WO2022064935A1 - 検査装置、および、検査プログラム - Google Patents

検査装置、および、検査プログラム Download PDF

Info

Publication number
WO2022064935A1
WO2022064935A1 PCT/JP2021/031150 JP2021031150W WO2022064935A1 WO 2022064935 A1 WO2022064935 A1 WO 2022064935A1 JP 2021031150 W JP2021031150 W JP 2021031150W WO 2022064935 A1 WO2022064935 A1 WO 2022064935A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water supply
unit
irrigation
sensor
Prior art date
Application number
PCT/JP2021/031150
Other languages
English (en)
French (fr)
Inventor
直久 新美
元太郎 増田
弘資 谷奥
芳彦 白石
直樹 長谷川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to EP21872067.0A priority Critical patent/EP4220004A4/en
Priority to IL301523A priority patent/IL301523A/en
Publication of WO2022064935A1 publication Critical patent/WO2022064935A1/ja
Priority to US18/188,576 priority patent/US20230228646A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/06Watering arrangements making use of perforated pipe-lines located in the soil
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/165Cyclic operations, timing systems, timing valves, impulse operations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems

Definitions

  • the disclosure described in this specification relates to an inspection device for water supply pipes and an inspection program.
  • a leak cause monitoring device including a water pressure sensor for detecting the water pressure of a pipe is known.
  • the leak cause monitoring device shown in Patent Document 1 detects leaks based on the decrease in the hydrostatic pressure of the pipes during the time when the farmer does not operate the faucet.
  • the time zone of agricultural work and the time zone of leak detection are separated from each other, for example, in the daytime and at nighttime. Therefore, there is a problem that the work becomes complicated.
  • the purpose of the present disclosure is to provide an inspection device and an inspection program in which the work is suppressed from becoming complicated.
  • the inspection device is an inspection device for inspecting water supply pipes provided in an outdoor field where plants grow.
  • An output unit that outputs a control signal that controls the water supply valve that controls the supply and non-supply of irrigation water from the water supply pipe to the field between the open state and the closed state. From the state where the water supply valve is open and the irrigation water is supplied from the water supply pipe to the field, the expected time that the water supply valve is closed and the inside of the water supply pipe is filled with irrigation water elapses.
  • a storage unit that stores the water pressure of multiple irrigation water detected by the water pressure sensor, It is equipped with an inspection unit that calculates the time constant of water pressure based on the change in water pressure of a plurality of irrigation water and inspects the water supply pipe based on the time constant.
  • the inspection program is an inspection program executed by a processor.
  • the water supply valve is closed from the state where the irrigation water is supplied from the water supply pipe to the field. Shift to a state where the supply of irrigation water from the water supply pipe to the field is stopped, Multiple water pressures of irrigation water detected by the water pressure sensor are acquired from the time when the water supply valve is opened to the closed state until the expected time when the inside of the water supply pipe is expected to be filled with irrigation water elapses.
  • the time constant of water pressure is calculated based on the change in water pressure of multiple irrigation waters. Have the water supply pipe inspected based on the time constant.
  • the time constant is expected to be somewhat delayed even if the damage occurring in the water supply pipe is so small that the water pressure does not change when the inside of the water supply pipe is filled with irrigation water. Therefore, by inspecting the water supply pipe based on the time constant, it is possible to detect whether or not the water supply pipe has been damaged even slightly.
  • the three directions that are orthogonal to each other are referred to as the x direction, the y direction, and the z direction.
  • the plane defined by the x-direction and the y-direction is along the horizontal plane.
  • the z direction is along the vertical direction. In the drawings, the description of "direction" is omitted, and it is simply expressed as x, y, z.
  • the irrigation system 10 is applied to an outdoor field 20 that has been cleared on a hill or a plain.
  • an outdoor field 20 that has been cleared on a hill or a plain.
  • the area of this field 20 ranges from several tens of square meters to several thousand square kilometers.
  • the field 20 is provided with a plurality of growth areas such as ridges extending in the x direction.
  • a plurality of habitats extending in the x direction are arranged at intervals in the y direction.
  • the seeds and seedlings of the plant 30 are buried in each of these plurality of habitats. Examples of the plant 30 include grapes, corn, almonds, raspberries, leafy vegetables, and cotton.
  • Multiple plants 30 are grown in one habitat. As shown in FIG. 1, a plurality of plants 30 are arranged in the x direction to form one row. In the following, a plurality of plants 30 arranged in a row in the x direction are referred to as a flora 31. In the field 20, a plurality of plant groups 31 are arranged at intervals in the y direction.
  • the shortest separation distance in the y direction of the plurality of plant groups 31 is longer than the shortest separation distance in the x direction of the plurality of plants 30 included in one plant group 31.
  • the distance between the plurality of plant groups 31 in the y direction varies depending on the type of growing plant 30 and the undulations and climate of the field 20.
  • the distance between the plurality of plant groups 31 in the y direction is about 1 m to 10 m. Even if the branches and leaves of the plant 30 grow thick in the y direction, the width is secured so that at least a person can move between the two plant groups 31 in the x direction.
  • the irrigation system 10 includes a water supply device 100 and a control device 200.
  • the water supply device 100 supplies irrigation water to the plant 30 in the field 20.
  • the control device 200 determines the supply time and amount of irrigation water supplied from the water supply device 100 to the plant 30 during the irrigation period.
  • the control device 200 determines the irrigation schedule for the water supply device 100.
  • the water supply device 100 includes a pump 110, a water supply pipe 130, and a piping module 150.
  • the pump 110 supplies irrigation water to the water supply pipe 130.
  • the piping module 150 controls the discharge of irrigation water supplied to the water supply pipe 130.
  • the pump 110 is always in a driving state. Alternatively, the pump 110 is in the daytime drive state.
  • the pump 110 pumps out the irrigation water stored in the tank or the reservoir and supplies it to the water supply pipe 130.
  • Irrigation water includes well water, river water, stormwater, and city water.
  • the water supply pipe 130 is provided with a plurality of water supply valves 152.
  • the water supply pipe 130 is filled with the irrigation water.
  • the water pressure in the water supply pipe 130 becomes a value (pump pressure) depending on the discharge capacity of the pump 110.
  • irrigation water is discharged from the water supply pipe 130 to the field 20.
  • the discharge amount of irrigation water stabilizes on an average time, the water pressure in the water supply pipe 130 becomes a flow pressure lower than the pump pressure.
  • the water supply pipe 130 has a main pipe 131 and a dropping pipe 132.
  • the main pipe 131 is connected to the pump 110.
  • the dropping pipe 132 is connected to the main pipe 131. Irrigation water is supplied from the main pipe 131 to the dropping pipe 132 by the pump 110. This irrigation water is supplied to the field 20 from the dropping pipe 132.
  • the main pipe 131 has a vertical pipe 133 and a horizontal pipe 134.
  • the vertical pipe 133 extends in the y direction.
  • the horizontal pipe 134 extends in the x direction.
  • the vertical pipe 133 and the horizontal pipe 134 are connected to each other. Due to this configuration, irrigation water flows in the main pipe 131 in the y and x directions.
  • one vertical pipe 133 is connected to one pump 110.
  • a plurality of horizontal pipes 134 extend in the x direction from the vertical pipe 133 extending in the y direction.
  • the position of the horizontal pipe 134 in the z direction is set so as to be farther from the ground than the apex of the mature plant 30.
  • Fig. 1 the configuration shown in Fig. 1 is just an example.
  • the position of the pipe 133 in the z direction is not particularly limited.
  • a plurality of horizontal pipes 134 are arranged so as to be separated in the y direction.
  • the shortest separation distance in the y direction of the plurality of horizontal pipes 134 is equivalent to the shortest separation distance in the y direction of the plurality of plant groups 31.
  • One of the plurality of horizontal pipes 134 is provided in one of the plurality of flora 31.
  • the horizontal pipe 134 extends along the line-up direction (x direction) of the plurality of plants 30 included in the plant group 31.
  • a dropping pipe 132 is connected to the horizontal pipe 134.
  • a plurality of dropping pipes 132 are connected to one horizontal pipe 134.
  • a plurality of dropping pipes 132 connected to one horizontal pipe 134 are arranged so as to be separated from each other in the x direction.
  • the dropping pipe 132 has an extension pipe 135 and a branch pipe 136.
  • the extension pipe 135 hangs down from the horizontal pipe 134 in the z direction and extends.
  • Two connecting ports that open in the x direction are formed on the tip end side of the extension pipe 135.
  • a branch pipe 136 is connected to these two connecting ports.
  • the branch pipe 136 has a first branch pipe 136a connected to one of the two connecting ports and a second branch pipe 136b connected to the other of the two connecting ports.
  • the first branch pipe 136a and the second branch pipe 136b extend in opposite directions in the x direction from the connection position with the extension pipe 135.
  • Each of the first branch pipe 136a and the second branch pipe 136b is formed with a dropping hole 137 that communicates the internal space through which the irrigation water flows and the external space outside the internal space.
  • the dropping hole 137 opens on the lower surface of each of the first branch pipe 136a and the second branch pipe 136b on the ground side.
  • the dropping hole 137 may be opened on the empty upper surface of each of the first branch pipe 136a and the second branch pipe 136b. Further, the dropping hole 137 may be opened on the side surface connecting the upper surface and the lower surface of each of the first branch pipe 136a and the second branch pipe 136b.
  • a plurality of dropping holes 137 are formed in each of the first branch pipe 136a and the second branch pipe 136b. These plurality of dropping holes 137 are arranged so as to be separated from each other in the x direction. The separation interval in the x direction of the plurality of dropping holes 137 is equivalent to the separation interval in the x direction of the plurality of plants 30. In the example shown in FIG. 2, three dropping holes 137 are formed in each of the first branch pipe 136a and the second branch pipe 136b.
  • the spacing between the plurality of dropping holes 137 and the spacing between the plurality of plants 30 may be different.
  • the number of dropping holes 137 formed in the first branch pipe 136a and the second branch pipe 136b is not limited to three.
  • the irrigation water supplied to the vertical pipe 133 by the pump 110 flows in the vertical pipe 133 in the y direction.
  • This irrigation water is supplied to each of the plurality of horizontal pipes 134 connected to the vertical pipe 133.
  • Irrigation water flows in each of the plurality of horizontal pipes 134 in the x direction.
  • the irrigation water flowing in the horizontal pipe 134 flows to the branch pipe 136 via the extension pipe 135. This irrigation water is discharged from the dropping holes 137 of the first branch pipe 136a and the second branch pipe 136b, respectively. As a result, irrigation water is supplied to the plant 30.
  • each of the first branch pipe 136a and the second branch pipe 136b is located on the ground side of the field 20 rather than the apex side of the plant 30 in the z direction.
  • the irrigation water dropped from the dropping holes 137 of the first branch pipe 136a and the second branch pipe 136b is mainly supplied to the trunk of the plant 30 and its root.
  • ⁇ Watering nozzle> It is also possible to adopt a configuration in which a watering nozzle is attached to the dropping hole 137. Then, the injection direction of the irrigation water ejected from the watering nozzle may be directed to the ground side or the sky side in the z direction. When the irrigation water is sprayed toward the sky side, the injection direction of the irrigation water tends to spread horizontally as compared with the configuration in which the irrigation water is sprayed toward the ground side. Therefore, the irrigation water ejected from the watering nozzle is sprinkled over a wide area of the field 20.
  • Whether to inject the irrigation water toward the ground side or the sky side is determined based on the type of the plant 30 that supplies the irrigation water, the depth of the soil layer of the field 20, the climate of the field 20, and the like. be able to. For example, when the plant 30 has wide roots, the soil layer is shallow, or the climate is difficult to dry, irrigation water is sprayed toward the sky side. If the plant 30 has deep roots, a deep soil layer, or a dry climate, irrigation water is sprayed toward the ground side.
  • the piping module 150 is provided in the dropping pipe 132.
  • the piping module 150 has a storage box 151, a water supply valve 152, and a water pressure sensor 153.
  • the water supply valve 152 and the water pressure sensor 153 are housed in the storage box 151.
  • the storage box 151 is shown in a cross-sectional view in the drawing.
  • the water supply valve 152 is provided on the connecting position side of each of the extension pipes 135 of the first branch pipe 136a and the second branch pipe 136b. All the dropping holes 137 are located between the water supply valve 152 and the tip side separated from the extension pipe 135 of each of the first branch pipe 136a and the second branch pipe 136b.
  • the water supply valve 152 provided in the first branch pipe 136a and the water supply valve 152 provided in the second branch pipe 136b are independently opened and closed by the control device 200.
  • the opening / closing control By the opening / closing control, the discharge of the irrigation water from the drop hole 137 of the first branch pipe 136a and the discharge of the irrigation water from the drop hole 137 of the second branch pipe 136b are independently controlled.
  • the water supply valve 152 a solenoid valve that can be switched between an open state and a closed state by inputting and not inputting a discharge signal is adopted.
  • the water pressure sensor 153 is provided on each of the two connecting port sides of the extension pipe 135 to which the first branch pipe 136a and the second branch pipe 136b are connected. The water pressure in the extension pipe 135 is detected by each of these two water pressure sensors 153. The water pressure detected by the water pressure sensor 153 is output to the control device 200.
  • the location of the water pressure sensor 153 is not limited to the above example.
  • a water pressure sensor 153 may be provided in each space.
  • a water pressure sensor 153 may be provided at a portion of the extension pipe 135 extending in the z direction.
  • a water pressure sensor 153 may be provided at a connection portion of the extension pipe 135 with the horizontal pipe 134.
  • the water pressure sensor 153 may be arranged on the horizontal pipe 134 side of the water supply valve 152 in the irrigation water flow path of the dropping pipe 132.
  • the pump pressure is detected by the water pressure sensor 153.
  • irrigation water is discharged from the branch pipe 136.
  • the water pressure sensor 153 detects the flow pressure.
  • the damage detection process is executed by the control device 200.
  • the control device 200 includes a monitoring unit 300, an integrated communication unit 400, an information storage unit 500, and an integrated calculation unit 600.
  • the integrated communication unit 400 is referred to as an ICD.
  • the control device 200 has a plurality of monitoring units 300.
  • the plurality of monitoring units 300 are provided in the field 20 together with the plurality of piping modules 150.
  • the monitoring unit 300 and the piping module 150 are electrically connected to each other.
  • the water pressure detected by the water pressure sensor 153 is input to the monitoring unit 300. Then, the monitoring unit 300 detects the physical quantity related to the environment of the field 20 as an environmental value. Each of the plurality of monitoring units 300 outputs these water pressures and environmental values to the integrated communication unit 400 by wireless communication.
  • the integrated communication unit 400 outputs the water pressure and the environmental value input from each of the plurality of monitoring units 300 to the information storage unit 500 by wireless communication. These water pressures and environmental values are stored in the information storage unit 500.
  • the information storage unit 500 is a so-called cloud.
  • the integrated calculation unit 600 reads out various information such as water pressure and environmental values stored in the information storage unit 500. Then, the integrated calculation unit 600 appropriately processes the read information and displays it on the monitor 700 of the user's smartphone or personal computer.
  • the monitor 700 is referred to as M.
  • the integrated calculation unit 600 is included in the user's smartphone, personal computer, or the like.
  • the integrated calculation unit 600 includes an information processing calculation device 610, a memory 620, and a communication device 630.
  • the information processing calculation device 610 is referred to as IPCE
  • the memory 620 is referred to as MM
  • the communication device 630 is referred to as CD.
  • the information processing calculation device 610 includes a processor.
  • the information processing calculation device 610 performs calculation processing related to irrigation. Such a function is realized by downloading an irrigation application program to the information processing calculation device 610.
  • the memory 620 is a non-transitional substantive storage medium that non-temporarily stores various programs and various information that can be read by a computer or a processor.
  • the memory 620 has a volatile memory and a non-volatile memory.
  • the memory 620 stores various information input to the communication device 630 and the processing result of the information processing calculation device 610. Based on the information stored in the memory 620, the information processing calculation device 610 executes various calculation processes.
  • the communication device 630 has a wireless communication function.
  • the communication device 630 converts the received wireless signal into an electric signal and outputs it to the information processing calculation device 610.
  • the communication device 630 outputs the processing result of the information processing calculation device 610 as a wireless signal.
  • the information processing calculation device 610 corresponds to the processing calculation unit.
  • the user inputs a user instruction related to the irrigation schedule to the integrated calculation unit 600 using an input device 800 such as a touch panel or a keyboard.
  • the integrated calculation unit 600 determines the irrigation schedule based on the user instruction and various information read from the information storage unit 500. If there is no instruction from the user, the integrated calculation unit 600 automatically determines the irrigation schedule based on various information.
  • the input device 800 is referred to as an ID.
  • the integrated calculation unit 600 determines that it is the irrigation water supply start time in the determined irrigation schedule, it outputs an instruction signal for opening / closing the water supply valve 152 to the information storage unit 500.
  • This instruction signal is input from the information storage unit 500 to the monitoring unit 300 via the integrated communication unit 400.
  • the monitoring unit 300 controls the output and non-output of the discharge signal to the water supply valve 152 based on the instruction signal.
  • the open / closed state of the water supply valve 152 is controlled.
  • the supply of irrigation water to the field 20 is controlled.
  • At least one of the instruction signal and the discharge signal corresponds to the control signal.
  • one monitoring unit 300 is provided for each dropping pipe 132 together with the piping module 150. Therefore, as schematically shown in FIG. 3, the plurality of monitoring units 300, together with the water supply valve 152 and the water pressure sensor 153 provided in the plurality of piping modules 150, have the x direction as the row direction and the y direction as the column direction in the field 20. , Matrixed.
  • each of the plurality of divided areas divided by the row direction and the column direction is individually monitored by each of the plurality of monitoring units 300 provided in the plurality of divided areas.
  • the supply of irrigation water in each of the plurality of divided areas is individually controlled by the plurality of monitoring units 300 and the plurality of piping modules 150.
  • the monitoring unit 300 has an environment sensor 310 and a control unit 320.
  • the water supply valve 152 of the piping module 150 and the water pressure sensor 153 are electrically connected to the control unit 320.
  • the environment sensor 310 is referred to as ES
  • the water supply valve 152 is referred to as WB
  • the water pressure sensor 153 is referred to as WPS.
  • the plurality of environment sensors 310 are arranged in a matrix in the field 20 together with the piping module 150.
  • the environment values of each of the plurality of divided areas are detected by these plurality of environment sensors 310.
  • the water pressure of each of the plurality of divided areas is detected by the plurality of water pressure sensors 153.
  • the environmental value and water pressure of each of these plurality of divided areas are stored in the information storage unit 500.
  • the control unit 320 includes a microcomputer 330, a communication unit 340, an RTC 350, and a power generation unit 360.
  • Microcomputer is an abbreviation for microcomputer.
  • RTC is an abbreviation for Real Time Clock.
  • the communication unit 340 is referred to as CDP.
  • Environmental values and water pressure are input to the microcomputer 330.
  • the microcomputer 330 outputs these environmental values and water pressure to the integrated communication unit 400 via the communication unit 340. Further, an instruction signal is input to the microcomputer 330 from the integrated communication unit 400.
  • the microcomputer 330 outputs a discharge signal to the water supply valve 152 based on this instruction signal.
  • the microcomputer 330 corresponds to the arithmetic processing unit.
  • the microcomputer 330 has a sleep mode and a normal mode as operation modes.
  • the sleep mode is a state in which the microcomputer 330 has stopped arithmetic processing.
  • the normal mode is a state in which the microcomputer 330 is executing arithmetic processing. Normal mode consumes more power than sleep mode.
  • the communication unit 340 is performing wireless communication with the integrated communication unit 400.
  • the communication unit 340 outputs the electric signal output from the microcomputer 330 to the integrated communication unit 400 as a wireless signal.
  • the communication unit 340 receives the radio signal output from the integrated communication unit 400 and converts it into an electric signal.
  • the communication unit 340 outputs the electric signal to the microcomputer 330.
  • the microcomputer 330 switches from the sleep mode to the normal mode.
  • the RTC350 has a clock function for ticking time and a timer function for measuring time.
  • the RTC 350 outputs a wake-up signal to the microcomputer 330 when the preset time is reached or the preset time has elapsed.
  • this wake-up signal is input to the microcomputer 330 in the sleep mode, the microcomputer 330 switches from the sleep mode to the normal mode.
  • the RTC350 corresponds to the wake-up part.
  • the power generation unit 360 converts light energy into electrical energy.
  • the power generation unit 360 is a power supply source for the monitoring unit 300. Power is constantly being supplied from the power generation unit 360 to the RTC350. As a result, it is suppressed that the clock function and the timer function of the RTC350 are impaired.
  • the position of the horizontal pipe 134 in the z direction is farther from the ground than the apex of the mature plant 30.
  • the control unit 320 is mechanically connected to the horizontal pipe 134. Due to this configuration, the mature plant 30 is less likely to prevent sunlight from entering the power generation unit 360. The conversion of light energy into electrical energy in the power generation unit 360 is less likely to be hindered.
  • Soil moisture content is an environmental value that is expected to change for each divided area of the field 20.
  • Each of the plurality of environment sensors 310 includes a soil moisture sensor 311 that detects the soil moisture content.
  • the soil moisture content of each of the plurality of divided areas is detected by the plurality of soil moisture sensors 311.
  • the soil moisture sensor 311 is referred to as SMS.
  • each of the plurality of environment sensors 310 includes a solar radiation sensor 312 that detects the amount of solar radiation.
  • the amount of solar radiation in each of the plurality of divided areas is detected by the plurality of solar radiation sensors 312.
  • the solar radiation sensor 312 is referred to as SRS.
  • the soil moisture content and the solar radiation amount detected in each of these plurality of divided areas in a matrix it is possible to display the soil water content distribution and the solar radiation amount distribution of the field 20 on the monitor 700 as a map.
  • the water pressures detected by the plurality of water pressure sensors 153 provided in each of the plurality of divided areas in a matrix the water pressure distribution of the water supply pipes 130 stretched over the field 20 is displayed on the monitor 700 as a map. Will be possible.
  • the map display process is performed by the integrated calculation unit 600.
  • the environmental values of the entire field 20 include rainfall, temperature, humidity, atmospheric pressure, and air volume. Sensors for detecting these include a rain sensor 313, a temperature sensor 314, a humidity sensor 315, a barometric pressure sensor 316, and a wind sensor 317. These are included in at least one environment sensor 310 among the plurality of monitoring units 300.
  • the environment sensor 310 of the monitoring unit 300 shown as a representative in FIG. 4 includes various sensors that detect the environmental values of the entire field 20.
  • the rain sensor 313 is referred to as RS
  • the temperature sensor 314 is referred to as TS
  • the humidity sensor 315 is referred to as MS
  • the barometric pressure sensor 316 is referred to as PS
  • the wind sensor 317 is referred to as WS.
  • the wind sensor 317 may detect not only the air volume but also the wind direction.
  • At least one of the rain sensor 313, the temperature sensor 314, the humidity sensor 315, the barometric pressure sensor 316, and the wind sensor 317 can be arranged in a matrix in the field 20.
  • the amount of rainfall, temperature, humidity, atmospheric pressure, and air volume change greatly for each divided area because the field 20 is wide, the field 20 is rugged, and the climate of the field 20 is severe. It is effective when it is easy to do.
  • these environmental values can be displayed on the monitor 700 as a map.
  • a sensor for detecting the environmental value of the entire field 20 is provided in the integrated communication unit 400.
  • the output of these sensors is output to the communication unit 340 via the integrated communication unit 400.
  • the outputs of these sensors are stored in the information storage unit 500 via the integrated communication unit 400.
  • Such a configuration includes, for example, rainfall, temperature, humidity, atmospheric pressure, and rainfall for each divided area because the field 20 is narrow, the undulations of the field 20 are gentle, and the climate of the field 20 is stable. It is effective when the air volume does not change easily.
  • the environmental value controlled by the irrigation system 10 is the soil water content.
  • the irrigation system 10 controls the supply time and supply amount of irrigation water for each divided area. By doing so, the soil moisture content in each divided area is individually controlled.
  • Plant 30 is rooted in the soil layer of field 20.
  • the growth of the plant 30 depends on the water content (soil water content) contained in the soil of this soil layer.
  • soil water content exceeds the growth-inhibiting water point, the plant 30 is damaged. If the soil moisture content is permanently below the wilting point, the wilting of the plant 30 will not recover.
  • the current value of soil moisture content is detected by the soil moisture sensor 311.
  • Physical quantities related to soil moisture include soil moisture tension (pF value) and soil permittivity ( ⁇ ).
  • the soil moisture sensor 311 of the present embodiment detects the pF value.
  • the soil moisture content of the soil layer increases or decreases due to changes in the environment of the field 20. When it rains on the field 20, the soil water content increases. When water evaporates from the soil layer, the soil water content decreases. Further, when the plant 30 absorbs water or water permeates into a layer lower than the soil layer, the soil water content decreases.
  • the amount of rain (rainfall) that falls on the soil layer is detected by the rain sensor 313.
  • the amount of water (evaporation) that evaporates from the soil layer depends on the amount of solar radiation, temperature, humidity, and air volume. These are detected by the solar radiation sensor 312, the temperature sensor 314, the humidity sensor 315, and the wind sensor 317.
  • the amount of water absorption that the plant 30 absorbs water per unit time can be estimated in advance depending on the type of the plant 30.
  • the amount of water permeating into the layer below the soil layer per unit time can be estimated in advance from the water retention capacity of the soil.
  • the current value of the soil moisture content of the soil layer, the increase in the soil moisture content of the soil layer due to environmental changes from the current value, and the predicted values related to the decrease prediction are detected by the environment sensor 310. Will be done. These are stored in the information storage unit 500 as environment values. Further, the growth-inhibiting water point and the permanent wilting point of the plant 30, the water absorption amount at which the plant 30 absorbs water per unit time, and the water retention capacity of the soil are stored in the information storage unit 500. Then, the above-mentioned instruction from the user (user instruction) is stored in the information storage unit 500. In this way, various information for determining the irrigation schedule is stored in the information storage unit 500.
  • the microcomputer 330 includes an acquisition unit 331, a signal output unit 332, a storage unit 333, and a processing unit 334.
  • the acquisition unit 331 is referred to as AD
  • the signal output unit 332 is referred to as SOU
  • the storage unit 333 is referred to as MU
  • the processing unit 334 is referred to as PU.
  • the environmental value detected by the environment sensor 310 is input to the acquisition unit 331. Further, the water pressure detected by the water pressure sensor 153 is input to the acquisition unit 331.
  • the acquisition unit 331, these environment sensors 310, and the water pressure sensor 153 are each electrically connected. In FIG. 1, the acquisition unit 331 and the soil moisture sensor 311 and the wire 160 connecting the acquisition unit 331 and the water pressure sensor 153 are shown as representatives.
  • the signal output unit 332 is electrically connected to the water supply valve 152.
  • a discharge signal for controlling the opening / closing of the water supply valve 152 is output from the signal output unit 332 to the water supply valve 152.
