WO2022063910A1 - Propulseur trochoïdal pour application navale - Google Patents

Propulseur trochoïdal pour application navale Download PDF

Info

Publication number
WO2022063910A1
WO2022063910A1 PCT/EP2021/076225 EP2021076225W WO2022063910A1 WO 2022063910 A1 WO2022063910 A1 WO 2022063910A1 EP 2021076225 W EP2021076225 W EP 2021076225W WO 2022063910 A1 WO2022063910 A1 WO 2022063910A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
rotor
axis
relative
around
Prior art date
Application number
PCT/EP2021/076225
Other languages
English (en)
Inventor
Guy Mahe
Original Assignee
Naval Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naval Group filed Critical Naval Group
Publication of WO2022063910A1 publication Critical patent/WO2022063910A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/04Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction
    • B63H1/06Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades
    • B63H1/08Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment
    • B63H1/10Propulsive elements directly acting on water of rotary type with rotation axis substantially at right angles to propulsive direction with adjustable vanes or blades with cyclic adjustment of Voith Schneider type, i.e. with blades extending axially from a disc-shaped rotary body

Definitions

  • the present invention relates to a thruster for a naval platform, comprising a casing adapted to be fixed on the naval platform, a rotor rotatably mounted on the casing about a primary axis of rotation, and a plurality of blades movable in rotation relative to the rotor around a plurality of secondary axes of rotation substantially parallel to the primary axis of rotation and angularly distributed around the primary axis of rotation.
  • the invention also relates to a naval platform equipped with at least one such thruster.
  • the propeller is said to be “trochoidal", because each of the blades follows, in relation to the water current, a trajectory which recalls a trochoid, that is to say the trajectory described by a point linked to a rolling disc without slipping on a line.
  • the blades are generally substantially vertical.
  • the blades perform a slalom, sculling motion, in the heading direction of a ship.
  • the best known thruster with vertical blades is the Voith-Schneider thruster developed in 1926. This thruster equips ships for which good maneuverability and strong thrust are required, such as ferries, tugs and harbor pushers.
  • the blades of the Voith-Schneider thruster follow a cycloid-type trajectory during operation which limits the maximum speed reached by the ship to approximately 15 knots.
  • An object of the invention is to provide a propellant as described above, “trochoidal”, whose service life is increased.
  • the subject of the invention is a thruster for a naval platform comprising:
  • a rotor rotatably mounted on the housing around a primary axis of rotation, the rotor defining a housing
  • a central pinion located in the housing and defining a central pinion axis substantially parallel to the primary axis of rotation, the primary axis of rotation and the central pinion axis defining between them a deviation in a direction of deviation substantially perpendicular to the primary axis of rotation,
  • connection systems located in the housing and respectively connecting the secondary pinions to the central pinion to convert a rotational movement of the rotor relative to the casing in one direction, into rotational movements of the blades relative to the rotor in the opposite direction , each of the blades defining an orientation relative to the casing around one of the secondary axes of rotation, the connection systems being adapted so that each of the blades makes a turn relative to the rotor when the rotor makes a turn relative to the casing, and to convert said secondary distance variations into angular fluctuations of orientations around a same heading direction, each of the link systems comprising at least one intermediate gear defining an intermediate axis substantially parallel to the primary axis of rotation, and a support holding device rotatably mounted with respect to the rotor around one of the secondary axes of rotation, the intermediate gear ire being rotatably mounted on the retaining support around the intermediate axis.
  • the propellant comprises one or more of the following characteristics, taken alone or according to all the technically possible combinations:
  • the blades are analogous to each other, and in which, in the event of rotation of the rotor, for each of the blades, straight lines passing through a center of each of the blades and perpendicular to the orientation of each of the blades pass at each instant by a fixed point relative to the casing, the point and the primary axis of rotation together defining a plane perpendicular to the heading direction;
  • each of the connection systems comprises a holding member rotatably mounted with respect to the central pinion around the central pinion axis, and with respect to one of the intermediate gears around one of the intermediate axes;
  • the holding member comprises a rod extending between the primary axis of rotation and the intermediate axis, and the holding support comprises a shell partially surrounding the intermediate gear, and at least partially one of the secondary pinions ;
  • control system comprising the central pinion, the control system being movable in rotation relative to the casing around the primary axis of rotation to angularly displace the heading direction relative to the casing, the control system comprising a ordered ;
  • control system comprises a first part movable in rotation relative to the housing around the primary axis of rotation, and a second part mounted movable in translation relative to the first part in the direction of deviation, the central pinion being integral with the second part;
  • an actuation device rotatably mounted with respect to the first part around an actuation axis substantially parallel to the primary axis of rotation, the actuation device comprising a rod extending along the actuation axis , and at least one drive pinion fixed to the rod and meshing with at least one rack of the second part of the control system.
  • the invention also relates to a naval platform equipped with at least one thruster as described above.
  • FIG. 1 is a partial perspective view of a platform naval according to the invention, the observer being located below the naval platform
  • FIG. 2 is a view similar to FIG. 1, the observer being located above the naval platform
  • Figure 3 is a view similar to that of Figure 2, showing a step of installing a thruster according to the invention on the naval platform shown in Figures 1 and 2
  • Figure 4 is a partial perspective view , of one of the thrusters represented in FIGS. 1 and 2, the observer being located approximately 45° above the thruster
  • FIG. 5 is a view similar to that of FIG. 4, the observer being situated approximately at 45° below the thruster
  • FIG. 1 is a partial perspective view of a platform naval according to the invention, the observer being located below the naval platform
  • FIG. 2 is a view similar to FIG. 1, the observer being located above the naval platform
  • Figure 3 is a view similar to that of Figure 2, showing a step of installing a thruster according to the invention on the naval platform shown in Figures 1 and 2
  • Figure 4 is
  • FIGS. 4 and 5 are cross-sectional views of the thruster represented in FIGS. 4 and 5, according to a plane passing through the primary axis of rotation and through the secondary axis of rotation of one of the thruster blades
  • Figure 7 is a partial perspective view of the thruster shown in Figures 4 to 6, the rotor, part of the control system, one of the blades and its linkage system, and a lower portion of the shell of the connection system of another blade having been removed
  • FIG. 8 is a view of bottom of the thruster represented in FIGS. 4 to 7, a lower part of the rotor and the casing having been removed
  • FIG. 9 is a schematic view, from above, illustrating the trajectory of one of the blades with respect to the rotor (left part ) and relative to the surrounding water (right part).
  • the naval platform 10 is a surface ship moving in a horizontal heading direction D1.
  • the naval platform 10 comprises a hull 11, and two thrusters 12, 14 for example spaced apart from each other in a transverse direction T perpendicular to the heading direction D1.
  • the naval platform 10 is an underwater vehicle.
  • the heading direction D1 is then optionally non-horizontal.
  • the naval platform 10 comprises only one thruster, or else comprises more than two.
  • the thrusters 12, 14 are arranged differently.
  • thrusters 12, 14 are aligned in heading direction D1.
