WO2022065220A1 - Steel frame beam, column-beam joining structure, and structure having same - Google Patents

Steel frame beam, column-beam joining structure, and structure having same Download PDF

Info

Publication number
WO2022065220A1
WO2022065220A1 PCT/JP2021/034260 JP2021034260W WO2022065220A1 WO 2022065220 A1 WO2022065220 A1 WO 2022065220A1 JP 2021034260 W JP2021034260 W JP 2021034260W WO 2022065220 A1 WO2022065220 A1 WO 2022065220A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
steel beam
column
axial direction
lower flange
Prior art date
Application number
PCT/JP2021/034260
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 難波
椋太 荒木田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2021568881A priority Critical patent/JP7226590B2/en
Publication of WO2022065220A1 publication Critical patent/WO2022065220A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web

Definitions

  • the present invention relates to a steel beam, a column-beam joint structure, and a structure having the same.
  • the steel beam may be made due to restrictions such as construction conditions.
  • the cross-sectional performance at the end in the direction of the material axis which is the region including the tip in the direction of the material axis, tends to be low.
  • the tip of the steel beam 8A made of H-shaped steel in the material axial direction is joined to the side surface of the column 2 by welding.
  • the toughness of the steel material and the welded part (Charpy impact value: Japanese Industrial Standard JIS Z2242 "Metallic material”. Since the absorbed energy specified in the Charpy Impact Test Method) is reduced, brittle fracture occurs near the welded portion between the upper flange 81 or the lower flange 82 and the side surface of the column 2 at the material axial end of the steel beam. The risk of occurrence increases.
  • Non-Patent Document 1 when the toughness of the base material (web 83) of the welded portion and the scalloped 83s portion is less than 70 J in Charpy impact value, the upper flange 81 or the lower flange 82 and the side surface of the column 2 It is judged that there is a high possibility that the welded part with and will break brittlely. Then, in order to prevent this brittle fracture, the joint fracture resistance of the welded portion between the upper flange 81 or the lower flange 82 and the side surface of the column 2 should be evaluated by reducing the tensile strength of the upper flange 81 or the lower flange 82. There is.
  • reinforcing members are provided on both sides of the upper flange 81 and the lower flange 82 at the material axial end portion of the steel frame beam 8B.
  • welding 84 to stiffen between both sides of the upper flange 81 and the lower flange 82 and the side surface of the column 2, when the steel beam 8B receives a bending moment, the end portion of the steel beam 8B in the material axial direction.
  • Non-Patent Document 2 brittle fracture occurs at the material axial end portion of the steel frame beam 8B even in the steel frame beam 8B as shown in the plan view of FIG. 14 (a) and the side view of FIG. 14 (b). It is stated that it is possible. Specifically, stress is concentrated at the boundary position between the region where the upper flange 81 and the lower flange 82 are stiffened by the reinforcing material 84 and the region where the lower flange 82 is not stiffened by the reinforcing material 84, and the upper flange 81 or the lower flange It is described that the welded portion between the 82 and the reinforcing material 84 can be brittlely broken.
  • the present invention has been made in view of the above circumstances, and even when used in a low temperature environment, it suppresses brittle fracture of the welded portion at the end in the axial direction of the material when a short-term load such as seismic force is applied. It is an object of the present invention to provide a steel beam, a column-beam welded structure, and a structure having the same, which can exhibit high fatigue resistance and plastic deformation ability.
  • the present invention has the following features.
  • a steel beam having an upper flange, a lower flange, and a web connecting the upper flange and the lower flange, and the upper flange, the lower flange, and the web are charpees at ⁇ 40 ° C.
  • a steel material having an impact value of 27 J or more and one or both of the upper flange and the lower flange yield due to an gradually increasing inversely symmetric bending moment acting on both ends of the steel beam in the material axis direction.
  • the tip of the steel beam in the material axis direction means the position of the end face where the steel beam is joined to the column.
  • the cross-sectional area of the upper flange and the lower flange in the cross section perpendicular to the material axial direction is a region including the tip in the material axial direction, and the end portion in the material axial direction is other than the end portion in the material axial direction.
  • a beam-column joint structure characterized in that the tip of the steel frame beam according to any one of [1] to [4] in the material axial direction is welded to the column.
  • the steel beam is made of a steel material having a charmy impact value of 27 J or more at ⁇ 40 ° C.
  • the position where the upper flange first yields and the position where the lower flange first yields are other than the tip in the material axial direction.
  • the steel beam, the column-beam joint structure of the present invention, and the structure having the same, give special consideration to the welding conditions such as the welding material and the amount of heat input when welding the steel beam and the column exposed to a low temperature environment. Even if the low temperature toughness of the welded part of the lever is not ensured, brittle fracture occurs in the vicinity of the welded part between the upper flange or lower flange of the steel beam and the side surface of the steel column when a short-term load such as seismic force is applied. It can be suppressed.
  • the welded portion at the end in the material axial direction is brittle when a short-term load such as seismic force is applied. Destruction is suppressed, and high fatigue resistance and plastic deformation ability can be exhibited.
  • FIG. 1 (a) is a plan view showing a steel frame beam and a column-beam joint structure according to an embodiment of the present invention
  • FIG. 1 (b) is a side view thereof
  • FIG. 2A is a plan view showing a steel beam and column-beam joint structure according to another embodiment of the present invention
  • FIG. 2B is a side view thereof.
  • FIG. 3 shows the distribution of the total plastic bending strength and the maximum bending strength of the steel beam of the present invention.
  • FIG. 4 is a graph showing the distribution of the total plastic bending strength and the maximum bending strength of the conventional steel beam.
  • FIG. 5A is a plan view showing a test piece used in a force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention
  • FIG. 5B is a vertical cross section thereof. It is a figure.
  • FIG. 6 is a side view showing a force state of a force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention.
  • 7 (a) and 7 (b) are side views and plan views showing the main parts of the test body used in the force test for verifying the plastic deformation ability of the steel beam of the present invention, respectively.
  • c) is a graph showing the distribution of the design value of the bending strength of the steel beam portion of the test piece.
  • FIG. 8 is a diagram showing a force cycle of a force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention.
  • FIG. 9 is a graph showing the relationship between the bending moment acting on the steel beam and the deformation angle obtained in the force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention.
  • FIG. 10 is a graph showing the relationship between the bending moment acting on the steel beam and the deformation angle obtained by the force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention in a dimensionless manner. be.
  • FIG. 11 is an extended skeleton curve of the relationship between the bending moment acting on the steel beam and the deformation angle obtained in the force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention.
  • 12 (a) and 12 (b) show the positions of the starting points of cracks generated in the steel beam during the ultimate strength in the force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention. It is a figure which shows.
  • FIG. 13 (a) is a plan view showing a steel frame beam and a column-beam joint structure of a conventional embodiment, and FIG. 13 (b) is a side view thereof.
  • FIG. 14 (a) is a plan view showing a steel frame beam and a column-beam joint structure of a conventional embodiment, and FIG. 14 (b) is a side view thereof.
  • FIG. 1 (a) and 1 (b) show the steel beam 1A of the first embodiment of the present invention and the steel beam 1A joined to the side surface of a column 2 made of a four-sided welded box-shaped cross-section column by welding.
  • the plan view and the side view of the column-beam joint structure 3A are shown respectively.
  • the steel beam 1A of the present embodiment is provided in a steel-framed building (structure) such as a freezer warehouse, which is used under the condition that the structure is exposed to a low temperature environment.
  • the steel beam 1A has an upper flange 11A, a lower flange 12A, and a web 13 connecting the upper flange 11A and the lower flange 12A.
  • the upper flange 11A, the lower flange 12A, and the web 13 are combined in an H-shaped cross section and welded to each other to form a steel beam 1A.
  • an inner diaphragm 4 is provided inside the column 2, at a height at which each of the upper flange 11A and the lower flange 12A of the steel beam 1A is joined.
  • the upper flange 11A, lower flange 12A and web 13 of the steel beam 1A, each skin plate of the column (four-sided welded box-shaped cross-section column) 2, and each of the inner diaphragm 4 are steel plates having a Charpy impact value of 27J or more at -40 ° C. It is composed of and has high toughness in a low temperature environment.
  • the beam widths of the upper flange 11A and the lower flange 12A are respectively. Widening portions 11w and 12w are provided by enlarging the dimensions in the direction.
  • the cross-sectional area of the upper flange 11A and the lower flange 12A in the cross section perpendicular to the material axis direction is set to be larger than the region other than the end portion E in the material axis direction.
  • the stress in the material axial direction generated in the upper flange 11A and the lower flange 12A when the bending moment acts on the steel beam 1A is increased in the widening portions 11w and 12w. Is provided to reduce the amount.
  • the upper flange 11A receives a tensile force or a compressive force first.
  • a position to surrender occurs.
  • a position where the lower flange 12A first yields due to a tensile force or a compressive force is generated.
  • the preceding yield position Y is a boundary position between the material axial end portion E provided with the widening portions 11w and 12w and the region other than the material axial direction end portion E.
  • the dimensions of the widening portions 11w and 12w in the beam width direction are further expanded. That is, a gradually increasing inversely symmetric bending moment acts on both ends of the steel beam 1A in the material axial direction, and when this increases, any position of the steel beam 1A in the material axial direction reaches the maximum yield strength.
  • the magnitude of the bending moment applied to the tip of the steel beam 1A in the material axial direction at the ultimate strength of the steel beam 1A is less than or equal to the total plastic bending strength of the steel beam 1A at the tip of the steel beam 1A, and further less than or equal to the bending yield strength. It becomes. In this way, the fatigue resistance and the plastic deformation ability of the steel beam 1A, the column-beam joint structure 3A, and the building (structure) having the same are further enhanced.
  • the cross-sectional yield strength of the cross section perpendicular to the material axial direction of the steel beam 1A in the region where the scallop 13s is provided in the end portion E in the material axial direction of the steel frame beam 1A is set to be larger than the cross-sectional yield strength of the preceding yield position Y. It is preferable that it is.
  • the preceding yield position Y first yields and is strain-hardened, and the yield strength of the preceding yield position Y increases.
  • the main body portion of the steel beam 1B is It is made of H-shaped steel having the same cross-sectional shape over the entire length in the material axis direction.
  • the reinforcing material 14 is joined to both sides of the upper flange 11 and the lower flange 12 of the H-shaped steel in the beam width direction by welding.
  • the shape of the reinforcing material 14 is the same as the widening portions 11w and 12w of the upper flange 11A and the lower flange 12A of the first embodiment.
  • Each of the H-shaped steel, the reinforcing material 14, the skin plate of the column (four-sided welded box-shaped cross-section column) 2 and the inner diaphragm 4 constituting the main body of the steel beam 1B has a Charpy impact value of 27 J or more at ⁇ 40 ° C. It is made of steel plate and has high toughness in a low temperature environment.
  • the welded portion between the upper flange 11 or the lower flange 12 and the reinforcing material 14 of the H-shaped steel has excellent low temperature toughness by considering the welding conditions such as the welding material and the amount of heat input when forming this welded portion. And. By doing so, the leading yield position which is the boundary position between the material axial end portion E in which the upper flange 81 and the lower flange 82 are stiffened by the reinforcing material 84 and the region other than the material axial end portion E. In Y, it is possible to prevent the welded portion between the upper flange 11 or the lower flange 12 and the reinforcing member 14 from being brittlely broken at an early stage.
  • the steel beam 1B and the column-beam joint structure 3B of the second embodiment are configured in the same manner as the steel beam 1A and the column-beam joint structure 3A of the first embodiment.
  • the inner diaphragm 4 is provided inside the column 2, but instead of this, a through diaphragm or an outer diaphragm is provided. The same effect can be obtained.
  • the widening portion 11w of the upper flange 11A and the widening portion 12w of the lower flange 12A are formed in the same shape.
  • the shape of the widened portion 11w of the upper flange 11A and the shape of the widening portion 12w of the lower flange 12A may be different from each other.
  • the reinforcing material 14 joined to both sides of the upper flange 11 in the beam width direction and the reinforcing material 14 joined to both sides of the lower flange 12 in the beam width direction have the same shape. It is formed.
  • the shape of the reinforcing material joined to the upper flange 11 and the shape of the reinforcing material joined to the lower flange 12 may be different from each other.
  • the position where the upper flange first yields and the position where the lower flange first yields do not always match, but both the position where the upper flange first yields and the position where the lower flange first yields are
  • the shape may be such that it is not the tip in the material axis direction.
  • the column 2 is not limited to the four-sided welded box-shaped cross-section column, and the same effect can be obtained when the column is composed of a square steel pipe, a concrete-filled steel pipe, a reinforced concrete, a steel-framed reinforced concrete, or the like.
  • a steel beam (example of the present invention) in which a widening portion or a reinforcing material is provided on each of the upper flange and the lower flange at the material axial end portion of the steel frame beam, and a conventional steel frame in which neither the widening portion nor the reinforcing material is provided.
  • the strength and plastic deformation capacity of each steel beam were calculated for the beam (conventional example).
  • a steel beam having no widening portion or reinforcing material is set on each of the upper flange and the lower flange.
  • an analysis model in which both ends of a steel beam made of H-shaped steel having a size of H-400 (H) ⁇ 175 (B) ⁇ 16 ⁇ 28 and a total length of L 4000 mm in the material axial direction are welded to the side surface of the column. It was set.
  • a steel frame beam in which a widening portion or a reinforcing material is provided on each of the upper flange and the lower flange is set at the material axial end portion of the steel frame beam.
  • a widening portion is provided on each of the upper flange and the lower flange, as in the first embodiment shown in FIGS. 1 (a) and 1 (b).
  • the provided analysis model was set.
  • the dimensions of the upper flange 11 and the lower flange 12 in the beam width direction are expanded to 350 mm. Further, in the region from the tip in the material axis direction to 125 mm to 200 mm in the material axis direction, the dimensions of the upper flange 11 and the lower flange 12 in the beam width direction are linearly reduced from 350 mm to 175 mm. In this way, it is assumed that the widening portions 11w and 12w are formed on the upper flange 11 and the lower flange 12, respectively, at the material axial end portion of the steel frame beam 1A.
  • the steel beams of the present invention and the conventional example are subjected to antisymmetric bending, in consideration of symmetry, up to half L / 2 of the total length L of the steel beam was analyzed and modeled. Then, the tip in the material axis direction of the steel beam, that is, the side joined to the column is set as the fixed end, and a concentrated load acts on the central position in the material axis direction of the steel beam to form a triangular shape in the material axis direction of the steel beam. It is assumed that the distributed bending moment is applied.
  • the tensile strength of the steel beam of the analysis model of the present invention and the conventional example was 490 N / mm 2 , the yield strength was 325 N / mm 2 , and the Young's coefficient was 205,000 N / mm 2 .
  • the total plastic bending strength distribution and the maximum bending strength distribution at each position in the material axial direction, and the bending moment distribution at the ultimate strength of the steel frame beam. was calculated.
  • the calculation of the shear force at the ultimate proof stress of the steel beam of the present invention was performed according to the contents described in Non-Patent Document 1 and Non-Patent Document 3. Specifically, the calculation was performed on the assumption that the flange of the steel beam has reached the tensile strength at the preceding yield position Y of the steel beam and the yield stress is generated in the effective cross-sectional portion of the web.
  • the total plastic bending strength at the tip in the material axial direction is less than the bending moment at the ultimate strength of the steel beam, and the strain is concentrated at the tip in the material axial direction of the steel beam.
  • the bending moment acting on the tip of the steel beam in the material axial direction when the preceding yield position Y reaches the maximum bending strength, that is, the ultimate strength of the steel beam determines the total plastic bending strength. It is below. That is, the welded portion where the tip of the steel beam in the material axial direction is joined to the column does not fall within the range where the steel beam is plasticized. Therefore, it was confirmed that the steel beam of the example of the present invention can obtain high plastic deformation ability by using a steel material having excellent low temperature toughness such as a steel material having a Charpy impact value of 27 J or more at ⁇ 40 ° C.
  • a test piece of the steel beam and column-beam joint structure of the present invention was prepared, and a force test was performed on this test piece to verify the performance of the steel-framed beam and column-beam joint structure of the present invention. Will be described below.
  • FIGS. 5 (a) and 5 (b) show a plan view and a vertical cross-sectional view of the test body S as the test object of this force test, respectively.
  • the column 2 instead of the inner diaphragm 4 provided in the column 2 of the second embodiment, the column 2 has a height at which each of the upper flange 11 and the lower flange 12 of the steel frame beam 1B is joined.
  • a through diaphragm 5 was provided so as to penetrate the cross section.
  • the main body portion of the two steel beam 1B is composed of a steel plate having a plate thickness of 28 mm as the upper flange 11 and the lower flange 12 and a steel plate having a plate thickness of 16 mm as the web 13.
  • Built-in H steel with a beam width of 400 mm and a beam width of 175 mm was used.
  • the reinforcing material 14 having a plate thickness of 28 mm is completely welded into the K-shaped groove on both sides of the upper flange 11 and the lower flange 12 of the built-in H steel in the beam width direction. It was joined by welding.
  • the planar shape of the reinforcing material 14 was 200 mm in the material axis direction of the steel frame beam 1B and 87.5 mm in the beam width direction of the steel frame beam 1B. Specifically, in the range from the joint with the column 2 to 100 mm in the timber axial direction of the steel beam 1B, the width of the reinforcing member 14 is kept constant at 87.5 mm and joined to both sides of the steel beam 1B in the beam width direction.
  • the pair of reinforcing members 14 to be provided increases the dimensions in the beam width direction by a total of 175 mm.
  • the width of the reinforcing material 14 is linearly gradually reduced, and 200 mm in the material axial direction from the joint with the column 2.
  • the width of the reinforcing material 14 was set to 0 at the position.
  • the pillar 2 portion was a four-sided welded box-shaped cross-section pillar having a cross-sectional size of 400 ⁇ 400 mm, which was formed by combining steel plates having a plate thickness of 40 mm.
  • a through diaphragm 5 having a plate thickness of 40 mm was provided in each of the columns 2 to which the upper flange 11 and the lower flange 12 of the steel beam 1B are attached. Then, the upper flange 11, the lower flange 12 and the reinforcing material 14 of the steel beam 1B are passed through and joined to the diaphragm 5 by complete penetration welding of the re-shaped groove, and the web 13 of the steel beam 1B is attached to the side surface of the column 2 by K.
  • Each of these welds is performed by performing CO 2 welding using a welding wire equivalent to the symbol YGW18 specified in Japanese Industrial Standard JIS Z3312 "Mag welding and MIG welding solid wire for mild steel, high tension steel and low temperature steel". rice field.
  • the above-mentioned steel plates constituting the main body portion (upper flange 11, lower flange 12 and web 13) of the steel beam 1B of the test body S, the reinforcing material 14, and the pillar 2 have Japanese Industrial Standards JIS G3106 “rolled steel plate for welded structure”.
  • the SM490B material specified in the above was used. Furthermore, consideration was given to ensuring a Charpy impact value of 27 J or more at -40 ° C for each of these steel sheets.
  • the material test of the upper flange 11, the lower flange 12 and the web 13 of the steel frame beam 1B was performed.
  • the yield strength is 432.2 N / mm 2
  • the tensile strength is 530.4 N / mm 2
  • the yield ratio is 79.8%
  • the uniform elongation is 28.2%
  • the yield strength was 436.9 N / mm 2
  • the tensile strength was 538.0 N / mm 2
  • the yield ratio was 81.2%
  • the uniform elongation was 21.4%
  • the Charpy impact value at -60 ° C was 333 J. rice field.
  • the cruciform test piece S was installed in the test frame. Specifically, the upper end and the lower end of the pillar 2 were supported by pin bearings and roller bearings, respectively. The distance between the pin bearing and the roller bearing was 2700 mm. Then, the test piece S was cooled until the welded portion between the steel frame beam 1B and the column 2 became stable at ⁇ 60 ° C.
  • FIG. 7 (a) and 7 (b) show a side view and a plan view of a main part of the test body S in a state of being installed on the test frame, respectively. Further, in FIG. 7 (c), it is calculated based on the lower limit values of the yield strength and the tensile strength (325 N / mm 2 and 490 N / mm 2 respectively) of the steel plate constituting the steel beam 1B portion of the test body S according to the material standard. The total plastic bending strength distribution and the maximum bending strength distribution of the steel beam 1B are shown. As shown in FIG. 7 (c), at the boundary position between the stiffened portion by the reinforcing material 14 and the rest in the material axial direction of the steel beam 1B (shown by a black circle in FIG. 7 (c)), the steel beam 1B The steel beam 1B portion of the test piece S is designed so that the bending moment (broken line in FIG. 7 (c)) acting on the test piece S first reaches the maximum bending strength.
  • the member deformation angle ⁇ was controlled based on the member deformation angle ⁇ p of the steel frame beam 1B. Specifically, as shown in FIG. 8, first, a force is applied for one cycle in the positive and negative directions at a deformation angle of ⁇ 1/3 ⁇ p within the elastic range, and then ⁇ 2 ⁇ p , ⁇ 4 ⁇ p , ⁇ 6 ⁇ p , Two cycles were applied in the positive and negative directions at each deformation angle.
  • this force test was carried out under the condition that an axial force of 300 kN (axial force ratio 0.015) was applied to the column 2 in order to stabilize the behavior of the force device.
  • FIG. 9 shows the relationship between the bending moment M at the tip of the steel frame beam 1B in the material axial direction and the member deformation angle ⁇ obtained by performing this force test.
  • the bending moment and the member deformation angle ⁇ in FIG. 9 are dimensionless as relative values M / M p with respect to the total plastic proof stress M p and relative values ⁇ / ⁇ p with respect to the total plastic deformation angle ⁇ p , respectively.
  • the graph expressed in the above is shown.
  • FIG. 11 shows an extended skeleton curve created based on FIG. 10.
  • the maximum value of the member deformation angle ⁇ was 27.65 ⁇ / ⁇ p in the positive direction and 25.38 ⁇ / ⁇ p in the negative direction.
  • the load-deformation relationship draws a stable curve
  • the load-deformation relationship draws a stable curve under an extremely low temperature environment of -60 ° C. It was also confirmed that brittle fracture did not occur at the axial end of the steel beam and sufficient plastic deformation ability was exhibited.
  • FIGS. 12 (a) and 12 (b) show the positions of the starting points of cracks generated in the vicinity of the material axial end portion of the steel frame beam 1B during the ultimate strength of the steel frame beam 1B in this load test. ..
  • the crack generation position in the steel frame beam 1B can be set to a position different from the welded portion between the tip of the steel frame beam 1B in the material axial direction and the column. Therefore, it was confirmed that the welded portion between the tip of the steel beam in the material axis direction and the column is suppressed from brittle fracture at an early stage, and the steel beam has high fatigue resistance and plastic deformation ability.

Abstract

Provided are a steel frame beam, a column-beam joining structure, and a structure having the same which, even when used in a low temperature environment, can suppress a welded part at an end in a material axial direction from brittle fracturing during a short-term load action such as seismic force, and can exhibit high fatigue resistance and plastic deformation capability. The steel frame beam has an upper flange, a lower flange, and a web connecting the upper flange and the lower flange, wherein: the upper flange, the lower flange, and the web are formed from a steel material having a Charpy impact value of at least 27 J at -40°C; and the steel frame beam has a shape such that, when a gradually increasing reverse symmetric bending moment is exerted on both ends in the material axial direction of the steel frame beam, and one or both of the upper flange and the lower flange yields, the position at which said one or both of the yielded upper flange and lower flange initially yields is a position other than the distal end in the material axial direction.

