WO2022064671A1 - Refrigerant recovery system and refrigerant recovery method - Google Patents

Refrigerant recovery system and refrigerant recovery method Download PDF

Info

Publication number
WO2022064671A1
WO2022064671A1 PCT/JP2020/036533 JP2020036533W WO2022064671A1 WO 2022064671 A1 WO2022064671 A1 WO 2022064671A1 JP 2020036533 W JP2020036533 W JP 2020036533W WO 2022064671 A1 WO2022064671 A1 WO 2022064671A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
way valve
recovery
gas
Prior art date
Application number
PCT/JP2020/036533
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 近藤
勝也 谷口
亜加音 野村
幸治 太田
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to CN202080105347.6A priority Critical patent/CN116324309B/en
Priority to EP20955265.2A priority patent/EP4206566A4/en
Priority to JP2021514644A priority patent/JP7029025B1/en
Priority to PCT/JP2020/036533 priority patent/WO2022064671A1/en
Publication of WO2022064671A1 publication Critical patent/WO2022064671A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle

Abstract

Provided is a refrigerant recovery system (10) for recovering an air conditioning refrigerant from a refrigerant circuit (30) of a refrigeration air conditioner (12). The refrigerant recovery system (10) comprises: a refrigerant recovery device (14) which generates a compressed and condensed refrigerant by compressing and condensing an air conditioning refrigerant in the refrigerant circuit (30); a recovery cylinder (16) which recovers the compressed and condensed refrigerant generated by the refrigerant recovery device (14); a gas separation module (68) which separates the air conditioning refrigerant from the inside of the recovery cylinder (16) that has recovered the compressed and condensed refrigerant; and refeed piping (58) which refeeds the air conditioning refrigerant separated by the gas separation module (68) back to the refrigerant recovery device (14).