  • the hull 11 defines two openings 16, 18 through which the thrusters 12, 14 are fixed.
  • Shell 11 defines an inner side I, towards which the hull is dry, and an outer side E, towards which the hull is in contact with a body of water 20.
  • thrusters 12, 14 are advantageously similar to each other, so only the thruster 12 will be described in detail below with reference to Figures 4 to 9.
  • the thruster 12 comprises a casing 22 fixed to the hull 11, and a rotor 24 rotatably mounted on the casing around a primary axis of rotation X0, the rotor being hollow and defining an interior housing 26 (FIG. 6).
  • the thruster 12 comprises a control system 28 integrating a central pinion 30 located in the housing 26 and defining a central pinion axis X1 substantially parallel to the primary axis of rotation X0, the primary axis of rotation X0 and the axis of central pinion X1 defining between them a gap E1 (FIG. 8) in a direction of gap D2 substantially perpendicular to the primary axis of rotation X0.
  • the thruster 12 comprises three blades 32A, 32B, 32C rotatable relative to the rotor 24 respectively around three secondary axes of rotation X2A, X2B, X2C, substantially parallel to the primary axis of rotation X0, distributed angularly around the primary axis of rotation X0, and further from the primary axis of rotation X0 than the central pinion axis X1.
  • the thruster 12 comprises three secondary pinions 34A, 34B, 34C respectively integral with the blades 32A, 32B, 32C and rotatably mounted in the housing 26 with respect to the rotor 24 around the secondary axes of rotation X2A, X2B, X2C.
  • the thruster 12 also comprises three link systems 36A, 36B, 36C located in the housing 26 and respectively connecting the secondary pinions 34A, 34B, 34C to the central pinion 30 to convert a rotational movement of the rotor 24 relative to the housing 22 into a direction, in rotational movements of the blades 32A, 32B, 32C relative to the rotor in the opposite direction.
  • the thrusters 12 and 14 include a cover 38 fixed to the casing 22 in a sealed manner, in order to allow installation of the thrusters in the openings 16, 18 while the naval platform 10 is floating on the expanse of water 20, as will be described later.
  • the thruster 12 comprises a different number of blades, for example two, four or five.
  • the thruster 12 then comprises a corresponding number of secondary pinions and systems of connections with the central pinion 30.
  • the housing 22 comprises a first annular part 40 extending perpendicularly to the primary axis of rotation X0, and a second part 42 defining a passage 44, for example cylindrical, extending along the axis of primary rotation X0.
  • the casing 22 advantageously comprises stiffening ribs 46.
  • the second part 42 extends from the first part 40 along the primary axis of rotation X0 of the interior side I defined by the shell 11 .
  • the passage 44 is crossed by the rotor 24 along the primary axis of rotation X0 and, in the housing 26 defined by the rotor, by the control system 28.
  • the stiffening ribs 46 extend substantially radially over the first part 40 from the second part 42.
  • the rotor 24 has a general shape of revolution around the primary axis of rotation X0.
  • the rotor 24 comprises a first flattened cylindrical part 48 (in the form of a Petri dish) defining a part of the housing 26 receiving the central pinion 30 and the connection systems 36A, 36B, 36C, and a second part 50 passing axially through the passage 44 defined by the casing 22.
  • the rotor 24 advantageously comprises a ring gear 52 (FIG. 4) fixed to the second part 50 on the side opposite to the first part 48 along the primary axis of rotation X0.
  • the ring gear 52 is adapted to allow the drive of the rotor 24 around the primary axis of rotation X0 with respect to the housing 22 by drive means not shown.
  • the second part 50 is rotatably mounted on the casing 22 in a watertight manner.
  • the first part 48 is located on the outer side E with respect to the casing 22 along the primary axis of rotation X0.
  • the first part 48 defines a lower surface 54 (FIG. 6) advantageously continuous with the outer surface of the shell 11 .
  • the secondary axes of rotation X2A, X2B, X2C are distributed angularly around the primary axis of rotation X0, advantageously regularly. Therefore, in the example represented, the secondary axes of rotation X2A, X2B, X2C form between them angles of approximately 120°.
  • the secondary axes of rotation X2A, X2B, X2C are located at an equal distance from the primary axis of rotation X0 and are located respectively at secondary distances E2A, E2B, E2C with respect to the central pinion axis X1, the secondary distances being intended to undergo variations in the event of rotation of the rotor 24, due to the difference E1.
  • the secondary axes of rotation form between them angles of three hundred and sixty degrees divided by N around the primary axis of rotation X0.
  • the blades 32A, 32B, 32C are for example structurally similar to each other. Each of the blades extends for example mainly along the axis of rotation primary X0 and defines a leading edge 56 and a trailing edge 58 (FIG. 7). Each of the blades 32A, 32B, 32C defines an orientation D3A, D3B, D3C with respect to the casing 22 respectively around the secondary axes of rotation X2A, X2B, X2C.
  • Each of the blades 32A, 32B, 32C have for example a symmetry with respect to a plane P (FIG. 7) passing through the leading edge 56 and the trailing edge 58.
  • leading edge 56 and the trailing edge 58 are for example straight and advantageously parallel respectively to the secondary axes of rotation X2A, X2B, X2C.
  • the blades 32A, 32B, 32C can have other less simple shapes, for example, left, in which the leading edge 56 and the trailing edge 58 are not necessarily straight. In all cases, the blades always define the orientations D3A, D3B, D3C with respect to the casing 22.
  • the link systems 36A, 36B, 36C are adapted so that each of the blades 32A, 32B, 32C make a turn relative to the rotor 24 when the rotor 24 makes a turn relative to the casing 22.
  • the link systems 36A, 36B, 36C are also adapted to convert the variations of the secondary distances E2A, E2B, E2C into angular fluctuations of the orientations D3A, D3B, D3C around the same heading direction D1.
  • the heading direction D1 is substantially parallel to the deviation direction D2.
  • connection systems 36A, 36B, 36C and the blades 32A, 32B, 32C are advantageously adapted for each of the blades, straight lines A passing through a center C of the blade and perpendicular to the orientation of the blade pass at each instant by a fixed point M (FIG. 9) with respect to the casing 22, the fixed point M is the primary axis of rotation X0 together defining a plane P' perpendicular to the heading direction D1.
  • the link systems 36A, 36B, 36C are for example structurally similar to each other.
  • Each of the connection systems comprises at least one intermediate gear 60A, 60B, 60C defining an intermediate axis X3A, X3B, X3C substantially parallel to the primary axis of rotation X0, and a holding support 62A, 62B, 62C rotatably mounted relative to the rotor 24 around one of the secondary axes of rotation X2A, X2B, X2C, the intermediate gear being rotatably mounted on the retaining support around the intermediate axis.
  • each of the link systems 36A, 36B, 36C also comprises a holding member 64A, 64B, 64C rotatably mounted with respect to the central pinion 30 around the central pinion axis X1, and with respect to one of the pinions intermediate 60A, 60B, 60C around one of the intermediate axes X3A, X3B, X3C.
  • the intermediate gears 60A, 60B, 60C mesh with the central pinion 30 and with one of the secondary pinions 34A, 34B, 34C respectively.
  • the intermediate gears 60A, 60B, 60C have for example the same equatorial plane P” which is also the equatorial plane of the central pinion 30 and of the secondary pinions 32A, 32B, 32C.
  • Each of the secondary pinions 34A, 34B, 34C is respectively integral with an axis 66A, 66B, 66C of one of the blades 32A, 32B, 32C.
  • Axes 66A, 66B, 66C are rotatably mounted on two opposite walls 68, 70 of rotor 24 along the primary axis of rotation X0.
  • the holding supports 62A, 62B, 62C are suitable for holding the intermediate axes X3A, X3B, X3C substantially parallel to the primary axis of rotation X0, and at a constant distance from the secondary axes of rotation X2A, X2B, X2C, so that the intermediate gears 60A, 60B, 60C remain in mechanical contact with secondary gears 34A, 34B, 34C.
  • the holding supports 62A, 62B, 62C are advantageously mounted respectively on the axes 66A, 66B, 66C on either side of the secondary pinions 32A, 32B, 32C along the secondary axes of rotation X2A, X2B, X2C in order to ensure to the holding supports a great angular stability with respect to these axes.