Description

鉄骨梁、柱梁接合構造およびこれを有する構造物Steel beam, column-beam joint structure and structure having this
 本発明は、鉄骨梁、柱梁接合構造およびこれを有する構造物に関する。 The present invention relates to a steel beam, a column-beam joint structure, and a structure having the same.
 H形、I形、溝形等の断面を有する鉄骨梁の材軸方向の先端が鉄骨柱に溶接されてなる柱梁接合構造を有する構造物においては、施工条件等の制約から、鉄骨梁の材軸方向の先端を含む領域である材軸方向端部における断面性能が低くなりやすい。例えば、図13(a)の平面図および図13(b)の側面図に示すように、H形鋼からなる鉄骨梁8Aの材軸方向の先端が柱2の側面に溶接により接合されてなる柱梁接合構造9Aを有する構造物では、柱梁接合構造9Aの強度を確保するため、鉄骨梁8Aの上フランジ81および下フランジ82を柱2の側面に全周溶接する必要がある。このため、鉄骨梁8Aの材軸方向端部においては、鉄骨梁8Aのウェブ83にスカラップ83sを設ける必要があり、鉄骨梁8Aの材軸方向端部の断面性能が小さくなる。 In a structure having a column-beam joint structure in which the tip in the material axis direction of a steel beam having a cross section such as H-shaped, I-shaped, or groove-shaped is welded to the steel column, the steel beam may be made due to restrictions such as construction conditions. The cross-sectional performance at the end in the direction of the material axis, which is the region including the tip in the direction of the material axis, tends to be low. For example, as shown in the plan view of FIG. 13 (a) and the side view of FIG. 13 (b), the tip of the steel beam 8A made of H-shaped steel in the material axial direction is joined to the side surface of the column 2 by welding. In the structure having the beam-column joint structure 9A, in order to secure the strength of the beam-column joint structure 9A, it is necessary to weld the upper flange 81 and the lower flange 82 of the steel beam 8A to the side surface of the column 2 all around. Therefore, at the material axial end of the steel beam 8A, it is necessary to provide scallops 83s on the web 83 of the steel beam 8A, and the cross-sectional performance of the material axial end of the steel beam 8A is reduced.
 このような構造物に対して、正負方向に交互に繰り返し入力する地震力等の短期荷重が作用して、鉄骨梁8Aが曲げモーメントを受けると、鉄骨梁8Aの材軸方向端部では、スカラップ83sが設けられることによりウェブ83の耐力負担割合が小さくなり、その分だけ上フランジ81または下フランジ82と柱2の側面との溶接部の近傍にひずみが集中することとなる。そして、この溶接部が破断すると、鉄骨梁8Aの塑性変形能力が十分に発揮されずに、構造物に想定外の被害が生じる恐れがある。 When a short-term load such as a seismic force that is repeatedly input in the positive and negative directions acts on such a structure and the steel beam 8A receives a bending moment, scallops are formed at the axial end of the steel beam 8A. By providing the 83s, the load bearing load ratio of the web 83 is reduced, and the strain is concentrated in the vicinity of the welded portion between the upper flange 81 or the lower flange 82 and the side surface of the column 2 by that amount. If this welded portion breaks, the plastic deformation capacity of the steel frame beam 8A may not be sufficiently exerted, and unexpected damage may occur to the structure.
 特に、上記のような鉄骨梁、柱梁接合構造およびこれを有する構造物が、低温環境で使用される場合には、鋼材および溶接部の靭性(シャルピー衝撃値:日本工業規格JIS Z2242「金属材料のシャルピー衝撃試験方法」に規定される吸収エネルギー)が低下するため、鉄骨梁の材軸方向端部において、上フランジ81または下フランジ82と柱2の側面との溶接部の近傍で脆性破断が発生する恐れが高まる。 In particular, when the steel beam, the column-beam joint structure and the structure having the above are used in a low temperature environment, the toughness of the steel material and the welded part (Charpy impact value: Japanese Industrial Standard JIS Z2242 "Metallic material". Since the absorbed energy specified in the Charpy Impact Test Method) is reduced, brittle fracture occurs near the welded portion between the upper flange 81 or the lower flange 82 and the side surface of the column 2 at the material axial end of the steel beam. The risk of occurrence increases.
 例えば、非特許文献1では、上記溶接部およびスカラップ83s部の母材(ウェブ83)の靭性が、シャルピー衝撃値で70J未満である場合には、上フランジ81または下フランジ82と柱2の側面との溶接部が脆性破断する可能性が高いと判断している。そして、この脆性破断を防ぐため、上フランジ81または下フランジ82と柱2の側面との溶接部の継手破断耐力を、上フランジ81または下フランジ82の引張強度よりも低減して評価すべきとしている。 For example, in Non-Patent Document 1, when the toughness of the base material (web 83) of the welded portion and the scalloped 83s portion is less than 70 J in Charpy impact value, the upper flange 81 or the lower flange 82 and the side surface of the column 2 It is judged that there is a high possibility that the welded part with and will break brittlely. Then, in order to prevent this brittle fracture, the joint fracture resistance of the welded portion between the upper flange 81 or the lower flange 82 and the side surface of the column 2 should be evaluated by reducing the tensile strength of the upper flange 81 or the lower flange 82. There is.
 ここで、図14(a)の平面図および図14(b)の側面図に示すように、鉄骨梁8Bの材軸方向端部において、上フランジ81と下フランジ82の各々の両側に補強材84を溶接して、上フランジ81と下フランジ82の両側と柱2の側面との間を補剛することにより、鉄骨梁8Bが曲げモーメントを受けるときに、鉄骨梁8Bの材軸方向端部が、材軸方向の他の位置よりも先行して降伏することを回避し、鉄骨梁8Bの材軸方向端部の塑性変形能力を向上させることが行われている。 Here, as shown in the plan view of FIG. 14A and the side view of FIG. 14B, reinforcing members are provided on both sides of the upper flange 81 and the lower flange 82 at the material axial end portion of the steel frame beam 8B. By welding 84 to stiffen between both sides of the upper flange 81 and the lower flange 82 and the side surface of the column 2, when the steel beam 8B receives a bending moment, the end portion of the steel beam 8B in the material axial direction. However, it is possible to avoid yielding ahead of other positions in the material axial direction, and to improve the plastic deformation ability of the end portion of the steel frame beam 8B in the material axial direction.
 しかし、非特許文献2には、図14(a)の平面図および図14(b)の側面図に示すような鉄骨梁8Bにおいても、鉄骨梁8Bの材軸方向端部において脆性破壊が生じうることが記載されている。具体的には、上フランジ81および下フランジ82が補強材84により補剛されている領域と、補強材84により補剛されていない領域の境界位置に応力が集中し、上フランジ81または下フランジ82と補強材84との溶接部が脆性破壊しうることが記載されている。 However, in Non-Patent Document 2, brittle fracture occurs at the material axial end portion of the steel frame beam 8B even in the steel frame beam 8B as shown in the plan view of FIG. 14 (a) and the side view of FIG. 14 (b). It is stated that it is possible. Specifically, stress is concentrated at the boundary position between the region where the upper flange 81 and the lower flange 82 are stiffened by the reinforcing material 84 and the region where the lower flange 82 is not stiffened by the reinforcing material 84, and the upper flange 81 or the lower flange It is described that the welded portion between the 82 and the reinforcing material 84 can be brittlely broken.
 そして、このような鉄骨梁8Bが柱2に接続されてなる柱梁接合構造を有する構造物が、特に低温環境で使用される場合には、各溶接部の靭性が低下して、鉄骨梁の材軸方向端部において脆性破断が発生する可能性がさらに高まるという問題があった。 Then, when such a structure having a column-beam joint structure in which the steel beam 8B is connected to the column 2 is used particularly in a low temperature environment, the toughness of each welded portion is lowered, and the steel beam There is a problem that the possibility of brittle fracture at the end in the axial direction of the material is further increased.
 本発明は、上記のような事情に鑑みてなされたものであり、低温環境下で使用しても、地震力等の短期荷重作用時に材軸方向端部の溶接部が脆性破壊することが抑制され、高い耐疲労特性および塑性変形能力を発揮することのできる、鉄骨梁、柱梁接合構造およびこれを有する構造物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and even when used in a low temperature environment, it suppresses brittle fracture of the welded portion at the end in the axial direction of the material when a short-term load such as seismic force is applied. It is an object of the present invention to provide a steel beam, a column-beam welded structure, and a structure having the same, which can exhibit high fatigue resistance and plastic deformation ability.
 上記課題を解決するため、本発明は以下の特徴を有する。 In order to solve the above problems, the present invention has the following features.
 [1] 上フランジと、下フランジと、前記上フランジと前記下フランジとを連結するウェブとを有する鉄骨梁であって、前記上フランジと、前記下フランジおよび前記ウェブは、-40℃におけるシャルピー衝撃値が27J以上の鋼材であり、前記鉄骨梁の材軸方向の両端に、漸増する逆対称の曲げモーメントが作用して、前記上フランジと前記下フランジとのいずれかまたは両方が降伏するときに、降伏する前記上フランジと前記下フランジとのいずれかまたは両方において最初に降伏する位置が、前記材軸方向の先端以外となるような形状を有することを特徴とする鉄骨梁。 [1] A steel beam having an upper flange, a lower flange, and a web connecting the upper flange and the lower flange, and the upper flange, the lower flange, and the web are charpees at −40 ° C. When a steel material having an impact value of 27 J or more and one or both of the upper flange and the lower flange yield due to an gradually increasing inversely symmetric bending moment acting on both ends of the steel beam in the material axis direction. In addition, a steel beam having a shape such that the position where the first yield is made in either or both of the upper flange and the lower flange is other than the tip in the material axial direction.
 ここで、鉄骨梁の材軸方向の先端とは、該鉄骨梁が柱と接合される端面の位置をいうものとする。 Here, the tip of the steel beam in the material axis direction means the position of the end face where the steel beam is joined to the column.
 [2] 前記材軸方向に垂直な断面における前記上フランジおよび前記下フランジの断面積は、前記材軸方向の先端を含む領域である材軸方向端部では、該材軸方向端部以外の領域よりも大きく設定されていることを特徴とする[1]に記載の鉄骨梁。 [2] The cross-sectional area of the upper flange and the lower flange in the cross section perpendicular to the material axial direction is a region including the tip in the material axial direction, and the end portion in the material axial direction is other than the end portion in the material axial direction. The steel beam according to [1], which is set larger than the area.
 [3]前記鉄骨梁の材軸方向の両端に漸増する逆対称の曲げモーメントが作用して前記鉄骨梁の材軸方向のいずれかの位置が最大耐力に到達するときに、前記両端に作用する前記曲げモーメントの大きさが、前記両端における前記鉄骨梁の全塑性曲げ耐力以下であることを特徴とする[1]または[2]に記載の鉄骨梁。 [3] When an inversely symmetric bending moment that gradually increases at both ends of the steel beam in the material axis direction acts and any position of the steel beam in the material axis direction reaches the maximum bearing capacity, it acts on both ends. The steel beam according to [1] or [2], wherein the magnitude of the bending moment is equal to or less than the total plastic bending moment of the steel beam at both ends.
 [4]前記鉄骨梁の材軸方向の両端に漸増する逆対称の曲げモーメントが作用して前記鉄骨梁の材軸方向のいずれかの位置が最大耐力に到達するときに、前記両端に作用する前記曲げモーメントの大きさが、前記両端における前記鉄骨梁の曲げ降伏耐力以下であることを特徴とする[1]~[3]のいずれかに記載の鉄骨梁。 [4] When an inversely symmetric bending moment gradually increases at both ends of the steel beam in the material axial direction and any position of the steel beam in the material axial direction reaches the maximum yield strength, it acts on both ends. The steel beam according to any one of [1] to [3], wherein the magnitude of the bending moment is equal to or less than the bending yield strength of the steel beam at both ends.
 [5] [1]~[4]のいずれかに記載の鉄骨梁の前記材軸方向の先端が柱に溶接されてなることを特徴とする柱梁接合構造。 [5] A beam-column joint structure characterized in that the tip of the steel frame beam according to any one of [1] to [4] in the material axial direction is welded to the column.
 [6] [5]に記載の柱梁接合構造を有することを特徴とする構造物。 [6] A structure characterized by having the beam-column joint structure according to [5].
