-zero power NZP CSI-RS, and the NZP CSI-RS is only used to measure interference information.
  • a method for event-triggered interference reporting is provided.
  • the network device sends first configuration information to the terminal, where the first configuration information indicates a first time-frequency resource and a second time-frequency resource, the first time-frequency resource is a time-frequency resource used for interference measurement, and the second time-frequency resource is a time-frequency resource used for interference measurement.
  • the terminal performs measurement on the first time-frequency resource to obtain an autocorrelation matrix of the interference signal received by the terminal on the N receiving antennas, where N is an integer greater than 1.
  • the terminal Under the condition that the mode of the interference report is an event-triggered aperiodic report and the second condition is satisfied, the terminal sends the first interference parameter to the network device on the second time-frequency resource, where the first interference parameter is based on the above interference
  • the autocorrelation matrix of the signal is determined.
  • the terminal can report the interference to the network device only under the premise that certain conditions are met, so that the overhead of the interference reporting can be reduced.
  • the first configuration information may further indicate a mode of interference reporting.
  • the mode of interference reporting includes at least one of periodic reporting, semi-persistent reporting and aperiodic reporting.
  • the aperiodic report includes at least one of a DCI-triggered aperiodic report and an event-triggered aperiodic report.
  • the mode of the interference report is an event-triggered aperiodic report.
  • the second condition is that the fourth value is greater than or equal to the second threshold, where the fourth value is obtained according to the measured autocorrelation matrix Rm of the interference signal and the most recently reported first value The autocorrelation matrix Rr of the interference signal corresponding to the interference parameter is determined.
  • the second condition is that the decoding of the first PDSCH transmitted on the first time-frequency resource fails.
  • the autocorrelation matrix of the interference signal is obtained based on the measurement of the first PDSCH.
  • a method for interference tracking is provided.
  • the first network device sends second configuration information to the terminal, where the second configuration information includes configuration information of the time-frequency resource set or the second configuration information indicates the time-frequency resource set.
  • the second network device sends the first downlink channel to the terminal on the sixth time-frequency resource, where the first downlink channel carries the interference change indication information.
  • the sixth time-frequency resource here is one time-frequency resource in the above-mentioned time-frequency resource set.
  • the first downlink channel is a downlink channel sent by the second network device to the terminal.
  • the terminal performs measurement on the first time-frequency resource to obtain an autocorrelation matrix of the interference signal received by the terminal on the N receiving antennas, where N is an integer greater than 1.
  • the terminal sends the first interference parameter to the first network device on the second time-frequency resource, where the first interference parameter is determined according to the autocorrelation matrix of the interference signal.
  • the second network device when the interference of the second network device to the terminal changes, the second network device sends the first downlink channel to the terminal, instructing the terminal to measure the interference from the second network device, so that the terminal can only measure the interference from the second network device.
  • the interference is measured when the interference changes, so that the overhead of the terminal for reporting the interference can be reduced.
  • a communication apparatus including a module for implementing the functions of a terminal or a network device in the foregoing first aspect or any possible implementation manner of the first aspect; or, including a module for implementing the foregoing second aspect
  • a communication device comprising a processor and an interface circuit
  • the interface circuit is configured to receive signals from other communication devices other than the communication device and transmit to the processor or send signals from the processor to the communication device other communication devices
  • the processor is used to implement the functions of the terminal or network device in the foregoing first aspect or any possible implementation manner of the first aspect through logic circuits or executing code instructions; or, for implementing the foregoing first aspect
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed by the communication device, the above-mentioned first aspect or the first aspect is realized.
  • a seventh aspect provides a computer program product comprising instructions that, when executed by a communication device, implement the first aspect or the method in any possible implementation of the first aspect, or implement the second aspect or the second aspect A method in any possible implementation of the aspect, or a method in any possible implementation of the third aspect or the third aspect described above.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic flowchart of an interference reporting method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for event-triggered interference reporting provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for interference tracking provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication apparatus provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110 , a radio access network device 120 and at least one terminal (such as the terminal 130 and the terminal 140 in FIG. 1 ).
  • the terminal is connected to the wireless access network equipment in a wireless manner, and the wireless access network equipment is connected with the core network equipment in a wireless or wired manner.
  • the core network device and the radio access network device can be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device can be integrated on the same physical device, or they can be one physical device. It integrates the functions of some core network equipment and some functions of the wireless access network equipment.
  • Terminals can be fixed-position or movable.
  • FIG. 1 is just a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of core network devices, wireless access network devices, and terminals included in the mobile communication system.
  • the terminal is wirelessly connected to the wireless access network device to access the mobile communication system.
  • the radio access network equipment can be a base station, an evolved NodeB (eNodeB), a transmission reception point (TRP), a next generation NodeB (gNB) in the 5G mobile communication system, future mobile communication
  • the base station in the system or the access node in the WiFi system, etc. can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU), or a distributed unit (distributed unit, DU).
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the wireless access network device.
  • wireless access network equipment is referred to as network equipment, and unless otherwise specified, network equipment refers to wireless access network equipment.
  • a terminal may also be referred to as terminal equipment, user equipment (UE), mobile station, mobile terminal, and the like.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminals, augmented reality terminals, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and wireless terminals in smart grids.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal.
  • Network equipment and terminals can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water; can also be deployed in the air on aircraft, balloons and satellites.
  • the embodiments of the present application do not limit the application scenarios of network devices and terminals.
  • the network device and the terminal can communicate through the licensed spectrum, the unlicensed spectrum, or both the licensed spectrum and the unlicensed spectrum.
  • the network device and the terminal can communicate through the frequency spectrum below 6 GHz (gigahertz, GHz), can also communicate through the frequency spectrum above 6 GHz, and can also use the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz for communication at the same time.
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal.
  • the time domain symbols may be orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols, or may be discrete Fourier transform spread spectrum OFDM (Discrete Fourier Transform-spread-OFDM, DFT) symbols -s-OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • DFT discrete Fourier Transform-spread-OFDM
  • the symbols in the embodiments of the present application all refer to time-domain symbols.
  • a physical downlink shared channel (PDSCH), a physical downlink control channel (PDCCH), and a physical uplink shared channel (PUSCH)
  • the physical uplink control channel (PUCCH) is only an example of the downlink data channel, downlink control channel, uplink data channel and uplink control channel of the physical layer.
  • the data channel and control channels may have different names, which are not limited in the embodiments of the present application.
  • the function of the network device may also be performed by a module (eg, a chip) in the network device, or may be performed by a control subsystem including the function of the base station.
  • the control subsystem including the base station function here can be a control center in industrial IoT application scenarios such as smart grid, factory automation, and intelligent transportation.
  • the functions of the terminal can also be performed by a module (eg, a chip) in the terminal.
  • a terminal In order to communicate with a network device, a terminal needs to establish a wireless connection with a cell controlled by the network device.
  • the cell that has established a wireless connection with the terminal is called the serving cell of the terminal.
  • the serving cell of the terminal When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • the signal sent by the network device to the terminal is called the downlink signal, and the wireless channel experienced by the downlink signal is called the downlink channel; the signal sent by the terminal to the network device is called the uplink signal, and the wireless channel experienced by the uplink signal is called the downlink channel.
  • Upstream channel the signal sent by the network device to the terminal.
  • the system capacity can be improved through link adaptation techniques.
  • the network device performs downlink data scheduling according to the obtained downlink channel state information (CSI), and selects an appropriate modulation and coding scheme and a spatial precoding matrix for downlink data transmission.
  • CSI channel state information
  • CSI includes channel information and interference information, where the channel information refers to the characteristics of the signal propagating in the wireless channel.
  • the method of acquiring CSI in 5G new radio (NR) focuses on the acquisition of channel information, including non-quantized channel information acquisition based on sounding reference signal (SRS) measurement and precoding matrix indication (precoding) matrix indicator, PMI) feedback quantized channel information acquisition, but less attention is paid to the interference information acquisition scheme.
  • SRS sounding reference signal
  • precoding matrix indication matrix indicator precoding matrix indication
  • PMI precoding matrix indication
  • CQI channel quality indicator
  • the network device After obtaining the CQI, the network device cannot accurately and completely restore the interference information received by the terminal.
  • TDD time division duplex
  • network equipment can obtain uplink channel information by measuring the SRS sent by the terminal, and obtain downlink channel information based on channel reciprocity.
  • FDD frequency division duplex
  • the network device can obtain a rank indication (RI), PMI, and CQI based on the CSI fed back by the terminal, and obtain the quantized value of some eigenvectors of the downlink channel ; It is also possible to implicitly know the influence of interference on the reception of downlink signals based on the CQI, but the autocorrelation matrix R of the downlink interference signals cannot be obtained.
  • an embodiment of the present application provides an interference reporting method.
  • the method is described in detail below.
  • the method may be executed by a network device and a terminal, or may be executed by a module (for example, a chip) in the network device and the terminal.
  • the following description will take the network device and the terminal executing the method as an example.
  • the network device sends first information to the terminal, where the first information indicates the first time-frequency resource.
  • the terminal receives the first information from the network device. Further, the terminal may determine the first time-frequency resource according to the first information.
  • the first information is carried in signaling sent by the network device to the terminal.
  • the signaling may be high-level signaling or physical layer signaling
  • the high-level signaling may be radio resource control (radio resource control, RRC) signaling or medium access control (medium access control, MAC) signaling Layer signaling
  • the physical layer signaling may be downlink control information (DCI) carried on the PDCCH.
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the above-mentioned first time-frequency resource may be a time-frequency resource used for transmitting a channel state information reference signal (CSI-RS).
  • the CSI-RS may be a non-zero-power (NZP) CSI-RS or a zero-power (ZP) CSI-RS.
  • the first time-frequency resource may also be a time-frequency resource for sending downlink data, for example, may be a time-frequency resource for sending PDSCH.
  • the terminal performs measurement on the first time-frequency resource to obtain interference information of the terminal on N receiving antennas, where N is an integer greater than 1.
  • the above-mentioned interference information is the autocorrelation matrix R of the interference signals received by the terminal on the N receiving antennas.
  • ⁇ 1 , ⁇ 2 ,..., ⁇ N form a first numerical set ⁇ 1 , ⁇ 2 ,..., ⁇ N ⁇ , where i is a positive integer less than or equal to N.
  • u 1 , u 2 ,...,u N form the first vector set ⁇ u 1 ,u 2 ,...,u N ⁇ .
  • ⁇ 1 ⁇ 2 ⁇ ... ⁇ N It can be seen from the above definition of the autocorrelation matrix R that the elements of the first numerical set and the first vector set correspond one-to-one, that is, for any positive integer i less than or equal to N, ⁇ i corresponds to a ui .
  • the subscripts of the elements of the set may be counted from 1 or 0. The embodiments of the present application will be described by taking the subscripts from 1 as an example.
  • the terminal When the first time-frequency resource is used for sending the first NZP CSI-RS, and the network device indicates that the first NZP CSI-RS is used to measure the target wireless channel, the terminal firstly uses the signal received on the first time-frequency resource and the first A transmission sequence of NZP CSI-RS to determine the estimated value of the target wireless channel, and then according to the estimated value of the target wireless channel, the transmission sequence of the first NZP CSI-RS and the signal received on the first time-frequency resource, determine the The interference signal received on the first time-frequency resource.
  • the terminal can estimate the estimated value of the signal that the first NZP CSI-RS reaches the terminal side according to the estimated value of the target wireless channel and the transmission sequence of the first NZP CSI-RS, and then use the received signal on the first time-frequency resource.
  • the interference signal received on the first time-frequency resource can be obtained by subtracting the estimated value of the signal arriving at the terminal side of the first NZP CSI-RS from the signal.
  • the target wireless channel here is the wireless channel between the network device and the terminal, the network device and the terminal establish a wireless air interface connection, and the network device and the terminal receive and send information through the wireless channel.
  • the terminal can directly determine the received interference signal according to the signal received on the first time-frequency resource.
  • the terminal When the first time-frequency resource is used for sending the second NZP CSI-RS, and the network device indicates that the second NZP CSI-RS is used for interference measurement, the terminal firstly uses the signal received on the first time-frequency resource and the second The transmission sequence of the NZP CSI-RS determines the estimated value of the interference channel.
  • the interference channel here may be a wireless channel between the second network device and the terminal, and the signal sent by the second network device may interfere with the terminal receiving the downlink signal of the network device.
  • the network device further indicates that the second NZP CSI-RS is used for measuring inter-cell interference.
  • the terminal determines the demodulation reference signal (DMRS) of the first PDSCH, denoted as the first DMRS, and determines the demodulation reference signal (DMRS) of the first PDSCH as the first DMRS.
  • the signal received on the resource and the transmission sequence of the first DMRS determine the estimated value of the target wireless channel, and then based on the estimated value of the target wireless channel, the transmission sequence of the first DMRS, and the time-frequency resource received on the time-frequency resource for transmitting the first DMRS. signal to determine the interference signal received on the time-frequency resource of the first DMRS.
  • the terminal determines the interference signal received on the first time-frequency resource according to the first DMRS of the first PDSCH and the received data information. For example, the terminal demodulates and decodes the data received on the first time-frequency resource, and when the data is decoded successfully, the terminal can obtain the original data sent by the network device. The terminal can obtain the estimated value of the target wireless channel according to the first DMRS measurement, and restore the estimated value of the original data received by the terminal according to the estimated value of the target wireless channel and the original data sent by the network device. Then, the terminal can obtain the interference signal received on the first time-frequency resource by subtracting the estimated value of the original data from the data received on the first time-frequency resource.
  • the terminal may calculate an autocorrelation matrix R of the interference signal according to the received interference signal, where the autocorrelation matrix R represents an expected value of the autocorrelation matrix of the interference signal.
  • the autocorrelation matrix is an N*N complex number matrix, where N represents the number of receiving antennas of the terminal.
  • the terminal sends the first interference parameter to the network device on the second time-frequency resource, where the first interference parameter is determined according to the foregoing interference information.
  • the network device receives the first interference parameter from the terminal on the second time-frequency resource.
  • the network device may determine the interference information of the terminal on the N receiving antennas according to the first interference parameter.
  • the terminal may send the first interference parameter to the network device through PUCCH or PUSCH, that is, the second time-frequency resource may be the time-frequency resource of PUCCH or PUSCH, and the first interference parameter is carried on PUCCH or PUSCH.
  • the terminal may encode and modulate the first interference parameter according to the modulation and coding mode indicated by the network device or predefined by the protocol, and then encode and modulate the first interference parameter after encoding and modulation.
  • the parameters are mapped to the second time-frequency resource and sent to the network device.
  • the time-domain position of the PUCCH may be determined according to the foregoing first information and the time-domain position of the first PDSCH.
  • the network device may send second information to the terminal, where the second information indicates the second time-frequency resource.
  • the above-mentioned first interference parameter includes at least one of an interference layer indicator (interference layer indicator, ILI), an interference matrix indicator (interference matrix indicator, IMI), and an interference strength indicator (interference strength indicator, ISI).
  • ILI indicates a value L, and L is a non-negative integer less than or equal to N; IMI is determined according to the first vector set, ISI is determined according to the first numerical set, and the first numerical set and the first vector set are based on the above interference information is determined.
  • L is equal to the number of elements ⁇ i in the first numerical set whose value is greater than or equal to the first threshold, and i is a positive integer less than or equal to N.
  • the first threshold may be predefined by the protocol, or may be configured by the network device to the terminal through signaling.
  • ILI can be equal to L, or it can be equal to the value of L after a specific encoding mapping.
  • L determined by the terminal is always equal to N.
  • the first interference parameter may not include ILI, that is to say, the terminal does not need to report the ILI to the network device.
  • the default ILI value of the network device is N.
  • the ISI includes L interference strength values