  • the water supply valve 152 is in the closed state when the discharge signal is not input.
  • the water supply valve 152 is in the open state when the discharge signal is input.
  • the storage unit 333 is a non-transitional substantive storage medium that non-temporarily stores programs and data that can be read by a computer or processor.
  • the storage unit 333 has a volatile memory and a non-volatile memory.
  • the storage unit 333 stores a program for the processing unit 334 to execute arithmetic processing. This program includes at least part of the irrigation application program described above. Further, the storage unit 333 temporarily stores the data when the processing unit 334 executes the arithmetic processing. Then, various data input to each of the acquisition unit 331 and the communication unit 340 and the acquisition time of the various data are stored in the storage unit 333.
  • the processing unit 334 changes from the sleep mode to the normal mode when a wakeup signal is input from the RTC350.
  • the processing unit 334 reads the program and various data stored in the storage unit 333 and executes the arithmetic processing.
  • the processing unit 334 reads the acquisition time of various sensor signals input to the acquisition unit 331 and the instruction signal input to the communication unit 340 from the RTC350.
  • the processing unit 334 stores the instruction signal and its acquisition time in the storage unit 333.
  • the processing unit 334 stores the environment value and the water pressure input from the environment sensor 310 and the water pressure sensor 153, and their acquisition times in the information storage unit 500 via the communication unit 340 and the integrated communication unit 400. Then, the processing unit 334 discharges the water supply valve 152 via the signal output unit 332 based on the instruction signal input from the integrated calculation unit 600 via the information storage unit 500, the integrated communication unit 400, and the communication unit 340. It is outputting a signal.
  • the communication unit 340 converts the electric signal input from the processing unit 334 into a wireless signal.
  • the communication unit 340 outputs this radio signal to the integrated communication unit 400. Further, the communication unit 340 converts the radio signal output from the integrated communication unit 400 into an electric signal. The communication unit 340 outputs this electric signal to the processing unit 334.
  • the radio signal output by the communication unit 340 includes an address 341 and data 342 as simply shown in FIG.
  • the address 341 is referred to as ADD and the data 342 is referred to as DAT.
  • wireless signals are transmitted and received between the plurality of communication units 340 and the integrated communication unit 400.
  • the address 341 included in the wireless signal is an identification code indicating which of the plurality of communication units 340 is output.
  • the address included in the radio signal is an identification code indicating which of the plurality of processing units 334 is output.
  • An address 341 unique to each of the plurality of storage units 333 is stored.
  • the address 341 is also included in the wireless signal output from the integrated communication unit 400.
  • the data 342 of this radio signal includes an instruction signal.
  • Each of the plurality of communication units 340 receives this radio signal.
  • This wireless signal is converted into an electric signal by each of the plurality of communication units 340. Then, this electric signal is input to each of the plurality of processing units 334. Of the plurality of processing units 334, only the processing unit 334 having the same address 341 as the address 341 included in the electric signal executes arithmetic processing based on the electric signal.
  • the microcomputer 330 performs intermittent drive that alternately repeats the sleep mode and the normal mode. Therefore, wireless communication between the communication unit 340 and the integrated communication unit 400 is not frequently performed.
  • the time interval for wireless communication between the communication unit 340 and the integrated communication unit 400 is long. It is possible to increase the amount of data that can be included in the data 342 by one wireless communication.
  • the power generation unit 360 includes a solar cell 361, a power storage unit 362, a current sensor 363, and a power sensor 364.
  • the solar cell 361 is referred to as SB
  • the power storage unit 362 is referred to as ESU
  • the current sensor 363 is referred to as CS
  • the power sensor 364 is referred to as PS.
  • the solar cell 361 converts light energy into electrical energy.
  • the power storage unit 362 stores the electric energy (electric power).
  • the electric power stored in the power storage unit 362 is utilized as the driving power of the monitoring unit 300.
  • the current sensor 363 detects the current output from the solar cell 361 to the power storage unit 362.
  • the power sensor 364 detects the power output from the power storage unit 362.
  • the processing unit 334 also stores this current and electric power in the information storage unit 500 via the communication unit 340 and the integrated communication unit 400.
  • the drive power of the monitoring unit 300 depends on the power generated by the power generation unit 360. Therefore, if the amount of light incident on the power generation unit 360 is small, the driving power of the monitoring unit 300 may be exhausted. In order to avoid this, the microcomputer 330 of the monitoring unit 300 is intermittently driven.
  • the RTC 350 outputs a wake-up signal to the microcomputer 330 each time the above-mentioned intermittent drive time interval (wake-up cycle) elapses. As a result, the microcomputer 330 alternately repeats the sleep mode and the normal mode.
  • the wake-up cycle is determined by the integrated calculation unit 600 according to the amount of electric power (storage amount) stored in the power storage unit 362.
  • the intermittent drive interval is determined by the integrated calculation unit 600 according to the amount of stored electricity.
  • the integrated calculation unit 600 calculates the amount of stored electricity based on the electric power stored in the information storage unit 500.
  • the integrated calculation unit 600 sets the intermittent drive interval longer as the amount of electricity stored is smaller. Conversely, the integrated calculation unit 600 sets the intermittent drive interval shorter as the amount of stored electricity increases.
  • the integrated calculation unit 600 includes the intermittent drive interval in the instruction signal.
  • the processing unit 334 of the microcomputer 330 acquires this instruction signal, the processing unit 334 adjusts the intermittent drive interval. That is, the processing unit 334 adjusts the wake-up cycle of the RTC350.
  • the intermittent drive interval is in the unit of several tens of seconds to several tens of hours.
  • the time interval for wireless communication is also in the unit of several tens of seconds to several tens of hours.
  • ⁇ Drive of irrigation system As described above, in the irrigation system 10, signals are transmitted and received between the plurality of monitoring units 300 and the integrated calculation unit 600, and various data are stored in the information storage unit 500. Each of the plurality of monitoring units 300 and the integrated calculation unit 600 executes a cycle task to be processed for each wake-up cycle and an event task to be processed suddenly.
  • cycle tasks and event tasks have processing priorities.
  • processing timings of these tasks are the same, the processing of the event task has priority over the cycle task.
  • each of the plurality of monitoring units 300 is executing the sensor processing shown in FIG.
  • the integrated calculation unit 600 is executing the update process shown in FIG. 7.
  • each of the plurality of monitoring units 300 is executing the monitoring process shown in FIG. 8 and the water supply process shown in FIG.
  • the integrated calculation unit 600 is executing the irrigation process shown in FIG. 10, the user update process shown in FIG. 11, and the forced update process shown in FIG.
  • the microcomputer 330 of the monitoring unit 300 is in the sleep mode.
  • a wake-up signal is input from the RTC 350 to the microcomputer 330.
  • the microcomputer 330 switches from the sleep mode to the normal mode.
  • the microcomputer 330 starts executing the sensor processing shown in FIG. This sensor processing is executed at the intermittent drive interval of the microcomputer 330.
  • step S10 the microcomputer 330 acquires sensor signals input from various sensors. At the same time, the microcomputer 330 acquires the acquisition time of the sensor signal based on the output of the RTC 350. After this, the microcomputer 330 proceeds to step S20.
  • step S20 the microcomputer 330 stores the acquired sensor signal and the acquisition time. After this, the microcomputer 330 proceeds to step S30.
  • the microcomputer 330 outputs the sensor signal as the sensor information and the acquisition time from the communication unit 340 to the integrated communication unit 400 by wireless communication.
  • This sensor information is stored in the information storage unit 500 by the integrated communication unit 400.
  • the microcomputer 330 shifts to the sleep mode and ends the sensor processing.
  • the integrated calculation unit 600 executes the update process shown in FIG. 7 every time the update cycle elapses. This update cycle is about the same as the intermittent drive interval of the microcomputer 330.
  • step S110 the integrated calculation unit 600 reads out various information stored in the information storage unit 500. Then, the integrated calculation unit 600 proceeds to step S120.
  • the integrated calculation unit 600 updates the irrigation schedule of each of the plurality of monitoring units 300 based on the read information. Further, the integrated calculation unit 600 updates the sensor processing of each of the plurality of monitoring units 300. Specifically, the integrated calculation unit 600 updates the intermittent drive interval corresponding to the timing of executing the sensor processing. Then, the integrated calculation unit 600 owns the updated irrigation schedule and the intermittent drive interval, and stores the updated irrigation schedule and the information storage unit 500. After this, the information storage unit 500 ends the update process.
  • the sensor information, irrigation schedule, and intermittent drive interval are updated by the cycle task.
  • monitoring processing water supply processing, irrigation processing, user update processing, and forced update processing as event tasks will be described.
  • each of the monitoring process, the water supply process, and the irrigation process is executed in the daytime in order to avoid the exhaustion of the driving power of the monitoring unit 300.
  • the determination of whether or not it is daytime can be detected by the current time and the amount of solar radiation detected by the solar radiation sensor 312.
  • the microcomputer 330 of the monitoring unit 300 is in the sleep mode.
  • An instruction signal is input to the microcomputer 330 from the integrated calculation unit 600 by wireless communication.
  • the microcomputer 330 switches from the sleep mode to the normal mode.
  • the microcomputer 330 starts executing the monitoring process shown in FIG.
  • step S210 the microcomputer 330 stores the input instruction signal and the acquisition time thereof. After this, the microcomputer 330 proceeds to step S220.
  • the microcomputer 330 determines whether or not the instruction signal includes a water supply instruction for changing the water supply valve 152 from the closed state to the open state. If the water supply instruction is included in the instruction signal, the microcomputer 330 proceeds to step S230. If the water supply instruction is not included in the instruction signal, the microcomputer 330 proceeds to step S240.
  • step S230 the microcomputer 330 executes the water supply process shown in FIG. That is, in step S231, the microcomputer 330 outputs a discharge signal to the water supply valve 152 according to the water supply instruction. After this, the microcomputer 330 proceeds to step S232.
  • the microcomputer 330 determines whether or not the water supply time included in the instruction signal has elapsed. If the water supply time has not elapsed, the microcomputer 330 continues to output the discharge signal to the water supply valve 152. When the water supply time has elapsed, the microcomputer 330 proceeds to step S233.
  • step S233 the microcomputer 330 stops the output of the discharge signal. Then, the microcomputer 330 proceeds to step S240 shown in FIG.
  • step S240 the microcomputer 330 determines whether or not the instruction signal includes an intermittent drive interval update instruction. If the instruction signal includes an intermittent drive interval update instruction, the microcomputer 330 proceeds to step S250. If the instruction signal does not include the intermittent drive interval update instruction, the microcomputer 330 proceeds to step S260.
  • the above-mentioned intermittent drive interval update instruction is periodically or irregularly output as an instruction signal from the integrated calculation unit 600 or the information storage unit 500 to each of the plurality of monitoring units 300.
  • step S250 the processing unit 334 of the microcomputer 330 adjusts the time interval for outputting the wakeup signal of the RTC350. After this, the microcomputer 330 proceeds to step S260.
  • step S260 the microcomputer 330 executes the sensor processing described with reference to FIG.
  • the microcomputer 330 executes the water supply process in step S230, the environmental value after the supply of irrigation water is detected in step S260.
  • the microcomputer 330 does not execute the water supply treatment in step S260, the environmental value in which the irrigation water is not supplied is detected in step S260. This environment value is stored in the information storage unit 500.
  • the microcomputer 330 shifts to the sleep mode and ends the monitoring processing.
  • the integrated calculation unit 600 executes the irrigation treatment shown in FIG. 10 at each timing of supplying irrigation water in the irrigation schedule of each of the plurality of monitoring units 300.
  • step S310 the integrated calculation unit 600 outputs an instruction signal (water supply signal) including a water supply instruction to the monitoring unit 300 of the divided area scheduled to supply irrigation water among the plurality of monitoring units 300. .. After this, the integrated calculation unit 600 proceeds to step S320.
  • an instruction signal water supply signal
  • the water supply instruction includes the output start of the discharge signal and the output time (water supply time) of the discharge signal. Upon receiving this water supply instruction, the monitoring unit 300 executes the monitoring process described with reference to FIG.
  • step S320 the integrated calculation unit 600 goes into a standby state until the monitoring process of the monitoring unit 300 is completed.
  • the integrated calculation unit 600 proceeds to step S330.
  • the determination as to whether or not the monitoring process has been completed can be performed based on, for example, whether or not the time when the monitoring process is expected to be completed has elapsed. This can be done by inquiring the monitoring unit 300 whether or not the monitoring process has been completed.
  • the method for determining the end of the monitoring process is not particularly limited.
  • the integrated calculation unit 600 executes the update process described with reference to FIG. 7. This updates the irrigation schedule based on the post-supply environmental values of irrigation water.
  • the irrigation water supply start time may be uniformly set at the same time in at least a part of the irrigation schedule of each of the plurality of monitoring units 300 provided in each of the plurality of divided areas. However, it is assumed that the required irrigation water supply amount will be different for each of the multiple divided areas. Therefore, even if the irrigation water supply start time in each of the plurality of divided areas is uniformly set to the same time, the irrigation water supply end time in each of the plurality of divided areas will be the same or different.
  • the integrated calculation unit 600 outputs a water supply signal to at least a part of the plurality of monitoring units 300 provided in each of the plurality of divided areas in step S310.
  • the integrated calculation unit 600 is in a standby state until the monitoring process by the monitoring unit 300 in the divided area having the longest water supply time among the plurality of irrigation schedules is completed.
  • the integrated calculation unit 600 executes the user update process shown in FIG. 11 when a user instruction related to the adjustment of the irrigation schedule and the intermittent drive interval is input from the input device 800.
  • step S410 the integrated calculation unit 600 stores the input user instruction in the information storage unit 500. After this, the integrated calculation unit 600 proceeds to step S420.
  • step S420 the integrated calculation unit 600 executes the update process described with reference to FIG. 7. As a result, the irrigation schedule and the intermittent drive interval are updated based on the user's instruction.
  • the integrated calculation unit 600 executes the forced update process shown in FIG. 12 when a user instruction related to updating the irrigation schedule and the intermittent drive interval is input.
  • step S510 the integrated calculation unit 600 outputs an instruction signal (request signal) including a request instruction requesting execution of sensor processing.
  • This request signal is output to the monitoring unit 300 by wireless communication.
  • the integrated calculation unit 600 proceeds to step S520.
  • step S520 the integrated calculation unit 600 goes into a standby state until the sensor processing of the monitoring unit 300 is completed.
  • the integrated calculation unit 600 proceeds to step S530.
  • the determination as to whether or not the sensor processing is completed can be performed based on, for example, whether or not the time when the sensor processing is expected to be completed has elapsed. Further, it can be performed by inquiring to the monitoring unit 300 whether or not the sensor processing is completed.
  • the method for determining the end of sensor processing is not particularly limited.
  • step S530 the integrated calculation unit 600 executes the update process described with reference to FIG. 7.
  • the irrigation schedule and the intermittent drive interval are updated based on various data at the time of the user's update request.
  • the irrigation schedule in each of the plurality of divided areas is determined by the integrated calculation unit 600. Then, the supply of irrigation water based on each of the plurality of irrigation schedules is controlled by the integrated calculation unit 600.
  • the irrigation schedule in each of the plurality of divided areas is determined by the integrated calculation unit 600
  • a configuration is adopted in which the supply of irrigation water based on each of the plurality of irrigation schedules is individually controlled by each of the plurality of monitoring units 300. You can also do it.
  • the monitoring unit 300 executes the individual irrigation treatment shown in FIG. 13 instead of the sensor processing shown in FIG. 6 and the irrigation treatment shown in FIG.
  • the microcomputer 330 of the monitoring unit 300 is in the sleep mode.
  • the microcomputer 330 switches from the sleep mode to the normal mode.
  • the microcomputer 330 starts executing the individual irrigation treatment shown in FIG.
  • the individual irrigation treatment is executed at the intermittent drive interval of the microcomputer 330.
  • the monitoring unit 300 executes the individual irrigation treatment as a cycle task.
  • step S610 the microcomputer 330 reads the irrigation schedule and the intermittent drive interval stored in the information storage unit 500. After this, the microcomputer 330 proceeds to step S620.
  • step S620 the microcomputer 330 determines whether or not the current time is after the irrigation water supply start time in the read irrigation schedule. If the current time is after the irrigation water supply start time, the microcomputer 330 proceeds to step S630. If the current time is before the irrigation water supply start time, the microcomputer 330 proceeds to step S640.
  • step S630 the microcomputer 330 executes the water supply process shown in FIG. After that, the microcomputer 330 proceeds to step S640.
  • step S640 the microcomputer 330 compares the read intermittent drive interval with the stored intermittent drive interval. If there is a difference between the two, the microcomputer 330 proceeds to step S650. If there is no difference between the two, the microcomputer 330 proceeds to step S660.
  • step S650 the processing unit 334 of the microcomputer 330 adjusts the time interval for outputting the wakeup signal of the RTC350. As a result, the intermittent drive interval is updated. After that, the microcomputer 330 proceeds to step S660.
  • step S660 the microcomputer 330 executes the sensor processing described with reference to FIG.
  • the microcomputer 330 shifts to the sleep mode and ends the individual irrigation processing.
  • the water supply start signal may be set to be output from the RTC350 at the water supply start time included in the pre-read irrigation schedule.
  • the microcomputer 330 may execute the water supply process shown in FIG.
  • each of the plurality of monitoring units 300 independently determines the irrigation schedule in each of the plurality of divided areas.
  • each of the plurality of monitoring units 300 executes the update process shown in FIG. 7.
  • each of the plurality of monitoring units 300 has a user instruction of the user stored in the information storage unit 500, a growth-inhibiting water point and a permanent wilting point of the plant 30, and water absorption in which the plant 30 absorbs water per unit time. Read various information such as quantity and water retention capacity of soil. At the same time, each of the plurality of monitoring units 300 acquires the environmental value detected by the environment sensor 310.
  • each of the plurality of monitoring units 300 cannot read various information stored in the information storage unit 500 due to a communication failure. Therefore, in the case of the above configuration, each of the plurality of monitoring units 300 stores various information read from the information storage unit 500. When the stored information is not updated due to a communication failure or the like, each of the plurality of monitoring units 300 determines the irrigation schedule based on the unupdated information and the environmental value detected by the environment sensor 310. .. Alternatively, each of the plurality of monitoring units 300 determines the irrigation schedule based on the environmental value detected by the environmental sensor 310.
  • the monitoring unit 300 having a short distance from the integrated communication unit 400 is compared with the monitoring unit 300 having a long distance from the integrated communication unit 400. It is expected that the communication with the integrated communication unit 400 will not be disturbed.
  • the monitoring unit 300 having a short separation distance from the integrated communication unit 400 is used as a slave unit, and the monitoring unit 300 having a long separation distance is used as a grandchild unit. Then, it is also possible to adopt a configuration in which wireless communication between the grandchild unit and the integrated communication unit 400 is performed via the slave unit.
  • the information storage unit 500 stores the current value of the soil water content, the predicted value of the decrease change, and the user instruction.
  • the information storage unit 500 stores the growth-inhibiting water point and the permanent wilting point of the plant 30, the amount of water absorption that the plant 30 absorbs water per unit time, and the water retention capacity of the soil.
  • the information storage unit 500 stores the weather forecast of the field 20 output and distributed from the external information source 1000.
  • the external information source 1000 is referred to as ESI.
  • the integrated calculation unit 600 reads various information including the weather forecast from the information storage unit 500. Then, the integrated calculation unit 600 determines the irrigation schedule of each of the plurality of monitoring units 300 in S120.
  • the water supply pipe 130 and the water supply valve 152 are provided in the field 20 in the field. Therefore, these water supply pipes 130 and water supply valves 152 may be damaged due to aged deterioration or vermin. If the water supply pipe 130 and the water supply valve 152 are slightly damaged, it may be difficult to detect the damage.
  • the pump pressure is detected by the water pressure sensor 153 in the stable state where the water supply valve 152 is closed and the water supply pipe 130 is filled with irrigation water. Further, in a stable state in which the water supply valve 152 is open and the flow of irrigation water in the water supply pipe 130 hardly changes, it is assumed that the water pressure sensor 153 detects the flow pressure.
  • the damage determination process based on the water pressure is performed by the microcomputer 330 of each of the plurality of monitoring units 300.
  • the monitoring unit 300 corresponds to an inspection device.
  • the microcomputer 330 executes the damage determination process shown in FIG. 14 in the water supply process in step S230 of the monitoring process described with reference to FIG. This damage determination process is executed after step S233 of the water supply process described with reference to FIG.
  • the microcomputer 330 has an expected recovery time, an expected time constant, and an expected water pressure as comparison values for performing this damage determination process. Further, an inspection program for executing this damage determination process is stored in at least one of the storage unit 333 and the information storage unit 500.
  • step S710 shown in FIG. 14 the microcomputer 330 acquires and stores the water pressure from the water pressure sensor 153. The water pressure obtained at this point is expected to be between the flow pressure and the pump pressure. After this, the microcomputer 330 proceeds to step S720.
  • step S720 the microcomputer 330 determines whether or not the expected recovery time has elapsed since the output of the discharge signal was stopped. If the expected recovery time has not elapsed, the microcomputer 330 repeats step S710 to continue acquiring and storing the water pressure. When the expected recovery time has elapsed, the microcomputer 330 proceeds to step S730.
  • the expected recovery time is based on the expected time for the water pressure to recover from the flow pressure to the pump pressure when the water supply valve 152 is changed from the open state to the closed state without any damage. It is determined. For example, the expected recovery time can be set to be about the same as this time. The expected recovery time corresponds to the expected time.
  • step S730 the microcomputer 330 calculates the time change of the water pressure in the transition period when the water pressure recovers from the flow pressure to the pump pressure based on the plurality of water pressures acquired until the expected recovery time elapses. That is, the microcomputer 330 calculates the time constant of the water pressure. After this, the microcomputer 330 proceeds to step S740.
  • step S740 the microcomputer 330 determines whether or not the calculated time constant of the water pressure is lower than the expected time constant. If the time constant of the water pressure is lower than the expected time constant, the microcomputer 330 proceeds to step S750. If the time constant of the water pressure is higher than the expected time constant, the microcomputer 330 proceeds to step S760.
  • the expected time constant is determined based on the time constant when the water pressure recovers from the flow pressure to the pump pressure when no damage occurs.
  • the expected time constant can be set to a value obtained by subtracting the water pressure detection error from this time constant.
  • step S750 the microcomputer 330 determines whether or not the water pressure after the expected recovery time has elapsed is lower than the expected water pressure. If this water pressure is lower than the expected water pressure, the microcomputer 330 proceeds to step S770. If this water pressure is higher than the expected water pressure, the microcomputer 330 proceeds to step S780.
  • the expected water pressure is determined based on the pump pressure when no damage has occurred.
  • the expected water pressure can be set to a value obtained by subtracting the water pressure detection error from this pump pressure.
  • step S770 the time constant of the microcomputer 330 is lower than the expected time constant, and the water pressure after the expected recovery time has not reached the expected water pressure, so that the water supply pipe 130 and the water supply valve 152 are damaged. Is determined.
  • step S780 the time constant of the microcomputer 330 is lower than the expected time constant, and the water pressure after the expected recovery time has reached the expected water pressure. Therefore, the water supply pipe 130 and the water supply valve 152 are slightly damaged. It is determined that there is.
  • step S760 the microcomputer 330 determines that the water supply pipe 130 and the water supply valve 152 are normal because the time constant is higher than the expected time constant.
  • the results of the damage determination, the minor damage determination, and the normality determination shown above are input from the microcomputer 330 to the integrated calculation unit 600.
  • the microcomputer 330 executes the damage determination process.
  • the integrated calculation unit 600 may execute the damage determination processing step S730 and subsequent steps in response to the acquisition result of the water pressure.
  • the monitoring unit 300 and the integrated calculation unit 600 are included in the inspection device.
  • One of the microcomputer 330 and the integrated calculation unit 600 corresponds to the inspection unit.
  • the time zone for supplying irrigation water from the water supply pipe 130 to the field 20 and the time zone for inspecting the water supply pipe 130 are the same time zone. That is, the time zone in which the water supply treatment described with reference to FIG. 9 and the damage determination process described with reference to FIG. 14 are executed is the same time zone, for example, in the daytime. Therefore, it is possible to prevent the processing work from becoming complicated.
  • the electric power generated by the solar cell 361 is stored in the storage unit 362.
  • the microcomputer 330 is driven by the electric power stored in the power storage unit 362.
  • the microcomputer 330 executes the above water supply process and damage determination process.
  • the water supply process is executed in the daytime. Therefore, the damage determination process is also executed in the daytime.
  • the time constant of the water pressure and the water pressure when the recovery time has elapsed it is possible to determine whether or not the water supply pipe 130 and the water supply valve 152 are damaged. Even if the water supply pipe 130 is slightly damaged, the time constant is expected to be somewhat delayed so that the water pressure after the expected recovery time recovers to the expected water pressure based on the pump pressure. Therefore, by inspecting the water supply pipe 130 based on the time constant, it is possible to detect whether or not the water supply pipe 130 is damaged even slightly.
  • the first branch pipe 136a and the second branch pipe 136b are connected to one extension pipe 135.
  • the water pressure sensor 153 is provided at each of the two connecting ports to which the first branch pipe 136a and the second branch pipe 136b of the extension pipe 135 are connected.
  • the difference in water pressure detected by these two water pressure sensors 153 is The absolute value is expected to fall within the detection error range. However, if the absolute value of the difference exceeds the detection error range, it can be determined that one of the two water pressure sensors 153 has a failure.
  • ⁇ Amount of irrigation water supplied> As described above, the opening and closing of the water supply valve 152 is controlled for each divided area. As shown in FIG. 1, a plurality of dropping pipes 132 are connected to one horizontal pipe 134. The water supply valve 152 and the water pressure sensor 153 are provided in each of the plurality of dropping pipes 132.