 本発明の鉄骨梁、柱梁接合構造およびこれを有する構造物によれば、鉄骨梁が-40℃におけるシャルピー衝撃値が27J以上の鋼材からなるとともに、鉄骨梁の両端に漸増する逆対称の曲げモーメントが作用するときに、上フランジが最初に降伏する位置および下フランジが最初に降伏する位置が、材軸方向の先端以外となる。 According to the steel beam, the column-beam joint structure of the present invention, and the structure having the same, the steel beam is made of a steel material having a charmy impact value of 27 J or more at −40 ° C. When the moment acts, the position where the upper flange first yields and the position where the lower flange first yields are other than the tip in the material axial direction.
 ここで、鉄骨梁の材軸方向の先端と柱との溶接部の近傍では、鉄骨梁にスカラップが設けられることによる断面欠損や、鉄骨梁のウェブが接合される柱の側面の面外変形に起因して、応力やひずみが集中しやすい。このような材軸方向の先端以外の位置で、上フランジおよび下フランジが最初に降伏するので、鉄骨梁の材軸方向の先端と柱との溶接部が早期に脆性破壊することが抑制される。よって、高い耐疲労特性および塑性変形能力を有する鉄骨梁となる。 Here, in the vicinity of the welded portion between the tip of the steel beam in the material axis direction and the column, cross-sectional defects due to the provision of scallops on the steel beam and out-of-plane deformation of the side surface of the column to which the web of the steel beam is joined occur. As a result, stress and strain tend to concentrate. Since the upper flange and the lower flange yield first at positions other than the tip in the material axis direction, it is possible to prevent the welded portion between the tip in the material axis direction of the steel beam and the column from being brittlely broken at an early stage. .. Therefore, the steel beam has high fatigue resistance and plastic deformation ability.
 そして、本発明の鉄骨梁、柱梁接合構造およびこれを有する構造物は、低温環境にさらされる鉄骨梁と柱とを溶接する際の溶接材料や入熱量などの溶接条件に特別な配慮を行ってこの溶接部の低温靭性を確保することを行わなくても、地震力等の短期荷重作用時に鉄骨梁の上フランジまたは下フランジと鉄骨柱の側面との溶接部の近傍において、脆性破断を生じることを抑制できる。 The steel beam, the column-beam joint structure of the present invention, and the structure having the same, give special consideration to the welding conditions such as the welding material and the amount of heat input when welding the steel beam and the column exposed to a low temperature environment. Even if the low temperature toughness of the welded part of the lever is not ensured, brittle fracture occurs in the vicinity of the welded part between the upper flange or lower flange of the steel beam and the side surface of the steel column when a short-term load such as seismic force is applied. It can be suppressed.
 特に、鉄骨梁の材軸方向の先端が現場溶接により柱に接合される場合には、この溶接部自体の靭性を高めることにより溶接部の脆性破壊を抑制することが困難であるので、上記効果が有効に発揮される。 In particular, when the tip of the steel beam in the material axial direction is joined to the column by on-site welding, it is difficult to suppress brittle fracture of the welded portion by increasing the toughness of the welded portion itself, so that the above effect is obtained. Is effectively demonstrated.
 鉄骨梁の両端に漸増する逆対称の曲げモーメントが作用するときに、上フランジが最初に降伏する位置および下フランジが最初に降伏する位置が、材軸方向の両端以外となるようにする形状としては、例えば、材軸方向に垂直な断面における上フランジおよび下フランジの断面積が、材軸方向の両端を含む領域である材軸方向端部において、該材軸方向端部以外の領域よりも大きく設定されるようにする。 As a shape so that the position where the upper flange first yields and the position where the lower flange first yields are other than both ends in the material axial direction when an increasing inversely symmetrical bending moment acts on both ends of the steel beam. For example, in the material axial end portion where the cross-sectional area of the upper flange and the lower flange in the cross section perpendicular to the material axial direction includes both ends in the material axial direction, is larger than the region other than the material axial end portion. Make it large.
 このように、本発明の鉄骨梁、柱梁接合構造およびこれを有する構造物は、低温環境下で使用されても、地震力等の短期荷重作用時に材軸方向の端部の溶接部が脆性破壊することが抑制され、高い耐疲労特性および塑性変形能力を発揮することができる。 As described above, even if the steel beam, the column-beam joint structure of the present invention and the structure having the same are used in a low temperature environment, the welded portion at the end in the material axial direction is brittle when a short-term load such as seismic force is applied. Destruction is suppressed, and high fatigue resistance and plastic deformation ability can be exhibited.
図1(a)は、本発明の一実施形態の鉄骨梁および柱梁接合構造を示す平面図であり、図1(b)はその側面図である。FIG. 1 (a) is a plan view showing a steel frame beam and a column-beam joint structure according to an embodiment of the present invention, and FIG. 1 (b) is a side view thereof. 図2(a)は、本発明の他の実施形態の鉄骨梁および柱梁接合構造を示す平面図であり、図2(b)はその側面図である。FIG. 2A is a plan view showing a steel beam and column-beam joint structure according to another embodiment of the present invention, and FIG. 2B is a side view thereof. 図3は、本発明の鉄骨梁の全塑性曲げ耐力および最大曲げ耐力の分布を示すである。FIG. 3 shows the distribution of the total plastic bending strength and the maximum bending strength of the steel beam of the present invention. 図4は、従来の鉄骨梁の全塑性曲げ耐力および最大曲げ耐力の分布を示すグラフである。FIG. 4 is a graph showing the distribution of the total plastic bending strength and the maximum bending strength of the conventional steel beam. 図5(a)は、本発明の鉄骨梁および柱梁接合構造の塑性変形能力を検証するための加力試験で用いた試験体を示す平面図であり、図5(b)はその縦断面図である。FIG. 5A is a plan view showing a test piece used in a force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention, and FIG. 5B is a vertical cross section thereof. It is a figure. 図6は、本発明の鉄骨梁および柱梁接合構造の塑性変形能力を検証するための加力試験の加力状況を示す側面図である。FIG. 6 is a side view showing a force state of a force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention. 図7(a)および図7(b)はそれぞれ、本発明の鉄骨梁の塑性変形能力を検証する加力試験で用いた試験体の要部を示す側面図および平面図であり、図7(c)は、同試験体の鉄骨梁部分の曲げ耐力の設計値の分布を示すグラフである。7 (a) and 7 (b) are side views and plan views showing the main parts of the test body used in the force test for verifying the plastic deformation ability of the steel beam of the present invention, respectively. c) is a graph showing the distribution of the design value of the bending strength of the steel beam portion of the test piece. 図8は、本発明の鉄骨梁および柱梁接合構造の塑性変形能力を検証する加力試験の加力サイクルを示す図である。FIG. 8 is a diagram showing a force cycle of a force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention. 図9は、本発明の鉄骨梁および柱梁接合構造の塑性変形能力を検証する加力試験で得られた、鉄骨梁に作用する曲げモーメントと変形角との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the bending moment acting on the steel beam and the deformation angle obtained in the force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention. 図10は、本発明の鉄骨梁および柱梁接合構造の塑性変形能力を検証する加力試験で得られた、鉄骨梁に作用する曲げモーメントと変形角との関係を無次元化して示すグラフである。FIG. 10 is a graph showing the relationship between the bending moment acting on the steel beam and the deformation angle obtained by the force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention in a dimensionless manner. be. 図11は、本発明の鉄骨梁および柱梁接合構造の塑性変形能力を検証する加力試験で得られた、鉄骨梁に作用する曲げモーメントと変形角との関係の拡張骨格曲線である。FIG. 11 is an extended skeleton curve of the relationship between the bending moment acting on the steel beam and the deformation angle obtained in the force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention. 図12(a)および図12(b)は、本発明の鉄骨梁および柱梁接合構造の塑性変形能力を検証する加力試験において、終局耐力時に鉄骨梁に発生したき裂の起点の位置を示す図である。12 (a) and 12 (b) show the positions of the starting points of cracks generated in the steel beam during the ultimate strength in the force test for verifying the plastic deformation ability of the steel beam and column-beam joint structure of the present invention. It is a figure which shows. 図13(a)は、従来の一実施形態の鉄骨梁および柱梁接合構造を示す平面図であり、図13(b)はその側面図である。FIG. 13 (a) is a plan view showing a steel frame beam and a column-beam joint structure of a conventional embodiment, and FIG. 13 (b) is a side view thereof. 図14(a)は、従来の一実施形態の鉄骨梁および柱梁接合構造を示す平面図であり、図14(b)はその側面図である。FIG. 14 (a) is a plan view showing a steel frame beam and a column-beam joint structure of a conventional embodiment, and FIG. 14 (b) is a side view thereof.
 以下、図面を参照して、本発明の鉄骨梁、柱梁接合構造およびこれを有する構造物の実施形態を詳細に説明する。 Hereinafter, embodiments of the steel beam, column-beam joint structure, and the structure having the same will be described in detail with reference to the drawings.
 [実施形態1]
 図1(a)および図1(b)に、本発明の実施形態1の鉄骨梁1A、およびこの鉄骨梁1Aが、四面溶接箱形断面柱からなる柱2の側面に溶接により接合されてなる柱梁接合構造3Aの平面図および側面図を、それぞれ示す。本実施形態の鉄骨梁1Aは、構造体が低温環境にさらされる条件で使用される、冷凍倉庫等の鉄骨造の建築物(構造物)に設けられるものである。鉄骨梁1Aは、上フランジ11Aと、下フランジ12Aと、これら上フランジ11Aと下フランジ12Aとを連結するウェブ13とを有する。そして、上フランジ11A、下フランジ12Aおよびウェブ13がH形断面に組み合わされて互いに溶接されることにより、鉄骨梁1Aが構成されている。
[Embodiment 1]
1 (a) and 1 (b) show the steel beam 1A of the first embodiment of the present invention and the steel beam 1A joined to the side surface of a column 2 made of a four-sided welded box-shaped cross-section column by welding. The plan view and the side view of the column-beam joint structure 3A are shown respectively. The steel beam 1A of the present embodiment is provided in a steel-framed building (structure) such as a freezer warehouse, which is used under the condition that the structure is exposed to a low temperature environment. The steel beam 1A has an upper flange 11A, a lower flange 12A, and a web 13 connecting the upper flange 11A and the lower flange 12A. The upper flange 11A, the lower flange 12A, and the web 13 are combined in an H-shaped cross section and welded to each other to form a steel beam 1A.
 柱2の内部には、鉄骨梁1Aの上フランジ11Aと下フランジ12Aの各々が接合される高さに、内ダイアフラム4が設けられている。 Inside the column 2, an inner diaphragm 4 is provided at a height at which each of the upper flange 11A and the lower flange 12A of the steel beam 1A is joined.
 鉄骨梁1Aの上フランジ11A、下フランジ12Aおよびウェブ13、柱(四面溶接箱形断面柱)2の各スキンプレート、ならびに内ダイアフラム4の各々は、-40℃におけるシャルピー衝撃値が27J以上の鋼板からなり、低温環境下において高い靭性を有する。 The upper flange 11A, lower flange 12A and web 13 of the steel beam 1A, each skin plate of the column (four-sided welded box-shaped cross-section column) 2, and each of the inner diaphragm 4 are steel plates having a Charpy impact value of 27J or more at -40 ° C. It is composed of and has high toughness in a low temperature environment.
 図1(a)および図1(b)に示すように、鉄骨梁1Aの材軸方向の先端を含む領域である材軸方向端部Eでは、上フランジ11Aと下フランジ12Aの各々の梁幅方向の寸法が拡大されることにより拡幅部11w、12wが設けられている。この結果、材軸方向に垂直な断面における上フランジ11Aおよび下フランジ12Aの断面積が、材軸方向端部E以外の領域よりも大きく設定されている。 As shown in FIGS. 1 (a) and 1 (b), in the material axial end portion E which is a region including the tip in the material axial direction of the steel frame beam 1A, the beam widths of the upper flange 11A and the lower flange 12A are respectively. Widening portions 11w and 12w are provided by enlarging the dimensions in the direction. As a result, the cross-sectional area of the upper flange 11A and the lower flange 12A in the cross section perpendicular to the material axis direction is set to be larger than the region other than the end portion E in the material axis direction.
 このようにすると、鉄骨梁1Aの材軸方向端部Eでは、鉄骨梁1Aに曲げモーメントが作用するときに上フランジ11Aおよび下フランジ12Aに発生する材軸方向の応力が、拡幅部11w、12wが設けられることによって低減される。 In this way, at the material axial end E of the steel beam 1A, the stress in the material axial direction generated in the upper flange 11A and the lower flange 12A when the bending moment acts on the steel beam 1A is increased in the widening portions 11w and 12w. Is provided to reduce the amount.