  • the L interference strength values are based on the second set of values It is determined that the second value set includes L values, and the elements in the second value set The value of is equal to the ratio of the value of the element ⁇ j in the first value set to the first reference value, where j is a positive integer less than or equal to L.
  • the first reference value may be predefined by the protocol, or may be configured by the network device to the terminal through signaling. Specifically, the terminal has the following four methods to determine the first reference value.
  • the first reference value may be noise power received by the terminal on the first time-frequency resource, where the noise power is determined by at least one of reception bandwidth, thermal noise power spectral density, and noise figure of the terminal.
  • the first reference value thermal noise power spectral density*noise figure*reception bandwidth*spreading factor alpha, where the spreading factor is optional.
  • the reception bandwidth may be the granularity of interference measurement. For example, if interference measurement is performed with a granularity of 4 resource blocks (resource blocks, RBs), the reception width here is 4 RBs.
  • the first reference value may also be a reference signal received power (reference signal received power, RSRP) measured by the terminal.
  • the reference signal in the embodiment of the present application may be a synchronization signal sent by a network device to a terminal or a reference signal in a broadcast channel, or a CSI-RS, or a DMRS.
  • the first reference value is the average value of the received reference signal power.
  • the first reference value may also be configured by the network device to the terminal through signaling.
  • the network device may directly indicate the value of the first reference value, or may indicate an interference to noise ratio (INR), and the terminal determines according to the INR and noise power (such as the noise power determined in the method RV1).
  • INR interference to noise ratio
  • a reference interference signal power, and the reference interference signal power is the first reference value.
  • the reference interference signal power is equal to the INR multiplied by the noise power.
  • Method RV4 The first reference value is determined according to the first channel quality indicator (channel quality indicator, CQI) index (index) and the first mapping relationship, and the first CQI index is the CQI in the CSI report associated with the first interference parameter. value.
  • the first mapping relationship includes one or more first sub-mapping relationships, wherein each first sub-mapping relationship includes a mapping relationship from a CQI index to a first reference value.
  • the terminal according to the second value set The following methods can be used to determine the L interference intensity values.
  • the L interference strength values are quantized values of L elements in the second numerical value set. Specifically, the jth interference strength value in the L interference strength values is based on the elements in the second numerical set The value of is determined by the second mapping relationship.
  • the second mapping relationship includes one or more second sub-mapping relationships. Each second sub-mapping relationship includes a mapping relationship from a value range of a non-negative real number to a non-negative integer. As shown in Table 1, the second mapping relationship includes 16 second sub-mapping relationships. a 0 , a 1 , . . . , a 15 , and a 16 in Table 1 are non-negative real numbers, and the interference strength value is represented by 4 bits.
  • the L interference strength values are quantized values of difference values or ratios of two adjacent elements in the L elements in the second numerical value set. Specifically, the first interference strength value in the L interference strength values is determined according to the second numerical value set. determined with the above-mentioned second mapping relationship. The rth interference strength value is based on the second value set in the and difference It is determined with the third mapping relationship; or, the rth interference strength value is based on the elements in the second numerical value set and ratio (or ) and the third mapping relationship, wherein r is an integer greater than or equal to 2 and less than or equal to L.
  • the third mapping relationship includes one or more third sub-mapping relationships.
  • Each third sub-mapping relationship may include a mapping relationship from a value range of a non-negative real number to a non-negative integer.
  • the third mapping relationship may be the same as the second mapping relationship, or may be different from the second mapping relationship.
  • the third mapping relationship includes four third sub-mapping relationships.
  • b 0 , b 1 , b 2 , b 3 and b 4 in Table 2 are non-negative real numbers, and the interference strength value is represented by 2 bits.
  • Method ISV3 The L interference strength values are quantized values obtained after transforming the L elements in the second numerical value set. Specifically, the second numerical set is transformed to obtain a third numerical set ⁇ 1 , ⁇ 2 , . . . , ⁇ L ⁇ . E.g, The jth interference strength value among the L interference strength values is determined according to the value of the element ⁇ j in the third numerical value set and the fourth mapping relationship.
  • the fourth mapping relationship includes one or more fourth sub-mapping relationships. Each fourth sub-mapping relationship includes a mapping relationship from a value range of a real number to a non-negative integer.
  • Method ISV4 The L interference strength values are quantized values of difference values or ratios of two adjacent elements after transforming the L elements in the second value set. Specifically, the second numerical set is transformed to obtain a third numerical set ⁇ 1 , ⁇ 2 , . . . , ⁇ L ⁇ .
  • the first interference strength value among the L interference strength values is determined according to the value of the element ⁇ 1 in the third numerical value set and the fourth mapping relationship, and the rth interference strength value among the L interference strength values is determined according to the difference ⁇ r-1 - ⁇ r of the elements ⁇ r-1 and ⁇ r in the third numerical set and the fifth mapping relationship, or the rth interference strength value is determined according to the third numerical set
  • the ratio ⁇ r-1 / ⁇ r (or ⁇ r / ⁇ r-1 ) of the elements ⁇ r-1 and ⁇ r is determined by the sixth mapping relationship, where r is an integer greater than or equal to 2 and less than or equal to L.
  • the fifth mapping relationship includes one or more fifth sub-mapping relationships.
  • Each fifth sub-mapping relationship includes a mapping relationship from a value range of a non-negative real number to a non-negative integer.
  • the sixth mapping relationship includes one or more sixth sub-mapping relationships.
  • Each sixth sub-mapping relationship includes a mapping relationship from a value range of a real number to a non-negative integer.
  • the ISI may include L+1 interference strength values, where the first interference strength value is based on determined with the second mapping relationship, is determined according to the second set of numerical values, for example, L in the second set of numerical values mean value of .
  • the j+1th interference strength value is based on the jth element in the second set of values the value of and difference (or ) and the sixth mapping relationship, or, the j+1 interference strength value is determined according to the jth element in the second numerical value set the value of and ratio (or ) and the third mapping relationship is determined.
  • the network device may obtain L interference strength values through the received first interference parameters; further, the network device determines a second set of numerical values according to the L interference strength values, and the specific determination process may be considered as the above-mentioned terminal according to the second numerical value.
  • the inverse process of the process of determining the L interference strength values in sets; finally, the network device may determine the first numerical set according to the second numerical set and the first reference numerical value. For example, the value of the element ⁇ j in the first numerical set is equal to the second numerical set. elements in the set of values The product of the value of and the first reference value.
  • the above process of determining L or L+1 interference strength values can be summarized as: first normalize the elements of the first numerical set to obtain the second numerical set, and then quantify the elements in the second numerical set to obtain the interference strength or, quantizing the difference value or ratio of two adjacent elements in the second numerical set to obtain the interference strength value; or, transforming the elements of the second numerical set to obtain a third numerical set, and combining the third numerical value
  • the elements are quantized to obtain the interference strength value; or, the difference value or the ratio of two adjacent elements in the third numerical value set is quantized to obtain the interference strength value. It can be understood that, the above normalization process can also be performed after performing the difference and ratio of the elements of the numerical set.
  • the difference or ratio of two adjacent elements in the first numerical set can be normalized, Then the normalized value is quantized to obtain the interference strength value; alternatively, the first numerical set can also be transformed to obtain the fourth numerical set (refer to the method of transforming the second numerical set to obtain the third numerical set), and then the first numerical set can be transformed to obtain the third numerical set.
  • the elements of the four-value set are quantized to obtain the interference strength value; alternatively, the elements of the fourth numerical set can also be normalized, and then the normalized value can be quantized to obtain the interference strength value; alternatively, the fourth numerical set can also be Quantize the difference or ratio of two adjacent elements in the set to obtain the interference intensity value; alternatively, normalize the difference or ratio of two adjacent elements in the fourth numerical set, and then normalize the The value is quantized to obtain the interference intensity value.
  • the first codebook may be predefined by the protocol, or may be configured by the network device to the terminal through signaling.
  • the first codebook includes N sub-codebooks, the i-th sub-codebook in the N sub-codebooks includes at least one matrix, and each matrix in the i-th sub-codebook is an N ⁇ i-dimensional matrix.
  • the IMI may be used to indicate the second matrix in the Lth subcodebook in the first codebook.
  • the IMI may be the second matrix in the Lth subcodebook in the first codebook.
  • the index in the L subcodebooks, and the second matrix is the matrix with the smallest difference from the first interference matrix in the Lth subcodebook.
  • the difference between the matrix A1 and the matrix A2 can be expressed as ⁇ A1-A2 ⁇ , where ⁇ A ⁇ represents the norm (norm) of the matrix A, such as the 1 norm or the F norm (Frobenius norm).
  • the network device may determine, according to the IMI, that the interference matrix is the second matrix indicated by the IMI in the Lth subcodebook.
  • the first interference parameter includes ILI
  • the first interference parameter further includes IMI and/or ISI.
  • the terminal encodes and modulates the second interference parameter, and sends the encoded and modulated second interference parameter to the network device on the third time-frequency resource, where the second interference parameter includes ILI, and the bit length of the second interference parameter is
  • the protocol is predefined or the network device is configured to the terminal through RRC signaling.
  • the terminal encodes and modulates the third interference parameter, and sends the encoded and modulated third interference parameter to the network device on the fourth time-frequency resource, where the third interference parameter is the first interference parameter except the second interference parameter external parameters.
  • the third time-frequency resource and the fourth time-frequency resource are part of the second time-frequency resource, and the third time-frequency resource is different from the fourth time-frequency resource.
  • the second interference parameter may further include first bit length information indicating the number of information bits of the third interference parameter.
  • the network device first receives the second interference parameter on the third time-frequency resource, and then determines the number of information bits of the third interference parameter according to the ILI or the first bit length information in the second interference parameter.
  • the network device further receives the third interference parameter on the fourth time-frequency resource based on the number of information bits of the third interference parameter, and demodulates and decodes the third interference parameter.
  • the terminal may carry the first interference parameter in a MAC control element (control element, CE) and send it to the network device through the PUSCH.
  • CE control element
  • the terminal may first generate a first MAC CE, the first MAC CE includes the first interference parameter, and then generate a first MAC protocol data unit (protocol data unit, PDU), the first MAC PDU includes the first MAC CE, and finally according to The coding rate and modulation mode indicated by the network device perform coding and modulation on the first MAC PDU, and send the coded and modulated first interference parameter to the network device on the second time-frequency resource.
  • PDU protocol data unit
  • the network device receives the PUSCH on the second time-frequency resource, that is, the first MAC PDU, then recovers the first MAC CE from the first MAC PDU, and determines the first interference parameter.
  • the first MAC CE may include the above-mentioned second interference parameter and the above-mentioned third interference parameter.
  • the above-mentioned method for reporting the first interference parameter is divided into the second interference parameter and the third interference parameter, which can be reported according to the actual length of the information bits of the first interference parameter, without using a fixed-length reporting method, thereby reducing the need for Report the overhead of the first interference parameter.
  • the first interference parameter includes ISI or includes ILI and ISI
  • the terminal sends the first interference parameter to the network device on the second time-frequency resource.
  • the first reference signal and the second reference signal here may both be sounding reference signals (sounding reference signals, SRS).
  • W 1 may be a unit matrix
  • corresponding W 2 is a first interference matrix.
  • the network device receives the first interference parameter on the second time-frequency resource, obtains the ISI or obtains the ILI and the ISI, and then respectively receives the first reference signal and the second reference signal, by receiving on the time-frequency resource of the first reference signal.
  • the first interference matrix is obtained by calculating the received signal and the signal received on the time-frequency resource of the second reference signal, which is also equivalent to obtaining the IMI.
  • S 1 is the pilot sequence of the first reference signal
  • S 2 is the pilot sequence of the second reference signal
  • H is the uplink wireless channel
  • I 1 and Z 1 are respectively are the interference and noise received when the network device receives the first reference signal
  • I 2 and Z 2 are the interference and noise received when the network device receives the second reference signal, respectively.
  • the interference information is the autocorrelation matrix R of the interference signals received by the terminal on the N receiving antennas
  • the first interference parameter includes all elements in the triangular matrix (which may be a lower triangular matrix or an upper triangular matrix) of the matrix R2 , where the matrix R2 is a quantization matrix of the matrix R1, and the matrix R1 is determined according to the autocorrelation matrix R of the interference signal and the second reference value.
  • the (s, t)-th element r1 s,t in the matrix R1 is the ratio of the (s, t)-th element rs , t in the matrix R to the second reference value.
  • the method for determining the second reference value may be any one of the methods for determining the first reference value above.
  • the (s,t)th element r2 s,t in the matrix R2 is determined according to the (s,t)th element r1 s,t in the matrix R1 and the seventh mapping relationship.
  • the seventh mapping relationship includes one or more seventh sub-mapping relationships, and each seventh sub-mapping relationship includes a mapping relationship from a complex value range to a non-negative integer.
  • the real part of the (s,t)th element r2 s,t in the matrix R2 is determined according to the real part of the (s,t)th element r1 s,t in the matrix R1 and the eighth mapping relationship.
  • the imaginary part of the (s,t)th element r2 s,t in the matrix R2 is determined according to the imaginary part of the (s,t)th element r1 s,t in the matrix R1 and the eighth mapping relationship.
  • the eighth mapping relationship includes one or more eighth sub-mapping relationships, and each eighth sub-mapping relationship includes a mapping relationship that maps from a value range of a real number to a non-negative integer.
  • the (s,s)th element r2 s,s in the matrix R2 is determined according to the (s,s)th element r1 s,s in the matrix R1 and the eighth mapping relationship, and the The (s,t)th element r2 s,t is determined according to the (s,t)th element r1 s,t in the matrix R1 and the seventh mapping relationship, or, the (s,t)th in the matrix R2 ) element r2 s,t is based on the (s,t)th element r1 s,t in matrix R1, the (s,s)th element r1 s,s in matrix R1 and the (t)th element in matrix R1 ,t) elements r1 t,t are determined, where s is not equal to t.
  • the off-diagonal elements r2 s,t in the matrix R2 are determined according to a s,t and the seventh mapping relationship; or, the real value of the (s,t)th element r2 s,t in the matrix R2
  • the part is determined according to the real part of a s,t and the eighth mapping relationship, and the imaginary part of the (s,t)th element r2 s,t in the matrix R2 is based on the imaginary part of a s,t and the eighth mapping relationship definite.
  • the (s,s)th element r2 s,s in the matrix R2 is based on the (s,s)th element r1 s,s of the matrix R1 and the mean R1 of the N elements on the diagonal of the matrix R1 mean, diag and the ninth mapping relationship are determined.
  • r2 s,s is determined according to r1 s,s -R1 mean,diag or R1 mean,diag -r1 s,s and the ninth mapping relationship.
  • the above-mentioned first interference parameter may further include information of the mean value R1 mean,diag of the N elements on the diagonal of the matrix R1.
  • the ninth mapping relationship includes one or more ninth sub-mapping relationships, and each ninth sub-mapping relationship includes a mapping relationship from a value range of a real number to a non-negative integer.
  • a plurality of bits may be used to represent an element in the matrix R2.
  • diagonal elements are real numbers, represented by S1 bits
  • off-diagonal elements are complex numbers, represented by S2 bits, where S2 r bits represent the real part
  • S2 i bits represent the imaginary part
  • S2 r + S2 i S2.
  • the network device can recover the interference received by the terminal according to the first interference parameter fed back by the terminal (for example, recover the autocorrelation matrix of the interference signal), which is beneficial for the network device to perform more accurate downlink data scheduling , including precoding optimization, coding and modulation scheme selection, terminal pairing in multi-user multiple-input multiple-output (MU-MIMO) scenarios, etc.
  • the first interference parameter fed back by the terminal for example, recover the autocorrelation matrix of the interference signal
  • MU-MIMO multi-user multiple-input multiple-output
  • an embodiment of the present application further provides a method for event-triggered interference reporting.
  • the network device sends first configuration information to the terminal, where the first configuration information indicates a first time-frequency resource and a second time-frequency resource, where the first time-frequency resource is a time-frequency resource used for interference measurement, and the second time-frequency resource is Time-frequency resources for interference reporting.
  • the first configuration information may be carried in higher layer signaling or physical layer signaling.
  • the terminal receives the first configuration information from the network device.
  • first time-frequency resource reference may be made to the relevant description of the first time-frequency resource in the above-mentioned embodiment of FIG. 2
  • second time-frequency resource reference may be made to the above-mentioned description of the second time-frequency resource in the embodiment of FIG. 2 . .
  • the first configuration information may also indicate a mode of interference reporting.
  • the mode of interference reporting includes at least one of periodic reporting, semi-persistent reporting and aperiodic reporting.
  • the aperiodic report includes at least one of a DCI-triggered aperiodic report and an event-triggered aperiodic report.
  • the network device may configure multiple interference report configuration information for the terminal, where each interference report configuration information corresponds to at least one time-frequency resource for interference measurement, at least one time-frequency resource for interference report, and an interference report mode.
  • the first configuration information may further indicate the index or number of the configuration information of the multiple interference reports, and instruct the terminal to perform interference measurement and interference reporting according to parameters corresponding to the configuration information of the interference reports.