  • any two of the plurality of dropping pipes 132 connected to one horizontal pipe 134 are referred to as the first dropping pipe 132a and the second dropping pipe 132b. do.
  • the second dropping is higher than the water pressure on the first dropping pipe 132a side.
  • the water pressure on the pipe 132b side decreases. From the second dropping pipe 132b, irrigation water is discharged from the dropping hole 137 at a flow velocity corresponding to the water pressure difference between the first dropping pipe 132a side and the second dropping pipe 132b side.
  • This water pressure difference and the flow velocity of the irrigation water discharged from the dropping hole 137 are in a proportional relationship.
  • the water pressure difference is ⁇ P and the flow velocity is v
  • ⁇ P k ⁇ v ⁇ v.
  • k is a specified value determined by the diameter of the water supply pipe 130 or the like, and is stored in the information storage unit 500. Therefore, the flow velocity v of the irrigation water can be calculated by detecting the pressure difference ⁇ P.
  • the flow velocity v corresponds to the supply amount (discharge amount) of irrigation water per unit time. Therefore, the amount of irrigation water discharged from the dropping hole 137 can be calculated by calculating the time-integrated value of the flow velocity v represented by the above formula. In this way, the supply amount of irrigation water can be calculated based on the output of the water pressure sensor 153.
  • the irrigation water is supplied to the plant 30 not when the amount of light is low such as when it is raining, but when the amount of light is high such as when it is fine.
  • the amount of electricity stored in the electricity storage unit 362 tends to increase.
  • the intermittent drive interval of the microcomputer 330 is narrowed. Therefore, the interval at which the microcomputer 330 executes the sensor processing described with reference to FIG. 6 is narrowed.
  • the acquisition interval of the water pressure detected by the water pressure sensor 153 when the irrigation water is supplied is narrowed. This water pressure is sequentially stored in the information storage unit 500.
  • the integrated calculation unit 600 reads out the water pressure and the specified value k stored in the information storage unit 500. Then, the integrated calculation unit 600 calculates the flow velocity v based on the above equation. The integrated calculation unit 600 calculates the flow velocity v at the intermittent drive interval of the microcomputer 330 until the water supply valve 152 shifts from the closed state to the open state. Then, the integrated calculation unit 600 adds all the flow velocities v in this period. By doing so, the integrated calculation unit 600 calculates the time integration value of the flow velocity v. That is, the integrated calculation unit 600 calculates the supply amount of irrigation water for each divided area.
  • the time is divided and the partially closed state is partially changed to the open state. By doing so, it becomes possible to detect the pressure difference represented by the above equation. As a result, it becomes possible to calculate the amount of irrigation water supplied.
  • the present disclosure relates to communication equipment.
  • sensing device including a communication processing unit for transmitting sensing data to a base station is known.
  • the communication processing unit and the base station perform wireless communication. For example, if noise is mixed in this wireless communication, the reliability of the information transmitted between the communication processing unit and the base station is lowered.
  • the purpose of the present disclosure is to provide a communication device capable of determining whether or not the information is highly reliable.
  • the communication device includes a plurality of different types of radio signals transmitted and received between a plurality of communication units (340, 400) provided in an outdoor field (20) in which a plant (30) grows. (343,344,345) and at least one of a plurality of different types of data are included. A plurality of different types of data are arranged in a predetermined array in a radio signal.
  • the time interval for transmitting and receiving wireless signals between the communication unit 340 and the integrated communication unit 400 is long. Therefore, it is possible to increase the amount of data that can be included in the data 342 by one wireless communication. Therefore, it is possible to include a plurality of the same data and various security information in the data 342 in order to enhance the reliability of the information.
  • the data 342 may include two identical first data 343s. Further, the data 342 may include two identical second data 344s. Then, as shown in FIG. 16, the first data 343 and the second data 344 may be arranged alternately in the radio signal.
  • first parity bit 343a indicating whether the total number of 0s and 1s included in the first data 343 is odd or even may be attached to the first data 343.
  • a second parity bit 344a indicating whether the total number of 0s and 1s included in the second data 344 is odd or even may be attached to the second data 344.
  • the first data 343 is referred to as DAT_A
  • the second data 344 is referred to as DAT_B
  • the first parity bit 343a is referred to as Pa
  • the second parity bit 344a is referred to as Pb.
  • the information contained next to the address 341 is the first data 343, and the information contained next to the address 341 is also the first data 343.
  • Expected to be It can be determined whether or not the data 342 is correct based on whether or not the first parity bits 343a incidental to these two first data 343s are equal. Alternatively, it can be determined whether the data 342 is correct or not based on whether the two first data 343s are equal or not.
  • the information contained next to the address 341 is expected to be the second data 344, and the information contained next to the address 341 is also expected to be the second data 344. It can be determined whether or not the data 342 is correct based on whether or not the second parity bits 344a included in these two second data 344s are equal. Alternatively, it can be determined whether the data 342 is correct or not based on whether the two second data 344s are equal or not.
  • one wireless communication includes a plurality of data of the same type. Then, the same kind of data that are expected to be equal are compared. This makes it possible to determine whether or not the data 342 included in the radio signal is correct.
  • a parity bit indicating whether the total number of 0s and 1s included in the same type of data is odd or even is attached to each of the same type of data. Then, the parity bits contained in the same kind of data that are expected to be equal are compared. This makes it possible to easily determine whether or not the data 342 included in the radio signal is correct.
  • first data 343 and second data 344 are included in the wireless signal.
  • the types of data included in the wireless signal are not limited to two types, and may be three or more types.
  • the number of data of the same type contained in the radio signal is not limited to two, and may be three or more.
  • an example is shown in which a plurality of data of the same type are included in the radio signal.
  • FIG. 17 it is also possible to adopt a configuration in which different types of first data 343 to third data 345 are included in the radio signal.
  • the radio signal includes one third data 345 instead of a plurality of.
  • a third parity bit 345a may be attached to the third data 345.
  • the third data 345 is referred to as DAT_C
  • the third parity bit is referred to as Pc.
  • an example is shown in which two types of data of different types are alternately arranged in a wireless signal.
  • the pattern in which different types of data are arranged in a wireless signal is not limited to the above example.
  • the irrigation system 10 according to the present embodiment includes at least one of the components of the irrigation system 10 according to the first embodiment. Therefore, it is needless to say that the irrigation system 10 of the present embodiment exerts the effects described in the first embodiment by the same components as the irrigation system 10 described in the first embodiment. Therefore, the description is omitted. The description of overlapping actions and effects will be omitted in the other embodiments shown below.
  • the present disclosure relates to a monitoring unit that monitors the environment of a field.
  • the slave station described in the above publication has a CPU and a sensor.
  • the slave station is provided in the field, but the vermin appearing in the field may damage the wiring connecting the CPU and the sensor, for example.
  • the purpose of this disclosure is to provide a controlled monitoring unit in which the communication of electrical information is hindered by vermin.
  • the monitoring unit is provided in each of a plurality of divided areas in which the field (20) in which the plant (30) grows is divided into a plurality of areas, and the environment of the divided areas is monitored and the monitoring unit is provided in the field. It is a monitoring unit that wirelessly communicates with the integrated communication unit (400).
  • the first monitoring unit (300a) which is partially provided in the soil of the divided area, It is provided on the empty side of the divided area from the first monitoring unit, and has a second monitoring unit (300b) that wirelessly communicates with the first monitoring unit and also wirelessly communicates with the integrated communication unit.
  • the monitoring unit 300 is provided on the empty side of the field 20 in order to generate electricity with the solar cell 361.
  • the soil moisture sensor 311 is provided on the ground of the field 20 in order to detect the soil moisture content. Therefore, the monitoring unit 300 and the soil moisture sensor 311 are separated from each other in the z direction.
  • the monitoring unit 300 and the soil moisture sensor 311 are electrically connected to each other via, for example, the wire 160 shown in FIG.
  • the wire 160 connecting the monitoring unit 300 and the soil moisture sensor 311 may be damaged by vermin such as wild boar and deer.
  • the monitoring unit 300 of the present embodiment has a first monitoring unit 300a and a second monitoring unit 300b shown in FIGS. 19 and 20.
  • a first monitoring unit 300a is provided on the ground side of one divided area, and a second monitoring unit 300b is provided on the empty side of this divided area.
  • the first monitoring unit 300a includes a soil moisture sensor 311 as an environment sensor 310.
  • the first monitoring unit 300a is buried in the ground together with the soil moisture sensor 311. However, a part of the first monitoring unit 300a is exposed from the ground so that the power generation by the solar cell 361 and the wireless communication by the communication unit 340 are not hindered.
  • the solar cell 361 of the first monitoring unit 300a is separated from the plant 30 in the direction along the ground so that the incident of sunlight is not blocked by the branches and leaves of the grown plant 30.
  • the environment sensor 310 of the first monitoring unit 300a may include an illuminance sensor 312.
  • the first monitoring unit 300a executes a part of the various processes described so far.
  • the first monitoring unit 300a acquires the output of the soil moisture sensor 311 in the sensor processing described with reference to FIG. 6, for example. Then, the first monitoring unit 300a transmits a sensor signal to the second monitoring unit 300b by wireless communication.
  • the second monitoring unit 300b includes a solar radiation sensor 312 as an environment sensor 310.
  • the water pressure sensor 153 and the water supply valve 152 are connected to the second monitoring unit 300b.
  • the environment sensor 310 of at least one of the plurality of second monitoring units 300b provided in the field 20 includes a rain sensor 313, a temperature sensor 314, a humidity sensor 315, a barometric pressure sensor 316, and a wind sensor 317. There is.
  • the second monitoring unit 300b executes various processes described so far.
  • the processing load of the second monitoring unit 300b is higher than that of the first monitoring unit 300a.
  • the second monitoring unit 300b acquires the sensor signals of the environment sensor 310 and the water pressure sensor 153 input to itself. At the same time, the second monitoring unit 300b acquires the output of the soil moisture sensor 311 output from the first monitoring unit 300a. The second monitoring unit 300b outputs a radio signal including these sensor signals to the integrated communication unit 400.
  • the second monitoring unit 300b updates the wake-up cycle for outputting the wake-up signal of its own RTC350, and the first radio signal including the intermittent drive interval is updated. Output to the monitoring unit 300a.
  • the first monitoring unit 300a updates the wake-up cycle for outputting the wake-up signal of its own RTC350 based on the input intermittent drive interval.
  • the first monitoring unit 300a is provided on the ground side of one divided area, and the second monitoring unit 300b is provided on the empty side thereof. Then, both are wirelessly communicated. As a result, it is possible to prevent the vermin from obstructing the communication of electrical information between the first monitoring unit 300a and the second monitoring unit 300b.
  • the first monitoring unit 300a since the first monitoring unit 300a is provided on the ground side, a part thereof is easily covered by the plant 30. As a result, the amount of power generated by the first monitoring unit 300a tends to decrease.
  • the processing load of the first monitoring unit 300a is smaller than that of the second monitoring unit 300b. As a result, the depletion of electric power in the first monitoring unit 300a is suppressed.
  • the wiring 161 connecting the first monitoring unit 300a and the soil moisture sensor 311 is buried in the soil. Therefore, the wiring 161 is prevented from being damaged by the vermin.
  • the second monitoring unit 300b is provided on the empty side of the mature plant 30.
  • the second monitoring unit 300b is provided on the empty side of the height of the vermin expected to appear in the field 20.
  • the environment sensor 310, the water pressure sensor 153, and the wiring 162 connecting each of the water supply valve 152 and the second monitoring unit 300b are also provided on the empty side of the height of the vermin. Therefore, the wiring 162 is prevented from being damaged by the vermin.
  • the wiring 162 corresponds to the connection wiring.
  • a part of the water supply pipe 130 is extended from the ground toward the empty side and folded back. And extend from the sky side to the ground side.
  • the second monitoring unit 300b may be provided at a portion of the water supply pipe 130 located on the empty side.
  • the dropping pipe 132 is buried in the soil. This prevents the dropping pipe 132 from being damaged by vermin. Damage to the dropping pipe 132 by vermin prevents the irrigation water in the dropping pipe 132 from leaking to the outside.
  • the water pressure sensor 153 is buried in the soil.
  • the wiring 163 that connects the water pressure sensor 153 and the first monitoring unit 300a is also buried in the soil. Therefore, the wiring 163 is prevented from being damaged by the vermin. By burying any wiring connected to the first monitoring unit 300a in the soil in this way, damage to the wiring by vermin is suppressed.
  • first monitoring unit 300a is provided on the ground side of one divided area
  • second monitoring unit 300b is provided on the empty side of this divided area.
  • a plurality of first monitoring units 300a are provided on the ground side of each of the plurality of divided areas, and one second monitoring unit 300b common to these plurality of first monitoring units 300a is provided on the empty side of the field 20.
  • a configuration can also be adopted.
  • the total number of the first monitoring units 300a and the total number of the second monitoring units 300b included in the plurality of monitoring units 300 may be equal or different.
  • the total number of the second monitoring units 300b is at least better than the total number of the first monitoring units 300a included in the plurality of monitoring units 300.
  • the ratio of the total number of the first monitoring units 300a and the total number of the second monitoring units 300b included in the plurality of monitoring units 300 may be, for example, 1: 1 or 2: 1.
  • ⁇ Dripping pipe depth> As the filling depth of the dropping pipe 132, for example, a boundary between the soil layer and the lower layer below the soil layer can be adopted. Then, the opening of the dropping hole 137 of the dropping pipe 132 may be directed to the ground surface side or the horizontal direction in the soil.
  • the cultivator suppresses damage to the dropping pipe 132.
  • the supply of irrigation water from the dropping pipe 132 to the soil layer in which the plant 30 is grown is realized by capillarity or the like.
  • a dedicated pole for providing the second monitoring unit 300b on the empty side may be provided in the field 20. Then, the length (height) of this pole in the z direction may be variable. Furthermore, in order to increase the power generation efficiency, the tip end side of the pole provided with the second monitoring unit 300b may rotate in the circumferential direction around its own axial direction, depending on the position of the sun. The position of the sun can be detected by the current time and the amount of solar radiation detected by the solar radiation sensor 312.
  • each of the plurality of monitoring units 300 may be provided with a detection device for detecting the vermin and a repulsion device for repelling the vermin.
  • a detection device for detecting the vermin imaging with a camera can be adopted.
  • a method of repelling vermin it is conceivable to stimulate at least one of the five senses of wild boars, deer, crows and other birds and beasts that are expected to appear in the field 20.
  • the repellent device is equipped with at least one of the components listed below, for example.
  • a light emitting device that emits flashing light to stimulate the vision of birds and beasts.
  • a speaker that generates the voice of a natural enemy to stimulate the hearing of birds and beasts.
  • An ultrasonic generator that generates ultrasonic waves to stimulate the antennae of birds and beasts.
  • An odor generator for generating odors such as ions to stimulate the sense of smell of birds and beasts.
  • a spraying device for spraying a liquid harmless to the plant 30 on the field 20 while stimulating the taste of birds and beasts.
  • the present disclosure relates to a monitoring unit that monitors the environment of a field.
  • the slave station described in the above publication has a CPU and a sensor.
  • the slave station is provided in the field, but the vermin appearing in the field may damage the wiring connecting the CPU and the sensor, for example.
  • the purpose of this disclosure is to provide a controlled monitoring unit in which the communication of electrical information is hindered by vermin.
  • the monitoring unit is a monitoring unit provided together with a water supply pipe (130) in each of a plurality of divided areas in which an outdoor field (20) in which a plant (30) grows is divided into a plurality of areas.
  • the main body (155) having a storage space for storing the first electric device and the second electric device, and the storage space together with the connector are stored in the first storage space and the second electric device in which the first electric device is stored. It has an integrated case (154) provided with a partition wall (156) that separates it from the second storage space.
  • the piping module 150 is included in the control device 200 instead of the water supply device 100.
  • the monitoring unit 300 includes at least a part of the piping module 150.
  • a part of the components of the monitoring unit 300 and the piping module 150 described above are housed in the integrated case 154.
  • Such a configuration can be applied to, for example, the second monitoring unit 300b shown in the third embodiment.
  • the integrated case 154 is shown in cross section.
  • the integrated case 154 has a first storage space and a second storage space.
  • the components of the monitoring unit 300 are stored in the first storage space.
  • the components of the piping module 150 are stored in the second storage space.
  • the component stored in the first storage space corresponds to the first electric device.
  • the component stored in the second storage space corresponds to the second electric device.
  • the integrated case 154 has a box-shaped main body portion 155 and a partition wall 156 that divides the hollow of the main body portion 155 into two.
  • the hollow of the main body 155 is divided into the above-mentioned first storage space and the second storage space by the partition wall 156 and the connector 157 described later.
  • the partition wall 156 is provided with a connector 157 for electrically connecting the stored items stored in the first storage space and the stored items stored in the second storage space.
  • the central portion of the connector 157 is connected to the partition wall 156 by insert molding. As a result, one end side of the connector 157 is provided in the first storage space. At the same time, the other end side of the connector 157 is provided in the second storage space.
  • the control unit 320 of the monitoring unit 300 is stored in the first storage space.
  • Each of the microcomputer 330, the communication unit 340, and the RTC 350 included in the control unit 320 is mounted on the wiring board 321.
  • the power storage unit 362, the current sensor 363, and the power sensor 364 included in the power generation unit 360 are also mounted on the wiring board 321.
  • FIG. 23 illustrates only the wiring board 321 among these components.
  • the solar cell 361 of the power generation unit 360 is provided on the empty top wall of the integrated case 154.
  • An opening is formed in the top wall.
  • the solar cell 361 is fixed to the top wall in a manner of closing this opening.
  • the minute gap between the solar cell 361 and the wall surface that partitions the opening is closed by a sealing material (not shown). Sunlight is incident on a portion of the solar cell 361 located outside the integrated case 154.
  • the solar cell 361 When the top wall has translucency, the solar cell 361 is arranged to face the top wall in the z direction in the first storage space. As a result, sunlight is incident on the solar cell 361 through the top wall.
  • the first storage space may or may not include the environment sensor 310 included in the monitoring unit 300.
  • the environment sensor 310 that can be stored in the first storage space includes a solar radiation sensor 312, a rain sensor 313, a temperature sensor 314, a humidity sensor 315, and a barometric pressure sensor 316.
  • the soil moisture sensor 311 and the wind sensor 317 are provided outside the integrated case 154.
  • a part of the water pressure sensor 153 is provided in the second storage space.
  • a portion of the water pressure sensor 153 located outside the second storage space is provided in the water supply pipe 130.
  • the second storage space is provided on the water supply pipe 130 side. Therefore, the humidity of the second storage space is more likely to increase than that of the first storage space due to water droplets condensing on the outer surface of the water supply pipe 130 through which the irrigation water flows.
  • the humidity of the second storage space tends to increase due to water droplets condensing on the outer surface of the water supply pipe 130.
  • a partition wall 156 and a connector 157 are provided between the first storage space and the second storage space.
  • the partition wall 156 and the connector 157 block the flow of air on the first storage space side and air on the second storage space side.
  • one end of the connector 157 is provided in the first storage space.
  • a wiring connector 322 is provided on the wiring board 321 provided in the first storage space.
  • One end of these connectors 157 and the wiring connector 322 are electrically connected via the first wire harness 323.
  • the other end of the connector 157 is provided in the second storage space.
  • a sensor connector 158 is provided at a portion of the water pressure sensor 153 provided in the second storage space. The other end of these connectors 157 and the sensor connector 158 are electrically connected via the second wire harness 324.
  • the wiring board 321 provided in the first storage space and the water pressure sensor 153 provided in the second storage space are electrically connected.
  • a component that electrically connects the two is housed in the integrated case 154.
  • the air flow between the first storage space in which the control unit 320 of the monitoring unit 300 is housed and the second storage space in which the water pressure sensor 153 of the piping module 150 is provided is the partition wall 156. It is blocked by the connector 157. At the same time, the control unit 320 and the water pressure sensor 153 are electrically connected via the connector 157.
  • the components that electrically connect the monitoring unit 300 and the piping module 150 are housed in the integrated case 154. As a result, it is possible to prevent the electrical connection between the monitoring unit 300 and the piping module 150 from being impaired by the vermin.
  • control unit 320 it is possible to prevent the life of the control unit 320 stored in the first storage space from being shortened due to the humidity contained in the air in the second storage space. Further, the control unit 320 suppresses the occurrence of dew condensation. Therefore, it is possible to prevent a short circuit due to dew condensation on the wiring board 321 or the like on which some of the components of the control unit 320 are mounted.
  • the components of the monitoring unit 300 and the piping module 150 are collectively stored in the integrated case 154. Therefore, the configuration of the irrigation system 10 is simplified. Further, it is not necessary to separately provide the monitoring unit 300 and the piping module 150 in the field 20. Therefore, the arrangement of the irrigation system 10 in the field 20 is simplified.
  • the second storage space is a closed space.
  • a through hole 154a is formed in the top wall of the integrated case 154 that constitutes a part of the first storage space.
  • the first storage space and the external atmosphere can communicate with each other.
  • Environmental values such as air temperature and humidity in the first storage space are suppressed from being separated from the environmental values of air in the divided area.
  • a non-woven fabric 154b that allows air to pass through but does not allow liquids such as water to pass through is provided on the top wall.
  • the non-woven fabric 154b covers at least one of the outer surface opening and the inner surface opening of the top wall in the through hole 154a.
  • FIG. 25 an example is shown in which the central portion of the connector 157 is insert-molded on the partition wall 156.
  • the partition wall 156 is formed with an arrangement hole 156a penetrating the first side surface on the first storage space side and the second side surface on the second storage space side. You can also.
  • the connector 157 is provided in the arrangement hole 156a.
  • the gasket 157a is provided in the arrangement hole 156a.
  • the gasket 157a is press-fitted into, for example, the arrangement hole 156a.
  • the outer wall surface of the gasket 157a and the ward screen for partitioning the arrangement hole 156a are in close contact with each other.
  • the gasket 157a is formed with a hole extending in the z direction.
  • a wire harness 157b extending between the first storage space and the second storage space is provided in the hole of the gasket 157a.
  • a part of the hollow of the gasket 157a is occupied by the wire harness 157b.
  • the first storage space and the second storage space communicate with each other through a space not occupied by the wire harness 157b in the hollow.
  • a part of the space on the second side surface side of the partition wall 156 in the hole of the gasket 157a is occupied by the sealing material 157c.
  • the material for forming the sealing material 157c for example, rubber or a gel-like insulating member can be adopted.
  • the moisture-proof level for obstructing the flow of air between the first storage space and the second storage space can be lowered.
  • the encapsulant 157c shown in FIG. 25 can be omitted.
  • the encapsulant 157c is not an essential component.
  • the components of the monitoring unit 300 are stored in the first storage space of the integrated case 154, and the components of the piping module 150 are stored in the second storage space.
  • control unit 320 of the monitoring unit 300 is stored in the first storage space and a part of the soil moisture sensor 311 is stored in the second storage space.
  • Such a configuration can be applied to, for example, the first monitoring unit 300a shown in the third embodiment.
  • the horizontal pipe 134 is separated from the ground in the z direction from the apex of the mature plant 30.
  • the horizontal pipe 134 may be located on the ground side in the z direction from the apex of the mature plant 30.
  • the horizontal pipe 134 and the vertical pipe 133 are each provided on the empty side of the field 20.
  • at least one of the horizontal pipe 134 and the vertical pipe 133 may be provided on the ground.
  • At least one of the horizontal pipe 134 and the vertical pipe 133 may be provided in the ground.
  • the outdoor field (20) in which the plant (30) grows is provided in each of a plurality of divided areas, the environment of the divided area is monitored, and the integrated communication unit (400) provided in the field is provided. It is a monitoring unit that communicates wirelessly.
  • Each of the first monitoring unit and the second monitoring unit has a solar cell (361) that generates driving power.
  • the monitoring unit according to the technical idea 1 in which the processing load is reduced as compared with the second monitoring unit.
  • the monitoring unit according to the technical idea 2 provided on the empty side of the divided area from the apex of the plant in which at least a part of the second monitoring unit has matured.
  • the connection wiring (162) connected to the second monitoring unit shall be in any one of the technical ideas 1 to 4 provided on the empty side of the height of the vermin expected to appear in the field. The monitoring unit described.
  • ⁇ Integrated case> It is a monitoring unit provided together with a water supply pipe (130) in each of a plurality of divided areas in which an outdoor field (20) in which a plant (30) grows is divided into a plurality of divided areas.
  • the main body (155) having a storage space for accommodating the first electric device and the second electric device, and the storage space together with the connector are the first storage space and the second storage space for accommodating the first electric device.
  • a monitoring unit having an integrated case (154) provided with a partition wall (156) that separates it from a second storage space in which electrical equipment is stored.
  • FIG. 6 A technical idea 1 to 4 in which an arrangement hole (156a) penetrating the first storage space and the second storage space is formed in the partition wall, and a part of the connector is provided in the arrangement hole.
  • the monitoring unit according to any one of the above items.
  • the connector is provided with a gasket (157a) having a hollow portion communicating with the first storage space and the second storage space, and a wire harness (157b) provided in the hollow of the gasket. ), And the monitoring unit according to the technical idea 6.
  • the connector In addition to the gasket and the wire harness, the connector allows air to flow between the first storage space and the second storage space through a space not occupied by the wire harness in the hollow of the gasket.
  • the monitoring unit according to Technical Idea 7 having a sealing material (157c) for prevention.
  • the first electric device includes an arithmetic processing unit (330) for executing arithmetic processing, a communication unit (340) for wireless communication, and a solar cell (361) for converting light energy into electrical energy.
  • the second electric device includes a water supply valve (152) that controls supply and non-supply of irrigation water from the water supply pipe to the field, and a water pressure sensor that detects the water pressure of the irrigation water in the water supply pipe.
  • the monitoring unit according to any one of technical ideas 1 to 9, which includes at least one of 153).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Debugging And Monitoring (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