 そして、鉄骨梁1Aの材軸方向の両端に、正負方向に交互に繰り返し入力する地震力等、漸増する逆対称の曲げモーメントが作用すると、上フランジ11Aが引張力または圧縮力を受けて最初に降伏する位置が発生する。また、下フランジ12Aが引張力または圧縮力を受けて最初に降伏する位置が発生する。そして、これらの先行降伏位置Yは、拡幅部11w、12wが設けられた材軸方向端部Eと、材軸方向端部E以外の領域との境界位置となる。よって、地震力等の短期荷重作用時に鉄骨梁1Aの材軸方向の先端の柱2との溶接部が脆性破壊することが抑制される。したがって、低温環境にさらされる鉄骨梁1Aと柱2とを溶接する際の溶接材料や入熱量などの溶接条件に特別な配慮を行ってこの溶接部の低温靭性を確保することを行う必要がない。このようにして、高い耐疲労特性および塑性変形能力を発揮することのできる鉄骨梁1Aおよび柱梁接合構造3Aとなる。 Then, when a gradually increasing inversely symmetric bending moment such as a seismic force that is repeatedly input in the positive and negative directions acts on both ends of the steel beam 1A in the material axial direction, the upper flange 11A receives a tensile force or a compressive force first. A position to surrender occurs. Further, a position where the lower flange 12A first yields due to a tensile force or a compressive force is generated. The preceding yield position Y is a boundary position between the material axial end portion E provided with the widening portions 11w and 12w and the region other than the material axial direction end portion E. Therefore, it is possible to prevent brittle fracture of the welded portion of the steel frame beam 1A with the column 2 at the tip in the material axial direction when a short-term load such as a seismic force is applied. Therefore, it is not necessary to give special consideration to the welding conditions such as the welding material and the amount of heat input when welding the steel beam 1A and the column 2 exposed to a low temperature environment to ensure the low temperature toughness of the welded portion. .. In this way, the steel beam 1A and the column-beam joint structure 3A capable of exhibiting high fatigue resistance and plastic deformation ability are obtained.
 なお、拡幅部11w、12wの梁幅方向の寸法がさらに拡大されていると、一層好ましい。つまり、鉄骨梁1Aの材軸方向の両端に、漸増する逆対称の曲げモーメントが作用し、これが増加すると、鉄骨梁1Aの材軸方向のいずれかの位置が最大耐力に到達する。この鉄骨梁1Aの終局耐力時の、鉄骨梁1Aの材軸方向の先端にかかる曲げモーメントの大きさが、鉄骨梁1Aの先端における鉄骨梁1Aの全塑性曲げ耐力以下、さらには曲げ降伏耐力以下となる。このようにして、鉄骨梁1A、柱梁接合構造3Aおよびこれを有する建築物(構造物)の耐疲労特性および塑性変形能力が一層高められる。 It is more preferable that the dimensions of the widening portions 11w and 12w in the beam width direction are further expanded. That is, a gradually increasing inversely symmetric bending moment acts on both ends of the steel beam 1A in the material axial direction, and when this increases, any position of the steel beam 1A in the material axial direction reaches the maximum yield strength. The magnitude of the bending moment applied to the tip of the steel beam 1A in the material axial direction at the ultimate strength of the steel beam 1A is less than or equal to the total plastic bending strength of the steel beam 1A at the tip of the steel beam 1A, and further less than or equal to the bending yield strength. It becomes. In this way, the fatigue resistance and the plastic deformation ability of the steel beam 1A, the column-beam joint structure 3A, and the building (structure) having the same are further enhanced.
 なお、鉄骨梁1Aの材軸方向端部Eのうち、スカラップ13sが設けられる領域における、鉄骨梁1Aの材軸方向に垂直な断面の断面耐力は、先行降伏位置Yの断面耐力よりも大きく設定されていることが好ましい。鉄骨梁1Aの材軸方向の両端に、漸増する逆対称の曲げモーメントが作用すると、まず先行降伏位置Yが降伏してひずみ硬化し、先行降伏位置Yの耐力が上昇する。そして、先行降伏位置Yの耐力が上昇した後に、材軸方向端部Eに設けられるスカラップ13sのスカラップ底のひずみが増大してスカラップ底を起点とする亀裂が発生し材軸方向端部Eが脆性破断するおそれがある。そこで、上記のように、スカラップ13sが設けられる領域の断面耐力が、先行降伏位置Yの断面耐力よりも大きく設定されていることにより、このような現象を防止できる。鉄骨梁1Aの材軸方向端部Eにスカラップ13sが設けられない構造としても、同様の効果が得られる。 The cross-sectional yield strength of the cross section perpendicular to the material axial direction of the steel beam 1A in the region where the scallop 13s is provided in the end portion E in the material axial direction of the steel frame beam 1A is set to be larger than the cross-sectional yield strength of the preceding yield position Y. It is preferable that it is. When an increasing inversely symmetric bending moment acts on both ends of the steel beam 1A in the material axial direction, the preceding yield position Y first yields and is strain-hardened, and the yield strength of the preceding yield position Y increases. Then, after the yield strength of the preceding yield position Y increases, the strain of the scallop bottom of the scallop 13s provided at the material axial end portion E increases, a crack occurs starting from the scallop bottom, and the material axial end portion E becomes. Brittle may break. Therefore, as described above, such a phenomenon can be prevented by setting the cross-sectional proof stress of the region where the scallop 13s is provided to be larger than the cross-sectional proof stress of the preceding yield position Y. The same effect can be obtained even if the scallop 13s is not provided at the material axial end portion E of the steel frame beam 1A.
 [実施形態2]
 本発明の実施形態2の鉄骨梁1Bおよび鉄骨梁1Bが柱2に接合されてなる柱梁接合構造3Aを、図2(a)の平面図および図2(b)の側面図に示す。
[Embodiment 2]
The column-beam joint structure 3A in which the steel beam 1B and the steel beam 1B of the second embodiment of the present invention are joined to the column 2 is shown in the plan view of FIG. 2A and the side view of FIG. 2B.
 図2(a)および図2(b)に示すように、実施形態2の鉄骨梁1Bおよび柱梁接合構造3Bでは、実施形態1の鉄骨梁1Aとは異なり、鉄骨梁1Bの本体部分は、材軸方向の全長にわたり同一の断面形状を有するH形鋼からなる。 As shown in FIGS. 2A and 2B, in the steel beam 1B and the column-beam joint structure 3B of the second embodiment, unlike the steel beam 1A of the first embodiment, the main body portion of the steel beam 1B is It is made of H-shaped steel having the same cross-sectional shape over the entire length in the material axis direction.
 そして、鉄骨梁1Bの材軸方向端部Eにおいて、H形鋼の上フランジ11と下フランジ12の梁幅方向の両側に、補強材14が溶接により接合されている。補強材14の形状は、実施形態1の上フランジ11Aと下フランジ12Aの拡幅部11w、12wと同様である。 Then, at the end portion E in the material axial direction of the steel frame beam 1B, the reinforcing material 14 is joined to both sides of the upper flange 11 and the lower flange 12 of the H-shaped steel in the beam width direction by welding. The shape of the reinforcing material 14 is the same as the widening portions 11w and 12w of the upper flange 11A and the lower flange 12A of the first embodiment.
 鉄骨梁1Bの本体部分を構成するH形鋼、補強材14、柱(四面溶接箱形断面柱)2の各スキンプレートおよび内ダイアフラム4の各々は、-40℃におけるシャルピー衝撃値が27J以上の鋼板からなり、低温環境下において高い靭性を有する。 Each of the H-shaped steel, the reinforcing material 14, the skin plate of the column (four-sided welded box-shaped cross-section column) 2 and the inner diaphragm 4 constituting the main body of the steel beam 1B has a Charpy impact value of 27 J or more at −40 ° C. It is made of steel plate and has high toughness in a low temperature environment.
 H形鋼の上フランジ11または下フランジ12と補強材14との溶接部は、この溶接部を形成する際の溶接材料や入熱量などの溶接条件に配慮することにより、低温靭性に優れたものとする。このようにすることにより、上フランジ81および下フランジ82が補強材84により補剛されている材軸方向端部Eと、材軸方向端部E以外の領域との境界位置である先行降伏位置Yにおいて、上フランジ11または下フランジ12と補強材14との溶接部が早期に脆性破壊することを防止できる。 The welded portion between the upper flange 11 or the lower flange 12 and the reinforcing material 14 of the H-shaped steel has excellent low temperature toughness by considering the welding conditions such as the welding material and the amount of heat input when forming this welded portion. And. By doing so, the leading yield position which is the boundary position between the material axial end portion E in which the upper flange 81 and the lower flange 82 are stiffened by the reinforcing material 84 and the region other than the material axial end portion E. In Y, it is possible to prevent the welded portion between the upper flange 11 or the lower flange 12 and the reinforcing member 14 from being brittlely broken at an early stage.
 上記以外の点については、実施形態2の鉄骨梁1Bおよび柱梁接合構造3Bは、実施形態1の鉄骨梁1Aおよび柱梁接合構造3Aと同様に構成されている。 Regarding points other than the above, the steel beam 1B and the column-beam joint structure 3B of the second embodiment are configured in the same manner as the steel beam 1A and the column-beam joint structure 3A of the first embodiment.
 実施形態2の鉄骨梁1Bおよび柱梁接合構造3Bは、上記のように構成されることで、実施形態1の鉄骨梁1Aおよび柱梁接合構造3Aと同様の効果が得られる。 By configuring the steel beam 1B and the column-beam joint structure 3B of the second embodiment as described above, the same effects as those of the steel-frame beam 1A and the column-beam joint structure 3A of the first embodiment can be obtained.
 なお、実施形態1および実施形態2の柱梁接合構造3A、3Bでは、柱2の内部に内ダイアフラム4が設けられているが、これに代えて、通しダイアフラムや外ダイアフラムが設けられている場合にも、同様の効果が得られる。 In the column-beam joint structures 3A and 3B of the first and second embodiments, the inner diaphragm 4 is provided inside the column 2, but instead of this, a through diaphragm or an outer diaphragm is provided. The same effect can be obtained.
 また、実施形態1の柱梁接合構造3Aでは、上フランジ11Aの拡幅部11wと下フランジ12Aの拡幅部12wとが同形状に形成されている。これに代えて、上フランジ11Aの拡幅部11wの形状と下フランジ12Aの拡幅部12wの形状とが互いに異なっていても良い。同様に、実施形態2の柱梁接合構造3Bでは、上フランジ11の梁幅方向両側に接合される補強材14と下フランジ12の梁幅方向両側に接合される補強材14とが同形状に形成されている。これに代えて、上フランジ11に接合される補強材の形状と下フランジ12に接合される補強材の形状とが互いに異なっていても良い。この場合には、上フランジが最初に降伏する位置と下フランジが最初に降伏する位置が必ずしも一致しないが、上フランジが最初に降伏する位置と前記下フランジが最初に降伏する位置の両方が、材軸方向の先端以外となるような形状となっていればよい。 Further, in the column-beam joint structure 3A of the first embodiment, the widening portion 11w of the upper flange 11A and the widening portion 12w of the lower flange 12A are formed in the same shape. Instead of this, the shape of the widened portion 11w of the upper flange 11A and the shape of the widening portion 12w of the lower flange 12A may be different from each other. Similarly, in the beam-column joining structure 3B of the second embodiment, the reinforcing material 14 joined to both sides of the upper flange 11 in the beam width direction and the reinforcing material 14 joined to both sides of the lower flange 12 in the beam width direction have the same shape. It is formed. Instead, the shape of the reinforcing material joined to the upper flange 11 and the shape of the reinforcing material joined to the lower flange 12 may be different from each other. In this case, the position where the upper flange first yields and the position where the lower flange first yields do not always match, but both the position where the upper flange first yields and the position where the lower flange first yields are The shape may be such that it is not the tip in the material axis direction.
 また、柱2は、四面溶接箱形断面柱に限られず、角形鋼管、コンクリート充填鋼管、鉄筋コンクリート、鉄骨鉄筋コンクリート等からなる柱である場合にも、同様の効果が得られる。 Further, the column 2 is not limited to the four-sided welded box-shaped cross-section column, and the same effect can be obtained when the column is composed of a square steel pipe, a concrete-filled steel pipe, a reinforced concrete, a steel-framed reinforced concrete, or the like.
 鉄骨梁の材軸方向端部において、上フランジと下フランジの各々に拡幅部または補強材が設けられている鉄骨梁(本発明例)と、拡幅部も補強材も設けられていない従来の鉄骨梁(従来例)を対象として、各鉄骨梁の耐力および塑性変形能力を計算した。 A steel beam (example of the present invention) in which a widening portion or a reinforcing material is provided on each of the upper flange and the lower flange at the material axial end portion of the steel frame beam, and a conventional steel frame in which neither the widening portion nor the reinforcing material is provided. The strength and plastic deformation capacity of each steel beam were calculated for the beam (conventional example).