  • the time-frequency resources for interference measurement and the time-frequency resources for interference reporting are periodic or semi-persistent.
  • the mode of interference reporting is aperiodic reporting
  • the time-frequency resources for interference measurement and the time-frequency resources for interference reporting may be aperiodic.
  • Specific time-frequency resources for interference measurement and time-frequency resources for interference reporting may be indicated by DCI.
  • the mode of the interference report is an event-triggered aperiodic report.
  • the time-frequency resources for interference measurement include PDSCH resources, or the time-frequency resources for interference measurement are PDSCH resources.
  • the time-frequency resources of the interference report include PUSCH resources, or the time-frequency resources of the interference report are PUSCH resources.
  • the PUSCH resources are the first PUSCH resources that satisfy the first condition.
  • the first condition is that the distance between the PUSCH resource and the time-frequency resource for interference measurement is greater than or equal to the first time length.
  • the first time length is predefined by the protocol or indicated to the terminal by the network device through signaling.
  • the first length of time is a protocol-defined minimum processing time for interference measurements.
  • the first condition may further include that the distance between the PUSCH resource and the first DCI is greater than or equal to a second time length, and the second time The length is predefined by the protocol or indicated to the terminal by the network device through signaling.
  • the above-mentioned PUSCH resources include PUSCH resources dynamically scheduled through DCI and/or PUSCH resources authorized by configuration.
  • the first configuration information further includes frequency domain indication information of interference measurement.
  • the frequency domain indication information includes a first subband set, the first subband set includes M subbands, the M subbands may be continuous or non-continuous, and M is an integer greater than or equal to 1.
  • the terminal measures the interference on the first subband set, and reports the interference information on the first subband set to the network device.
  • the first configuration information may further include a frequency domain reporting mode of the interference report.
  • the frequency domain reporting modes include Mode 1 and Mode 2. For mode 1, all subbands report only one interference information, that is, the terminal calculates a first interference parameter according to the interference information on all subbands.
  • M subbands report M interference information, that is, the terminal calculates respective first interference parameters according to the interference information on each subband, and then reports M first interference parameters to the network device.
  • the terminal can perform frequency domain differential feedback IMI.
  • the terminal may report one i1 and M i2s to the network device, and the IMI on the subband is determined according to the i1 and the i2 corresponding to the subband.
  • the terminal may report an ILI to the network device, indicating the number of interference flows on the subband, or the terminal may not report the ILI to the network device, but default the number of interference flows to N.
  • the terminal transmits measurement interference information according to the PDSCH on the subband before the first symbol.
  • the first symbol is determined according to the second time-frequency resource and the third time length, or the first symbol is the last symbol whose distance from the second time-frequency resource is greater than or equal to the third time length, which can also be understood as the first symbol. is the last interference measurement symbol that satisfies the transmission of the interference report on the second time-frequency resource.
  • the third time length is predefined by the protocol or indicated to the terminal by the network device through signaling.
  • the terminal transmits measurement interference information according to the PDSCH on the subband before the first symbol and after the second symbol, and the second symbol is based on the second symbol.
  • the time-frequency resource and the fourth time length are determined.
  • the second symbol is the earliest symbol whose distance from the second time-frequency resource is less than or equal to the fourth time length.
  • the fourth time length is predefined by the protocol or indicated to the terminal by the network device through signaling.
  • the first configuration information may further include a scheme indicating the content of the first interference parameter and the interference report.
  • the first configuration information indicates that the first interference parameter includes ILI, IMI, and ISI; or, the first configuration information indicates that the first interference parameter includes IMI and ISI; or, the first configuration information indicates that the first interference parameter includes ISI or ILI and ISI, and implicitly feed back IMI by sending the first reference signal and the second reference signal; or, the first configuration information instructs the terminal to feed back the upper triangular matrix or the lower triangular matrix of the matrix R2 according to the second scheme described in the embodiment of FIG. 2 .
  • the first configuration information may also be the first information in S210.
  • the terminal performs measurement on the first time-frequency resource to obtain an autocorrelation matrix of the interference signal received by the terminal on the N receiving antennas, where N is an integer greater than 1.
  • N is an integer greater than 1.
  • the terminal sends the first interference parameter to the network device on the second time-frequency resource, where the first interference parameter is based on The autocorrelation matrix of the above interference signal is determined.
  • the network device receives the first interference parameter from the terminal on the second time-frequency resource.
  • the second condition is that the fourth value is greater than or equal to the second threshold, where the fourth value is the autocorrelation matrix Rm of the interference signal obtained according to the measurement and the autocorrelation of the interference signal corresponding to the most recently reported first interference parameter.
  • the matrix Rr is determined.
  • the fourth value may represent the degree of change from Rr to Rm, for example, the fourth value is equal to the norm of Rm-Rr, or the fourth value is equal to the ratio of the norm of Rm-Rr to the norm of Rr.
  • the second condition is that the decoding of the first PDSCH transmitted on the first time-frequency resource fails.
  • the autocorrelation matrix of the interference signal is obtained based on the measurement of the first PDSCH.
  • the second condition is that the decoding of the second PDSCH transmitted on the seventh time-frequency resource fails, the seventh time-frequency resource has a corresponding relationship with the second time-frequency resource, and the seventh time-frequency resource is the same as the second time-frequency resource.
  • the first time-frequency resources are different, and the corresponding relationship is predefined or preconfigured.
  • the seventh time-frequency resource is the resource where any second PDSCH transmission is located
  • the second time-frequency resource is the second time-frequency resource in the earliest time unit after the third symbol
  • the third symbol is the seventh time-frequency resource.
  • the first symbol after the fifth time interval after the end symbol of the time-frequency resource.
  • the first configuration information is only used to configure the position of the second time-frequency resource within a time unit, specifically the second time-frequency resource Which time unit is implicitly determined by the above seventh time-frequency resource.
  • the second condition is that the signal to interference plus noise ratio (SINR) of the third information is greater than or equal to the third threshold; or the second condition is that the reception success rate of the third information is greater than the fourth threshold.
  • the third information may be the second PDSCH received on the fifth time-frequency resource, or the third information may be the reference signal received on the fifth time-frequency resource.
  • the reception success probability is an information reception success probability estimated according to the estimated SINR or soft information (eg, likelihood value).
  • the fifth time-frequency resource here may also be the above-mentioned first time-frequency resource for measuring interference, and the second PDSCH may also be the above-mentioned first PDSCH.
  • the above-mentioned second threshold, third threshold and fourth threshold may be predefined by the protocol, or may be configured by the network device to the terminal through signaling.
  • the terminal can report the interference to the network device only under the premise that certain conditions are met, so that the overhead of the interference reporting can be reduced.
  • an embodiment of the present application provides an interference tracking method.
  • the first network device sends second configuration information to the terminal, where the second configuration information includes configuration information of a time-frequency resource set or the second configuration information indicates a time-frequency resource set.
  • the terminal receives the second configuration information from the first network device.
  • the first network device here may be the network device in FIG. 2 and FIG. 3 .
  • the time-frequency resource set is the time-frequency resource for the terminal to perform blind detection on the downlink channel (eg, PDCCH) from the second network device.
  • the first network device is a network device that provides signaling and data transmission for the terminal
  • the second network device is a network device that interferes with the terminal receiving signals from the first network device.
  • the first network device sends the first configuration information to the terminal, and reference may be made to S310 for a detailed description of the first configuration information.
  • the second network device sends the first downlink channel to the terminal on the sixth time-frequency resource.
  • the terminal performs blind detection on the first downlink channel on the sixth time-frequency resource.
  • Bearer interference change indication information is one time-frequency resource in the above-mentioned time-frequency resource set.
  • the first downlink channel is a downlink channel sent by the second network device to the terminal.
  • the interference change indication information here indicates whether the terminal needs to measure the interference from the second network device or instructs the terminal to measure the interference from the second network device.
  • the first downlink channel also carries indication information of the first time-frequency resource, and for the specific description of the first time-frequency resource, reference may be made to the relevant description in S210 or S310.
  • the first downlink channel also carries indication information of the second time-frequency resource, and the specific description of the second time-frequency resource may refer to the relevant description in S230 or S310.
  • the first downlink channel also carries a fifth time length, and the fifth time length indicates the effective time of the current interference measurement, that is, within the fifth time length, the terminal does not need to perform any more interference measures from the second network device. Measurement.
  • the terminal performs measurement on the first time-frequency resource to obtain an autocorrelation matrix of the interference signal received by the terminal on the N receiving antennas, where N is an integer greater than 1.
  • N is an integer greater than 1.
  • the terminal sends the first interference parameter to the first network device on the second time-frequency resource, where the first interference parameter is determined according to the autocorrelation matrix of the interference signal.
  • the first network device receives the first interference parameter from the terminal on the second time-frequency resource.
  • the second network device when the interference of the second network device to the terminal changes, the second network device sends the first downlink channel to the terminal, instructing the terminal to measure the interference from the second network device, so that the terminal can only measure the interference from the second network device.
  • the interference is measured when the interference changes, so that the overhead of the terminal for interference measurement can be reduced.
  • the network device and the terminal include corresponding hardware structures and/or software modules for performing each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
  • FIG. 5 and FIG. 6 are schematic structural diagrams of possible communication apparatuses provided by embodiments of the present application. These communication apparatuses can be used to implement the functions of the terminal or the network device in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be the terminal 130 or the terminal 140 shown in FIG. 1 , or the wireless access network device 120 shown in FIG. 1 , or may be applied to a terminal or a network device modules (such as chips).
  • the communication device 500 includes a processing unit 510 and a transceiver unit 520 .
  • the communication apparatus 500 is configured to implement the functions of the terminal or the network device in the method embodiment shown in FIG. 2 , FIG. 3 or FIG. 4 .
  • the transceiver unit 520 is used to receive the first message from the network device, and the first information indicates the first time-frequency resource; the processing unit 510 is used for Measure on the first time-frequency resource to obtain the interference information of the terminal on the N receiving antennas, where N is an integer greater than 1; the transceiver unit 520 is further configured to send the first time-frequency resource to the network device on the second time-frequency resource interference parameters, wherein the first interference parameter is determined according to the above-mentioned interference information.
  • the transceiver unit 520 is configured to send the first information to the terminal, where the first information indicates the first time-frequency resource; the transceiver unit 520 further is used to receive the first interference parameter from the terminal on the second time-frequency resource, where the first interference parameter is determined according to the interference information of the terminal on the N receiving antennas, and the interference information is measured on the first time-frequency resource obtained; the processing unit 510 is configured to schedule downlink data according to the first interference parameter.
  • the transceiver unit 520 is used to receive the first configuration information from the network device, where the first configuration information indicates the first time-frequency resource and the second time-frequency resource.
  • the processing unit 510 is used to measure on the first time-frequency resource, and obtain the terminal The autocorrelation matrix of the interference signals received on the N receiving antennas, where N is an integer greater than 1; the transceiver unit 520 is further configured to: when the interference reporting mode is event-triggered aperiodic reporting, and the second condition is If the conditions are met, the first interference parameter is sent to the network device on the second time-frequency resource, where the first interference parameter is determined according to the autocorrelation matrix of the interference signal.
  • the transceiver unit 520 is used to send first configuration information to the terminal, where the first configuration information indicates the first time-frequency resource and the second time-frequency resource resources, the first time-frequency resource is the time-frequency resource used for interference measurement, and the second time-frequency resource is the time-frequency resource used for interference reporting; the transceiver unit 520 is further configured to receive the first time-frequency resource from the terminal on the second time-frequency resource.
  • An interference parameter where the first interference parameter is determined according to the autocorrelation matrix of the interference signal received by the terminal on the N receiving antennas, and the interference signal is obtained by measurement on the first time-frequency resource; the processing unit 510 is used for Downlink data is scheduled according to the first interference parameter.
  • processing unit 510 and the transceiver unit 520 can be obtained directly by referring to the relevant descriptions in the method embodiment shown in FIG. 3 , and details are not repeated here.
  • the transceiver unit 520 is used to receive the second configuration information from the first network device, where the second configuration information includes the configuration information of the time-frequency resource set or the second configuration information indicates a set of time-frequency resources; the transceiver unit 520 is further configured to perform blind detection on the first downlink channel on the sixth time-frequency resource, and the first downlink channel carries interference change indication information; the processing unit 510 is used to measure on the first time-frequency resource to obtain the autocorrelation matrix of the interference signal received by the terminal on the N receiving antennas, where N is an integer greater than 1; the transceiver unit 520 is also used for the second time-frequency Send the first interference parameter to the first network device on the resource, where the first interference parameter is determined according to the autocorrelation matrix of the interference signal.
  • the transceiver unit 520 is configured to send second configuration information to the terminal, where the second configuration information includes the configuration information of the time-frequency resource set or The second configuration information indicates a set of time-frequency resources; the transceiver unit 520 is further configured to receive the first interference parameter from the terminal on the second time-frequency resource, where the first interference parameter is based on the interference signals received by the terminal on the N receiving antennas is determined by the autocorrelation matrix of , the interference signal is measured on the first time-frequency resource; the processing unit 510 is configured to schedule downlink data according to the first interference parameter.
  • the transceiver unit 520 is configured to send the first downlink channel to the terminal on the sixth time-frequency resource, the first downlink channel
  • the channel carries interference change indication information.
  • the communication apparatus 600 includes a processor 610 and an interface circuit 620 .
  • the processor 610 and the interface circuit 620 are coupled to each other.
  • the interface circuit 620 can be a transceiver or an input-output interface.
  • the communication apparatus 600 may further include a memory 630 for storing instructions executed by the processor 610 or input data required by the processor 610 to execute the instructions or data generated after the processor 610 executes the instructions.
  • the processor 610 is used to implement the function of the above-mentioned processing unit 510
  • the interface circuit 620 is used to implement the function of the above-mentioned transceiver unit 520 .
  • the terminal chip When the above communication device is a chip applied to a terminal, the terminal chip implements the functions of the terminal in the above method embodiments.
  • the terminal chip receives information from other modules in the terminal (such as a radio frequency module or an antenna), and the information is sent to the terminal by a network device; or, the terminal chip sends information to other modules in the terminal (such as a radio frequency module or an antenna), This information is sent by the terminal to the network device.
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiments.
  • the network device chip receives information from other modules (such as radio frequency modules or antennas) in the network device, and the information is sent by the terminal to the network device; or, the network device chip sends information to other modules (such as radio frequency modules or antennas) in the network device ) to send information, the information is sent by the network device to the terminal.
  • modules such as radio frequency modules or antennas
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions may be composed of corresponding software modules, and software modules may be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in a network device or terminal.
  • the processor and the storage medium may also exist in the network device or terminal as discrete components.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs or instructions.
  • the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable apparatus.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits by wire or wireless to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available media that can be accessed by a computer or a data storage device such as a server, data center, etc. that integrates one or more available media.
  • the usable media may be magnetic media, such as floppy disks, hard disks, magnetic tapes; optical media, such as digital video discs; and semiconductor media, such as solid-state drives.
  • “at least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are a kind of "or” relationship; in the formula of this application, the character "/” indicates that the related objects are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种干扰上报方法。终端设备通过在第一时频资源上进行干扰测量,得到干扰信号的自相关矩阵,进一步根据干扰信号的自相关矩阵确定第一干扰参数,并将第一干扰参数上报给网络设备,从而使得网络设备能够恢复出该终端设备侧的干扰信号的自相关矩阵,进而有利于网络设备进行更精准的下行数据调度。