検査装置は、出力部と、記憶部と、検査部と、を備える。出力部は、植物が生育する野外の圃場に設けられた給水配管から圃場への潅漑水の供給と非供給とを制御する給水弁を開状態と閉状態とに制御する制御信号を出力する。記憶部は、給水弁が開状態となって給水配管から圃場へ潅漑水が供給されている状態から、給水弁が閉状態となって給水配管内が潅漑水で満たされることの期待される期待時間が経過するまでの間に水圧センサで検出される複数の潅漑水の水圧を記憶する。検査部は、複数の潅漑水の水圧に基づいて水圧の時定数を算出し、時定数に基づいて給水配管を検査する。

Description

検査装置、および、検査プログラム 関連出願の相互参照
 この出願は、2020年9月25日に日本に出願された特許出願第2020-161288号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本明細書に記載の開示は、給水配管の検査装置、および、検査プログラムに関するものである。
 特許文献1に示されるように、配管の水圧を検出する水圧センサを備える漏水原因モニタリング装置が知られている。
特開2019-12050号公報
 特許文献1に示される漏水原因モニタリング装置は、農家が給水栓を操作しない時間帯における配管の静水圧の減少に基づいて漏水検出を行っている。係る方法では、農作業の時間帯と漏水検出の時間帯とが例えば昼間と夜間とに離れる。そのために作業が煩瑣になる、という問題がある。
 本開示の目的は、作業が煩瑣になることの抑制された検査装置、および、検査プログラムを提供することである。
 本開示の一態様による検査装置は、 植物が生育する野外の圃場に設けられた給水配管の検査を行う検査装置であって、
 給水配管から圃場への潅漑水の供給と非供給とを制御する給水弁を開状態と閉状態とに制御する制御信号を出力する出力部と、
 給水弁が開状態となって給水配管から圃場へ潅漑水が供給されている状態から、給水弁が閉状態となって給水配管内が潅漑水で満たされることの期待される期待時間が経過するまでの間に水圧センサで検出される複数の潅漑水の水圧が格納される格納部と、
 複数の潅漑水の水圧変化に基づいて水圧の時定数を算出し、時定数に基づいて給水配管を検査する検査部と、を備える。
 本開示の一態様による検査プログラムは、 プロセッサにより実行される検査プログラムであって、
 プロセッサに、
 植物の生育する野外の圃場に設けられた給水配管に設けられた給水弁を開状態とさせることで、給水配管から圃場へ潅漑水が供給されている状態から、給水弁を閉状態とさせて給水配管から圃場への潅漑水の供給が止まった状態に移行させ、
 給水弁が開状態から閉状態となってから給水配管内が潅漑水で満たされることの期待される期待時間が経過するまでの間に水圧センサで検出される潅漑水の水圧を複数取得させ、
 複数の潅漑水の水圧変化に基づいて水圧の時定数を算出させ、
 時定数に基づいて給水配管を検査させる。
 このように給水配管から圃場へ潅漑水を供給する時間帯と、給水配管を検査する時間帯とが連続する。そのために作業が煩瑣になることが抑制される。
 また、例えば、給水配管内が潅漑水で満たされた時の水圧が変化しないほどに、給水配管に生じている破損が僅かだとしても、時定数は多少なりとも遅くなることが期待される。そのために時定数に基づいて給水配管を検査することで、給水配管に僅かでも破損が生じたか否かを検出することができる。
圃場に設けられた潅水システムを模式的に示す斜視図である。 給水配管と配管モジュールを示す側面図である。 潅水システムを説明するための模式図である。 監視部を示すブロック図である。 無線信号を示す模式図である。 センサ処理を説明するためのフローチャートである。 更新処理を説明するためのフローチャートである。 監視処理を説明するためのフローチャートである。 給水処理を説明するためのフローチャートである。 潅水処理を説明するためのフローチャートである。 ユーザ更新処理を説明するためのフローチャートである。 強制更新処理を説明するためのフローチャートである。 個別潅水処理を説明するためのフローチャートである。 破損判定処理を説明するためのフローチャートである。 滴下配管から潅漑水の供給と非供給を説明するための側面図である。 無線信号を示す模式図である。 無線信号を示す模式図である。 無線信号を示す模式図である。 潅水システムを説明するための断面図である。 第1監視部と第2監視部を説明するためのブロック図である。 潅水システムの変形例を説明するための断面図である。 第1監視部と第2監視部を説明するためのブロック図である。 統合ケースを説明するための断面図である。 統合ケースの変形例を説明するための断面図である。 統合ケースの変形例を説明するための断面図である。 統合ケースの変形例を説明するための断面図である。
 以下、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。
 各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせが可能である。また、特に組み合わせに支障が生じなければ、組み合わせが可能であることを明示していなくても、実施形態同士、実施形態と変形例、および、変形例同士を部分的に組み合せることも可能である。
 (第1実施形態)
 図1~図15に基づいて本実施形態に係る潅水システムを説明する。
 以下においては互いに直交の関係にある3方向を、x方向、y方向、z方向と示す。本実施形態ではx方向とy方向とによって規定される平面が水平面に沿っている。z方向が鉛直方向に沿っている。図面においては「方向」の記載を省略して、単に、x、y、zと表記している。
 <圃場>
 潅水システム10は丘や平野に開墾された野外の圃場20に適用される。以下においては説明を簡便とするため、図1に示すように、潅水システム10が平野に開墾された圃場20に適用された形態を説明する。この圃場20の広さは数10平方メートル~数1000平方キロメートルになっている。
 圃場20にはx方向に延びる畝などの生育場所が複数設けられている。これらx方向に延びる複数の生育場所がy方向で離間して並んでいる。これら複数の生育場所それぞれに植物30の種や苗が埋められる。この植物30としては、例えば、葡萄、トウモロコシ、アーモンド、ラズベリー、葉菜、綿などがある。
 1つの生育場所で複数の植物30が生育される。図1に示すように、複数の植物30はx方向で並んで1つの列を成している。以下においてはこのx方向で列を成して並ぶ複数の植物30を植物群31と示す。圃場20では複数の植物群31がy方向で離間して並んでいる。
 複数の植物群31のy方向の最短離間距離は、1つの植物群31に含まれる複数の植物30のx方向の最短離間距離よりも長くなっている。複数の植物群31のy方向の離間間隔は生育する植物30の種類や圃場20の起伏と気候に応じて種々変更される。
 複数の植物群31のy方向の離間間隔は1m~10mほどである。例え植物30の枝葉がy方向に生い茂ったとしても、少なくとも人が2つの植物群31の間をx方向に移動できる程度の幅が確保されている。
 <潅水システム>
 潅水システム10は給水装置100と制御装置200を備えている。給水装置100は潅漑水を圃場20の植物30に供給する。制御装置200は潅水期間において給水装置100から植物30に供給される潅漑水の供給時刻と量を決定する。制御装置200は給水装置100の潅水スケジュールを決定する。
 <給水装置>
 給水装置100は、ポンプ110、給水配管130、および、配管モジュール150を有する。ポンプ110は潅漑水を給水配管130に供給する。配管モジュール150は給水配管130に供給された潅漑水の吐出を制御する。
 <ポンプ>
 ポンプ110は常時駆動状態になっている。若しくは、ポンプ110は昼間駆動状態になっている。ポンプ110はタンクやため池に貯水されている潅漑水を汲み出し、それを給水配管130に供給する。潅漑水は井戸水、河川水、雨水、および、市水などである。
 後述するように給水配管130には複数の給水弁152が設けられている。これら複数の給水弁152それぞれが閉状態であり、なおかつ、給水配管130からの潅漑水の漏れが生じていない場合、給水配管130は潅漑水で満たされる。この際、給水配管130内の水圧は、ポンプ110の吐出能力に依存した値(ポンプ圧)になる。
 給水弁152が閉状態から開状態になると、給水配管130から圃場20に潅漑水が吐出される。潅漑水の吐出量が時間平均的に安定すると、給水配管130内の水圧は、ポンプ圧よりも水圧の低い流動圧になる。
 <給水配管>
 給水配管130は主配管131と滴下配管132を有する。主配管131はポンプ110に連結されている。滴下配管132は主配管131に連結されている。ポンプ110によって主配管131から滴下配管132に潅漑水が供給される。この潅漑水が滴下配管132から圃場20に供給される。
 <主配管>
 主配管131は縦配管133と横配管134を有する。縦配管133はy方向に延びている。横配管134はx方向に延びている。縦配管133と横配管134は互いに連結されている。係る構成のために潅漑水は主配管131内をy方向とx方向とに流れる。
 図1に示す一例では、1つのポンプ110に1つの縦配管133が連結されている。このy方向に延びる縦配管133から複数の横配管134がx方向に延びている。横配管134のz方向の位置は成熟した植物30の頂点よりも地面から離間するように設定されている。
 なおもちろんではあるが、図1に示す構成は一例に過ぎない。圃場20に設けられるポンプ110と縦配管133の数、1つのポンプ110に連結される縦配管133の数、1つの横配管134に連結される縦配管133の数、および、横配管134と縦配管133のz方向の位置は特に限定されない。
 複数の横配管134はy方向で離間して並んでいる。複数の横配管134のy方向の最短離間距離は、複数の植物群31のy方向の最短離間距離と同等になっている。複数の横配管134の1つが複数の植物群31の1つに設けられている。横配管134は植物群31に含まれる複数の植物30の並ぶ方向(x方向)に沿って延びている。この横配管134に滴下配管132が連結されている。
 <滴下配管>
 滴下配管132は1つの横配管134に複数連結されている。1つの横配管134に連結される複数の滴下配管132はx方向で離間して並んでいる。
 図2に示すように滴下配管132は延長配管135と分岐配管136を有する。延長配管135は横配管134からz方向に垂れ下がって延びている。延長配管135の先端側にはx方向に開口する2つの連結口が形成されている。これら2つの連結口に分岐配管136が連結されている。
 分岐配管136は2つの連結口の一方に連結される第1分岐配管136aと、2つの連結口の他方に連結される第2分岐配管136bと、を有する。第1分岐配管136aと第2分岐配管136bは延長配管135との連結位置からx方向において互いに逆向きに延びている。
 第1分岐配管136aと第2分岐配管136bそれぞれには、潅漑水の流動する内部空間とその外の外部空間とを連通する滴下孔137が形成されている。滴下孔137は第1分岐配管136aと第2分岐配管136bそれぞれの地面側の下面に開口している。
 なお、滴下孔137は第1分岐配管136aと第2分岐配管136bそれぞれの空側の上面に開口してもよい。また、滴下孔137は第1分岐配管136aと第2分岐配管136bそれぞれの上面と下面とを連結する側面に開口してもよい。
 滴下孔137は第1分岐配管136aと第2分岐配管136bそれぞれに複数形成されている。これら複数の滴下孔137はx方向で離間して並んでいる。複数の滴下孔137のx方向の離間間隔は複数の植物30のx方向の離間間隔と同等になっている。図2に示す一例では、第1分岐配管136aと第2分岐配管136bそれぞれに滴下孔137が3つ形成されている。
 なお、複数の滴下孔137の離間間隔と複数の植物30の離間間隔は異なっていてもよい。第1分岐配管136aと第2分岐配管136bに形成される滴下孔137の数は3つに限定されない。
 <潅漑水の流動>
 ポンプ110によって縦配管133に供給された潅漑水は、縦配管133内をy方向に流れる。この潅漑水は縦配管133に連結された複数の横配管134それぞれに供給される。潅漑水は複数の横配管134内それぞれをx方向に流れる。
 横配管134内を流れる潅漑水は延長配管135を介して分岐配管136に流れ着く。この潅漑水が第1分岐配管136aと第2分岐配管136bそれぞれの滴下孔137から吐出される。これにより潅漑水が植物30に供給される。
 図1に示す一例では、第1分岐配管136aと第2分岐配管136bそれぞれは、z方向において植物30の頂点側よりも圃場20の地面側に位置している。第1分岐配管136aと第2分岐配管136bそれぞれの滴下孔137から滴下された潅漑水は主として植物30の幹やその根本に供給される。
 <散水ノズル>
 なお、滴下孔137に散水ノズルが取り付けられた構成を採用することもできる。そしてこの散水ノズルから噴射される潅漑水の噴射方向を、z方向において、地面側や空側に向けてもよい。空側に向かって潅漑水を噴射させる場合、地面側に向かって潅漑水を噴射させる構成と比べて、潅漑水の噴射方向が水平方向に広がりやすくなる。そのために散水ノズルから噴射される潅漑水が圃場20の広範囲に散水される。
 地面側と空側のいずれに向かって潅漑水を噴射させるかは、潅漑水を供給する植物30の種類、圃場20の作土層の深さ、および、圃場20の気候などに基づいて決定することができる。例えば、植物30が根を広く張ったり、作土層が浅かったり、乾燥しがたい気候の場合、空側に向けて潅漑水を噴射させる。植物30が根を深く張ったり、作土層が深かったり、乾燥しやすい気候の場合、地面側に向けて潅漑水を噴射させる。
 <配管モジュール>
 図2に簡略的に示すように、配管モジュール150は滴下配管132に設けられる。配管モジュール150は収納箱151、給水弁152、および、水圧センサ153を有する。収納箱151の中に給水弁152と水圧センサ153が収納されている。収納箱151は図面では断面図で示している。
 <給水弁>
 給水弁152は第1分岐配管136aと第2分岐配管136bそれぞれの延長配管135の連結位置側に設けられている。第1分岐配管136aと第2分岐配管136bそれぞれの延長配管135から離間した先端側と給水弁152との間に全ての滴下孔137が位置している。
 給水弁152が開状態になると、延長配管135と滴下孔137が連通する。これにより滴下孔137から潅漑水が吐出される。逆に、給水弁152が閉状態になると、延長配管135と滴下孔137との連通が遮断される。これにより滴下孔137からの潅漑水の吐出が止まる。
 第1分岐配管136aに設けられた給水弁152と第2分岐配管136bに設けられた給水弁152は制御装置200によって独立して開閉制御される。係る開閉制御により、第1分岐配管136aの滴下孔137からの潅漑水の吐出と、第2分岐配管136bの滴下孔137からの潅漑水の吐出とが独立して制御される。給水弁152としては、吐出信号の入力と未入力とによって開状態と閉状態とに切り換え可能な電磁弁が採用される。
 <水圧センサ>
 水圧センサ153は延長配管135における第1分岐配管136aと第2分岐配管136bの連結される2つの連結口側それぞれに設けられている。これら2つの水圧センサ153それぞれによって延長配管135内の水圧が検出される。この水圧センサ153で検出された水圧は制御装置200に出力される。
 なお、水圧センサ153の配置場所としては上記例に限定されない。例えば、第1分岐配管136aにおける延長配管135との連結位置と給水弁152の配置位置との間、および、第2分岐配管136bにおける延長配管135との連結位置と給水弁152の配置位置との間それぞれに水圧センサ153が設けられてもよい。延長配管135におけるz方向に延長する部位に水圧センサ153が設けられてもよい。延長配管135における横配管134との連結部位に水圧センサ153が設けられてもよい。水圧センサ153の配置場所は、滴下配管132の潅漑水の流動経路における、給水弁152よりも横配管134側であればよい。
 給水弁152が閉状態になり、延長配管135が潅漑水で満たされると、水圧センサ153でポンプ圧が検出される。
 給水弁152が閉状態から開状態になると、分岐配管136から潅漑水が吐出される。潅漑水の吐出量が時間平均的に安定すると、水圧センサ153で流動圧が検出される。
 給水弁152が開状態から閉状態になると、給水配管130からの潅漑水の吐出が止まる。給水配管130内の水圧は流動圧からポンプ圧へと徐々に回復する。水圧センサ153ではこの流動圧からポンプ圧へと徐々に回復する過渡期の水圧が検出される。
 なお、給水配管130や給水弁152に破損が生じ、その破損個所から潅漑水が漏れている場合、水圧センサ153で検出される水圧が減少する。これによって破損が生じているか否かを検出することができる。この破損の検出処理は制御装置200で実行される。
 <制御装置>
 図1および図3に示すように制御装置200は、監視部300、統合通信部400、情報格納部500、および、統合演算部600を有する。図面では統合通信部400をICDと表記している。
 制御装置200は監視部300を複数有する。複数の監視部300は複数の配管モジュール150とともに圃場20に設けられている。監視部300と配管モジュール150とは電気的に接続されている。
 監視部300には水圧センサ153で検出された水圧が入力される。そして監視部300は圃場20の環境に関わる物理量を環境値として検出している。複数の監視部300それぞれはこれら水圧と環境値とを統合通信部400に無線通信で出力している。
 統合通信部400は複数の監視部300それぞれから入力された水圧と環境値を情報格納部500に無線通信で出力する。これら水圧と環境値とが情報格納部500に格納される。情報格納部500はいわゆるクラウドである。
 統合演算部600は情報格納部500に格納された水圧と環境値などの諸情報を読み出す。そして統合演算部600は読み出した諸情報を適宜処理し、それをユーザのスマートフォンやパソコンのモニタ700に表示する。図面ではモニタ700をMと表記している。
 統合演算部600はユーザのスマートフォンやパソコンなどに含まれている。統合演算部600は情報処理演算機器610、メモリ620、および、通信装置630を有する。図面では情報処理演算機器610をIPCE、メモリ620をMM、通信装置630をCDと表記している。
 情報処理演算機器610にはプロセッサが含まれている。情報処理演算機器610は潅水に関わる演算処理を行う。係る機能は情報処理演算機器610に潅水アプリケーションプログラムがダウンロードされることで実現される。
 メモリ620はコンピュータやプロセッサによって読み取り可能な各種プログラムと各種情報を非一時的に格納する非遷移的実体的記憶媒体である。メモリ620は揮発性メモリと不揮発性メモリとを有している。メモリ620は通信装置630に入力された諸情報や情報処理演算機器610の処理結果を記憶する。メモリ620に記憶された情報に基づいて、情報処理演算機器610は各種演算処理を実行する。
 通信装置630は無線通信機能を備えている。通信装置630は受信した無線信号を電気信号に変換して情報処理演算機器610に出力する。通信装置630は情報処理演算機器610の処理結果を無線信号として出力する。
 以下、表記が煩雑となることを避けるため、情報処理演算機器610、メモリ620、および、通信装置630を特に区別して表記せずに、統合演算部600を用いて本実施形態の技術内容を説明する。情報処理演算機器610が処理演算部に相当する。
 ユーザは潅水スケジュールに関わるユーザ指示を、タッチパネルやキーボードなどの入力機器800を用いて統合演算部600に入力する。統合演算部600はこのユーザ指示と情報格納部500から読み出した諸情報とに基づいて、潅水スケジュールを決定する。ユーザからの指示がない場合、統合演算部600は諸情報に基づいて潅水スケジュールを自動的に決定する。図面では入力機器800をIDと表記している。
 統合演算部600は決定した潅水スケジュールにおいて潅漑水の供給開始時刻であると判定すると、給水弁152を開閉制御する指示信号を情報格納部500に出力する。この指示信号が情報格納部500から統合通信部400を介して監視部300に入力される。監視部300は指示信号に基づいて給水弁152への吐出信号の出力と非出力とを制御する。これにより給水弁152の開閉状態が制御される。この結果、圃場20への潅漑水の供給が制御される。指示信号と吐出信号のうちの少なくとも一方が制御信号に相当する。
 <分割エリア>
 図1に示すように監視部300は配管モジュール150とともに、1つの滴下配管132につき1つ設けられる。そのため、図3に模式的に示すように、複数の監視部300は、複数の配管モジュール150の備える給水弁152および水圧センサ153とともに、圃場20においてx方向を行方向、y方向を列方向として、行列配置される。
 係る構成により、行方向と列方向とによって区切られる複数の分割エリアそれぞれの環境が、それらに設けられた複数の監視部300それぞれによって個別に監視される。それとともに、複数の分割エリアそれぞれにおける潅漑水の供給が、複数の監視部300と複数の配管モジュール150それぞれによって個別に制御される。
 <監視部>
 図3に示すように監視部300は環境センサ310と制御部320を有する。制御部320に配管モジュール150の給水弁152と水圧センサ153が電気的に接続されている。図面では環境センサ310をES、給水弁152をWB、水圧センサ153をWPSと表記している。
 複数の環境センサ310は配管モジュール150とともに圃場20で行列配置される。これら複数の環境センサ310によって複数の分割エリアそれぞれの環境値が検出される。また複数の水圧センサ153によって複数の分割エリアそれぞれの水圧が検出される。これら複数の分割エリアそれぞれの環境値と水圧とが情報格納部500に格納される。
 図4に示すように制御部320は、マイコン330、通信部340、RTC350、および、発電部360を有する。マイコンはマイクロコンピュータの略である。RTCはReal Time Clockの略である。図面では通信部340をCDPと表記している。
 マイコン330には環境値と水圧が入力される。マイコン330はこれら環境値と水圧を、通信部340を介して統合通信部400に出力する。またマイコン330には統合通信部400から指示信号が入力される。マイコン330はこの指示信号に基づいて吐出信号を給水弁152に出力する。マイコン330が演算処理部に相当する。
 マイコン330は動作モードとしてスリープモードと通常モードを有する。スリープモードはマイコン330が演算処理を停止している状態である。通常モードはマイコン330が演算処理を実行している状態である。通常モードはスリープモードよりも消費電力が多くなっている。
 通信部340は統合通信部400と無線通信を行っている。通信部340はマイコン330から出力された電気信号を無線信号として統合通信部400に出力する。それとともに通信部340は統合通信部400から出力された無線信号を受信して電気信号に変換する。通信部340はその電気信号をマイコン330に出力する。電気信号に指示信号が含まれている場合、マイコン330はスリープモードから通常モードに切り換わる。
 RTC350は、時を刻む時計機能と時間を計測するタイマー機能を有する。RTC350は予め設定された時刻になった場合、若しくは、予め設定された時間が経過した場合、マイコン330にウェイクアップ信号を出力する。このウェイクアップ信号がスリープモードのマイコン330に入力されると、マイコン330はスリープモードから通常モードに切り換わる。RTC350は起床部に相当する。