Description

冷媒回収システム及び冷媒回収方法Refrigerant recovery system and refrigerant recovery method
 本発明は、冷媒回収システム及び冷媒回収方法に関するものである。 The present invention relates to a refrigerant recovery system and a refrigerant recovery method.
 冷凍機やエアコンなどの冷凍空調機器(冷媒使用機器)においては、熱エネルギーを運搬する冷媒の循環経路上に、当該冷媒が気化したガス冷媒を圧縮して高温高圧化する空調用圧縮機と、空調用圧縮機で高温高圧化したガス冷媒を外気等で冷却して液化する空調用凝縮器と、空調用凝縮器で液化した冷媒(液冷媒)を膨張させて気体化する膨張弁と、膨張弁で気化した冷媒(ガス冷媒)を液体化する冷媒回収用凝縮器と、冷媒回収用凝縮器で液化した冷媒(液冷媒)を貯蔵するアキュムレータとが備えられている。冷媒は熱エネルギーを運搬する役割を担っており、空調用凝縮器において外部に熱を放出する一方、膨張弁を通過後に外気等から熱を受け取る。 In refrigerating and air-conditioning equipment (equipment using refrigerant) such as refrigerators and air conditioners, an air-conditioning compressor that compresses the gas refrigerant vaporized by the refrigerant to a high temperature and high pressure on the circulation path of the refrigerant that carries heat energy. An air-conditioning condenser that cools the high-temperature and high-pressure gas refrigerant with an air-conditioning compressor with outside air to liquefy it, and an expansion valve that expands and gasifies the refrigerant (liquid refrigerant) liquefied with the air-conditioning condenser. A refrigerant recovery condenser that liquefies the refrigerant vaporized by the valve (gas refrigerant) and an accumulator that stores the refrigerant (liquid refrigerant) liquefied by the refrigerant recovery condenser are provided. The refrigerant plays a role of transporting heat energy, and while releasing heat to the outside in the condenser for air conditioning, it receives heat from the outside air or the like after passing through the expansion valve.
 冷凍空調機器に使用される各種冷媒は、地球温暖化係数及びオゾン層破壊係数が大きいため、大気中への排出が規制されている。したがって、特に、冷媒を交換する際又は冷凍空調機器を廃棄する際には、大気への冷媒の漏洩を極力抑制し、冷凍空調機器に充填されている冷媒を回収することが義務付けられている。同時に、環境負荷の小さな冷媒への転換も推進されており、近年では、代替フロンとしてHFC(Hydrofluorocarbon)等の使用が主流となっている。HFCとしては、例えば、単体冷媒としてはR134aまたはR32、混合冷媒としてはR410AまたはR407Cがある。 Various refrigerants used in refrigerating and air-conditioning equipment have a large global warming potential and ozone depletion potential, so their emission into the atmosphere is regulated. Therefore, in particular, when replacing the refrigerant or disposing of the refrigerating and air-conditioning equipment, it is obligatory to suppress the leakage of the refrigerant to the atmosphere as much as possible and recover the refrigerant filled in the refrigerating and air-conditioning equipment. At the same time, the conversion to refrigerants with a small environmental load is being promoted, and in recent years, the use of HFCs (Hydrofluorocarbons) and the like as alternative CFCs has become the mainstream. Examples of HFCs include R134a or R32 as a single refrigerant and R410A or R407C as a mixed refrigerant.
 冷媒の回収には、冷媒回収装置が使用される。冷媒回収装置においては、冷凍空調機器のアキュムレータにある冷媒を気化した後、ガス冷媒を冷媒回収装置内の圧縮機によって吸引し、断熱圧縮する。断熱圧縮されたガス冷媒を冷媒回収装置内の凝縮器によって液化し、液冷媒として回収ボンベに充填・回収する。回収した冷媒の量は、重量計により測定される。 A refrigerant recovery device is used to recover the refrigerant. In the refrigerant recovery device, after vaporizing the refrigerant in the accumulator of the refrigerating and air-conditioning device, the gas refrigerant is sucked by the compressor in the refrigerant recovery device and adiabatic compression is performed. The adiabatic compressed gas refrigerant is liquefied by the condenser in the refrigerant recovery device, and is filled and recovered in the recovery cylinder as a liquid refrigerant. The amount of recovered refrigerant is measured by a gravimetric scale.
 特許文献1には、冷媒使用機器内の冷媒を冷媒回収装置により回収容器(回収ボンベ)に回収する際に、回収系統に空気等の非凝縮性ガスが混入すると、非凝縮性ガスも回収容器に回収されてしまうことが指摘されている(同文献の段落0056参照)。非凝縮性ガスは、回収容器内で凝縮せず、圧縮ガスとして存在するため、回収容器内の液冷媒の量が増えて気相の体積が少なくなるにつれて、回収容器内の圧力及び温度が上昇してしまう。そのため、同文献では、回収容器内の温度が所定値に達した段階で、回収容器と、冷媒回収装置及び冷媒使用機器との連結を解除し、回収容器にガス分離装置を接続して、ガス分離装置により回収容器内の非凝縮性ガスを除去する技術を開示している。具体的には、回収容器内のガス冷媒と非凝縮性ガスの混合ガスを、ガス分離装置に送って分離し、非凝縮性ガスを大気中に排出すると共に、ガス冷媒を回収容器内に戻している。そして、回収容器内の非凝縮性ガスを除去した後、再度、回収容器に、冷媒回収装置及び冷媒使用機器を接続し、回収容器への冷媒の回収作業を再開している。 According to Patent Document 1, when a non-condensable gas such as air is mixed in the recovery system when the refrigerant in the equipment using the refrigerant is recovered in the recovery container (recovery cylinder) by the refrigerant recovery device, the non-condensable gas is also recovered in the recovery container. It has been pointed out that it will be recovered in (see paragraph 0056 of the same document). Since the non-condensable gas does not condense in the recovery container and exists as a compressed gas, the pressure and temperature in the recovery container increase as the amount of liquid refrigerant in the recovery container increases and the volume of the gas phase decreases. Resulting in. Therefore, in the same document, when the temperature inside the recovery container reaches a predetermined value, the connection between the recovery container and the refrigerant recovery device and the equipment using the refrigerant is disconnected, and the gas separation device is connected to the recovery container to obtain gas. It discloses a technique for removing non-condensable gas in a recovery container by a separation device. Specifically, the mixed gas of the gas refrigerant and the non-condensable gas in the recovery container is sent to the gas separation device to separate the gas, the non-condensable gas is discharged to the atmosphere, and the gas refrigerant is returned to the recovery container. ing. Then, after removing the non-condensable gas in the recovery container, the refrigerant recovery device and the refrigerant-using device are connected to the recovery container again, and the work of recovering the refrigerant to the recovery container is resumed.
特開2010-159952号公報Japanese Unexamined Patent Publication No. 2010-159952
 上記したように、冷凍空調機器の冷媒回路からの冷媒回収では、冷媒回収装置で、冷媒を気化した後、断熱圧縮し、その後、液化して回収を行っている。そうした中、窒素(N)、酸素(O)などの空気を主成分とする非凝縮性ガスが冷媒に混入した場合、非凝縮性ガスは、冷媒回収装置で凝縮されず、ガスのままで回収ボンベに充填されることになる。その結果、回収ボンベの内圧が上昇し、液体冷媒が充填され難くなり、回収ボンベへの冷媒回収速度が低下することになる。よって、冷媒を全回収するまでに多くの時間を費やすことになる。 As described above, in the refrigerant recovery from the refrigerant circuit of the refrigerating and air-conditioning equipment, the refrigerant is vaporized, adiabatically compressed, and then liquefied and recovered by the refrigerant recovery device. Under such circumstances, when a non-condensable gas containing air as a main component such as nitrogen (N 2 ) and oxygen (O 2 ) is mixed in the refrigerant, the non-condensable gas is not condensed by the refrigerant recovery device and remains as a gas. Will be filled in the recovery cylinder. As a result, the internal pressure of the recovery cylinder rises, it becomes difficult to fill the liquid refrigerant, and the speed of recovering the refrigerant to the recovery cylinder decreases. Therefore, it takes a lot of time to recover all the refrigerant.
 この問題に対して、特許文献1では、ガス分離装置により回収容器内の非凝縮性ガスを除去しているが、冷媒回収の途中で、回収容器(回収ボンベ)と、冷媒回収装置及び冷媒使用機器との連結を解除して、回収容器をガス分離装置に接続する必要があり、また、非凝縮性ガスの除去処理が完了した際には、再度、回収容器と、冷媒回収装置及び冷媒使用機器とを接続する必要があるので、多くの手間がかかる。また、ガス分離装置から冷媒を、ガス冷媒(気相)の状態で回収容器に戻している(注入している)ので、冷媒を液化して注入する場合に比べて、回収容器の冷媒充填量が低下してしまう問題もある。 In response to this problem, in Patent Document 1, the non-condensable gas in the recovery container is removed by the gas separation device, but the recovery container (recovery cylinder), the refrigerant recovery device, and the refrigerant are used during the refrigerant recovery. It is necessary to disconnect the connection with the equipment and connect the recovery container to the gas separation device, and when the non-condensable gas removal process is completed, the recovery container, the refrigerant recovery device and the refrigerant are used again. Since it is necessary to connect to the device, it takes a lot of trouble. In addition, since the refrigerant is returned (injected) from the gas separator to the recovery container in the state of gas refrigerant (gas phase), the amount of refrigerant filled in the recovery container is compared with the case where the refrigerant is liquefied and injected. There is also a problem that the amount is reduced.
 回収ボンベ、冷媒回収装置及び冷凍空調機器の接続を維持したまま、回収ボンベ内の非凝縮性ガスを低減できる改良された技術が必要である。本発明の目的は、冷凍空調機器から冷媒を回収する際に、回収ボンベ、冷媒回収装置及び冷凍空調機器の接続を維持したまま、回収ボンベ内の非凝縮性ガスを低減できるようにすることにある。 There is a need for improved technology that can reduce the non-condensable gas in the recovery cylinder while maintaining the connection of the recovery cylinder, refrigerant recovery device and refrigeration and air conditioning equipment. An object of the present invention is to make it possible to reduce the non-condensable gas in the recovery cylinder while maintaining the connection between the recovery cylinder, the refrigerant recovery device and the refrigerating / air-conditioning device when recovering the refrigerant from the refrigerating / air-conditioning device. be.
 本発明の冷媒回収システムは、冷凍空調機器の冷媒回路から空調用冷媒を回収する冷媒回収システムであって、前記空調用冷媒に圧縮凝縮を行って圧縮凝縮冷媒を生成する冷媒回収装置と、前記冷媒回収装置が生成した前記圧縮凝縮冷媒を回収する回収ボンベと、前記圧縮凝縮冷媒を回収した前記回収ボンベの内部から前記空調用冷媒を分離させるガス分離モジュールと、前記ガス分離モジュールが分離した前記空調用冷媒を前記冷媒回収装置に再送させる再送配管と、を備えることを特徴とする。 The refrigerant recovery system of the present invention is a refrigerant recovery system that recovers the air-conditioning refrigerant from the refrigerant circuit of the refrigerating and air-conditioning equipment, and is a refrigerant recovery device that compresses and condenses the air-conditioning refrigerant to generate the compressed and condensed refrigerant. The recovery cylinder that recovers the compressed and condensed refrigerant generated by the refrigerant recovery device, the gas separation module that separates the air-conditioning refrigerant from the inside of the recovery cylinder that recovers the compressed and condensed refrigerant, and the gas separation module are separated. It is characterized by including a retransmission pipe for retransmitting the air-conditioning refrigerant to the refrigerant recovery device.
 本発明の冷媒回収方法は、冷凍空調機器の冷媒回路から空調用冷媒を回収する冷媒回収方法であって、冷媒回収装置を用い、前記空調用冷媒に圧縮凝縮を行って圧縮凝縮冷媒を生成する生成ステップと、前記冷媒回収装置が生成した前記圧縮凝縮冷媒を回収ボンベに回収する回収ステップと、ガス分離モジュールを用い、前記圧縮凝縮冷媒を回収した前記回収ボンベの内部に含まれるガス成分から前記空調用冷媒を分離させる分離ステップと、前記ガス分離モジュールが分離した前記空調用冷媒を前記冷媒回収装置に再送させる再送ステップと、を備えることを特徴とする。 The refrigerant recovery method of the present invention is a refrigerant recovery method for recovering an air conditioning refrigerant from a refrigerant circuit of a refrigerating and air-conditioning device, and uses a refrigerant recovery device to compress and condense the air conditioning refrigerant to generate a compressed condensed refrigerant. The generation step, the recovery step of recovering the compressed and condensed refrigerant generated by the refrigerant recovery device in the recovery bomb, and the gas component contained in the recovery bomb for recovering the compressed and condensed refrigerant using the gas separation module. It is characterized by including a separation step for separating the air-conditioning refrigerant and a retransmission step for retransmitting the air-conditioning refrigerant separated by the gas separation module to the refrigerant recovery device.
 本発明によれば、冷凍空調機器から冷媒を回収する際に、回収ボンベ、冷媒回収装置及び冷凍空調機器の接続を維持したまま、回収ボンベ内の非凝縮性ガスを低減することができる。 According to the present invention, when recovering the refrigerant from the refrigerating and air-conditioning equipment, the non-condensable gas in the recovery cylinder can be reduced while maintaining the connection between the recovery cylinder, the refrigerant recovery device and the refrigerating and air-conditioning equipment.
本発明の実施形態に係る冷媒回収システムの概略図である。It is a schematic diagram of the refrigerant recovery system which concerns on embodiment of this invention. 発送制御部のブロック図である。It is a block diagram of a shipping control unit. 各種冷媒の温度に対する飽和蒸気圧の特性(圧力特性)を示す図である。It is a figure which shows the characteristic (pressure characteristic) of the saturated vapor pressure with respect to the temperature of various refrigerants. 三方弁制御部のブロック図である。It is a block diagram of a three-way valve control unit. 無機系分離膜によるガス分離を説明するための図である。It is a figure for demonstrating gas separation by an inorganic separation membrane. 有機系分離膜によるガス分離を説明するための図である。It is a figure for demonstrating gas separation by an organic separation membrane. 本発明の実施形態に係る冷媒回収方法のフローチャートである。It is a flowchart of the refrigerant recovery method which concerns on embodiment of this invention. 第1三方弁制御のフローチャートである。It is a flowchart of 1st three-way valve control. 第2三方弁制御のフローチャートである。It is a flowchart of the 2nd three-way valve control. 本発明の別の実施形態に係る冷媒回収システムの概略図である。It is a schematic diagram of the refrigerant recovery system which concerns on another embodiment of this invention.
 以下、本発明に係る実施形態について添付図面を参照しながら詳細に説明する。以下で述べる構成は、説明のための例示であって、システム、装置等の仕様に合わせて適宜変更が可能である。また、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。全ての図面において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. The configuration described below is an example for explanation, and can be appropriately changed according to the specifications of the system, the device, and the like. Further, when a plurality of embodiments, modifications, and the like are included in the following, it is assumed from the beginning that those characteristic portions are appropriately combined and used. The same elements are designated by the same reference numerals in all drawings, and duplicate description is omitted.
 図1は、本発明の実施形態に係る冷媒回収システム10の概略図である。図中、太い実線は流体が流れる配管を示し、一点鎖線は各制御部に入出力する制御線を示す。冷媒回収システム10は、冷凍空調機器から空調用冷媒を回収して、回収ボンベ16に充填するためのシステムである。以下では、冷凍空調機器としての空調装置12から空調用冷媒を回収する例について説明するが、冷媒回収システム10は、冷媒を使用する機器全般の冷媒回収に適用可能である。なお、空調用冷媒とは、冷凍空調機器の運転時に、熱エネルギーを運搬すると共に液相と気相の間で相変化することで、冷凍空調機器における空気等の冷却機能と加熱機能の少なくとも一方を実現させる冷媒である。 FIG. 1 is a schematic diagram of a refrigerant recovery system 10 according to an embodiment of the present invention. In the figure, the thick solid line indicates the piping through which the fluid flows, and the alternate long and short dash line indicates the control line to be input / output to each control unit. The refrigerant recovery system 10 is a system for recovering air-conditioning refrigerant from refrigerating and air-conditioning equipment and filling the recovery cylinder 16. Hereinafter, an example of recovering the air-conditioning refrigerant from the air-conditioning device 12 as the refrigerating and air-conditioning equipment will be described, but the refrigerant recovery system 10 can be applied to the refrigerant recovery of all the equipment using the refrigerant. The air-conditioning refrigerant carries heat energy during operation of the refrigerating and air-conditioning equipment and changes the phase between the liquid phase and the gas phase, so that at least one of the cooling function and the heating function of air and the like in the refrigerating and air-conditioning equipment. It is a refrigerant that realizes.
