WO2022064107A1 - Composite core for crack-resistant electrical conductor - Google Patents

Composite core for crack-resistant electrical conductor Download PDF

Info

Publication number
WO2022064107A1
WO2022064107A1 PCT/FR2020/051683 FR2020051683W WO2022064107A1 WO 2022064107 A1 WO2022064107 A1 WO 2022064107A1 FR 2020051683 W FR2020051683 W FR 2020051683W WO 2022064107 A1 WO2022064107 A1 WO 2022064107A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
inner layer
crack
fibers
tension
Prior art date
Application number
PCT/FR2020/051683
Other languages
French (fr)
Inventor
Baptiste GARY
Original Assignee
Gary BAPTISTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gary BAPTISTE filed Critical Gary BAPTISTE
Priority to PCT/FR2020/051683 priority Critical patent/WO2022064107A1/en
Publication of WO2022064107A1 publication Critical patent/WO2022064107A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • H01B5/10Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
    • H01B5/102Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core
    • H01B5/105Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material stranded around a high tensile strength core composed of synthetic filaments, e.g. glass-fibres
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • D07B1/147Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising electric conductors or elements for information transfer
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/24Ropes or cables with a prematurely failing element
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1028Rope or cable structures characterised by the number of strands
    • D07B2201/1036Rope or cable structures characterised by the number of strands nine or more strands respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1076Open winding
    • D07B2201/108Cylinder winding, i.e. S/Z or Z/S
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2048Cores characterised by their cross-sectional shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3003Glass
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon

Definitions

  • TITLE Composite core for crack-resistant electrical conductor
  • the technical field of the invention is that of electrical conductors, more particularly those having a composite core.
  • the present invention relates in particular to this composite core and an electric cable comprising said core made of composite materials.
  • these cables comprise a central core of stranded steel wires on which is wrapped one or more stranded aluminum conductors.
  • These type of cables have been used for decades without much change.
  • this type of cable is prone to excessive sag in certain climates and under certain operating conditions.
  • the single-strand core thus formed may present transverse fragilities in the event of impact during uncontrolled manipulations on the composite core and/or the cables comprising a central core made of composite materials.
  • composite yield we mean the ratio between the theoretical performance of the composite in tension, calculated in relation to the values given by the suppliers of the batches of fibers used for the manufacture weighted by the volume rate of fiber in the composite and the actual value obtained. in a laboratory test on the manufactured composite.
  • the various standards such as the ASTM standard (American Society for Testing Material) or the European standard define the size of the electric cables according to the current load. These cables of various sizes can carry between 100A (ampere) and over 3200A, a range of operation between 40°C and 230°C, preferably between 75°C and 180°C.
  • the composite material core must also be able to withstand a stress of more than 2100MPa.
  • the invention offers a solution to the problems mentioned above, by limiting the propagation of the crack while using a competitive single-strand manufacturing technology.
  • the composite core for an electrical conductor according to the invention is solid and comprises a glass fiber core, an inner layer of carbon fibers, an outer layer of glass fibers, it is characterized in that the heart and the outer layer have a lower mechanical tension than the inner layer and the core has a non-uniform surface.
  • the resin is used to coat the fibers of the core and of the two inner and outer layers. As the inner layer has a tension greater than the tension of the core, it is more constrained, the crack will therefore propagate towards this one where the tension is lower then will be deflected or stopped according to the profile or the dimension of the core by dissipating the energy required for crack propagation.
  • the tension of the fibers of the inner layer is 2 to 10 times greater than the tension of the fibers of the core.
  • This voltage difference allows good transmission of the crack to the glass fiber core. It is possible, for example, to have an average tension of the glass fibers before impregnation of 100 to 300 centinewtons (cN) and preferably of 150 to 250 cN with a tension of the fibers of carbon before impregnation from 200 to 600 centinewtons (cN) and preferably from 300 to 500 cN.
  • the core has a section 10 to 35 times smaller than the section of the inner layer.
  • the inner layer being more tense and therefore more constrained than the core, it must remain small in size compared to the inner layer which provides most of the rigidity and resistance of the core.
  • the resin is common and continuous throughout the fibers. This guarantees an optimum chemical bond between the different fibres.
  • the continuity of the resin means that all the elements constituting the core are cured at the same time and therefore that there is no physical and chemical discontinuity of the matrix between the fibres, neither between the layers, nor between the core and layers.
  • the resins impregnating the different layers and the fiber core are chemically compatible together during the polymerization.
  • chemically compatible together we mean the fact that the resins are capable of polymerizing together without discontinuity during joint curing. This guarantees an optimum chemical bond between the different fibres.
  • the chemical continuity between the different resins allows all the elements constituting the core to be cured at the same time and therefore there is no physical and chemical discontinuity of the matrices between the fibers and the matrices, nor between the layers, nor between the heart and the layers.
  • the core is placed in the center of the inner layer. This position makes it possible to limit the crack to half the section of the core.
  • the invention also relates to an electric cable comprising a composite core with at least one of the preceding characteristics.
  • FIG. 1 is a schematic view of a core according to the invention
  • FIG. 2 shows the propagation of a crack on a core of the state of the art
  • FIG. 3 shows the propagation of a crack on a core of the state of the art
  • FIG. 4 shows the propagation of a crack on a core of the invention according to a first embodiment
  • FIG. 5 shows the propagation of a crack on a core of the invention according to a variant of the first embodiment
  • FIG. 6 is a perspective view of a cable according to the invention.
  • the core 1 illustrated in Figure 1 comprises a core 2, an inner layer 3 and an outer layer 4.
  • the core 2 consists of continuous glass fibers 20 secured by resin.
  • the inner layer 3 consists of continuous carbon fibers 30 and resin.
  • the outer layer 4 consists of continuous glass fibers 40 and resin.
  • the carbon fibers 30 and the glass fibers 40 are advantageously positioned parallel to each other and in the axis of the core.
  • the heart 2 is of reduced size compared to the diameter of the core 1 in order to limit the impact of the performance in terms of rigidity and global resistance of the core 1 .
  • the core 2 has a non-uniform surface: with pointed projections 21 in the case of Figure 4 or with rounded beads 22 in the case of Figure 5.
  • other surface profiles are possible, in particular by choosing protrusions of different shapes: circular, oval, trapezoidal, rectangular or other.
  • the difference in tension between the glass fibers 20 and the carbon fibers 30 facilitates the dissipation of energy at the interface of the two fibers and therefore the crack 5 will move towards the zone of least stress, it that is to say towards the core 2.
  • the surface of the core being non-uniform, it will further dissipate the propagation of the crack 5 towards one of the growths which will stop it. In this way, core 1 will not be completely cracked and the resistance of the cable will not be reduced too much.
  • the core 2, the inner layer 3 and the outer layer 4 can be joined together in the same resin by a single curing of the assembly, which makes it possible to have chemical continuity of the resin at the interface of the different fibers and to improve the dissipation of crack energy until its propagation in the longitudinal direction of the core is stopped.
  • the electrical cable 6 shown in Figure 6 comprises a core 1 described above and two layers of conductors 60 and 61 consisting of conductive strands, for example aluminum, trapezoidal in shape and wound helically around the core 1.

Abstract

One aspect of the invention relates to a composite core (1) for an electrical conductor which is filled and comprises a centre (2) made of glass fibres (20), an inner layer (3) made of carbon fibres (30), an outer layer (4) made of a glass fibres (40) and resin. The composite core is characterised in that the centre (2) and the outer layer (4) have a lower tension than the inner layer (3). Since the inner layer (3) has a higher tension than the tension of the centre (2), it is more rigid; a crack (5) will therefore spread towards the centre, where the tension is lower, and will then be diverted or stopped depending on the profile or the dimension of the centre. In this manner, the core will not be split into two equal parts causing its resistance to reduce by half.

Description

DESCRIPTION DESCRIPTION
TITRE : Âme composite pour conducteur électrique résistant aux fissures TITLE: Composite core for crack-resistant electrical conductor
DOMAINE TECHNIQUE DE L’INVENTION TECHNICAL FIELD OF THE INVENTION
[0001] Le domaine technique de l’invention est celui des conducteurs électriques, plus particulièrement ceux ayant une âme composite. The technical field of the invention is that of electrical conductors, more particularly those having a composite core.
[0002] La présente invention concerne en particulier cette âme composite et un câble électrique comprenant ladite âme en matériaux composites. The present invention relates in particular to this composite core and an electric cable comprising said core made of composite materials.
ARRIÈRE-PLAN TECHNOLOGIQUE DE L’INVENTION TECHNOLOGICAL BACKGROUND OF THE INVENTION
[0003] La demande de câbles pour le transport et la distribution électrique augmente avec la demande de plus en plus forte d’électricité. Le besoin de puissance augmentant, de nouveaux câbles électriques doivent être posés. D’autre part, pour augmenter la capacité, les câbles électriques existants doivent être remplacés par des câbles de plus grande capacité. [0003] The demand for cables for electrical transport and distribution is increasing with the ever-increasing demand for electricity. As the need for power increases, new electric cables have to be laid. On the other hand, to increase the capacity, the existing electric cables must be replaced by cables of greater capacity.
[0004] Habituellement, ces câbles comprennent une âme centrale en fils d’acier toronnés sur laquelle est enveloppée un ou plusieurs conducteurs en aluminium toronné. Ce type de câbles ont été utilisés pendant des décennies sans beaucoup de changements. Parmi d’autres inconvénients, ce type de câbles est susceptible de s’affaisser de façon excessive sous certains climats et sous certaines conditions de fonctionnement. [0004] Usually, these cables comprise a central core of stranded steel wires on which is wrapped one or more stranded aluminum conductors. These type of cables have been used for decades without much change. Among other disadvantages, this type of cable is prone to excessive sag in certain climates and under certain operating conditions.
[0005] Des solutions ont été proposées pour répondre à ces défauts, comme par exemple le brevet EP 1 506 085, intégré par référence, qui propose de réaliser une âme composite monobrin comprenant des fibres de carbone continues en longueur formant une couche interne et une couche isolante non conductrice comprenant des fibres de verre et entourant la couche interne. Bien que la couche externe protège la couche interne, celle-ci peut se fissurer sous l’effet d’un choc lors des manipulations non maitrisées sur l’âme composite et/ou les câbles comprenant une âme centrale en matériaux composites ce qui va fragiliser les câbles électriques qui les contiennent et parfois entrainer sa rupture totale. [0006] Il a également été proposé d’introduire un cœur en composite constitué d’un brin de fibres de verre enrobé dans une résine dans la couche interne en carbone enrobé dans une résine, le cœur et la couche interne étant introduit dans la couche externe en fibre de verre enrobé dans une résine dans le brevet EP 2 1 18 909, intégré par référence, et un procédé de fabrication a été décrit. Cependant d’une part, l’âme monobrin obtenue ne permet pas d’arriver à un rendement supérieur à 90% de la fibre de carbone, d’autre part le surmoulage du cœur en matériaux composites constitué de fibre de verre rend l’interface entre le cœur et la couche interne sensible à la propagation de fissure, l’adhésion chimique et mécanique de l’interface étant limitée par la cuisson indépendante du cœur et de la couche interne. L’âme monobrin ainsi constituée peut présenter des fragilités transversales en cas de choc lors des manipulations non maîtrisées sur l’âme composite et/ou les câbles comprenant une âme centrale en matériaux composites. On entend par rendement du composite, le ratio entre la performance théorique du composite en traction, calculée par rapport aux valeurs données par les fournisseurs des lots de fibres utilisées pour la fabrication pondérée par le taux volumique de fibre dans le composite et la valeur réelle obtenue en test laboratoire sur le composite fabriqué. [0005] Solutions have been proposed to respond to these defects, such as for example patent EP 1 506 085, incorporated by reference, which proposes making a single-strand composite core comprising continuous lengthwise carbon fibers forming an inner layer and a non-conductive insulating layer comprising glass fibers and surrounding the inner layer. Although the outer layer protects the inner layer, the latter can crack under the effect of a shock during uncontrolled manipulations on the composite core and/or the cables comprising a central core made of composite materials, which will weaken the electrical cables that contain them and sometimes cause it to break completely. [0006] It has also been proposed to introduce a composite core consisting of a strand of glass fibers coated in a resin in the internal carbon layer coated in a resin, the core and the internal layer being introduced into the layer external fiberglass coated in a resin in patent EP 2 1 18 909, incorporated by reference, and a method of manufacture has been described. However, on the one hand, the single-strand core obtained does not make it possible to achieve a yield greater than 90% of the carbon fiber, on the other hand the overmolding of the core in composite materials made of fiberglass makes the interface between the core and the inner layer sensitive to crack propagation, the chemical and mechanical adhesion of the interface being limited by the independent firing of the core and the inner layer. The single-strand core thus formed may present transverse fragilities in the event of impact during uncontrolled manipulations on the composite core and/or the cables comprising a central core made of composite materials. By composite yield, we mean the ratio between the theoretical performance of the composite in tension, calculated in relation to the values given by the suppliers of the batches of fibers used for the manufacture weighted by the volume rate of fiber in the composite and the actual value obtained. in a laboratory test on the manufactured composite.
[0007] Il a également été proposé d’introduire des solutions en matériaux composites multibrins pour répondre à ces défauts, comme par exemple le brevet US 8 250 845, intégré par référence, qui propose de réaliser une âme composite comprenant une pluralité de profilés en matériaux composites, des fibres de carbone enrobé dans une résine, l’ensemble des profilés étant toronnés les uns avec les autres pour former une âme, limitant ainsi la capacité d’un choc à être transmis entre les profilés constituant l’âme du conducteur, l’âme obtenue ne permet pas d’arriver à un rendement supérieur à 90% de la fibre de carbone. Cette conception nécessitant une étape supplémentaire de toronnage des brins constituant l’âme multibrin présente également l’inconvénient d’être beaucoup plus complexes et chères que les solutions monobrins à produire. [0007] It has also been proposed to introduce solutions in multi-strand composite materials to respond to these defects, such as for example US Patent 8,250,845, incorporated by reference, which proposes to produce a composite core comprising a plurality of composite materials, carbon fibers coated in a resin, all the sections being stranded with each other to form a core, thus limiting the ability of a shock to be transmitted between the sections constituting the core of the conductor, the core obtained does not make it possible to achieve a yield greater than 90% of the carbon fiber. This design, requiring an additional step of stranding the strands constituting the multi-strand core, also has the disadvantage of being much more complex and expensive than single-strand solutions to produce.
[0008] De plus, les différentes normes, comme la norme ASTM (American Society for Testing Material) ou la norme européenne définissent la taille des câbles électriques en fonction de la charge du courant. Ces câbles de différentes tailles peuvent transporter entre 100A (ampère) et plus de 3200A, soit une plage de fonctionnement comprise entre 40 °C et 230 °C, de préérence entre 75 °C et 180 °C. L’âme en matériaux composites doit également pouvoir résister à une contrainte de plus de 2100MPa. [0008] In addition, the various standards, such as the ASTM standard (American Society for Testing Material) or the European standard define the size of the electric cables according to the current load. These cables of various sizes can carry between 100A (ampere) and over 3200A, a range of operation between 40°C and 230°C, preferably between 75°C and 180°C. The composite material core must also be able to withstand a stress of more than 2100MPa.
[0009] Mais ces âmes composites monobrin plus économiques à fabriquer par rapport aux âmes multibrins ont le défaut d’être plus fragiles et donc plus sujettes à la casse que les âmes de l’art antérieur en métal ou les âmes multibrins en composite. Ainsi si l’âme reçoit un choc, une fissure risque de se créer et de se propager dans toute la largeur de l’âme la rendant plus fragile en résistance mécanique, jusqu’à la rendre inutilisable. [0009] However, these single-strand composite cores, which are more economical to manufacture compared to multi-strand cores, have the drawback of being more fragile and therefore more prone to breakage than prior art metal cores or composite multi-strand cores. So if the core receives a shock, a crack may be created and spread across the entire width of the core, making it more fragile in terms of mechanical resistance, until it becomes unusable.
RÉSUMÉ DE L’INVENTION SUMMARY OF THE INVENTION
[0010] L’invention offre une solution aux problèmes évoqués précédemment, en limitant la propagation de la fissure tout en utilisant une technologie de fabrication compétitive monobrin. The invention offers a solution to the problems mentioned above, by limiting the propagation of the crack while using a competitive single-strand manufacturing technology.
[0011] L’âme composite pour conducteur électrique selon l’invention est pleine et comprend un cœur en fibres de verre, une couche intérieure en fibres de carbone, une couche extérieure en fibres de verre, elle est caractérisée en ce que le cœur et la couche extérieure ont une tension mécanique inférieure à la couche intérieure et que le cœur a une surface non uniforme. La résine sert à enrober les fibres du cœur et des deux couches intérieure et extérieure. Comme la couche intérieure a une tension supérieure à la tension du cœur, elle est plus contrainte, la fissure va donc se propager vers celui-ci où la tension est moindre puis va être déviée ou arrêtée selon le profil ou la dimension du cœur en dissipant l’énergie nécessaire à la propagation de la fissure. Du fait de la surface non uniforme du cœur, la fissure se dirigeant vers le cœur, elle va s’arrêter en dissipant son énergie sur sa surface et comme celle-ci n’est pas plane, elle va rebondir sur une autre excroissance et s’arrêter. De cette façon, l’âme ne sera pas coupée en deux parties faisant chuter sa résistance drastiquement. The composite core for an electrical conductor according to the invention is solid and comprises a glass fiber core, an inner layer of carbon fibers, an outer layer of glass fibers, it is characterized in that the heart and the outer layer have a lower mechanical tension than the inner layer and the core has a non-uniform surface. The resin is used to coat the fibers of the core and of the two inner and outer layers. As the inner layer has a tension greater than the tension of the core, it is more constrained, the crack will therefore propagate towards this one where the tension is lower then will be deflected or stopped according to the profile or the dimension of the core by dissipating the energy required for crack propagation. Due to the non-uniform surface of the heart, the crack moving towards the heart, it will stop dissipating its energy on its surface and as this one is not flat, it will bounce on another outgrowth and s 'Stop. This way, the core will not be split into two parts causing its resistance to drop drastically.
[0012] Avantageusement, la tension des fibres de la couche intérieure est 2 à 10 fois supérieure à la tension des fibres du cœur. Cet écart de tension permet une bonne transmission de la fissure vers le cœur en fibres de verre. On pourra, par exemple, avoir une tension moyenne des fibres de verre avant imprégnation de 100 à 300 centinewtons (cN) et préférentiellement de 150 à 250 cN avec une tension des fibres de carbone avant imprégnation de 200 à 600 centinewtons (cN) et préférentiellement de 300 à 500 cN. [0012] Advantageously, the tension of the fibers of the inner layer is 2 to 10 times greater than the tension of the fibers of the core. This voltage difference allows good transmission of the crack to the glass fiber core. It is possible, for example, to have an average tension of the glass fibers before impregnation of 100 to 300 centinewtons (cN) and preferably of 150 to 250 cN with a tension of the fibers of carbon before impregnation from 200 to 600 centinewtons (cN) and preferably from 300 to 500 cN.
[0013] Avantageusement, le cœur a un section 10 à 35 fois plus petites que la section de la couche intérieure. La couche interne étant plus tendue donc plus contrainte que le cœur, celui-ci doit rester de faibles dimensions par rapport à la couche interne qui assure l’essentiel de la rigidité et de la résistance de l’âme. [0013] Advantageously, the core has a section 10 to 35 times smaller than the section of the inner layer. The inner layer being more tense and therefore more constrained than the core, it must remain small in size compared to the inner layer which provides most of the rigidity and resistance of the core.
[0014] Dans un premier mode de réalisation, la résine est commune et continue dans l’ensemble des fibres. Ceci garantit ainsi une liaison chimique optimum entre les différentes fibres. La continuité de la résine signifie que tous les éléments constituant l’âme sont cuits en même temps et donc qu’il n’y a pas de discontinuité physique et chimique de la matrice entre les fibres, ni entre les couches, ni entre le cœur et les couches. [0014] In a first embodiment, the resin is common and continuous throughout the fibers. This guarantees an optimum chemical bond between the different fibres. The continuity of the resin means that all the elements constituting the core are cured at the same time and therefore that there is no physical and chemical discontinuity of the matrix between the fibres, neither between the layers, nor between the core and layers.
[0015] Dans un deuxième mode de réalisation, les résines imprégnant les différentes couches et le cœur de fibre sont chimiquement compatibles ensemble lors de la polymérisation. On entend par chimiquement compatible ensemble, le fait que les résines sont aptes à polymériser ensemble sans discontinuité lors d’une cuisson commune. Cela garantit ainsi une liaison chimique optimum entre les différentes fibres. La continuité chimique entre les différentes résines permet à ce que tous les éléments constituant l’âme soient cuits en même temps et donc qu’il n’y ait pas de discontinuité physique et chimique des matrices entre les fibres et les matrices, ni entre les couches, ni entre le cœur et les couches. [0015] In a second embodiment, the resins impregnating the different layers and the fiber core are chemically compatible together during the polymerization. By chemically compatible together, we mean the fact that the resins are capable of polymerizing together without discontinuity during joint curing. This guarantees an optimum chemical bond between the different fibres. The chemical continuity between the different resins allows all the elements constituting the core to be cured at the same time and therefore there is no physical and chemical discontinuity of the matrices between the fibers and the matrices, nor between the layers, nor between the heart and the layers.
[0016] Avantageusement, le cœur est disposé au centre de la couche intérieure. Cette position permet de limiter la fissure à la moitié de la section de l’âme. [0016] Advantageously, the core is placed in the center of the inner layer. This position makes it possible to limit the crack to half the section of the core.
[0017] L’invention porte également sur un câble électrique comprenant une âme composite avec au moins une des caractéristiques précédentes. The invention also relates to an electric cable comprising a composite core with at least one of the preceding characteristics.
[0018] L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent. The invention and its various applications will be better understood on reading the following description and on examining the accompanying figures.
BRÈVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF FIGURES
[0019] Les figures sont présentées à titre indicatif et nullement limitatives de l’invention. The figures are presented for information only and in no way limit the invention.
[0020] [Fig. 1 ] est une vue schématique d’une âme selon l’invention [0021] [Fig. 2] montre la propagation d’une fissure sur une âme de l’état de la technique ; [0020] [Fig. 1] is a schematic view of a core according to the invention [0021] [Fig. 2] shows the propagation of a crack on a core of the state of the art;
[0022] [Fig. 3] montre la propagation d’une fissure sur une âme de l’état de la technique ; [0022] [Fig. 3] shows the propagation of a crack on a core of the state of the art;
[0023] [Fig. 4] montre la propagation d’une fissure sur une âme de l’invention selon un premier mode de réalisation ; [0023] [Fig. 4] shows the propagation of a crack on a core of the invention according to a first embodiment;
[0024] [Fig. 5] montre la propagation d’une fissure sur une âme de l’invention selon une variante du premier mode de réalisation ; [0024] [Fig. 5] shows the propagation of a crack on a core of the invention according to a variant of the first embodiment;
[0025] [Fig. 6] est une vue en perspective d’un câble selon l’invention. [0025] [Fig. 6] is a perspective view of a cable according to the invention.
DESCRIPTION DETAILLEE DETAILED DESCRIPTION
[0026] Les figures sont présentées à titre indicatif et nullement limitatives de l’invention. The figures are presented for information only and in no way limit the invention.
[0027] Sauf précision contraire, un même élément apparaissant sur des figures différentes présente une référence unique. Unless otherwise specified, the same element appearing in different figures has a single reference.
[0028] L’âme 1 illustrée à la figure 1 comprend un cœur 2, une couche intérieure 3 et une couche extérieure 4. Le cœur 2 est constitué de fibres de verre 20 continues solidarisées par de la résine. La couche intérieure 3 est constituée de fibres de carbone 30 continues et de résine. La couche extérieure 4 est constituée de fibres de verre 40 continues et de résine. Dans cet exemple, les fibres de carbone 30 et les fibres de verre 40 sont positionnées avantageusement parallèlement les unes par rapport aux autres et dans l’axe de l’âme. The core 1 illustrated in Figure 1 comprises a core 2, an inner layer 3 and an outer layer 4. The core 2 consists of continuous glass fibers 20 secured by resin. The inner layer 3 consists of continuous carbon fibers 30 and resin. The outer layer 4 consists of continuous glass fibers 40 and resin. In this example, the carbon fibers 30 and the glass fibers 40 are advantageously positioned parallel to each other and in the axis of the core.
[0029] Le cœur 2 est de taille réduite par rapport au diamètre de l’âme 1 afin de limiter l’impact des performances en rigidité et résistance global de l’âme 1 . [0029] The heart 2 is of reduced size compared to the diameter of the core 1 in order to limit the impact of the performance in terms of rigidity and global resistance of the core 1 .
[0030] Lorsque l’âme 1 de l’état de la technique illustrée figure 2 reçoit un choc (représenté par le marteau M), une fissure 5 se crée, elle va se propager pour dissiper l’énergie de l’impact à la fois sur la couche extérieure 4 et dans le centre 3’, constitué de fibres de carbone 30 continues et de résine, soit sur toute la section de l’âme jusqu’à couper entièrement celle-ci en deux parties 31 et 32. [0030] When the core 1 of the state of the art illustrated in Figure 2 receives a shock (represented by the hammer M), a crack 5 is created, it will spread to dissipate the energy of the impact at the both on the outer layer 4 and in the center 3 ', consisting of continuous carbon fibers 30 and resin, or over the entire section of the core until it is completely cut into two parts 31 and 32.
[0031] De la même manière, lorsqu’un cœur 2 constitué d’un composite contenant des fibres de verre 20 et d’une surface uniforme, est placé au milieu de la couche intérieure 3 (cf. figure 3), le cœur va dévier la fissure 5 d’un côté jusqu’à couper entièrement l’âme en deux parties, dans ce dernier cas on va avoir deux parties 33 et 34. [0031] In the same way, when a core 2 consisting of a composite containing glass fibers 20 and of a uniform surface, is placed in the middle of the layer interior 3 (see figure 3), the core will deviate the crack 5 on one side until the core is completely cut into two parts, in the latter case there will be two parts 33 and 34.
[0032] Dans les exemples des figures 4 et 5, le cœur 2 a une surface non uniforme : avec des excroissances pointues 21 dans le cas de la figure 4 ou avec des bourrelets arrondis 22 dans le cas de la figure 5. Bien entendu, d’autres profils de surface sont envisageables, notamment en choisissant des excroissances de formes différentes: circulaire, ovale, trapézoïdale, rectangulaire ou autre. Ici , la différence de tension entre les fibres de verre 20 et des fibres de carbone 30 facilite la dissipation de l’énergie à l’interface des deux fibres et donc que la fissure 5 va se diriger vers la zone de moindre contrainte, c’est-à-dire vers le cœur 2. La surface du cœur étant non uniforme, elle va dissiper davantage la propagation de la fissure 5 vers une des excroissances qui va l’arrêter. De cette façon l’âme 1 ne sera pas entièrement fissurée et la résistance du câble ne sera pas trop diminuée. In the examples of Figures 4 and 5, the core 2 has a non-uniform surface: with pointed projections 21 in the case of Figure 4 or with rounded beads 22 in the case of Figure 5. Of course, other surface profiles are possible, in particular by choosing protrusions of different shapes: circular, oval, trapezoidal, rectangular or other. Here, the difference in tension between the glass fibers 20 and the carbon fibers 30 facilitates the dissipation of energy at the interface of the two fibers and therefore the crack 5 will move towards the zone of least stress, it that is to say towards the core 2. The surface of the core being non-uniform, it will further dissipate the propagation of the crack 5 towards one of the growths which will stop it. In this way, core 1 will not be completely cracked and the resistance of the cable will not be reduced too much.
[0033] L’âme 2, la couche interne 3 et la couche externe 4 peuvent être solidarisées dans une même résine par une cuisson unique de l’ensemble ce qui permet d’avoir une continuité chimique de la résine à l’interface des différentes fibres et d’améliorer la dissipation de l’énergie de la fissure jusqu’à l’arrêt de sa propagation dans le sens longitudinal de l’âme. [0033] The core 2, the inner layer 3 and the outer layer 4 can be joined together in the same resin by a single curing of the assembly, which makes it possible to have chemical continuity of the resin at the interface of the different fibers and to improve the dissipation of crack energy until its propagation in the longitudinal direction of the core is stopped.
[0034] Le câble électrique 6 illustré figure 6 comprend une âme 1 décrite précédemment et deux couches de conducteurs 60 et 61 constitués de brins conducteurs, par exemple en aluminium, de forme trapézoïdale et enroulés hélicoïdalement autour de l’âme 1 . The electrical cable 6 shown in Figure 6 comprises a core 1 described above and two layers of conductors 60 and 61 consisting of conductive strands, for example aluminum, trapezoidal in shape and wound helically around the core 1.

Claims

7 REVENDICATIONS 7 CLAIMS
[Revendication 1 ] Ame (1 ) composite pleine pour conducteur électrique comprenant un cœur (2) en fibres de verre (20), une couche intérieure (3) en fibres de carbone (30), une couche extérieure (4) en fibres de verre (40) et au moins une résine, caractérisée en ce que le cœur (2) et la couche extérieure (4) ont une tension mécanique inférieure à la couche intérieure (3) et que le cœur (2) a une surface non uniforme. [Claim 1] Solid composite core (1) for an electrical conductor comprising a core (2) of glass fibers (20), an inner layer (3) of carbon fibers (30), an outer layer (4) of carbon fibers glass (40) and at least one resin, characterized in that the core (2) and the outer layer (4) have a lower mechanical tension than the inner layer (3) and that the core (2) has an uneven surface .
[Revendication 2] Âme (1 ) selon la revendication 1 , caractérisée en ce que la tension des fibres de la couche intérieure (3) est 2 à 10 fois supérieure à la tension des fibres du cœur (2). [Claim 2] Core (1) according to claim 1, characterized in that the tension of the fibers of the inner layer (3) is 2 to 10 times greater than the tension of the fibers of the heart (2).
[Revendication 3] Âme (1 ) selon une des revendications précédentes, caractérisée en ce que le cœur (2) a une section 10 à 35 fois plus petites que la section de la couche intérieure (3). [Claim 3] Core (1) according to one of the preceding claims, characterized in that the core (2) has a section 10 to 35 times smaller than the section of the inner layer (3).
[Revendication 4] Âme (1 ) selon une des revendications précédentes, caractérisée en ce que la résine est commune et continue dans l’ensemble des fibres (20, 30, 40). [Claim 4] Core (1) according to one of the preceding claims, characterized in that the resin is common and continuous throughout the fibers (20, 30, 40).
[Revendication 5] Âme (1 ) selon une des revendications 1 à 3, caractérisée en ce que les résines imprégnant les différentes couches et le cœur de fibres sont chimiquement compatibles ensemble lors de la polymérisation. [Claim 5] Core (1) according to one of claims 1 to 3, characterized in that the resins impregnating the different layers and the fiber core are chemically compatible together during the polymerization.
[Revendication 6] Âme (1 ) selon une des revendications précédentes, caractérisée en ce que le cœur (2) est disposé au centre de la couche intérieure (3). [Claim 6] Core (1) according to one of the preceding claims, characterized in that the core (2) is arranged in the center of the inner layer (3).
[Revendication 7] Câble électrique (6) comprenant une âme (1 ) selon une des revendications précédentes. [Claim 7] Electric cable (6) comprising a core (1) according to one of the preceding claims.
PCT/FR2020/051683 2020-09-28 2020-09-28 Composite core for crack-resistant electrical conductor WO2022064107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2020/051683 WO2022064107A1 (en) 2020-09-28 2020-09-28 Composite core for crack-resistant electrical conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2020/051683 WO2022064107A1 (en) 2020-09-28 2020-09-28 Composite core for crack-resistant electrical conductor

Publications (1)

Publication Number Publication Date
WO2022064107A1 true WO2022064107A1 (en) 2022-03-31

Family

ID=73040132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051683 WO2022064107A1 (en) 2020-09-28 2020-09-28 Composite core for crack-resistant electrical conductor

Country Status (1)

Country Link
WO (1) WO2022064107A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506085A1 (en) 2002-04-23 2005-02-16 Composite Technology Corporation Aluminum conductor composite core reinforced cable and method of manufacture
US20080233380A1 (en) * 2002-04-23 2008-09-25 Clement Hiel Off-axis fiber reinforced composite core for an aluminum conductor
EP2118909A2 (en) 2007-02-15 2009-11-18 Advanced Technology Holdings LTD Electrical conductor and core for an electrical conductor
US20120186851A1 (en) * 2011-01-24 2012-07-26 Michael Winterhalter Composite core conductors and method of making the same
US8250845B2 (en) 2010-02-09 2012-08-28 Tokyo Rope Manufacturing Co., Ltd. Fiber composite twisted cable
CN103426558A (en) * 2013-08-23 2013-12-04 苏州苏月新材料有限公司 Carbon fiber compound core of power transmission circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1506085A1 (en) 2002-04-23 2005-02-16 Composite Technology Corporation Aluminum conductor composite core reinforced cable and method of manufacture
US20080233380A1 (en) * 2002-04-23 2008-09-25 Clement Hiel Off-axis fiber reinforced composite core for an aluminum conductor
EP2118909A2 (en) 2007-02-15 2009-11-18 Advanced Technology Holdings LTD Electrical conductor and core for an electrical conductor
US8250845B2 (en) 2010-02-09 2012-08-28 Tokyo Rope Manufacturing Co., Ltd. Fiber composite twisted cable
US20120186851A1 (en) * 2011-01-24 2012-07-26 Michael Winterhalter Composite core conductors and method of making the same
CN103426558A (en) * 2013-08-23 2013-12-04 苏州苏月新材料有限公司 Carbon fiber compound core of power transmission circuit

Similar Documents

Publication Publication Date Title
EP2017855B1 (en) Electrical control cable
EP2394273B3 (en) High voltage electric transmission cable
EP1816654B1 (en) Electrical transport conductor for overhead line
EP1928001B1 (en) Electrical transport conductor for overhead line
EP1017063B1 (en) Structural reinforced energy and/or telecom cable
EP0703480A1 (en) Fibre optical cable and device for its fabrication
EP0554160B1 (en) High frequency electrical cable
CA2864764A1 (en) Electric power transmission cable particularly for an overhead line
WO2008043948A2 (en) Electrical control cable and associated manufacturing process
WO2010018343A1 (en) String for a racket, particularly for a tennis racket
EP1926108A2 (en) Electrical control cable
EP2665069B1 (en) High voltage electrical transmission cable
WO2022064107A1 (en) Composite core for crack-resistant electrical conductor
FR2818000A1 (en) High frequency telecommunication bunched twisted pair cable, in which four cable pairs are separated from each other by a dielectric or semi-conducting yoke so as to reduce diaphonic coupling
FR2660827A1 (en) COIL IGNITION CABLE AND METHOD FOR MANUFACTURING THE SAME.
EP1986199B1 (en) Method of producing a class 5 insulated electric conductor
EP0311941B1 (en) Manufacturing method for optical cables and cable manufactured by this method
EP1986198A1 (en) Electrical test cable
EP2937871B1 (en) Twist-resistant electrical cable
FR3125353A1 (en) HIGH VOLTAGE CABLE WITH COMPOSITE CORE FOR LOW OPERATING TEMPERATURE
EP0953990A1 (en) Electrical wire and method for making the same
FR2941813A1 (en) OPTICAL FIBER PROTECTION FOR ELECTRIC ISOLATORS
FR2769121A1 (en) Reinforced optical fiber cable
EP0445689A1 (en) Tension-relieving device for a hose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20800234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 1205 EN DATE DU 29/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20800234

Country of ref document: EP

Kind code of ref document: A1