 発電部360は光エネルギーを電気エネルギーに変換している。発電部360は監視部300の電力供給源になっている。発電部360からRTC350に電力供給が絶えず行われている。これによりRTC350の時計機能とタイマー機能が損なわれることが抑制されている。
 上記したように横配管134のz方向の位置は成熟した植物30の頂点よりも地面から離間している。制御部320はこの横配管134に機械的に連結されている。係る構成のため、成熟した植物30によって、太陽光が発電部360に入射することが妨げられ難くなっている。発電部360での光エネルギーの電気エネルギーへの変換が妨げられ難くなっている。
 <環境センサ>
 圃場20の分割エリア毎に変化することの想定される環境値としては土壌水分量がある。複数の環境センサ310それぞれが土壌水分量を検出する土壌水分センサ311を備えている。複数の土壌水分センサ311によって複数の分割エリアそれぞれの土壌水分量が検出される。図面では土壌水分センサ311をSMSと表記している。
 圃場20の起伏や植物30の育成状況によっては、分割エリア毎に変化することの想定される環境値として日射量がある。本実施形態では、複数の環境センサ310それぞれが日射量を検出する日射センサ312を備えている。これら複数の日射センサ312によって複数の分割エリアそれぞれの日射量が検出される。図面では日射センサ312をSRSと表記している。
 これら複数の分割エリアそれぞれで検出された土壌水分量と日射量を行列配置することで、圃場20の土壌水分量分布と日射量分布をモニタ700にマップ表示することが可能になる。同様にして、複数の分割エリアそれぞれに設けられた複数の水圧センサ153で検出された水圧を行列配置することで、圃場20に張り巡らされた給水配管130の水圧分布をモニタ700にマップ表示することが可能になる。係るマップ表示処理は統合演算部600で行われる。
 圃場20全体の環境値としては降雨量、温度、湿度、気圧、および、風量がある。これらを検出するセンサとしては、レインセンサ313、温度センサ314、湿度センサ315、気圧センサ316、および、風センサ317がある。これらは複数の監視部300のうちの少なくとも1つの環境センサ310に含まれている。
 図4に代表として示す監視部300の環境センサ310には、これら圃場20全体の環境値を検出する各種センサが含まれている。図面ではレインセンサ313をRS、温度センサ314をTS、湿度センサ315をMS、気圧センサ316をPS、風センサ317をWSと表記している。風センサ317は風量だけではなく風向も検出してもよい。
 なお、これらレインセンサ313、温度センサ314、湿度センサ315、気圧センサ316、および、風センサ317のうちの少なくとも1つが圃場20で行列配置された構成を採用することもできる。
 係る構成は、例えば、圃場20が広かったり、圃場20の起伏が激しかったり、圃場20の気候が激しかったりするために、分割エリア毎に降雨量、温度、湿度、気圧、および、風量が大きく変化しやすい場合に有効である。これらセンサで検出された降雨量、温度、湿度、気圧、および、風量を行列配置することで、これら環境値をモニタ700にマップ表示することが可能になる。
 また、圃場20全体の環境値を検出するセンサが統合通信部400に設けられた構成を採用することもできる。係る構成の場合、これらセンサの出力は統合通信部400を介して通信部340に出力される。それとともに、これらセンサの出力は統合通信部400を介して情報格納部500に格納される。
 係る構成は、例えば、圃場20が狭かったり、圃場20の起伏がなだらかであったり、圃場20の気候が安定していたりするために、分割エリア毎に降雨量、温度、湿度、気圧、および、風量が変化し難い場合に有効である。
 <土壌水分量>
 これまでに説明した各種環境値のうち、潅水システム10が制御する環境値は土壌水分量である。潅水システム10は分割エリア毎に潅漑水の供給時刻と供給量を制御する。こうすることで分割エリア毎の土壌水分量が個別に制御される。
 植物30は圃場20の作土層に根を張っている。植物30の生育はこの作土層の土壌に含まれる水分量(土壌水分量)に依存している。土壌水分量が成長阻害水分点を上回ると植物30に病害が発生する。土壌水分量が永久しおれ点を下回ると植物30のしおれが回復しなくなる。
 これら成長阻害水分点と永久しおれ点とは植物30の種類に応じて異なるものの、その値は既知である。これらの値は情報格納部500に記憶されている。
 土壌水分量の現在値は土壌水分センサ311で検出される。土壌水分量に関わりのある物理量としては、土壌水分量張力(pF値)や土壌誘電率(ε)がある。本実施形態の土壌水分センサ311はpF値を検出している。
 作土層の土壌水分量は圃場20の環境変化のために増減する。圃場20に雨が降ると土壌水分量が増大する。作土層から水が蒸発すると土壌水分量が減少する。また、植物30が水分を吸収したり、作土層よりも下層へ水が浸透したりすると土壌水分量が減少する。
 作土層に降り注がれる雨の量(降雨量)はレインセンサ313で検出される。
 作土層から蒸発する水分量(蒸発量)は、日射量、温度、湿度、および、風量に依存している。これらは、日射センサ312、温度センサ314、湿度センサ315、および、風センサ317で検出される。
 植物30が単位時間あたりに水分を吸収する吸水量は、植物30の種類によって予め推定することができる。単位時間あたりに作土層よりも下層に浸透する水分量は、土壌の水分保持能力によって予め推定することができる。これら推定値は情報格納部500に記憶されている。
 以上に示したように、作土層の土壌水分量の現在値、環境変化による作土層の土壌水分量の現在値からの増加、および、減少予測に関わる予測値それぞれが環境センサ310で検出される。これらが環境値として情報格納部500に格納される。また、植物30の成長阻害水分点と永久しおれ点、および、植物30が単位時間あたりに水分を吸収する吸水量と土壌の水分保持能力が情報格納部500に格納されている。そして、上記したユーザからの指示(ユーザ指示)が情報格納部500に格納される。このように、情報格納部500には潅水スケジュールを決定するための諸情報が格納される。
 <マイコン>
 図4に示すようにマイコン330は取得部331、信号出力部332、記憶部333、および、処理部334を備えている。図面では取得部331をAD、信号出力部332をSOU、記憶部333をMU、処理部334をPUと表記している。
 取得部331には環境センサ310で検出された環境値が入力される。また取得部331には水圧センサ153で検出された水圧が入力される。取得部331とこれら環境センサ310および水圧センサ153それぞれが電気的に接続されている。図1では、取得部331と土壌水分センサ311、および、取得部331と水圧センサ153を接続するワイヤ160を代表として図示している。
 信号出力部332は給水弁152と電気的に接続されている。信号出力部332から給水弁152に、給水弁152を開閉制御するための吐出信号が出力される。吐出信号の未入力時に給水弁152は閉状態になっている。吐出信号の入力時に給水弁152は開状態になっている。
 記憶部333はコンピュータやプロセッサによって読み取り可能なプログラムとデータを非一時的に格納する非遷移的実体的記憶媒体である。記憶部333は揮発性メモリと不揮発性メモリとを有している。記憶部333には処理部334が演算処理を実行するためのプログラムが記憶されている。このプログラムには上記した潅水アプリケーションプログラムの少なくとも一部が含まれている。また、記憶部333には処理部334が演算処理を実行する際のデータが一時的に記憶される。そして記憶部333には取得部331と通信部340それぞれに入力される各種データと、その各種データの取得時刻とが記憶される。
 処理部334はRTC350からウェイクアップ信号が入力されるとスリープモードから通常モードになる。通常モードにおいて処理部334は記憶部333に記憶されているプログラムと各種データを読み込んで演算処理を実行する。
 処理部334は取得部331に入力された各種センサ信号、通信部340に入力された指示信号の取得時刻をRTC350から読み出している。処理部334は指示信号とその取得時刻を記憶部333に記憶させる。
 また、処理部334は環境センサ310と水圧センサ153から入力された環境値と水圧、および、それらの取得時刻を通信部340と統合通信部400を介して情報格納部500に格納している。そして処理部334は、情報格納部500、統合通信部400、および、通信部340を介して統合演算部600から入力された指示信号に基づいて、信号出力部332を介して給水弁152に吐出信号を出力している。
 <通信部>
 通信部340は処理部334から入力された電気信号を無線信号に変換する。通信部340はこの無線信号を統合通信部400に出力する。また通信部340は統合通信部400から出力された無線信号を電気信号に変換する。通信部340はこの電気信号を処理部334に出力する。
 通信部340が出力する無線信号には、図5に簡易的に示すようにアドレス341とデータ342とが含まれている。図面においてアドレス341をADD、データ342をDATと表記している。
 図3に示すように複数の通信部340と統合通信部400との間で無線信号の送受信が行われる。無線信号に含まれるアドレス341は、複数の通信部340のうちのいずれから出力されたかを示す識別コードである。換言すれば、無線信号に含まれるアドレスは、複数の処理部334のうちのいずれから出力されたかを示す識別コードである。複数の記憶部333それぞれに固有のアドレス341が保存されている。
 統合通信部400から出力される無線信号にもアドレス341が含まれている。そしてこの無線信号のデータ342には指示信号が含まれている。この無線信号を複数の通信部340それぞれが受信する。
 この無線信号が複数の通信部340それぞれで電気信号に変換される。そしてこの電気信号が複数の処理部334それぞれに入力される。複数の処理部334のうち、その電気信号に含まれるアドレス341と同一のアドレス341を保有する処理部334のみが、その電気信号に基づく演算処理を実行する。
 後述するようにマイコン330はスリープモードと通常モードとを交互に繰り返す間欠駆動をする。そのために通信部340と統合通信部400との間での無線通信は頻繁には行われない。通信部340と統合通信部400との間で無線通信を行う時間間隔が長くなっている。1回の無線通信でデータ342に含めることのできるデータ量を多くすることが可能になっている。
 <発電部>
 発電部360は太陽電池361、蓄電部362、電流センサ363、および、電力センサ364を有する。図面では太陽電池361をSB、蓄電部362をESU、電流センサ363をCS、電力センサ364をPSと表記している。
 太陽電池361は光エネルギーを電気エネルギーに変換する。蓄電部362はその電気エネルギー(電力)を蓄電する。蓄電部362に蓄電された電力が監視部300の駆動電力として活用される。
 電流センサ363は太陽電池361から蓄電部362に出力される電流を検出する。電力センサ364は蓄電部362から出力される電力を検出する。処理部334はこの電流と電力も通信部340と統合通信部400を介して情報格納部500に格納している。
 監視部300の駆動電力は発電部360で発電された電力に依存している。そのために発電部360に入射する光量が少ないと、監視部300の駆動電力が枯渇する虞がある。これを避けるために監視部300のマイコン330は間欠駆動を行っている。
 <RTC>
 RTC350は上記した間欠駆動の時間間隔(起床周期)が経過するごとにウェイクアップ信号をマイコン330に出力している。これによりマイコン330はスリープモードと通常モードとを交互に繰り返している。
 上記の起床周期は、蓄電部362に蓄電された電力量(蓄電量)に応じて統合演算部600によって決定される。換言すれば、間欠駆動間隔は、蓄電量に応じて統合演算部600によって決定される。
 統合演算部600は情報格納部500に格納された電力に基づいて蓄電量を算出する。統合演算部600は蓄電量が少ないほどに間欠駆動間隔を長く設定する。逆に言えば、統合演算部600は蓄電量が多いほどに間欠駆動間隔を短く設定する。
 統合演算部600は間欠駆動間隔を指示信号に含ませる。この指示信号をマイコン330の処理部334が取得すると、処理部334は間欠駆動間隔を調整する。すなわち、処理部334はRTC350の起床周期を調整する。
 なお、圃場20の環境が数秒単位で極端に変化することはまれである。そのために間欠駆動間隔は数十秒~数十時間単位になっている。これに応じて、無線通信を行う時間間隔も数十秒~数十時間単位になっている。
 <潅水システムの駆動>
 これまでに説明したように、潅水システム10では、複数の監視部300と統合演算部600との間での信号の送受信、および、情報格納部500への各種データの保存が行われている。複数の監視部300と統合演算部600それぞれは、起床周期毎に処理するサイクルタスクと、突発的に処理するイベントタスクとを実行している。
 これらサイクルタスクとイベントタスクとには処理の優先順位がある。これらタスクの処理タイミングが同一になった場合、サイクルタスクよりもイベントタスクの処理が優先される。
 サイクルタスクとして、複数の監視部300それぞれは図6に示すセンサ処理を実行している。統合演算部600は図7に示す更新処理を実行している。
 イベントタスクとして、複数の監視部300それぞれは図8に示す監視処理と図9に示す給水処理を実行している。統合演算部600は図10に示す潅水処理、図11に示すユーザ更新処理、および、図12に示す強制更新処理を実行している。
 以下、図6と図7に基づいて、サイクルタスクとしてのセンサ処理と更新処理を説明する。なお、フローチャートを示す各図面においては、スタートをS、エンドをEで表記している。
 <センサ処理>
 図6に示すスタートの前において、監視部300のマイコン330はスリープモードになっている。このマイコン330にRTC350からウェイクアップ信号が入力される。これによりマイコン330はスリープモードから通常モードに切り換わる。それとともに、マイコン330は図6に示すセンサ処理を実行し始める。このセンサ処理はマイコン330の間欠駆動間隔で実行される。
 ステップS10においてマイコン330は、各種センサから入力されるセンサ信号を取得する。それとともに、マイコン330はRTC350の出力に基づいてセンサ信号の取得時刻を取得する。この後にマイコン330はステップS20へ進む。
 ステップS20へ進むとマイコン330は、取得したセンサ信号と取得時刻それぞれを記憶する。この後にマイコン330はステップS30へ進む。
 ステップS30へ進むとマイコン330は、センサ情報としてのセンサ信号と取得時刻を無線通信によって通信部340から統合通信部400に出力する。このセンサ情報が統合通信部400によって情報格納部500に格納される。マイコン330はスリープモードに移行し、センサ処理を終了する。
 <更新処理>
 統合演算部600は図7に示す更新処理を更新周期が経過するごとに実行している。この更新周期はマイコン330の間欠駆動間隔と同程度になっている。
 ステップS110において統合演算部600は、情報格納部500に格納されている諸情報を読み出す。そして統合演算部600はステップS120へ進む。
 ステップS120へ進むと統合演算部600は、読み込んだ諸情報に基づいて、複数の監視部300それぞれの潅水スケジュールを更新する。また統合演算部600は複数の監視部300それぞれのセンサ処理を更新する。具体的に言えば、統合演算部600はセンサ処理を実行するタイミングに相当する、間欠駆動間隔を更新する。そして統合演算部600はその更新した潅水スケジュールと間欠駆動間隔を自身が保有するとともに、情報格納部500に格納する。この後に情報格納部500は更新処理を終了する。
 以上に示したように、サイクルタスクによって、センサ情報、潅水スケジュール、および、間欠駆動間隔が更新される。
 次に、図8~図12に基づいて、イベントタスクとしての監視処理、給水処理、潅水処理、ユーザ更新処理、および、強制更新処理を説明する。なお、監視処理、給水処理、および、潅水処理それぞれは、監視部300の駆動電力の枯渇を避けるために、昼間に実行される。昼間か否かの判定は、現在時刻と日射センサ312で検出される日射量などによって検出することができる。
 <監視処理>
 図8に示すスタートの前において、監視部300のマイコン330はスリープモードになっている。このマイコン330に無線通信によって統合演算部600から指示信号が入力される。この結果、マイコン330はスリープモードから通常モードに切り換わる。それとともに、マイコン330は図8に示す監視処理を実行し始める。
 ステップS210においてマイコン330は、入力された指示信号とそれの取得時刻を記憶する。この後にマイコン330はステップS220へ進む。
 ステップS220へ進むとマイコン330は、指示信号に給水弁152を閉状態から開状態にする給水指示が含まれているか否かを判定する。給水指示が指示信号に含まれている場合、マイコン330はステップS230へ進む。給水指示が指示信号に含まれていない場合、マイコン330はステップS240へ進む。
 ステップS230へ進むとマイコン330は、図9に示す給水処理を実行する。すなわちマイコン330はステップS231において、給水指示にしたがって、給水弁152に吐出信号を出力する。この後、マイコン330はステップS232へ進む。
 ステップS232へ進むとマイコン330は、指示信号に含まれている給水時間が経過したか否かを判定する。給水時間が経過していない場合、マイコン330は吐出信号の給水弁152への出力を継続する。給水時間が経過した場合、マイコン330はステップS233へ進む。
 ステップS233へ進むとマイコン330は、吐出信号の出力を停止する。そしてマイコン330は図8に示すステップS240へ進む。
 ステップS240へ進むとマイコン330は、指示信号に間欠駆動間隔の更新指示が含まれているか否かを判定する。間欠駆動間隔の更新指示が指示信号に含まれている場合、マイコン330はステップS250へ進む。間欠駆動間隔の更新指示が指示信号に含まれていない場合、マイコン330はステップS260へ進む。
 なお、上記した間欠駆動間隔の更新指示は、統合演算部600若しくは情報格納部500から複数の監視部300それぞれに指示信号として定期的若しくは不定期的に出力されている。
 ステップS250へ進むとマイコン330の処理部334はRTC350のウェイクアップ信号を出力する時間間隔を調整する。この後、マイコン330はステップS260へ進む。
 ステップS260へ進むとマイコン330は、図6に基づいて説明したセンサ処理を実行する。マイコン330がステップS230の給水処理を実行した場合、ステップS260において潅漑水の供給後の環境値が検出される。マイコン330がステップS260の給水処理を実行しなかった場合、ステップS260において潅漑水の供給されていない環境値が検出される。この環境値が情報格納部500に格納される。センサ処理を実行し終えるとマイコン330はスリープモードに移行し、監視処理を終了する。
 <潅水処理>
 統合演算部600は図10に示す潅水処理を、複数の監視部300それぞれの潅水スケジュールにおいて、潅漑水を供給するタイミングになるごとに実行している。
 ステップS310において統合演算部600は、複数の監視部300のうちの潅漑水を供給する予定になっている分割エリアの監視部300に向けて、給水指示を含む指示信号(給水信号)を出力する。この後に統合演算部600はステップS320へ進む。
 給水指示には、吐出信号の出力開始と、吐出信号の出力時間(給水時間)とが含まれている。この給水指示を受信した監視部300は図8に基づいて説明した監視処理を実行する。
 ステップS320へ進むと統合演算部600は、監視部300の監視処理が終了するまで待機状態になる。監視処理が終了した場合、統合演算部600はステップS330へ進む。
 なお、監視処理が終了したか否かの判断は、例えば、監視処理が終了することが見込まれる時間だけ経過したか否かに基づいて行うことができる。監視処理が終了したか否かを監視部300に対して問い合わせることによって行うことができる。監視処理の終了判断方法については特に限定されない。
 ステップS330へ進むと統合演算部600は、図7に基づいて説明した更新処理を実行する。これにより、潅漑水の供給後の環境値に基づいて、潅水スケジュールが更新される。
 なお、複数の分割エリアそれぞれに設けられた複数の監視部300それぞれの潅水スケジュールの少なくとも一部における、潅漑水の供給開始時刻を一律に同時刻に定めてもよい。ただし、複数の分割エリアそれぞれで要求される潅漑水の供給量は異なることが想定される。そのために複数の分割エリアそれぞれでの潅漑水の供給開始時刻を一律に同時刻にしたとしても、複数の分割エリアそれぞれでの潅漑水の供給終了時刻は同一若しくは不同になる。
 係る構成の場合、統合演算部600はステップS310において、複数の分割エリアそれぞれに設けられた複数の監視部300の少なくとも一部に向けて給水信号を出力する。統合演算部600はステップS320において、複数の潅水スケジュールのうち、最も給水時間の長い分割エリアにおける監視部300での監視処理が終了するまで待機状態になる。
 <ユーザ更新処理>
 統合演算部600は図11に示すユーザ更新処理を、潅水スケジュールや間欠駆動間隔の調整に関わるユーザ指示が入力機器800から入力された際に実行している。
 ステップS410において統合演算部600は、入力されたユーザ指示を情報格納部500に格納する。この後に統合演算部600はステップS420へ進む。
 ステップS420へ進むと統合演算部600は、図7に基づいて説明した更新処理を実行する。これにより、ユーザ指示に基づいて、潅水スケジュールや間欠駆動間隔が更新される。
 <強制更新処理>
 統合演算部600は図12に示す強制更新処理を、潅水スケジュールと間欠駆動間隔の更新に関わるユーザ指示が入力された際に実行している。
 ステップS510において統合演算部600は、センサ処理の実行を要求する要求指示を含む指示信号(要求信号)を出力する。この要求信号が無線通信によって監視部300に出力される。この後に統合演算部600はステップS520へ進む。
 ステップS520へ進むと統合演算部600は、監視部300のセンサ処理が終了するまで待機状態になる。センサ処理が終了した場合、統合演算部600はステップS530へ進む。
 なお、センサ処理が終了したか否かの判断は、例えば、センサ処理が終了することが見込まれる時間だけ経過したか否かに基づいて行うことができる。また、センサ処理が終了したか否かを監視部300に対して問い合わせることによって行うことができる。センサ処理の終了判断方法については特に限定されない。
 ステップS530へ進むと統合演算部600は、図7に基づいて説明した更新処理を実行する。これにより、ユーザの更新要求時の各種データに基づいて、潅水スケジュールと間欠駆動間隔が更新される。
 <個別潅水処理>
 以上、図6~図12に基づいて説明したように、本実施形態においては、複数の分割エリアそれぞれでの潅水スケジュールが統合演算部600で決定される。そして、複数の潅水スケジュールそれぞれに基づく潅漑水の供給が統合演算部600によって制御される。
 ただし、複数の分割エリアそれぞれでの潅水スケジュールが統合演算部600で決定されるものの、複数の潅水スケジュールそれぞれに基づく潅漑水の供給が複数の監視部300それぞれによって個別に制御される構成を採用することもできる。
 この変形例の場合、図6に示すセンサ処理と図10に示す潅水処理に代わって、監視部300が図13に示す個別潅水処理を実行する。