 冷媒回収システム10は、空調装置12の冷媒回路30から空調用冷媒を吸引して断熱圧縮し、圧縮された冷媒を凝縮して液体化して圧縮凝縮冷媒を生成する冷媒回収装置14と、冷媒回収装置14が生成した圧縮凝縮冷媒を回収する回収ボンベ16と、圧縮凝縮冷媒を回収した回収ボンベ16の内部に含まれるガス成分22から空調用冷媒を分離させるガス分離モジュール68と、ガス分離モジュール68が分離した空調用冷媒を冷媒回収装置14に再送させる再送配管58と、冷媒回路30と冷媒回収装置14の間に配置された三方弁40と、を備える。以下説明するように、ガス分離モジュール68と再送配管58を含んで分離装置18が構成される。空調装置12は、冷媒回路30に繋がるサービスポート34を含み、冷媒回路30は、液冷媒が貯蔵されたアキュムレータ32を含む。冷媒回収装置14は、アキュムレータ32内の液冷媒を気化したガス冷媒をサービスポート34を介して吸引する。 The refrigerant recovery system 10 sucks the air-conditioning refrigerant from the refrigerant circuit 30 of the air-conditioning device 12, heat-insulates and compresses it, condenses the compressed refrigerant and liquefies it to generate the compressed condensed refrigerant, and the refrigerant recovery device 14. A recovery cylinder 16 for recovering the compressed and condensed refrigerant generated by the apparatus 14, a gas separation module 68 for separating the air-conditioning refrigerant from the gas component 22 contained inside the recovery bomb 16 for recovering the compressed and condensed refrigerant, and a gas separation module 68. It is provided with a retransmission pipe 58 for retransmitting the separated air-conditioning refrigerant to the refrigerant recovery device 14, and a three-way valve 40 arranged between the refrigerant circuit 30 and the refrigerant recovery device 14. As will be described below, the separation device 18 is configured to include the gas separation module 68 and the retransmission pipe 58. The air conditioner 12 includes a service port 34 connected to the refrigerant circuit 30, and the refrigerant circuit 30 includes an accumulator 32 in which a liquid refrigerant is stored. The refrigerant recovery device 14 sucks the gas refrigerant vaporized from the liquid refrigerant in the accumulator 32 through the service port 34.
 冷媒回収装置14は、圧縮機と凝縮器を含む、広く市販されているフロン回収機を使用可能である。冷媒回収装置14は、冷媒回路30からの空調用冷媒を取り込む入口36(取り込み口)と、圧縮凝縮冷媒を排出する出口38と、入口36における空調用冷媒の圧力を検出する圧力検出器37とを含む。 As the refrigerant recovery device 14, a widely commercially available Freon recovery machine including a compressor and a condenser can be used. The refrigerant recovery device 14 includes an inlet 36 (intake port) for taking in the air-conditioning refrigerant from the refrigerant circuit 30, an outlet 38 for discharging the compressed condensed refrigerant, and a pressure detector 37 for detecting the pressure of the air-conditioning refrigerant at the inlet 36. including.
 回収ボンベ16は、冷媒回収装置14からの圧縮凝縮冷媒を回収ボンベ16内に入れる液出入口46と、回収ボンベ16内のガス成分22を出すガス出入口48とを含む。 The recovery cylinder 16 includes a liquid inlet / outlet 46 for putting the compressed condensed refrigerant from the refrigerant recovery device 14 into the recovery cylinder 16 and a gas inlet / outlet 48 for discharging the gas component 22 in the recovery cylinder 16.
 三方弁40は、第1、2および3ポート41、42、43を含む。空調装置12のサービスポート34と、三方弁40の第1ポート41とが接続配管50により接続されており、三方弁40の第2ポート42と、冷媒回収装置14の入口36とが前配管52により接続されており、三方弁40の第3ポート43と、再送配管58とが接続されている。また、冷媒回収装置14の出口38と、回収ボンベ16の液出入口46とが後配管54により接続されている。一般的な冷媒回収を行う際には、三方弁40の第1ポート41と第2ポート42を連通状態にする(通常モード)。 The three-way valve 40 includes the first, second and third ports 41, 42 and 43. The service port 34 of the air conditioner 12 and the first port 41 of the three-way valve 40 are connected by a connecting pipe 50, and the second port 42 of the three-way valve 40 and the inlet 36 of the refrigerant recovery device 14 are connected to the front pipe 52. The third port 43 of the three-way valve 40 and the retransmission pipe 58 are connected to each other. Further, the outlet 38 of the refrigerant recovery device 14 and the liquid inlet / outlet 46 of the recovery cylinder 16 are connected by a rear pipe 54. When performing general refrigerant recovery, the first port 41 and the second port 42 of the three-way valve 40 are in a communicating state (normal mode).
 バルブの不良、配管等の腐食、冷媒の分解、修理時の空気侵入等により、空調装置12の空調用冷媒(以下、単に冷媒とも言う)には、空気(窒素、酸素等)を主成分とする非凝縮性ガスが混入することがある。冷媒回収において、冷媒と一緒に非凝縮性ガスが冷媒回収装置14に吸引された際には、非凝縮性ガスは、冷媒回収装置14で凝縮されず、ガスのままで回収ボンベ16に充填される。その結果、回収ボンベ16の内圧が上昇し、液冷媒が充填され難くなって、回収ボンベ16への冷媒回収速度が低下する。それに対処するため、冷媒回収システム10は、回収ボンベ16内の非凝縮性ガスを除去するための分離装置18を備える。なお、回収ボンベ16内では、液冷媒20の一部が再気化したガス冷媒と、非凝縮性ガスとが合わさって混合ガス22(ガス成分22)が生じる。 Air (nitrogen, oxygen, etc.) is the main component of the air-conditioning refrigerant (hereinafter, simply referred to as the refrigerant) of the air-conditioning device 12 due to defective valves, corrosion of pipes, decomposition of the refrigerant, air intrusion during repair, etc. Non-condensable gas may be mixed. In the refrigerant recovery, when the non-condensable gas is sucked into the refrigerant recovery device 14 together with the refrigerant, the non-condensable gas is not condensed by the refrigerant recovery device 14 and is filled in the recovery bomb 16 as it is. To. As a result, the internal pressure of the recovery cylinder 16 rises, it becomes difficult to fill the liquid refrigerant, and the refrigerant recovery speed to the recovery cylinder 16 decreases. To deal with this, the refrigerant recovery system 10 includes a separation device 18 for removing the non-condensable gas in the recovery cylinder 16. In the recovery cylinder 16, a gas refrigerant in which a part of the liquid refrigerant 20 is revaporized and a non-condensable gas are combined to generate a mixed gas 22 (gas component 22).
 分離装置18は、回収ボンベ16のガス出入口48と接続されたガス流入口60と、ガス流入口60から取り込まれた混合ガス22が流れる発送配管56と、発送配管56内の混合ガス22が送り込まれ、混合ガス22からガス冷媒と非凝縮性ガスとを分離させるガス分離モジュール68と、ガス分離モジュール68に接続された再送配管58と、を含む。ガス分離モジュール68は、混合ガス22を取り入れる入口90と、ガス分離を行う分離膜92と、分離膜92により分離された非凝縮性ガスを大気に放出する放出口94と、分離膜92により混合ガス22に比べて非凝縮性ガスが低減されたガス成分である再送ガス冷媒(空調用冷媒)を排出する出口96と、を含む。 In the separating device 18, the gas inlet 60 connected to the gas inlet / outlet 48 of the recovery cylinder 16, the shipping pipe 56 through which the mixed gas 22 taken in from the gas inlet 60 flows, and the mixed gas 22 in the shipping pipe 56 are sent. It includes a gas separation module 68 that separates the gas refrigerant and the non-condensable gas from the mixed gas 22, and a retransmission pipe 58 connected to the gas separation module 68. The gas separation module 68 is mixed by an inlet 90 for taking in the mixed gas 22, a separation film 92 for gas separation, a discharge port 94 for discharging the non-condensable gas separated by the separation film 92 to the atmosphere, and a separation film 92. It includes an outlet 96 for discharging a retransmitted gas refrigerant (air conditioning refrigerant), which is a gas component having a reduced non-condensable gas as compared with the gas 22.
 発送配管56の一端がガス流入口60であり、発送配管56の他端は、ガス分離モジュール68の入口90に接続されている。再送配管58の一端は、ガス分離モジュール68の出口96に接続されており、再送配管58の他端は、ガス流出口74として、三方弁40の第3ポート43に接続されている。 One end of the shipping pipe 56 is a gas inflow port 60, and the other end of the shipping pipe 56 is connected to the inlet 90 of the gas separation module 68. One end of the retransmission pipe 58 is connected to the outlet 96 of the gas separation module 68, and the other end of the retransmission pipe 58 is connected to the third port 43 of the three-way valve 40 as a gas outlet 74.
 なお、以降説明するように、発送配管56と再送配管58には検出器や弁等が配置されるが、それらのいくつかを省略して冷媒回収システムを構成することもできる。このような構成も含めた、冷媒回収システムの基本となる冷媒回収方法は次の(1)~(4)のステップを備える。(1)三方弁40の第1、2ポート41、42を連通状態とし(以下、通常モードと言う)、冷媒回路30の空調用冷媒を、接続配管50と前配管52を通して冷媒回収装置14に導き、冷媒回収装置14を用いて空調用冷媒に圧縮凝縮を行って圧縮凝縮冷媒を生成する生成ステップ。(2)冷媒回収装置14が生成した圧縮凝縮冷媒を後配管54を通して回収ボンベ16に回収する回収ステップ。(3)回収ボンベ16の内部に含まれるガス成分22を発送配管56を通してガス分離モジュール68に導き、ガス分離モジュール68を用いて、ガス成分22から非凝縮性ガスと再送ガス冷媒(空調用冷媒)を分離させる分離ステップ。(4)三方弁40の第2、3ポート42、43を連通状態とし(以下、循環モードと言う)、ガス分離モジュール68が分離した再送ガス冷媒を、再送配管58と前配管52を通して、冷媒回収装置14に再送させる再送ステップ。 As will be described below, detectors, valves, and the like are arranged in the shipping pipe 56 and the retransmission pipe 58, but some of them may be omitted to configure the refrigerant recovery system. The refrigerant recovery method, which is the basis of the refrigerant recovery system including such a configuration, includes the following steps (1) to (4). (1) The first and second ports 41 and 42 of the three-way valve 40 are in a communicating state (hereinafter referred to as a normal mode), and the air-conditioning refrigerant of the refrigerant circuit 30 is passed through the connecting pipe 50 and the front pipe 52 to the refrigerant recovery device 14. A generation step of guiding and compressing and condensing the air-conditioning refrigerant using the refrigerant recovery device 14 to generate the compressed and condensed refrigerant. (2) A recovery step of recovering the compressed condensed refrigerant generated by the refrigerant recovery device 14 to the recovery cylinder 16 through the rear pipe 54. (3) The gas component 22 contained inside the recovery cylinder 16 is guided to the gas separation module 68 through the shipping pipe 56, and the gas component 22 is used to connect the non-condensable gas and the retransmission gas refrigerant (refrigerant for air conditioning) from the gas component 22. ) Separation step. (4) The second and third ports 42 and 43 of the three-way valve 40 are in a communicating state (hereinafter referred to as circulation mode), and the retransmitted gas refrigerant separated by the gas separation module 68 is passed through the retransmission pipe 58 and the front pipe 52 as a refrigerant. Retransmission step of retransmitting to the recovery device 14.
 図1の冷媒回収システム10の説明を続ける。分離装置18は、さらに、発送配管56に配置された圧力検出器61、温度検出器62、制御弁64および減圧弁66と、再送配管58に配置された圧力検出器70および圧力調整器72と、発送制御部76と、再送制御部78と、三方弁制御部80とを備える。発送配管56上の圧力検出器61および温度検出器62は、制御弁64よりも回収ボンベ16側に位置し、回収ボンベ16内の圧力および温度を検出する。再送配管58上の圧力検出器70は、圧力調整器72よりも上流側(ガス分離モジュール68側)の再送配管58内の圧力を検出する。圧力調整器72は、圧力調整器72よりも下流側(ガス流出口74側)の再送配管58内の圧力を調整する。 The explanation of the refrigerant recovery system 10 of FIG. 1 is continued. The separator 18 further includes a pressure detector 61, a temperature detector 62, a control valve 64 and a pressure reducing valve 66 arranged in the shipping pipe 56, and a pressure detector 70 and a pressure regulator 72 arranged in the retransmission pipe 58. , A delivery control unit 76, a retransmission control unit 78, and a three-way valve control unit 80. The pressure detector 61 and the temperature detector 62 on the delivery pipe 56 are located closer to the recovery cylinder 16 than the control valve 64, and detect the pressure and temperature in the recovery cylinder 16. The pressure detector 70 on the retransmission pipe 58 detects the pressure in the retransmission pipe 58 on the upstream side (gas separation module 68 side) of the pressure regulator 72. The pressure regulator 72 adjusts the pressure in the retransmission pipe 58 on the downstream side (gas outlet 74 side) of the pressure regulator 72.
 発送制御部76、再送制御部78、および三方弁制御部80は、コントローラであり、例えばCPU、ROM、RAM、フラッシュメモリ、入出力ポート等を備えたマイクロコンピュータである。これらの制御部は、共通の1つのマイクロコンピュータにより実現されてもよい。また、これらの制御部は、マイクロコンピュータに代えて、または、それと共にASIC(Application Specific Integrated Circuit)等を含んでもよい。 The shipping control unit 76, the retransmission control unit 78, and the three-way valve control unit 80 are controllers, for example, a microcomputer provided with a CPU, ROM, RAM, flash memory, input / output ports, and the like. These control units may be realized by one common microcomputer. Further, these control units may include an ASIC (Application Specific Integrated Circuit) or the like in place of or together with the microcomputer.
 発送制御部76は、圧力検出器61および温度検出器62のそれぞれの検出値DP、DTに基づいて、回収ボンベ16内から非凝縮性ガスを除去する必要があるか否かを判断し、除去の必要ありと判断した際には制御弁64を開状態とし、除去の必要なしと判断した際には制御弁64を閉状態とする。三方弁制御部80は、三方弁40を制御して、制御弁64が閉状態の場合には第1ポート41と第2ポート42を連通状態とし(通常モード)、制御弁64が開状態の場合には、第2ポート42と第3ポート43を連通状態とする(循環モード)か、または、第1ポート41と第3ポート43を連通状態とする(以下、気化促進モードと言う)。このように、図1の実施形態では、基本となる冷媒回収方法に対して、気化促進モードが付加されている。 The shipping control unit 76 determines whether or not it is necessary to remove the non-condensable gas from the inside of the recovery cylinder 16 based on the detection values DP and DT of the pressure detector 61 and the temperature detector 62, respectively, and removes the non-condensable gas. When it is determined that the control valve 64 is necessary, the control valve 64 is opened, and when it is determined that the removal is not necessary, the control valve 64 is closed. The three-way valve control unit 80 controls the three-way valve 40 so that when the control valve 64 is in the closed state, the first port 41 and the second port 42 are in a communicating state (normal mode), and the control valve 64 is in an open state. In this case, the second port 42 and the third port 43 are in a communication state (circulation mode), or the first port 41 and the third port 43 are in a communication state (hereinafter referred to as vaporization promotion mode). As described above, in the embodiment of FIG. 1, the vaporization promotion mode is added to the basic refrigerant recovery method.