Description

干扰上报的方法与装置 技术领域
本发明涉及无线通讯技术领域,具体涉及一种干扰上报的方法与装置。
背景技术
第五代(5th generation,5G)移动通信系统与第四代(4th generation,4G)移动通信系统相比的一大特征就是增加了对超高可靠低时延通信(ultra-reliable and low-latency communications,URLLC)业务的支持。例如,智能工厂中的运动控制业务要求环回时延在1毫秒之内。URLLC业务对低时延和高可靠的需求与系统对高容量的需求之间天然存在矛盾。低时延意味着重传机会少,因此URLLC业务数据需要采用相对鲁棒的传输方案(例如,更多的资源)来保证传输的可靠性,从而导致数据传输效率下降,进而降低了系统容量。
为了提升数据传输效率,一种可行的方法是提高干扰测量的准确度,从而通过链路自适应技术提升系统容量。
发明内容
本申请实施例提供了一种干扰上报的方法,以使得网络设备获得更准确的干扰信息,从而使得网络设备可以进行更精准的下行数据调度,从而提升系统容量。
第一方面,提供了一种干扰上报方法。网络设备向终端发送第一信息,所述第一信息指示第一时频资源。终端在所述第一时频资源上进行测量,得到所述终端在N个接收天线上的干扰信息,其中,N为大于1的整数。终端在第二时频资源上向所述网络设备发送第一干扰参数,所述第一干扰参数是根据所述干扰信息确定的。
通过这种干扰上报方法,网络设备可以根据终端反馈的第一干扰参数,恢复出终端受到的干扰,从而使得网络设备可以做更精准的下行数据调度,从而提升系统容量。
在第一方面的一种可能的实现方式中,所述第一干扰参数包括干扰层数指示ILI、干扰矩阵指示IMI和干扰强度指示ISI中的至少一个,其中,所述ILI指示数值L,L为小于等于N的非负整数,所述IMI是根据第一向量集合{u 1,u 2,…,u N}确定的,所述第一向量集合包括N个向量,所述ISI是根据第一数值集合{λ 12,…,λ N}确定的,所述第一数值集合包括N个数值,所述第一数值集合和所述第一向量集合是根据所述干扰信息确定的,λ 1≥λ 2≥…≥λ N。通过上报干扰信息的层数以及每一层的强度和方向,一方面可以帮助网络设备完整恢复干扰信息的空域结构(即下文中干扰信号的自相关矩阵),便于进行精细化空域调度,另一方面可以压缩干扰信息上报需要的比特数目,降低反馈开销。
在第一方面的一种可能的实现方式中,所述干扰信息为所述终端在N个接收天线上接收到的干扰信号的自相关矩阵R,所述第一数值集合和所述第一向量集合满足:R=U∑U H,其中,矩阵U=[u 1,u 2,…,u N],Σ=Diag(λ 12,…,λ N),U H表示矩阵U的共轭转置矩阵,Diag(λ 12,…,λ N)表示主对角线元素为λ 12,…,λ N的对角矩阵。通过这种方法,将干扰信号的自相关矩阵上报拆分为奇异值上报和奇异向量上报,提供一种简单 可行的干扰上报方法,例如,可以最大化沿用现有的信道状态信息上报的框架,即对奇异值进行基于表格的量化反馈,对奇异向量进行基于码本的量化反馈。
在第一方面的一种可能的实现方式中,所述L等于所述第一数值集合中元素λ i的取值大于或等于第一门限的个数,i为小于或等于N的正整数。通过这种方法,终端只对部分干扰强度较大的干扰层的干扰强度取值进行反馈,可以在降低反馈开销的同时不对网络设备端恢复干扰信号的自相关矩阵造成较大影响,从而在反馈准确性和反馈开销之间获得较好的折中。
在第一方面的一种可能的实现方式中,当L为正整数时,所述ISI包括L个干扰强度值,所述L个干扰强度值是根据第二数值集合
Figure PCTCN2020118885-appb-000001
确定的,所述第二数值集合包括L个数值,所述第二数值集合中的元素
Figure PCTCN2020118885-appb-000002
的取值等于所述第一数值集合中元素λ j的取值与第一参考数值的比值,j为小于或等于L的正整数。
在第一方面的一种可能的实现方式中,所述第一参考数值是高层信令配置的;或者,所述第一参考数值是根据接收带宽、热噪声功率谱密度和所述终端的噪声系数中的至少一项确定的;或者,所述第一参考数值是所述终端测量到的参考信号接收功率;或者,所述第一参考数值是根据第一信道质量指示索引CQI index和第一映射关系确定的,所述第一CQI index是与所述第一干扰参数关联的信道状态信息CSI报告中CQI的取值。通过这种方法,将干扰信号强度取值先对第一参考数值进行归一化,可以将干扰信号强度在实数轴上的分布转换到在第一参考数值为中心的区域的分布,便于后续设计量化表格,通过设计一个以第一参考数值为中心的数值区域的量化表格,可以使得干扰信号强度在第一参考数值附近具有较小的量化误差。
在第一方面的一种可能的实现方式中,所述L个干扰强度值中的第j个干扰强度值是根据所述第二数值集合中的元素
Figure PCTCN2020118885-appb-000003
的取值与第二映射关系确定的;或者,所述第一个干扰强度值是根据所述第二数值集合中的元素
Figure PCTCN2020118885-appb-000004
与第二映射关系确定的,所述第r个干扰强度值是根据所述第二数值集合中的元素
Figure PCTCN2020118885-appb-000005
Figure PCTCN2020118885-appb-000006
的差值
Figure PCTCN2020118885-appb-000007
与第三映射关系确定的,其中r为大于或等于2且小于或等于L的整数。因为干扰强度取值λ 12,…,λ N随着下标增加是减小(或者说不增加),因此
Figure PCTCN2020118885-appb-000008
的取值比
Figure PCTCN2020118885-appb-000009
的取值更为集中,相同量化比特下对
Figure PCTCN2020118885-appb-000010
进行量化可以提供更小的量化误差。
在第一方面的一种可能的实现方式中,当L为正整数时,所述ISI包括L+1个干扰强度值,所述L+1个干扰强度值中的第一个干扰强度值是根据
Figure PCTCN2020118885-appb-000011
和第二映射关系确定的,所述
Figure PCTCN2020118885-appb-000012
是根据第二数值集合
Figure PCTCN2020118885-appb-000013
确定的,所述L+1个干扰强度值中的第j+1个干扰强度值是根据所述第二数值集合中第j个元素
Figure PCTCN2020118885-appb-000014
的取值和
Figure PCTCN2020118885-appb-000015
的差值
Figure PCTCN2020118885-appb-000016
与第六映射关系确定的,所述第二数值集合中的元素
Figure PCTCN2020118885-appb-000017
等于所述第一数值集合中的元素λ j与第一参考数值的比值,j为小于或等于L的正整数。通过这种整体干扰强度反馈与每个干扰层上干扰强度差分反馈,可以减小每个干扰层上干扰强度取值的波动范围,降低单个干扰层上干扰强度的反馈量化比特开销。
在第一方面的一种可能的实现方式中,所述IMI是根据第一干扰矩阵U I和第一码本确定的,其中,所述第一干扰矩阵U I=[u 1,u 2,…,u L]。通过这种方法,终端反馈的干扰向量和干扰层强度一一对应,即只对部分干扰强度较大的干扰层对应的干扰向量进行反馈,可以在降低反馈开销的同时不对网络设备端恢复干扰信号的自相关矩阵造成较大影 响,从而在反馈准确性和反馈开销之间获得较好的折中。
在第一方面的一种可能的实现方式中,所述第一码本包括N个子码本,所述N个子码本中的第i个子码本包括至少一个矩阵,所述第i个子码本中的每一个矩阵均为N×i维的矩阵;所述IMI是所述第一码本中的第L个子码本中的第二矩阵在所述第L个子码本中的索引,所述第二矩阵是所述第L个子码本中与所述第一干扰矩阵差值最小的矩阵。通过这种基于码本的量化反馈,可以降低干扰向量/矩阵的反馈开销。
在第一方面的一种可能的实现方式中,所述终端向网络设备发送第一参考信号,所述第一参考信号的预编码矩阵为单位阵;所述终端向网络设备发送第二参考信号,所述第二参考信号的预编码矩阵是第一干扰矩阵U I,其中,所述第一干扰矩阵U I=[u 1,u 2,…,u L]。终端通过将需要反馈的干扰矩阵携带在参考信号上实现干扰矩阵的隐式反馈,网络设备通过分别估计第一参考信号和第二参考信号对应的等效信道矩阵,可以恢复出第二参考信号携带的预编码矩阵,即所述干扰矩阵。相比于基于码本的量化反馈,这种方法可以提供更精细的干扰矩阵的反馈。
在第一方面的一种可能的实现方式中,所述第一参考信号和所述第二参考信号均为探测参考信号SRS。
在第一方面的一种可能的实现方式中,所述第一干扰参数包括所述ILI,所述第一干扰参数还包括所述IMI和所述ISI中的至少一个。所述终端对第二干扰参数进行编码和调制,在第三时频资源上向所述网络设备发送编码和调制之后的所述第二干扰参数。所述终端对第三干扰参数进行编码和调制,在第四时频资源上向所述网络设备发送编码和调制之后的所述第三干扰参数。其中,所述第二干扰参数包括所述ILI,且所述第二干扰参数的比特长度是预定义的,所述第三干扰参数为所述第一干扰参数中除所述第二干扰参数之外的参数,所述第三时频资源和所述第四时频资源为所述第二时频资源中的部分资源,所述第三时频资源与所述第四时频资源不同。可选地,第二干扰参数还包括第三干扰参数的原始信息比特数目。由于干扰层数L的取值在网络设备侧事先不可知,网络设备不知道终端发送的ISI包含几个数值,也不知道IMI包含几个干扰向量(对应哪个子码本),因此不知道这些反馈参数的原始信息比特数目,因而很难进行准确译码。通过上述独立编码反馈的方法,终端可以先反馈ILI(即第二干扰参数),网络设备获取该ILI参数后,可以基于ILI确定后续ISI和IMI的原始信息比特数目,便于网络设备对ILI和IMI(即第三干扰参数)进行正确译码。
在第一方面的一种可能的实现方式中,所述干扰信息为所述终端在N个接收天线上接收到的干扰信号的自相关矩阵R,所述第一干扰参数包括矩阵R2的三角矩阵中的所有元素,其中,所述矩阵R2是矩阵R1的量化矩阵,所述矩阵R1是根据所述矩阵R和第二参考数值确定的。通过这种逐个元素的量化反馈,可以实现精细化干扰矩阵量化反馈,在一些干扰变化较慢的场景下,第一参考参数可以较长周期反馈一次,此时使用这种精细化反馈并不会带来太大反馈开销,反而可以提升网络设备恢复得到的干扰信号的自相关矩阵准确性,进一步提升下行空域调度的效率。同时,由于干扰信号的自相关矩阵是共轭对称矩阵,因此只反馈下三角矩阵或上三角矩阵即可完整恢复原始的干扰信号的自相关矩阵,减小反馈开销。
在第一方面的一种可能的实现方式中,所述矩阵R1中第(s,t)个元素r1 s,t是所述 矩阵R中第(s,t)个元素r s,t与所述第二参考数值的比值,其中,s和t为小于或等于N的正整数。
在第一方面的一种可能的实现方式中,所述矩阵R2中第(s,t)个元素r2 s,t是根据所述矩阵R1中第(s,t)个元素r1 s,t和第七映射关系确定的。
在第一方面的一种可能的实现方式中,所述矩阵R2中第(s,s)个元素r2 s,s是根据所述矩阵R1中第(s,s)个元素r1 s,s和第八映射关系确定的;所述矩阵R2中第(s,t)个元素r2 s,t是根据所述矩阵R1中第(s,t)个元素r1 s,t和第七映射关系确定的,或者,所述矩阵R2中第(s,t)个元素r2 s,t是根据a s,t和第七映射关系确定的,所述
Figure PCTCN2020118885-appb-000018
其中,r1 s,s为所述矩阵R1中的第(s,s)个元素,r1 t,t为所述矩阵R1中的第(t,t)个元素,r1 s,t为所述矩阵R1中的第(s,t)个元素,s不等于t。由于干扰自相关矩阵的对角线元素是实数,可以单独使用一套映射关系来量化反馈,降低反馈开销。
在第一方面的一种可能的实现方式中,所述第一时频资源用于承载第一信道状态信息参考信号CSI-RS或用于承载第一物理下行共享信道PDSCH。
在第一方面的一种可能的实现方式中,所述第一CSI-RS为零功率ZP CSI-RS;或,所述第一CSI-RS为非零功率NZP CSI-RS,且所述NZP CSI-RS还用于测量信道信息;或,所述第一CSI-RS为非零功率NZP CSI-RS,且所述NZP CSI-RS仅用于测量干扰信息。
第二方面,提供了一种事件触发的干扰上报的方法。网络设备向终端发送第一配置信息,第一配置信息指示第一时频资源和第二时频资源,第一时频资源为用于干扰测量的时频资源,第二时频资源为用于干扰报告的时频资源。终端在第一时频资源上进行测量,得到终端在N个接收天线上接收到的干扰信号的自相关矩阵,其中,N为大于1的整数。在干扰报告的模式为事件触发的非周期报告,且第二条件被满足的条件下,终端在第二时频资源上向网络设备发送第一干扰参数,其中,第一干扰参数是根据上述干扰信号的自相关矩阵确定的。
采用上述事件触发的干扰上报的方法,使得终端只在满足一定条件的前提下才向网络设备上报干扰,从而能够降低干扰上报的开销。
在第二方面的一种可能的实现方式中,第一配置信息还可以指示干扰报告的模式。干扰报告的模式包括周期性报告、半持续性报告和非周期报告中的至少一种。非周期报告包括DCI触发的非周期报告和事件触发的非周期报告中至少一种。
在第二方面的一种可能的实现方式中,当第一配置信息中包括第一参数或第一参数取值为第一预设值时,干扰报告的模式为事件触发的非周期报告。
在第二方面的一种可能的实现方式中,第二条件为第四数值大于或等于第二门限,其中第四数值是根据测量得到的干扰信号的自相关矩阵Rm与最近一次上报的第一干扰参数对应的干扰信号的自相关矩阵Rr确定的。
在第二方面的一种可能的实现方式中,第二条件为第一时频资源上传输的第一 PDSCH译码失败。上述干扰信号的自相关矩阵是基于该第一PDSCH测量得到的。
第三方面,提供了一种干扰跟踪的方法。第一网络设备向终端发送第二配置信息,第二配置信息包括时频资源集合的配置信息或第二配置信息指示时频资源集合。第二网络设备在第六时频资源上向终端发送第一下行信道,该第一下行信道中承载干扰变更指示信息。这里的第六时频资源为上述时频资源集合中的一个时频资源。第一下行信道为第二网络设备给终端发送的下行信道。终端在第一时频资源上进行测量,得到终端在N个接收天线上接收到的干扰信号的自相关矩阵,其中,N为大于1的整数。终端在第二时频资源上向第一网络设备发送第一干扰参数,其中,第一干扰参数是根据上述干扰信号的自相关矩阵确定的。
采用上述干扰跟踪方法,当第二网络设备对终端的干扰发生变化的时候,第二网络设备通过向终端发送第一下行信道,指示终端对来自第二网络设备的干扰进行测量,使得终端只在干扰发生变化的时候对干扰进行测量,从而能够降低终端对干扰上报的开销。
第四方面,提供了一种通信装置,包括用于实现前述第一方面或第一方面中任意一种可能的实现方式中终端或网络设备的功能的模块;或者,包括用于实现前述第二方面或第二方面中任意一种可能的实现方式中终端或网络设备的功能的模块;或者,包括用于实现前述第三方面或第三方面中任意一种可能的实现方式中终端或网络设备的功能的模块。
第五方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第一方面中任意一种可能的实现方式中终端或网络设备的功能;或者,用于实现前述第二方面或第二方面中任意一种可能的实现方式中终端或网络设备的功能;或者,用于实现前述第三方面或第三方面中任意一种可能的实现方式中终端或网络设备的功能。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被通信装置执行时,实现上述第一方面或第一方面的任意可能的实现方式中的方法,或实现上述第二方面或第二方面的任意可能的实现方式中的方法,或实现上述第三方面或第三方面的任意可能的实现方式中的方法。
第七方面,提供了一种包含指令的计算机程序产品,当该指令被通信装置运行时,实现第一方面或第一方面的任意可能的实现方式中的方法,或实现第二方面或第二方面的任意可能的实现方式中的方法,或实现上述第三方面或第三方面的任意可能的实现方式中的方法。
附图说明
图1为本申请的实施例应用的移动通信系统的架构示意图;
图2为本申请实施例提供的一种干扰上报方法的流程示意图;
图3为本申请实施例提供的一种事件触发的干扰上报的方法流程示意图;
图4为本申请实施例提供的一种干扰跟踪的方法流程示意图;
图5为本申请实施例提供的一种通信装置的结构示意图;
图6为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端(如图1中的终端130和终端140)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端的数量不做限定。
终端通过无线方式与无线接入网设备相连,从而接入到该移动通信系统中。无线接入网设备可以是基站、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端的应用场景不做限定。
网络设备和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端之间所使用的频谱资源不做限定。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
可以理解的是,本申请的实施例中,物理下行共享信道(physical downlink shared channel,PDSCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)和物理上行控制信道 (physical uplink control channel,PUCCH)只是作为物理层的下行数据信道、下行控制信道、上行数据信道和上行控制信道的一种举例,在不同的系统和不同的场景中,数据信道和控制信道可能有不同的名称,本申请的实施例对此并不做限定。
在本申请的实施例中,网络设备的功能也可以由网络设备中的模块(如芯片)来执行,也可以由包含有基站功能的控制子系统来执行。这里的包含有基站功能的控制子系统可以是智能电网、工厂自动化以及智能交通等工业物联网应用场景中的控制中心。终端的功能也可以由终端中的模块(如芯片)来执行。
终端为了与网络设备进行通信,需要与网络设备控制的小区建立无线连接。与终端建立了无线连接的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。在本申请中,网络设备向终端发送的信号称为下行信号,下行信号所经历的无线信道称为下行信道;终端向网络设备发送的信号称为上行信号,上行信号所经历的无线信道称为上行信道。
如前所述,可以通过链路自适应技术来提升系统容量。具体的,网络设备根据获得的下行链路的信道状态信息(channel state information,CSI),进行下行数据调度,选择合适的调制和编码方案与空域预编码矩阵进行下行数据传输。
链路自适应技术对数据传输效率的提升主要取决于CSI的准确性。CSI包括信道信息和干扰信息,这里的信道信息是指信号在无线信道中传播的特性。目前5G新空口(new radio,NR)中获取CSI的方法重点在信道信息的获取上,包括基于探测参考信号(sounding reference signal,SRS)测量的非量化信道信息获取和基于预编码矩阵指示(precoding matrix indicator,PMI)反馈的量化信道信息获取,但是对干扰信息获取方案关注较少。目前只有基于信道质量指示(channel quality indicator,CQI)反馈的隐式干扰信息获取。当终端是多天线接收时,干扰信息是一个向量或矩阵,而CQI是一个标量,网络设备获取CQI后无法精确、完整地恢复终端收到的干扰信息。对于时分双工(time division duplex,TDD)系统,网络设备可以通过测量终端发送的SRS获得上行信道信息,基于信道互易性从而得到下行信道信息。对于频分双工(frequency division duplex,FDD)系统或TDD系统,网络设备可以基于终端反馈的CSI,获取秩指示(rank indication,RI)、PMI和CQI,得到下行信道的部分特征向量的量化值;也可以基于CQI,隐式知道干扰对下行信号接收的影响,但是无法得到下行的干扰信号的自相关矩阵R。这种隐式的、粗略的干扰信息反馈方法会降低链路自适应技术的效果。如图2所示,本申请实施例提供了一种干扰上报方法。下面对该方法进行详细描述。该方法可以由网络设备和终端执行,也可以由网络设备和终端中的模块(例如芯片)执行,下面以网络设备和终端执行该方法为例进行描述。