 図13に示すスタートの前において、監視部300のマイコン330はスリープモードになっている。RTC350からウェイクアップ信号が入力されると、マイコン330はスリープモードから通常モードに切り換わる。それとともに、マイコン330は図13に示す個別潅水処理を実行し始める。個別潅水処理はマイコン330の間欠駆動間隔で実行される。監視部300は個別潅水処理をサイクルタスクとして実行する。
 ステップS610においてマイコン330は、情報格納部500に格納された潅水スケジュールと間欠駆動間隔を読み込む。この後にマイコン330はステップS620へ進む。
 ステップS620へ進むとマイコン330は、現在時刻が読み込んだ潅水スケジュールにおける潅漑水の供給開始時刻後になっているか否かを判定する。現在時刻が潅漑水の供給開始時刻後の場合、マイコン330はステップS630へ進む。現在時刻が潅漑水の供給開始時刻前の場合、マイコン330はステップS640へ進む。
 ステップS630へ進むとマイコン330は、図9に示す給水処理を実行する。その後、マイコン330はステップS640へ進む。
 ステップS640へ進むとマイコン330は、読み込んだ間欠駆動間隔と、記憶している間欠駆動間隔とを比較する。両者に差がある場合、マイコン330はステップS650へ進む。両者に差がない場合、マイコン330はステップS660へ進む。
 ステップS650へ進むとマイコン330の処理部334はRTC350のウェイクアップ信号を出力する時間間隔を調整する。これにより間欠駆動間隔が更新される。この後、マイコン330はステップS660へ進む。
 ステップS660へ進むとマイコン330は、図6に基づいて説明したセンサ処理を実行する。センサ処理を実行し終えるとマイコン330はスリープモードに移行し、個別潅水処理を終了する。
 なお、予め読み込んだ潅水スケジュールに含まれる給水開始時刻時にRTC350から給水開始信号を出力するように設定しておいてもよい。マイコン330はこの給水開始信号を受信すると、図9に示す給水処理を実行してもよい。
 <独立更新>
 さらに例示すると、複数の分割エリアそれぞれでの潅水スケジュールを複数の監視部300それぞれが独立して決定する構成を採用することもできる。係る構成においては、複数の監視部300それぞれが図7に示す更新処理を実行する。
 ステップS110において複数の監視部300それぞれは、情報格納部500に格納されたユーザのユーザ指示、植物30の成長阻害水分点と永久しおれ点、および、植物30が単位時間あたりに水分を吸収する吸水量と土壌の水分保持能力などの諸情報を読み込む。それとともに複数の監視部300それぞれは、環境センサ310で検出される環境値を取得する。
 なお、通信障害のために、情報格納部500に格納された諸情報を複数の監視部300が読み込めなくなることが想定される。そのために上記構成の場合、複数の監視部300それぞれは情報格納部500から読み込んだ諸情報を記憶しておく。そしてこれら記憶した情報が通信障害などのために更新されない場合、複数の監視部300それぞれは、その更新されていない情報と、環境センサ310で検出される環境値とに基づいて潅水スケジュールを決定する。若しくは、複数の監視部300それぞれは、環境センサ310で検出される環境値に基づいて潅水スケジュールを決定する。
 <監視部通信>
 圃場20が広かったり、起伏が激しかったり、天気が荒れたりしている場合、通信障害によって、統合演算部600と複数の監視部300それぞれとの間での情報伝達がうまくいかないことが起こりえる。統合通信部400と複数の監視部300それぞれとの間での無線通信がうまくいかないことが起こりえる。
 圃場20の起伏や通信を阻害する障害物を何ら考慮しなかった場合、統合通信部400との離間距離の短い監視部300は、統合通信部400との離間距離の遠い監視部300と比べて、統合通信部400との間での通信に障害が起きがたいことが期待される。
 そこで、例えば複数の監視部300のうち、統合通信部400との離間距離の短い監視部300を子機とし、離間距離の長い監視部300を孫機とする。そして、孫機と統合通信部400との無線通信を、子機を介して行う構成を採用することもできる。
 <天気予報と潅水スケジュール>
 これまでに説明したように、情報格納部500には土壌水分量の現在値と減少変化の予測値、および、ユーザ指示が格納される。そして情報格納部500には植物30の成長阻害水分点と永久しおれ点、および、植物30が単位時間あたりに水分を吸収する吸水量と土壌の水分保持能力が格納されている。
 これらの他に、図1と図3に示すように、情報格納部500には外部情報源1000から出力配信される圃場20の天気予報が格納される。図面においては外部情報源1000をESIと表記している。
 図7に基づいて説明した更新処理のS110において統合演算部600は、この天気予報を含む諸情報を情報格納部500から読み出す。そして統合演算部600はS120において複数の監視部300それぞれの潅水スケジュールを決定する。
 <破損検出>
 給水配管130や給水弁152は野外の圃場20に設けられる。そのためにこれら給水配管130や給水弁152は経年劣化や害獣のために破損する虞がある。そして、この給水配管130や給水弁152に生じている破損が僅かな場合、その破損を検出することが困難になる虞がある。
 給水配管130や給水弁152に生じている破損が僅かな場合、その破損個所から漏れる潅漑水は微量になる。そのために給水弁152が閉状態で、給水配管130が潅漑水で満たされた安定状態においては、水圧センサ153でポンプ圧が検出されることが想定される。また、給水弁152が開状態で、給水配管130内の潅漑水の流動変化がほとんど生じていない安定状態においては、水圧センサ153で流動圧が検出されることが想定される。
 ただし、例え生じている破損が僅かのために、その破損個所から漏れる潅漑水が微量だとしても、以下の方法を採用することで、その僅かな破損が生じているか否かを検出することができる。
 給水弁152を開状態から閉状態に移行させると、水圧は流動圧からポンプ圧へと回復しようとする。この水圧が流動圧からポンプ圧へと回復しようとする過渡期の間、破損個所から継続的に灌漑水が漏れる。そのためにこの過渡期における水圧の時間変化の速さ(時定数)は、例え給水配管130や給水弁152に生じている破損が僅かだとしても、多少なりとも遅くなる。そのため、この時定数を検出することで、給水配管130や給水弁152に破損が生じているか否かを判定することができる。係る水圧に基づく破損判定処理は、本実施形態においては複数の監視部300それぞれのマイコン330で行われる。監視部300が検査装置に相当する。
 <破損判定処理>
 マイコン330は図8に基づいて説明した監視処理のステップS230の給水処理において、図14に示す破損判定処理を実行する。この破損判定処理は、図9に基づいて説明した給水処理のステップS233以降に実行される。マイコン330はこの破損判定処理を行うための比較値として、期待回復時間、期待時定数、および、期待水圧を備えている。また、この破損判定処理を実行するための検査プログラムが記憶部333と情報格納部500のうちの少なくとも一方に記憶されている。
 図14に示すステップS710においてマイコン330は、水圧センサ153から水圧を取得するとともに記憶する。この時点で取得される水圧は、流動圧とポンプ圧の間の値になることが期待される。この後にマイコン330はステップS720へ進む。
 ステップS720へ進むとマイコン330は、吐出信号の出力が停止してから期待回復時間が経過したか否かを判定する。期待回復時間が経過していない場合、マイコン330はステップS710を繰り返し、水圧の取得と記憶を継続する。期待回復時間が経過した場合、マイコン330はステップS730へ進む。
 なお、期待回復時間は、給水弁152を開状態から閉状態に遷移させた際に、破損が全く生じていない時における水圧が流動圧からポンプ圧に回復することの期待される時間に基づいて決定される。例えば、期待回復時間はこの時間と同程度に設定することができる。期待回復時間が期待時間に相当する。
 ステップS730へ進むとマイコン330は、期待回復時間が経過するまでの間に取得した複数の水圧に基づいて、水圧が流動圧からポンプ圧に回復する過渡期の水圧の時間変化を算出する。すなわちマイコン330は水圧の時定数を算出する。この後にマイコン330はステップS740へ進む。
 ステップS740へ進むとマイコン330は、算出した水圧の時定数が期待時定数よりも低いか否かを判定する。水圧の時定数が期待時定数よりも低い場合、マイコン330はステップS750へ進む。水圧の時定数が期待時定数よりも高い場合、マイコン330はステップS760へ進む。
 なお、期待時定数は、破損が全く生じていない時における水圧が流動圧からポンプ圧に回復する際の時定数に基づいて決定される。例えば、期待時定数はこの時定数から水圧の検出誤差を減算した値に設定することができる。
 ステップS750へ進むとマイコン330は、期待回復時間経過時の水圧が期待水圧よりも低いか否かを判定する。この水圧が期待水圧よりも低い場合、マイコン330はステップS770へ進む。この水圧が期待水圧よりも高い場合、マイコン330はステップS780へ進む。
 なお、期待水圧は、破損が全く生じていない時のポンプ圧に基づいて決定される。例えば、期待水圧はこのポンプ圧から水圧の検出誤差を減算した値に設定することができる。
 ステップS770へ進むとマイコン330は、時定数が期待時定数よりも低く、なおかつ、期待回復時間経過時の水圧が期待水圧に達していないので、給水配管130や給水弁152に破損が生じていると判定する。
 ステップS780へ進むとマイコン330は、時定数が期待時定数よりも低く、なおかつ、期待回復時間経過時の水圧が期待水圧に達しているので、給水配管130や給水弁152に軽微破損が生じていると判定する。
 ステップS760へ進むとマイコン330は、時定数が期待時定数よりも高いので、給水配管130や給水弁152は正常であると判定する。
 以上に示した破損判定、軽微破損判定、および、正常判定の結果は、マイコン330から統合演算部600に入力される。
 なお、本実施形態ではマイコン330が破損判定処理を実行する例を示した。しかしながら、マイコン330が破損判定処理のステップS710とステップS720を実行した後、その水圧の取得結果を受けて、破損判定処理のステップS730以降を統合演算部600が実行してもよい。この構成では、監視部300と統合演算部600が検査装置に含まれる。マイコン330および統合演算部600の一方が検査部に相当する。
 <作用効果>
 以上に示したように、給水配管130から圃場20へ潅漑水を供給する時間帯と、給水配管130を検査する時間帯とが同一の時間帯になる。すなわち、図9に基づいて説明した給水処理と、図14に基づいて説明した破損判定処理それぞれを実行する時間帯が例えば昼間などの同一の時間帯になる。そのために処理作業が煩瑣になることが抑制される。
 太陽電池361で発電された電力が蓄電部362に蓄電される。この蓄電部362に蓄電された電力でマイコン330が駆動する。このマイコン330が上記の給水処理と破損判定処理を実行する。また、給水処理は昼間に実行される。そのために破損判定処理も昼間に実行される。
 したがって、例えば、太陽電池361での発電の期待されない夜中に破損判定処理が実行される構成とは異なり、マイコン330の駆動によって蓄電部362の蓄電量が著しく低下することが抑制される。
 また、水圧の時定数と回復時間経過時の水圧に基づいて、給水配管130や給水弁152に破損が生じているか否かを判定することができる。例え期待回復時間経過時の水圧がポンプ圧に基づく期待水圧程度に回復するほどに、給水配管130に生じている破損が僅かだとしても、時定数は多少なりとも遅くなることが期待される。そのため、時定数に基づいて給水配管130を検査することで、給水配管130に僅かでも破損が生じたか否かを検出することができる。
 <水圧センサの故障判定>
 なお、これまでに説明したように、1つの延長配管135に第1分岐配管136aと第2分岐配管136bが連結されている。そして水圧センサ153は延長配管135における第1分岐配管136aと第2分岐配管136bそれぞれの連結される2つの連結口それぞれに設けられている。
 給水配管130に破損が生じていなく、なおかつ、第1分岐配管136aと第2分岐配管136bそれぞれの給水弁152が同等の開閉状態の場合、これら2つの水圧センサ153で検出される水圧の差分の絶対値は、検出誤差範囲に収まることが期待される。しかしながら差分の絶対値が検出誤差範囲を超える場合、2つの水圧センサ153のいずれかで故障が生じていると判定することができる。
 <潅漑水の供給量>
 これまでに説明したように、分割エリア毎に給水弁152の開閉が制御される。図1に示すように1つの横配管134に複数の滴下配管132が連結されている。そして給水弁152と水圧センサ153はこれら複数の滴下配管132それぞれに設けられている。
 以下、説明を簡便とするため、図15に示すように、1つの横配管134に連結された複数の滴下配管132のうちの任意の2つを第1滴下配管132a、第2滴下配管132bとする。
 例えば、第1滴下配管132aに設けられた給水弁152が閉状態、第2滴下配管132bに設けられた給水弁152が開状態になると、第1滴下配管132a側の水圧よりも、第2滴下配管132b側の水圧が減少する。第2滴下配管132bからは、第1滴下配管132a側と第2滴下配管132b側の水圧差に応じた流速で、潅漑水が滴下孔137から吐出する。
 この水圧差と、滴下孔137から吐出される潅漑水の流速とは、比例の関係にある。水圧差をΔP、流速をvとすると、ΔP=k×v×vとあらわされる。ここで、kは給水配管130の径などによって定められる規定値であり、情報格納部500に格納されている。そのため、圧力差ΔPを検出することで、潅漑水の流速vを算出することができる。
 流速vは単位時間あたりの潅漑水の供給量(吐出量)に相当する。そのため、上記式で表される流速vの時間積算値を算出することで、滴下孔137から吐出される潅漑水量を算出することができる。このように水圧センサ153の出力に基づいて、潅漑水の供給量を算出することができる。
 なお、潅漑水の植物30への供給は、雨天時などの光量の少ない時ではなく、晴天時などの光量の多い時に行われる。この際、蓄電部362の蓄電量が増大しやすくなる。それにともなって、マイコン330の間欠駆動間隔が狭まる。そのために図6に基づいて説明したセンサ処理をマイコン330が実行する間隔が狭まる。これにより、潅漑水の供給時における水圧センサ153で検出される水圧の取得間隔が狭まる。この水圧が情報格納部500に逐次格納される。
 統合演算部600は、情報格納部500に格納された水圧と規定値kを読み出す。そして統合演算部600は上記式に基づいて流速vを算出する。統合演算部600は給水弁152が閉状態から開状態に移行するまでの間、マイコン330の間欠駆動間隔で流速vを算出する。そして統合演算部600はこの期間の流速vをすべて加算する。こうすることで統合演算部600は流速vの時間積算値を算出する。すなわち、統合演算部600は分割エリア毎の潅漑水の供給量を算出する。
 なお、1つの横配管134に連結された複数の滴下配管132それぞれから潅漑水を供給する場合、例えば、複数の滴下配管132の内の一部の給水弁152を開状態にして潅漑水を吐出する。その後、残りの給水弁152を開状態にして潅漑水を吐出する。
 このように1つの横配管134に連結された複数の滴下配管132を一律的に閉状態から開状態に制御するのではなく、時間を分けて、部分的に閉状態から開状態にする。こうすることで、上記式で表される圧力差を検出することが可能になる。この結果、供給された潅漑水量を算出することが可能になる。
 (第2実施形態)
 (技術分野)
 本開示は、通信装置に関するものである。
 (背景技術)
 特開2017-9305号公報に示されるように、センシングデータを基地局へ送信する通信処理部を備えるセンシング装置が知られている。
 (発明が解決しようとする課題)
 上記公報に記載の構成において、通信処理部と基地局とは無線通信を行う。例えばこの無線通信にノイズが混入すると、通信処理部と基地局との間で伝達される情報の信頼性が低下する。
 本開示の目的は、情報の信頼性が高いか否かを判定することのできる通信装置を提供することである。
 (課題を解決するための手段)
 本開示の一態様による通信装置は、 植物(30)が生育する野外の圃場(20)に設けられた複数の通信部(340,400)の間で送受信される無線信号に、複数の異なる種類のデータ(343,344,345)が含まれるとともに、複数の異なる種類のデータのうちの少なくとも1種類のデータが複数含まれ、
 無線信号において複数の異なる種類のデータが所定の配列で並んでいる。
 これによれば、無線信号において所定の位置に配列される、同一種類の複数のデータが等しいか否かに基づいて、無線信号の信頼性が高いか否かを判定することができる。
 以下、第2実施形態を図16~図18に基づいて詳説する。
 上記したように、通信部340と統合通信部400との間で無線信号を送受信する時間間隔が長くなっている。そのために1回の無線通信でデータ342に含まらせることのできるデータ量を多くすることが可能になっている。したがって、情報の信頼性を高めるために複数の同一データや各種セキュリティ情報をデータ342に含ませることが可能になっている。
 例えば図16に示すように、データ342に同一の第1データ343を2つ含ませてもよい。またデータ342に同一の第2データ344を2つ含ませてもよい。そして図16に示すように第1データ343と第2データ344とを無線信号において交互に並べさせてもよい。
 さらに、第1データ343に含まれる0,1の総数が奇数か偶数かを示す第1パリティビット343aが第1データ343に付帯されてもよい。第2データ344に含まれる0,1の総数が奇数か偶数かを示す第2パリティビット344aが第2データ344に付帯されてもよい。
 図面においては、第1データ343をDAT_A、第2データ344をDAT_Bと表記している。そして第1パリティビット343aをPa、第2パリティビット344aをPbと表記している。
 係る構成により、図16に示す例に即して言えば、アドレス341の次に含まれる情報が第1データ343であることが期待され、その次の次に含まれる情報も第1データ343であることが期待される。これら2つの第1データ343に付帯する第1パリティビット343aが等しいか否かに基づいて、データ342が正しいか否かを判定することができる。若しくは、2つの第1データ343が等しいか否かに基づいて、データ342が正しいか否かを判定することができる。
 同様にして、アドレス341の次の次に含まれる情報が第2データ344であることが期待され、その次の次に含まれる情報も第2データ344であることが期待される。これら2つの第2データ344に含まれる第2パリティビット344aが等しいか否かに基づいて、データ342が正しいか否かを判定することができる。若しくは、2つの第2データ344が等しいか否かに基づいて、データ342が正しいか否かを判定することができる。
 <作用効果>
 以上に示したように、1つの無線通信に同種のデータを複数含ませる。そしてその等しいことが期待される同種のデータ同士を比較する。これにより無線信号に含まれるデータ342が正しいか否かを判定することができる。
 また、上記したように同種のデータそれぞれに、同種のデータに含まれる0,1の総数が奇数か偶数かを示すパリティビットを付帯させる。そして等しいことが期待される同種のデータに含まれるパリティビット同士を比較する。これにより無線信号に含まれるデータ342が正しいか否かを簡易に判定することができる。
 なお、本実施形態では、無線信号に種類の異なる第1データ343と第2データ344それぞれが2つ含まれる例を示した。しかしながら無線信号に含まれるデータの種類は2種類に限らず、3種類以上でもよい。そして、無線信号に含まれる同種のデータの数は2つに限定されず、3つ以上でもよい。
 本実施形態では、無線信号に同種のデータが複数含まれる例を示した。しかしながら、例えば図17に示すように、無線信号に種類の異なる第1データ343~第3データ345が含まれた構成を採用することもできる。そして、無線信号に複数ではなく1つの第3データ345が含まれる構成を採用することもできる。この第3データ345に第3パリティビット345aを付帯させてもよい。図面では、第3データ345をDAT_C、第3パリティビットをPcと表記している。
 本実施形態では、無線信号において種類の異なる2種類のデータが交互に並ぶ例を示した。しかしながら無線信号において種類の異なるデータの並ぶパターンが上記例に限定されない。例えば図18に示すように、種類の等しいデータが連続して並ぶ構成を採用することもできる。
 本実施形態に記載の潅水システム10には、第1実施形態に記載の潅水システム10の構成要素の少なくとも1つが含まれている。そのために本実施形態の潅水システム10は、第1実施形態に記載の潅水システム10と同等の構成要素によって、第1実施形態で記載した作用効果を奏することは言うまでもない。そのためにその記載を省略する。以下に示す他の実施形態でも重複する作用効果の記載を省略する。
 (第3実施形態)
 (技術分野)
 本開示は、圃場の環境を監視する監視部に関するものである。
 (背景技術)
 特許第5830411号公報に示されるように、離れた圃場に配置された複数の子局と1つの親局を備える無線管理システムが知られている。
 (発明が解決しようとする課題)
 上記公報に記載の子局はCPUとセンサを有する。子局は圃場に設けられるが、この圃場に出現する害獣によって、例えばCPUとセンサとを接続する配線が損傷する虞がある。
 本開示の目的は、電気的な情報の連絡が害獣によって阻害されることの抑制された監視部を提供することである。
 (課題を解決するための手段)
 本開示の一態様による監視部は、 植物(30)が生育する野外の圃場(20)を複数に分けた複数の分割エリアそれぞれに設けられ、分割エリアの環境を監視するとともに、圃場に設けられた統合通信部(400)と無線通信する監視部であって、
 分割エリアの土壌に一部が設けられる第1監視部(300a)と、
 第1監視部よりも分割エリアの空側に設けられ、第1監視部と無線通信するとともに統合通信部と無線通信する第2監視部(300b)と、を有する。
 これによれば、第1監視部(300a)と第2監視部(300b)との間の電気的な情報の連絡が害獣によって阻害されることが抑制される。
 以下、第3実施形態を図19および図20に基づいて詳説する。
 これまでに説明したように、監視部300は太陽電池361での発電を行うために圃場20の空側に設けられる。これに反して、土壌水分センサ311は土壌水分量を検出するために圃場20の地面に設けられる。そのために監視部300と土壌水分センサ311とはz方向で離間している。
 これら監視部300と土壌水分センサ311とは例えば図1に示すワイヤ160を介して電気的に接続されている。この監視部300と土壌水分センサ311とを接続しているワイヤ160がイノシシやシカなどの害獣によって損傷する虞がある。
 そこで本実施形態の監視部300は図19と図20に示す第1監視部300aと第2監視部300bを有する。1つの分割エリアの地面側に第1監視部300aが設けられるとともに、この分割エリアの空側に第2監視部300bが設けられる。
 <第1監視部>
 図20に示すように第1監視部300aは環境センサ310として土壌水分センサ311を備えている。第1監視部300aは土壌水分センサ311とともに地面に埋設されている。ただし、太陽電池361での発電と通信部340での無線通信が妨げられないように、第1監視部300aの一部は地面から露出している。第1監視部300aの太陽電池361は、成長した植物30の枝葉によって太陽光の入射が遮られないように、地面に沿う方向において植物30から離間している。なお、第1監視部300aの環境センサ310は日射センサ312を備えてもよい。