 通常モードは、空調装置12から回収ボンベ16に冷媒回収を行うモードである。循環モードは、分離装置18、冷媒回収装置14、及び回収ボンベ16の循環ループを形成して、繰り返し、回収ボンベ16内の混合ガス22をガス分離モジュール68に送り込んで、回収ボンベ16内の非凝縮性ガスを除去するモードである。気化促進モードは、空調装置12の冷媒回路30内の冷媒が低温凝縮する可能性がある場合に、回収ボンベ16内の混合ガス22の一部を、分離装置18から冷媒回路30内に送り込み、冷媒回路30内の冷媒の温度を上昇させ、冷媒の気化を促進させるモードである。なお、冷媒回収装置14を通過したガス冷媒は、断熱圧縮されるため、冷媒回路30内、すなわち冷媒回収装置14に流入する時よりも温度が高くなる。そのため、冷媒回収装置14から回収ボンベ16に入る冷媒は、温度が高くなっている。 The normal mode is a mode in which the refrigerant is recovered from the air conditioner 12 to the recovery cylinder 16. In the circulation mode, a circulation loop of the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16 is repeatedly formed, and the mixed gas 22 in the recovery cylinder 16 is sent to the gas separation module 68 to send the mixed gas 22 in the recovery cylinder 16 to the non-recovery cylinder 16. This mode removes condensable gas. In the vaporization promotion mode, when the refrigerant in the refrigerant circuit 30 of the air conditioner 12 may be condensed at a low temperature, a part of the mixed gas 22 in the recovery cylinder 16 is sent from the separation device 18 into the refrigerant circuit 30. This mode raises the temperature of the refrigerant in the refrigerant circuit 30 and promotes the vaporization of the refrigerant. Since the gas refrigerant that has passed through the refrigerant recovery device 14 is adiabatically compressed, the temperature is higher than when it flows into the refrigerant circuit 30, that is, the refrigerant recovery device 14. Therefore, the temperature of the refrigerant entering the recovery cylinder 16 from the refrigerant recovery device 14 is high.
 図2は、発送制御部76のブロック図である。発送制御部76は、参照圧力取得部104と、減圧弁制御部106と、判定部108とを備える。分離装置18は、キーパッドやバーコードリーダ等の入力部100と、フラッシュメモリ等の記憶部102とを備える。発送制御部76には、入力部100と記憶部102とが電気的に接続されている。なお、発送制御部76内にあるメモリを、記憶部102として使用してもよい。 FIG. 2 is a block diagram of the shipping control unit 76. The delivery control unit 76 includes a reference pressure acquisition unit 104, a pressure reducing valve control unit 106, and a determination unit 108. The separation device 18 includes an input unit 100 such as a keypad and a bar code reader, and a storage unit 102 such as a flash memory. The input unit 100 and the storage unit 102 are electrically connected to the delivery control unit 76. The memory in the shipping control unit 76 may be used as the storage unit 102.
 冷媒回収の前に、入力部100から回収する冷媒(以下、回収冷媒とも言う)の種類を示す回収冷媒情報110が入力され、記憶部102に格納される。例えば、空調装置12の筐体の表面に付された、空調装置12で使用している冷媒の種類を示すバーコードを、入力部100としてのバーコードリーダで読み取ることで、回収冷媒情報110が記憶部102に格納される。また、記憶部102には、複数種類の冷媒毎に、温度に対する飽和蒸気圧の特性(以下、圧力特性112と言う)が予め格納されている。図3には、A、B、C、およびDの各冷媒の圧力特性が示されている。 Before the refrigerant is recovered, the recovered refrigerant information 110 indicating the type of the refrigerant to be recovered from the input unit 100 (hereinafter, also referred to as the recovered refrigerant) is input and stored in the storage unit 102. For example, by reading a bar code attached to the surface of the housing of the air conditioner 12 indicating the type of the refrigerant used in the air conditioner 12 with a bar code reader as the input unit 100, the recovered refrigerant information 110 can be obtained. It is stored in the storage unit 102. Further, the storage unit 102 stores in advance the characteristic of saturated vapor pressure with respect to temperature (hereinafter referred to as pressure characteristic 112) for each of a plurality of types of refrigerants. FIG. 3 shows the pressure characteristics of each of the refrigerants A, B, C, and D.
 参照圧力取得部104には、発送配管56上の温度検出器62の検出温度DT(回収ボンベ16内の温度)が入力される。参照圧力取得部104は、回収冷媒情報110が示す回収冷媒に対応する圧力特性112を記憶部102から読み出して、図3のように、検出温度DT(回収ボンベ16内の温度)における回収冷媒(図3の例では冷媒A)の飽和蒸気圧を、参照圧力RPとして取得する。そして、参照圧力取得部104は、参照圧力RPを判定部108に出力する。 The detection temperature DT (temperature in the recovery cylinder 16) of the temperature detector 62 on the shipping pipe 56 is input to the reference pressure acquisition unit 104. The reference pressure acquisition unit 104 reads the pressure characteristic 112 corresponding to the recovery refrigerant indicated by the recovery refrigerant information 110 from the storage unit 102, and as shown in FIG. 3, the recovery refrigerant (the temperature in the recovery cylinder 16) at the detection temperature DT (the temperature inside the recovery cylinder 16). In the example of FIG. 3, the saturated vapor pressure of the refrigerant A) is acquired as the reference pressure RP. Then, the reference pressure acquisition unit 104 outputs the reference pressure RP to the determination unit 108.
 判定部108には、参照圧力RPと、発送配管56上の圧力検出器61の検出圧力DP(回収ボンベ16内の圧力)とが入力される。ここで、図3に示すように参照圧力RP(回収冷媒の飽和蒸気圧)よりも検出圧力DPが高い場合には、回収ボンベ16内に非凝縮性ガスが混入していることを示す。そこで、判定部108は、検出圧力DPが参照圧力RPよりも高い状態(以下、高圧状態とも言う)の場合には、制御弁64を開状態に制御し、回収ボンベ16内の混合ガス22をガス分離モジュール68に送る。一方、判定部108は、高圧状態ではない場合には、制御弁64を閉状態のままとする。また、判定部108は、非凝縮性ガスの除去を行っている状態か否かを示す除去信号を出力する。除去信号は、制御弁64が閉状態の場合にLowとなり、制御弁64が開状態の場合にHighとなる信号である。 The reference pressure RP and the detection pressure DP (pressure in the recovery cylinder 16) of the pressure detector 61 on the shipping pipe 56 are input to the determination unit 108. Here, when the detected pressure DP is higher than the reference pressure RP (saturated vapor pressure of the recovered refrigerant) as shown in FIG. 3, it indicates that the non-condensable gas is mixed in the recovered cylinder 16. Therefore, when the detected pressure DP is higher than the reference pressure RP (hereinafter, also referred to as a high pressure state), the determination unit 108 controls the control valve 64 to be in an open state, and controls the mixed gas 22 in the recovery cylinder 16. It is sent to the gas separation module 68. On the other hand, the determination unit 108 keeps the control valve 64 in the closed state when it is not in the high pressure state. Further, the determination unit 108 outputs a removal signal indicating whether or not the non-condensable gas is being removed. The removal signal is a signal that becomes Low when the control valve 64 is in the closed state and becomes High when the control valve 64 is in the open state.
 減圧弁制御部106には、発送配管56上の圧力検出器61の検出圧力DP(回収ボンベ16内の圧力)が入力される。減圧弁制御部106は、制御弁64が開状態となり、回収ボンベ16内の混合ガス22がガス分離モジュール68に送り込まれた際に、ガス分離モジュール68の分離膜92が回収ボンベ16内の圧力により損傷しないように、検出圧力DPに基づいて減圧弁66を制御する。減圧弁66の制御により、減圧弁66よりも下流側(ガス分離モジュール68側)の配管内圧力が調整される。 The detection pressure DP (pressure in the recovery cylinder 16) of the pressure detector 61 on the shipping pipe 56 is input to the pressure reducing valve control unit 106. In the pressure reducing valve control unit 106, when the control valve 64 is opened and the mixed gas 22 in the recovery cylinder 16 is sent to the gas separation module 68, the separation film 92 of the gas separation module 68 presses the pressure in the recovery cylinder 16. The pressure reducing valve 66 is controlled based on the detected pressure DP so as not to be damaged by the gas cylinder. By controlling the pressure reducing valve 66, the pressure inside the pipe on the downstream side (gas separation module 68 side) of the pressure reducing valve 66 is adjusted.
 図4は、三方弁制御部80のブロック図である。三方弁制御部80は、判定部118を備える。三方弁制御部80には、キーパッド等の入力部100と、フラッシュメモリ等の記憶部102とが電気的に接続されている。なお、三方弁制御部80内にあるメモリを、記憶部102として使用してもよい。 FIG. 4 is a block diagram of the three-way valve control unit 80. The three-way valve control unit 80 includes a determination unit 118. An input unit 100 such as a keypad and a storage unit 102 such as a flash memory are electrically connected to the three-way valve control unit 80. The memory in the three-way valve control unit 80 may be used as the storage unit 102.
 冷媒回収の前に、入力部100から、気化促進モードへの遷移条件としての圧力閾値120と、気化促進モードの継続時間122とが入力され、記憶部102に格納される。判定部118には、除去信号と、冷媒回収装置14の圧力検出器37の検出圧力DPS(冷媒回収装置14の入口36における圧力)と、記憶部102にある圧力閾値120および継続時間122とが入力される。ここで、検出圧力DPSは、通常モードにおいて空調装置12の冷媒回路30の圧力を示す。 Prior to the recovery of the refrigerant, the pressure threshold value 120 as a transition condition to the vaporization promotion mode and the duration 122 of the vaporization promotion mode are input from the input unit 100 and stored in the storage unit 102. The determination unit 118 has a removal signal, a detection pressure DPS (pressure at the inlet 36 of the refrigerant recovery device 14) of the pressure detector 37 of the refrigerant recovery device 14, a pressure threshold value 120 and a duration 122 in the storage unit 102. Entered. Here, the detected pressure DPS indicates the pressure of the refrigerant circuit 30 of the air conditioner 12 in the normal mode.
 判定部118は、除去信号がLowの場合には、三方弁40の第1ポート41と第2ポート42が連通状態(通常モード)となるように三方弁40を制御する。また、判定部118は、除去信号がLowからHighに変わった際には、検出圧力DPS(冷媒回路30の圧力)と圧力閾値120の比較結果に基づいて、循環モードと気化促進モードのうち、どちらに三方弁40を制御するかを決める。具体的には、判定部118は、検出圧力DPSが圧力閾値120より高い場合には、冷媒回路30内の冷媒が低温凝縮する可能性が低いと推定し、三方弁40の第2ポート42と第3ポート43が連通状態(循環モード)となるように三方弁40を制御する。一方、判定部118は、検出圧力DPSが圧力閾値120以下の場合には、冷媒回路30内の冷媒が低温凝縮する可能性があると推定し、三方弁40の第1ポート41と第3ポート43が連通状態(気化促進モード)となるように三方弁40を制御する。また、判定部118は、気化促進モードに遷移させてから、継続時間122だけ時間が経過した際には、気化促進モードから循環モードに三方弁40を制御する。また、判定部118は、現在、通常モード、循環モード、または気化促進モードのいずれの状態であるかを示す三方弁信号を出力する。 When the removal signal is Low, the determination unit 118 controls the three-way valve 40 so that the first port 41 and the second port 42 of the three-way valve 40 are in a communicating state (normal mode). Further, when the removal signal changes from Low to High, the determination unit 118 is selected from the circulation mode and the vaporization promotion mode based on the comparison result between the detected pressure DPS (pressure of the refrigerant circuit 30) and the pressure threshold value 120. Decide which way to control the three-way valve 40. Specifically, when the detected pressure DPS is higher than the pressure threshold value 120, the determination unit 118 estimates that the refrigerant in the refrigerant circuit 30 is unlikely to condense at a low temperature, and determines that the third port 42 of the three-way valve 40 is used. The three-way valve 40 is controlled so that the third port 43 is in the communication state (circulation mode). On the other hand, the determination unit 118 estimates that when the detected pressure DPS is the pressure threshold value 120 or less, the refrigerant in the refrigerant circuit 30 may condense at a low temperature, and the first port 41 and the third port of the three-way valve 40 The three-way valve 40 is controlled so that the 43 is in a communication state (vaporization promotion mode). Further, the determination unit 118 controls the three-way valve 40 from the vaporization promotion mode to the circulation mode when the duration 122 has elapsed since the transition to the vaporization promotion mode. Further, the determination unit 118 outputs a three-way valve signal indicating which of the normal mode, the circulation mode, and the vaporization promotion mode is currently in.
 図1に示すように、再送制御部78には、三方弁信号と、再送配管58上の圧力検出器70の検出圧力DPR(再送配管58内の圧力)と、冷媒回収装置14の圧力検出器37の検出圧力DPS(冷媒回収装置14の入口36における圧力)とが入力される。再送制御部78は、三方弁信号が循環モードを示す場合には、検出圧力DPR、DPSに基づいて、冷媒回収装置14の入口36における圧力よりも、圧力調整器72の下流側(ガス流出口74側)の再送配管58内の圧力が高くなるように圧力調整器72を制御する。これにより、前配管52から再送配管58に向かって冷媒が逆流することを防止することができる。また、再送制御部78は、三方弁信号が気化促進モードを示す場合には、圧力調整器72の下流側(ガス流出口74側)の再送配管58内の圧力が、空調装置12の冷媒回路30内にガスを送り込むことができる予め定められた圧力となるように圧力調整器72を制御する。 As shown in FIG. 1, the retransmission control unit 78 includes a three-way valve signal, a detection pressure DPR (pressure in the retransmission pipe 58) of the pressure detector 70 on the retransmission pipe 58, and a pressure detector of the refrigerant recovery device 14. The detection pressure DPS (pressure at the inlet 36 of the refrigerant recovery device 14) of 37 is input. When the three-way valve signal indicates the circulation mode, the retransmission control unit 78 is located downstream of the pressure at the inlet 36 of the refrigerant recovery device 14 (gas outlet) based on the detected pressures DPR and DPS. The pressure regulator 72 is controlled so that the pressure in the retransmission pipe 58 on the 74 side) becomes high. This makes it possible to prevent the refrigerant from flowing back from the front pipe 52 toward the retransmission pipe 58. Further, in the retransmission control unit 78, when the three-way valve signal indicates the vaporization promotion mode, the pressure in the retransmission pipe 58 on the downstream side (gas outlet 74 side) of the pressure regulator 72 is the refrigerant circuit of the air conditioner 12. The pressure regulator 72 is controlled so as to have a predetermined pressure at which gas can be sent into the 30.
 次に、ガス分離モジュール68について説明する。図1に示すように、ガス分離モジュール68は、筒状の筐体88と、筐体88の中に配置された筒状の分離膜92と含む。筐体88は、混合ガス22を取り入れる入口90と、入口90と対向して配置され、再送ガス冷媒を排出する出口96と、非凝縮性ガスを大気に放出する放出口94とを含む。分離膜92の一端は、筐体88の入口90に接続され、分離膜92の他端は、筐体88の出口96に接続されている。混合ガス22は、入口90から分離膜92の内部に入り、出口96に向かって進み、その間に、空気を主成分とする非凝縮性ガスが、分離膜92を透過して、分離膜92の外に出ていき、やがて、筐体88の放出口94から大気に放たれる。また、混合ガス22に比べて非凝縮性ガスが低減した再送ガス冷媒は、筐体88の出口96から再送配管58内に排出される。 Next, the gas separation module 68 will be described. As shown in FIG. 1, the gas separation module 68 includes a tubular housing 88 and a tubular separation membrane 92 arranged in the housing 88. The housing 88 includes an inlet 90 for taking in the mixed gas 22, an outlet 96 arranged facing the inlet 90 and discharging the retransmission gas refrigerant, and a discharge port 94 for discharging the non-condensable gas to the atmosphere. One end of the separation membrane 92 is connected to the inlet 90 of the housing 88, and the other end of the separation membrane 92 is connected to the outlet 96 of the housing 88. The mixed gas 22 enters the inside of the separation membrane 92 from the inlet 90 and proceeds toward the outlet 96, during which the non-condensable gas containing air as a main component permeates the separation membrane 92 and forms the separation membrane 92. It goes out and is eventually released into the atmosphere from the discharge port 94 of the housing 88. Further, the retransmission gas refrigerant having a reduced amount of non-condensable gas as compared with the mixed gas 22 is discharged from the outlet 96 of the housing 88 into the retransmission pipe 58.
 分離膜92としては、例えば、無機系材料により構成された膜(以下、無機系分離膜と言う)または有機系材料により構成された膜(以下、有機系分離膜と言う)を使用することができる。図5は、無機系分離膜によるガス分離の様子を模式的に示すであり、図6は、有機系分離膜によるガス分離の様子を模式的に示すである。 As the separation membrane 92, for example, a membrane made of an inorganic material (hereinafter referred to as an inorganic separation membrane) or a membrane made of an organic material (hereinafter referred to as an organic separation membrane) can be used. can. FIG. 5 schematically shows the state of gas separation by the inorganic separation membrane, and FIG. 6 schematically shows the state of gas separation by the organic separation membrane.