 従来例としては、図13(a)および図13(b)に示すように、上フランジと下フランジの各々に拡幅部も補強材も設けられていない鉄骨梁を設定した。具体的には、サイズH-400(H)×175(B)×16×28、全長L=4000mmのH形鋼からなる鉄骨梁の材軸方向の両端が柱の側面に溶接された解析モデルを設定した。この解析モデルでは、鉄骨梁の材軸方向端部において、鉄骨梁のウェブの上フランジ側および下フランジ側の各々に、梁せい方向の高さが35mmのスカラップが設けられているものとした。 As a conventional example, as shown in FIGS. 13 (a) and 13 (b), a steel beam having no widening portion or reinforcing material is set on each of the upper flange and the lower flange. Specifically, an analysis model in which both ends of a steel beam made of H-shaped steel having a size of H-400 (H) × 175 (B) × 16 × 28 and a total length of L = 4000 mm in the material axial direction are welded to the side surface of the column. It was set. In this analysis model, it is assumed that scallops having a height of 35 mm in the beam direction are provided on each of the upper flange side and the lower flange side of the web of the steel frame beam at the end portion in the material axial direction of the steel frame beam.
 また、本発明例としては、上記実施形態1、2のように、鉄骨梁の材軸方向端部において、上フランジと下フランジの各々に拡幅部または補強材が設けられている鉄骨梁を設定した。具体的には、従来例の鉄骨梁の材軸方向端部において、図1(a)および図1(b)に示した実施形態1と同様に、上フランジと下フランジの各々に拡幅部が設けられた解析モデルを設定した。具体的には、材軸方向の先端から材軸方向に0mm~125mmの領域においては、上フランジ11と下フランジ12の各々の梁幅方向の寸法は350mmに拡大されているものとした。また、材軸方向の先端から材軸方向に125mm~200mmの領域においては、上フランジ11と下フランジ12の各々の梁幅方向の寸法は350mmから175mmへと線形的に減少するものとした。このようにして、鉄骨梁1Aの材軸方向端部において、上フランジ11および下フランジ12の各々に拡幅部11w、12wが形成されているものとした。 Further, as an example of the present invention, as in the first and second embodiments, a steel frame beam in which a widening portion or a reinforcing material is provided on each of the upper flange and the lower flange is set at the material axial end portion of the steel frame beam. did. Specifically, at the material axial end portion of the steel frame beam of the conventional example, a widening portion is provided on each of the upper flange and the lower flange, as in the first embodiment shown in FIGS. 1 (a) and 1 (b). The provided analysis model was set. Specifically, in the region from 0 mm to 125 mm in the material axis direction from the tip in the material axis direction, the dimensions of the upper flange 11 and the lower flange 12 in the beam width direction are expanded to 350 mm. Further, in the region from the tip in the material axis direction to 125 mm to 200 mm in the material axis direction, the dimensions of the upper flange 11 and the lower flange 12 in the beam width direction are linearly reduced from 350 mm to 175 mm. In this way, it is assumed that the widening portions 11w and 12w are formed on the upper flange 11 and the lower flange 12, respectively, at the material axial end portion of the steel frame beam 1A.
 そして、本発明例および従来例の鉄骨梁が逆対称曲げを受けることを想定し、対称性を考慮して、鉄骨梁の全長Lの半分L/2までを解析モデル化した。そして、鉄骨梁の材軸方向の先端、すなわち柱に接合される側を固定端とし、鉄骨梁の材軸方向の中央位置に集中荷重が作用して、鉄骨梁の材軸方向に三角形状に分布する曲げモーメントがかかるものとした。 Then, assuming that the steel beams of the present invention and the conventional example are subjected to antisymmetric bending, in consideration of symmetry, up to half L / 2 of the total length L of the steel beam was analyzed and modeled. Then, the tip in the material axis direction of the steel beam, that is, the side joined to the column is set as the fixed end, and a concentrated load acts on the central position in the material axis direction of the steel beam to form a triangular shape in the material axis direction of the steel beam. It is assumed that the distributed bending moment is applied.
 本発明例および従来例の解析モデルの鉄骨梁の引張強度は490N/mm、降伏強度は325N/mm、ヤング係数は205,000N/mmとした。 The tensile strength of the steel beam of the analysis model of the present invention and the conventional example was 490 N / mm 2 , the yield strength was 325 N / mm 2 , and the Young's coefficient was 205,000 N / mm 2 .
 上記の条件で、本発明例および従来例の鉄骨梁の解析モデルの各々について、材軸方向の各位置における全塑性曲げ耐力分布および最大曲げ耐力分布、ならびに鉄骨梁の終局耐力時の曲げモーメント分布を計算した。本発明例の鉄骨梁の終局耐力時のせん断力の計算は、非特許文献1および非特許文献3に記載される内容に従って行った。具体的には、鉄骨梁の先行降伏位置Yにおいて、鉄骨梁のフランジが引張強度に到達しており、ウェブの有効断面部分に降伏応力が生じているものと仮定して計算した。また、従来例の鉄骨梁では、材軸方向の先端において、フランジと柱との溶接部が早期に破断して鉄骨梁が終局耐力に到達するものと仮定して、材軸方向の先端における最大曲げ耐力が、他の材軸方向の位置の0.84倍となるものと仮定した。 Under the above conditions, for each of the analysis models of the steel beam of the present invention and the conventional example, the total plastic bending strength distribution and the maximum bending strength distribution at each position in the material axial direction, and the bending moment distribution at the ultimate strength of the steel frame beam. Was calculated. The calculation of the shear force at the ultimate proof stress of the steel beam of the present invention was performed according to the contents described in Non-Patent Document 1 and Non-Patent Document 3. Specifically, the calculation was performed on the assumption that the flange of the steel beam has reached the tensile strength at the preceding yield position Y of the steel beam and the yield stress is generated in the effective cross-sectional portion of the web. Further, in the conventional steel beam, it is assumed that the welded portion between the flange and the column breaks early at the tip in the material axial direction and the steel beam reaches the ultimate strength, and the maximum at the tip in the material axial direction. It was assumed that the bending strength was 0.84 times the position in the other material axial direction.
 上記の計算を行った結果を、図3および図4のグラフにそれぞれ示す。また、本発明例および従来例の鉄骨梁の各々について、材軸方向の先端と先行降伏位置Yの各々における、全塑性曲げ耐力およびその時のせん断力、ならびに鉄骨梁の終局耐力時に鉄骨梁に生じるせん断力の計算値を、表1に示す。 The results of the above calculation are shown in the graphs of FIGS. 3 and 4, respectively. Further, for each of the steel beams of the present invention and the conventional example, the total plastic bending strength and the shearing force at that time at each of the tip in the material axial direction and the preceding yield position Y, and the ultimate strength of the steel beam are generated in the steel beam. The calculated values of the shear force are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3および図4のグラフでは、終局耐力時の曲げモーメント分布が、材軸方向の各位置の全塑性曲げ耐力を上回る範囲が主として塑性化するため、この範囲が広いほど、鉄骨梁の塑性変形能力が大きいものと判断される。 In the graphs of FIGS. 3 and 4, the range in which the bending moment distribution at the ultimate strength exceeds the total plastic bending strength at each position in the material axial direction is mainly plasticized. Therefore, the wider this range, the more the plastic deformation of the steel beam. It is judged that the ability is great.
 従来例の鉄骨梁では、材軸方向の先端における全塑性曲げ耐力が、鉄骨梁の終局耐力時の曲げモーメントを下回っており、鉄骨梁の材軸方向の先端にひずみが集中している。 In the conventional steel beam, the total plastic bending strength at the tip in the material axial direction is less than the bending moment at the ultimate strength of the steel beam, and the strain is concentrated at the tip in the material axial direction of the steel beam.
 これに対し、本発明例では、先行降伏位置Yが最大曲げ耐力に到達する時、すなわち鉄骨梁の終局耐力時に、鉄骨梁の材軸方向の先端に作用する曲げモーメントが、全塑性曲げ耐力を下回っている。すなわち、鉄骨梁の材軸方向の先端が柱に接合される溶接部は、鉄骨梁が塑性化する範囲内には入らない。よって、本発明例の鉄骨梁は、-40℃におけるシャルピー衝撃値が27J以上の鋼材のような低温靭性に優れた鋼材を使用することにより、高い塑性変形能力が得られることが確認された。 On the other hand, in the example of the present invention, the bending moment acting on the tip of the steel beam in the material axial direction when the preceding yield position Y reaches the maximum bending strength, that is, the ultimate strength of the steel beam, determines the total plastic bending strength. It is below. That is, the welded portion where the tip of the steel beam in the material axial direction is joined to the column does not fall within the range where the steel beam is plasticized. Therefore, it was confirmed that the steel beam of the example of the present invention can obtain high plastic deformation ability by using a steel material having excellent low temperature toughness such as a steel material having a Charpy impact value of 27 J or more at −40 ° C.
 本発明の鉄骨梁および柱梁接合構造の試験体を用意し、この試験体に対して加力試験を行うことにより、本発明の鉄骨梁および柱梁接合構造の性能を検証したので、その結果について以下に説明する。 A test piece of the steel beam and column-beam joint structure of the present invention was prepared, and a force test was performed on this test piece to verify the performance of the steel-framed beam and column-beam joint structure of the present invention. Will be described below.
 図5(a)および図5(b)に、本加力試験の試験対象とした試験体Sの平面図および縦断面図をそれぞれ示す。 FIGS. 5 (a) and 5 (b) show a plan view and a vertical cross-sectional view of the test body S as the test object of this force test, respectively.
 図5(a)および図5(b)に示すとおり、本加力試験では、上記実施形態2のように、上フランジ11と下フランジ12の各々に補強材14が設けられている鉄骨梁1Bが、柱2の両側に接合されて構成された、十字形の試験体Sを用意した。ただし、試験体Sでは、上記実施形態2の柱2に設けられている内ダイアフラム4に代えて、鉄骨梁1Bの上フランジ11と下フランジ12の各々が接合される高さに、柱2の断面を貫通するように通しダイアフラム5を設けた。 As shown in FIGS. 5 (a) and 5 (b), in the present loading test, the steel frame beam 1B in which the reinforcing material 14 is provided on each of the upper flange 11 and the lower flange 12 as in the second embodiment. Prepared a cruciform test piece S configured by being joined to both sides of the pillar 2. However, in the test body S, instead of the inner diaphragm 4 provided in the column 2 of the second embodiment, the column 2 has a height at which each of the upper flange 11 and the lower flange 12 of the steel frame beam 1B is joined. A through diaphragm 5 was provided so as to penetrate the cross section.
 試験体Sのうち、二つの鉄骨梁1Bの本体部分には、上フランジ11および下フランジ12として板厚28mmの鋼板と、ウェブ13として板厚16mmの鋼板とが組み合わせて構成された、梁せい400mm、梁幅175mmのビルトH鋼を用いた。そして、鉄骨梁1Bの材軸方向端部Eにおいて、ビルトH鋼の上フランジ11と下フランジ12の梁幅方向の両側に、板厚28mmの補強材14を、K形開先の完全溶込溶接により接合した。 Of the test pieces S, the main body portion of the two steel beam 1B is composed of a steel plate having a plate thickness of 28 mm as the upper flange 11 and the lower flange 12 and a steel plate having a plate thickness of 16 mm as the web 13. Built-in H steel with a beam width of 400 mm and a beam width of 175 mm was used. Then, at the timber axial end E of the steel beam 1B, the reinforcing material 14 having a plate thickness of 28 mm is completely welded into the K-shaped groove on both sides of the upper flange 11 and the lower flange 12 of the built-in H steel in the beam width direction. It was joined by welding.