 第1監視部300aはこれまでに説明した各種処理のうちの一部を実行する。第1監視部300aは例えば図6に基づいて説明したセンサ処理において、土壌水分センサ311の出力を取得する。そして第1監視部300aは第2監視部300bに無線通信によってセンサ信号を送信する。
 <第2監視部>
 図20に示すように第2監視部300bは環境センサ310として日射センサ312を備えている。そして第2監視部300bに水圧センサ153と給水弁152が接続されている。圃場20に設けられた複数の第2監視部300bのうちの少なくとも1つの環境センサ310には、レインセンサ313、温度センサ314、湿度センサ315、気圧センサ316、および、風センサ317が含まれている。
 第2監視部300bはこれまでに説明した各種処理を実行する。第2監視部300bは第1監視部300aよりも処理負荷が高くなっている。
 第2監視部300bは例えば図6に基づいて説明したセンサ処理において、自身に入力される環境センサ310と水圧センサ153のセンサ信号を取得する。それとともに第2監視部300bは第1監視部300aから出力される土壌水分センサ311の出力を取得する。第2監視部300bはこれらセンサ信号を含む無線信号を統合通信部400に出力する。
 また、第2監視部300bは統合通信部400から間欠駆動間隔が入力されると、自身のRTC350のウェイクアップ信号を出力する起床周期を更新するとともに、その間欠駆動間隔を含む無線信号を第1監視部300aに出力する。第1監視部300aは入力された間欠駆動間隔に基づいて、自身のRTC350のウェイクアップ信号を出力する起床周期を更新する。
 <作用効果>
 以上に示したように、1つの分割エリアの地面側に第1監視部300aを設けるとともに、その空側に第2監視部300bを設ける。そして両者を無線通信させる。これにより第1監視部300aと第2監視部300bとの間の電気的な情報の連絡が害獣によって阻害されることが抑制される。
 なお、例えば図19に示すように、第1監視部300aは地面側に設けられるため、植物30によってその一部が覆われやすくなる。この結果、第1監視部300aでの発電量が少なくなりやすくなっている。
 これに対して、第1監視部300aは第2監視部300bよりも処理負荷が軽減されている。これにより第1監視部300aでの電力の枯渇が抑制される。
 図19に示すように、第1監視部300aと土壌水分センサ311とを接続する配線161が土壌に埋められている。そのためにこの配線161が害獣によって損傷することが抑制される。
 図19に示すように、第2監視部300bは成熟した植物30よりも空側に設けられる。本実施形態においては、第2監視部300bは圃場20に出現することの想定される害獣の背丈よりも空側に設けられる。環境センサ310、水圧センサ153、および、給水弁152それぞれと第2監視部300bとを接続する配線162も害獣の背丈よりも空側に設けられる。そのために配線162が害獣によって損傷することが抑制される。このように第2監視部300bと接続される如何なる配線も害獣の背丈よりも空側に設けることで、害獣による配線の損傷が抑制される。配線162が接続配線に相当する。
 なお、成熟した植物30よりも空側に第2監視部300bを設けるためには、例えば図19に模式的に示すように、給水配管130の一部を地面から空側に向けて延ばし、折り返して、空側から地面側に延ばす。この給水配管130における空側に位置する部位に第2監視部300bを設ければよい。
 図19に示すように、本実施形態では滴下配管132が土壌に埋められている。これにより滴下配管132が害獣によって損傷することが抑制される。害獣による滴下配管132の損傷によって、滴下配管132内の潅漑水が外に漏れることが抑制される。
 本実施形態では第2監視部300bに水圧センサ153が接続される例を示した。しかしながら例えば図21と図22に示すように、第1監視部300aに水圧センサ153が接続される構成を採用することもできる。
 この変形例の場合、水圧センサ153が土壌に埋められる。そして水圧センサ153と第1監視部300aとを接続する配線163も土壌に埋められる。そのためにこの配線163が害獣によって損傷することが抑制される。このように第1監視部300aと接続される如何なる配線も土壌に埋めることで、害獣による配線の損傷が抑制される。
 本実施形態では、1つの分割エリアの地面側に第1監視部300aが設けられ、この分割エリアの空側に第2監視部300bが設けられる例を示した。しかしながら、複数の分割エリアそれぞれの地面側に複数の第1監視部300aが設けられ、これら複数の第1監視部300aに共通する1つの第2監視部300bが圃場20の空側に設けられた構成を採用することもできる。
 複数の監視部300に含まれる第1監視部300aの総数と第2監視部300bの総数は等しくともよいし、異なっていてもよい。複数の監視部300に含まれる第1監視部300aの総数よりも第2監視部300bの総数が少なくともよい。複数の監視部300に含まれる第1監視部300aの総数と第2監視部300bの総数の比は、例えば、1対1でもよいし、2対1でもよい。
 <滴下配管の深さ>
 滴下配管132の埋められる深さとしては、例えば、作土層とその下側の下層との間の境を採用することができる。そして滴下配管132の滴下孔137の開口を、土壌内において地表側、若しくは、水平方向に向けてもよい。
 これによれば、例えば耕運機などで作土層の表層側から植物30を掘り出す際に、耕運機によって滴下配管132が損傷することが抑制される。それとともに、滴下配管132から植物30の育成される作土層への潅漑水の供給が毛細管現象などによって実現される。
 <ポール>
 図示しないが、第2監視部300bを空側に設けるための専用のポールを圃場20に設けてもよい。そしてこのポールのz方向の長さ(高さ)を可変としてもよい。さらに言えば、発電効率を高めるために、太陽の位置に応じて、ポールにおける第2監視部300bの設けられた先端側が自身の軸方向まわりの周方向に回転するようにしてもよい。太陽の位置は現在時刻と日射センサ312で検出される日射量などによって検出することができる。
 <撃退装置>
 なお、これまでに説明したように、圃場20に出現する害獣のために、潅水システム10の一部が損傷する虞がある。また、圃場20で生育する植物30が害獣のために損傷する虞がある。
 そこで複数の監視部300それぞれが、害獣を検知するための検知装置と、害獣を撃退するための撃退装置を備えてもよい。害獣の検知方法としては、カメラによる撮像を採用することができる。害獣の撃退方法としては、圃場20に出現することの想定されるイノシシやシカ、またカラスなどの鳥獣の五感のうちの少なくとも1つを刺激することが考えられる。
 撃退装置は例えば以下に列挙する構成要素のうちの少なくとも1つを備えている。鳥獣の視覚を刺激するための点滅光などを発光する発光装置。鳥獣の聴覚を刺激するための天敵の声などを発生するスピーカ。鳥獣の触角を刺激するための超音波を発生する超音波発生装置。鳥獣の嗅覚を刺激するためのイオンなどの臭気を発生するための臭気発生装置。鳥獣の味覚を刺激しつつ、植物30に対して無害な液体を圃場20に散布するための散布装置。
 (第4実施形態)
 (技術分野)
 本開示は、圃場の環境を監視する監視部に関するものである。
 (背景技術)
 特許第5830411号公報に示されるように、離れた圃場に配置された複数の子局と1つの親局を備える無線管理システムが知られている。
 (発明が解決しようとする課題)
 上記公報に記載の子局はCPUとセンサを有する。子局は圃場に設けられるが、この圃場に出現する害獣によって、例えばCPUとセンサとを接続する配線が損傷する虞がある。
 本開示の目的は、電気的な情報の連絡が害獣によって阻害されることの抑制された監視部を提供することである。
 (課題を解決するための手段)
 本開示の一態様による監視部は、植物(30)が生育する野外の圃場(20)を複数に分けた複数の分割エリアそれぞれに給水配管(130)とともに設けられる監視部であって、
 第1電気機器(320)と、
 第2電気機器(152,153)と、
 第1電気機器と第2電気機器とを電気的に接続するコネクタ(157)と、
 第1電気機器と第2電気機器を収納する収納空間を備える本体部(155)、および、コネクタとともに収納空間を第1電気機器の収納される第1収納空間と第2電気機器の収納される第2収納空間とに分ける仕切り壁(156)を備える統合ケース(154)と、を有する。
 これによれば、第1電気機器(320)と第2電気機器(152,153)との電気的な情報の連絡が害獣によって阻害されることが抑制される。
 以下、第4実施形態を図23に基づいて詳説する。
 本実施形態では、給水装置100ではなく制御装置200に配管モジュール150の少なくとも一部が含まれている。監視部300に配管モジュール150の少なくとも一部が含まれている。図23に示すように、これまでに説明した監視部300と配管モジュール150それぞれの構成要素の一部が統合ケース154に収納されている。係る構成は、例えば第3実施形態に示した第2監視部300bに適用することができる。図23では統合ケース154を断面で示している。
 <統合ケース>
 統合ケース154は第1収納空間と第2収納空間とを有する。第1収納空間に監視部300の構成要素が収納される。第2収納空間に配管モジュール150の構成要素が収納される。監視部300の構成要素のうち第1収納空間に収納される構成要素が第1電気機器に相当する。配管モジュール150の構成要素のうち第2収納空間に収納される構成要素が第2電気機器に相当する。
 統合ケース154は箱形状の本体部155と、本体部155の中空を2つに分ける仕切り壁156と、を有する。この仕切り壁156と後述のコネクタ157とによって本体部155の中空が上記した第1収納空間と第2収納空間とに分けられている。
 仕切り壁156には第1収納空間に収納された収納物と第2収納空間に収納された収納物とを電気的に接続するためのコネクタ157が設けられている。このコネクタ157の中央部が仕切り壁156にインサート成形によって連結されている。これによりコネクタ157の一端側が第1収納空間に設けられている。それとともにコネクタ157の他端側が第2収納空間に設けられている。
 <第1収納空間>
 第1収納空間には監視部300の制御部320が収納されている。制御部320の備えるマイコン330、通信部340、および、RTC350それぞれが配線基板321に搭載されている。発電部360の備える蓄電部362、電流センサ363、および、電力センサ364も配線基板321に搭載されている。図23ではこれら構成要素のうち配線基板321だけを図示している。
 発電部360の太陽電池361は統合ケース154の空側の天壁に設けられている。天壁には開口が形成されている。太陽電池361はこの開口を閉塞する態様で天壁に固定されている。太陽電池361と開口を区画する壁面との間の微小な隙間は図示しないシール材によって閉塞されている。太陽電池361における統合ケース154の外に位置する部位に太陽光が入射する。
 なお、天壁が透光性を備えている場合、太陽電池361は第1収納空間の中において天壁とz方向で対向配置される。これにより天壁を介して太陽電池361に太陽光が入射する。
 第1収納空間には監視部300の備える環境センサ310が含まれてもよいし、含まれなくともよい。この第1収納空間に収納されることの可能な環境センサ310としては、日射センサ312、レインセンサ313、温度センサ314、湿度センサ315、および、気圧センサ316がある。土壌水分センサ311と風センサ317は統合ケース154の外に設けられる。
 <第2収納空間>
 第2収納空間には、配管モジュール150の給水弁152と水圧センサ153のうちの少なくとも1つが収納される。
 本実施形態では第2収納空間に水圧センサ153の一部が設けられる。水圧センサ153における第2収納空間の外に位置する部位が給水配管130に設けられる。
 このように第2収納空間は給水配管130側に設けられる。そのために第2収納空間は、潅漑水が内部を流動する給水配管130の外表面に結露した水滴などのために、第1収納空間と比べて湿度が高まりやすくなっている。
 第2収納空間に給水弁152が設けられる構成の場合、第2収納空間の一部が給水配管130によって占有される。そのために第2収納空間は給水配管130の外表面に結露した水滴などのために湿度が高まりやすくなっている。
 第1収納空間と第2収納空間との間に仕切り壁156とコネクタ157が設けられている。これら仕切り壁156とコネクタ157とによって第1収納空間側の空気と第2収納空間側の空気の流通が遮られている。
 上記したようにコネクタ157の一端が第1収納空間に設けられる。第1収納空間に設けられる配線基板321には配線コネクタ322が設けられている。これらコネクタ157の一端と配線コネクタ322とが第1ワイヤハーネス323を介して電気的に接続されている。
 また、コネクタ157の他端が第2収納空間に設けられる。水圧センサ153における第2収納空間に設けられる部位にセンサコネクタ158が設けられている。これらコネクタ157の他端とセンサコネクタ158とが第2ワイヤハーネス324を介して電気的に接続されている。
 以上に示した接続構成のため、第1収納空間に設けられた配線基板321と第2収納空間に設けられた水圧センサ153とが電気的に接続される。そして両者を電気的に接続する構成要素が統合ケース154に収納されている。
 <作用効果>
 これまでに説明したように、監視部300の制御部320の収納される第1収納空間と配管モジュール150の水圧センサ153の設けられる第2収納空間との間の空気の流通が仕切り壁156とコネクタ157とによって遮られている。それとともに、制御部320と水圧センサ153とがコネクタ157を介して電気的に接続されている。
 このように、監視部300と配管モジュール150とを電気的に接続する構成要素が統合ケース154に収納される。これにより、監視部300と配管モジュール150との電気的な接続が害獣によって損なわれることが抑制される。
 上記構成によれば、第2収納空間の空気に含まれる湿気のために、第1収納空間に収納された制御部320の寿命が低下することが抑制される。また、制御部320で結露の生じることが抑制される。そのためにこの制御部320の構成要素の一部の搭載された配線基板321などで結露によるショートが生じることが抑制される。
 監視部300と配管モジュール150の構成要素がまとまって統合ケース154に収納される。そのために潅水システム10の構成が簡素化される。また、監視部300と配管モジュール150それぞれを個別に圃場20に設けなくともよくなる。そのために潅水システム10の圃場20への配置が簡素化される。
 <不織布>
 なお、本実施形態では第2収納空間が密閉空間である例を示した。しかしながら例えば図24に示すように第1収納空間の一部を構成する統合ケース154の天壁に貫通孔154aが形成された構成を採用することもできる。これにより第1収納空間と外部雰囲気とが連通可能になる。第1収納空間の空気の温度や湿度などの環境値が分割エリアの空気の環境値から離間することが抑制される。
 ただし、貫通孔154aを介して雨滴などが第1収納空間に浸入する虞が生じる。これを避けるために、例えば図24に示すように、空気を通すが水などの液体を通さない不織布154bを天壁に設ける。この不織布154bによって貫通孔154aにおける天壁の外面の開口と内面の開口のうちの少なくとも一方を覆う。これにより貫通孔154aを介した第1収納空間と外部雰囲気との空気の流通が確保されるとともに、貫通孔154aを介した第1収納空間への水滴や粉塵などの異物の侵入が抑制される。
 なお、本実施形態ではコネクタ157の中央部が仕切り壁156にインサート成形された例を示した。しかしながら、例えば図25に示すように、仕切り壁156に、第1収納空間側の第1側面と第2収納空間側の第2側面とを貫通する配置孔156aが形成された構成を採用することもできる。
 この変形例では、この配置孔156aにコネクタ157が設けられる。具体的に言えば、配置孔156aにガスケット157aが設けられる。ガスケット157aは例えば配置孔156aに圧入される。これによりガスケット157aの外壁面と配置孔156aを区画する区画面とが密着している。
 ガスケット157aにはz方向に延びる孔が形成されている。このガスケット157aの孔に第1収納空間と第2収納空間との間で延びるワイヤハーネス157bが設けられる。
 係る構成では、ガスケット157aの中空の一部がワイヤハーネス157bによって占有される。この中空におけるワイヤハーネス157bによって占有されていない空間を介して第1収納空間と第2収納空間とが連通する。この2つの収納空間の間での空気の流通を防ぐために、ガスケット157aの孔における仕切り壁156の第2側面側の空間の一部が封止材157cによって占有される。封止材157cの形成材料としては例えばゴムやゲル状の絶縁部材などを採用することができる。
 なお、そもそも第1収納空間に収納される配線基板321に防湿剤を散布して、配線基板321を湿度に強い構成としておくこともできる。係る構成の場合、第1収納空間と第2収納空間との間の空気の流通を妨げるための防湿レベルを低めることができる。この場合、例えば図26に示すように、図25に示した封止材157cを省略することもできる。封止材157cは必須構成要素とはならない。
 本実施形態では統合ケース154の第1収納空間に監視部300の構成要素が収納され、第2収納空間に配管モジュール150の構成要素が収納される例を示した。しかしながら第1収納空間と第2収納空間それぞれに監視部300の構成要素が収納された構成を採用することもできる。
 例えば、第1収納空間に監視部300の制御部320が収納され、土壌水分センサ311の一部が第2収納空間に収納された構成を採用することができる。係る構成は、例えば第3実施形態に示した第1監視部300aに適用することができる。
 (その他変形例)
 第1実施形態では、横配管134が成熟した植物30の頂点よりもz方向において地面から離間している例を示した。しかしながら、横配管134は成熟した植物30の頂点よりもz方向において地面側に位置してもよい。
 第1実施形態では、横配管134と縦配管133それぞれが圃場20の空側に設けられる例を示した。しかしながら、横配管134と縦配管133のうちの少なくとも一方が地面に設けられてもよい。横配管134と縦配管133のうちの少なくとも一方が地中に設けられてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (技術的思想)
 本明細書には、以下に示す種々の技術的思想が含まれている。
 <無線信号>
 [技術的思想1]
 植物(30)が生育する野外の圃場(20)に設けられた複数の通信部(340,400)の間で送受信される無線信号に、複数の異なる種類のデータ(343,344,345)が含まれるとともに、複数の異なる種類の前記データのうちの少なくとも1種類の前記データが複数含まれ、
 前記無線信号において複数の異なる種類の前記データが所定の配列で並んでいる通信装置。
 [技術的思想2]
 複数の異なる種類の前記データそれぞれには、複数の異なる種類の前記データそれぞれのパリティビット(343a,344a,345a)が付帯されている技術的思想1に記載の通信装置。
 <監視部間通信>
 [技術的思想1]
 植物(30)が生育する野外の圃場(20)を複数に分けた複数の分割エリアそれぞれに設けられ、前記分割エリアの環境を監視するとともに、前記圃場に設けられた統合通信部(400)と無線通信する監視部であって、
 前記分割エリアの土壌に一部が設けられる第1監視部(300a)と、
 前記第1監視部よりも前記分割エリアの空側に設けられ、前記第1監視部と無線通信するとともに前記統合通信部と無線通信する第2監視部(300b)と、を有する監視部。
 [技術的思想2]
 前記第1監視部と前記第2監視部それぞれは駆動電力を発電する太陽電池(361)を有し、
 前記第1監視部は前記第2監視部よりも処理負荷が軽減されている技術的思想1に記載の監視部。
 [技術的思想3]
 前記第2監視部の少なくとも一部が成熟した前記植物の頂点よりも前記分割エリアの空側に設けられている技術的思想2に記載の監視部。
 [技術的思想4]
 前記第1監視部に接続された配線(161,163)が土壌に埋められている技術的思想1~3のいずれか1項に記載の監視部。
 [技術的思想5]
 前記第2監視部に接続された接続配線(162)は前記圃場に登場することの想定される害獣の背丈よりも空側に設けられている技術的思想1~4のいずれか1項に記載の監視部。
 [技術的思想6]
 前記第1監視部は前記分割エリアの土壌水分量を検出する土壌水分センサ(311)を有する技術的思想1~5のいずれか1項に記載の監視部。
 [技術的思想7]
 前記第2監視部は前記圃場に設けられた給水配管から前記分割エリアへの潅漑水の供給を制御する給水弁(152)を制御する技術的思想1~6のいずれか1項に記載の監視部。
 <統合ケース>
 [技術的思想1]
 植物(30)が生育する野外の圃場(20)を複数に分けた複数の分割エリアそれぞれに給水配管(130)とともに設けられる監視部であって、
 第1電気機器(320)と、
 第2電気機器(152,153,311)と、
 前記第1電気機器と前記第2電気機器とを電気的に接続するコネクタ(157)と、
 前記第1電気機器と前記第2電気機器を収納する収納空間を備える本体部(155)、および、前記コネクタとともに前記収納空間を前記第1電気機器の収納される第1収納空間と前記第2電気機器の収納される第2収納空間とに分ける仕切り壁(156)を備える統合ケース(154)と、を有する監視部。
 [技術的思想2]
 前記本体部には、前記第1収納空間と外部雰囲気との間の空気の流通を行うための貫通孔(154a)が形成されている技術的思想1に記載の監視部。
 [技術的思想3]
 空気を通すが液体を通さない性質を備える不織布(154b)を有し、
 前記不織布によって前記貫通孔の開口が閉塞されている技術的思想2に記載の監視部。
 [技術的思想4]
 前記第1収納空間と前記第2収納空間との間の空気の流通が前記仕切り壁と前記コネクタとによって遮られている技術的思想1~3のいずれか1項に記載の監視部。
 [技術的思想5]
 前記コネクタの一部が前記仕切り壁にインサート成形されている技術的思想4に記載の監視部。
 [技術的思想6]
 前記仕切り壁には、前記第1収納空間と前記第2収納空間とを貫通する配置孔(156a)が形成され、前記配置孔に前記コネクタの一部が設けられている技術的思想1~4のいずれか1項に記載の監視部。
 [技術的思想7]
 前記コネクタは、前記配置孔に一部が設けられるとともに、前記第1収納空間と前記第2収納空間とを連通する中空を備えるガスケット(157a)と、前記ガスケットの中空に設けられるワイヤハーネス(157b)と、を有する技術的思想6に記載の監視部。
 [技術的思想8]
 前記コネクタは、前記ガスケットと前記ワイヤハーネスの他に、前記ガスケットの中空における前記ワイヤハーネスによって占有されていない空間を介した前記第1収納空間と前記第2収納空間との間の空気の流通を防ぐための封止材(157c)を有する技術的思想7に記載の監視部。
 [技術的思想9]
 前記第1電気機器には、演算処理を実行する演算処理部(330)、無線通信する通信部(340)、および、光エネルギーを電気エネルギーに変換する太陽電池(361)が含まれている技術的思想1~8のいずれか1項に記載の監視部。
 [技術的思想10]
 前記第2電気機器には、前記給水配管から前記圃場への潅漑水の供給と非供給とを制御する給水弁(152)、および、前記給水配管内の潅漑水の水圧を検出する水圧センサ(153)のうちの少なくとも1つが含まれている技術的思想1~9のいずれか1項に記載の監視部。