 図5に示すように、無機系分離膜は、分子径の差異を利用してガス分離を行うものであり、ガス冷媒24に比べて分子径が小さい空気26や水28が分離膜92の孔を通って膜の外に出ていく一方で、ガス冷媒24は膜の内側に残る。無機系分離膜の材料としては、例えばセラミック、ゼオライト等を使用することができる。 As shown in FIG. 5, the inorganic separation membrane performs gas separation by utilizing the difference in molecular diameter, and air 26 and water 28 having a smaller molecular diameter than the gas refrigerant 24 are holes in the separation membrane 92. The gas refrigerant 24 remains inside the membrane while exiting the membrane through. As the material of the inorganic separation membrane, for example, ceramic, zeolite or the like can be used.
 図6に示すように、有機系分離膜は、膜における分子の透過速度差を利用してガス分離を行うものであり、ガス冷媒24に比べて透過速度が速い空気26や水28が分離膜92を透過して膜の外に出ていく一方で、ガス冷媒24は膜の内側に残る。有機系分離膜の材料としては、例えばポリイミド樹脂等を使用することができる。 As shown in FIG. 6, the organic separation membrane performs gas separation by utilizing the difference in permeation rate of molecules in the membrane, and air 26 and water 28 having a faster permeation rate than the gas refrigerant 24 are separation films. While permeating 92 and exiting the membrane, the gas refrigerant 24 remains inside the membrane. As the material of the organic separation membrane, for example, a polyimide resin or the like can be used.
 次に、冷媒回収システム10を用いた具体的な冷媒回収方法について説明する。図7は、冷媒回収システム10を用いた具体的な冷媒回収方法を示すフローチャートである。図7において、S100~S104、S126及びS128が作業者が行うステップであり、その他のステップは冷媒回収システム10により自動的に行われるステップである。 Next, a specific refrigerant recovery method using the refrigerant recovery system 10 will be described. FIG. 7 is a flowchart showing a specific refrigerant recovery method using the refrigerant recovery system 10. In FIG. 7, S100 to S104, S126 and S128 are steps performed by the operator, and the other steps are steps automatically performed by the refrigerant recovery system 10.
 まず、S100で、作業者は、冷媒回収装置14、回収ボンベ16、および分離装置18を準備する。そして、S102で、作業者は、空調装置12の電源を遮断した後、図1に示すように、空調装置12、冷媒回収装置14、回収ボンベ16、および分離装置18を互いに接続する。次に、S103で、作業者は、分離装置18の電源をオンにする。この後、作業者は、回収冷媒情報110(図2参照)と、気化促進モードに関する圧力閾値120および継続時間122(図4参照)とを入力部100から入力する。分離装置18の電源がオンにされると、三方弁制御部80は、三方弁40を第1ポート41と第2ポート42が連通する通常モードに制御する。そして、S104で、作業者は、冷媒回収装置14を駆動させる。これにより、空調装置12からの冷媒回収が開始される。 First, in S100, the operator prepares the refrigerant recovery device 14, the recovery cylinder 16, and the separation device 18. Then, in S102, after turning off the power of the air conditioner 12, the operator connects the air conditioner 12, the refrigerant recovery device 14, the recovery cylinder 16, and the separation device 18 to each other as shown in FIG. Next, in S103, the operator turns on the power of the separation device 18. After that, the operator inputs the recovered refrigerant information 110 (see FIG. 2), the pressure threshold value 120 and the duration 122 (see FIG. 4) regarding the vaporization promotion mode from the input unit 100. When the power of the separation device 18 is turned on, the three-way valve control unit 80 controls the three-way valve 40 to a normal mode in which the first port 41 and the second port 42 communicate with each other. Then, in S104, the operator drives the refrigerant recovery device 14. As a result, the refrigerant recovery from the air conditioner 12 is started.
 S106~S122は、冷媒回収システム10による自動制御である。S106で、発送制御部76の参照圧力取得部104は、回収冷媒情報110が示す回収冷媒の圧力特性(図3参照)に基づいて、温度検出器62の検出温度DT(回収ボンベ16内の温度)における回収冷媒の飽和蒸気圧を参照圧力RPとして取得する。そして、発送制御部76の判定部108は、参照圧力RPよりも、圧力検出器61の検出圧力DP(回収ボンベ内の圧力)が高いかを確認する。なお、図7のS106のように、判定部108は、参照圧力RPに予め定められた圧力αを加算した圧力(RP+α、以下、基準圧力と言う)よりも、検出圧力DP(回収ボンベ内の圧力)が高いかを確認してもよい。 S106 to S122 are automatic controls by the refrigerant recovery system 10. In S106, the reference pressure acquisition unit 104 of the delivery control unit 76 has a detection temperature DT (temperature in the recovery cylinder 16) of the temperature detector 62 based on the pressure characteristic of the recovery refrigerant (see FIG. 3) indicated by the recovery refrigerant information 110. ), The saturated vapor pressure of the recovered vapor pressure is obtained as the reference pressure RP. Then, the determination unit 108 of the delivery control unit 76 confirms whether the detection pressure DP (pressure in the recovery cylinder) of the pressure detector 61 is higher than the reference pressure RP. As shown in S106 of FIG. 7, the determination unit 108 has a detection pressure DP (in the recovery cylinder) rather than a pressure (RP + α, hereinafter referred to as a reference pressure) obtained by adding a predetermined pressure α to the reference pressure RP. You may check if the pressure) is high.
 判定部108は、検出圧力DPが基準圧力(RP+α)以下の場合(S106:No)には、回収ボンベ16内の非凝縮性ガスの除去は不要と判断して、冷媒回収を継続する(S108)。 When the detection pressure DP is equal to or less than the reference pressure (RP + α) (S106: No), the determination unit 108 determines that it is not necessary to remove the non-condensable gas in the recovery cylinder 16 and continues the refrigerant recovery (S108). ).
 一方、判定部108は、検出圧力DPが基準圧力(RP+α)より高い場合(S106:Yes)には、回収ボンベ16内の非凝縮性ガスの除去が必要と判断して、除去信号をLowからHighにして、S110に進む。なお、このように基準圧力を用いて判定を行えば、回収ボンベ16内に非凝縮性ガスがある程度たまった後、非凝縮性ガスの除去を開始することができる。 On the other hand, when the detected pressure DP is higher than the reference pressure (RP + α) (S106: Yes), the determination unit 108 determines that it is necessary to remove the non-condensable gas in the recovery cylinder 16, and sends a removal signal from Low. Set to High and proceed to S110. If the determination is made using the reference pressure in this way, the removal of the non-condensable gas can be started after the non-condensable gas has accumulated to some extent in the recovery cylinder 16.
 S110で、三方弁制御部80は、除去信号がLowからHighになったことを受けて、第1三方弁制御を実行する。図8は、第1三方弁制御を示すフローチャートである。図8のS200で、三方弁制御部80の判定部118は、冷媒回収装置14の圧力検出器37の検出圧力DPS(冷媒回路30の圧力)が、記憶部102にある圧力閾値120以下かを確認する。なお、圧力閾値120は、例えば0.1MPa程度である。 In S110, the three-way valve control unit 80 executes the first three-way valve control in response to the fact that the removal signal has changed from Low to High. FIG. 8 is a flowchart showing the first three-way valve control. In S200 of FIG. 8, the determination unit 118 of the three-way valve control unit 80 determines whether the detection pressure DPS (pressure of the refrigerant circuit 30) of the pressure detector 37 of the refrigerant recovery device 14 is equal to or less than the pressure threshold value 120 in the storage unit 102. confirm. The pressure threshold value 120 is, for example, about 0.1 MPa.
 S200がNoの場合には、判定部118は、空調装置12の冷媒回路30の冷媒が低温凝縮する可能性が低いと推定し、三方弁40を第2ポート42と第3ポート43が連通する循環モードに制御し(S206)、気化促進フラグをオフにして(S208)、第1三方弁制御を終了する。 When S200 is No, the determination unit 118 estimates that the refrigerant in the refrigerant circuit 30 of the air conditioner 12 is unlikely to condense at a low temperature, and the third port 42 and the third port 43 communicate with each other through the three-way valve 40. The circulation mode is controlled (S206), the vaporization promotion flag is turned off (S208), and the first three-way valve control is terminated.
 一方、S200がYesの場合には、判定部118は、空調装置12の冷媒回路30の冷媒が低温凝縮する可能性が高いと推定し、三方弁40を第1ポート41と第3ポート43が連通する気化促進モードに制御し(S202)、気化促進フラグをオンにして(S204)、第1三方弁制御を終了する。 On the other hand, when S200 is Yes, the determination unit 118 estimates that the refrigerant in the refrigerant circuit 30 of the air conditioner 12 is likely to condense at a low temperature, and the three-way valve 40 has the first port 41 and the third port 43. The communication promotion mode is controlled (S202), the vaporization promotion flag is turned on (S204), and the first three-way valve control is terminated.
 図7に戻り、S110の次は、S112で、発送制御部76の判定部108は、発送配管56上の制御弁64を開く。なお、除去信号をLowからHighにするタイミングと、S110(第1三方弁制御)の実行タイミングと、S112(制御弁64を開く動作)の実行タイミングとは、ほぼ同時である。また、制御弁64を開く前に、減圧弁制御部106により減圧弁66を調整しておく。制御弁64を開くことにより、回収ボンベ16内の混合ガス22がガス分離モジュール68に送られる。 Returning to FIG. 7, after S110, in S112, the determination unit 108 of the delivery control unit 76 opens the control valve 64 on the delivery pipe 56. The timing of changing the removal signal from Low to High, the execution timing of S110 (first three-way valve control), and the execution timing of S112 (operation of opening the control valve 64) are almost the same. Further, before opening the control valve 64, the pressure reducing valve 66 is adjusted by the pressure reducing valve control unit 106. By opening the control valve 64, the mixed gas 22 in the recovery cylinder 16 is sent to the gas separation module 68.
 循環モードの場合には、分離装置18、冷媒回収装置14、および回収ボンベ16の循環ループが形成されて、回収ボンベ16内の混合ガス22は、繰り返しガス分離モジュール68に送り込まれ、非凝縮性ガスは大気に開放され、再送ガス冷媒は、冷媒回収装置14の前の前配管52に送り込まれて、冷媒回収装置14を通過し、液化された状態で回収ボンベ16に戻る。これにより、回収ボンベ16内の非凝縮性ガスは徐々に除去され、回収ボンベ16内の圧力は低下する。 In the circulation mode, a circulation loop of the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16 is formed, and the mixed gas 22 in the recovery cylinder 16 is repeatedly sent to the gas separation module 68 and is non-condensable. The gas is released to the atmosphere, and the retransmitted gas refrigerant is sent to the front pipe 52 in front of the refrigerant recovery device 14, passes through the refrigerant recovery device 14, and returns to the recovery cylinder 16 in a liquefied state. As a result, the non-condensable gas in the recovery cylinder 16 is gradually removed, and the pressure in the recovery cylinder 16 decreases.
 気化促進モードの場合には、回収ボンベ16内の混合ガス22の一部である再送ガス冷媒が、空調装置12の冷媒回路30内に送り込まれ、冷媒回路30内の冷媒の温度を上昇させる。これにより、冷媒の気化が促進され、冷媒回収を再開した際に、冷媒回収速度を向上させることができる。 In the case of the vaporization promotion mode, the retransmission gas refrigerant, which is a part of the mixed gas 22 in the recovery cylinder 16, is sent into the refrigerant circuit 30 of the air conditioner 12, and raises the temperature of the refrigerant in the refrigerant circuit 30. As a result, the vaporization of the refrigerant is promoted, and the refrigerant recovery speed can be improved when the refrigerant recovery is restarted.
 再送制御部78は、循環モードおよび気化促進モードにおいて圧力調整器72を制御して、圧力調整器72の下流側(ガス流出口74側)の再送配管58内の圧力を調整する。 The retransmission control unit 78 controls the pressure regulator 72 in the circulation mode and the vaporization promotion mode to adjust the pressure in the retransmission pipe 58 on the downstream side (gas outlet 74 side) of the pressure regulator 72.
 S114で、発送制御部76の判定部108は、圧力検出器61の検出圧力DP(回収ボンベ16内の圧力)が、参照圧力RP以下になったかを確認する。S114がNoの場合には、非凝縮性ガスの除去を継続し(S116)、S118に進む。 In S114, the determination unit 108 of the shipping control unit 76 confirms whether the detection pressure DP (pressure in the recovery cylinder 16) of the pressure detector 61 is equal to or less than the reference pressure RP. If S114 is No, the removal of the non-condensable gas is continued (S116), and the process proceeds to S118.
 S118で、三方弁制御部80は、第2三方弁制御を実行する。図9は、第2三方弁制御を示すフローチャートである。図9のS300で、三方弁制御部80の判定部118は、気化促進フラグがオンであるかを確認する。S300がNoの場合(循環モードの場合)は、第2三方弁制御を終了する。一方、S300がYesの場合(気化促進モードの場合)にはS302に進む。 In S118, the three-way valve control unit 80 executes the second three-way valve control. FIG. 9 is a flowchart showing the second three-way valve control. In S300 of FIG. 9, the determination unit 118 of the three-way valve control unit 80 confirms whether the vaporization promotion flag is on. If S300 is No (in the circulation mode), the second three-way valve control is terminated. On the other hand, if S300 is Yes (in the case of vaporization promotion mode), the process proceeds to S302.
 S302で、判定部118は、気化促進モードに遷移させてから、記憶部102にある継続時間122(図4参照)だけ時間が経過したかを確認する。S302がNoの場合には、判定部118は、気化促進モードを引き続き継続させる必要があると判断し、第2三方弁制御を終了する。一方、S302がYesの場合には、判定部118は、気化促進モードを終了してよいと判断し、三方弁40を第2ポート42と第3ポート43が連通する循環モードに制御し(S304)、気化促進フラグをオフ(S306)にして、第2三方弁制御を終了する。 In S302, the determination unit 118 confirms whether or not the duration 122 (see FIG. 4) in the storage unit 102 has elapsed since the transition to the vaporization promotion mode. If S302 is No, the determination unit 118 determines that it is necessary to continue the vaporization promotion mode, and ends the second three-way valve control. On the other hand, when S302 is Yes, the determination unit 118 determines that the vaporization promotion mode may be terminated, and controls the three-way valve 40 to the circulation mode in which the second port 42 and the third port 43 communicate (S304). ), The vaporization promotion flag is turned off (S306), and the second three-way valve control is terminated.
 図7に戻り、S114で、発送制御部76の判定部108は、圧力検出器61の検出圧力DP(回収ボンベ16内の圧力)が、参照圧力RP以下になった場合(S114:Yes)には、回収ボンベ16内の非凝縮性ガスの除去が完了したと判断して、S120に進む。 Returning to FIG. 7, in S114, when the detection pressure DP (pressure in the recovery cylinder 16) of the pressure detector 61 becomes equal to or less than the reference pressure RP in the determination unit 108 of the shipping control unit 76 (S114: Yes). Determines that the removal of the non-condensable gas in the recovery cylinder 16 is completed, and proceeds to S120.
 S120で、発送制御部76の判定部108は、発送配管56上の制御弁64を閉じ、除去信号をHighからLowにする。三方弁制御部80の判定部118は、除去信号がHighからLowになったことを受けて、三方弁40を第1ポート41と第2ポート42が連通する通常モードに制御する。また、発送制御部76の減圧弁制御部106は、減圧弁66の制御を終了し、再送制御部78は、圧力調整器72の制御を終了する。 In S120, the determination unit 108 of the delivery control unit 76 closes the control valve 64 on the delivery pipe 56 and changes the removal signal from High to Low. The determination unit 118 of the three-way valve control unit 80 controls the three-way valve 40 to a normal mode in which the first port 41 and the second port 42 communicate with each other in response to the fact that the removal signal changes from High to Low. Further, the pressure reducing valve control unit 106 of the delivery control unit 76 ends the control of the pressure reducing valve 66, and the retransmission control unit 78 ends the control of the pressure regulator 72.
 次に、S122で、冷媒回収装置14は、圧力検出器37の検出圧力DPS(冷媒回路30の圧力)が負圧になったかを確認する。S122がNoの場合には、冷媒回収装置14は冷媒回収を継続し(S124)、S122がYesの場合には、冷媒回収装置14は、ランプ、音等により冷媒回収が終了したことを作業者に伝える。 Next, in S122, the refrigerant recovery device 14 confirms whether the detected pressure DPS (pressure of the refrigerant circuit 30) of the pressure detector 37 has become a negative pressure. When S122 is No, the refrigerant recovery device 14 continues the refrigerant recovery (S124), and when S122 is Yes, the refrigerant recovery device 14 indicates that the refrigerant recovery has been completed by a lamp, sound, or the like. Tell to.
 S126で、作業者は、冷媒回収装置14を停止する。そして、S128で、作業者は、分離装置18の電源をオフにする。以上が冷媒回収のフローである。 At S126, the operator stops the refrigerant recovery device 14. Then, in S128, the operator turns off the power of the separating device 18. The above is the flow of refrigerant recovery.