 補強材14の平面形状は、鉄骨梁1Bの材軸方向に200mm、鉄骨梁1Bの梁幅方向に87.5mmとした。具体的には、柱2との接合部から鉄骨梁1Bの材軸方向に100mmまでの範囲では、補強材14の幅を87.5mmで一定とし、鉄骨梁1Bの梁幅方向の両側に接合される一対の補強材14によって、梁幅方向の寸法が合計で175mmだけ拡大されるようにした。また、柱2との接合部から鉄骨梁1Bの材軸方向に100mmから200mmまでの範囲では、補強材14の幅を線形的に漸減させ、柱2との接合部から材軸方向に200mmの位置で補強材14の幅が0になるようにした。 The planar shape of the reinforcing material 14 was 200 mm in the material axis direction of the steel frame beam 1B and 87.5 mm in the beam width direction of the steel frame beam 1B. Specifically, in the range from the joint with the column 2 to 100 mm in the timber axial direction of the steel beam 1B, the width of the reinforcing member 14 is kept constant at 87.5 mm and joined to both sides of the steel beam 1B in the beam width direction. The pair of reinforcing members 14 to be provided increases the dimensions in the beam width direction by a total of 175 mm. Further, in the range from 100 mm to 200 mm in the material axial direction of the steel beam 1B from the joint with the column 2, the width of the reinforcing material 14 is linearly gradually reduced, and 200 mm in the material axial direction from the joint with the column 2. The width of the reinforcing material 14 was set to 0 at the position.
 また、試験体Sのうち、柱2部分は、板厚40mmの鋼板を組み合わせて構成された、断面サイズ400×400mmの四面溶接箱形断面柱とした。柱2のうち、鉄骨梁1Bの上フランジ11、下フランジ12が取り付く部分にはそれぞれ、板厚40mmの通しダイアフラム5を設けた。そして、鉄骨梁1Bの上フランジ11、下フランジ12および補強材14を通しダイアフラム5に、レ型開先の完全溶込溶接により接合し、鉄骨梁1Bのウェブ13を柱2の側面に、K形開先の完全溶込溶接により接合した。これら各溶接は、日本産業規格JISZ3312「軟鋼、高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ」に規定される記号YGW18相当の溶接ワイヤを用いてCO溶接を施すことにより行った。 Further, in the test body S, the pillar 2 portion was a four-sided welded box-shaped cross-section pillar having a cross-sectional size of 400 × 400 mm, which was formed by combining steel plates having a plate thickness of 40 mm. A through diaphragm 5 having a plate thickness of 40 mm was provided in each of the columns 2 to which the upper flange 11 and the lower flange 12 of the steel beam 1B are attached. Then, the upper flange 11, the lower flange 12 and the reinforcing material 14 of the steel beam 1B are passed through and joined to the diaphragm 5 by complete penetration welding of the re-shaped groove, and the web 13 of the steel beam 1B is attached to the side surface of the column 2 by K. It was joined by full penetration welding of the groove. Each of these welds is performed by performing CO 2 welding using a welding wire equivalent to the symbol YGW18 specified in Japanese Industrial Standard JIS Z3312 "Mag welding and MIG welding solid wire for mild steel, high tension steel and low temperature steel". rice field.
 試験体Sの鉄骨梁1Bの本体部分(上フランジ11、下フランジ12およびウェブ13)、補強材14、柱2を構成する上述の各鋼板には、日本産業規格JISG3106「溶接構造用圧延鋼板」に規定されるSM490B材を用いた。さらに、これら各鋼板には、-40℃におけるシャルピー衝撃値が27J以上確保されるよう配慮した。 The above-mentioned steel plates constituting the main body portion (upper flange 11, lower flange 12 and web 13) of the steel beam 1B of the test body S, the reinforcing material 14, and the pillar 2 have Japanese Industrial Standards JIS G3106 “rolled steel plate for welded structure”. The SM490B material specified in the above was used. Furthermore, consideration was given to ensuring a Charpy impact value of 27 J or more at -40 ° C for each of these steel sheets.
 本加力試験に際して、鉄骨梁1Bの上フランジ11、下フランジ12およびウェブ13の材料試験を行った。上フランジ11、下フランジ12については、降伏強度432.2N/mm、引張強度530.4N/mm、降伏比79.8%、一様伸び28.2%、-60℃におけるシャルピー衝撃値321Jであった。また、ウェブ13については、降伏強度436.9N/mm、引張強度538.0N/mm、降伏比81.2%、一様伸び21.4%、-60℃におけるシャルピー衝撃値333Jであった。 In this force test, the material test of the upper flange 11, the lower flange 12 and the web 13 of the steel frame beam 1B was performed. For the upper flange 11 and the lower flange 12, the yield strength is 432.2 N / mm 2 , the tensile strength is 530.4 N / mm 2 , the yield ratio is 79.8%, the uniform elongation is 28.2%, and the Charpy impact value at -60 ° C. It was 321J. For the web 13, the yield strength was 436.9 N / mm 2 , the tensile strength was 538.0 N / mm 2 , the yield ratio was 81.2%, the uniform elongation was 21.4%, and the Charpy impact value at -60 ° C was 333 J. rice field.
 そして、図6に示すとおり、十字形の試験体Sを試験フレームに設置した。具体的には、柱2の上端および下端を、それぞれピン支承、ローラー支承により支持した。ピン支承とローラー支承との間の距離は、2700mmとした。そして、鉄骨梁1Bと柱2との溶接部が-60℃で安定するまで、試験体Sを冷却した。 Then, as shown in FIG. 6, the cruciform test piece S was installed in the test frame. Specifically, the upper end and the lower end of the pillar 2 were supported by pin bearings and roller bearings, respectively. The distance between the pin bearing and the roller bearing was 2700 mm. Then, the test piece S was cooled until the welded portion between the steel frame beam 1B and the column 2 became stable at −60 ° C.
 そして、水平荷重を受ける建物の柱梁接合部の挙動を模擬するように、柱2の両側の二つの鉄骨梁1Bの先端に対して逆対称に、正負交番漸増繰り返し加力を行った。鉄骨梁1Bの両加力点間の距離は、4400mmとした。 Then, in order to simulate the behavior of the column-beam joint of the building that receives the horizontal load, positive and negative alternating gradual increments were repeatedly applied in inverse symmetry with respect to the tips of the two steel beams 1B on both sides of the column 2. The distance between both force points of the steel beam 1B was set to 4400 mm.
 図7(a)および図7(b)に、試験フレームに設置された状態での試験体Sの要部の側面図、平面図をそれぞれ示す。また、図7(c)に、試験体Sの鉄骨梁1B部分を構成する鋼板の材料規格上の降伏強度、引張強度の下限値(それぞれ325N/mm、490N/mm)に基づいて算出した、鉄骨梁1Bの全塑性曲げ耐力分布および最大曲げ耐力分布を示す。図7(c)に示すように、鉄骨梁1Bの材軸方向のうち補強材14による補剛部分とそれ以外との境界位置(図7(c)中で黒丸で図示)で、鉄骨梁1Bに作用する曲げモーメント(図7(c)中の破線)が最大曲げ耐力に最初に到達するように、試験体Sの鉄骨梁1B部分が設計されている。 7 (a) and 7 (b) show a side view and a plan view of a main part of the test body S in a state of being installed on the test frame, respectively. Further, in FIG. 7 (c), it is calculated based on the lower limit values of the yield strength and the tensile strength (325 N / mm 2 and 490 N / mm 2 respectively) of the steel plate constituting the steel beam 1B portion of the test body S according to the material standard. The total plastic bending strength distribution and the maximum bending strength distribution of the steel beam 1B are shown. As shown in FIG. 7 (c), at the boundary position between the stiffened portion by the reinforcing material 14 and the rest in the material axial direction of the steel beam 1B (shown by a black circle in FIG. 7 (c)), the steel beam 1B The steel beam 1B portion of the test piece S is designed so that the bending moment (broken line in FIG. 7 (c)) acting on the test piece S first reaches the maximum bending strength.
 本加力試験では、鉄骨梁1Bの材軸方向先端位置、または補強材14が設けられている領域Eとそれ以外の領域との境界位置で、鉄骨梁1Bの全断面が塑性化する時の鉄骨梁1Bの部材変形角θを基準として、部材変形角θを制御した。具体的には、図8に示すように、まず、弾性範囲内の±1/3θの変形角で正負方向に1サイクル加力し、続いて±2θ、±4θ、±6θ、…の各変形角で正負方向に2サイクルずつ加力した。 In this force test, when the entire cross section of the steel beam 1B is plasticized at the tip position in the material axial direction of the steel beam 1B or at the boundary position between the region E where the reinforcing material 14 is provided and the other regions. The member deformation angle θ was controlled based on the member deformation angle θ p of the steel frame beam 1B. Specifically, as shown in FIG. 8, first, a force is applied for one cycle in the positive and negative directions at a deformation angle of ± 1/3 θ p within the elastic range, and then ± 2 θ p , ± 4 θ p , ± 6 θ p , Two cycles were applied in the positive and negative directions at each deformation angle.
 なお、本加力試験は、加力装置の挙動を安定化するため、柱2に対して300kNの軸方向力(軸力比0.015)を与える条件で実施した。 In addition, this force test was carried out under the condition that an axial force of 300 kN (axial force ratio 0.015) was applied to the column 2 in order to stabilize the behavior of the force device.
 本加力試験では、変形角±1/3θで正負1サイクルずつ、変形角±2θおよび±4θで正負2サイクルずつ加力した後、変形角+6θの2サイクル目の負側の加力に移行した直後のバウジンガー部で破壊音が発生した。そして、さらに加力を継続したところ、2回目の巨大音が発生し、加力試験を終了した。 In this force test, after applying force by one positive and negative cycle at the deformation angle ± 1/3 θ p and two positive and negative cycles at the deformation angles ± 2θ p and ± 4θ p , the negative side of the second cycle of the deformation angle + 6θ p . Immediately after shifting to the force, a destructive sound was generated in the Bausinger part. Then, when the force was further continued, the second huge sound was generated, and the force test was completed.
 図9に、本加力試験を行うことにより得られた、鉄骨梁1Bの材軸方向先端の曲げモーメントMと部材変形角θとの関係を示す。また、図10に、図9における曲げモーメントおよび部材変形角θをそれぞれ、全塑性耐力Mに対する相対値M/M、全塑性時変形角θに対する相対値θ/θとして無次元化して表現したグラフを示す。また、図11に、図10を基に作成した拡張骨格曲線を示す。部材変形角θの最大値は、正方向で27.65θ/θ、負方向で25.38θ/θであった。 FIG. 9 shows the relationship between the bending moment M at the tip of the steel frame beam 1B in the material axial direction and the member deformation angle θ obtained by performing this force test. Further, in FIG. 10, the bending moment and the member deformation angle θ in FIG. 9 are dimensionless as relative values M / M p with respect to the total plastic proof stress M p and relative values θ / θ p with respect to the total plastic deformation angle θ p , respectively. The graph expressed in the above is shown. Further, FIG. 11 shows an extended skeleton curve created based on FIG. 10. The maximum value of the member deformation angle θ was 27.65 θ / θ p in the positive direction and 25.38 θ / θ p in the negative direction.
 図9~図11に示すとおり、本発明の鉄骨梁および柱梁接合構造の要件を満たす試験体Sでは、荷重-変形関係が安定的な曲線を描いており、―60℃の極低温環境下においても、鉄骨梁の材軸方向端部において脆性破断が発生せず、十分な塑性変形能力が発揮されることが確認された。 As shown in FIGS. 9 to 11, in the test piece S satisfying the requirements of the steel frame beam and the column-beam joint structure of the present invention, the load-deformation relationship draws a stable curve, and the load-deformation relationship draws a stable curve under an extremely low temperature environment of -60 ° C. It was also confirmed that brittle fracture did not occur at the axial end of the steel beam and sufficient plastic deformation ability was exhibited.
 また、図12(a)および図12(b)に、本加力試験において、鉄骨梁1Bの終局耐力時に、鉄骨梁1Bの材軸方向端部近傍に発生したき裂の起点の位置を示す。図12に示すとおり、鉄骨梁1Bに発生したき裂の発生位置を、鉄骨梁1Bの材軸方向の先端と柱との溶接部とは異なる位置にできることが確認された。よって、鉄骨梁の材軸方向の先端と柱との溶接部が早期に脆性破壊することが抑制され、高い耐疲労特性および塑性変形能力を有する鉄骨梁となることが確認された。 Further, FIGS. 12 (a) and 12 (b) show the positions of the starting points of cracks generated in the vicinity of the material axial end portion of the steel frame beam 1B during the ultimate strength of the steel frame beam 1B in this load test. .. As shown in FIG. 12, it was confirmed that the crack generation position in the steel frame beam 1B can be set to a position different from the welded portion between the tip of the steel frame beam 1B in the material axial direction and the column. Therefore, it was confirmed that the welded portion between the tip of the steel beam in the material axis direction and the column is suppressed from brittle fracture at an early stage, and the steel beam has high fatigue resistance and plastic deformation ability.
 1A、1B  鉄骨梁
 2  柱
 3A、3A  柱梁接合構造
 4  内ダイアフラム
 5  通しダイアフラム
 11、11A  上フランジ
 12、12A  下フランジ
 11w、12w  拡幅部
 13  ウェブ
 13s  スカラップ
 14  補強材
 E  材軸方向端部
1A, 1B Steel beam 2 Column 3A, 3A Column-beam joint structure 4 Inner diaphragm 5 Through diaphragm 11, 11A Upper flange 12, 12A Lower flange 11w, 12w Widening part 13 Web 13s Scallop 14 Reinforcing material E Material Axial end

