WO2022064289A1 - Biosolid biotransformation process using beetle larvae - Google Patents

Biosolid biotransformation process using beetle larvae Download PDF

Info

Publication number
WO2022064289A1
WO2022064289A1 PCT/IB2021/057230 IB2021057230W WO2022064289A1 WO 2022064289 A1 WO2022064289 A1 WO 2022064289A1 IB 2021057230 W IB2021057230 W IB 2021057230W WO 2022064289 A1 WO2022064289 A1 WO 2022064289A1
Authority
WO
WIPO (PCT)
Prior art keywords
biosolid
per
biotransformation
absence
biosolids
Prior art date
Application number
PCT/IB2021/057230
Other languages
Spanish (es)
French (fr)
Inventor
Luz Ángela Cuellar Rodríguez
Brigid Hiomara Pacheco García
Pedro Mauricio Acosta Castellanos
Original Assignee
Universidad Santo Tomás Seccional Tunja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Santo Tomás Seccional Tunja filed Critical Universidad Santo Tomás Seccional Tunja
Publication of WO2022064289A1 publication Critical patent/WO2022064289A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/04Aerobic processes using trickle filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F7/00Fertilisers from waste water, sewage sludge, sea slime, ooze or similar masses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention belongs to the area of chemistry in relation to fertilizers from waste or waste, specifically those fertilizers where their preparation is characterized by the stage of industrial preparation of the compost.
  • a process is presented that comes from the experimental results of a composting and biotransformation process with beetle larvae in composting piles as an alternative for the management and disposal of biosolids that intends that these residues stop being toxic or dangerous so that they can be used. as fertilizer or to restore soils.
  • patent document No. CN1099383C "Effluent treatment system", dated January 22, 2003 and whose owner is Cameron DO, is known, which describes a treatment system for liquid or liquid and solid effluents .
  • the system is enclosed within a pipe, conduit (10) or trench and comprises one or more inclined filter beds (12, 13, 14) with a population of effluent spoilage organisms such as earthworms and earthflies, and an overlying air space.
  • the aqueous medium effluent inlet (1 1) is located above the upper filter bed at an upper end and the solid waste inlet (31), (when included), is located downstream of the medium inlet. aqueous medium for the aqueous medium to flow through and around the solid waste material.
  • a filtrate outlet (28) is located downstream of the flow through the system and manual or conveyor means are provided for solids removal.
  • larvae of beetles are applied; Carabid beetles (Carabidae) are one of the large families of coprophagous beetles, which are responsible for carrying out the biotransformation of the material.
  • This background comprises the steps of: (a) conditioning a mixture of organic wastes having a carbon/nitrogen ratio between about 10 to 1 to 60 to 1 to form a feedstock by suppressing anaerobic conditioning while maintaining dominant aerobic conditioning, in a predominantly thermophilic regimen lasting at least 72 hours; and (b) applying the feedstock to a worm bed. It further comprises maintaining a temperature and humidity of the worm bed and the applied feedstock to maintain a dominant mesophilic regime within the worm bed.
  • coprophagous beetle larvae are used, in addition, not only thermophilic microorganisms are used, mesophilic microorganisms are also used.
  • An optimization of the same process is the use of ammonia as a by-product that can be recovered and recirculated to the system to optimize its high disinfectant power or to market it due to its various industrial uses.
  • the recirculation of ammonia to the process increases the nutrient content, so the affected sludge is specific for agricultural activities;
  • the mass of the sludge is reduced by requiring less alkaline material, which reduces operating costs, as well as those of transporting biosolids.
  • the new invention does not require the recirculation of ammonia, since in the system there are natural reactions, without the entry of any reagent, the stabilization process is carried out by the microbial action of temperature generated by the same reactions and the biological action of the digestive tract of dung beetle larvae.
  • FIG 1 shows the flowchart of the developed methodology.
  • Figure 2 shows the dimensioning of the composting pile.
  • Figure 3 shows the typical evolution of temperature in the composting stage.
  • Figure 4 shows the behavior of the pH in the composting of batteries 1 and 2.
  • Figure 5 shows the behavior of the temperature in the composting of pile 3.
  • Figure 6 presents the biotransformation process with larvae.
  • Figure 7 presents the phosphorus levels in the sampling stage.
  • composting In the first stage, the process called composting is carried out, which includes the stabilization of organic matter through its aerobic degradation by the action of a controlled increase in temperature; Organic fertilizer is generated from microorganisms that act based on the air.
  • the process takes place in a persistent degradation space for a maturation space that is distinguished in four phases: mesophilic, thermophilic, cooling and maturation.
  • Composting refers to a biooxidative process under controlled conditions that includes the addition of a substrate material with heterogeneous organic characteristics in a solid state. Compared to other processes, controlled biooxidation guarantees better efficiency since it is quite effective in reducing pathogens, suppressing bad odors and reducing the period required to stabilize the material.
  • the mesophilic phase in the composting process is characterized by reaching high temperatures of up to 45 S C, it begins with the formation of microorganisms called mesophiles that give way to the decomposition of molecules that have a greater facility for degradation.
  • energy is released triggers in the increase of the temperatures of the treated material, as well as in the decrease of the pH.
  • thermophilic phase During the thermophilic phase, the pH tends towards alkalinity, the number of mesophilic microorganisms decreases, giving rise to the formation of thermophilic microorganisms, also continuing with the gradual increase in temperatures. Thanks to the high temperatures that can reach 70 s C, the elimination of pathogenic microorganisms is achieved as well as easily degradable substances such as sugars, fats, starches and proteins.
  • the thermophilic phase ensures the sanitization or sterilization of the material, since by eliminating pathogens it also ensures that they do not proliferate again in the maturation phase. These two phases can take from days to months, depending on the volume and type of material, in addition to the local climate, among others; Likewise, they must be carried out in suitable settings so as not to compromise the maturation phase and improve the quality of the final product.
  • the temperatures drop again to 40 - 45 S C, degrading the cellulose as a polymer.
  • the pH drops with a subtle tendency towards alkalinity and some mesophyll-type microorganisms reappear; it requires time because it tends to be confused with the maturation phase.
  • the last phase is the maturation of the compost whose duration requires weeks to months at room temperature, in which secondary reactions are carried out that give rise to humic and fulvic acids, microbial activity is reduced and the pH continues to be slightly alkaline.
  • the physical chemical characterization of the biosolid is carried out, where the biosolid is sampled. This characterization process is applied both throughout the composting process and during the biotransformation, which involves taking different samples.
  • the physicochemical characterization of the material to be treated is essential for the study of the evolution of the composting process, since it allows evaluating different parameters that allow classifying the material according to its characteristics, granting alternatives of final use in soils.
  • the third stage includes the elaboration of biosolid piles, where it was seen the need to elaborate small biosolid piles to guarantee the aeration of the compost, to determine the appropriate volume for the biotransformation process based on time, material characteristics and conditions. climatic conditions of the place, an approximate area of 50 m2 was required to locate 2 composting piles with a pyramidal structure.
  • the composting process is generally carried out in pyramidal-shaped piles, which refers to the third stage of sizing and assembly of piles, where the size of the piles and the frequency of turning is based on the type of material, however , a limitation is the height of the pile since the higher the height, the greater the probability of material compaction, reducing its porosity, making aeration difficult; therefore, studies suggest heights between 1.2 and 1.8 meters and widths between 2.4 and 3.6 meters.
  • an approximate area of 50 m2 is used to locate 2 composting piles with a pyramidal structure with a base width of 1.7 meters, a crown width of 0. 5 meters and a height of 1.0 meters to complete an approximate volume of 1.57 m3 per stack.
  • the integration of the structuring material is carried out, also known as support material or amendment material, which is a essential aspect to provide optimal conditions in the composting process.
  • the purpose of adding the structuring material is to optimize the process in terms of aeration and nutrient content to improve the quality of the final product.
  • the size of the particles of the material to be composted is essential in the process since the greater the space exposed to the operation of the microorganisms, the faster and more complete the reaction.
  • the speed of the process is maximized in a ground material, however, although this would cause a large contact surface for microbial work, it would also restrict the volume between particles, increasing the frictional force and limiting the diffusion of oxygen into the interior of the material. the piles giving way to a collapse of aerobic microorganisms by making aeration by natural convection impossible.
  • the starting point of the dosage is due to experimental situations of composting in other studies where it is shown that to compost sludge from urban wastewater treatment plants, different volumetric ratios are used that are mainly based on the moisture content of the sludge. , being able to establish as extreme values of 1/1 to 4/1 of structuring material/sludge, in the case of mechanically dehydrated sewage sludge, volumetric mixing ratios of 2/1 to 3/1 of structuring material/ mud.
  • Organic fertilizer as a soil conditioner favors the availability of stable components and the capture of nutrients through the carbon, nitrogen and phosphorus cycle.
  • the beetle larvae are arranged in the piles at room temperature during the maturation phase, considering that the condition of the material at the time of application of the larvae is of low toxicity. During this cycle, the larvae carry out their feeding process with the ability to carry out movements in the treated biosolids, aerating and allowing the growth of bacteria in it that can become beneficial in soils.
  • the biotransformation stage of the material begins through two bioassays in the laboratory with sterilized containers, which incorporate the sample of the material taken in the field.
  • each bioassay contains material in specific granulometric conditions, in order to evaluate the behavior of the variables, while comparing the physicochemical and microbiological results in each bioassay.
  • Bioassay 1 is formed with the material that passes sieve No. 4, being previously tamped to reduce the amount of material of large proportions (sugar cane bagasse), increasing the possibility that the resulting sample contains particles of the structuring material.
  • the volume of this bioassay corresponds to 0.024 m3 and its weight is 12 kg.
  • the temperature of the material at the end of the assembly is 17.8°C, with a pH of 5.6 and a humidity percentage of 79.1%.
  • the physical variables are taken and the beetle larvae are subsequently incorporated to complete the bioassay.
  • 35 larvae of different sizes 35 to 40 cm in length are added uniformly within the bioassay, which give way to the beginning of the biotransformation process of the material.
  • the beetle larvae may be native species and are placed in the piles at room temperature during the maturation phase, considering that the condition of the material at the time of application of the larvae is of low toxicity. During this cycle, the larvae carry out their feeding process with the ability to make movements in the biosolid.
  • the experimentation during the biotransformation process takes place for 8 weeks, in which the variables of pH, temperature and humidity are monitored in order to evaluate their behavior and evolution. This stage is called start-up and monitoring, where the verification of physicochemical variables and development of the process is carried out by measuring variables such as pH, temperature, metals, granulometry, among others. Some of these values were obtained in the field, while others were obtained through sampling and characterization in the laboratory.
  • the pH in the bioassay made with bagasse shows a constant behavior with a tendency to neutrality, throughout the biotransformation, starting at 5.53 pH units and ending at 7.0 pH units.
  • the pH in the bioassay made with the sieved sample fluctuates between 5.18 pH units and 6.6 pH units, registering a value of 6.0 pH units at the end of the biotransformation.
  • the total nitrogen shows a decrease between the raw and composted biosolid from 5.68 g/100g to 2.69 g/100g, whose trend continues in the biotransformation with larvae in the sieved sample with 1.58 g/100g of total nitrogen, but it is maintained with a brief inclination to increase in biotransformation with larvae and sugarcane bagasse with a value of 2.94g/100g.
  • the total organic carbon for its part although it has a decrease of almost 50% between the raw biosolid and the composted one, is recovered during the biotransformation in the two bioassays. Knowing that this parameter works as a source of energy in the heterotrophs present in the soil, its effects on the chemical, physical and biological properties in the soil imply an important factor in their productivity. For this reason, the increase in the parameter demonstrates favorable conditions in the final product.
  • the C/N, C/P and N/P ratios are essential to know the benefits of composting, as well as the final product.
  • the C/N ratio in the raw material starts from 5.28 and increases to 7.14 after the composting process, having a value far from the optimum suggested within organic waste composting, which has been estimated at 25 to 35, taking into account that microorganisms absorb between 15 and 30 carbon fractions for one nitrogen fraction.
  • an increase in the parameter is observed, considering a value close to the optimum for a mature compost estimated at 10, in the bioassay that contains the larvae and the sugar cane bagasse with a ratio of 12.76.
  • Specifying that the C/P ratio for organic waste composting is recommended between 75 and 150, it is shown in the results that the C/P ratio is 1 12.
  • the C/P ratio shows an increase between the raw material and the composted material, this result does not reach the limits mentioned; on the contrary, during the biotransformation of the material it can be seen that in the bioassay containing beetle larvae and sugarcane bagasse of sugar, this parameter reaches a value of 77.67, adjusting to the range suggested above.
  • the N/P ratio shows a decrease throughout the experimentation, observing favorable results according to the limits set, with a value of 8.16 in the composted material, and a value of 6.09 in the biotransformation with larvae of beetle and sugarcane bagasse.
  • the following results are obtained by the counting method: for the crude biosolid 4.08+06 CFU/G of total coliforms, presence of helminth eggs, presence of salmonella Sp and 75 PFU/4 g weight dried seaweed; for the composted biosolid 2.15+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and 38.5 PFU/4 g dry weight of algae; for the sieved biotransformed biosolid 1.08+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and absence of algae; and for the biosolid biotransformed with bagasse 1.08+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and absence of algae.
  • the monitoring of heavy metals in the material allows determining the efficiency of the composting and biotransformation process in 6 of the 10 metals evaluated, corresponding to arsenic, copper, mercury, molybdenum, selenium and zinc.
  • arsenic and selenium present in the material at the beginning of the process are maintained after composting, however, during the biotransformation of the material, a reduction of them is observed, in fairly similar proportions in each bioassay.
  • copper, molybdenum and zinc respond to a decrease in the composting stage, which is maintained in the biotransformation of the material within the two bioassays.
  • the reduction of metals generated during the composting stage of the material is related to its migration towards the structuring material and its precipitation due to gravity in the experimental setup.
  • the metals that were reduced in the biotransformation stage it is important to mention that due to their bioaccumulative property, it is estimated that the action of the beetle larvae causes the content removed in the material to be accumulated in these organisms.
  • the due turning was carried out to stabilize values in case they were harmful and interfered with the circulation of air or other elements of the dynamics of the ecosystem. From the analysis of the physical, chemical and microbiological variables, it is determined that the best conditions in the biotransformation are achieved with the material sample that maintains the granulometric properties acquired in the composting, by the action of the structuring material, since it provides appropriate scenarios. for the aeration of the material, guaranteeing an aerobic process.
  • the final product has the following characteristics, for the composted biosolid ⁇ 5 arsenic, ⁇ 0.05 cadmium, ⁇ 0.05 chromium, ⁇ 0.1 copper, ⁇ 0.3 lead, 2.16 mercury, 0.72 molybdenum, ⁇ 0.1 nickel, ⁇ 5 selenium, 0.68 zinc, 2.15+06 CFU/gram of biosolids in the limit of fecal coliforms, absence of salmonella and absence of viable helminth eggs; for the screened biotransformed biosolid 3.63 arsenic, ⁇ 0.05 cadmium, ⁇ 0.05 chromium, ⁇ 0.1 copper, ⁇ 0.3 lead, 1.98 mercury, 0.66 molybdenum , ⁇ 0.1 nickel, 2.56 selenium, 0.7 zinc, 1.08+06 CFU/gram of biosolids at the limit of fecal coliforms, absence of salmonella and absence of viable helminth eggs and for the biosolid biotransformed with bagasse
  • the material after composting does not comply with either of the two classes in the fecal coliform parameter; however, the material after the biotransformation has been carried out, if it complies with the Class B of biosolid in the same parameter.
  • the compliance of the material is denoted from the moment in which the composting is carried out, taking as a premise that the limits in these parameters are established only for the class A biosolid.
  • the material at the end of the experimentation complies as class B within the contaminant concentration option (PC) and also within the accumulative contaminant load rate option (CPLR) which can be used in all land uses except lawns and home gardens, food crops, soils for grazing animals, and soils with high potential for public exposure.
  • PC contaminant concentration option
  • CPLR accumulative contaminant load rate option
  • the evaluation of the biotransformation process of biosolids extracted from the wastewater treatment plant allows to determine that from a stabilization of the biosolid with a support material within a composting process; the addition of beetle larvae is a viable alternative to improve the microbiological and physicochemical properties of the final product.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Environmental Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The process of biotransforming biosolids using beetle larvae belongs to the area of chemistry related to waste-based fertilisers, specifically to those fertilisers whose preparation is characterised by an industrial compost preparation step. The invention relates to a process stemming from the experimental results of a composting and biotransformation process using beetle larvae in compost heaps as an alternative to the management and disposal of biosolids, intended to prevent these wastes from being toxic or hazardous so they can be used as fertiliser or to restore soils.

Description

PROCESO DE BIOTRANSFORMACIÓN DE BIOSÓLIDOS A PARTIR DE LARVAS DE ESCARABAJO BIOSOLID BIOTRANSFORMATION PROCESS FROM BEETLE LARVAE
SECTOR TECNOLÓGICO TECHNOLOGICAL SECTOR
La presente invención pertenece al área de la química en lo relacionado con fertilizantes a partir de desechos o desperdicios, específicamente a aquellos fertilizantes en donde su preparación es caracterizada por la etapa de preparación industrial del compost. Se presenta un proceso que proviene de los resultados experimentales de un proceso de compostaje y biotransformación con larvas de escarabajo en pilas de compostaje como alternativa para el manejo y disposición de los biosólidos que pretende que estos residuos dejen de ser tóxicos o peligrosos para que sean aprovechados como abono o para restaurar suelos. The present invention belongs to the area of chemistry in relation to fertilizers from waste or waste, specifically those fertilizers where their preparation is characterized by the stage of industrial preparation of the compost. A process is presented that comes from the experimental results of a composting and biotransformation process with beetle larvae in composting piles as an alternative for the management and disposal of biosolids that intends that these residues stop being toxic or dangerous so that they can be used. as fertilizer or to restore soils.
ESTADO DE LA TÉCNICA STATE OF THE ART
En el estado de la técnica se conoce el documento de patente No. CN1099383C “Sistema de tratamiento de efluentes”, de fecha 22 de enero de 2003 y cuyo titular es Cameron D.O., que describe un sistema de tratamiento para efluentes líquidos o líquidos y sólidos. El sistema está encerrado dentro de una tubería, conducto (10) o zanja y comprende uno o más lechos de filtro inclinados (12, 13, 14) con una población de organismos de descomposición de efluentes tales como lombrices y moscas de la tierra, y un espacio aéreo suprayacente. La entrada del efluente del medio acuoso (1 1 ) se encuentra por encima del lecho filtrante superior en un extremo superior y la entrada de entrada de desechos sólidos (31 ), (cuando se incluye), se encuentra aguas abajo de la entrada del medio acuoso para que el medio acuoso fluya a través y alrededor del material de desecho sólido. Una salida de filtrado (28) se encuentra aguas abajo del flujo a través del sistema y se proporcionan medios manuales o transportadores para la eliminación de sólidos. En la nueva invención son aplicados las larvas de los escarabajos; los carábidos (Carabidae) son una de las grandes familias de coleópteros coprófagos, las cuales son las encargadas de realizar la biotransformación del material. In the state of the art, patent document No. CN1099383C "Effluent treatment system", dated January 22, 2003 and whose owner is Cameron DO, is known, which describes a treatment system for liquid or liquid and solid effluents . The system is enclosed within a pipe, conduit (10) or trench and comprises one or more inclined filter beds (12, 13, 14) with a population of effluent spoilage organisms such as earthworms and earthflies, and an overlying air space. The aqueous medium effluent inlet (1 1) is located above the upper filter bed at an upper end and the solid waste inlet (31), (when included), is located downstream of the medium inlet. aqueous medium for the aqueous medium to flow through and around the solid waste material. A filtrate outlet (28) is located downstream of the flow through the system and manual or conveyor means are provided for solids removal. In the new invention larvae of beetles are applied; Carabid beetles (Carabidae) are one of the large families of coprophagous beetles, which are responsible for carrying out the biotransformation of the material.
Por otro lado, está el documento de patente No. U20110271725A1 “Sistema de tratamiento de residuos orgánicos que utiliza verm ¡corrí postaje”, de fecha 10 de noviembre de 201 1 y cuyos titular es Thomas E. Herlihy, proporciona un método de procesamiento de desechos orgánicos que incluye acondicionamiento aeróbico, en un régimen predominantemente termofílico que dura al menos 72 horas, una mezcla de desechos orgánicos que tienen una relación de carbono a nitrógeno entre aproximadamente 15 a 1 a 45 a 1 para formar una materia prima, aplicando la materia prima a un lecho de gusano; y mantiene una temperatura y humedad del lecho de gusano y la materia prima aplicada para mantener un régimen mesofílico dominante dentro del lecho de gusano. Este antecedente comprende las etapas de: (a) acondicionar una mezcla de desechos orgánicos que tienen una relación carbono / nitrógeno entre aproximadamente 10 a 1 a 60 a 1 para formar una materia prima al suprimir el acondicionamiento anaeróbico manteniendo el acondicionamiento aeróbico dominante, en un régimen predominantemente termofílico que dure al menos 72 horas; y (b) aplicar la materia prima a un lecho de gusano. Comprende además mantener una temperatura y humedad del lecho de gusano y la materia prima aplicada para mantener un régimen mesofílico dominante dentro del lecho de gusano. En la nueva invención se utilizan larvas de coleópteros coprófagos, además, no solo se utilizan microorganismos termofilicos, también se utilizan microoganismos mesofilicos. On the other hand, there is the patent document No. U20110271725A1 "Organic waste treatment system that uses verm ¡corrí postaje", dated November 10, 2011 and whose owner is Thomas E. Herlihy, provides a method of processing organic organic waste that includes aerobic conditioning, in a predominantly thermophilic regime lasting at least 72 hours, a mixture of organic wastes having a carbon to nitrogen ratio between about 15 to 1 to 45 to 1 to form a feedstock, applying the feedstock to a worm bed; and maintains a temperature and humidity of the worm bed and the applied feedstock to maintain a dominant mesophilic regime within the worm bed. This background comprises the steps of: (a) conditioning a mixture of organic wastes having a carbon/nitrogen ratio between about 10 to 1 to 60 to 1 to form a feedstock by suppressing anaerobic conditioning while maintaining dominant aerobic conditioning, in a predominantly thermophilic regimen lasting at least 72 hours; and (b) applying the feedstock to a worm bed. It further comprises maintaining a temperature and humidity of the worm bed and the applied feedstock to maintain a dominant mesophilic regime within the worm bed. In the new invention coprophagous beetle larvae are used, in addition, not only thermophilic microorganisms are used, mesophilic microorganisms are also used.
También se encuentra el documento de patente No. US7850848B2 “Aparatos y procesos para el tratamiento biológico de aguas residuales” de fecha el 17 de septiembre de 2009, cuyo titular es Christopher A. Limcaco. Este antecedente se refiere una instalación de tratamiento agua residual que comprende: un sistema primario con una ruta de flujo de entrada para recibir aguas residuales de una fuente; un primer tanque para contener aguas residuales recibidas a través de un camino de flujo de entrada; una pluralidad de ruedas en dicho primer tanque para rotación dentro de las aguas residuales donde cada una contiene una colonia de bacterias capaces de digerir el carbono orgánico en el agua residual y que respiran CO2, y cada una de las ruedas incluye superficies para apoyar el crecimiento de algas, donde dichas superficies están dispuestas para estar sumergidas alternativamente en las aguas residuales y expuestas a la luz solar; un suministro de aire dispuesto dentro de dicho primer tanque que tiene una pluralidad de salidas dirigidas a una correspondiente pluralidad de ruedas para rotar dichas ruedas dentro del agua residual y operable para airear el agua residual; y una salida primaria para la descarga del efluente tratado por dicho sistema primario después del contacto con las bacterias y algas; un sistema de tratamiento secundario con un segundo tanque para recibir el efluente descargado desde la salida del sistema primario; una pluralidad de ruedas idénticas y configuradas con las ruedas del sistema primario; un suministro de aire dispuesto dentro de dicho segundo tanque y configurado con el suministro de aire del sistema de tratamiento primario; y una salida secundaria para la descarga del efluente tratado por dicho sistema secundario después del contacto con las bacterias y algas. En la nueva invención se realizan procesos aeróbicos y anaeróbicos en el tratamiento inicial con el compostaje, no se requieren de tanques, ya que se realiza la formación de pilas aeróbicas para las etapas del compostaje y se finaliza con la aplicación de larvas de escarabajo coprófagos. There is also patent document No. US7850848B2 "Devices and processes for the biological treatment of wastewater" dated September 17, 2009, whose owner is Christopher A. Limcaco. This background relates to a wastewater treatment facility comprising: a primary system with an inlet flow path to receive wastewater from a source; a first tank for containing wastewater received through an inflow path; a plurality of wheels in said first tank for rotation within the wastewater each containing a colony of bacteria capable of digesting organic carbon in the wastewater and respiring CO2, and each of the wheels includes surfaces to support growth of algae, where said surfaces are arranged to be alternately submerged in the sewage and exposed to sunlight; an air supply disposed within said first tank having a plurality of outlets directed to a corresponding plurality of wheels for rotating said wheels within the waste water and operable to aerate the waste water; and a primary outlet for discharging the effluent treated by said primary system after contact with bacteria and algae; a secondary treatment system with a second tank to receive the effluent discharged from the outlet of the primary system; a plurality of identical wheels configured with the wheels of the primary system; an air supply disposed within said second tank and configured with the air supply of the primary treatment system; and a secondary outlet for the discharge of the effluent treated by said secondary system after contact with the bacteria and algae. In the new invention, aerobic and anaerobic processes are carried out in the initial treatment with composting, tanks are not required, since the formation of aerobic piles is carried out for the composting stages and it is finished with the application of dung beetle larvae.
Por último, se encuentra la solicitud de patente No. W02005051853A1 “Estabilización alcalina de lodos residuales en sistemas cerrados con recirculación de amoniaco opcional” de fecha el 09 de junio de 2005 y cuyos titulares son Blanca Elena Jiménez Cisneros, Juan Manuel Méndez Contreras. Este antecedente describe un proceso de estabilización alcalina de lodos residuales en sistemas cerrados con recirculación de amoniaco opcional que produce biosólidos con limitaciones de microorganismos patógenos que por sus características son ¡dóneos para su aplicación en suelos para mejoramiento de suelos, remediación de suelos contaminados, generación de suelos en zonas infértiles, cubierta intermedia de rellenos sanitarios y terraplenes sin causar problemas de salud y ambientales. Una optimización del mismo proceso es el aprovechamiento del amoniaco como un subproducto que puede ser recuperado y recirculado al sistema para optimizar su alto poder desinfectante o para comercializarlo debido a sus diversos usos industriales. La recirculación del amoniaco al proceso incrementa el contenido de nutrientes por lo que los lodos afectados son específicos para actividades agrícolas; además se reduce la masa de los lodos al requerir menos material alcalino con lo que se reduce los costos de operación, así como los de transporte de biosólidos. La nueva invención no requiere la recirculación del amoniaco, dado que en el sistema son reacciones naturales, sin ingreso de ningún reactivo, el proceso de estabilización se realiza por a la acción microbiana de temperatura generada por las mismas reacciones y la acción biológica del tracto digestivo de las larvas de escarabajos coprófagos. Finally, there is patent application No. W02005051853A1 "Alkaline stabilization of residual sludge in closed systems with optional ammonia recirculation" dated June 9, 2005 and whose owners are Blanca Elena Jiménez Cisneros, Juan Manuel Méndez Contreras. This background describes a process of alkaline stabilization of residual sludge in closed systems with optional ammonia recirculation that produces biosolids with limitations of pathogenic microorganisms that, due to their characteristics, are ideal for their application in soils for soil improvement, remediation of contaminated soils, generation of soils in infertile areas, intermediate cover of sanitary landfills and embankments without causing health and environmental problems. An optimization of the same process is the use of ammonia as a by-product that can be recovered and recirculated to the system to optimize its high disinfectant power or to market it due to its various industrial uses. The recirculation of ammonia to the process increases the nutrient content, so the affected sludge is specific for agricultural activities; In addition, the mass of the sludge is reduced by requiring less alkaline material, which reduces operating costs, as well as those of transporting biosolids. The new invention does not require the recirculation of ammonia, since in the system there are natural reactions, without the entry of any reagent, the stabilization process is carried out by the microbial action of temperature generated by the same reactions and the biological action of the digestive tract of dung beetle larvae.
DESCRIPCIÓN DE LA INVENCIÓN La figura anexa ¡lustra el alcance que se propone la invención dentro de la siguiente propuesta del proceso de biotransformación de biosólidos a partir de larvas de escarabajo DESCRIPTION OF THE INVENTION The attached figure illustrates the proposed scope of the invention within the following proposal for the process of biotransformation of biosolids from beetle larvae
La figura 1 muestra el flujograma de la metodología desarrollada. Figure 1 shows the flowchart of the developed methodology.
La figura 2 muestra el dimensionamiento de la pila de compostaje. Figure 2 shows the dimensioning of the composting pile.
La figura 3 muestra la evolución típica de la temperatura en la etapa de compostaje.Figure 3 shows the typical evolution of temperature in the composting stage.
La figura 4 muestra el Comportamiento del pH en el compostaje de las pilas 1 y 2.Figure 4 shows the behavior of the pH in the composting of batteries 1 and 2.
La figura 5 muestra el Comportamiento de la temperatura en el compostaje de la pila 3. Figure 5 shows the behavior of the temperature in the composting of pile 3.
La figura 6 presenta el proceso de biotransformación con larvas. Figure 6 presents the biotransformation process with larvae.
La figura 7 presenta los niveles de fosforo en la etapa de muestreo. Figure 7 presents the phosphorus levels in the sampling stage.
En este documento se desea plasmar el proceso de biotransformación de biosólidos a partir de larvas de escarabajo a partir del proceso descrito por las siguientes etapas: In this document it is desired to capture the process of biotransformation of biosolids from beetle larvae from the process described by the following stages:
En la primera etapa se realiza el proceso denominado compostaje el cual comprende la estabilización de la materia orgánica mediante su degradación aerobia por acción de un incremento controlado de la temperatura; el abono orgánico se genera a partir de microorganismos que actúan en función del aire. El proceso tiene lugar en un espacio de degradación persistente por un espacio de maduración que se distingue en cuatro fases: mesófila, termófila, enfriamiento y maduración. In the first stage, the process called composting is carried out, which includes the stabilization of organic matter through its aerobic degradation by the action of a controlled increase in temperature; Organic fertilizer is generated from microorganisms that act based on the air. The process takes place in a persistent degradation space for a maturation space that is distinguished in four phases: mesophilic, thermophilic, cooling and maturation.
El compostaje se refiere a un proceso biooxidativo en condiciones controladas que incluye la adición de un material de sustrato con características orgánicas heterogéneas en estado sólido. Comparado con distintos procesos, la biooxidación controlada garantiza una mejor eficiencia puesto que es bastante efectivo para la disminución de patógenos, suprimiendo malos olores y reduciendo el periodo requerido para estabilizar el material. Composting refers to a biooxidative process under controlled conditions that includes the addition of a substrate material with heterogeneous organic characteristics in a solid state. Compared to other processes, controlled biooxidation guarantees better efficiency since it is quite effective in reducing pathogens, suppressing bad odors and reducing the period required to stabilize the material.
La fase mesófila en el proceso de compostaje se caracteriza por alcanzar altas temperaturas de hasta 45SC, inicia con la formación de microorganismos denominados mesófilos que dan paso a la descomposición de las moléculas que poseen mayor facilidad para la degradación. En esta fase del proceso se libera energía que desencadena en el aumento de las temperaturas del material tratado, así como en el decrecimiento del pH. The mesophilic phase in the composting process is characterized by reaching high temperatures of up to 45 S C, it begins with the formation of microorganisms called mesophiles that give way to the decomposition of molecules that have a greater facility for degradation. In this phase of the process, energy is released triggers in the increase of the temperatures of the treated material, as well as in the decrease of the pH.
Durante la fase termófila el pH tiende a la alcalinidad, la cantidad de microorganismos mesófilos decrece dando lugar a la formación de microorganismos termófilos, continuando además con el incremento paulatino de las temperaturas. Gracias a las altas temperaturas que pueden alcanzar los 70sC, se consigue la eliminación de microorganismos patógenos además de sustancias fácilmente degradadles como azucares, grasas, almidones y proteínas. La fase termófila asegura la higienización o esterilización del material pues al eliminar patógenos también se asegura que éstos no vuelvan a proliferar en la fase de maduración. Estas dos fases pueden tardarse de días a meses, según el volumen y tipo de material, además del clima del lugar, entre otros; de igual modo deben ser realizadas en escenarios adecuados para no comprometer la fase de maduración y mejorar la calidad del producto final. During the thermophilic phase, the pH tends towards alkalinity, the number of mesophilic microorganisms decreases, giving rise to the formation of thermophilic microorganisms, also continuing with the gradual increase in temperatures. Thanks to the high temperatures that can reach 70 s C, the elimination of pathogenic microorganisms is achieved as well as easily degradable substances such as sugars, fats, starches and proteins. The thermophilic phase ensures the sanitization or sterilization of the material, since by eliminating pathogens it also ensures that they do not proliferate again in the maturation phase. These two phases can take from days to months, depending on the volume and type of material, in addition to the local climate, among others; Likewise, they must be carried out in suitable settings so as not to compromise the maturation phase and improve the quality of the final product.
En la fase de enfriamiento las temperaturas descienden nuevamente hasta los 40 - 45SC degradando la celulosa como polímero. Con la aparición de hongos, el pH desciende con una tendencia sutil a la alcalinidad y reaparecen algunos microorganismos de tipo mesófilo; requiere de tiempo por cuanto tiende a confundirse con la fase de maduración. La última fase es la maduración del compostaje cuya duración requiere de semanas hasta meses a temperatura ambiente, en ésta se llevan a cabo reacciones secundarias que dan lugar a ácidos húmicos y fúlvicos, se reduce la actividad microbiana y el pH continua ligeramente alcalino. In the cooling phase, the temperatures drop again to 40 - 45 S C, degrading the cellulose as a polymer. With the appearance of fungi, the pH drops with a subtle tendency towards alkalinity and some mesophyll-type microorganisms reappear; it requires time because it tends to be confused with the maturation phase. The last phase is the maturation of the compost whose duration requires weeks to months at room temperature, in which secondary reactions are carried out that give rise to humic and fulvic acids, microbial activity is reduced and the pH continues to be slightly alkaline.
En la segunda etapa se lleva a cabo la caracterización físico química del biosólido, en donde se realiza muestreo del biosólido. Este proceso de caracterización se aplica tanto a lo largo del proceso de compostaje, como durante la biotransformación por lo que involucra distintas tomas de muestras. In the second stage, the physical chemical characterization of the biosolid is carried out, where the biosolid is sampled. This characterization process is applied both throughout the composting process and during the biotransformation, which involves taking different samples.
La caracterización fisicoquímica del material a tratar es de indispensable para el estudio de la evolución del proceso de compostaje, pues permite evaluar diferentes parámetros que permiten clasificar el material según sus características otorgando alternativas de uso final en suelos. La tercera etapa comprende la elaboración de pilas del biosólido, en donde se vio la necesidad de elaborar pilas pequeñas del biosólido para garantizar la aireación del compost, para determinar el volumen apropiado para el proceso de biotransformación en función al tiempo, características del material y condiciones climáticas del lugar, se requirió de un área aproximada de 50 m2 para ubicar 2 pilas de compostaje de estructura piramidal. The physicochemical characterization of the material to be treated is essential for the study of the evolution of the composting process, since it allows evaluating different parameters that allow classifying the material according to its characteristics, granting alternatives of final use in soils. The third stage includes the elaboration of biosolid piles, where it was seen the need to elaborate small biosolid piles to guarantee the aeration of the compost, to determine the appropriate volume for the biotransformation process based on time, material characteristics and conditions. climatic conditions of the place, an approximate area of 50 m2 was required to locate 2 composting piles with a pyramidal structure.
El proceso de compostaje se adelanta generalmente en pilas con forma piramidal, que hace referencia a la tercera etapa de dimensionamiento y montaje de pilas, en donde el tamaño de las pilas y la frecuencia de volteos se encuentra en función del tipo de material, sin embargo, una limitante es la altura de la pila puesto que a mayor altura mayor será la probabilidad de compactación del material, reduciendo la porosidad en el mismo dificultando la aireación; por lo tanto estudios sugieren alturas entre 1 ,2 y 1 ,8 metros y anchos entre 2,4 y 3,6 metros. Para el proceso de biotransformación de biosólidos a partir de larvas de escarabajo se hace uso de un área aproximada de 50 m2 para ubicar 2 pilas de compostaje de estructura piramidal con un ancho de base de 1 ,7 metros, un ancho de corona de 0,5 metros y una altura de 1 ,0 metros para completar un volumen aproximado de 1 .57 m3 por pila. The composting process is generally carried out in pyramidal-shaped piles, which refers to the third stage of sizing and assembly of piles, where the size of the piles and the frequency of turning is based on the type of material, however , a limitation is the height of the pile since the higher the height, the greater the probability of material compaction, reducing its porosity, making aeration difficult; therefore, studies suggest heights between 1.2 and 1.8 meters and widths between 2.4 and 3.6 meters. For the biosolids biotransformation process from beetle larvae, an approximate area of 50 m2 is used to locate 2 composting piles with a pyramidal structure with a base width of 1.7 meters, a crown width of 0. 5 meters and a height of 1.0 meters to complete an approximate volume of 1.57 m3 per stack.
Luego, como cuarta etapa, se tiene la estabilización del sustrato, en donde se realiza la normalización de condiciones de pH, humedad y temperatura, se realiza la integración del material estructurante también conocido como material de soporte o material de enmienda, el cual es un aspecto indispensable para proporcionar condiciones óptimas en el proceso de compostaje. El propósito de adicionar el material estructurante es optimizar el proceso en condiciones de aireación, y contenido de nutrientes para mejorar la calidad del producto final. Then, as a fourth stage, there is the stabilization of the substrate, where the normalization of pH, humidity and temperature conditions is carried out, the integration of the structuring material is carried out, also known as support material or amendment material, which is a essential aspect to provide optimal conditions in the composting process. The purpose of adding the structuring material is to optimize the process in terms of aeration and nutrient content to improve the quality of the final product.
El tamaño de las partículas del material a compostar es indispensable en el proceso puesto que entre mayor es el espacio expuesto a la operación los microorganismos, más rápida y completa es la reacción. La velocidad del proceso se maximiza en un material molido, sin embargo, a pesar que esto provocaría una gran superficie de contacto para la labor microbiana, también restringiría el volumen entre partículas aumentando la fuerza de fricción y limitando la difusión de oxigeno hacia el interior de las pilas dando paso a un colapso de microorganismos aerobios al imposibilitar la aireación por convección natural. The size of the particles of the material to be composted is essential in the process since the greater the space exposed to the operation of the microorganisms, the faster and more complete the reaction. The speed of the process is maximized in a ground material, however, although this would cause a large contact surface for microbial work, it would also restrict the volume between particles, increasing the frictional force and limiting the diffusion of oxygen into the interior of the material. the piles giving way to a collapse of aerobic microorganisms by making aeration by natural convection impossible.
Teniendo en cuenta las características físicas del biosólido a partir de su alto contenido de humedad que propicia escenarios de colmatación y dificulta un proceso aerobio, se requiere estabilizar el sustrato del biosólido con un material de soporte como el bagazo de caña de azúcar. Lo anterior, además para favorecer las condiciones de manejabilidad del material en el momento del volteo y propiciar un escenario óptimo en el momento de la aplicación de las larvas de escarabajo. Taking into account the physical characteristics of the biosolid from its high moisture content that favors clogging scenarios and hinders an aerobic process, it is necessary to stabilize the biosolid substrate with a support material such as sugar cane bagasse. The foregoing, in addition to favoring the manageability conditions of the material at the time of turning and promoting an optimal scenario at the time of the application of the beetle larvae.
El punto de partida de la dosificación obedece a situaciones experimentales de compostaje en otros estudios en donde se demuestra que para compostar lodos provenientes de estaciones depuradoras de aguas residuales urbanas, se utilizan diferentes relaciones volumétricas que se encuentran principalmente en función del contenido de humedad del lodo, pudiendo establecerse como extremos valores de 1/1 a 4/1 de material estructurante/lodo, en el caso de los lodos de depuración deshidratados mecánicamente, se usan comúnmente relaciones volumétricas de mezcla de 2/1 a 3/1 de material estructurante/lodo. The starting point of the dosage is due to experimental situations of composting in other studies where it is shown that to compost sludge from urban wastewater treatment plants, different volumetric ratios are used that are mainly based on the moisture content of the sludge. , being able to establish as extreme values of 1/1 to 4/1 of structuring material/sludge, in the case of mechanically dehydrated sewage sludge, volumetric mixing ratios of 2/1 to 3/1 of structuring material/ mud.
Debido a las características propias del biosólido, donde por su humedad y viscosidad carece de manejabilidad y además dificulta las condiciones aerobias del proceso, se define la siguiente proporción para cada pila: 40% material de soporte (estructurante) y 60% biosólido. Due to the characteristics of the biosolid, where, due to its humidity and viscosity, it lacks manageability and also hinders the aerobic conditions of the process, the following proportion is defined for each pile: 40% support material (structuring) and 60% biosolid.
Para obtener una mezcla homogénea del material es necesario montar cada pila de compostaje en capas de 0,20 metros garantizando la estructura piramidal y el porcentaje volumétrico de sus componentes. En esta fase de la investigación se tiene como premisa algunos aspectos ambientales como las infiltraciones directas al suelo o por escorrentía y la propagación de vectores; por tanto se deben tomar medidas preventivas como la instalación de plásticos de calibre 6 en la base de las pilas, la instalación de una carpa que proteja el material de la precipitación, la elaboración de zanjas alrededor del montaje para controlar la escorrentía y la localización del montaje experimental alejada de fuentes de vectores. La siguiente etapa, denominada biotransformación del material, corresponde a la Inclusión de organismos tales como escarabajos, coleópteros y larvas. To obtain a homogeneous mixture of the material, it is necessary to assemble each composting pile in layers of 0.20 meters, guaranteeing the pyramidal structure and the volumetric percentage of its components. In this phase of the investigation, some environmental aspects are premised, such as direct infiltrations into the soil or by runoff and the spread of vectors; Therefore, preventive measures must be taken, such as the installation of 6-gauge plastic at the base of the piles, the installation of a tent that protects the material from precipitation, the preparation of ditches around the assembly to control runoff, and the location of the Experimental montage away from vector sources. The next stage, called biotransformation of the material, corresponds to the inclusion of organisms such as beetles, beetles and larvae.
Uno de los principales procesos de biotransformación que puede ser empleado en el manejo de biosólidos es el uso larvas de escarabajo puesto que su aparato bucal masticador y la alimentación polífaga de estos organismos, facilita la trasformación del residuo a bioabono. Los escarabajos desde el estado de larva, realizan el trabajo de biotransformación de la materia orgánica, aportando coloides orgánicos y suministrando nutrientes esénciales para crecimiento de las plantas. One of the main biotransformation processes that can be used in the management of biosolids is the use of beetle larvae, since their chewing mouthparts and the polyphagous feeding of these organisms facilitate the transformation of the waste into biofertilizer. Beetles, from the larval stage, carry out the work of biotransformation of organic matter, providing organic colloids and supplying essential nutrients for plant growth.
Se incorpora al proceso la biotransformación larvas de escarabajo apuntando a la generación de un bioabono cuyas características estén acordes a la normatividad vigente. El abono orgánico como acondicionador de suelos favorece la disponibilidad de componentes estables y la captura de nutrientes por medio del ciclo de carbono, nitrógeno y fosforo. The biotransformation of beetle larvae is incorporated into the process, aiming at the generation of a biofertilizer whose characteristics are in accordance with current regulations. Organic fertilizer as a soil conditioner favors the availability of stable components and the capture of nutrients through the carbon, nitrogen and phosphorus cycle.
Las larvas de escarabajo son dispuestas en las pilas a temperatura ambiente durante la fase de maduración, considerando que la condición del material en el momento de la aplicación de las larvas es de baja toxicidad. Durante este ciclo las larvas llevan a cabo su proceso de alimentación con la capacidad de realizar movimientos en el biosólidos tratado, aireando y permitiendo el crecimiento de bacterias en el mismo que pueden llegar a ser benéficas en suelos. The beetle larvae are arranged in the piles at room temperature during the maturation phase, considering that the condition of the material at the time of application of the larvae is of low toxicity. During this cycle, the larvae carry out their feeding process with the ability to carry out movements in the treated biosolids, aerating and allowing the growth of bacteria in it that can become beneficial in soils.
Pasadas las 19 semanas del proceso de compostaje de la pila, se inicia la etapa de biotransformación del material mediante dos bioensayos en laboratorio con recipientes esterilizados, que incorporan la muestra del material tomado en campo. En busca de encontrar las condiciones óptimas para el proceso, se decide que cada bioensayo contenga material en condiciones granulométricas específicas, con el objeto de evaluar el comportamiento de las variables, comparando a su vez los resultados fisicoquímicos y microbiológicos en cada bioensayo. After the 19 weeks of the composting process of the pile, the biotransformation stage of the material begins through two bioassays in the laboratory with sterilized containers, which incorporate the sample of the material taken in the field. In search of finding the optimal conditions for the process, it is decided that each bioassay contains material in specific granulometric conditions, in order to evaluate the behavior of the variables, while comparing the physicochemical and microbiological results in each bioassay.
El bioensayo 1 es conformado con el material que pasa el tamiz N°4, siendo apisonado previamente para reducir la cantidad de material de grandes proporciones (bagazo de caña de azúcar), aumentando la posibilidad de que la muestra resultante contenga partículas del material estructurante. El volumen de este bioensayo corresponde a 0.024 m3 y su peso es de 12 kg. La temperatura del material al finalizar el montaje es de 17,8°C, con un pH de 5,6 y un porcentaje de humedad del 79,1%. Bioassay 1 is formed with the material that passes sieve No. 4, being previously tamped to reduce the amount of material of large proportions (sugar cane bagasse), increasing the possibility that the resulting sample contains particles of the structuring material. The volume of this bioassay corresponds to 0.024 m3 and its weight is 12 kg. The temperature of the material at the end of the assembly is 17.8°C, with a pH of 5.6 and a humidity percentage of 79.1%.
Una vez el material se encuentra dispuesto en el recipiente y con la granulometría deseada, se procede a la toma de variables físicas y posterior incorporación de las larvas de escarabajo para completar el bioensayo. De este modo se agregan 35 larvas de diferentes tamaños (35 a 40 cm de longitud), en forma uniforme dentro del bioensayo, las cuales dan paso al inicio del proceso de biotransformación del material. Once the material is arranged in the container and with the desired granulometry, the physical variables are taken and the beetle larvae are subsequently incorporated to complete the bioassay. In this way, 35 larvae of different sizes (35 to 40 cm in length) are added uniformly within the bioassay, which give way to the beginning of the biotransformation process of the material.
Si se desea realizar un proceso de biotransformación acelerado, se requiere de una alta densidad de larvas, por lo cual, se conformaron bioensayos de 12 kg cada uno; al calcular la relación del contenido de larvas que debería tener cada uno, se estimó una cantidad de 5 larvas por cada bioensayo. Sin embargo, debido a las características fisicoquímicas y microbiológicas del material, se toma la decisión de emplear 7 veces la cantidad deducida, para un total de 35 larvas por bioensayo con el objetivo de acelerar el proceso y optimizar sus resultados. El área superficial del bioensayo corresponde a 0,12 m2, por lo que se estimó que cada larva ocuparía un espacio de 34 cm2 en una profundidad de 20 cm. Las larvas son depositadas en la superficie de cada bioensayo en forma uniforme, teniendo en cuenta que se trata de organismo vivos con movimiento propio, estos, se desplazan rápidamente al interior de la masa de biosólido compostado, y así se mantienen en movimiento durante todo el proceso. If an accelerated biotransformation process is desired, a high density of larvae is required, for which bioassays of 12 kg each were formed; When calculating the ratio of the content of larvae that each one should have, an amount of 5 larvae was estimated for each bioassay. However, due to the physicochemical and microbiological characteristics of the material, the decision was made to use 7 times the amount deducted, for a total of 35 larvae per bioassay in order to speed up the process and optimize its results. The surface area of the bioassay corresponds to 0.12 m2, so it was estimated that each larva would occupy a space of 34 cm2 at a depth of 20 cm. The larvae are uniformly deposited on the surface of each bioassay, taking into account that they are living organisms with their own movement, they move quickly into the composted biosolid mass, and thus remain in motion throughout the process. process.
Las larvas de escarabajo pueden ser especies nativas y son dispuestas en las pilas a temperatura ambiente durante la fase de maduración, considerando que la condición del material en el momento de la aplicación de las larvas es de baja toxicidad. Durante este ciclo las larvas llevan a cabo su proceso de alimentación con la capacidad de realizar movimientos en el biosólido. The beetle larvae may be native species and are placed in the piles at room temperature during the maturation phase, considering that the condition of the material at the time of application of the larvae is of low toxicity. During this cycle, the larvae carry out their feeding process with the ability to make movements in the biosolid.
La experimentación durante el proceso de biotransformación tiene lugar durante 8 semanas, en las cuales, se realiza el seguimiento a las variables de pH, temperatura y humedad con el propósito de evaluar su comportamiento y evolución. Esta etapa se denomina puesta en marcha y seguimiento, en donde se lleva a cabo la verificación de variables fisicoquímicas y desarrollo del proceso mediante la Medición de variables como pH, temperatura, metales, granulometría, entre otros. Algunos de estos valores se obtuvieron en campo, mientras otros fueron obtenidos mediante muestreo y caracterización en laboratorio. The experimentation during the biotransformation process takes place for 8 weeks, in which the variables of pH, temperature and humidity are monitored in order to evaluate their behavior and evolution. This stage is called start-up and monitoring, where the verification of physicochemical variables and development of the process is carried out by measuring variables such as pH, temperature, metals, granulometry, among others. Some of these values were obtained in the field, while others were obtained through sampling and characterization in the laboratory.
El pH en el bioensayo conformado con bagazo manifiesta un comportamiento constante con tendencia a la neutralidad, a lo largo de la biotransformación, partiendo de 5,53 unidades de pH y finalizando en 7,0 unidades de pH. Al mismo tiempo, el pH en el bioensayo conformado con la muestra tamizada presenta fluctuaciones que oscilan entre las 5,18 unidades de pH y 6,6 unidades de pH, registrando un valor de 6,0 unidades de pH al finalizar la biotransformación. The pH in the bioassay made with bagasse shows a constant behavior with a tendency to neutrality, throughout the biotransformation, starting at 5.53 pH units and ending at 7.0 pH units. At the same time, the pH in the bioassay made with the sieved sample fluctuates between 5.18 pH units and 6.6 pH units, registering a value of 6.0 pH units at the end of the biotransformation.
El nitrógeno total, demuestra un descenso en entre el biosólido crudo y compostado pasando de 5,68 g/100g a 2,69 g/100g, cuya tendencia continua en la biotransformación con larvas en la muestra tamizada con 1 ,58 g/100g de nitrógeno total, pero se mantiene con una breve inclinación al aumento en la biotransformación con larvas y bagazo de caña de azúcar con un valor de 2,94g/100g. El carbono orgánico total por su parte, aunque tiene una disminución de casi el 50% entre el biosólido crudo y el compostado, es recuperado durante la biotransformación en los dos bioensayos. Conociendo que este parámetro funciona como fuente de energía en los heterótrofos presentes en el suelo, sus efectos sobre las propiedades químicas, físicas y biológicas en el suelo implican un factor importante en la productividad de los mismos. Por este motivo, el aumento en el parámetro demuestra condiciones favorables en el producto final. The total nitrogen shows a decrease between the raw and composted biosolid from 5.68 g/100g to 2.69 g/100g, whose trend continues in the biotransformation with larvae in the sieved sample with 1.58 g/100g of total nitrogen, but it is maintained with a brief inclination to increase in biotransformation with larvae and sugarcane bagasse with a value of 2.94g/100g. The total organic carbon for its part, although it has a decrease of almost 50% between the raw biosolid and the composted one, is recovered during the biotransformation in the two bioassays. Knowing that this parameter works as a source of energy in the heterotrophs present in the soil, its effects on the chemical, physical and biological properties in the soil imply an important factor in their productivity. For this reason, the increase in the parameter demonstrates favorable conditions in the final product.
Las relaciones C/N, C/P y N/P son indispensables para conocer las bondades del compostaje, así como del producto final. La relación C/N en el material crudo parte de 5,28 y aumenta a 7,14 luego del proceso de compostaje, teniendo un valor alejado del optimo sugerido al interior de un compostaje de residuos orgánicos, el cual, ha sido estimado de 25 a 35, teniendo en cuenta que los microorganismos absorben entre 15 y 30 fracciones de carbono por una de nitrógeno. Sin embargo, durante la biotransformación con larvas de escarabajo, se observa un aumento del parámetro, considerando un valor cercano al óptimo para un compost maduro estimado en 10, en el bioensayo que contiene las larvas y el bagazo de caña de azúcar con una relación de 12,76. Precisando en que la relación C/P para un compostaje de residuos orgánicos está recomendada entre 75 y 150, se muestra en los resultados que la relación de C/P es de 1 12. The C/N, C/P and N/P ratios are essential to know the benefits of composting, as well as the final product. The C/N ratio in the raw material starts from 5.28 and increases to 7.14 after the composting process, having a value far from the optimum suggested within organic waste composting, which has been estimated at 25 to 35, taking into account that microorganisms absorb between 15 and 30 carbon fractions for one nitrogen fraction. However, during biotransformation with beetle larvae, an increase in the parameter is observed, considering a value close to the optimum for a mature compost estimated at 10, in the bioassay that contains the larvae and the sugar cane bagasse with a ratio of 12.76. Specifying that the C/P ratio for organic waste composting is recommended between 75 and 150, it is shown in the results that the C/P ratio is 1 12.
Aunque la relación C/P presenta un aumento entre el material crudo y el material compostado, este resultado no alcanza los limites mencionados, por el contrario, durante la biotransformación del material se aprecia que en el bioensayo que contiene larvas de escarabajo y bagazo de caña de azúcar, este parámetro alcanza un valor de 77,67 ajustándose al rango sugerido anteriormente. La relación N/P presenta un descenso a lo largo de la experimentación, observando resultados favorables de acuerdo a los limites planteados, con un valor de 8,16 en el material compostado, y un valor de 6,09 en la biotransformación con larvas de escarabajo y bagazo de caña de azúcar. Although the C/P ratio shows an increase between the raw material and the composted material, this result does not reach the limits mentioned; on the contrary, during the biotransformation of the material it can be seen that in the bioassay containing beetle larvae and sugarcane bagasse of sugar, this parameter reaches a value of 77.67, adjusting to the range suggested above. The N/P ratio shows a decrease throughout the experimentation, observing favorable results according to the limits set, with a value of 8.16 in the composted material, and a value of 6.09 in the biotransformation with larvae of beetle and sugarcane bagasse.
De acuerdo a la caracterización microbiológica se tienen los siguientes resultados por el método de recuento: para el biosólido crudo 4,08+06 UFC/G de coliformes totales, presencia de huevos de helmintos, presencia de salmonella Sp y 75 UFP/4 g peso seco de algas; para el biosólido compostado 2,15+06 UFC/G de coliformes totales, ausencia de huevos de helmintos, ausencia de salmonella Sp y 38,5 UFP/4 g peso seco de algas; para el biosólido biotransformado tamizado 1 ,08+06 UFC/G de coliformes totales, ausencia de huevos de helmintos, ausencia de salmonella Sp y ausencia de algas; y para el biosólido biotransformado con bagazo 1 ,08+06 UFC/G de coliformes totales, ausencia de huevos de helmintos, ausencia de salmonella Sp y ausencia de algas. According to the microbiological characterization, the following results are obtained by the counting method: for the crude biosolid 4.08+06 CFU/G of total coliforms, presence of helminth eggs, presence of salmonella Sp and 75 PFU/4 g weight dried seaweed; for the composted biosolid 2.15+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and 38.5 PFU/4 g dry weight of algae; for the sieved biotransformed biosolid 1.08+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and absence of algae; and for the biosolid biotransformed with bagasse 1.08+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and absence of algae.
El seguimiento a los metales pesados en el material permite determinar la eficiencia del proceso de compostaje y biotransformación en 6 de los 10 metales evaluados correspondientes al arsénico, cobre, mercurio, molibdeno, selenio y zinc. The monitoring of heavy metals in the material allows determining the efficiency of the composting and biotransformation process in 6 of the 10 metals evaluated, corresponding to arsenic, copper, mercury, molybdenum, selenium and zinc.
El arsénico y el selenio presentes en el material al inicio del proceso se mantienen luego del compostaje, sin embargo, durante la biotransformación del material se aprecia una reducción de los mismos, en proporciones bastante similares en cada bioensayo. Por otra parte, el cobre, el molibdeno y el zinc, responden a una disminución en la etapa de compostaje, que se mantiene en la biotransformación del material al interior de los dos bioensayos. The arsenic and selenium present in the material at the beginning of the process are maintained after composting, however, during the biotransformation of the material, a reduction of them is observed, in fairly similar proportions in each bioassay. On the other hand, copper, molybdenum and zinc respond to a decrease in the composting stage, which is maintained in the biotransformation of the material within the two bioassays.
El mercurio por su parte manifiesta una disminución durante la etapa de compostaje, que continua a lo largo de la biotransformación, notando mejores resultados de remoción en el bioensayo que contiene la muestra con bagazo de caña de azúcar. Mercury, for its part, shows a decrease during the composting stage, which continues throughout the biotransformation, noting better removal results in the bioassay that contains the sample with sugar cane bagasse.
De acuerdo a la caracterización de los metales pesados por el método de absorción atómica se tienen los siguientes resultados: para el biosólido crudo 3,88 mg de mercurio sobre 1 kg de biosólido; 1 ,67 mg de molibdeno sobre 1 kg de biosólido, <0,1 mg de níquel sobre 1 kg de biosólido, <5 mg de selenio sobre 1 kg de biosólido, <0,3 mg de plomo sobre 1 kg de biosólido, 2,54 mg de zinc sobre 1 kg de biosólido, <5 mg de arsénico sobre 1 kg de biosólido, <0,05 mg de cadmio sobre 1 kg de biosólido, <0,05 mg de cromo sobre 1 kg de biosólido y 0,24 mg de cobre sobre 1 kg de biosólido; para el biosólido compostado 2,16 mg de mercurio sobre 1 kg de biosólido; 0,72 mg de molibdeno sobre 1 kg de biosólido, <0,1 mg de níquel sobre 1 kg de biosólido, <5 mg de selenio sobre 1 kg de biosólido, <0,3 mg de plomo sobre 1 kg de biosólido, 0,68 mg de zinc sobre 1 kg de biosólido, <5 mg de arsénico sobre 1 kg de biosólido, <0,05 mg de cadmio sobre 1 kg de biosólido, <0,05 mg de cromo sobre 1 kg de biosólido y <0,1 mg de cobre sobre 1 kg de biosólido; para el biosólido biotransformado tamizado 1 ,98 mg de mercurio sobre 1 kg de biosólido; 0,66 mg de molibdeno sobre 1 kg de biosólido, <0,1 mg de níquel sobre 1 kg de biosólido, 2,56 mg de selenio sobre 1 kg de biosólido, <0,3 mg de plomo sobre 1 kg de biosólido, 0,7 mg de zinc sobre 1 kg de biosólido , 3,63 mg de arsénico sobre 1 kg de biosólido, <0,05 mg de cadmio sobre 1 kg de biosólido, <0,05 mg de cromo sobre 1 kg de biosólido y <0,1 mg de cobre sobre 1 kg de biosólido; para el biosólido biotransformado con bagazo 1 ,05 mg de mercurio sobre 1 kg de biosólido; 0,67 mg de molibdeno sobre 1 kg de biosólido, <0,1 mg de níquel sobre 1 kg de biosólido, 2,62 mg de selenio sobre 1 kg de biosólido, <0,3 mg de plomo sobre 1 kg de biosólido, 0,69 mg de zinc sobre 1 kg de biosólido, 3,56 mg de arsénico sobre 1 kg de biosólido, <0,05 mg de cadmio sobre 1 kg de biosólido, <0,05 mg de cromo sobre 1 kg de biosólido y <0,1 mg de cobre sobre 1 kg de biosólido. According to the characterization of heavy metals by the atomic absorption method, the following results are obtained: for the crude biosolid, 3.88 mg of mercury on 1 kg of biosolid; 1.67 mg molybdenum per 1 kg biosolid, <0.1 mg nickel per 1 kg biosolid, <5 mg selenium per 1 kg biosolid, <0.3 mg lead per 1 kg biosolid, 2 0.54 mg of zinc on 1 kg of biosolid, <5 mg of arsenic on 1 kg of biosolid, <0.05 mg of cadmium on 1 kg of biosolid, <0.05 mg of chromium on 1 kg of biosolid and 0. 24 mg of copper on 1 kg of biosolid; for the composted biosolid 2.16 mg of mercury on 1 kg of biosolid; 0.72 mg molybdenum per 1 kg biosolid, <0.1 mg nickel per 1 kg biosolid, <5 mg selenium per 1 kg biosolid, <0.3 mg lead per 1 kg biosolid, 0 0.68 mg of zinc per 1 kg of biosolid, <5 mg of arsenic per 1 kg of biosolid, <0.05 mg of cadmium per 1 kg of biosolid, <0.05 mg of chromium per 1 kg of biosolid and <0 0.1 mg of copper on 1 kg of biosolid; for the screened biotransformed biosolid 1.98 mg of mercury on 1 kg of biosolid; 0.66 mg molybdenum per 1 kg biosolid, <0.1 mg nickel per 1 kg biosolid, 2.56 mg selenium per 1 kg biosolid, <0.3 mg lead per 1 kg biosolid, 0.7 mg of zinc on 1 kg of biosolid, 3.63 mg of arsenic on 1 kg of biosolid, <0.05 mg of cadmium on 1 kg of biosolid, <0.05 mg of chromium on 1 kg of biosolid and <0.1 mg of copper on 1 kg of biosolid; for the biosolid biotransformed with bagasse, 1.05 mg of mercury on 1 kg of biosolid; 0.67 mg molybdenum per 1 kg biosolid, <0.1 mg nickel per 1 kg biosolid, 2.62 mg selenium per 1 kg biosolid, <0.3 mg lead per 1 kg biosolid, 0.69 mg of zinc per 1 kg of biosolid, 3.56 mg of arsenic per 1 kg of biosolid, <0.05 mg of cadmium per 1 kg of biosolid, <0.05 mg of chromium per 1 kg of biosolid and <0.1 mg of copper on 1 kg of biosolid.
La importancia de analizar los diferentes metales o elementos nombrados anteriormente, radica en que cada elemento contiene sus propias características y riesgos, pues cuando se habla de metales con densidades altas, pueden llegar a ser tóxicos, incluso a bajas concentraciones; es así que elementos traza como el selenio no son considerados metales, mientras que el arsénico ha sido denominado un metaloide, por su parte al cobre, zinc, molibdeno y níquel se les atribuyen micronuthentes esenciales para las plantas. Debido a que estos elementos traza se encuentran generalmente en la naturaleza, no poseen la propiedad de ser destruidos o degradados en forma biológica, por lo que se bioacumulan, es decir, aumentan su concentración en organismos vivos o en diferentes tipos de materiales. De acuerdo a esto, se estima que la reducción de metales generada durante la etapa del compostaje del material, está relacionada a su migración hacia el material estructurante y a su precipitación debido a la gravedad en el montaje experimental. En cuanto a los metales que fueron disminuidos en la etapa de biotransformación es importante mencionar que debido a su propiedad bioacumulable, se estima que la acción de las larvas de escarabajo hace que el contenido removido en el material, sea acumulado en estos organismos. The importance of analyzing the different metals or elements named above lies in the fact that each element contains its own characteristics and risks, because when talking about metals with high densities, they can become toxic, even at low concentrations; Thus, trace elements such as selenium are not considered metals, while arsenic has been called a metalloid, while copper, zinc, molybdenum and nickel are considered essential micronutrients for plants. Because these trace elements are generally found in nature, they do not have the property of being destroyed or degraded biologically, so they bioaccumulate, that is, they increase their concentration in living organisms or in different types of materials. According to this, it is estimated that the reduction of metals generated during the composting stage of the material is related to its migration towards the structuring material and its precipitation due to gravity in the experimental setup. Regarding the metals that were reduced in the biotransformation stage, it is important to mention that due to their bioaccumulative property, it is estimated that the action of the beetle larvae causes the content removed in the material to be accumulated in these organisms.
Adicional a ello se realizó el debido volteo para estabilizar valores en caso de que los mismos fueran perjudiciales y se interpusieran para la circulación de aire u otros elementos de la dinámica del ecosistema. A partir del análisis de las variables físicas, químicas y microbiológicas, se determina que las mejores condiciones en la biotransformación se logran con la muestra de material que mantiene las propiedades granulométricas adquiridas en el compostaje, por acción del material estructurante, ya que proporciona escenarios apropiados para la aireación del material, garantizando un proceso aerobio. In addition to this, the due turning was carried out to stabilize values in case they were harmful and interfered with the circulation of air or other elements of the dynamics of the ecosystem. From the analysis of the physical, chemical and microbiological variables, it is determined that the best conditions in the biotransformation are achieved with the material sample that maintains the granulometric properties acquired in the composting, by the action of the structuring material, since it provides appropriate scenarios. for the aeration of the material, guaranteeing an aerobic process.
Como etapa final se tiene la evaluación del producto final, en donde se realiza un análisis de variables obtenidas en el proceso final. As a final stage there is the evaluation of the final product, where an analysis of variables obtained in the final process is carried out.
A partir de los resultados obtenidos se realizó la comparación con la normatividad y se encontró que el producto final obtenido luego de la fase experimental, se clasifica según el código de regulaciones federales para el uso o eliminación de lodos de aguas residuales 40 CFR 503 desarrollado por la EPA de los Estados Unidos, en una clase B, que le permite todos los usos de suelo, excepto; césped, huertos domésticos, cultivos alimenticios, suelos para el pastoreo de animales y suelos con alto potencial de exposición pública, siempre que se garantice la reducción de atracción de vectores. From the results obtained, a comparison was made with the regulations and it was found that the final product obtained after the experimental phase is classified according to the code of federal regulations for the use or disposal of sewage sludge 40 CFR 503 developed by the United States EPA, in a class B, which allows all land uses, except; lawns, home gardens, food crops, soils for grazing animals and soils with a high potential for public exposure, provided that the reduction of vector attraction is guaranteed.
Según la clasificación del materia según el contaminante con EPA 40 CFR 503, el producto final presenta las siguientes características, para el biosólido compostado <5 de arsénico, <0,05 de cadmio, <0,05 de cromo, <0,1 de cobre, <0,3 de plomo, 2,16 de mercurio, 0,72 de molibdeno, <0,1 de níquel, <5 de selenio, 0,68 de zinc, 2,15+06 UFC/gramo de biosólidos en el límite de coliformes fecales, ausencia de salmonella y ausencia de huevos viables de helminto; para el biosólido biotrasnformado tamizado 3,63 de arsénico, <0,05 de cadmio, <0,05 de cromo, <0,1 de cobre, <0,3 de plomo, 1 ,98 de mercurio, 0,66 de molibdeno, <0,1 de níquel, 2,56 de selenio, 0,7 de zinc, 1 ,08+06 UFC/gramo de biosólidos en el límite de coliformes fecales, ausencia de salmonella y ausencia de huevos viables de helminto y para el biosólido biotransformado con bagazo 3,56 de arsénico, <0,05 de cadmio, <0,05 de cromo, <0,1 de cobre, <0,3 de plomo, 1 ,05 de mercurio, 0,67 de molibdeno, <0,1 de níquel, 2,62 de selenio, 0,69 de zinc, 1 ,01 +06 UFC/gramo de biosólidos en el límite de coliformes fecales, ausencia de salmonella y ausencia de huevos viables de helminto. According to the classification of the matter according to the contaminant with EPA 40 CFR 503, the final product has the following characteristics, for the composted biosolid <5 arsenic, <0.05 cadmium, <0.05 chromium, <0.1 copper, <0.3 lead, 2.16 mercury, 0.72 molybdenum, <0.1 nickel, <5 selenium, 0.68 zinc, 2.15+06 CFU/gram of biosolids in the limit of fecal coliforms, absence of salmonella and absence of viable helminth eggs; for the screened biotransformed biosolid 3.63 arsenic, <0.05 cadmium, <0.05 chromium, <0.1 copper, <0.3 lead, 1.98 mercury, 0.66 molybdenum , <0.1 nickel, 2.56 selenium, 0.7 zinc, 1.08+06 CFU/gram of biosolids at the limit of fecal coliforms, absence of salmonella and absence of viable helminth eggs and for the biosolid biotransformed with bagasse 3.56 arsenic, <0.05 cadmium, <0.05 chromium, <0.1 copper, <0.3 lead, 1.05 mercury, 0.67 molybdenum, <0.1 nickel, 2.62 selenium, 0.69 zinc, 1.01 +06 CFU/gram of biosolids at the limit of fecal coliforms, absence of salmonella and absence of viable helminth eggs.
De esta forma, es posible interpretar que el material luego del compostaje, no cumple para ninguna de las dos clases en el parámetro de coliformes fecales; no obstante, el material luego de efectuada la biotransformación, si cumple para la Clase B de biosólido en el mismo parámetro. En cuanto a los demás parámetros relacionados a salmonella y huevos de helminto, se denota el cumplimiento del material desde el momento en que se lleva a cabo el compostaje, teniendo como premisa que los limites en estos parámetros están establecidos únicamente para el biosólido clase A. In this way, it is possible to interpret that the material after composting does not comply with either of the two classes in the fecal coliform parameter; however, the material after the biotransformation has been carried out, if it complies with the Class B of biosolid in the same parameter. Regarding the other parameters related to salmonella and helminth eggs, the compliance of the material is denoted from the moment in which the composting is carried out, taking as a premise that the limits in these parameters are established only for the class A biosolid.
El material al final de la experimentación cumple como clase B dentro de la opción de concentración de contaminantes (PC) y además dentro de la opción de tasa de carga acumulativa de contaminantes (CPLR) los cuales pueden ser empleados en todos los usos de suelos excepto césped y huertos domésticos, cultivos alimenticios, suelos para el pastoreo de animales y suelos con alto potencial de exposición pública. The material at the end of the experimentation complies as class B within the contaminant concentration option (PC) and also within the accumulative contaminant load rate option (CPLR) which can be used in all land uses except lawns and home gardens, food crops, soils for grazing animals, and soils with high potential for public exposure.
La evaluación del proceso de biotransformación de biosólidos extraídos de la planta de tratamiento de aguas residuales, permite determinar que a partir de una estabilización del biosólido con un material de soporte dentro de un proceso de compostaje; la adición de larvas de escarabajo es una alternativa viable para mejorar las propiedades microbiológicas y fisicoquímicas del producto final. The evaluation of the biotransformation process of biosolids extracted from the wastewater treatment plant, allows to determine that from a stabilization of the biosolid with a support material within a composting process; the addition of beetle larvae is a viable alternative to improve the microbiological and physicochemical properties of the final product.

Claims

REIVINDICACIONES
1. Proceso de biotransformación de biosólidos a partir de larvas de escarabajo CARACTERIZADO por las siguientes etapas: 1. Biosolids biotransformation process from beetle larvae CHARACTERIZED by the following stages:
(a) Compostar y estabilizar la materia orgánica por medio de incrementos controlados de temperatura, los cuales se encuentran entre 45°C - 70°C;(a) Compost and stabilize organic matter through controlled temperature increases, which are between 45°C - 70°C;
(b) caracterizar físico químicamente el biosólido a través de un muestreo, (b) physical and chemical characterization of the biosolid through sampling,
(c) dimensionar y realizar el montaje del biosólido donde se realizaron dos pilas de compostaje de estructura piramidal con un ancho de base de 1 ,7 m, un ancho de corona de 0,5 m y una altura de 1 ,0 m para completar un volumen aproximado de 1 .57 m3 por pila, y un montaje de cada pila de compostaje en capas de 0,20 metros garantizando la estructura piramidal, (c) sizing and assembling the biosolid where two pyramidal structure composting piles were made with a base width of 1.7 m, a crown width of 0.5 m and a height of 1.0 m to complete a approximate volume of 1.57 m3 per pile, and an assembly of each composting pile in layers of 0.20 meters guaranteeing the pyramidal structure,
(d) estabilizar el sustrato adicionando el material estructurante bagazo de caña de azúcar en la siguiente proporción para cada pila: 40% material de soporte (estructurante) y 60% biosólido, (d) stabilize the substrate by adding the structuring material sugarcane bagasse in the following proportion for each pile: 40% support material (structuring) and 60% biosolid,
(e) adicionar organismos tales escarabajos, coleópteros y larvas para realizar la etapa de biotransformación, se hace uso de dos bioensayos en laboratorio con recipientes esterilizados, que incorporan la muestra del material tomado en campo, donde el bioensayo 1 es conformado con el material que pasa el tamiz N°4, siendo apisonado previamente para reducir la cantidad de material de grandes proporciones (bagazo de caña de azúcar). El volumen de este bioensayo corresponde a 0.024 m3 y su peso es de 12 kg. La temperatura del material al finalizar el montaje es de 17,8°C, con un pH de 5,6 y un porcentaje de humedad del 79,1 %. Una vez el material se encuentra dispuesto en el bioensayo se procede a la toma de variables físicas y posterior incorporación de las larvas de escarabajo para completar el bioensayo. De este modo se agregan 35 larvas de diferentes tamaños (35 a 40 cm de longitud), en forma uniforme dentro del bioensayo, (e) adding organisms such beetles, beetles and larvae to carry out the biotransformation stage, two bioassays are used in the laboratory with sterilized containers, which incorporate the sample of the material taken in the field, where bioassay 1 is made with the material that it passes the N°4 sieve, being previously tamped to reduce the amount of material of large proportions (sugar cane bagasse). The volume of this bioassay corresponds to 0.024 m3 and its weight is 12 kg. The temperature of the material at the end of the assembly is 17.8°C, with a pH of 5.6 and a humidity percentage of 79.1%. Once the material is ready for the bioassay, physical variables are taken and subsequent incorporation of the beetle larvae to complete the bioassay. In this way, 35 larvae of different sizes (35 to 40 cm in length) are added uniformly within the bioassay,
(f) verificar variables fisicoquímicas a través de la medición de variables como pH, temperatura, metales, granulometría, entre otros. Adicional a ello se realiza el debido volteo para estabilizar valores en caso de que los mismos fueran perjudiciales y se interpusieran para la circulación de aire u otros elementos de la dinámica del ecosistema, (f) verify physicochemical variables through the measurement of variables such as pH, temperature, metals, granulometry, among others. In addition to this, the due turning is carried out to stabilize values in case they are harmful and interfere with the circulation of air or other elements of the dynamics of the ecosystem,
(g) evaluar el producto final a través del análisis de variables obtenidas, donde el producto final se clasifica para el uso o eliminación de lodos de aguas residuales que le permite todos los usos de suelo, excepto; césped, huertos domésticos, cultivos alimenticios, suelos para el pastoreo de animales y suelos con alto potencial de exposición pública, siempre que se garantice la reducción de atracción de vectores. (g) Evaluate the final product through the analysis of variables obtained, where the final product is classified for the use or disposal of water sludge waste that allows all land uses, except; lawns, home gardens, food crops, land for grazing animals and land with a high potential for public exposure, provided that the reduction of vector attraction is guaranteed.
2. Proceso de biotransformación de biosólidos a partir de larvas de escarabajo de acuerdo con la reivindicación 1 caracterizado porque las larvas de escarabajo son dispuestas en las pilas a temperatura ambiente durante la fase de maduración.2. Process for the biotransformation of biosolids from beetle larvae according to claim 1, characterized in that the beetle larvae are placed in the piles at room temperature during the maturation phase.
3. Proceso de biotransformación de biosólidos a partir de larvas de escarabajo de acuerdo con la reivindicación 1 caracterizado porque el área superficial del bioensayo corresponde a 0,12 m2, donde cada larva ocupa un espacio de 34 cm2 en una profundidad de 20 cm, las cuales son depositadas en la superficie de cada bioensayo en forma uniforme. 3. Process for the biotransformation of biosolids from beetle larvae according to claim 1, characterized in that the surface area of the bioassay corresponds to 0.12 m2, where each larva occupies a space of 34 cm2 at a depth of 20 cm, the which are deposited on the surface of each bioassay in a uniform manner.
4. Proceso de biotransformación de biosólidos a partir de larvas de escarabajo de acuerdo con la reivindicación 1 caracterizado porque la experimentación durante la etapa de biotransformación tiene lugar durante 8 semanas, en las cuales, se realiza el seguimiento a las variables de pH, temperatura y humedad con el propósito de evaluar su comportamiento y evolución. 4. Process for the biotransformation of biosolids from beetle larvae according to claim 1, characterized in that the experimentation during the biotransformation stage takes place for 8 weeks, in which the variables of pH, temperature and humidity with the purpose of evaluating its behavior and evolution.
5. Proceso de biotransformación de biosólidos a partir de larvas de escarabajo de acuerdo con la reivindicación 1 caracterizado porque el pH en el bioensayo conformado con bagazo manifiesta un comportamiento constante con tendencia a la neutralidad, a lo largo de la biotransformación, partiendo de 5,53 unidades de pH y finalizando en 7,0 unidades de pH. Al mismo tiempo, el pH en el bioensayo conformado con la muestra tamizada presenta fluctuaciones que oscilan entre las 5,18 unidades de pH y 6,6 unidades de pH, registrando un valor de 6,0 unidades de pH al finalizar la biotransformación. 5. Process for the biotransformation of biosolids from beetle larvae according to claim 1, characterized in that the pH in the bioassay made with bagasse shows a constant behavior with a tendency to neutrality, throughout the biotransformation, starting from 5, 53 pH units and ending at 7.0 pH units. At the same time, the pH in the bioassay made with the sieved sample fluctuates between 5.18 pH units and 6.6 pH units, registering a value of 6.0 pH units at the end of the biotransformation.
6. Proceso de biotransformación de biosólidos a partir de larvas de escarabajo de acuerdo con la reivindicación 1 caracterizado porque de acuerdo a la caracterización microbiológica se tienen los siguientes resultados por el método de recuento: para el biosólido crudo 4,08+06 UFC/G de coliformes totales, presencia de huevos de helmintos, presencia de salmonella Sp y 75 UFP/4 g peso seco de algas; para el biosólido compostado 2,15+06 UFC/G de coliformes totales, ausencia de huevos de helmintos, ausencia de salmonella Sp y 38,5 UFP/4 g peso seco de algas; para el biosólido biotransformado tamizado 1 ,08+06 UFC/G de coliformes totales, ausencia de huevos de helmintos, ausencia de salmonella Sp y 18 ausencia de algas; y para el biosólido biotransformado con bagazo 1 ,08+06 UFC/G de coliformes totales, ausencia de huevos de helmintos, ausencia de salmonella Sp y ausencia de algas. Proceso de biotransformación de biosólidos a partir de larvas de escarabajo de acuerdo con la reivindicación 1 caracterizado porque de acuerdo a la caracterización de los metales pesados por el método de absorción atómica se tienen los siguientes resultados: para el biosólido crudo 3,88 mg de mercurio sobre 1 kg de biosólido; 1 ,67 mg de molibdeno sobre 1 kg de biosólido, <0,1 mg de níquel sobre 1 kg de biosólido, <5 mg de selenio sobre 1 kg de biosólido, <0,3 mg de plomo sobre 1 kg de biosólido, 2,54 mg de zinc sobre 1 kg de biosólido, <5 mg de arsénico sobre 1 kg de biosólido, <0,05 mg de cadmio sobre 1 kg de biosólido, <0,05 mg de cromo sobre 1 kg de biosólido y 0,24 mg de cobre sobre 1 kg de biosólido; para el biosólido compostado 2,16 mg de mercurio sobre 1 kg de biosólido; 0,72 mg de molibdeno sobre 1 kg de biosólido, <0,1 mg de níquel sobre 1 kg de biosólido, <5 mg de selenio sobre 1 kg de biosólido, <0,3 mg de plomo sobre 1 kg de biosólido, 0,68 mg de zinc sobre 1 kg de biosólido, <5 mg de arsénico sobre 1 kg de biosólido, <0,05 mg de cadmio sobre 1 kg de biosólido, <0,05 mg de cromo sobre 1 kg de biosólido y <0,1 mg de cobre sobre 1 kg de biosólido; para el biosólido biotransformado tamizado 1 ,98 mg de mercurio sobre 1 kg de biosólido; 0,66 mg de molibdeno sobre 1 kg de biosólido, <0,1 mg de níquel sobre 1 kg de biosólido, 2,56 mg de selenio sobre 1 kg de biosólido, <0,3 mg de plomo sobre 1 kg de biosólido, 0,7 mg de zinc sobre 1 kg de biosólido , 3,63 mg de arsénico sobre 1 kg de biosólido, <0,05 mg de cadmio sobre 1 kg de biosólido, <0,05 mg de cromo sobre 1 kg de biosólido y <0,1 mg de cobre sobre 1 kg de biosólido; para el biosólido biotransformado con bagazo 1 ,05 mg de mercurio sobre 1 kg de biosólido; 0,67 mg de molibdeno sobre 1 kg de biosólido, <0,1 mg de níquel sobre 1 kg de biosólido, 2,62 mg de selenio sobre 1 kg de biosólido, <0,3 mg de plomo sobre 1 kg de biosólido, 0,69 mg de zinc sobre 1 kg de biosólido, 3,56 mg de arsénico sobre 1 kg de biosólido, <0,05 mg de cadmio sobre 1 kg de biosólido, <0,05 mg de cromo sobre 1 kg de biosólido y <0,1 mg de cobre sobre 1 kg de biosólido. Producto final obtenido del proceso de biotransformación de biosólidos a partir de larvas de escarabajo caracterizado por presentar las siguientes características, para el biosólido compostado <5 de arsénico, <0,05 de cadmio, <0,05 de cromo, <0,1 de cobre, <0,3 de plomo, 2,16 de mercurio, 0,72 de molibdeno, <0,1 de níquel, 19 6. Process for the biotransformation of biosolids from beetle larvae according to claim 1, characterized in that according to the microbiological characterization, the following results are obtained by the counting method: for the crude biosolid 4.08+06 CFU/G of total coliforms, presence of helminth eggs, presence of salmonella Sp and 75 PFU/4 g dry weight of algae; for the composted biosolid 2.15+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and 38.5 PFU/4 g dry weight of algae; for the sifted biotransformed biosolid 1.08+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and 18 absence of algae; and for the biosolid biotransformed with bagasse 1.08+06 CFU/G of total coliforms, absence of helminth eggs, absence of salmonella Sp and absence of algae. Process of biotransformation of biosolids from beetle larvae according to claim 1, characterized in that according to the characterization of heavy metals by the atomic absorption method, the following results are obtained: for the crude biosolid 3.88 mg of mercury on 1 kg of biosolid; 1.67 mg molybdenum per 1 kg biosolid, <0.1 mg nickel per 1 kg biosolid, <5 mg selenium per 1 kg biosolid, <0.3 mg lead per 1 kg biosolid, 2 0.54 mg of zinc on 1 kg of biosolid, <5 mg of arsenic on 1 kg of biosolid, <0.05 mg of cadmium on 1 kg of biosolid, <0.05 mg of chromium on 1 kg of biosolid and 0. 24 mg of copper on 1 kg of biosolid; for the composted biosolid 2.16 mg of mercury on 1 kg of biosolid; 0.72 mg molybdenum per 1 kg biosolid, <0.1 mg nickel per 1 kg biosolid, <5 mg selenium per 1 kg biosolid, <0.3 mg lead per 1 kg biosolid, 0 0.68 mg of zinc per 1 kg of biosolid, <5 mg of arsenic per 1 kg of biosolid, <0.05 mg of cadmium per 1 kg of biosolid, <0.05 mg of chromium per 1 kg of biosolid and <0 0.1 mg of copper on 1 kg of biosolid; for the screened biotransformed biosolid 1.98 mg of mercury on 1 kg of biosolid; 0.66 mg molybdenum per 1 kg biosolid, <0.1 mg nickel per 1 kg biosolid, 2.56 mg selenium per 1 kg biosolid, <0.3 mg lead per 1 kg biosolid, 0.7 mg of zinc on 1 kg of biosolid, 3.63 mg of arsenic on 1 kg of biosolid, <0.05 mg of cadmium on 1 kg of biosolid, <0.05 mg of chromium on 1 kg of biosolid and <0.1 mg of copper on 1 kg of biosolid; for the biosolid biotransformed with bagasse, 1.05 mg of mercury on 1 kg of biosolid; 0.67 mg molybdenum per 1 kg biosolid, <0.1 mg nickel per 1 kg biosolid, 2.62 mg selenium per 1 kg biosolid, <0.3 mg lead per 1 kg biosolid, 0.69 mg of zinc per 1 kg of biosolid, 3.56 mg of arsenic per 1 kg of biosolid, <0.05 mg of cadmium per 1 kg of biosolid, <0.05 mg of chromium per 1 kg of biosolid and <0.1 mg of copper on 1 kg of biosolid. Final product obtained from the biosolids biotransformation process from beetle larvae characterized by presenting the following characteristics, for the composted biosolid <5 arsenic, <0.05 cadmium, <0.05 chromium, <0.1 copper, <0.3 lead, 2.16 mercury, 0.72 molybdenum, <0.1 nickel, 19
<5 de selenio, 0,68 de zinc, 2,15+06 UFC/gramo de biosólidos en el límite de coliformes fecales, ausencia de salmonella y ausencia de huevos viables de helminto; para el biosólido biotrasnformado tamizado 3,63 de arsénico, <0,05 de cadmio, <0,05 de cromo, <0,1 de cobre, <0,3 de plomo, 1 ,98 de mercurio, 0,66 de molibdeno, <0,1 de níquel, 2,56 de selenio, 0,7 de zinc, 1 ,08+06 UFC/gramo de biosólidos en el límite de coliformes fecales, ausencia de salmonella y ausencia de huevos viables de helminto y para el biosólido biotransformado con bagazo 3,56 de arsénico, <0,05 de cadmio, <0,05 de cromo, <0,1 de cobre, <0,3 de plomo, 1 ,05 de mercurio, 0,67 de molibdeno, <0,1 de níquel, 2,62 de selenio, 0,69 de zinc, 1 ,01 +06 UFC/gramo de biosólidos en el límite de coliformes fecales, ausencia de salmonella y ausencia de huevos viables de helminto. <5 of selenium, 0.68 of zinc, 2.15+06 CFU/gram of biosolids in the limit of fecal coliforms, absence of salmonella and absence of viable helminth eggs; for the screened biotransformed biosolid 3.63 arsenic, <0.05 cadmium, <0.05 chromium, <0.1 copper, <0.3 lead, 1.98 mercury, 0.66 molybdenum , <0.1 nickel, 2.56 selenium, 0.7 zinc, 1.08+06 CFU/gram of biosolids in the limit of fecal coliforms, absence of salmonella and absence of viable helminth eggs and for the biosolid biotransformed with bagasse 3.56 arsenic, <0.05 cadmium, <0.05 chromium, <0.1 copper, <0.3 lead, 1.05 mercury, 0.67 molybdenum, <0.1 nickel, 2.62 selenium, 0.69 zinc, 1.01 +06 CFU/gram of biosolids at the limit of fecal coliforms, absence of salmonella and absence of viable helminth eggs.
PCT/IB2021/057230 2020-09-24 2021-08-05 Biosolid biotransformation process using beetle larvae WO2022064289A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2020/0011872 2020-09-24
CONC2020/0011872A CO2020011872A1 (en) 2020-09-24 2020-09-24 Process of biosolids biotransformation from beetle larvae

Publications (1)

Publication Number Publication Date
WO2022064289A1 true WO2022064289A1 (en) 2022-03-31

Family

ID=73006487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/057230 WO2022064289A1 (en) 2020-09-24 2021-08-05 Biosolid biotransformation process using beetle larvae

Country Status (2)

Country Link
CO (1) CO2020011872A1 (en)
WO (1) WO2022064289A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216452A (en) * 1998-01-29 1999-08-10 Ryuji Uchida Treatment of waste product, use of treated waste product and growing method of beetle with the waste product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11216452A (en) * 1998-01-29 1999-08-10 Ryuji Uchida Treatment of waste product, use of treated waste product and growing method of beetle with the waste product

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MORALES GLADIS ESTELA, WOLFF MARTA: "Insects associated with the composting process of solid urban waste separated at the source Insects associated with the composting process of solid urban waste separated at the source", ENTOMOLOGIA, 1 January 2010 (2010-01-01), pages 645 - 653, XP055922481, Retrieved from the Internet <URL:https://www.scielo.br/j/rbent/a/vQmYtZxQ4hDJygNszBnf64d/?lang=en&format=pdf> [retrieved on 20220518], DOI: 10.1590/S0085-56262010000400017 *
PACHECO GARCIA BRIGID HIOMARA, MAURICIO PEDRO, CASTELLANOS ACOSTA, LUZ ANGELA, CUELLAR RODRIGUEZ CLAUDIA, ROCIO SUAREZ, CASTILLO, : "Evaluation of the Biosolid Biotransformation Process Procedures of the Tunja Residual Water Treatment Plant-Boyacá, Through Compostation with Addition of Beetle Larvae", EASYCHAIR, 26 November 2021 (2021-11-26), XP055922479, [retrieved on 20220518] *
SARPONG D., ODURO-KWARTENG S., GYASI S. F., BUAMAH R., DONKOR E., AWUAH E., BAAH M. K.: "Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (Hermetia illucens) (Diptera: Stratiomyidae) larvae", INTERNATIONAL JOURNAL OF RECYCLING OF ORGANIC WASTE IN AGRICULTURE, BIOMED CENTRAL LTD, LONDON, UK, vol. 8, no. S1, 1 December 2019 (2019-12-01), London, UK , pages 45 - 54, XP055922484, ISSN: 2195-3228, DOI: 10.1007/s40093-019-0268-4 *

Also Published As

Publication number Publication date
CO2020011872A1 (en) 2020-10-30

Similar Documents

Publication Publication Date Title
DE69632960T2 (en) SYSTEM AND METHOD FOR COMPOSTING
Parr et al. Composting sewage sludge for land application
DE102015010041A1 (en) Terra Preta Humanidade, process for its preparation and its use
CN105038805B (en) Repairing agent for soil polluted by heavy metal Hg as well as preparation method and using method thereof
Ahmad et al. Biodegradable solid waste management by microorganism: Challenge and potential for composting.
Logan et al. The alkaline stabilization with accelerated drying process (N‐Viro): An advanced technology to convert sewage sludge into a soil product
Boruszko Vermicomposting as an alternative method of sludge treatment
WO2014024034A1 (en) Composting of solid and liquid waste and biodegradable sludge by means of earthworm humus (eisenia fetida and similar species) and combinations of earthworm humus and stomach material with a high microorganism content
WO2022064289A1 (en) Biosolid biotransformation process using beetle larvae
Hoyos et al. Aerobic thermophilic composting of waste sludge from gelatin-grenetine industry
Peirce et al. Nitric oxide emissions from engineered soil systems
Roshan Singh et al. Reduction of bioavailability of heavy metals during vermicomposting of phumdi biomass of Loktak Lake (India) using Eisenia fetida
Parvaresh et al. Determination of carbon/nitrogen ratio and heavy metals in bulking agents used for sewage composting
Palaniappan et al. Investigation on application of synthetic nutrients for augmenting worm growth rate in vermicomposting
Chavan et al. Management of agricultural solid waste through Vermicompost, NADEP compost and pit compost method
KR100764004B1 (en) Composition of seed spray soil comprising sewage sludge and starfish powder, and preparation method thereof
RU2777787C2 (en) Application of plant-based raw materials
RU2777891C2 (en) Use of base of preparation
RU2777789C2 (en) Method for production of fertile substrate
RU2777786C2 (en) Base of preparation for treatment of wastewater sediments and/or agricultural waste, in particular manure and dung
Garcia et al. Evaluation of the Biosolid Biotransformation Process Procedures of the Tunja Residual Water Treatment Plant-Boyacá, Through Compostation with Addition of Beetle Larvae
CN113735660A (en) Reasonable method for preparing artificial humus and its application method
JP2001334236A (en) Method and apparatus for treating organic waste
Eghball et al. Manure Management: Compost and Biosolids
Shak’ah et al. APPLICATION AND COMPARISON OF WINDROW METHOD AND AERATED STATIC PILES METHOD FOR SLUDGE COMPOSTING.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871741

Country of ref document: EP

Kind code of ref document: A1