  • the holding supports 62A, 62B, 62C are formed by shells 68A, 68B, 68C partially surrounding the intermediate pinion 60B, 60A, 60C, and totally surrounding the secondary pinions 34A, 34B, 34C around their respective axes.
  • Each of the shells 68A, 68B, 68C is for example formed by two plates 74, 76 substantially perpendicular to the primary axis of rotation X0, and by a side wall 78 substantially parallel to the primary axis of rotation X0 and defining an opening 80 by which part of one of the intermediate gears 60A, 60B, 60C comes out of the shell.
  • the holding members 64A, 64B, 64C are adapted to hold the intermediate axes X3A, X3B, X3C at a constant distance from the central pinion axis X1, so that the intermediate gears 60A, 60B, 60C remain in mechanical contact with the central pinion 30.
  • the holding members 64A, 64B, 64C are respectively formed by rods 82A, 82B, 82C.
  • the rods 82A and 82C are located on the inner side I with respect to the central pinion 30 along the central pinion axis X1 and the rod 82B is located on the outer side E (that is to say on the other side) with respect to the central pinion 30.
  • the number of gears connecting the central pinion 30 to each of the secondary pinions 34A, 34B, 34C is odd.
  • the control system 28 comprises a first part 84 movable in rotation relative to the housing 22 around the primary axis of rotation X0, and a second part 86 mounted movable in translation relative to the first part in the direction of deviation D2 , the central pinion 30 being integral with this second part.
  • the control system 28 also comprises a ring gear 88 mounted on the first part 84 around the primary axis of rotation X0, and an actuation device 90 adapted to move the second part 86 in translation relative to the first part 84 along the direction of deviation D2.
  • the first part 84 has a substantially cylindrical general shape and is received in the housing 44 defined by the second part 50 of the rotor 24.
  • the first part 84 of the control system 28 is surrounded by the second part 50 of the rotor 24, which is itself surrounded by the second part 42 of the casing 22 around the primary axis of rotation X0.
  • the actuation device 90 (FIG. 6) is for example rotatably mounted with respect to the first part 84 around an actuation axis X4 substantially parallel to the primary axis of rotation X0.
  • the actuating device 90 comprises for example a rod 92 extending along the actuating axis X4, and two drive pinions 94, 96 fixed to the rod and meshing on a rack 98 formed by the second part 86 of the control system 28.
  • the control device 90 also includes a control pinion 100 fixed on the rod 92.
  • the control pinion 100 is advantageously located on the interior side I with respect to the ring gear 88 along the primary axis of rotation X0.
  • thruster 12 The operation of thruster 12 will now be described.
  • the naval platform 10 advances for example in the heading direction D1.
  • Each of the thrusters 12, 14 receives a flow of water F1 oriented in the direction of heading D1 and directed in the opposite direction to the advance of the naval platform 10.
  • a motor (not shown) of the naval platform 10 drives the rotor 24 with respect to the casing 22 around the primary axis of rotation X0 (arrow F2 in FIGS. 4, 5, 8 and 9).
  • the rotor 24 is driven by acting on the ring gear 52. This rotates the secondary axes X2A, X2B, X2C around the primary axis of rotation X0.
  • the link systems 36A, 36B, 36C convert the rotational movement of the rotor 24 relative to the casing 22 in the direction F2 into rotational movements F3A, F3B, F3C (FIG. 8) of the blades 32A, 32B, 32C relative to the rotor in the opposite direction around the secondary axes of rotation X2A, X2B, X2C.
  • F3A, F3B, F3C FIG. 8
  • the secondary axes of rotation X2A, X2B, X2C remain at a constant distance from the primary axis of rotation X0.
  • the central pinion axis X1 is offset by the distance E1 from the primary axis of rotation X0, the secondary distances E2A, E2B, E2C between the secondary axes of rotation X2A, X2B, X2C and the central pinion axis X1 undergoes periodic variations when the rotor 24 rotates at constant angular speed.
  • the intermediate gear 60A is driven in rotation around the intermediate axis X3A with respect to the holding support 62A directly by the central pinion 30.
  • the intermediate gear 60A directly drives the secondary gear 34A in rotation around the secondary axis X2A with respect to the rotor 24.
  • these rotation drives are not done directly, but via other gears arranged between the central pinion 30 and the intermediate gear 60A and / or between the intermediate gear 60A and the secondary pinion 34A.
  • the blade 32A is secured to the secondary pinion 34A and is therefore driven in rotation relative to the rotor 24. At each turn of the rotor 24 relative to the housing 22, the blade 32A regains the same orientation D3A relative to the housing around the axis of secondary rotation X2A.
  • FIG. 9 On the left, successive positions P0 to P7 of the blade 32A have been shown with respect to the casing 22. On the right of FIG. 9, the movement of the blade 32A has been shown with respect to the flow of water F1 in which she performs a sculling motion.
  • the orientation D3A of the blade 32A is substantially parallel to the direction of deviation D2.
  • the rotation of the blade relative to the rotor 24 is slower than that of the rotor relative to the casing and the blade gradually tilts relative to the casing 22, instead of maintaining a constant orientation.
  • the blade In position P2, the blade has a maximum inclination in one direction with respect to the direction of deviation D2.
  • the blade 32A When the difference E1 between the central pinion axis X1 and the primary axis of rotation X0 is zero, the blade 32A maintains an orientation D3A parallel to the direction of difference D2. The greater the difference E1, the more the blade 32A tilts with respect to the direction of the difference D2 in the positions P2 and P6.
  • the inclination of the blade 32A in these different positions is such that the straight lines A all pass through the point M located at a distance E3 from the primary axis of rotation X0; the smaller the difference E1, the greater the distance E3.
  • the difference E1 is zero, the distance E3 is infinite. Lines A are then parallel to each other. The blades then have a fixed orientation with respect to the casing 22.
  • the gap E1 can be modified using the control system 28.
  • the central pinion 30 By acting on the control device 90, the central pinion 30 is moved in translation with respect to the casing 22 in the gap direction D2.
  • the control pinion 100 is driven in rotation with respect to the first part 84 of the control system 28. This moves the second part 86 in translation with respect to the first part 84 in the direction difference D2.
  • the central pinion 30 is moved in rotation with respect to the casing 22 around the primary axis of rotation X0. This has the effect of angularly shifting the direction of deviation D2 around the primary axis of rotation X0 with respect to the housing 22.
  • the thrusters 12, 14 are for example mounted on the hull 11 while the ship is floating on the expanse of water 20, thanks to the cover 38.
  • the cover 38 protects the parts of each thruster intended to be located on the interior side I of the shell 11, in particular part of the casing 22 and of the control device 28.
  • the thruster 12 has an improved lifetime.
  • control system 28 it is possible to easily adjust the amplitude of the fluctuations in the orientation of the blades, without having to dismantle any part of the thruster 12 but only, in the example represented, by acting on drive pinion 100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Rotary Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Propulseur pour plateforme navale, comprenant : - un carter - un rotor (24) monté rotatif sur le carter autour d'un axe de rotation primaire (X0), et définissant un logement, - un pignon central (30) définissant un axe de pignon central (X1) définissant avec l'axe de rotation primaire un écart (E1), - des pales (32 A, 32B, 32C) mobiles en rotation autour d'axes de rotation secondaires (X2A, X2B, X2C), - des pignons secondaires (34A, 34B, 34C) solidaires des pales, et - des systèmes de liaison (36A, 36B, 36C) reliant les pignons au pignon central pour convertir un mouvement de rotation du rotor par rapport au carter dans un sens, en des mouvements de rotation des pales par rapport au rotor en sens inverse, chacune des pales ayant une orientation (D3A, D3B, D3C) fluctuante par rapport au carter autour d'une même direction de cap (D1).