 次に、以上説明した冷媒回収システム10の作用効果について説明する。冷媒回収システム10によれば、回収ボンベ16の内部の混合ガス22がガス分離モジュール68に送られることで、混合ガス22から非凝縮性ガスが分離されて大気に排出されると共に、混合ガス22に比べて非凝縮性ガスが低減された再送ガス冷媒が、ガス分離モジュール68の出口96から排出されて、空調装置12の冷媒回路30と冷媒回収装置14の間の配管内に送られる。また、再送ガス冷媒は、再度、冷媒回収装置14を通過し、液化された状態で回収ボンベ16に戻ることになる。 Next, the operation and effect of the refrigerant recovery system 10 described above will be described. According to the refrigerant recovery system 10, the mixed gas 22 inside the recovery cylinder 16 is sent to the gas separation module 68, so that the non-condensable gas is separated from the mixed gas 22 and discharged to the atmosphere, and the mixed gas 22 is discharged. The retransmitted gas refrigerant having a reduced amount of non-condensable gas is discharged from the outlet 96 of the gas separation module 68 and sent into the pipe between the refrigerant circuit 30 of the air conditioner 12 and the refrigerant recovery device 14. Further, the retransmitted gas refrigerant passes through the refrigerant recovery device 14 again and returns to the recovery cylinder 16 in a liquefied state.
 このように、回収ボンベ16、冷媒回収装置14及び空調装置12の接続を維持したまま、回収ボンベ16内の非凝縮性ガスを低減することができる。回収ボンベ16の内圧上昇を抑制することができ、回収ボンベ16への冷媒回収速度を向上することができると共に、回収ボンベ16の冷媒充填量を増やすことができる。また、再送ガス冷媒は、液化されて(体積が減少した状態で)回収ボンベ16に戻るので、回収ボンベ16の冷媒充填量をさらに増加させることができる。なお、回収ボンベ16内の混合ガス22をガス分離モジュール68に送るために、回収ボンベ16、ガス分離モジュール68、冷媒回収装置14の順で配置される点に重要な意義がある。 In this way, the non-condensable gas in the recovery cylinder 16 can be reduced while maintaining the connection between the recovery cylinder 16, the refrigerant recovery device 14, and the air conditioner 12. It is possible to suppress an increase in the internal pressure of the recovery cylinder 16, improve the speed of recovering the refrigerant to the recovery cylinder 16, and increase the amount of refrigerant charged in the recovery cylinder 16. Further, since the retransmission gas refrigerant is liquefied and returned to the recovery cylinder 16 (in a state where the volume is reduced), the refrigerant filling amount of the recovery cylinder 16 can be further increased. It is important that the recovery cylinder 16, the gas separation module 68, and the refrigerant recovery device 14 are arranged in this order in order to send the mixed gas 22 in the recovery cylinder 16 to the gas separation module 68.
 また、ガス分離モジュール68は、回収ボンベ16の上部に取り付けられている。そのため、液冷媒や混入した水などの液成分は、回収ボンベ16内の底部に滞留し、ガス分離モジュール68の分離膜92に液冷媒や多量の水が混入することがなく、分離膜92のガス分離効果の低下を抑制することができる。また、空調用冷媒は、冷媒回収装置14で断熱圧縮され液化した状態で回収ボンベ16に充填される。そのため、回収ボンベ16内の空間部の体積分に飽和蒸気圧分のみの冷媒が気化しているだけで、ほとんどの冷媒は回収ボンベ16内では液化している。気化している冷媒(ガス冷媒)の割合が低いため、ガス分離モジュール68に送られるガス冷媒の量を少なくでき、ガス分離モジュール68における冷媒漏洩リスクを低減することもできる。 Further, the gas separation module 68 is attached to the upper part of the recovery cylinder 16. Therefore, the liquid components such as the liquid refrigerant and the mixed water stay at the bottom of the recovery cylinder 16, and the liquid refrigerant and a large amount of water do not mix in the separation film 92 of the gas separation module 68, so that the separation film 92 does not. It is possible to suppress a decrease in the gas separation effect. Further, the air-conditioning refrigerant is adiabatically compressed by the refrigerant recovery device 14 and filled in the recovery cylinder 16 in a liquefied state. Therefore, only the refrigerant having only the saturated vapor pressure is vaporized in the volume of the space in the recovery cylinder 16, and most of the refrigerant is liquefied in the recovery cylinder 16. Since the proportion of the vaporized refrigerant (gas refrigerant) is low, the amount of the gas refrigerant sent to the gas separation module 68 can be reduced, and the risk of refrigerant leakage in the gas separation module 68 can also be reduced.
 また、分離装置18、冷媒回収装置14、及び回収ボンベ16の循環ループが形成され、ガス分離モジュール68により、繰り返し非凝縮性ガスの分離が行われるので、効果的に、回収ボンベ16内の非凝縮性ガスの除去が実現される。すなわち、混合ガス22が1回のみガス分離モジュール68を通過するような構成に比べて、分離効率を高くすることができる。 Further, since the circulation loop of the separation device 18, the refrigerant recovery device 14, and the recovery cylinder 16 is formed, and the non-condensable gas is repeatedly separated by the gas separation module 68, the non-condensable gas in the recovery cylinder 16 is effectively separated. Removal of condensable gas is realized. That is, the separation efficiency can be increased as compared with the configuration in which the mixed gas 22 passes through the gas separation module 68 only once.
 また、回収ボンベ16内に非凝縮性ガスが混入している場合に限って、制御弁64を開状態にしてガス分離モジュール68で非凝縮性ガスを除去するので、回収ボンベ16内に非凝縮性ガスが無い又は少ない場合の不必要なガス分離モジュール68の使用を回避することができる。 Further, only when the non-condensable gas is mixed in the recovery cylinder 16, the control valve 64 is opened and the non-condensable gas is removed by the gas separation module 68, so that the non-condensable gas is removed in the recovery cylinder 16. It is possible to avoid unnecessary use of the gas separation module 68 when there is no or little sex gas.
 また、分離装置18の記憶部102には複数種類の冷媒の圧力特性112が記憶されているので、異なる種類の冷媒の回収において、共通の分離装置18を用いることができる。 Further, since the pressure characteristics 112 of a plurality of types of refrigerants are stored in the storage unit 102 of the separation device 18, a common separation device 18 can be used in the recovery of different types of refrigerants.
 また、ガス分離モジュール68を使用する場合(制御弁64が開状態の場合)であって、冷媒回路30の圧力が予め定められた圧力より高い場合には、再送ガス冷媒を、再送配管58から冷媒回収装置14に的確に送り込むことができる。また、ガス分離モジュール68を使用する場合(制御弁64が開状態の場合)であって、冷媒回路30の圧力が予め定められた圧力以下の場合には、冷媒回収装置14で断熱圧縮され、冷媒回収装置14への流入時よりも温度が高くなった冷媒が入れられた回収ボンベ16内のガス冷媒の一部である再送ガス冷媒(冷媒回路30内よりも温度が高い)を、冷媒回路30に送り込むことができる。これにより、冷媒回路30内の冷媒の温度を上昇させ、冷媒のガス化を促進させることができ、冷媒回収を再開した際に、冷媒回収速度を向上させることができる。 Further, when the gas separation module 68 is used (when the control valve 64 is in the open state) and the pressure of the refrigerant circuit 30 is higher than the predetermined pressure, the retransmission gas refrigerant is transferred from the retransmission pipe 58. It can be accurately sent to the refrigerant recovery device 14. Further, when the gas separation module 68 is used (when the control valve 64 is in the open state) and the pressure of the refrigerant circuit 30 is equal to or lower than a predetermined pressure, the refrigerant recovery device 14 adiabatically compresses the gas. The retransmitted gas refrigerant (higher in temperature than in the refrigerant circuit 30), which is a part of the gas refrigerant in the recovery cylinder 16 containing the refrigerant whose temperature is higher than that at the time of inflow into the refrigerant recovery device 14, is used in the refrigerant circuit. It can be sent to 30. As a result, the temperature of the refrigerant in the refrigerant circuit 30 can be raised to promote gasification of the refrigerant, and the refrigerant recovery speed can be improved when the refrigerant recovery is restarted.
 次に、本発明の別の実施形態に係る冷媒回収システムについて説明する。図10は、本発明の別の実施形態に係る冷媒回収システム10Aの概略図である。冷媒回収システム10Aは、以上で説明した冷媒回収システム10に対して、三方弁40と三方弁制御部80が省かれ、再送配管58上に制御弁150が追加されている。分離装置18Aのガス流出口74は、空調装置12の冷媒回路30と冷媒回収装置14の間の配管に接続されて、接続部152が形成されている。 Next, the refrigerant recovery system according to another embodiment of the present invention will be described. FIG. 10 is a schematic view of the refrigerant recovery system 10A according to another embodiment of the present invention. In the refrigerant recovery system 10A, the three-way valve 40 and the three-way valve control unit 80 are omitted from the refrigerant recovery system 10 described above, and the control valve 150 is added on the retransmission pipe 58. The gas outlet 74 of the separation device 18A is connected to a pipe between the refrigerant circuit 30 of the air conditioner 12 and the refrigerant recovery device 14, and a connection portion 152 is formed.
 発送制御部76による各部の制御と除去信号は、以上で説明した冷媒回収システム10と同じである。再送制御部78には、三方弁信号に代えて除去信号が入力されており、再送制御部78は、除去信号のLow/Highに基づいて、再送配管58の制御弁150を制御する。具体的には、除去信号がLow(発送配管56上の制御弁64が閉状態)の場合には、再送配管58上の制御弁150も閉状態とし、除去信号がHigh(発送配管56上の制御弁64が開状態)の場合には、再送配管58上の制御弁150も開状態とする。また、再送制御部78は、除去信号がHighの場合に、検出圧力DPR、DPSに基づいて、冷媒回収装置14の入口36における圧力よりも、圧力調整器72の下流側(ガス流出口74側)の再送配管58内の圧力が高くなるように圧力調整器72を制御する。 The control and removal signals of each part by the shipping control unit 76 are the same as those of the refrigerant recovery system 10 described above. A removal signal is input to the retransmission control unit 78 instead of the three-way valve signal, and the retransmission control unit 78 controls the control valve 150 of the retransmission pipe 58 based on the Low / High of the removal signal. Specifically, when the removal signal is Low (the control valve 64 on the shipping pipe 56 is closed), the control valve 150 on the retransmission pipe 58 is also closed and the removal signal is High (the control valve 64 on the shipping pipe 56 is closed). When the control valve 64 is in the open state), the control valve 150 on the retransmission pipe 58 is also in the open state. Further, when the removal signal is High, the retransmission control unit 78 is located on the downstream side of the pressure regulator 72 (gas outlet 74 side) with respect to the pressure at the inlet 36 of the refrigerant recovery device 14 based on the detected pressures DPR and DPS. ), The pressure regulator 72 is controlled so that the pressure in the retransmission pipe 58 becomes high.
 この実施形態によれば、制御弁64、150を閉状態とすることで、空調装置12から回収ボンベ16への一般的な冷媒回収を行うことができる。また、制御弁64、150を開状態とすることで、分離装置18A、冷媒回収装置14、及び回収ボンベ16の循環ループが形成されるので、回収ボンベ16内から非凝縮性ガスを除去することができる。三方弁と三方弁制御部が省かれているので、冷媒回収システム10Aの構成を簡素にすることができる。 According to this embodiment, by closing the control valves 64 and 150, it is possible to recover the general refrigerant from the air conditioner 12 to the recovery cylinder 16. Further, by opening the control valves 64 and 150, a circulation loop of the separation device 18A, the refrigerant recovery device 14, and the recovery cylinder 16 is formed, so that the non-condensable gas is removed from the recovery cylinder 16. Can be done. Since the three-way valve and the three-way valve control unit are omitted, the configuration of the refrigerant recovery system 10A can be simplified.
 次に、変形例について説明する。図7に示した冷媒回収方法では、冷媒回収過程において1回のみ循環モードにしたが、複数回、循環モードするとしてもよい。すなわち、循環モードにした後、通常モードにして冷媒回収を再開した際に、再び回収ボンベ16内の圧力が高くなった際には、再度、循環モードにするとしてもよい。 Next, a modified example will be described. In the refrigerant recovery method shown in FIG. 7, the circulation mode is set only once in the refrigerant recovery process, but the circulation mode may be set a plurality of times. That is, when the pressure in the recovery cylinder 16 becomes high again when the refrigerant recovery is restarted in the normal mode after the circulation mode is set, the circulation mode may be set again.
 また、図7に示した冷媒回収方法では、気化促進モードを実行したが、気化促進モードを省いて、通常モードと循環モードのみを実行するとしてもよい。このようにすれば、冷媒回収方法が簡素になる。 Further, in the refrigerant recovery method shown in FIG. 7, the vaporization promotion mode is executed, but the vaporization promotion mode may be omitted and only the normal mode and the circulation mode may be executed. In this way, the refrigerant recovery method is simplified.
 また、以上説明した各実施形態では、各制御部が各機器を制御した。しかし、作業者が、各検出器の検出値を目視等により確認して、手動により、制御弁64、150、減圧弁66、三方弁40、および圧力調整器72の少なくとも1つを操作するとしてもよい。 Further, in each of the embodiments described above, each control unit controls each device. However, assuming that the operator visually confirms the detection value of each detector and manually operates at least one of the control valves 64 and 150, the pressure reducing valve 66, the three-way valve 40, and the pressure regulator 72. May be good.
 また、以上説明した各実施形態では、回収ボンベ16内の圧力および温度を、分離装置18の発送配管56に配置された圧力検出器61および温度検出器62で検出した。しかし、冷媒回収装置14の出口38における圧力および温度を、回収ボンベ16内の圧力および温度として検出し、発送制御部76に入力して制御を行ってもよい。また、回収ボンベ16に備え付けた圧力検出器および温度検出器により検出した圧力および温度を、回収ボンベ16内の圧力および温度として、発送制御部76に入力して制御を行ってもよい。 Further, in each of the above-described embodiments, the pressure and temperature in the recovery cylinder 16 are detected by the pressure detector 61 and the temperature detector 62 arranged in the shipping pipe 56 of the separation device 18. However, the pressure and temperature at the outlet 38 of the refrigerant recovery device 14 may be detected as the pressure and temperature in the recovery cylinder 16 and input to the delivery control unit 76 for control. Further, the pressure and temperature detected by the pressure detector and the temperature detector provided in the recovery cylinder 16 may be input to the shipping control unit 76 as the pressure and temperature in the recovery cylinder 16 for control.
 10,10A 冷媒回収システム、12 空調装置(冷凍空調機器)、14 冷媒回収装置、16 回収ボンベ、18,18A 分離装置、20 液冷媒、22 混合ガス(ガス成分)、24 ガス冷媒、26 空気、28 水、30 冷媒回路、32 アキュムレータ、34 サービスポート、36 入口、37 圧力検出器、38 出口、40 三方弁、41 第1ポート、42 第2ポート、43 第3ポート、46 液出入口、48 ガス出入口、50 接続配管、52 前配管、54 後配管、56 発送配管、58 再送配管、60 ガス流入口、61 圧力検出器、62 温度検出器、64 制御弁、66 減圧弁、68 ガス分離モジュール、70 圧力検出器、72 圧力調整器、74 ガス流出口、76 発送制御部、78 再送制御部、80 三方弁制御部、88 筐体、90 入口、92 分離膜、94 放出口、96 出口、100 入力部、102 記憶部、104 参照圧力取得部、106 減圧弁制御部、108 判定部、110 回収冷媒情報、112 圧力特性、118 判定部、120 圧力閾値、122 継続時間、150 制御弁、152 接続部。 10,10A refrigerant recovery system, 12 air conditioner (refrigeration air conditioner), 14 refrigerant recovery device, 16 recovery bomb, 18,18A separator, 20 liquid refrigerant, 22 mixed gas (gas component), 24 gas refrigerant, 26 air, 28 water, 30 refrigerant circuit, 32 accumulator, 34 service port, 36 inlet, 37 pressure detector, 38 outlet, 40 three-way valve, 41 1st port, 42 2nd port, 43 3rd port, 46 liquid inlet / outlet, 48 gas Doorway, 50 connection pipe, 52 front pipe, 54 rear pipe, 56 shipping pipe, 58 retransmission pipe, 60 gas inlet, 61 pressure detector, 62 temperature detector, 64 control valve, 66 pressure reducing valve, 68 gas separation module, 70 pressure detector, 72 pressure regulator, 74 gas outlet, 76 shipping control unit, 78 retransmission control unit, 80 three-way valve control unit, 88 housing, 90 inlet, 92 separation membrane, 94 outlet, 96 outlet, 100 Input unit, 102 storage unit, 104 reference pressure acquisition unit, 106 pressure reducing valve control unit, 108 judgment unit, 110 recovery gas information, 112 pressure characteristics, 118 judgment unit, 120 pressure threshold, 122 duration, 150 control valve, 152 connection Department.