Claims (3)

  1.  植物(30)が生育する野外の圃場(20)に設けられた給水配管(130)の検査を行う検査装置であって、
     前記給水配管から前記圃場への潅漑水の供給と非供給とを制御する給水弁(152)を開状態と閉状態とに制御する制御信号を出力する出力部(332,630)と、
     前記給水弁が開状態となって前記給水配管から前記圃場へ潅漑水が供給されている状態から、前記給水弁が閉状態となって前記給水配管内が潅漑水で満たされることの期待される期待時間が経過するまでの間に水圧センサ(153)で検出される複数の潅漑水の水圧が格納される格納部(333,500)と、
     複数の潅漑水の水圧変化に基づいて水圧の時定数を算出し、前記時定数に基づいて前記給水配管を検査する検査部(330,600)と、を備える検査装置。
  2.  入射する光エネルギーを電気エネルギーに変換する太陽電池(361)を備え、
     前記検査部は、前記太陽電池から供給される電力によって駆動する請求項1に記載の検査装置。
  3.  プロセッサにより実行される検査プログラムであって、
     前記プロセッサに、
     植物(30)の生育する野外の圃場(20)に設けられた給水配管(130)に設けられた給水弁(152)を開状態とさせることで、前記給水配管から前記圃場へ潅漑水が供給されている状態から、前記給水弁を閉状態とさせて前記給水配管から前記圃場への潅漑水の供給が止まった状態に移行させ、
     前記給水弁が前記開状態から前記閉状態となってから前記給水配管内が潅漑水で満たされることの期待される期待時間が経過するまでの間に水圧センサ(153)で検出される潅漑水の水圧を複数取得させ、
     複数の潅漑水の水圧変化に基づいて水圧の時定数を算出させ、
     前記時定数に基づいて前記給水配管を検査させる検査プログラム。
PCT/JP2021/031150 2020-09-25 2021-08-25 検査装置、および、検査プログラム WO2022064935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21872067.0A EP4220004A4 (en) 2020-09-25 2021-08-25 INSPECTION DEVICE AND INSPECTION PROGRAM
IL301523A IL301523A (en) 2020-09-25 2021-08-25 Test device and test plan
US18/188,576 US20230228646A1 (en) 2020-09-25 2023-03-23 Inspection device and non-transitory computer readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-161288 2020-09-25
JP2020161288A JP7415865B2 (ja) 2020-09-25 2020-09-25 検査装置、および、検査プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/188,576 Continuation US20230228646A1 (en) 2020-09-25 2023-03-23 Inspection device and non-transitory computer readable medium

Publications (1)

Publication Number Publication Date
WO2022064935A1 true WO2022064935A1 (ja) 2022-03-31

Family

ID=80845089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031150 WO2022064935A1 (ja) 2020-09-25 2021-08-25 検査装置、および、検査プログラム

Country Status (5)

Country Link
US (1) US20230228646A1 (ja)
EP (1) EP4220004A4 (ja)
JP (1) JP7415865B2 (ja)
IL (1) IL301523A (ja)
WO (1) WO2022064935A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217864A (ja) * 2012-04-11 2013-10-24 Nec Corp 漏水検知方法および漏水検知装置
JP2015184224A (ja) * 2014-03-25 2015-10-22 三菱日立パワーシステムズ株式会社 配管の破損検出方法及び装置
JP5830411B2 (ja) 2012-02-28 2015-12-09 富士通テレコムネットワークス株式会社 無線管理システムおよび伝送管理方法
JP2017009305A (ja) 2015-06-17 2017-01-12 Nttエレクトロニクス株式会社 センシング装置及びセンシングシステム
WO2018168691A1 (ja) * 2017-03-17 2018-09-20 日本電気株式会社 情報処理装置、情報処理方法、及び、情報処理プログラムが記録された記録媒体
JP2019011973A (ja) * 2017-06-29 2019-01-24 株式会社デンソーウェーブ 漏水検出装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10094095B2 (en) 2016-11-04 2018-10-09 Phyn, Llc System and method for leak characterization after shutoff of pressurization source
US10166565B2 (en) * 2016-11-23 2019-01-01 Mark Alan Lemkin Irrigation monitoring system and method for monitoring flow rate into irrigation system to determine the existence or absence of an irrigation fault

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5830411B2 (ja) 2012-02-28 2015-12-09 富士通テレコムネットワークス株式会社 無線管理システムおよび伝送管理方法
JP2013217864A (ja) * 2012-04-11 2013-10-24 Nec Corp 漏水検知方法および漏水検知装置
JP2015184224A (ja) * 2014-03-25 2015-10-22 三菱日立パワーシステムズ株式会社 配管の破損検出方法及び装置
JP2017009305A (ja) 2015-06-17 2017-01-12 Nttエレクトロニクス株式会社 センシング装置及びセンシングシステム
WO2018168691A1 (ja) * 2017-03-17 2018-09-20 日本電気株式会社 情報処理装置、情報処理方法、及び、情報処理プログラムが記録された記録媒体
JP2019011973A (ja) * 2017-06-29 2019-01-24 株式会社デンソーウェーブ 漏水検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220004A4

Also Published As

Publication number Publication date
EP4220004A4 (en) 2024-04-10
US20230228646A1 (en) 2023-07-20
IL301523A (en) 2023-05-01
EP4220004A1 (en) 2023-08-02
JP7415865B2 (ja) 2024-01-17
JP2022054222A (ja) 2022-04-06

Similar Documents

Publication Publication Date Title
CN106718695B (zh) 一种智能节水灌溉物联网控制系统
Riquelme et al. Wireless sensor networks for precision horticulture in Southern Spain
Kim et al. Remote sensing and control of an irrigation system using a distributed wireless sensor network
KR101882934B1 (ko) 농지 범용화를 위한 스마트 토양 수분 제어 방법
KR101882933B1 (ko) 농지 범용화를 위한 스마트 토양 수분 제어 장치
US20040083833A1 (en) Wireless sensor probe
US20150163850A9 (en) Remote sensing device and system for agricultural and other applications
Spachos et al. Integration of wireless sensor networks and smart uavs for precision viticulture
US20040090329A1 (en) RF based positioning and intrusion detection using a wireless sensor network
CN102506941A (zh) 无线监测传感器
CN203950191U (zh) 一种基于移动设备的植物监控装置
CN207053612U (zh) 一种基于手机app的立体农业种植棚远程管理系统
CN104236624A (zh) 温室环境信息智能采集系统
KR20190013073A (ko) 일체형 스마트 작물 관리 모듈
US10064346B2 (en) Method and apparatus for growing life forms under remote influence
López et al. GAIA2: A multifunctional wireless device for enhancing crop management
Nikolaou et al. Dynamic assessment of whitewash shading and evaporative cooling on the greenhouse microclimate and cucumber growth in a Mediterranean climate
CN205281296U (zh) 一种植物生长环境监测控制系统
WO2022064935A1 (ja) 検査装置、および、検査プログラム
WO2023248984A1 (ja) 潅水システムおよび制御装置
CN105210711A (zh) 物联网智能浇灌花盆及其制造方法
McCauley et al. Demonstration of a low-cost and open-source platform for on-farm monitoring and decision support
CN108575676A (zh) 一种道路绿化带光伏自动滴灌装置及其工作方法
CN202331771U (zh) 无线监测传感器
WO2023163079A1 (ja) 潅水システムおよび制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021872067

Country of ref document: EP

Effective date: 20230425