Description

Propulseur trochoidal pour application navale
La présente invention concerne un propulseur pour plateforme navale, comprenant un carter adapté pour être fixé sur la plateforme navale, un rotor monté rotatif sur le carter autour d’un axe de rotation primaire, et une pluralité de pales mobiles en rotation par rapport au rotor autour d’une pluralité d’axes de rotation secondaires sensiblement parallèles à l’axe de rotation primaire et répartis angulairement autour de l’axe de rotation primaire.
L’invention concerne également une plateforme navale équipée d’au moins un tel propulseur.
Le propulseur est dit « trochoidal », car chacune des pales suit, par rapport au courant d’eau, une trajectoire qui rappelle une trochoïde, c’est-à-dire la trajectoire décrite par un point lié à un disque roulant sans glisser sur une droite. Dans ce genre de propulseur, les pales sont en général sensiblement verticales. Les pales réalisent un mouvement de slalom, de godille, dans la direction de cap d’un navire.
Le propulseur à pales verticales le plus connu est le propulseur Voith-Schneider développé en 1926. Ce propulseur équipe des navires pour lesquels sont demandées une bonne manœuvrabilité et une forte poussée, tels que les bacs, les remorqueurs et les pousseurs portuaires.
Les pales du propulseur Voith-Schneider suivent en fonctionnement une trajectoire de type cycloïde qui limite la vitesse maximale atteinte par le navire à environ 15 nœuds.
Dans les années 1963 et suivantes, des études théoriques ont été menées, démontrant que l’adoption d’une trajectoire des pales de type trochoidal améliorait le fonctionnement du propulseur.
En 1990, le document WO 1992/007189 propose une solution mécanique pour réaliser un propulseur trochoidal. Toutefois, dans ce propulseur, les systèmes d’entraînement des pales en rotation par rapport au rotor comprennent des pignons intermédiaires (repérés par la lettre I sur la figure 4 par exemple) dont les axes glissent dans des lumières de guidage, en réalisant un mouvement de va-et-vient. Ces mouvements alternatifs sont susceptibles de créer des frottements mécaniques importants et des risques de ruptures de film d’huile entraînant la dégradation prématurée du mécanisme.
Un but de l’invention est de fournir un propulseur tel que décrit ci-dessus, « trochoidal », dont la durée de vie est augmentée. A cet effet, l’invention a pour objet un propulseur pour plateforme navale comprenant :
- un carter adapté pour être fixé sur la plateforme navale,
- un rotor monté rotatif sur le carter autour d’un axe de rotation primaire, le rotor définissant un logement,
- un pignon central situé dans le logement et définissant un axe de pignon central sensiblement parallèle à l’axe de rotation primaire, l’axe de rotation primaire et l’axe de pignon central définissant entre eux un écart dans une direction d’écart sensiblement perpendiculaire à l’axe de rotation primaire,
- une pluralité de pales mobiles en rotation par rapport au rotor respectivement autour d’une pluralité d’axes de rotation secondaires sensiblement parallèles à l’axe de rotation primaire, les axes de rotation secondaires se situant respectivement à des distances secondaires par rapport à l’axe de pignon central, les distances secondaires étant destinées à subir des variations en cas de rotation du rotor,
- une pluralité de pignons secondaires respectivement solidaires des pales, et montés rotatifs dans le logement par rapport au rotor autour des axes de rotation secondaires, et
- une pluralité de systèmes de liaison situés dans le logement et reliant respectivement les pignons secondaires au pignon central pour convertir un mouvement de rotation du rotor par rapport au carter dans un sens, en des mouvements de rotation des pales par rapport au rotor en sens inverse, chacune des pales définissant une orientation par rapport au carter autour d’un des axes de rotation secondaire, les systèmes de liaison étant adaptés pour que chacune des pales fasse un tour par rapport au rotor lorsque le rotor fait un tour par rapport au carter, et pour convertir lesdites variations des distances secondaires en fluctuations angulaires des orientations autour d’une même direction de cap, chacun des systèmes de liaison comprenant au moins un engrenage intermédiaire définissant un axe intermédiaire sensiblement parallèle à l’axe de rotation primaire, et un support de maintien monté rotatif par rapport au rotor autour de l’un des axes de rotation secondaires, l’engrenage intermédiaire étant monté rotatif sur le support de maintien autour de l’axe intermédiaire.
Selon des modes de réalisations particuliers, le propulseur comprend l’une ou plusieurs des caractéristiques suivantes, prise(s) seul ou selon toutes les combinaisons techniquement possibles :
- les pales sont analogues les unes aux autres, et dans lequel, en cas de rotation du rotor, pour chacune des pales, des droites passant par un centre de chacune des pales et perpendiculaires à l’orientation de chacune des pales passent à chaque instant par un point fixe par rapport au carter, le point et l’axe de rotation primaire définissant ensemble un plan perpendiculaire à la direction de cap ;
- la direction de cap est sensiblement parallèle à la direction d’écart ;
- l’engrenage intermédiaire engrène directement sur le pignon central et sur l’un des pignons secondaires, le pignon central et chacun des pignons secondaires ayant un même nombre de dents ;
- chacun des systèmes de liaison comprend un organe de maintien monté rotatif par rapport au pignon central autour de l’axe de pignon central, et par rapport l’un des engrenages intermédiaires autour de l’un des axes intermédiaires ;
- l’organe de maintien comprend une tige s’étendant entre l’axe de rotation primaire et l’axe intermédiaire, et le support de maintien comprend une coquille entourant partiellement l’engrenage intermédiaire, et au moins partiellement l’un des pignons secondaires ;
- un système de commande comprenant le pignon central, le système de commande étant déplaçable en rotation par rapport au carter autour de l’axe de rotation primaire pour déplacer angulairement la direction de cap par rapport au carter, le système de commande comprenant un pignon de commande ;
- le système de commande comprend une première partie déplaçable en rotation par rapport au carter autour de l’axe de rotation primaire, et une deuxième partie montée mobile en translation par rapport à la première partie dans la direction d’écart, le pignon central étant solidaire de la deuxième partie ; et
- un dispositif d’actionnement monté rotatif par rapport à la première partie autour d’un axe d’actionnement sensiblement parallèle à l’axe de rotation primaire, le dispositif d’actionnement comprenant une tige s’étendant selon l’axe d’actionnement, et au moins un pignon d’entraînement fixé sur la tige et engrenant sur au moins une crémaillère de la deuxième partie du système de commande.
L’invention a également pour objet une plateforme navale équipée d’au moins un propulseur tel que décrit ci-dessus.
L’invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple et faite en se référant aux dessins annexés, sur lesquels : la figure 1 est une vue en perspective, partielle, d’une plateforme navale selon l’invention, l’observateur se situant en-dessous de la plateforme navale, la figure 2 est une vue analogue à la figure 1, l’observateur se situant au-dessus de la plateforme navale, la figure 3 est une vue analogue à celle de la figure 2, représentant une étape d’installation d’un propulseur selon l’invention sur la plateforme navale représentée sur les figures 1 et 2, la figure 4 est une vue en perspective, partielle, d’un des propulseurs représentés sur les figures 1 et 2, l’observateur se situant à environ 45° au-dessus du propulseur, la figure 5 est une vue analogue à celle de la figure 4, l’observateur se situant environ à 45° en-dessous du propulseur, la figure 6 est une vue en coupe du propulseur représenté sur les figures 4 et 5, selon un plan passant par l’axe de rotation primaire et par l’axe de rotation secondaire de l’une des pales du propulseur, la figure 7 est une vue en perspective, partielle, du propulseur représenté sur les figures 4 à 6, le rotor, une partie du système de commande, l’une des pales et son système de liaison, et une partie inférieure de la coquille du système de liaison d’une autre pale ayant été retirés, la figure 8 est une vue de dessous du propulseur représenté sur les figures 4 à 7, une partie inférieure du rotor et le carter ayant été retirés, et la figure 9 est une vue schématique, de dessus, illustrant la trajectoire d’une des pales par rapport au rotor (partie gauche) et par rapport à l’eau environnante (partie droite).
En référence aux figures 1 et 2, on décrit une plateforme navale 10 selon l’invention.
Dans l’exemple représenté, la plateforme navale 10 est un navire de surface se déplaçant selon une direction de cap D1 horizontale.
La plateforme navale 10 comprend une coque 11 , et deux propulseurs 12, 14 par exemple espacés l’un de l’autre dans une direction transversale T perpendiculaire à la direction de cap D1.
Selon une variante non représentée, la plateforme navale 10 est un engin sous- marin. La direction de cap D1 est alors éventuellement non horizontale.
Selon d’autres variantes non représentées, la plateforme navale 10 ne comprend qu’un seul propulseur, ou bien en comprend plus de deux.
Selon des modes de réalisations particuliers non représentés, les propulseurs 12, 14 sont disposés différemment. Par exemple, les propulseurs 12, 14 sont alignés dans la direction de cap D1.
Comme visible sur la figure 3, la coque 11 définit deux ouvertures 16, 18 en travers desquelles les propulseurs 12, 14 sont fixés. La coque 11 définit un côté intérieur I, vers lequel la coque est au sec, et un côté extérieur E, vers lequel la coque est en contact avec une étendue d’eau 20.
Les propulseurs 12, 14 sont avantageusement analogues l’un à l’autre aussi seul le propulseur 12 sera décrit en détail ci-après en référence aux figures 4 à 9.
Le propulseur 12 comprend un carter 22 fixé sur la coque 11 , et un rotor 24 monté rotatif sur le carter autour d’un axe de rotation primaire X0, le rotor étant creux et définissant un logement 26 intérieur (figure 6).
Le propulseur 12 comprend un système de commande 28 intégrant un pignon central 30 situé dans le logement 26 et définissant un axe de pignon central X1 sensiblement parallèle à l’axe de rotation primaire X0, l’axe de rotation primaire X0 et l’axe de pignon central X1 définissant entre eux un écart E1 (figure 8) dans une direction d’écart D2 sensiblement perpendiculaire à l’axe de rotation primaire X0.
Dans l’exemple représenté, le propulseur 12 comprend trois pales 32A, 32B, 32C mobiles en rotation par rapport au rotor 24 respectivement autour de trois axes de rotation secondaires X2A, X2B, X2C, sensiblement parallèles à l’axe de rotation primaire X0, répartis angulairement autour de l’axe de rotation primaire X0, et plus éloignés de l’axe de rotation primaire X0 que l’axe de pignon central X1.
Le propulseur 12 comprend trois pignons secondaires 34A, 34B, 34C respectivement solidaires des pales 32A, 32B, 32C et montés rotatifs dans le logement 26 par rapport au rotor 24 autour des axes de rotation secondaires X2A, X2B, X2C.
Le propulseur 12 comprend aussi trois systèmes de liaisons 36A, 36B, 36C situés dans le logement 26 et reliant respectivement les pignons secondaires 34A, 34B, 34C au pignon central 30 pour convertir un mouvement de rotation du rotor 24 par rapport au carter 22 dans un sens, en des mouvements de rotation des pales 32A, 32B, 32C par rapport au rotor en sens inverse.
Optionnellement, comme représenté sur la figure 3, les propulseurs 12 et 14 comportent un capot 38 fixé sur le carter 22 de manière étanche, afin de permettre une installation des propulseurs dans les ouvertures 16, 18 alors que la plateforme navale 10 flotte sur l’étendue d’eau 20, comme cela sera décrit ultérieurement.
Selon des variantes non représentées, le propulseur 12 comprend un nombre différent de pales, par exemple deux, quatre ou cinq. Le propulseur 12 comprend alors un nombre correspondant de pignons secondaires et de systèmes de liaisons avec le pignon central 30.
Comme visible sur les figures 4 à 6, le carter 22 comprend une première partie 40 annulaire s’étendant perpendiculairement à l’axe de rotation primaire X0, et une deuxième partie 42 définissant un passage 44, par exemple cylindrique, s’étendant selon l’axe de rotation primaire X0. Le carter 22 comprend avantageusement des nervures de rigidification 46.
La deuxième partie 42 s’étend à partir de la première partie 40 selon l’axe de rotation primaire X0 du côté intérieur I défini par la coque 11 .
Le passage 44 est traversé par le rotor 24 selon l’axe de rotation primaire X0 et, dans le logement 26 défini par le rotor, par le système de commande 28.
Les nervures de rigidification 46 s’étendent sensiblement radialement sur la première partie 40 à partir de la deuxième partie 42.
Le rotor 24 présente une forme générale de révolution autour de l’axe de rotation primaire X0. Le rotor 24 comprend une première partie 48 cylindrique aplatie (en forme de boîte de Petri) définissant une partie du logement 26 recevant le pignon central 30 et les systèmes de liaisons 36A, 36B, 36C, et une deuxième partie 50 traversant axialement le passage 44 défini par le carter 22. Le rotor 24 comprend avantageusement une couronne dentée 52 (figure 4) fixée sur la deuxième partie 50 du côté opposé à la première partie 48 selon l’axe de rotation primaire X0.
La couronne dentée 52 est adaptée pour permettre l’entraînement du rotor 24 autour de l’axe de rotation primaire X0 par rapport au carter 22 par des moyens d’entraînement non représentés.
La deuxième partie 50 est montée rotative sur le carter 22 de manière étanche à l’eau.
La première partie 48 se situe du côté extérieur E par rapport au carter 22 selon l’axe de rotation primaire X0. La première partie 48 définit une surface inférieure 54 (figure 6) avantageusement en continuité avec la surface extérieure de la coque 11 .
Les axes de rotation secondaires X2A, X2B, X2C sont répartis angulairement autour de l’axe de rotation primaire X0, avantageusement régulièrement. Donc, dans l’exemple représenté, les axes de rotation secondaires X2A, X2B, X2C forment entre eux des angles d’environ 120°.
Les axes de rotation secondaires X2A, X2B, X2C sont situés à égale distance de l’axe de rotation primaire X0 et se situent respectivement à des distances secondaires E2A, E2B, E2C par rapport à l’axe de pignon central X1, les distances secondaires étant destinées à subir des variations en cas de rotation du rotor 24, du fait de l’écart E1.
Dans les variantes présentant un nombre de pales N, les axes de rotation secondaires forment entre eux des angles de trois cent soixante degrés divisés par N autour de l’axe de rotation primaire X0.
Les pales 32A, 32B, 32C sont par exemple structurellement analogues les unes aux autres. Chacune des pales s’étend par exemple principalement selon l’axe de rotation primaire X0 et définit un bord d’attaque 56 et un bord de fuite 58 (figure 7). Chacune des pales 32A, 32B, 32C définit une orientation D3A, D3B, D3C par rapport au carter 22 respectivement autour des axes de rotation secondaires X2A, X2B, X2C.
Chacune des pales 32A, 32B, 32C présentent par exemple une symétrie par rapport à un plan P (figure 7) passant par le bord d’attaque 56 et le bord de fuite 58.