Claims (6)

  1.  上フランジと、下フランジと、前記上フランジと前記下フランジとを連結するウェブとを有する鉄骨梁であって、
     前記上フランジと、前記下フランジおよび前記ウェブは、-40℃におけるシャルピー衝撃値が27J以上の鋼材であり、
     前記鉄骨梁の材軸方向の両端に、漸増する逆対称の曲げモーメントが作用して、前記上フランジと前記下フランジとのいずれかまたは両方が降伏するときに、降伏する前記上フランジと前記下フランジとのいずれかまたは両方において最初に降伏する位置が、前記材軸方向の先端以外となるような形状を有すること
    を特徴とする鉄骨梁。
    A steel beam having an upper flange, a lower flange, and a web connecting the upper flange and the lower flange.
    The upper flange, the lower flange, and the web are steel materials having a Charpy impact value of 27 J or more at −40 ° C.
    When an increasing inversely symmetric bending moment acts on both ends of the steel beam in the material axial direction and one or both of the upper flange and the lower flange yield, the upper flange and the lower flange yield. A steel beam having a shape such that the position where it first yields in one or both of the flanges is other than the tip in the material axial direction.
  2.  前記材軸方向に垂直な断面における前記上フランジおよび前記下フランジの断面積は、前記材軸方向の先端を含む領域である材軸方向端部では、該材軸方向端部以外の領域よりも大きく設定されていることを特徴とする請求項1に記載の鉄骨梁。 The cross-sectional area of the upper flange and the lower flange in the cross section perpendicular to the material axial direction is a region including the tip in the material axial direction at the end portion in the material axial direction than the region other than the end portion in the material axial direction. The steel beam according to claim 1, wherein the steel beam is set to be large.
  3.  前記鉄骨梁の材軸方向の両端に漸増する逆対称の曲げモーメントが作用して前記鉄骨梁の材軸方向のいずれかの位置が最大耐力に到達するときに、前記両端に作用する前記曲げモーメントの大きさが、前記両端における前記鉄骨梁の全塑性曲げ耐力以下であることを特徴とする請求項1または2に記載の鉄骨梁。 The bending moment acting on both ends when an inversely symmetric bending moment that gradually increases at both ends of the steel beam in the material axis direction reaches the maximum bearing capacity at any position of the steel beam in the material axis direction. The steel beam according to claim 1 or 2, wherein the size of the beam is equal to or less than the total plastic bending moment of the steel beam at both ends.
  4.  前記鉄骨梁の材軸方向の両端に漸増する逆対称の曲げモーメントが作用して前記鉄骨梁の材軸方向のいずれかの位置が最大耐力に到達するときに、前記両端に作用する前記曲げモーメントの大きさが、前記両端における前記鉄骨梁の曲げ降伏耐力以下であることを特徴とする請求項1~3のいずれかに記載の鉄骨梁。 The bending moment acting on both ends when an inversely symmetric bending moment that gradually increases at both ends of the steel beam in the material axis direction reaches the maximum yield strength at any position of the steel beam in the material axis direction. The steel beam according to any one of claims 1 to 3, wherein the size of the beam is equal to or less than the bending yield strength of the steel beam at both ends.
  5.  請求項1~4のいずれかに記載の鉄骨梁の前記材軸方向の先端が柱に溶接されてなることを特徴とする柱梁接合構造。 A column-beam joint structure characterized in that the tip of the steel frame beam according to any one of claims 1 to 4 in the material axial direction is welded to the column.
  6.  請求項5に記載の柱梁接合構造を有することを特徴とする構造物。 A structure characterized by having the column-beam joint structure according to claim 5.
PCT/JP2021/034260 2020-09-23 2021-09-17 Steel frame beam, column-beam joining structure, and structure having same WO2022065220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021568881A JP7226590B2 (en) 2020-09-23 2021-09-17 Steel beams, beam-to-column joint structures and structures having them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-158258 2020-09-23
JP2020158258 2020-09-23

Publications (1)

Publication Number Publication Date
WO2022065220A1 true WO2022065220A1 (en) 2022-03-31

Family

ID=80845367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034260 WO2022065220A1 (en) 2020-09-23 2021-09-17 Steel frame beam, column-beam joining structure, and structure having same

Country Status (2)

Country Link
JP (1) JP7226590B2 (en)
WO (1) WO2022065220A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276028A (en) * 2001-03-13 2002-09-25 Nippon Steel Corp Column beam connection part excellent in earthquake resistance and its execution method
JP2016011439A (en) * 2014-06-27 2016-01-21 新日鐵住金株式会社 Thick steel plate for cold press molding rectangular steel tube, cold press molding rectangular steel tube and weld joint

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276028A (en) * 2001-03-13 2002-09-25 Nippon Steel Corp Column beam connection part excellent in earthquake resistance and its execution method
JP2016011439A (en) * 2014-06-27 2016-01-21 新日鐵住金株式会社 Thick steel plate for cold press molding rectangular steel tube, cold press molding rectangular steel tube and weld joint

Also Published As

Publication number Publication date
JP7226590B2 (en) 2023-02-21
JPWO2022065220A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP5741356B2 (en) Column-to-column joints of ramen frames
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
JP5577676B2 (en) Column and beam welded joint structure
JP4691210B2 (en) Seismic steel structure and its design method
WO2022065220A1 (en) Steel frame beam, column-beam joining structure, and structure having same
JP2010216153A (en) Joint reinforcing structure
JP6481665B2 (en) Joining structure of steel column and H-shaped beam or I-shaped beam, and its joining method
JP2015224517A (en) Joining structure of beam end part
WO2018012495A1 (en) Beam-column connection structure
JP7351271B2 (en) Steel beams, column-beam joint structures, and structures containing them
JP7262518B2 (en) Stud type steel damper
JP6362131B2 (en) Horizontal force reinforcement structure of building
JP7138460B2 (en) Steel beam reinforcement method and steel beam
JP3402312B2 (en) Column-beam joint, rolled H-section steel for column and method of manufacturing the same
KR102307939B1 (en) Connecting sturcture between column and beam
JP3389910B2 (en) Beam-column joint
KR102426247B1 (en) Connecting sturcture between column and beam
JP2023146182A (en) Welded assembly box-shaped cross-sectional member and method for designing same
JP7368849B2 (en) Vibration damper
JP7098363B2 (en) Ladder type bearing wall frame
KR102329508B1 (en) Connecting sturcture between column and beam
JP6823980B2 (en) Construction method of steel earthquake-resistant wall, building with earthquake-resistant wall and building with earthquake-resistant wall
WO2010103812A1 (en) Seismic resistant steel structure
JP2003105856A (en) Split t-shaped joint metal, and structure of jointing between column and beam
JP2023142944A (en) Weld joint

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021568881

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872349

Country of ref document: EP

Kind code of ref document: A1