Claims (8)

  1.  冷凍空調機器の冷媒回路から空調用冷媒を回収する冷媒回収システムであって、
     前記空調用冷媒に圧縮凝縮を行って圧縮凝縮冷媒を生成する冷媒回収装置と、
     前記冷媒回収装置が生成した前記圧縮凝縮冷媒を回収する回収ボンベと、
     前記圧縮凝縮冷媒を回収した前記回収ボンベの内部から前記空調用冷媒を分離させるガス分離モジュールと、
     前記ガス分離モジュールが分離した前記空調用冷媒を前記冷媒回収装置に再送させる再送配管と、
     を備えることを特徴とする冷媒回収システム。
    A refrigerant recovery system that recovers air-conditioning refrigerant from the refrigerant circuit of refrigerating and air-conditioning equipment.
    A refrigerant recovery device that compresses and condenses the air-conditioning refrigerant to generate a compressed and condensed refrigerant.
    A recovery cylinder that recovers the compressed and condensed refrigerant generated by the refrigerant recovery device,
    A gas separation module that separates the air-conditioning refrigerant from the inside of the recovery cylinder that recovered the compressed condensed refrigerant, and
    A retransmission pipe that retransmits the air-conditioning refrigerant separated by the gas separation module to the refrigerant recovery device, and
    A refrigerant recovery system characterized by being equipped with.
  2.  請求項1に記載の冷媒回収システムであって、
     前記再送配管内の圧力を調整する圧力調整器と、
     前記冷媒回収装置の前記空調用冷媒の取り込み口における圧力よりも、前記再送配管内の圧力が高くなるように、前記圧力調整器を制御する再送制御部と、を備える、
     ことを特徴とする冷媒回収システム。
    The refrigerant recovery system according to claim 1.
    A pressure regulator that adjusts the pressure in the retransmission pipe,
    A retransmission control unit that controls the pressure regulator so that the pressure in the retransmission pipe is higher than the pressure at the intake port of the air-conditioning refrigerant of the refrigerant recovery device is provided.
    A refrigerant recovery system characterized by this.
  3.  請求項1または2に記載の冷媒回収システムであって、
     前記回収ボンベは、ガス成分を取り出すガス出入口を含み、
     前記冷媒回収システムは、前記ガス出入口に接続されて前記回収ボンベから前記ガス成分が入り込む発送配管を備え、
     前記ガス分離モジュールには、前記発送配管が接続されて前記発送配管から前記ガス成分が入り込み、前記ガス分離モジュールは、前記ガス成分を非凝縮性ガスと前記空調用冷媒に分離し、
     前記再送配管には、前記ガス分離モジュールが接続されて、前記ガス分離モジュールが分離した前記空調用冷媒である再送ガス冷媒が入り込み、前記再送配管は、前記再送ガス冷媒を、前記冷媒回路と前記冷媒回収装置の間の配管内に送る、
     ことを特徴とする冷媒回収システム。
    The refrigerant recovery system according to claim 1 or 2.
    The recovery cylinder includes a gas inlet / outlet for extracting a gas component.
    The refrigerant recovery system includes a delivery pipe connected to the gas inlet / outlet and into which the gas component enters from the recovery cylinder.
    The shipping pipe is connected to the gas separation module, and the gas component enters from the shipping pipe. The gas separation module separates the gas component into a non-condensable gas and the air-conditioning refrigerant.
    The gas separation module is connected to the retransmission pipe, and the retransmission gas refrigerant which is the air-conditioning refrigerant separated from the gas separation module enters the retransmission pipe. The retransmission pipe uses the retransmission gas refrigerant as the refrigerant circuit and the refrigerant circuit. Send into the piping between the refrigerant recovery devices,
    A refrigerant recovery system characterized by this.
  4.  請求項3に記載の冷媒回収システムであって、
     前記発送配管の前記ガス出入口と前記ガス分離モジュールの間の開閉を行う制御弁と、
     前記制御弁を制御する発送制御部と、
     前記回収ボンベ内の温度および圧力のそれぞれを検出する温度検出器および圧力検出器と、
     前記回収ボンベに回収される冷媒である回収冷媒の温度に対する飽和蒸気圧の圧力特性を記憶する記憶部と、を備え、
     前記発送制御部は、
     前記圧力特性に基づいて、前記温度検出器の検出温度における前記回収冷媒の飽和蒸気圧を取得し、
     取得された前記飽和蒸気圧よりも、前記圧力検出器の検出圧力が高い高圧状態の場合には、前記制御弁を開状態に制御し、前記高圧状態ではない場合には、前記制御弁を閉状態に制御する、
     ことを特徴とする冷媒回収システム。
    The refrigerant recovery system according to claim 3.
    A control valve that opens and closes between the gas inlet / outlet of the shipping pipe and the gas separation module.
    A delivery control unit that controls the control valve,
    A temperature detector and a pressure detector that detect each of the temperature and pressure in the recovery cylinder,
    A storage unit for storing the pressure characteristics of the saturated vapor pressure with respect to the temperature of the recovered refrigerant, which is the refrigerant recovered in the recovery cylinder, is provided.
    The shipping control unit
    Based on the pressure characteristics, the saturated vapor pressure of the recovered refrigerant at the detection temperature of the temperature detector is obtained.
    When the detection pressure of the pressure detector is higher than the acquired saturated vapor pressure in a high pressure state, the control valve is controlled to be in the open state, and when the pressure is not in the high pressure state, the control valve is closed. Control to state,
    A refrigerant recovery system characterized by this.
  5.  請求項4に記載の冷媒回収システムであって、
     前記回収冷媒の種類を入力する入力部を備え、
     前記記憶部には、複数種類の冷媒のそれぞれの前記圧力特性が記憶されており、
     前記発送制御部は、
     前記入力部から入力された前記回収冷媒の種類に対応する、前記記憶部に記憶された前記圧力特性を用いて、前記制御弁の開閉状態を制御する、
     ことを特徴とする冷媒回収システム。
    The refrigerant recovery system according to claim 4.
    It is provided with an input unit for inputting the type of the recovered refrigerant.
    The storage unit stores the pressure characteristics of each of the plurality of types of refrigerants.
    The shipping control unit
    The open / closed state of the control valve is controlled by using the pressure characteristic stored in the storage unit, which corresponds to the type of the recovered refrigerant input from the input unit.
    A refrigerant recovery system characterized by this.
  6.  請求項4または5に記載の冷媒回収システムであって、
     前記冷媒回路と前記冷媒回収装置の間に配置された三方弁と、
     前記三方弁を制御する三方弁制御部と、を備え、
     前記三方弁は、第1、2及び3ポートを含み、
     前記三方弁の前記第1ポートは前記冷媒回路に接続されており、前記三方弁の前記第2ポートは前記冷媒回収装置に接続されており、前記三方弁の前記第3ポートは前記再送配管に接続されており、
     前記三方弁制御部は、
     前記発送配管の前記制御弁が閉状態の場合には、前記三方弁の前記第1ポートと前記第2ポートが連通状態になるように前記三方弁を制御し、
     前記発送配管の前記制御弁が開状態の場合には、前記三方弁の前記第2ポートと前記第3ポートが連通状態になるように前記三方弁を制御する、
     ことを特徴とする冷媒回収システム。
    The refrigerant recovery system according to claim 4 or 5.
    A three-way valve arranged between the refrigerant circuit and the refrigerant recovery device,
    A three-way valve control unit that controls the three-way valve is provided.
    The three-way valve includes the first, second and third ports.
    The first port of the three-way valve is connected to the refrigerant circuit, the second port of the three-way valve is connected to the refrigerant recovery device, and the third port of the three-way valve is connected to the retransmission pipe. Connected and
    The three-way valve control unit
    When the control valve of the delivery pipe is in the closed state, the three-way valve is controlled so that the first port and the second port of the three-way valve are in a communicating state.
    When the control valve of the delivery pipe is in the open state, the three-way valve is controlled so that the second port and the third port of the three-way valve communicate with each other.
    A refrigerant recovery system characterized by this.
  7.  請求項4または5に記載の冷媒回収システムであって、
     前記冷媒回路と前記冷媒回収装置の間に配置された三方弁と、
     前記三方弁を制御する三方弁制御部と、
     前記冷媒回路の圧力を検出する別の圧力検出器と、を備え、
     前記三方弁は、第1、2及び3ポートを含み、
     前記三方弁の前記第1ポートは前記冷媒回路に接続されており、前記三方弁の前記第2ポートは前記冷媒回収装置に接続されており、前記三方弁の前記第3ポートは前記再送配管に接続されており、
     前記三方弁制御部は、
     前記発送配管の前記制御弁が閉状態の場合には、前記三方弁の前記第1ポートと前記第2ポートが連通状態になるように前記三方弁を制御し、
     前記発送配管の前記制御弁が開状態、かつ、前記別の圧力検出器の検出圧力が予め定められた圧力より高い場合には、前記三方弁の前記第2ポートと前記第3ポートが連通状態になるように前記三方弁を制御し、
     前記発送配管の前記制御弁が開状態、かつ、前記別の圧力検出器の検出圧力が前記予め定められた圧力以下の場合には、前記三方弁の前記第1ポートと前記第3ポートが連通状態になるように前記三方弁を制御する、
     ことを特徴とする冷媒回収システム。
    The refrigerant recovery system according to claim 4 or 5.
    A three-way valve arranged between the refrigerant circuit and the refrigerant recovery device,
    A three-way valve control unit that controls the three-way valve,
    With another pressure detector for detecting the pressure of the refrigerant circuit,
    The three-way valve includes the first, second and third ports.
    The first port of the three-way valve is connected to the refrigerant circuit, the second port of the three-way valve is connected to the refrigerant recovery device, and the third port of the three-way valve is connected to the retransmission pipe. Connected and
    The three-way valve control unit
    When the control valve of the delivery pipe is in the closed state, the three-way valve is controlled so that the first port and the second port of the three-way valve are in a communicating state.
    When the control valve of the shipping pipe is in the open state and the detection pressure of the other pressure detector is higher than a predetermined pressure, the second port and the third port of the three-way valve are in a communicating state. Control the three-way valve so that
    When the control valve of the delivery pipe is in the open state and the detection pressure of the other pressure detector is equal to or lower than the predetermined pressure, the first port and the third port of the three-way valve communicate with each other. Control the three-way valve so that it is in a state,
    A refrigerant recovery system characterized by this.
  8.  冷凍空調機器の冷媒回路から空調用冷媒を回収する冷媒回収方法であって、
     冷媒回収装置を用い、前記空調用冷媒に圧縮凝縮を行って圧縮凝縮冷媒を生成する生成ステップと、
     前記冷媒回収装置が生成した前記圧縮凝縮冷媒を回収ボンベに回収する回収ステップと、
     ガス分離モジュールを用い、前記圧縮凝縮冷媒を回収した前記回収ボンベの内部に含まれるガス成分から前記空調用冷媒を分離させる分離ステップと、
     前記ガス分離モジュールが分離した前記空調用冷媒を前記冷媒回収装置に再送させる再送ステップと、
     を備えることを特徴とする冷媒回収方法。
    It is a refrigerant recovery method that recovers the air-conditioning refrigerant from the refrigerant circuit of the refrigerating and air-conditioning equipment.
    Using a refrigerant recovery device, a generation step of compressing and condensing the air-conditioning refrigerant to generate a compressed and condensed refrigerant, and
    A recovery step of recovering the compressed and condensed refrigerant generated by the refrigerant recovery device in a recovery cylinder,
    A separation step of using a gas separation module to separate the air-conditioning refrigerant from the gas component contained inside the recovery cylinder from which the compressed and condensed refrigerant has been recovered.
    A retransmission step of retransmitting the air-conditioning refrigerant separated by the gas separation module to the refrigerant recovery device, and
    A refrigerant recovery method comprising.
PCT/JP2020/036533 2020-09-28 2020-09-28 Refrigerant recovery system and refrigerant recovery method WO2022064671A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080105347.6A CN116324309B (en) 2020-09-28 2020-09-28 Refrigerant recovery system and refrigerant recovery method
EP20955265.2A EP4206566A4 (en) 2020-09-28 2020-09-28 Refrigerant recovery system and refrigerant recovery method
JP2021514644A JP7029025B1 (en) 2020-09-28 2020-09-28 Refrigerant recovery system and refrigerant recovery method
PCT/JP2020/036533 WO2022064671A1 (en) 2020-09-28 2020-09-28 Refrigerant recovery system and refrigerant recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036533 WO2022064671A1 (en) 2020-09-28 2020-09-28 Refrigerant recovery system and refrigerant recovery method