Le bord d’attaque 56 et le bord de fuite 58 sont par exemple rectilignes et avantageusement parallèles respectivement aux axes de rotation secondaires X2A, X2B, X2C.
Bien entendu, les pales 32A, 32B, 32C peuvent présenter d’autres formes moins simples, par exemple, gauches, dans lesquelles le bord d’attaque 56 et le bord de fuite 58 ne sont pas nécessairement rectilignes. Dans tous les cas, les pales définissent toujours les orientations D3A, D3B, D3C par rapport au carter 22.
Les systèmes de liaisons 36A, 36B, 36C sont adaptés pour que chacune de pales 32A, 32B, 32C fassent un tour par rapport au rotor 24 lorsque le rotor 24 fait un tour par rapport au carter 22. Les systèmes de liaisons 36A, 36B, 36C sont également adaptés pour convertir les variations des distances secondaires E2A, E2B, E2C en fluctuations angulaires des orientations D3A, D3B, D3C autour d’une même direction de cap D1.
Avantageusement, la direction de cap D1 est sensiblement parallèle à la direction d’écart D2.
Les systèmes de liaisons 36A, 36B, 36C et les pales 32A, 32B, 32C sont avantageusement adaptés pour chacune des pales, des droites A passant par un centre C de la pale et perpendiculaire à l’orientation de la pale passent à chaque instant par un point fixe M (figure 9) par rapport au carter 22, le point fixe M est l’axe de rotation primaire X0 définissant ensemble un plan P’ perpendiculaire à la direction de cap D1 .
Les systèmes de liaisons 36A, 36B, 36C sont par exemple structurellement analogues les uns aux autres. Chacun des systèmes de liaisons comprend au moins un engrenage intermédiaire 60A, 60B, 60C définissant un axe intermédiaire X3A, X3B, X3C sensiblement parallèles à l’axe de rotation primaire X0, et un support de maintien 62A, 62B, 62C monté rotatif par rapport au rotor 24 autour de l’un des axes de rotation secondaires X2A, X2B, X2C, l’engrenage intermédiaire étant monté rotatif sur le support de maintien autour de l’axe intermédiaire.
Avantageusement, chacun des systèmes de liaisons 36A, 36B, 36C comporte aussi un organe de maintien 64A, 64B, 64C monté rotatif par rapport au pignon central 30 autour de l’axe de pignon central X1, et par rapport à l’un des pignons intermédiaires 60A, 60B, 60C autour de l’un des axes intermédiaires X3A, X3B, X3C. Dans l’exemple représenté, les engrenages intermédiaires 60A, 60B, 60C engrènent sur le pignon central 30 et sur l’un des pignons secondaires 34A, 34B, 34C respectivement. Les engrenages intermédiaires 60A, 60B, 60C ont par exemple un même plan équatorial P” qui est aussi le plan équatorial du pignon central 30 et des pignons secondaires 32A, 32B, 32C.
Chacun des pignons secondaires 34A, 34B, 34C est respectivement solidaire d’un axe 66A, 66B, 66C d’une des pales 32A, 32B, 32C.
Les axes 66A, 66B, 66C sont montés rotatifs sur deux parois 68, 70 du rotor 24 opposées selon l’axe de rotation primaire X0.
Les supports de maintien 62A, 62B, 62C sont adaptés pour maintenir les axes intermédiaires X3A, X3B, X3C sensiblement parallèles à l’axe de rotation primaire X0, et à distance constante des axes de rotation secondaires X2A, X2B, X2C, afin que les engrenages intermédiaires 60A, 60B, 60C restent en contact mécanique avec les pignons secondaires 34A, 34B, 34C. Les supports de maintien 62A, 62B, 62C sont avantageusement montés respectivement sur le axes 66A, 66B, 66C de part et d’autre des pignons secondaires 32A, 32B, 32C selon les axes de rotation secondaires X2A, X2B, X2C afin d’assurer aux supports de maintien une grande stabilité angulaire par rapport à ces axes.
Les supports de maintien 62A, 62B, 62C sont formés par des coquilles 68A, 68B, 68C entourant partiellement le pignon intermédiaire 60B, 60A, 60C, et totalement les pignons secondaires 34A, 34B, 34C autour de leurs axes respectifs.
Chacune des coquilles 68A, 68B, 68C est par exemple formée par deux plaques 74, 76 sensiblement perpendiculaires à l’axe de rotation primaire X0, et par une paroi latérale 78 sensiblement parallèle à l’axe de rotation primaire X0 et définissant une ouverture 80 par laquelle une partie d’un des engrenages intermédiaires 60A, 60B, 60C sort de la coquille.
Les organes de maintien 64A, 64B, 64C sont adaptés pour maintenir les axes intermédiaires X3A, X3B, X3C à distance constante de l’axe de pignon central X1, de sorte que les engrenages intermédiaires 60A, 60B, 60C restent en contact mécanique avec le pignon central 30. Dans l’exemple représenté, les organes de maintien 64A, 64B, 64C sont respectivement formés par des tiges 82A, 82B, 82C.
Dans l’exemple représenté, les tiges 82A, et 82C sont situées du côté intérieur I par rapport au pignon central 30 selon l’axe de pignon central X1 et la tige 82B est située du côté extérieur E (c’est-à-dire de l’autre côté) par rapport au pignon central 30. Selon des variantes non représentées, dans chacun des systèmes de liaisons 36A, 36B, 36C, il peut exister un ou plusieurs engrenages disposés mécaniquement entre les engrenages intermédiaires 60A, 60B, 60C et les pignons secondaires 34A, 34B, 34C.
De même, selon d’autres variantes non représentées, il peut exister un ou plusieurs engrenages disposés mécaniquement entre les engrenages intermédiaires 60A, 60B, 60C et le pignon central 30.
Dans chacune de ces variantes, le nombre d’engrenages reliant le pignon central 30 à chacun des pignons secondaires 34A, 34B, 34C est impair.
Le système de commande 28 comprend une première partie 84 déplaçable en rotation par rapport au carter 22 autour de l’axe de rotation primaire X0, et une deuxième partie 86 montée mobile en translation par rapport à la première partie dans la direction d’écart D2, le pignon central 30 étant solidaire de cette deuxième partie. Le système de commande 28 comprend aussi une couronne dentée 88 montée sur la première partie 84 autour de l’axe de rotation primaire X0, et un dispositif d’actionnement 90 adapté pour déplacer la deuxième partie 86 en translation par rapport à la première partie 84 selon la direction d’écart D2.
La première partie 84 présente une forme générale sensiblement cylindrique et est reçue dans le logement 44 défini par la deuxième partie 50 du rotor 24. Ainsi, la première partie 84 du système de commande 28 est entourée par la deuxième partie 50 du rotor 24, qui est elle-même entourée par la deuxième partie 42 du carter 22 autour de l’axe de rotation primaire X0.
Le dispositif d’actionnement 90 (figure 6) est par exemple monté rotatif par rapport à la première partie 84 autour d’un axe d’actionnement X4 sensiblement parallèle à l’axe de rotation primaire X0. Le dispositif d’actionnement 90 comprend par exemple une tige 92 s’étendant selon l’axe d’actionnement X4, et deux pignons d’entraînement 94, 96 fixés sur la tige et engrenant sur une crémaillère 98 formée par la deuxième partie 86 du système de commande 28.
Le dispositif de commande 90 comprend aussi un pignon de commande 100 fixé sur la tige 92.
Le pignon de commande 100 est avantageusement situé du côté intérieur I par rapport à la couronne dentée 88 selon l’axe de rotation primaire X0.
Le fonctionnement du propulseur 12 va maintenant être décrit.
Comme visible sur la figure 1 , la plateforme navale 10 avance par exemple selon la direction de cap D1. Chacun des propulseurs 12, 14 reçoit un flux d’eau F1 orienté selon la direction de cap D1 et dirigé en sens contraire de l’avance de la plateforme navale 10. Un moteur (non représenté) de la plateforme navale 10 entraîne le rotor 24 par rapport au carter 22 autour de l’axe de rotation primaire X0 (flèche F2 sur les figures 4, 5, 8 et 9). L’entraînement du rotor 24 est réalisé en agissant sur la couronne dentée 52. Ceci fait tourner les axes secondaires X2A, X2B, X2C autour de l’axe de rotation primaire X0.
Les systèmes de liaisons 36A, 36B, 36C convertissent le mouvement de rotation du rotor 24 par rapport au carter 22 dans le sens F2 en des mouvements de rotation F3A, F3B, F3C (figure 8) des pales 32A, 32B, 32C par rapport au rotor en sens inverse autour des axes de rotation secondaires X2A, X2B, X2C. Lorsque le rotor 24 fait un tour par rapport au carter 22 autour de l’axe de rotation primaire X0 dans le sens F2, les pales font un tour en sens inverse par rapport au rotor 24.
Les axes de rotation secondaires X2A, X2B, X2C restent à distance constante de l’axe de rotation primaire X0. Toutefois, du fait que l’axe de pignon central X1 est décalé de l’écart E1 par rapport à l’axe de rotation primaire X0, les distances secondaires E2A, E2B, E2C entre les axes de rotation secondaires X2A, X2B, X2C et l’axe de pignon central X1 subissent des variations périodiques lorsque le rotor 24 tourne à vitesse angulaire constante.
Le fonctionnement des systèmes de liaisons 36A, 36B, 36C étant analogue, seul celui du système de liaison 36A sera décrit ci-après.
Dans l’exemple, l’engrenage intermédiaire 60A est entraîné en rotation autour de l’axe intermédiaire X3A par rapport au support de maintien 62A directement par le pignon central 30. L’engrenage intermédiaire 60A entraîne directement en rotation le pignon secondaire 34A autour de l’axe secondaire X2A par rapport au rotor 24.
Selon des variantes non représentées, ces entraînements en rotation ne se font pas directement, mais par l’intermédiaire d’autres engrenages disposés entre le pignon central 30 et l’engrenage intermédiaire 60A et/ou entre l’engrenage intermédiaire 60A et le pignon secondaire 34A.
La pale 32A est solidaire du pignon secondaire 34A et est donc entraînée en rotation par rapport au rotor 24. A chaque tour du rotor 24 par rapport au carter 22, la pale 32A retrouve une même orientation D3A par rapport au carter autour de l’axe de rotation secondaire X2A.
Comme visible sur la figure 8, du fait que les distances entre l’axe de pignon central X1 et l’axe intermédiaire X3A, d’une part, et entre l’axe de rotation secondaire X2A et l’axe intermédiaire X3A, d’autre part, sont constantes, et que la distance entre l’axe de rotation secondaire X2A et l’axe de pignon central X1 varie, la configuration du pignon central 30, de l’engrenage intermédiaire 60A et du pignon secondaire 32A les uns par rapport aux autres varient. Ceci a pour effet que la rotation de la pale 32A autour de l’axe secondaire X2A par rapport au rotor 24 n’est pas uniforme et ceci crée des fluctuations angulaires de l’orientation D3A de la pale par rapport au carter 22.
Dans l’exemple représenté, lorsque le pignon intermédiaire 34A se rapproche du pignon central 30, la rotation du pignon secondaire 34A par rapport au rotor 34 se ralentit et l’orientation D3A de la pale 32A se décale angulairement dans un sens par rapport à la direction d’écart D2. Inversement, lorsque le pignon intermédiaire 34A s’éloigne du pignon central 30, l’orientation D3A se décale angulairement dans l’autre sens.
Sur la figure 9, à gauche, on a représenté des positions successives PO à P7 de la pale 32A par rapport au carter 22. A droite de la figure 9, on a représenté le mouvement de la pale 32A par rapport au flux d’eau F1 dans lequel elle réalise un mouvement de godille.
Dans les positions PO et P4, l’orientation D3A de la pale 32A est sensiblement parallèle à la direction d’écart D2. Lorsque la pale 32A passe de la position PO successivement aux positions P1 et P2, la rotation de la pale par rapport au rotor 24 est moins rapide que celle du rotor par rapport au carter et la pale s’incline progressivement par rapport au carter 22, au lieu de conserver une orientation constante. Dans la position P2, la pale présente une inclinaison maximale dans un sens par rapport à la direction d’écart D2.
Puis la pale passe successivement dans les positions P3 et P4. La pale rattrape son retard de rotation par rapport au rotor et son inclinaison par rapport à la direction d’écart D2 diminue progressivement jusqu’à s’annuler dans la position P4.
De la position P4 à la position P6, la rotation de la pale par rapport au rotor continue de prendre de l’avance en comparaison de la rotation du rotor par rapport au carter et la pale s’incline dans l’autre sens par rapport à la direction d’écart D2. Dans la position P6, la pale présente une inclinaison maximale symétrique de celle qu’elle avait dans la position P2.
Entre les positions P6 et PO, la pale perd cette avance et son inclinaison par rapport à la direction d’écart D2 diminue à nouveau jusqu’à s’annuler dans la position PO.
Lorsque l’écart E1 entre l’axe de pignon central X1 et l’axe de rotation primaire X0 est nul, la pale 32A conserve une orientation D3A parallèle à la direction d’écart D2. Plus l’écart E1 est important, plus la pale 32A s’incline par rapport à la direction d’écart D2 dans les positions P2 et P6.
L’inclinaison de la pale 32A dans ces différentes positions est telle que les droites A passent toutes par le point M situé à une distance E3 de l’axe de rotation primaire X0 ; plus l’écart E1 est faible, plus la distance E3 est grande. Lorsque l’écart E1 est nul, la distance E3 est infinie. Les droites A sont alors parallèles entre elles. Les pales présentent alors une orientation fixe par rapport au carter 22.
L’écart E1 est modifiable grâce au système de commande 28. En agissant sur le dispositif de commande 90, on déplace le pignon central 30 en translation par rapport au carter 22 dans la direction d’écart D2. Pour ce faire, dans l’exemple représenté, on entraîne en rotation le pignon de commande 100 par rapport à la première partie 84 du système de commande 28. Ceci déplace en translation la deuxième partie 86 par rapport à la première partie 84 selon la direction d’écart D2. Le pignon central 30, qui est solidaire de la deuxième partie 86, subit le même mouvement de translation. Il est ainsi possible d’augmenter ou de réduire l’écart E1 et de régler l’amplitude du mouvement de godille de chacune des pales 32A à 32C.
Pour modifier la direction de cap D1, qui est aussi la direction d’écart D2 dans l’exemple, on déplace le pignon central 30 en rotation par rapport au carter 22 autour de l’axe de rotation primaire X0. Ceci a pour effet de décaler angulairement la direction d’écart D2 autour de l’axe de rotation primaire X0 par rapport au carter 22. Pour ce faire, on agit sur la couronne dentée 88 pour déplacer la première partie 84 en rotation par rapport au carter 22 autour de l’axe de rotation primaire X0. Ce mouvement de rotation se communique à la deuxième partie 86 et au pignon central 30 qui en est solidaire.
Comme visible sur la figure 3, les propulseurs 12, 14 sont par exemple montés sur la coque 11 alors que le navire flotte sur l’étendue d’eau 20, grâce au capot 38. Le capot 38 protège les parties de chaque propulseur destinées à se situer du côté intérieur I de la coque 11 , notamment une partie du carter 22 et du dispositif de commande 28.
Grâce aux caractéristiques décrites ci-dessus, on obtient le mouvement voulu des pales 32A à 32C, sans aucun mouvement alternatif de translation des pales par rapport au rotor 24 risquant de provoquer une rupture de film d’huile, mais seulement grâce à des rotations continues d’engrenages, de pignons et d’axes. Ainsi, le propulseur 12 présente une durée de vie améliorée.
De plus, grâce au système de commande 28, il est possible de régler facilement l’amplitude des fluctuations de l’orientation des pales, sans avoir à démonter une quelconque partie du propulseur 12 mais seulement, dans l’exemple représenté, en agissant sur le pignon de commande 100.
En outre, grâce au système de commande 28, il est également facile de modifier la direction de cap D1 , par une action sur la roue dentée 88.

Claims

REVENDICATIONS
1. Propulseur (12) pour plateforme navale (10), comprenant :
- un carter (22) adapté pour être fixé sur la plateforme navale (10),
- un rotor (24) monté rotatif sur le carter (22) autour d’un axe de rotation primaire (X0), le rotor (24) définissant un logement (26),
- un pignon central (30) situé dans le logement (26) et définissant un axe de pignon central (X1) sensiblement parallèle à l’axe de rotation primaire (X0), l’axe de rotation primaire (X0) et l’axe de pignon central (X1) définissant entre eux un écart (E1) dans une direction d’écart (D2) sensiblement perpendiculaire à l’axe de rotation primaire (X0),
- une pluralité de pales (32A, 32B, 32C) mobiles en rotation par rapport au rotor (24) respectivement autour d’une pluralité d’axes de rotation secondaires (X2A, X2B, X2C) sensiblement parallèles à l’axe de rotation primaire (X0), les axes de rotation secondaires (X2A, X2B, X2C) se situant respectivement à des distances secondaires (E2A, E2B, E2C) par rapport à l’axe de pignon central (X1), les distances secondaires (E2A, E2B, E2C) étant destinées à subir des variations en cas de rotation du rotor (24),
- une pluralité de pignons secondaires (34A, 34B, 34C) respectivement solidaires des pales (32A, 32B, 32C), et montés rotatifs dans le logement (26) par rapport au rotor (24) autour des axes de rotation secondaires (X2A, X2B, X2C), et
- une pluralité de systèmes de liaison (36A, 36B, 36C) situés dans le logement (26) et reliant respectivement les pignons secondaires (34A, 34B, 34C) au pignon central (30) pour convertir un mouvement de rotation du rotor (24) par rapport au carter (22) dans un sens, en des mouvements de rotation des pales (32A, 32B, 32C) par rapport au rotor (24) en sens inverse, chacune des pales (32A, 32B, 32C) définissant une orientation (D3A, D3B, D3C) par rapport au carter (22) autour d’un des axes de rotation secondaire (X2A, X2B, X2C), les systèmes de liaison (36A, 36B, 36C) étant adaptés pour que chacune des pales (32A, 32B, 32C) fasse un tour par rapport au rotor (24) lorsque le rotor (24) fait un tour par rapport au carter (22), et pour convertir lesdites variations des distances secondaires (E2A, E2B, E2C) en fluctuations angulaires des orientations (D3A, D3B, D3C) autour d’une même direction de cap (D1), chacun des systèmes de liaison (36A, 36B, 36C) comprenant au moins un engrenage intermédiaire (60A, 60B, 60C) définissant un axe intermédiaire (X3A, X3B, X3C) sensiblement parallèle à l’axe de rotation primaire (X0), et un support de maintien monté rotatif par rapport au rotor (24) autour de l’un des axes de rotation secondaires (X2A, X2B, X2C), l’engrenage intermédiaire (60A, 60B, 60C) étant monté rotatif sur le support de maintien (62A, 62B, 62C) autour de l’axe intermédiaire (X3A, X3B, X3C).
2. Propulseur (12) selon la revendication 1 , dans lequel les pales (32A, 32B, 32C) sont analogues les unes aux autres, et dans lequel, en cas de rotation du rotor (24), pour chacune des pales (32A, 32B, 32C), des droites (A) passant par un centre (O) de chacune des pales (32A, 32B, 32C) et perpendiculaires à l’orientation (D3A, D3B, D3C) de chacune des pales (32A, 32B, 32C) passent à chaque instant par un point (M) fixe par rapport au carter (22), le point (M) et l’axe de rotation primaire (X0) définissant ensemble un plan (P) perpendiculaire à la direction de cap (D1).
3. Propulseur (12) selon la revendication 1 ou 2, dans lequel la direction de cap (D1 ) est sensiblement parallèle à la direction d’écart (D2).
4. Propulseur (12) selon l’une quelconque des revendications 1 à 3, dans lequel l’engrenage intermédiaire (60A, 60B, 60C) engrène directement sur le pignon central (30) et sur l’un des pignons secondaires (34A, 34B, 34C), le pignon central (30) et chacun des pignons secondaires (34A, 34B, 34C) ayant un même nombre de dents.
5. Propulseur (12) selon l’une quelconque des revendications 1 à 4, dans lequel chacun des systèmes de liaison (36A, 36B, 36C) comprend un organe de maintien (64A, 64B, 64C) monté rotatif par rapport au pignon central (30) autour de l’axe de pignon central (X1), et par rapport l’un des engrenages intermédiaires (60A, 60B, 60C) autour de l’un des axes intermédiaires (X3A, X3B, X3C).
6. Propulseur (12) selon la revendication 5, dans lequel l’organe de maintien (64A, 64B, 64C) comprend une tige (82A, 82B, 82C) s’étendant entre l’axe de rotation primaire (X0) et l’axe intermédiaire (X3A, X3B, X3C), et le support de maintien (62A, 62B, 62C) comprend une coquille (68A, 68B, 68C) entourant partiellement l’engrenage intermédiaire (60A, 60B, 60C), et au moins partiellement l’un des pignons secondaires (34A, 34B, 34C).
7. Propulseur (12) selon l’une quelconque des revendications 1 à 6, comprenant en outre un système de commande (28) comprenant le pignon central (30), le système de commande (28) étant déplaçable en rotation par rapport au carter (22) autour de l’axe de rotation primaire (X0) pour déplacer angulairement la direction de cap (D1 ) par rapport au carter (22), le système de commande (28) comprenant un pignon de commande (100). 15
8. Propulseur (12) selon la revendication 7, dans lequel le système de commande (28) comprend une première partie (84) déplaçable en rotation par rapport au carter (22) autour de l’axe de rotation primaire (X0), et une deuxième partie (86) montée mobile en translation par rapport à la première partie (84) dans la direction d’écart (D2), le pignon central (30) étant solidaire de la deuxième partie (86).
9. Propulseur (12) selon la revendication 8, comprenant en outre dispositif d’actionnement (90) monté rotatif par rapport à la première partie (84) autour d’un axe d’actionnement (X4) sensiblement parallèle à l’axe de rotation primaire (X0), le dispositif d’actionnement (90) comprenant une tige (92) s’étendant selon l’axe d’actionnement (X4), et au moins un pignon d’entraînement (94) fixé sur la tige (92) et engrenant sur au moins une crémaillère (98) de la deuxième partie (86) du système de commande (28).
10. Plateforme navale (10) équipée d’au moins un propulseur (12) selon l’une quelconque des revendications 1 à 9.
PCT/EP2021/076225 2020-09-24 2021-09-23 Propulseur trochoïdal pour application navale WO2022063910A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2009715 2020-09-24
FR2009715A FR3114297B1 (fr) 2020-09-24 2020-09-24 Propulseur trochoïdal pour application navale

Publications (1)

Publication Number Publication Date
WO2022063910A1 true WO2022063910A1 (fr) 2022-03-31

Family

ID=74668910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/076225 WO2022063910A1 (fr) 2020-09-24 2021-09-23 Propulseur trochoïdal pour application navale

Country Status (2)

Country Link
FR (1) FR3114297B1 (fr)
WO (1) WO2022063910A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007189A1 (fr) 1990-10-15 1992-04-30 Robert Edmond Lipp Dispositif d'orientation des pales d'un rotor dans un flux transversal de fluide et application de celui-ci
FR2789048A1 (fr) * 1999-02-01 2000-08-04 Robert Edmond Lipp Propulseur cycloides dont la forme et l'orientation des poles sont modifies elastiquement par les poussees hydrauliques

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007189A1 (fr) 1990-10-15 1992-04-30 Robert Edmond Lipp Dispositif d'orientation des pales d'un rotor dans un flux transversal de fluide et application de celui-ci
FR2789048A1 (fr) * 1999-02-01 2000-08-04 Robert Edmond Lipp Propulseur cycloides dont la forme et l'orientation des poles sont modifies elastiquement par les poussees hydrauliques

Also Published As

Publication number Publication date
FR3114297A1 (fr) 2022-03-25
FR3114297B1 (fr) 2023-05-05

Similar Documents

Publication Publication Date Title
EP1611007B1 (fr) Propulseur retractable par rotation
EP2877738B1 (fr) Machine tournante a rotor fluidique a pales orientables
EP2526321B1 (fr) Reducteur de vitesse et mecanisme de transmission comprenant un tel reducteur pour piloter un aeronef
FR3049572B1 (fr) Systeme de commande de pas d'helice
EP3283366B1 (fr) Propulseur pour un bateau
FR3046440B1 (fr) Module de soufflante a aubes a calage variable pour une turbomachine
EP3853118B1 (fr) Eolienne flottante à position en lacet pilotable
WO2016131850A1 (fr) Système de stabilisation d'un navire
EP3212498B1 (fr) Perfectionnements aux machines tournantes à rotor fluidique à pales orientables
FR2983535A1 (fr) Hydrolienne
WO2022063910A1 (fr) Propulseur trochoïdal pour application navale
EP2767794B1 (fr) Projectile à gouvernes orientables et procédé de commande des gouvernes d'un tel projectile
WO2021205414A2 (fr) Perfectionnements aux rotors fluidiques à pales orientables
WO2017118793A1 (fr) Module de soufflante a aubes a calage variable pour une turbomachine
EP1451066B1 (fr) Boite de transmission basculante a liaison pivotante a paliers lisses
EP4367021A1 (fr) Dispositif de direction a pivot vertical et appareil de propulsion de bateau comprenant celui-ci
FR3026716A1 (fr) Gouvernail a hydrogenerateur integre et navire comportant un tel gouvernail
FR2590045A1 (fr) Dispositif d'auto-orientation d'un element profile-aile, pale, aube, voilure pour une poussee optimale par controle automatique de son equilibre dans le flux d'un fluide
EP3976463B1 (fr) Helice a pas variable automatique
EP2322420B1 (fr) Véhicule naval de surface à bras instrumenté pivotant.
EP1712787B1 (fr) Machine hydraulique à pistons axiaux avec système de synchronisation
EP3296200B1 (fr) Systeme mecanique de transmission d'un mouvement et aeronef equipe d'un systeme correspondant
WO2015028726A1 (fr) Transmission a variation continue avec recirculation de puissance
WO2023047383A1 (fr) Rotor a pales orientables
EP4204299A1 (fr) Dispositif d'entrainement en battement d'un plan porteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782537

Country of ref document: EP

Kind code of ref document: A1