S210,网络设备向终端发送第一信息,其中,第一信息指示第一时频资源。对应的,终端接收来自网络设备的第一信息。进一步的,终端可以根据第一信息确定第一时频资源。
可选的,第一信息承载在网络设备发送给终端的信令中。在本申请的实施例中,信令可以为高层信令或物理层信令,高层信令可以是无线资源控制(radio resource control,RRC)信令或媒体接入控制(medium access control,MAC)层信令,物理层信令可以是承载在PDCCH上的下行控制信息(downlink control information,DCI)。
上述第一时频资源可以是用于发送信道状态信息参考信号(channel state information reference signal,CSI-RS)的时频资源。CSI-RS可以是非零功率(non-zero-power,NZP)CSI-RS或零功率(zero-power,ZP)CSI-RS。第一时频资源还可以是用于发送下行数据的时频资源,例如,可以是发送PDSCH的时频资源。
S220,终端在第一时频资源上进行测量,得到终端在N个接收天线上的干扰信息,其中,N为大于1的整数。
可选的,上述干扰信息为终端在N个接收天线上接收到的干扰信号的自相关矩阵R。矩阵R的奇异值分解为R=U∑U H,其中,矩阵U=[u 1,u 2,…,u N],Σ=Diag(λ 12,…,λ N),U H表示矩阵U的共轭转置矩阵,Diag(λ 12,…,λ N)表示主对角线元素为λ 12,…,λ N的对角矩阵。λ 1,λ 2,…,λ N组成第一数值集合{λ 12,…,λ N},i为小于或等于N的正整数。u 1,u 2,…,u N组成第一向量集合{u 1,u 2,…,u N}。不失一般性,可以假设,λ 1≥λ 2≥…≥λ N。从上述自相关矩阵R的定义可以看出,第一数值集合和第一向量集合的元素一一对应,即对于任意一个小于等于N的正整数i,λ i对应一个u i。在本申请的实施例中,集合的元素的下标可以从1开始计数,也可以从0开始计数,本申请中的实施例以下标从1开始计数为例进行描述。
当第一时频资源用于发送第一NZP CSI-RS,且网络设备指示第一NZP CSI-RS是用于测量目标无线信道时,终端首先根据第一时频资源上接收到的信号和第一NZP CSI-RS的发送序列确定目标无线信道的估计值,然后根据该目标无线信道的估计值、第一NZP CSI-RS的发送序列和在第一时频资源上接收到的信号,确定在第一时频资源上接收到的干扰信号。具体的,终端可以根据目标无线信道的估计值和第一NZP CSI-RS的发送序列估计出第一NZP CSI-RS到达终端侧的信号估计值,然后用在第一时频资源上接收到的信号减去第一NZP CSI-RS到达终端侧的信号估计值可以得到在第一时频资源上接收到的干扰信号。这里的目标无线信道是该网络设备与该终端之间的无线信道,该网络设备与该终端建立了无线空口连接,该网络设备与该终端通过该无线信道进行信息的接收与发送。
当第一时频资源用于发送ZP CSI-RS时,终端可以直接根据第一时频资源上接收到的信号确定接收到的干扰信号。
当第一时频资源用于发送第二NZP CSI-RS,且网络设备指示第二NZP CSI-RS是用于干扰测量时,终端首先根据在第一时频资源上接收到的信号和第二NZP CSI-RS的发送序列确定干扰信道的估计值。这里的干扰信道可以是第二网络设备与终端之间的无线信道,第二网络设备发送的信号会对终端接收上述网络设备的下行信号产生干扰。可选地,网络设备进一步指示第二NZP CSI-RS用于测量小区间干扰。
当第一时频资源是第一PDSCH的时频资源时,终端确定该第一PDSCH的解调参考信号(demodulation reference signal,DMRS),记为第一DMRS,并根据在第一DMRS的时频资源上接收到的信号和第一DMRS的发送序列确定目标无线信道的估计值,然后根据该目标无线信道估计值、第一DMRS的发送序列和在发送第一DMRS的时频资源上接收到的信号,确定在第一DMRS的时频资源上接收到的干扰信号。或者,终端根据第一PDSCH的第一DMRS和接收到的数据信息,确定在第一时频资源上接收到的干扰信号。例如,终端对在第一时频资源上接收到的数据进行解调译码,当数据译码成功后终端可以得到 网络设备发送的原始数据。终端可以根据第一DMRS测量得到目标无线信道的估计值,并根据该目标无线信道的估计值和网络设备发送的原始数据恢复出终端接收到的该原始数据的估计值。然后终端可以用在第一时频资源上接收到的数据减去原始数据的估计值可以得到在第一时频资源上接收到的干扰信号。
进一步的,终端可以根据接收到的干扰信号计算干扰信号的自相关矩阵R,该自相关矩阵R表示干扰信号的自相关矩阵的期望值。自相关矩阵是一个N*N的复数矩阵,其中N表示终端的接收天线数目。
S230,终端在第二时频资源上向网络设备发送第一干扰参数,其中,第一干扰参数是根据上述干扰信息确定的。对应的,网络设备在第二时频资源上接收来自终端的第一干扰参数。网络设备可以根据第一干扰参数确定终端在N个接收天线上的干扰信息。
具体的,终端可以通过PUCCH或PUSCH将第一干扰参数发送给网络设备,也就是说,第二时频资源可以是PUCCH或PUSCH的时频资源,第一干扰参数承载在PUCCH上或PUSCH上。
当第二时频资源是PUCCH的时频资源时,终端可以根据网络设备指示的或协议预定义的调制和编码方式对第一干扰参数进行编码和调制,然后将编码和调制后的第一干扰参数映射到第二时频资源上发送给网络设备。可选地,当第一时频资源是第一PDSCH的时频资源时,PUCCH的时域位置可以根据上述第一信息和该第一PDSCH的时域位置确定。
可选的,网络设备可以向终端发送第二信息,其中,第二信息指示第二时频资源。
如S202所述,终端对自相关矩阵R进行奇异值分解,可以得到R=U∑U H,其中,矩阵U=[u 1,u 2,…,u N],Σ=Diag(λ 12,…,λ N),从而得到第一数值集合{λ 12,…,λ N}和第一向量集合{u 1,u 2,…,u N}。进一步的,终端可以根据第一数值集合和第一向量集合确定第一干扰参数。对于第一干扰参数的上报有如下两种方案。
● 方案一
上述第一干扰参数包括干扰层数指示(interference layer indicator,ILI)、干扰矩阵指示(interference matrix indicator,IMI)和干扰强度指示(interference strength indicator,ISI)中的至少一个。其中,ILI指示数值L,L为小于或等于N的非负整数;IMI是根据第一向量集合确定的,ISI是根据第一数值集合确定的,第一数值集合和第一向量集合是根据上述干扰信息确定的。
具体的,L等于第一数值集合中元素λ i的取值大于或等于第一门限的个数,i为小于或等于N的正整数。第一门限可以是协议预定义的,也可以是网络设备通过信令配置给终端的。ILI可以等于L,也可以等于L经过特定的编码映射之后的值。一种可能是,终端确定的L始终等于N,此时第一干扰参数中可以不包括ILI,也就是说终端无需将ILI上报给网络设备,此时网络设备默认ILI取值为N。
当L为正整数时,ISI包括L个干扰强度值,所述L个干扰强度值是根据第二数值集合
Figure PCTCN2020118885-appb-000019
确定的,第二数值集合包括L个数值,第二数值集合中元素
Figure PCTCN2020118885-appb-000020
的取值等于第一数值集合中元素λ j的取值与第一参考数值的比值,j为小于或等于L的正整数。可以理解的是,在第一数值集合中的元素满足λ 1≥λ 2≥…≥λ N,且第一参考数值为正数的条件下,第二数值集合终端的元素满足
Figure PCTCN2020118885-appb-000021
将第一数值集合中元素λ j的取值除以第一参考值得到第二数值集合中元素
Figure PCTCN2020118885-appb-000022
的取值,这一过程可以称为 是对第一数值集合中的元素的取值进行归一化。
第一参考数值可以是协议预定义的,也可以是网络设备通过信令配置给终端的。具体的,终端有如下四种方法确定第一参考数值。
方法RV1:第一参考数值可以是终端在第一时频资源上接收到的噪声功率,该噪声功率由接收带宽、热噪声功率谱密度和终端的噪声系数中至少一项确定。例如,第一参考数值=热噪声功率谱密度*噪声系数*接收带宽*扩展因子alpha,其中,扩展因子为可选项。可选地,接收带宽可以是干扰测量的粒度,例如,如果以4个资源块(resource block,RB)为粒度进行干扰测量,则这里的接收宽度就是4RB。
方法RV2:第一参考数值也可以是终端测量到的参考信号接收功率(reference signal received power,RSRP)。本申请实施例中的参考信号可以是网络设备给终端发送的同步信号或广播信道中的参考信号,或者是CSI-RS,或者是DMRS。第一参考数值为接收到的参考信号功率的平均值。
方法RV3:第一参考数值还可以是网络设备通过信令配置给终端的。具体的,网络设备可以直接指示第一参考数值的取值,也可以指示一个干噪比(interference to noise ratio,INR),终端根据该INR和噪声功率(如方法RV1中确定的噪声功率)确定一个参考干扰信号功率,该参考干扰信号功率即为第一参考数值。具体的,参考干扰信号功率等于INR乘以噪声功率。
方法RV4:第一参考数值是根据第一信道质量指示(channel quality indicator,CQI)索引(index)和第一映射关系确定的,第一CQI index是与第一干扰参数关联的CSI报告中CQI的取值。第一映射关系包括一个或多个第一子映射关系,其中每一个第一子映射关系包括从一个CQI index映射到一个第一参考数值的映射关系。
进一步的,终端根据第二数值集合
Figure PCTCN2020118885-appb-000023
确定L个干扰强度值,可以有如下方法。
方法ISV1:L个干扰强度值为第二数值集合中L个元素的量化取值。具体的,L个干扰强度值中的第j个干扰强度值是根据第二数值集合中的元素
Figure PCTCN2020118885-appb-000024
的取值与第二映射关系确定的。第二映射关系包括一个或多个第二子映射关系。每个第二子映射关系包括从一个非负实数的取值区间映射到一个非负整数的映射关系。如表1所示,第二映射关系包括16个第二子映射关系。表1中的a 0,a 1,…,a 15,a 16为非负实数,干扰强度值用4比特表示。
表1 第二映射关系举例
Figure PCTCN2020118885-appb-000025
方法ISV2:L个干扰强度值为第二数值集合中L个元素中相邻的两个元素的差分值或比值的量化值。具体的,L个干扰强度值中的第一个干扰强度值是根据第二数值集合 中的
Figure PCTCN2020118885-appb-000026
与上述第二映射关系确定的。第r个干扰强度值是根据第二数值集合中的
Figure PCTCN2020118885-appb-000027
Figure PCTCN2020118885-appb-000028
的差值
Figure PCTCN2020118885-appb-000029
与第三映射关系确定的;或者,第r个干扰强度值是根据第二数值集合中的元素
Figure PCTCN2020118885-appb-000030
Figure PCTCN2020118885-appb-000031
的比值
Figure PCTCN2020118885-appb-000032
(或
Figure PCTCN2020118885-appb-000033
)与第三映射关系确定的,其中r为大于或等于2且小于或等于L的整数。第三映射关系包括一个或多个第三子映射关系。每个第三子映射关系可以包括从一个非负实数的取值区间映射到一个非负整数的映射关系。第三映射关系可以与第二映射关系相同,也可以与第二映射关系不同。如表2所示,第三映射关系包括4个第三子映射关系。表2中的b 0,b 1,b 2,b 3,b 4为非负实数,干扰强度值用2比特表示。当第r个干扰强度值是根据
Figure PCTCN2020118885-appb-000034
与第三映射关系确定的时,表2中的b 0等于0。当第r个干扰强度值是根据
Figure PCTCN2020118885-appb-000035
与第三映射关系确定的时,表2中的b 0等于1。当第r个干扰强度值是根据
Figure PCTCN2020118885-appb-000036
与第三映射关系确定的时,表2中的b 4等于1。
■ 表2第三映射关系举例
Figure PCTCN2020118885-appb-000037
方法ISV3:L个干扰强度值为对第二数值集合中L个元素进行变换之后的量化取值。具体的,对第二数值集合进行变换,得到第三数值集合{φ 12,…,φ L}。例如,
Figure PCTCN2020118885-appb-000038
L个干扰强度值中的第j个干扰强度值是根据第三数值集合中的元素φ j的取值与第四映射关系确定的。第四映射关系包括一个或多个第四子映射关系。每个第四子映射关系包括从一个实数的取值区间映射到一个非负整数的映射关系。
方法ISV4:L个干扰强度值为对第二数值集合中L个元素进行变换之后相邻的两个元素的差分值或比值的量化值。具体的,对第二数值集合进行变换,得到第三数值集合{φ 12,…,φ L}。例如,
Figure PCTCN2020118885-appb-000039
L个干扰强度值中的第一个干扰强度值是根据第三数值集合中的元素φ 1的取值与所述第四映射关系确定的,L个干扰强度值中的第r个干扰强度值是根据第三数值集合中的元素φ r-1和φ r的差值φ r-1r与第五映射关系确定的,或者,第r个干扰强度值是根据第三数值集合中的元素φ r-1和φ r的比值φ r-1r(或φ rr-1)与第六映射关系确定的,其中r为大于或等于2且小于或等于L的整数。第五映射关系包括一个或多个第五子映射关系。每个第五子映射关系包括从一个非负实数的取值区间映射到一个非负整数的映射关系。第六映射关系包括一个或多个第六子映射关系。每个第六子映射关系包括从一个实数的取值区间映射到一个非负整数的映射关系。
可选的,当L为正整数时,ISI可以包括L+1个干扰强度值,其中,第一个干扰强度值是根据
Figure PCTCN2020118885-appb-000040
与第二映射关系确定的,
Figure PCTCN2020118885-appb-000041
是根据第二数值集合确定的,例如是第二数值集合中L个
Figure PCTCN2020118885-appb-000042
的均值。第j+1个干扰强度值是根据第二数值集合中第j个元素
Figure PCTCN2020118885-appb-000043
的取值和
Figure PCTCN2020118885-appb-000044
的差值
Figure PCTCN2020118885-appb-000045
(或
Figure PCTCN2020118885-appb-000046
)与第六映射关系确定的,或者,所述第j+1个干扰强度值是根据第二数值集合中第j个元素
Figure PCTCN2020118885-appb-000047
的取值和
Figure PCTCN2020118885-appb-000048
的比值
Figure PCTCN2020118885-appb-000049
(或
Figure PCTCN2020118885-appb-000050
)与第 三映射关系确定。
对应的,网络设备可以通过接收到的第一干扰参数获得L个干扰强度值;进一步,网络设备根据L个干扰强度值确定第二数值集合,具体的确定过程可以认为是上述终端根据第二数值集合确定L个干扰强度值的过程的逆过程;最后,网络设备可以根据第二数值集合和第一参考数值确定第一数值集合,例如,第一数值集合中元素λ j的取值等于第二数值集合中元素
Figure PCTCN2020118885-appb-000051
的取值与第一参考数值的乘积。
上述确定L个或L+1个干扰强度值的过程可以总结为:先对第一数值集合的元素进行归一化得到第二数值集合,然后对第二数值集合中的元素进行量化得到干扰强度值;或者,对第二数值集合中相邻两个元素的差分值或比值进行量化得到干扰强度值;或者,对第二数值集合的元素进行变换得到第三数值集合,对第三数值结合的元素进行量化得到干扰强度值;或者,对第三数值集合中相邻两个元素的差分值或比值进行量化得到干扰强度值。可以理解的是,上述归一化过程也可以放在对数值集合的元素进行差分和比值之后进行,例如,可以对第一数值集合中相邻两个元素的差分值或比值进行归一化,然后对归一化值进行量化得到干扰强度值;或者,也可以对第一数值集合进行变换得到第四数值集合(参考对第二数值集合进行变换得到第三数值集合的方法),然后对第四数值集合的元素进行量化得到干扰强度值;或者,也可以对第四数值集合的元素进行归一化,然后对归一化值进行量化得到干扰强度值;或者,也可以对第四数值集合中相邻的两个元素的差分值或比值进行量化得到干扰强度值;或者,也可以对第四数值集合中相邻的两个元素的差分值或比值进行归一化,然后对归一化值进行量化得到干扰强度值。
IMI是根据第一干扰矩阵U I和第一码本确定的,其中,第一干扰矩阵U I=[u 1,u 2,…,u L]。第一码本可以是协议预定义的,也可以是网络设备通过信令配置给终端的。第一码本包括N个子码本,所述N个子码本中的第i个子码本包括至少一个矩阵,所述第i个子码本中的每一个矩阵均为N×i维的矩阵。
具体的,IMI可以用于指示第一码本中的第L个子码本中的第二矩阵,例如,IMI可以是第一码本中的第L个子码本中的第二矩阵在所述第L个子码本中的索引,第二矩阵是所述第L个子码本中与第一干扰矩阵差值最小的矩阵。矩阵A1与矩阵A2的差值可以表示为‖A1-A2‖,其中‖A‖表示矩阵A的范数(norm),例如1范数或者F范数(Frobenius norm)。
对应的,网络设备可以根据IMI确定干扰矩阵为第L个子码本中所述IMI所指示的第二矩阵。
可选的,第一干扰参数包括ILI,第一干扰参数还包括IMI和/或ISI。终端对第二干扰参数进行编码和调制,在第三时频资源上向网络设备发送编码和调制之后的第二干扰参数,其中,第二干扰参数包括ILI,且第二干扰参数的比特长度是协议预定义的或网络设备通过RRC信令配置给终端的。终端对第三干扰参数进行编码和调制,在第四时频资源上向网络设备发送编码和调制之后的第三干扰参数,其中,第三干扰参数为第一干扰参数中除第二干扰参数之外的参数。上述第三时频资源和第四时频资源为第二时频资源中的部分时频资源,第三时频资源与第四时频资源不同。第二干扰参数还可以包括第一比特长度信息,该第一比特长度信息指示第三干扰参数的信息比特数目。对应的,网络设备先在第三时频资源上接收第二干扰参数,然后根据第二干扰参数中的ILI或第 一比特长度信息,确定第三干扰参数的信息比特数目。网络设备进一步基于第三干扰参数的信息比特数目,在第四时频资源上接收第三干扰参数,并对第三干扰参数进行解调和译码。
当第二时频资源是PUSCH的时频资源时,终端可以将第一干扰参数携带在MAC控制元素(control element,CE)中通过PUSCH发送给网络设备。具体的,终端可以首先生成第一MAC CE,第一MAC CE包含第一干扰参数,然后生成第一MAC协议数据单元(protocol data unit,PDU),第一MAC PDU包含第一MAC CE,最后根据网络设备指示的编码码率和调制方式对第一MAC PDU进行编码调制,在第二时频资源上将编码调制后的第一干扰参数发送给网络设备。对应地,网络设备在第二时频资源上接收PUSCH,即第一MAC PDU,然后从第一MAC PDU中恢复出第一MAC CE,并确定第一干扰参数。具体的,第一MAC CE可以包括上述第二干扰参数和上述第三干扰参数。
上述将第一干扰参数分为第二干扰参数和第三干扰参数进行上报的方法,可以根据第一干扰参数的信息比特的实际长度进行上报,而无需采用固定长度的上报方式,从而可以减小上报第一干扰参数的开销。
可选的,第一干扰参数包括ISI或者包括ILI和ISI,终端在第二时频资源上向网络设备发送第一干扰参数。对于IMI,终端可以通过向网络设备发送第一参考信号和第二参考信号隐式反馈IMI,其中,第一参考信号的预编码矩阵为W 1,第二参考信号的预编码矩阵W 2=W 1U I,其中,第一干扰矩阵U I=[u 1,u 2,…,u L]。这里的第一参考信号和第二参考信号可以均为探测参考信号(sounding reference signal,SRS)。具体的,W 1可以为单位阵,对应的W 2为第一干扰矩阵。通过这种隐式反馈IMI的方式,可以有效降低干扰信息的反馈开销。
对应地,网络设备在第二时频资源接收第一干扰参数,获取ISI或获取ILI和ISI,然后分别接收第一参考信号和第二参考信号,通过在第一参考信号的时频资源上接收到的信号和在第二参考信号的时频资源上接收到的信号,计算得到第一干扰矩阵,也等效于获取了IMI。假设,在第一参考信号的时频资源上接收到的信号为Y 1=HW 1S 1+I 1+Z 1,在第二参考信号的时频资源上接收到的信号为Y 2=HW 1U IS 2+I 2+Z 2,其中,S 1为第一参考信号的导频序列,S 2为第二参考信号的导频序列,H为上行无线信道,I 1和Z 1分别为网络设备接收第一参考信号时接收到的干扰和噪声,I 2和Z 2分别为网络设备接收第二参考信号时接收到的干扰和噪声。网络设备可以直接根据Y 1和Y 2估计U I,或者,网络设备可以先分别根据Y 1和Y 2对无线信道进行估计,得到H 1=HW 1和H 2=HW 1U I的估计值,然后根据H 1和H 2的估计值估计得到U I
● 方案二
可选的,干扰信息为终端在N个接收天线上接收到的干扰信号的自相关矩阵R,第一干扰参数包括矩阵R2的三角矩阵(可以是下三角矩阵或上三角矩阵)中的所有元素,其中,矩阵R2是矩阵R1的量化矩阵,矩阵R1是根据干扰信号的自相关矩阵R和第二参考数值确定的。以下三角矩阵为例,第一干扰参数包括Q个元素,Q=N*(N+1)/2,第q个元素对应矩阵R2中的第(s,t)个元素,其中,s和t为正整数,q=1+2+…+(s-1)+t,1≤s≤N,1≤t≤s。
具体的,矩阵R1中第(s,t)个元素r1 s,t是矩阵R中第(s,t)个元素r s,t与第二参 考数值的比值。第二参考数值的确定方法可以为上述第一参考数值的确定方法中的某一种。
可选的,矩阵R2中第(s,t)个元素r2 s,t是根据所述矩阵R1中第(s,t)个元素r1 s,t和第七映射关系确定的。第七映射关系包括一个或多个第七子映射关系,每一个第七子映射关系包括从一个复数的取值区间映射到一个非负整数的映射关系。
可选的,矩阵R2中第(s,t)个元素r2 s,t的实部是根据所述矩阵R1中第(s,t)个元素r1 s,t的实部和第八映射关系确定的;矩阵R2中第(s,t)个元素r2 s,t的虚部是根据所述矩阵R1中第(s,t)个元素r1 s,t的虚部和第八映射关系确定的。第八映射关系包括一个或多个第八子映射关系,每一个第八子映射关系包括从一个实数的取值区间映射到一个非负整数的映射关系。
可选的,矩阵R2中第(s,s)个元素r2 s,s是根据所述矩阵R1中第(s,s)个元素r1 s,s和第八映射关系确定的,矩阵R2中的第(s,t)个元素r2 s,t是根据所述矩阵R1中第(s,t)个元素r1 s,t和第七映射关系确定的,或者,矩阵R2中的第(s,t)个元素r2 s,t是根据矩阵R1中的第(s,t)个元素r1 s,t、矩阵R1中的第(s,s)个元素r1 s,s和矩阵R1中的第(t,t)个元素r1 t,t确定的,其中,s不等于t。具体的,矩阵R2中非对角线上的元素r2 s,t是根据a s,t和第七映射关系确定的;或者,矩阵R2中第(s,t)个元素r2 s,t的实部是根据a s,t的实部和第八映射关系确定的,矩阵R2中第(s,t)个元素r2 s,t的虚部是根据a s,t的虚部和第八映射关系确定的。上述
Figure PCTCN2020118885-appb-000052
可选的,矩阵R2中第(s,s)个元素r2 s,s是根据矩阵R1第(s,s)个元素r1 s,s、矩阵R1的对角线上的N个元素的均值R1 mean,diag以及第九映射关系确定的。具体的,r2 s,s是根据r1 s,s-R1 mean,diag或R1 mean,diag-r1 s,s以及第九映射关系确定的。对应的,上述第一干扰参数还可以包括矩阵R1的对角线上的N个元素的均值R1 mean,diag的信息。第九映射关系包括一个或多个第九子映射关系,每一个第九子映射关系包括从一个实数的取值区间映射到一个非负整数的映射关系。
终端向网络设备发送第一干扰参数时,可以使用多个比特来表示矩阵R2中的一个元素。例如,对角线元素是实数,使用S1个比特表示,非对角线元素是复数,使用S2个比特表示,其中,S2 r个比特表示实部,S2 i个比特表示虚部,S2 r+S2 i=S2。
通过这种干扰上报方法,网络设备可以根据终端反馈的第一干扰参数,恢复出终端受到的干扰(例如,恢复出干扰信号的自相关矩阵),从而有利于网络设备做更精准的下行数据调度,包括预编码优化、编码调制方案选择、多用户多输出(multi-user multiple-input multiple-output,MU-MIMO)场景下的终端的配对等。
如图3所示,本申请实施例还提供了一种事件触发的干扰上报的方法。
S310,网络设备向终端发送第一配置信息,第一配置信息指示第一时频资源和第二时频资源,第一时频资源为用于干扰测量的时频资源,第二时频资源为用于干扰报告的时频资源。第一配置信息可以承载在高层信令或物理层信令中。对应的,终端接收来自网络设备的第一配置信息。
具体的,第一时频资源可以参考上述图2的实施例中的第一时频资源的相关描述,第二时频资源可以参考上述图2的实施例中的第二时频资源的相关描述。
第一配置信息还可以指示干扰报告的模式。干扰报告的模式包括周期性报告、半持续性报告和非周期报告中的至少一种。非周期报告包括DCI触发的非周期报告和事件触发的非周期报告中至少一种。
网络设备可以为终端配置多个干扰报告的配置信息,每个干扰报告的配置信息对应至少一个干扰测量的时频资源、至少一个干扰报告的时频资源和一种干扰报告的模式。对应的,第一配置信息还可以指示该多个干扰报告的配置信息的索引或编号,指示终端按照该干扰报告的配置信息所对应的参数进行干扰测量和干扰上报。
当干扰报告的模式是周期性报告或半持续性报告时,干扰测量的时频资源和干扰报告的时频资源是周期性的或半持续性的。当干扰报告的模式是非周期性报告时,干扰测量的时频资源和干扰报告的时频资源可以是非周期性的。具体的干扰测量的时频资源和干扰报告的时频资源可以通过DCI来指示。
可选的,当第一配置信息中包括第一参数或第一参数取值为第一预设值时,干扰报告的模式为事件触发的非周期报告。
可选的,当第一配置信息中包括第二参数或第二参数取值为第二预设值时,干扰测量的时频资源包括PDSCH资源,或者,干扰测量的时频资源为PDSCH资源。
可选的,当第一配置信息中包括第三参数或第三参数取值为第三预设值时,干扰报告的时频资源包括PUSCH资源,或者,干扰报告的时频资源是PUSCH资源。当干扰报告的时频资源包括PUSCH资源时,PUSCH资源是满足第一条件的第一个PUSCH资源。例如,第一条件是PUSCH资源与干扰测量的时频资源之间的距离大于或等于第一时间长度。具体的,第一时间长度是协议预定义的或网络设备通过信令指示给终端的。例如,第一时间长度是协议定义的干扰测量的最小处理时间。又例如,当所述干扰报告的模式是非周期性报告,且由第一DCI触发时,第一条件还可以包括PUSCH资源与第一DCI之间的距离大于或等于第二时间长度,第二时间长度是协议预定义的或网络设备通过信令指示给终端的。可选地,上述PUSCH资源包括通过DCI动态调度的PUSCH资源和/或配置授权的PUSCH资源。
可选的,第一配置信息还包括干扰测量的频域指示信息。频域指示信息包括第一子带集合,第一子带集合包括M个子带,M个子带之间可以是连续的也可以是非连续的,M为大于或等于1的整数。终端在第一子带集合上对干扰进行测量,并向网络设备上报第一子带集合上的干扰信息。进一步的,第一配置信息还可以包括干扰报告的频域报告模式。频域报告模式包括模式1和模式2。对于模式1,所有子带只上报一个干扰信息,即终端根据所有子带上的干扰信息计算出一个第一干扰参数。对于模式2,M个子带上报M个干扰信息,即终端根据各个子带上的干扰信息分别计算出各自的第一干扰参数,然后向网络设备报告M个第一干扰参数。对于模式2,终端可以进行频域差分反馈IMI。例如,终端可以向网络设备报告一个i1和M个i2,子带上的IMI是根据i1和该子带对应的i2确定的。终端可以向网络设备报告一个ILI,表示子带上的干扰流数,或者,终端可以不向网络设备报告ILI,而是默认干扰流数为N。
可选的,当第一时频资源包括PDSCH资源时,对于一个子带,终端根据第一符号之 前的该子带上的PDSCH传输测量干扰信息。第一符号是根据第二时频资源和第三时间长度确定的,或者,第一符号是与第二时频资源的距离大于等于第三时间长度的最后一个符号,也可以理解为第一符号是满足在第二时频资源上发送干扰报告的最后一个干扰测量符号。第三时间长度是协议预定义的或网络设备通过信令指示给终端的。
可选地,当第一时频资源包括PDSCH资源时,对于一个子带,终端根据第一符号之前、第二符号之后的该子带上的PDSCH传输测量干扰信息,第二符号是根据第二时频资源和第四时间长度确定,或者,第二符号是与第二时频资源的距离小于等于第四时间长度的最早一个符号,也可以理解为第二符号是满足在第二时频资源上发送干扰报告的最早一个干扰测量符号。第四时间长度是协议预定义的或网络设备通过信令指示给终端的。
第一配置信息还可以包括指示第一干扰参数的内容和干扰报告的方案。例如,第一配置信息指示第一干扰参数包括ILI、IMI和ISI;或者,第一配置信息指示第一干扰参数包括IMI和ISI;或者,第一配置信息指示第一干扰参数包括ISI或者ILI和ISI,并通过发送第一参考信号和第二参考信号隐式反馈IMI;或者,第一配置信息指示终端按照图2实施例中所述的方案二反馈矩阵R2的上三角矩阵或下三角矩阵中的元素。
可选的,第一配置信息也可以是S210中的第一信息。
S320,终端在第一时频资源上进行测量,得到终端在N个接收天线上接收到的干扰信号的自相关矩阵,其中,N为大于1的整数。相关过程可以参考上述图2中的S220的相关描述。
S330,在干扰报告的模式为事件触发的非周期报告,且第二条件被满足的条件下,终端在第二时频资源上向网络设备发送第一干扰参数,其中,第一干扰参数是根据上述干扰信号的自相关矩阵确定的。对应的,网络设备在第二时频资源上接收来自终端的第一干扰参数。
可选的,第二条件为第四数值大于或等于第二门限,其中第四数值是根据测量得到的干扰信号的自相关矩阵Rm与最近一次上报的第一干扰参数对应的干扰信号的自相关矩阵Rr确定的。具体的,第四数值可以表征从Rr到Rm的变化程度,例如,第四数值等于Rm-Rr的范数,或者第四数值等于Rm-Rr的范数与Rr的范数的比值。
可选的,第二条件为第一时频资源上传输的第一PDSCH译码失败。上述干扰信号的自相关矩阵是基于该第一PDSCH测量得到的。
可选的,第二条件为第七时频资源上传输的第二PDSCH译码失败,所述第七时频资源与所述第二时频资源存在对应关系,所述第七时频资源与所述第一时频资源不同,所述对应关系是预定义的或者预配置的。例如,第七时频资源是任意一个第二PDSCH传输所在资源,所述第二时频资源是第三符号之后的最早一个时间单元上的第二时频资源,所述第三符号是第七时频资源结束符号之后间隔第五时间长度后的第一个符号,此时,所述第一配置信息只用于配置第二时频资源在一个时间单元内的位置,具体第二时频资源在哪一个时间单元由上述第七时频资源隐式确定。
可选的,第二条件为第三信息的信号干扰噪声比(signal to interference plus noise ratio,SINR)大于或者等于第三门限;或者第二条件为第三信息的接收成功率大于第四门限。具体的,第三信息可以为在第五时频资源上接收的第二PDSCH,或者第三信息为在第五时频资源上接收的参考信号。所述接收成功概率是根据估计得到的SINR 或者软信息(例如似然值)预估的信息接收成功概率。这里的第五时频资源也可以是上述用于测量干扰的第一时频资源,第二PDSCH也可以是上述第一PDSCH。
上述第二门限、第三门限和第四门限可以是协议预定义的,也可以是网络设备通过信令配置给终端的。
有关第一干扰参数的更详细描述可以参考图2中的S230。
采用上述事件触发的干扰上报的方法,使得终端只在满足一定条件的前提下才向网络设备上报干扰,从而能够降低干扰上报的开销。
如图4所示,本申请实施例提供了一种干扰跟踪的方法。
S410,第一网络设备向终端发送第二配置信息,第二配置信息包括时频资源集合的配置信息或第二配置信息指示时频资源集合。对应的,终端接收来自第一网络设备的第二配置信息。这里的第一网络设备可以是图2和图3中的网络设备。
具体的,时频资源集合是终端对来自第二网络设备的下行信道(例如PDCCH)进行盲检测的时频资源。第一网络设备是为该终端提供信令和数据传输的网络设备,第二网络设备是对该终端接收来自第一网络设备的信号产生干扰的网络设备。
可选的,第一网络设备向终端发送第一配置信息,有关第一配置信息的详细描述可以参考S310。
S420,第二网络设备在第六时频资源上向终端发送第一下行信道,对应的,终端在第六时频资源上对第一下行信道进行盲检,该第一下行信道中承载干扰变更指示信息。这里的第六时频资源为上述时频资源集合中的一个时频资源。第一下行信道为第二网络设备给终端发送的下行信道。
具体的,这里的干扰变更指示信息指示终端是否需要去测量来自该第二网络设备的干扰或者指示终端对来自第二网络设备的干扰进行测量。
可选的,第一下行信道还承载第一时频资源的指示信息,第一时频资源的具体描述可以参考S210或S310中的相关描述。
可选的,第一下行信道还承载第二时频资源的指示信息,第二时频资源的具体描述可以参考S230或S310中的相关描述。
可选的,第一下行信道还承载第五时间长度,第五时间长度指示本次干扰测量的有效时间,即在该第五时间长度内,终端无需再对来自第二网络设备的干扰进行测量。
S430,终端在第一时频资源上进行测量,得到终端在N个接收天线上接收到的干扰信号的自相关矩阵,其中,N为大于1的整数。相关过程可以参考上述图2中的S220的相关描述。
S440,终端在第二时频资源上向第一网络设备发送第一干扰参数,其中,第一干扰参数是根据上述干扰信号的自相关矩阵确定的。对应的,第一网络设备在第二时频资源上接收来自终端的第一干扰参数。
有关第一干扰参数的详细描述可以参考S230。
采用上述干扰跟踪方法,当第二网络设备对终端的干扰发生变化的时候,第二网络设备通过向终端发送第一下行信道,指示终端对来自第二网络设备的干扰进行测量,使得终端只在干扰发生变化的时候对干扰进行测量,从而能够降低终端对干扰测量的开销。
可以理解的是,为了实现上述实施例中功能,网络设备和终端包括了执行各个功能 相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图5和图6为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端130或终端140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端或网络设备的模块(如芯片)。
如图5所示,通信装置500包括处理单元510和收发单元520。通信装置500用于实现上述图2、图3或图4中所示的方法实施例中终端或网络设备的功能。
当通信装置500用于实现图2所示的方法实施例中终端的功能时:收发单元520用于接收来自网络设备的第一信,第一信息指示第一时频资源;处理单元510用于在第一时频资源上进行测量,得到终端在N个接收天线上的干扰信息,其中,N为大于1的整数;收发单元520还用于在第二时频资源上向网络设备发送第一干扰参数,其中,第一干扰参数是根据上述干扰信息确定的。
当通信装置500用于实现图2所示的方法实施例中网络设备的功能时:收发单元520用于向终端发送第一信息,其中,第一信息指示第一时频资源;收发单元520还用于在第二时频资源上接收来自终端的第一干扰参数,第一干扰参数是根据终端在N个接收天线上的干扰信息确定的,所述干扰信息是在第一时频资源上测量得到的;处理单元510用于根据第一干扰参数对下行数据进行调度。
有关上述处理单元510和收发单元520更详细的描述可以直接参考图2所示的方法实施例中相关描述直接得到,这里不加赘述。
当通信装置500用于实现图3所示的方法实施例中终端的功能时:收发单元520用于接收来自网络设备的第一配置信息,第一配置信息指示第一时频资源和第二时频资源,第一时频资源为用于干扰测量的时频资源,第二时频资源为用于干扰报告的时频资源;处理单元510用于在第一时频资源上进行测量,得到终端在N个接收天线上接收到的干扰信号的自相关矩阵,其中,N为大于1的整数;收发单元520还用于,在干扰报告的模式为事件触发的非周期报告,且第二条件被满足的条件下,在第二时频资源上向网络设备发送第一干扰参数,其中,第一干扰参数是根据上述干扰信号的自相关矩阵确定的。
当通信装置500用于实现图3所示的方法实施例中网络设备的功能时:收发单元520用于向终端发送第一配置信息,第一配置信息指示第一时频资源和第二时频资源,第一时频资源为用于干扰测量的时频资源,第二时频资源为用于干扰报告的时频资源;收发单元520还用于在第二时频资源上接收来自终端的第一干扰参数,第一干扰参数是根据终端在N个接收天线上接收到的干扰信号的自相关矩阵确定的,所述干扰信号是在第一时频资源上测量得到的;处理单元510用于根据第一干扰参数对下行数据进行调度。
有关上述处理单元510和收发单元520更详细的描述可以直接参考图3所示的方法实施例中相关描述直接得到,这里不加赘述。
当通信装置500用于实现图4所示的方法实施例中终端的功能时:收发单元520用 于接收来自第一网络设备的第二配置信息,第二配置信息包括时频资源集合的配置信息或第二配置信息指示时频资源集合;收发单元520还用于在第六时频资源上对第一下行信道进行盲检,该第一下行信道中承载干扰变更指示信息;处理单元510用于在第一时频资源上进行测量,得到终端在N个接收天线上接收到的干扰信号的自相关矩阵,其中,N为大于1的整数;收发单元520还用于在第二时频资源上向第一网络设备发送第一干扰参数,其中,第一干扰参数是根据上述干扰信号的自相关矩阵确定的。
当通信装置500用于实现图4所示的方法实施例中第一网络设备的功能时:收发单元520用于向终端发送第二配置信息,第二配置信息包括时频资源集合的配置信息或第二配置信息指示时频资源集合;收发单元520还用于在第二时频资源上接收来自终端的第一干扰参数,第一干扰参数是根据终端在N个接收天线上接收到的干扰信号的自相关矩阵确定的,所述干扰信号是在第一时频资源上测量得到的;处理单元510用于根据第一干扰参数对下行数据进行调度。
当通信装置500用于实现图4所示的方法实施例中第二网络设备的功能时:收发单元520用于在第六时频资源上向终端发送第一下行信道,该第一下行信道中承载干扰变更指示信息。
有关上述处理单元510和收发单元520更详细的描述可以直接参考图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图6所示,通信装置600包括处理器610和接口电路620。处理器610和接口电路620之间相互耦合。可以理解的是,接口电路620可以为收发器或输入输出接口。可选的,通信装置600还可以包括存储器630,用于存储处理器610执行的指令或存储处理器610运行指令所需要的输入数据或存储处理器610运行指令后产生的数据。
当通信装置600用于实现图2、图3或图4所示的方法时,处理器610用于实现上述处理单元510的功能,接口电路620用于实现上述收发单元520的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随 机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (44)

  1. 一种干扰上报方法,应用于终端设备,其特征在于,包括:
    接收来自网络设备的第一信息,所述第一信息指示第一时频资源;
    在所述第一时频资源上进行测量,得到所述终端设备在N个接收天线上的干扰信息,其中,N为大于1的整数;
    在第二时频资源上向所述网络设备发送第一干扰参数,所述第一干扰参数是根据所述干扰信息确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述第一干扰参数包括干扰层数指示ILI、干扰矩阵指示IMI和干扰强度指示ISI中的至少一个,其中,所述ILI指示数值L,L为小于等于N的非负整数,所述IMI是根据第一向量集合{u 1,u 2,…,u N}确定的,所述第一向量集合包括N个向量,所述ISI是根据第一数值集合{λ 12,…,λ N}确定的,所述第一数值集合包括N个数值,所述第一数值集合和所述第一向量集合是根据所述干扰信息确定的,λ 1≥λ 2≥…≥λ N
  3. 根据权利要求2所述的方法,其特征在于,所述干扰信息为所述终端设备在N个接收天线上接收到的干扰信号的自相关矩阵R,所述第一数值集合和所述第一向量集合满足:R=U∑U H,其中,矩阵U=[u 1,u 2,…,u N],Σ=Diag(λ 12,…,λ N),U H表示矩阵U的共轭转置矩阵,Diag(λ 12,…,λ N)表示主对角线元素为λ 12,…,λ N的对角矩阵。
  4. 根据权利要求2或3所述的方法,其特征在于,所述L等于所述第一数值集合中元素λ i的取值大于或等于第一门限的个数,i为小于或等于N的正整数。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,当L为正整数时,所述ISI包括L个干扰强度值,所述L个干扰强度值是根据第二数值集合
    Figure PCTCN2020118885-appb-100001
    确定的,所述第二数值集合包括L个数值,所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100002
    的取值等于所述第一数值集合中元素λ j的取值与第一参考数值的比值,j为小于或等于L的正整数。。
  6. 根据权利要求5所述的方法,其特征在于,
    所述L个干扰强度值中的第j个干扰强度值是根据所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100003
    的取值与第二映射关系确定的;或者,
    所述第一个干扰强度值是根据所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100004
    与第二映射关系确定的,所述第r个干扰强度值是根据所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100005
    Figure PCTCN2020118885-appb-100006
    的差值
    Figure PCTCN2020118885-appb-100007
    与第三映射关系确定的,其中r为大于或等于2且小于或等于L的整数。
  7. 根据权利要求2至4中任一项所述的方法,其特征在于,当L为正整数时,所述ISI包括L+1个干扰强度值,所述L+1个干扰强度值中的第一个干扰强度值是根据
    Figure PCTCN2020118885-appb-100008
    和第二映射关系确定的,所述
    Figure PCTCN2020118885-appb-100009
    是根据第二数值集合
    Figure PCTCN2020118885-appb-100010
    确定的,所述L+1个干扰强度值中的第j+1个干扰强度值是根据所述第二数值集合中第j个元素
    Figure PCTCN2020118885-appb-100011
    的取值和
    Figure PCTCN2020118885-appb-100012
    的差值
    Figure PCTCN2020118885-appb-100013
    与第六映射关系确定的,所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100014
    等于所述第一数值集合中的元素λ j与第一参考数值的比值,j为小于或等于L的正整数。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,
    所述第一参考数值是高层信令配置的;或者,
    所述第一参考数值是根据接收带宽、热噪声功率谱密度和所述终端设备的噪声系数中的至少一项确定的;或者,
    所述第一参考数值是所述终端设备测量到的参考信号接收功率;或者,
    所述第一参考数值是根据第一信道质量指示索引CQI index和第一映射关系确定的,所述第一CQI index是与所述第一干扰参数关联的信道状态信息CSI报告中CQI的取值
  9. 根据权利要求2至8中任一项所述的方法,其特征在于,所述IMI是根据第一干扰矩阵U I和第一码本确定的,其中,所述第一干扰矩阵U I=[u 1,u 2,…,u L]。
  10. 根据权利要求9所述的方法,其特征在于,所述第一码本包括N个子码本,所述N个子码本中的第i个子码本包括至少一个矩阵,所述第i个子码本中的每一个矩阵均为N×i维的矩阵;
    所述IMI是根据第一干扰矩阵U I和第一码本确定的,包括:
    所述IMI是所述第一码本中的第L个子码本中的第二矩阵在所述第L个子码本中的索引,所述第二矩阵是所述第L个子码本中与所述第一干扰矩阵差值最小的矩阵。
  11. 根据权利要求2至8中任一项所述的方法,其特征在于,所述方法包括:
    发送第一参考信号,所述第一参考信号的预编码矩阵为单位阵;
    发送第二参考信号,所述第二参考信号的预编码矩阵是第一干扰矩阵U I,其中,所述第一干扰矩阵U I=[u 1,u 2,…,u L]。
  12. 根据权利要求11所述的方法,其特征在于,所述第一参考信号和所述第二参考信号均为探测参考信号SRS。
  13. 根据权利要求2至10中任一项所述的方法,其特征在于,所述第一干扰参数包括所述ILI,所述第一干扰参数还包括所述IMI和所述ISI中的至少一个;
    所述向所述网络设备发送第一干扰参数,包括:
    对第二干扰参数进行编码和调制,在第三时频资源上向所述网络设备发送编码和调制之后的所述第二干扰参数;
    对第三干扰参数进行编码和调制,在第四时频资源上向所述网络设备发送编码和调制之后的所述第三干扰参数;
    其中,所述第二干扰参数包括所述ILI,且所述第二干扰参数的比特长度是预定义的,所述第三干扰参数为所述第一干扰参数中除所述第二干扰参数之外的参数,所述第三时频资源和所述第四时频资源为所述第二时频资源中的部分资源,所述第三时频资源与所述第四时频资源不同。
  14. 根据权利要求1所述的方法,其特征在于,所述干扰信息为所述终端设备在N个接收天线上接收到的干扰信号的自相关矩阵R,所述第一干扰参数包括矩阵R2的三角矩阵中的所有元素,其中,所述矩阵R2是矩阵R1的量化矩阵,所述矩阵R1是根据所述矩阵R和第二参考数值确定的。
  15. 根据权利要求14所述的方法,其特征在于,所述矩阵R1中第(s,t)个元素r1 s,t是所述矩阵R中第(s,t)个元素r s,t与所述第二参考数值的比值,其中,s和t为小于或等于N的正整数。
  16. 根据权利要求15所述的方法,其特征在于,所述矩阵R2中第(s,t)个元素r2 s,t是根据所述矩阵R1中第(s,t)个元素r1 s,t和第七映射关系确定的。
  17. 根据权利要求15所述的方法,其特征在于,
    所述矩阵R2中第(s,s)个元素r2 s,s是根据所述矩阵R1中第(s,s)个元素r1 s,s和第八映射关系确定的;
    所述矩阵R2中第(s,t)个元素r2 s,t是根据所述矩阵R1中第(s,t)个元素r1 s,t和第七映射关系确定的,或者,所述矩阵R2中第(s,t)个元素r2 s,t是根据a s,t和第七映射关系确定的,所述
    Figure PCTCN2020118885-appb-100015
    其中,r1 s,s为所述矩阵R1中的第(s,s)个元素,r1 t,t为所述矩阵R1中的第(t,t)个元素,r1 s,t为所述矩阵R1中的第(s,t)个元素,s不等于t。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述第一时频资源用于承载第一信道状态信息参考信号CSI-RS或用于承载第一物理下行共享信道PDSCH。
  19. 根据权利要求18所述的方法,其特征在于,
    所述第一CSI-RS为零功率ZP CSI-RS;或
    所述第一CSI-RS为非零功率NZP CSI-RS,且所述NZP CSI-RS还用于测量信道信息;或
    所述第一CSI-RS为非零功率NZP CSI-RS,且所述NZP CSI-RS仅用于测量干扰信息。
  20. 一种干扰上报方法,应用于网络设备,其特征在于,包括:
    向终端设备发送第一信息,所述第一信息指示第一时频资源;
    在第二时频资源上接收来自所述终端设备的第一干扰参数,所述第一干扰参数是根据所述终端设备在N个接收天线上的干扰信息确定的,所述干扰信息是在所述第一时频资源上测量得到的。
  21. 根据权利要求20所述的方法,其特征在于,所述第一干扰参数包括干扰层数指示ILI、干扰矩阵指示IMI和干扰强度指示ISI中的至少一个,其中,所述ILI指示数值L,L为小于等于N的非负整数,所述IMI是根据第一向量集合{u 1,u 2,…,u N}确定的,所述第一向量集合包括N个向量,所述ISI是根据第一数值集合{λ 12,…,λ N}确定的,所述第一数值集合包括N个数值,所述第一数值集合和所述第一向量集合是根据所述干扰信息确定的,λ 1≥λ 2≥…≥λ N
  22. 根据权利要求21所述的方法,其特征在于,所述干扰信息为所述终端设备在N个接收天线上接收到的干扰信号的自相关矩阵R,所述第一数值集合和所述第一向量集合满足:R=U∑U H,其中,矩阵U=[u 1,u 2,…,u N],Σ=Diag(λ 12,…,λ N),U H表示矩阵U的共轭转置矩阵,Diag(λ 12,…,λ N)表示主对角线元素为λ 12,…,λ N的对角矩阵。
  23. 根据权利要求21或22所述的方法,其特征在于,当L为正整数时,所述ISI包括L个干扰强度值,所述L个干扰强度值是根据第二数值集合
    Figure PCTCN2020118885-appb-100016
    确定的,所述第二数值集合包括L个数值,所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100017
    的取值等于所述第一数值集合中元素λ j的取值与第一参考数值的比值,j为小于或等于L的正整数。
  24. 根据权利要求23所述的方法,其特征在于,
    所述L个干扰强度值中的第j个干扰强度值是根据所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100018
    的 取值与第二映射关系确定的;或者,
    所述第一个干扰强度值是根据所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100019
    与第二映射关系确定的,所述第r个干扰强度值是根据所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100020
    Figure PCTCN2020118885-appb-100021
    的差值
    Figure PCTCN2020118885-appb-100022
    与第三映射关系确定的,其中r为大于或等于2且小于或等于L的整数。
  25. 根据权利要求21或22所述的方法,其特征在于,当L为正整数时,所述ISI包括L+1个干扰强度值,所述L+1个干扰强度值中的第一个干扰强度值是根据
    Figure PCTCN2020118885-appb-100023
    和第二映射关系确定的,所述
    Figure PCTCN2020118885-appb-100024
    是根据第二数值集合
    Figure PCTCN2020118885-appb-100025
    确定的,所述L+1个干扰强度值中的第j+1个干扰强度值是根据所述第二数值集合中第j个元素
    Figure PCTCN2020118885-appb-100026
    的取值和
    Figure PCTCN2020118885-appb-100027
    的差值
    Figure PCTCN2020118885-appb-100028
    与第六映射关系确定的,所述第二数值集合中的元素
    Figure PCTCN2020118885-appb-100029
    等于所述第一数值集合中的元素λ j与第一参考数值的比值,j为小于或等于L的正整数。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,
    所述第一参考数值是根据接收带宽、热噪声功率谱密度和所述终端设备的接收噪声系数中的至少一项确定的;或者,
    所述第一参考数值是所述终端设备测量到的参考信号接收功率;或者,
    所述第一参考数值是根据第一信道质量指示索引CQI index和第一映射关系确定的,所述第一CQI index是与所述第一干扰参数关联的信道状态信息CSI报告中CQI的取值。
  27. 根据权利要求21至26中任一项所述的方法,其特征在于,所述IMI是根据第一干扰矩阵U I和第一码本确定的,其中,所述第一干扰矩阵U I=[u 1,u 2,…,u L]。
  28. 根据权利要求27所述的方法,其特征在于,所述第一码本包括N个子码本,所述N个子码本中的第i个子码本包括至少一个矩阵,所述第i个子码本中的每一个矩阵均为N×i维的矩阵;
    所述IMI是根据第一干扰矩阵U I和第一码本确定的,包括:
    所述IMI是所述第一码本中的第L个子码本中的第二矩阵在所述第L个子码本中的索引,所述第二矩阵是所述第L个子码本中与所述第一干扰矩阵差值最小的矩阵。
  29. 根据权利要求21至26中任一项所述的方法,其特征在于,所述方法包括:
    接收第一参考信号,所述第一参考信号的预编码矩阵为单位阵;
    接收第二参考信号,所述第二参考信号的预编码矩阵是第一干扰矩阵U I,其中,所述第一干扰矩阵U I=[u 1,u 2,…,u L]。
  30. 根据权利要求29所述的方法,其特征在于,所述第一参考信号和所述第二参考信号均为探测参考信号SRS。
  31. 根据权利要求21至28中任一项所述的方法,其特征在于,所述第一干扰参数包括所述ILI,所述第一干扰参数还包括所述IMI和所述ISI中的至少一个;
    所述在第二时频资源上接收来自所述终端设备的第一干扰参数,包括:
    在第三时频资源上接收来自所述终端设备的第二干扰参数;
    在第四时频资源上接收来自所述终端设备的第三干扰参数;
    其中,所述第二干扰参数包括所述ILI,且所述第二干扰参数的比特长度是预定义的,所述第三干扰参数为所述第一干扰参数中除所述第二干扰参数之外的参数,所述第三时频资源和所述第四时频资源为所述第二时频资源中的部分资源,所述第三时频资源与所述第四时频资源不同。
  32. 根据权利要求20所述的方法,其特征在于,所述干扰信息为所述终端设备在N个接收天线上接收到的干扰信号的自相关矩阵R,所述第一干扰参数包括矩阵R2的三角矩阵中的所有元素,其中,所述矩阵R2是矩阵R1的量化矩阵,所述矩阵R1是根据所述矩阵R和第二参考数值确定的。
  33. 根据权利要求32所述的方法,其特征在于,所述矩阵R1中第(s,t)个元素r1 s,t是所述矩阵R中第(s,t)个元素r s,t与所述第二参考数值的比值,其中,s和t为小于或等于N的正整数。
  34. 根据权利要求33所述的方法,其特征在于,所述矩阵R2中第(s,t)个元素r2 s,t是根据所述矩阵R1中第(s,t)个元素r1 s,t和第七映射关系确定的。
  35. 根据权利要求33所述的方法,其特征在于,
    所述矩阵R2中第(s,s)个元素r2 s,s是根据所述矩阵R1中第(s,s)个元素r1 s,s和第八映射关系确定的;
    所述矩阵R2中第(s,t)个元素r2 s,t是根据所述矩阵R1中第(s,t)个元素r1 s,t和第七映射关系确定的,或者所述矩阵R2中第(s,t)个元素r2 s,t是根据a s,t和第七映射关系确定的,所述
    Figure PCTCN2020118885-appb-100030
    其中,r1 s,s为所述矩阵R1中的第(s,s)个元素,r1 t,t为所述矩阵R1中的第(t,t)个元素,r1 s,t为所述矩阵R1中的第(s,t)个元素,s不等于t。
  36. 根据权利要求20至35中任一项所述的方法,其特征在于,所述第一时频资源用于承载第一信道状态信息参考信号CSI-RS或用于承载第一物理下行共享信道PDSCH。
  37. 根据权利要求36所述的方法,其特征在于,
    所述第一CSI-RS为零功率ZP CSI-RS;或
    所述第一CSI-RS为非零功率NZP CSI-RS,且所述NZP CSI-RS还用于测量信道信息;或
    所述第一CSI-RS为非零功率NZP CSI-RS,且所述NZP CSI-RS仅用于测量干扰信息。
  38. 一种通信装置,包括用于执行如权利要求1至19中任一项所述方法的模块。
  39. 一种通信装置,包括用于执行如权利要求20至37中任一项所述方法的模块。
  40. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至19中任一项所述的方法。
  41. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求20至37中任一项所述的方法。
  42. 一种计算机程序,其特征在于,当所述计算机程序被通信装置执行时,实现如权利要求1至37中任一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至37中任一项所述的方法。
  44. 一种通信系统,包括如权利要求38或40所述的通信装置,和如权利要求40或42所述的通信装置。
PCT/CN2020/118885 2020-09-29 2020-09-29 干扰上报的方法与装置 WO2022067523A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20955549.9A EP4207649A4 (en) 2020-09-29 2020-09-29 INTERFERENCE DETECTION METHOD AND APPARATUS
CN202080105563.0A CN116250195A (zh) 2020-09-29 2020-09-29 干扰上报的方法与装置
PCT/CN2020/118885 WO2022067523A1 (zh) 2020-09-29 2020-09-29 干扰上报的方法与装置
US18/190,426 US20230232439A1 (en) 2020-09-29 2023-03-27 Interference reporting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118885 WO2022067523A1 (zh) 2020-09-29 2020-09-29 干扰上报的方法与装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/190,426 Continuation US20230232439A1 (en) 2020-09-29 2023-03-27 Interference reporting method and apparatus

Publications (1)

Publication Number Publication Date
WO2022067523A1 true WO2022067523A1 (zh) 2022-04-07

Family

ID=80949304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118885 WO2022067523A1 (zh) 2020-09-29 2020-09-29 干扰上报的方法与装置

Country Status (4)

Country Link
US (1) US20230232439A1 (zh)
EP (1) EP4207649A4 (zh)
CN (1) CN116250195A (zh)
WO (1) WO2022067523A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121430A1 (zh) * 2009-04-23 2010-10-28 华为技术有限公司 用户设备、基站及信息反馈方法
US20110092232A1 (en) * 2009-10-20 2011-04-21 Samsung Electronics Co. Ltd. Apparatus and method for eliminating inter cell interference in multiple input multiple output wireless communication system
CN107733549A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 信道质量信息计算方法、装置及系统
CN110050427A (zh) * 2017-11-17 2019-07-23 华为技术有限公司 用于无线网络中信道测量和干扰测量的系统和方法
CN110831047A (zh) * 2018-08-10 2020-02-21 成都华为技术有限公司 波束测量的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559879B2 (en) * 2008-04-22 2013-10-15 Qualcomm Incorporated Null pilots for interference estimation in a wireless communication network
CN103843265B (zh) * 2011-10-05 2015-12-09 华为技术有限公司 用于协调传输的系统和方法
WO2016018094A1 (ko) * 2014-07-31 2016-02-04 엘지전자 주식회사 Mimo 기술이 적용된 d2d 통신을 지원하기 위한 방법 및 이를 위한 장치
JP6955000B2 (ja) * 2016-09-26 2021-10-27 エルジー エレクトロニクス インコーポレイティドLg Electronics Inc. 無線通信システムにおいて干渉測定のための方法及びそのための装置
US10932276B2 (en) * 2016-11-03 2021-02-23 Convida Wireless, Llc Frame structure in NR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121430A1 (zh) * 2009-04-23 2010-10-28 华为技术有限公司 用户设备、基站及信息反馈方法
US20110092232A1 (en) * 2009-10-20 2011-04-21 Samsung Electronics Co. Ltd. Apparatus and method for eliminating inter cell interference in multiple input multiple output wireless communication system
CN107733549A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 信道质量信息计算方法、装置及系统
CN110050427A (zh) * 2017-11-17 2019-07-23 华为技术有限公司 用于无线网络中信道测量和干扰测量的系统和方法
CN110831047A (zh) * 2018-08-10 2020-02-21 成都华为技术有限公司 波束测量的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207649A4 *

Also Published As

Publication number Publication date
EP4207649A4 (en) 2024-01-17
EP4207649A1 (en) 2023-07-05
US20230232439A1 (en) 2023-07-20
CN116250195A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
US11711187B2 (en) System and method for transmitting a sub-space selection
US9935693B2 (en) Method for communicating in a MIMO network
KR102147224B1 (ko) Csi 피드백 방법, 프리코딩 방법 및 장치
CN112751592B (zh) 上报信道状态信息的方法和通信装置
WO2021249515A1 (zh) 信道信息反馈方法、通信装置及存储介质
US11438041B2 (en) Methods and devices for reducing channel state information feedback overhead
US9763129B2 (en) Method and terminal for handling channel state information
WO2017194007A1 (zh) 一种二级预编码方法及装置
WO2020083057A1 (zh) 指示和确定预编码向量的方法以及通信装置
CN115426018A (zh) 指示和确定预编码矩阵的方法以及通信装置
WO2021203373A1 (zh) 一种信道测量方法和通信装置
CN112751598B (zh) 一种预编码矩阵的处理方法和通信装置
CN111757382B (zh) 指示信道状态信息的方法以及通信装置
US10659130B2 (en) Terminal, base station, and channel information obtaining method
WO2017076220A1 (zh) 一种信道状态信息csi反馈方法、终端及基站
CN112312464A (zh) 上报信道状态信息的方法和通信装置
WO2020221117A1 (zh) 一种用于构建预编码矩阵的系数指示方法和通信装置
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2017114513A1 (zh) 一种csi反馈方法及装置
WO2021159309A1 (zh) 一种信道测量方法和通信装置
US9048970B1 (en) Feedback for cooperative multipoint transmission systems
US20220231740A1 (en) Method for FR1 FDD Channel State Information
WO2022067523A1 (zh) 干扰上报的方法与装置
CN116114183A (zh) 一种信息传输的方法、相关装置以及设备
CN115088224B (zh) 一种信道状态信息反馈方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020955549

Country of ref document: EP

Effective date: 20230330

NENP Non-entry into the national phase

Ref country code: DE