Publications (1)

Publication Number Publication Date
WO2022064671A1 true WO2022064671A1 (en) 2022-03-31

Family

ID=80846311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036533 WO2022064671A1 (en) 2020-09-28 2020-09-28 Refrigerant recovery system and refrigerant recovery method

Country Status (4)

Country Link
EP (1) EP4206566A4 (en)
JP (1) JP7029025B1 (en)
CN (1) CN116324309B (en)
WO (1) WO2022064671A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328676A (en) * 1989-06-26 1991-02-06 Daikin Ind Ltd Refrigerant recovery equipment
JPH04165273A (en) * 1990-10-26 1992-06-11 Tatsuno Co Ltd Recovering, regenerating and filling device for refrigerant gas of cooler for automobile
JPH06323698A (en) * 1993-05-17 1994-11-25 Dengen Kk Refrigerant gas collector
US5598714A (en) * 1993-02-19 1997-02-04 Rti Technologies, Inc. Method and apparatus for separation of refrigerant from a purge gas mixture of refrigerant and non-condensible gas
JP2005127564A (en) * 2003-10-22 2005-05-19 Daikin Ind Ltd Refrigerating plant constructing method and refrigerating plant
JP2009229028A (en) * 2008-03-25 2009-10-08 Hara Tech:Kk Adaptor device and refrigerant recovery device
JP2010159952A (en) 2008-12-08 2010-07-22 Kankyo Soken:Kk Device and method of separating refrigerant gas and non-condensable gas
JP2017072284A (en) * 2015-10-06 2017-04-13 三菱電機ビルテクノサービス株式会社 Refrigerant recovery device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083634A (en) * 2001-09-06 2003-03-19 Sekisui Chem Co Ltd Heat pump system
CN100552330C (en) * 2003-06-20 2009-10-21 大金工业株式会社 The construction method of refrigerating plant and refrigerating plant
CN101021377A (en) * 2006-10-11 2007-08-22 张元才 Cold-producing medium recovering and reusing machine
CN104169665B (en) * 2013-01-24 2016-10-12 松下知识产权经营株式会社 Heat pump assembly
CN108344214B (en) * 2017-01-23 2020-03-17 约克(无锡)空调冷冻设备有限公司 Exhaust device, refrigeration air-conditioning system and exhaust method of non-condensable gas
CN108344084B (en) * 2017-01-23 2020-12-15 约克(无锡)空调冷冻设备有限公司 Exhaust device, refrigeration air-conditioning system and exhaust method of non-condensable gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328676A (en) * 1989-06-26 1991-02-06 Daikin Ind Ltd Refrigerant recovery equipment
JPH04165273A (en) * 1990-10-26 1992-06-11 Tatsuno Co Ltd Recovering, regenerating and filling device for refrigerant gas of cooler for automobile
US5598714A (en) * 1993-02-19 1997-02-04 Rti Technologies, Inc. Method and apparatus for separation of refrigerant from a purge gas mixture of refrigerant and non-condensible gas
JPH06323698A (en) * 1993-05-17 1994-11-25 Dengen Kk Refrigerant gas collector
JP2005127564A (en) * 2003-10-22 2005-05-19 Daikin Ind Ltd Refrigerating plant constructing method and refrigerating plant
JP2009229028A (en) * 2008-03-25 2009-10-08 Hara Tech:Kk Adaptor device and refrigerant recovery device
JP2010159952A (en) 2008-12-08 2010-07-22 Kankyo Soken:Kk Device and method of separating refrigerant gas and non-condensable gas
JP2017072284A (en) * 2015-10-06 2017-04-13 三菱電機ビルテクノサービス株式会社 Refrigerant recovery device

Also Published As

Publication number Publication date
JP7029025B1 (en) 2022-03-02
EP4206566A1 (en) 2023-07-05
EP4206566A4 (en) 2023-11-01
CN116324309A (en) 2023-06-23
CN116324309B (en) 2023-10-24
JPWO2022064671A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
US11635239B2 (en) Refrigeration system with purge and acid filter
US5024061A (en) Recovery processing and storage unit
JP6343156B2 (en) Compression refrigerator
KR101429070B1 (en) Freezing cycle of freezing device
CN108027175B (en) Heat pump
CA2890872C (en) Device and method for maintaining an air conditioner
JP4326476B2 (en) Vapor gasoline recovery device and recovery method
EP2998665B1 (en) Refrigeration device
JP2014085082A (en) Refrigerant processor
JP2017072284A (en) Refrigerant recovery device
JP2010159952A (en) Device and method of separating refrigerant gas and non-condensable gas
JP5982127B2 (en) Refrigerant processing equipment
JP2006220381A (en) Refrigerant processor
WO2022064671A1 (en) Refrigerant recovery system and refrigerant recovery method
EP3627077A1 (en) Refrigerant recovery apparatus
US20150153083A1 (en) Method and Apparatus for Recovering Refrigerant from an Air Conditioning System
JP4189294B2 (en) Refrigerant processing equipment
JP7106030B1 (en) Refrigerant recovery system and refrigerant recovery method
JP2005161115A (en) Gasoline vapor recovery device
JP2005055077A (en) Refrigerant treating device
JP4667515B2 (en) Vapor gasoline recovery device and vapor gasoline recovery method
JPH0648290Y2 (en) Freon gas recovery device
EP4211405A1 (en) Carbon dioxide refrigeration system and a method of operating the refrigeration system
JP2001235262A (en) Unit for recovering refrigerant
JPH0882465A (en) Refrigerant recoverying device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021514644

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020955265

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE