WO2022063088A1 - 传输方法、终端设备及网络侧设备 - Google Patents

传输方法、终端设备及网络侧设备 Download PDF

Info

Publication number
WO2022063088A1
WO2022063088A1 PCT/CN2021/119382 CN2021119382W WO2022063088A1 WO 2022063088 A1 WO2022063088 A1 WO 2022063088A1 CN 2021119382 W CN2021119382 W CN 2021119382W WO 2022063088 A1 WO2022063088 A1 WO 2022063088A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
demodulation reference
dmrs port
signal dmrs
rule
Prior art date
Application number
PCT/CN2021/119382
Other languages
English (en)
French (fr)
Inventor
李岩
王飞
郑毅
柯颋
刘建军
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2022063088A1 publication Critical patent/WO2022063088A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a transmission method, a terminal device, and a network side device.
  • the network-side device demodulates the Physical Uplink Shared Channel (PUSCH) based on the channel estimation result of the demodulation reference signal (Demodulation Reference Signal, DMRS).
  • the network-side device can send downlink control information (Downlink Control Information, DCI) in a specific format to the terminal-side device in the Physical Downlink Control Channel (PDCCH).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • a terminal device In a multi-transmission reception point (Multi-Transmission Reception Point, Multi-TRP) communication scenario, a terminal device simultaneously transmits data with multiple TRPs. As shown in FIG. 1 and FIG. 2 , the terminal device is connected to TRP1 and TRP2 at the same time, and the terminal device sends multiple PUSCHs to TRP1 and TRP2 based on the received DCI-0.
  • the parameters adopted by the PUSCH are determined based on the channel qualities of different TRPs respectively. In this way, when the parameters such as the codebook and the number of streams of the PUSCH determined based on the channels of multiple TRPs are different, the DMRS ports used by the PUSCH are different.
  • the purpose of the present disclosure is to provide a transmission method, a terminal device and a network side device to solve the problem of reducing DCI overhead.
  • the present disclosure provides a transmission method for a terminal device, the method comprising:
  • downlink control information DCI sent by a network side device, where the downlink control information DCI includes an antenna port indication field, where the antenna port indication field is used to indicate a demodulation reference signal DMRS port set;
  • the first physical uplink shared channel PUSCH adopts the first demodulation reference signal DMRS port set indicated by the antenna port indication field, and the first physical uplink shared channel PUSCH
  • the second demodulation reference signal DMRS port set used by the two physical uplink shared channels PUSCH is a subset of the first demodulation reference signal DMRS port set.
  • the first physical uplink shared channel PUSCH and the at least one second physical uplink shared channel PUSCH are physical uplink shared channels PUSCH transmitted repeatedly.
  • the rank of the second physical uplink shared channel PUSCH is less than or equal to the rank of the first physical uplink shared channel PUSCH.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following information: the time domain position of the demodulation reference signal DMRS port, the frequency domain position of the demodulation reference signal DMRS port, and the demodulation reference signal DMRS port.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following rules:
  • the first rule is to select demodulation reference signal DMRS ports located in different symbols from the first demodulation reference signal DMRS port set;
  • the second rule from the first set of demodulation reference signal DMRS ports, select a demodulation reference signal DMRS port located in the same frequency domain RE;
  • the third rule is to select the demodulation reference signal DMRS port located in the same code division multiplexing CDM group from the first demodulation reference signal DMRS port set;
  • the fourth rule From the first set of demodulation reference signal DMRS ports, select the demodulation reference signal DMRS ports in descending order of port numbers.
  • the priority of the first rule is the highest
  • the priority of the fourth rule is the lowest
  • the priorities of the second rule and the third rule are between the priority of the first rule and the priority of the fourth rule. between levels.
  • the present disclosure also provides a transmission method for a network side device, the method comprising:
  • downlink control information DCI includes an antenna port indication field, where the antenna port indication field is used to indicate a demodulation reference signal DMRS port set;
  • At least one second physical uplink shared channel PUSCH is received at a second demodulation reference signal DMRS port set, where the second demodulation reference signal DMRS port set is a subset of the first demodulation reference signal DMRS port set.
  • the first physical uplink shared channel PUSCH and the at least one second physical uplink shared channel PUSCH are physical uplink shared channels PUSCH transmitted repeatedly.
  • the rank of the second physical uplink shared channel PUSCH is less than or equal to the rank of the first physical uplink shared channel PUSCH.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following information: the time domain position of the demodulation reference signal DMRS port, the frequency domain position of the demodulation reference signal DMRS port, and the demodulation reference signal DMRS port.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following rules:
  • the first rule is to select demodulation reference signal DMRS ports located in different symbols from the first demodulation reference signal DMRS port set;
  • the second rule from the first set of demodulation reference signal DMRS ports, select a demodulation reference signal DMRS port located in the same frequency domain RE;
  • the third rule is to select the demodulation reference signal DMRS port located in the same code division multiplexing CDM group from the first demodulation reference signal DMRS port set;
  • the fourth rule From the first set of demodulation reference signal DMRS ports, select the demodulation reference signal DMRS ports in descending order of port numbers.
  • the priority of the first rule is the highest
  • the priority of the fourth rule is the lowest
  • the priorities of the second rule and the third rule are between the priority of the first rule and the priority of the fourth rule. between levels.
  • an embodiment of the present disclosure further provides another transmission method for a terminal device, the method includes:
  • Receive downlink control information DCI sent by the network side device where the downlink control information DCI includes N antenna port indication fields, where the N antenna port indication fields are used to indicate N sets of demodulation reference signal DMRS ports; the N is an integer greater than 1;
  • the N physical uplink shared channels PUSCH are respectively sent by using the N demodulation reference signal DMRS port sets.
  • an embodiment of the present disclosure further provides another transmission method for a network side device, the method comprising:
  • the downlink control information DCI includes N antenna port indication fields, where the N antenna port indication fields are used to indicate N sets of demodulation reference signal DMRS ports; the N is an integer greater than 1;
  • the N physical uplink shared channels PUSCH are respectively received in the N demodulation reference signal DMRS port sets.
  • an embodiment of the present disclosure further provides a terminal device, including a memory, a processor, and a computer program stored on the memory and running on the processor; the processor implements the program when the processor executes the program.
  • a terminal device including a memory, a processor, and a computer program stored on the memory and running on the processor; the processor implements the program when the processor executes the program.
  • an embodiment of the present disclosure further provides a network-side device, including a memory, a processor, and a computer program stored on the memory and running on the processor; when the processor executes the program
  • the transmission method corresponding to the network side device provided by the present disclosure is implemented.
  • an embodiment of the present disclosure further provides a readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the network-side device or terminal device provided by the present disclosure corresponds to steps in the transfer method.
  • the terminal determines the DMRS port sets corresponding to multiple PUSCHs through an antenna port indication field. Compared with the one-to-one correspondence between the antenna port indication field and the DMRS port set in the related art, DCI overhead can be reduced.
  • FIG. 1 is a schematic diagram of information transmission between a terminal device and a network-side device provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of PUSCH transmission in the time domain provided by an embodiment of the present disclosure
  • FIG. 4 is one of the flowcharts of the transmission method of the network side device provided by the embodiment of the present disclosure.
  • FIG. 5 is the second flowchart of the transmission method of the terminal device provided by the embodiment of the present disclosure.
  • FIG. 6 is the second flowchart of the transmission method of the network side device provided by the embodiment of the present disclosure.
  • FIG. 7 is one of the structural diagrams of a terminal device provided by an embodiment of the present disclosure.
  • FIG. 8 is one of the structural diagrams of a network side device provided by an embodiment of the present disclosure.
  • FIG. 9 is a second structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • FIG. 10 is a second structural diagram of a network side device provided by an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a transmission method provided by an embodiment of the present disclosure, and the method is applied to a terminal device. As shown in Figure 3, it includes the following steps:
  • Step 301 Receive a DCI (Downlink Control Information, downlink control information) sent by a network side device, where the DCI includes an antenna port indication field, and the antenna port indication field is used to indicate a DMRS (Demodulation Reference Signal, demodulation reference signal) port gather.
  • DCI Downlink Control Information, downlink control information
  • the antenna port indication field is used to indicate a DMRS (Demodulation Reference Signal, demodulation reference signal) port gather.
  • DMRS Demodulation Reference Signal
  • the network side device sends DCI to the terminal device, and after receiving the DCI, the terminal device obtains the DMRS port set indicated by the antenna port indication field in the DCI, and uses the DMRS port set to send the PUSCH.
  • At least one antenna port indication field may be included in the DCI, and each antenna port indication field is used to indicate a DMRS port set.
  • the set of DMRS ports indicated by the antenna port indication field can be referred to as shown in Table 1 to Table 18.
  • Step 302 Send a first PUSCH and at least one second PUSCH; the first PUSCH adopts the first DMRS port set indicated by the antenna port indication field, and the second DMRS port set adopted by the second PUSCH is the first DMRS port set. A subset of the DMRS port set.
  • the terminal device may first determine a first DMRS port set according to the antenna port indication field, the first DMRS port set corresponds to the first PUSCH, and further determine a second DMRS port set based on the first DMRS port set, where the second DMRS port set is the first DMRS port set.
  • a subset of a DMRS port set, the second DMRS port set corresponds to at least one second PUSCH.
  • the subset of the first DMRS port set may include the proper subset and the port set itself.
  • the rank of the second PUSCH is smaller than the rank of the first PUSCH; when the second DMRS port set is the set itself of the first DMRS port set, the first PUSCH and The rank of the second PUSCH is the same, that is, the second DMRS port set is the same as the first DMRS port set.
  • the terminal determines the DMRS port sets corresponding to multiple PUSCHs through an antenna port indication field. Compared with the one-to-one correspondence between the antenna port indication field and the DMRS port set in the related art, DCI overhead can be reduced.
  • the first PUSCH and at least one second PUSCH are repeatedly transmitted PUSCH.
  • the terminal device sends the repeatedly transmitted first PUSCH and at least one second PUSCH to multiple TRPs, which can improve the reliability of PUSCH transmission.
  • the DMRS port sets of multiple PUSCHs are determined based on at least one indication field in the DCI, which can reduce overhead and improve the flexibility of indication.
  • the rank of the second PUSCH is less than or equal to the rank of the first PUSCH.
  • the second DMRS port set used by the second PUSCH is a subset determined based on the first DMRS port set used by the first PUSCH, and in the case where the second DMRS port set is a proper subset of the first DMRS port set In this case, the rank of the second PUSCH is smaller than the rank of the first PUSCH; in the case that the second DMRS port set is the set itself of the first DMRS port set, the rank of the second PUSCH is equal to the rank of the first PUSCH.
  • the first DMRS port set used by the first PUSCH is ⁇ 0,1,2,3 ⁇
  • the second DMRS port set used by the second PUSCH is a subset determined based on the set ⁇ 0,1,2,3 ⁇ : ⁇ 0,1,2 ⁇ , ⁇ 0,1 ⁇ , ⁇ 1,2,3 ⁇ , or ⁇ 0,1,2,3 ⁇ .
  • the DMRS table used and the number of bits of the antenna port in the DCI may be determined according to the larger rank of the rank of the first PUSCH and the rank of the second PUSCH, And the DMRS port used by the PUSCH with the larger rank is indicated in the DCI, and the DMRS port corresponding to the PUSCH with the smaller rank is a subset of the DMRS ports indicated in the DCI.
  • the DMRS port sets of multiple PUSCHs can be indicated without increasing the size of the DCI or increasing the small number of bits of the DCI, which can reduce overhead and improve resource utilization.
  • the second DMRS port set can also be determined according to at least one of the following information: the time domain position of the DMRS port, the frequency domain position of the DMRS port, and the CDM (Code Division Multiplexing, code division multiplexing) to which the DMRS port belongs. ) group and the port number of the DMRS port.
  • the second DMRS port set may be determined based on one or more of the time domain position of the DMRS port, the frequency domain position of the DMRS port, the CDM group to which the DMRS port belongs, and the port number of the DMRS port.
  • DMRS ports in the same time domain position select a set of DMRS ports with a smaller port number as the second DMRS port set; or in the DMRS ports in the same time domain position, select the DMRS ports with the same frequency domain position as the second DMRS port set.
  • Two DMRS port sets select a set of DMRS ports with a smaller port number as the second DMRS port set; or in the DMRS ports in the same time domain position.
  • Determining the second DMRS port set according to the above information can save resources and improve the transmission power of the DMRS.
  • the second DMRS port set is determined according to at least one of the following rules:
  • the first rule is to select DMRS ports located in different symbols from the first set of DMRS ports.
  • the time-frequency resource positions allocated to the DMRS are the same. If the DMRS of the PUSCH with a large number of ranks occupies more symbols, while the DMRS of the PUSCH with a small number of ranks only occupy the symbols Less, it will lead to waste of resources. Therefore, in this rule, the DMRS ports can be classified according to the symbols occupied by the DMRS ports, and a subset composed of DMRS ports located in different symbols can be selected as the second DMRS port set, thereby reducing the waste of resources.
  • the subset ⁇ 0, 2 ⁇ Since ports 0, 2 are located in the first symbol in the time domain, and ports 4 and 6 are located in the second symbol in the time domain, if the subset ⁇ 0, 2 ⁇ is used as the second DMRS port set, only one symbol will be occupied, resulting in resource Therefore, the subset ⁇ 0,4 ⁇ can be used as the second DMRS port set, and the subset ⁇ 0,4 ⁇ occupies 2 symbols, which can reduce the waste of resources, and can improve the transmit power of DMRS on each symbol .
  • the second rule is to select DMRS ports located in the same frequency domain RE (Resource Element, resource unit) from the first DMRS port set.
  • the second DMRS port set is determined according to this rule, and the transmission power of the DMRS can be increased by means of power boosting.
  • the second DMRS port set may also be jointly determined in combination with the time domain position and the frequency domain position where the DMRS port is located. For example, for the DMRS ports with the same time domain position, further classification is performed according to the frequency domain position where the DMRS is located, and a subset formed by the DMRS ports with the same frequency domain position is preferentially selected as the second DMRS port set.
  • the third rule is to select DMRS ports located in the same CDM group from the first DMRS port set.
  • the second DMRS port set is determined according to this rule, and the transmission power of the DMRS can be increased by means of power boosting.
  • the DMRS ports with the same time domain location may be further classified according to the CDM group in which the DMRS ports are located, and the DMRS ports in the same CDM group may be preferentially selected to form a subset as the second DMRS port set.
  • the fourth rule From the first DMRS port set, select DMRS ports in descending order of port numbers.
  • the DMRS ports in the first DMRS port set may be sorted in ascending order, and the set of DMRS ports with smaller port numbers is preferentially selected as the second DMRS port set.
  • a DMRS port set with a smaller port number may be further selected as the second DMRS port set.
  • any one of the above rules may be selected, or the above rules may be determined in combination.
  • the priority of the first rule is the highest
  • the priority of the fourth rule is the lowest
  • the priorities of the second rule and the third rule are between the priority of the first rule and the priority of the fourth rule. between levels.
  • the second DMRS port set may be determined according to the priority order of the above rules.
  • the second DMRS port set can also be determined according to the following steps in combination with the above-mentioned multiple rules and the priority order of the above-mentioned rules:
  • Step 1 Classify according to the time domain positions occupied by the DMRS ports, and preferentially select DMRS ports in different time domain positions to form subsets. In the case that the condition of step 1 does not exist, it can also be determined according to step 2 or step 3.
  • Step 2 for the DMRS ports with the same time domain position, further classify according to the CDM group where the DMRS ports are located (or the frequency domain resources where they are located), and preferentially select the DMRS ports located in the same CDM group (or the same frequency domain resources) to form a sub-component. set.
  • Step 3 For the DMRS ports located in the same CDM group (or the same frequency domain resources) at the same time domain location, further classify the DMRS ports according to the size of the DMRS port numbers, and preferentially select the DMRS ports with the smaller port numbers.
  • N DMRS ports may be selected, where N is a rank corresponding to a PUSCH with a smaller rank number.
  • the UE selects two DMRS ports located in different time domain positions according to the time domain positions, that is, one of ⁇ 0,2 ⁇ and one of ⁇ 4,6 ⁇ are selected respectively. If the condition of the first step does not hold, a set of DMRS ports with the same time domain location and the same frequency domain resource can be obtained, that is, the second step is performed.
  • the second step since the frequency domain positions of port numbers 0 and 2 with the same time domain position are different, and the frequency domain positions of 4 and 6 with the same time domain position are different, the second step can no longer reduce the set; the condition in the second step does not hold , you can also perform the third step.
  • Determining the second DMRS port set according to the above priority order can utilize the limited space of DCI to flexibly determine DMRS port sets of multiple PUSCHs, save DCI overhead, and improve DMRS transmit power.
  • the terminal device may also determine the second DMRS port set from the first DMRS port set according to the following rules.
  • the terminal device sends the repeatedly transmitted first PUSCH and second PUSCH to 2 TRPs. If the DCI indicates that the first DMRS port set used by the first PUSCH is ⁇ 0,1,2,3 ⁇ , the second DMRS port set used by the second PUSCH can select ports from the set ⁇ 0,1,2,3 ⁇ The subset with the smallest port number, that is, ⁇ 0,1 ⁇ , or the subset with the largest port number, that is, ⁇ 2,3 ⁇ , can be selected from the set ⁇ 0,1,2,3 ⁇ .
  • the first DMRS port set may be sorted according to the size of the port numbers, and then the first K are selected to form a subset, where K is the rank corresponding to the PUSCH with a smaller rank number.
  • the ranks of the two PUSCHs sent by the terminal device are 4 and 2 respectively, wherein the DCI indicates that the DMRS port set of the PUSCH with rank 4 is ⁇ 0, 1, 2, 3 ⁇ , and the terminal device selects the subset with the smallest port number , the DMRS port set of the PUSCH with rank 2 is determined to be ⁇ 0, 1 ⁇ .
  • the terminal device sends the repeatedly transmitted first PUSCH and second PUSCH to 2 TRPs.
  • the DCI indicates that the first DMRS port set used by the first PUSCH is ⁇ 0, 2, 4, 6 ⁇
  • the second DMRS port set used by the second PUSCH can be randomly selected from the set ⁇ 0, 2, 4, 6 ⁇ , when the rank of the second PUSCH is 3, the obtained port set may be ⁇ 0,2,4 ⁇ , ⁇ 0,2,6 ⁇ , ⁇ 2,4,6 ⁇ or ⁇ 0,4,6 ⁇ .
  • the second DMRS port set can also use the following The rules determine:
  • Rule 3 Determine based on at least one of the two port sets indicated by the antenna port indication field
  • the first port sets adopted by the two first PUSCHs sent by the terminal device are the two port sets ⁇ 0, 1, 2, 3 ⁇ and ⁇ 0, 2, 4, 6 ⁇ indicated by the DCI, and the two second port sets
  • the second DMRS port set used by the PUSCH may obtain two subsets based on at least one set of ⁇ 0, 1, 2, 3 ⁇ and ⁇ 0, 2, 4, 6 ⁇ . Then the second DMRS port set can be determined in the following ways:
  • Rule 4 Determine based on one of the three port sets indicated by the antenna port indication field
  • the DMRS port set used by one PUSCH is ⁇ 0, 1, 2, 3 ⁇ indicated by the DCI
  • the second DMRS port set used by one PUSCH can be based on ⁇ 0, 1, 2,3 ⁇ Get subset determination.
  • the DMRS port sets of the remaining two PUSCHs may also be directly indicated and determined by the DCI.
  • the DMRS ports of multiple PUSCHs are respectively indicated.
  • the number of bits is increased in DCI, since the number of antenna indication fields is smaller than the number of PUSCH, the size of DCI can be saved and overhead can be reduced.
  • the terminal device can determine at least two DMRS port sets according to the DMRS port set indicated by the indication field. In this way, when PUSCH is scheduled for transmission, a limited DCI size can be used to indicate multiple PUSCHs.
  • the set of DMRS ports can reduce the overhead of DCI.
  • FIG. 4 is a flowchart of a transmission method provided by an embodiment of the present disclosure.
  • the transmission method is applied to a network side device, as shown in FIG. 4, including the following steps:
  • Step 401 Send downlink control information DCI, where the DCI includes an antenna port indication field, and the antenna port indication field is used to indicate a DMRS port set.
  • Step 402 Receive the first PUSCH at the first DMRS port set indicated by the antenna port indication field.
  • Step 403 Receive at least one second PUSCH at a second DMRS port set, which is a subset of the first DMRS port set.
  • the embodiments of the present disclosure and the above-mentioned embodiments are transmission methods implemented from the terminal device side and the network device side respectively. Therefore, for the implementation process and beneficial effects of the transmission method corresponding to the network-side device in the embodiments of the present disclosure, reference may be made to the above-mentioned embodiments. description, which will not be repeated here.
  • the DCI may include at least one antenna port indication field, indicating the first DMRS port set corresponding to the first PUSCH, and the terminal device may also determine the second DMRS port set corresponding to the second PUSCH according to the first DMRS port set, wherein, The second set of DMRS ports is a subset of the first set of DMRS ports. In this way, the terminal determines the DMRS port sets corresponding to multiple PUSCHs through one antenna port indication field, which can reduce DCI overhead compared to the one-to-one correspondence between the antenna port indication fields and the DMRS port sets in the related art.
  • the first PUSCH and at least one second PUSCH are repeatedly transmitted PUSCH.
  • the information delay caused by some TRPs when the transmission environment is poor can be reduced, and the reliability of PUSCH transmission can be improved.
  • the rank of the second PUSCH is less than or equal to the rank of the first PUSCH.
  • the second DMRS port set used by the second PUSCH is a subset determined based on the first DMRS port set used by the first PUSCH, and the second DMRS port set is a proper subset of the first DMRS port set or the set itself .
  • the DMRS table used and the number of bits of the antenna port in the DCI may be determined according to the larger rank of the rank of the first PUSCH and the rank of the second PUSCH, And the DMRS port used by the PUSCH with the larger rank is indicated in the DCI, and the DMRS port corresponding to the PUSCH with the smaller rank is a subset of the DMRS ports indicated in the DCI.
  • a set of DMRS ports of multiple PUSCHs can be indicated without increasing the size of the DCI or when the number of bits of the increased DCI is small, which can reduce overhead and improve resource utilization.
  • the second DMRS port set may also be determined according to at least one of the following information: the time domain position of the DMRS port, the frequency domain position of the DMRS port, the CDM group to which the DMRS port belongs, and the port number of the DMRS port.
  • the second DMRS port set may be determined based on one or more of the time domain position of the DMRS port, the frequency domain position of the DMRS port, the CDM group to which the DMRS port belongs, and the port number of the DMRS port.
  • DMRS ports in the same time domain position select a set of DMRS ports with a smaller port number as the second DMRS port set; or in the DMRS ports in the same time domain position, select the DMRS ports with the same frequency domain position as the second DMRS port set.
  • Two DMRS port sets select a set of DMRS ports with a smaller port number as the second DMRS port set; or in the DMRS ports in the same time domain position.
  • the second DMRS port set is determined according to at least one of the following rules:
  • the first rule is to select DMRS ports located in different symbols from the first set of DMRS ports.
  • classification can be performed according to the symbols occupied by the DMRS ports, and a subset formed by DMRS ports located in different symbols is selected as the second DMRS port set, thereby reducing waste of resources.
  • the second rule is to select DMRS ports located in the same frequency domain RE from the first DMRS port set.
  • the second DMRS port set is determined according to this rule, and the transmission power of the DMRS can be increased by means of power boosting.
  • the second DMRS port set may also be jointly determined in combination with the time domain position and the frequency domain position where the DMRS port is located. For example, for DMRS ports with the same time domain position, further classification is performed according to the frequency domain position where the DMRS is located, and a subset of DMRS ports with the same frequency domain position is preferentially selected as the second DMRS port set, which can improve the transmit power of the DMRS.
  • the third rule is to select DMRS ports located in the same CDM group from the first DMRS port set.
  • the second DMRS port set is determined according to this rule, and the transmission power of the DMRS can be increased by means of power boosting.
  • the fourth rule From the first DMRS port set, select DMRS ports in descending order of port numbers.
  • the DMRS ports in the first DMRS port set may be sorted in ascending order, and the set of DMRS ports with smaller port numbers is preferentially selected as the second DMRS port set.
  • a DMRS port set with a smaller port number may be further selected as the second DMRS port set.
  • any one of the above rules may be selected, or the above rules may be determined in combination.
  • the priority of the first rule is the highest
  • the priority of the fourth rule is the lowest
  • the priorities of the second rule and the third rule are between the priority of the first rule and the priority of the fourth rule. between levels.
  • the second DMRS port set may be determined according to the priority order of the above rules.
  • the second DMRS port set can also be determined according to the following steps in combination with the above-mentioned multiple rules and the priority order of the above-mentioned rules:
  • Step 1 Classify according to the time domain positions occupied by the DMRS ports, and preferentially select DMRS ports in different time domain positions to form subsets. If the condition of step 1 is not established, it can be determined according to step 2 or step 3.
  • Step 2 for the DMRS ports with the same time domain position, further classify according to the CDM group where the DMRS ports are located (or the frequency domain resources where they are located), and preferentially select the DMRS ports located in the same CDM group (or the same frequency domain resources) to form a sub-component. set.
  • Step 3 For the DMRS ports located in the same CDM group (or the same frequency domain resources) at the same time domain location, further classify the DMRS ports according to the size of the DMRS port numbers, and preferentially select the DMRS ports with the smaller port numbers.
  • N DMRS ports may be selected, where N is a rank corresponding to a PUSCH with a smaller rank number.
  • the terminal device may also determine the second DMRS port set according to the following rules, such as selection according to the size of the port number, random selection, and selection based on one or more of multiple port sets.
  • the following rules such as selection according to the size of the port number, random selection, and selection based on one or more of multiple port sets.
  • the network side device can use the limited space size of DCI to flexibly indicate the DMRS port sets of various PUSCHs, which can save overhead.
  • FIG. 5 is a flowchart of a transmission method provided by an embodiment of the present disclosure.
  • the transmission method is applied to a terminal device, as shown in FIG. 5, including the following steps:
  • Step 501 Receive downlink control information DCI sent by a network side device, where the DCI includes N antenna port indication fields, and the N antenna port indication fields are used to indicate N DMRS port sets; the N is an integer greater than 1 .
  • Step 502 Send N PUSCHs by using the N DMRS port sets respectively.
  • the DCI includes N antenna port indication fields, and the N antenna port indication fields are respectively used to indicate N sets of DMRS ports, which can improve the reliability of data transmission in the repeated transmission scenario.
  • the network side device sends a DCI including two antenna port indication fields to the terminal device, which are respectively used to indicate the first DMRS port set and the first DMRS port set corresponding to the first PUSCH.
  • the terminal device uses the two port sets to send the first PUSCH and the second PUSCH.
  • the DMRS port set can be used to send the PUSCH in a targeted manner, which can improve the reliability of data transmission.
  • FIG. 6 is a flowchart of a transmission method provided by an embodiment of the present disclosure.
  • the transmission method is applied to a network side device, as shown in FIG. 6, including the following steps:
  • Step 601 Send downlink control information DCI, where the DCI includes N antenna port indication fields, where the N antenna port indication fields are used to indicate N DMRS port sets; N is an integer greater than 1.
  • Step 602 Receive N PUSCHs in the N DMRS port sets respectively.
  • the embodiment corresponding to FIG. 5 in this embodiment is a transmission method implemented by a terminal device and a network side device respectively. Therefore, for the implementation manner of the network side device in this embodiment, reference may be made to the description in the corresponding embodiment of FIG. 5 .
  • the DCI includes N antenna port indication fields, and the N antenna port indication fields are respectively used to indicate N DMRS port sets.
  • the DMRS port sets can be used to send the PUSCH in a targeted manner, and the reliability of data transmission can be improved.
  • the terminal device 700 includes a first transceiver 701:
  • the first transceiver 701 is used for:
  • downlink control information DCI sent by a network side device, where the downlink control information DCI includes an antenna port indication field, where the antenna port indication field is used to indicate a demodulation reference signal DMRS port set;
  • the first physical uplink shared channel PUSCH adopts the first demodulation reference signal DMRS port set indicated by the antenna port indication field, and the first physical uplink shared channel PUSCH
  • the second demodulation reference signal DMRS port set used by the two physical uplink shared channels PUSCH is a subset of the first demodulation reference signal DMRS port set.
  • the first physical uplink shared channel PUSCH and the at least one second physical uplink shared channel PUSCH are physical uplink shared channels PUSCH transmitted repeatedly.
  • the rank of the second physical uplink shared channel PUSCH is less than or equal to the rank of the first physical uplink shared channel PUSCH.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following information: the time domain position of the demodulation reference signal DMRS port, the frequency domain position of the demodulation reference signal DMRS port, and the demodulation reference signal DMRS port.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following rules:
  • the first rule is to select demodulation reference signal DMRS ports located in different symbols from the first demodulation reference signal DMRS port set;
  • the second rule from the first set of demodulation reference signal DMRS ports, select a demodulation reference signal DMRS port located in the same frequency domain RE;
  • the third rule is to select the demodulation reference signal DMRS port located in the same code division multiplexing CDM group from the first demodulation reference signal DMRS port set;
  • the fourth rule From the first set of demodulation reference signal DMRS ports, select the demodulation reference signal DMRS ports in descending order of port numbers.
  • the priority of the first rule is the highest
  • the priority of the fourth rule is the lowest
  • the priorities of the second rule and the third rule are between the priority of the first rule and the priority of the fourth rule. between levels.
  • the above-mentioned terminal device 700 may also be the terminal device in the embodiment corresponding to FIG. 5 , where the terminal device includes a third transceiver.
  • the third transceiver may be the first transceiver 701 in the terminal device 700 .
  • the first transceiver 701 is also used for:
  • Receive downlink control information DCI sent by the network side device where the downlink control information DCI includes N antenna port indication fields, where the N antenna port indication fields are used to indicate N sets of demodulation reference signal DMRS ports; the N is an integer greater than 1;
  • the N physical uplink shared channels PUSCH are respectively sent by using the N demodulation reference signal DMRS port sets.
  • the above-mentioned terminal device 700 may be a terminal device of any implementation mode in the invention embodiment shown in FIG. 3 or FIG. 5 , or any implementation mode in the invention embodiment shown in FIG. 3 or FIG. 5 . All of the above can be implemented by the terminal device 700 in this embodiment, and the same beneficial effects can be achieved, which will not be repeated here.
  • an embodiment of the present disclosure provides a network-side device.
  • the network-side device 800 includes a second transceiver 801 .
  • the second transceiver 801 is used for:
  • downlink control information DCI includes an antenna port indication field, where the antenna port indication field is used to indicate a demodulation reference signal DMRS port set;
  • At least one second physical uplink shared channel PUSCH is received at a second demodulation reference signal DMRS port set, where the second demodulation reference signal DMRS port set is a subset of the first demodulation reference signal DMRS port set.
  • the first physical uplink shared channel PUSCH and the at least one second physical uplink shared channel PUSCH are physical uplink shared channels PUSCH transmitted repeatedly.
  • the rank of the second physical uplink shared channel PUSCH is less than or equal to the rank of the first physical uplink shared channel PUSCH.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following information: the time domain position of the demodulation reference signal DMRS port, the frequency domain position of the demodulation reference signal DMRS port, and the demodulation reference signal DMRS port.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following rules:
  • the first rule is to select demodulation reference signal DMRS ports located in different symbols from the first demodulation reference signal DMRS port set;
  • the second rule from the first set of demodulation reference signal DMRS ports, select a demodulation reference signal DMRS port located in the same frequency domain RE;
  • the third rule is to select the demodulation reference signal DMRS port located in the same code division multiplexing CDM group from the first demodulation reference signal DMRS port set;
  • the fourth rule From the first set of demodulation reference signal DMRS ports, select the demodulation reference signal DMRS ports in descending order of port numbers.
  • the priority of the first rule is the highest
  • the priority of the fourth rule is the lowest
  • the priorities of the second rule and the third rule are between the priority of the first rule and the priority of the fourth rule. between levels.
  • the foregoing network-side device 800 may also be the terminal device in the embodiment corresponding to FIG. 6 , where the terminal device includes a fourth transceiver.
  • the fourth transceiver may be the second transceiver 801 in the network-side device 800 .
  • the second transceiver 801 is also used for:
  • the downlink control information DCI includes N antenna port indication fields, where the N antenna port indication fields are used to indicate N sets of demodulation reference signal DMRS ports; the N is an integer greater than 1;
  • the N physical uplink shared channels PUSCH are respectively received in the N demodulation reference signal DMRS port sets.
  • the above-mentioned network-side device 800 may be a network-side device of any implementation in the invention embodiment corresponding to FIG. 4 or FIG. 6 , or any implementation in the invention embodiment corresponding to FIG. 4 or FIG. 6 . All of the above can be implemented by the network side device 800 in this embodiment, and the same beneficial effects can be achieved, which will not be repeated here.
  • FIG. 9 is a structural diagram of another terminal device provided by an embodiment of the present disclosure.
  • the terminal device 900 includes a first memory 901 , a first processor 902 , and a first memory 901 A computer program executable on the first processor 902.
  • the first processor 902 implements when executing the program:
  • downlink control information DCI sent by a network side device, where the downlink control information DCI includes an antenna port indication field, where the antenna port indication field is used to indicate a demodulation reference signal DMRS port set;
  • the first physical uplink shared channel PUSCH adopts the first demodulation reference signal DMRS port set indicated by the antenna port indication field, and the first physical uplink shared channel PUSCH
  • the second demodulation reference signal DMRS port set used by the two physical uplink shared channels PUSCH is a subset of the first demodulation reference signal DMRS port set.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by first processor 902 and various circuits of memory represented by first memory 901 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and therefore will not be described further herein.
  • the first bus interface provides the interface.
  • the first processor 902 is responsible for managing the bus architecture and general processing, and the first memory 901 may store data used by the first processor 902 when performing operations.
  • the first physical uplink shared channel PUSCH and the at least one second physical uplink shared channel PUSCH are physical uplink shared channels PUSCH transmitted repeatedly.
  • the rank of the second physical uplink shared channel PUSCH is less than or equal to the rank of the first physical uplink shared channel PUSCH.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following information: the time domain position of the demodulation reference signal DMRS port, the frequency domain position of the demodulation reference signal DMRS port, and the demodulation reference signal DMRS port.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following rules:
  • the first rule is to select demodulation reference signal DMRS ports located in different symbols from the first demodulation reference signal DMRS port set;
  • the second rule from the first set of demodulation reference signal DMRS ports, select a demodulation reference signal DMRS port located in the same frequency domain RE;
  • the third rule is to select the demodulation reference signal DMRS port located in the same code division multiplexing CDM group from the first demodulation reference signal DMRS port set;
  • the fourth rule From the first set of demodulation reference signal DMRS ports, select the demodulation reference signal DMRS ports in descending order of port numbers.
  • the priority of the first rule is the highest
  • the priority of the fourth rule is the lowest
  • the priorities of the second rule and the third rule are between the priority of the first rule and the priority of the fourth rule. between levels.
  • the first processor 902 further implements when executing the program:
  • Receive downlink control information DCI sent by the network side device where the downlink control information DCI includes N antenna port indication fields, where the N antenna port indication fields are used to indicate N sets of demodulation reference signal DMRS ports; the N is an integer greater than 1;
  • the N physical uplink shared channels PUSCH are respectively sent by using the N demodulation reference signal DMRS port sets.
  • the above-mentioned terminal device in this embodiment may be the terminal device in the embodiment corresponding to FIG. 3 or FIG. 5 , and any implementation of the terminal device in the embodiment corresponding to FIG. 3 or FIG. 5 may be used in this embodiment.
  • the above-mentioned terminal device realizes and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 10 is a structural diagram of another network-side device provided by an embodiment of the present disclosure.
  • the network-side device 1000 includes a second memory 1001, a second processor 1002, and a second memory A computer program on the memory 1001 and executable on the second processor 1002 .
  • the second processor 1002 implements when executing the program:
  • downlink control information DCI includes an antenna port indication field, where the antenna port indication field is used to indicate a demodulation reference signal DMRS port set;
  • At least one second physical uplink shared channel PUSCH is received at a second demodulation reference signal DMRS port set, where the second demodulation reference signal DMRS port set is a subset of the first demodulation reference signal DMRS port set.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by second processor 1002 and various circuits of memory represented by second memory 1001 linked together.
  • the bus architecture may also link together various other circuits, such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be described further herein.
  • the bus interface provides the interface.
  • the second processor 1002 is responsible for managing the bus architecture and general processing, and the second memory 1001 may store data used by the processor 1002 when performing operations.
  • the first physical uplink shared channel PUSCH and the at least one second physical uplink shared channel PUSCH are physical uplink shared channels PUSCH transmitted repeatedly.
  • the rank of the second physical uplink shared channel PUSCH is less than or equal to the rank of the first physical uplink shared channel PUSCH.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following information: the time domain position of the demodulation reference signal DMRS port, the frequency domain position of the demodulation reference signal DMRS port, and the demodulation reference signal DMRS port.
  • the second demodulation reference signal DMRS port set is determined according to at least one of the following rules:
  • the first rule is to select demodulation reference signal DMRS ports located in different symbols from the first demodulation reference signal DMRS port set;
  • the second rule from the first set of demodulation reference signal DMRS ports, select a demodulation reference signal DMRS port located in the same frequency domain RE;
  • the third rule is to select the demodulation reference signal DMRS port located in the same code division multiplexing CDM group from the first demodulation reference signal DMRS port set;
  • the fourth rule From the first set of demodulation reference signal DMRS ports, select the demodulation reference signal DMRS ports in descending order of port numbers.
  • the priority of the first rule is the highest
  • the priority of the fourth rule is the lowest
  • the priorities of the second rule and the third rule are between the priority of the first rule and the priority of the fourth rule. between levels.
  • the second processor 1002 implements when executing the program:
  • the downlink control information DCI includes N antenna port indication fields, where the N antenna port indication fields are used to indicate N sets of demodulation reference signal DMRS ports; the N is an integer greater than 1;
  • the N physical uplink shared channels PUSCH are respectively received in the N demodulation reference signal DMRS port sets.
  • the above-mentioned network-side device in this embodiment may be the network-side device in the embodiment shown in FIG. 4 or FIG. 6 , and any implementation of the network-side device in the embodiment shown in FIG. 4 or FIG. 6 may be used. It is implemented by the above-mentioned network-side device in this embodiment, and achieves the same beneficial effects, which will not be repeated here.
  • Embodiments of the present disclosure further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each of the above-mentioned transmission method embodiments corresponding to the terminal device side or the network side device is implemented. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the disclosed method and apparatus may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be physically included individually, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium, and includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute part of the steps of the transceiving method described in the various embodiments of the present disclosure.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more Application Specific Integrated Circuits (ASIC), Digital Signal Processing (DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, for in other electronic units or combinations thereof that perform the functions described in this disclosure.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Abstract

公开了一种传输方法、终端设备及网络侧设备,以解决怎样降低DCI开销的问题。其中,终端设备对应的方法包括:接收网络侧设备发送的下行控制信息DCI,所述DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;发送第一物理上行共享信道PUSCH和至少一个第二PUSCH;所述第一PUSCH采用所述天线端口指示字段指示的第一DMRS端口集合,所述第二PUSCH采用的第二DMRS端口集合为所述第一DMRS端口集合的子集。

Description

传输方法、终端设备及网络侧设备
相关申请的交叉引用
本公开主张在2020年9月22日在中国提交的中国专利申请号No.202010999105.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,具体涉及一种传输方法、终端设备及网络侧设备。
背景技术
在无线通信系统中,网络侧设备基于解调参考信号(Demodulation Reference Signal,DMRS)的信道估计的结果,对物理上行共享信道(Physical Uplink Shared Channel,PUSCH)进行解调。为了提高数据传输的可靠性,网络侧设备可以在物理下行控制信道(Physical Downlink Control Channel,PDCCH)中向终端侧设备发送特定格式的下行控制信息(Downlink Control Information,DCI),该下行控制信息中包含用于确定被调度的上行数据所使用的DMRS天线端口号的指示信息。终端设备根据DCI中的指示信息确定DMRS天线端口,并采用该天线端口发送PUSCH。
在多传输接收点(Multi-Transmission Reception Point,Multi-TRP)的通信场景中,终端设备同时与多个TRP进行数据传输。如图1和图2所示,终端设备同时与TRP1和TRP2连接,终端设备基于接收到的DCI-0,向TRP1和TRP2发送多个PUSCH。为了提升多个TRP对PUSCH的接收性能,在对PUSCH进行重复传输时,PUSCH所采用的参数是分别基于不同的TRP的信道质量确定的。这样,当基于多个TRP的信道所确定的PUSCH的码本、流数等参数不同时,则PUSCH所采用的DMRS端口不同。
因此,如何通过尽可能少的字段来指示两个或两个以上的PUSCH的DMRS端口集合,以降低DCI开销,成为需要解决的问题。
发明内容
本公开的目的在于提供一种传输方法、终端设备及网络侧设备,以解决降低DCI开销的问题。
为了达到上述目的,第一方面,本公开提供了一种传输方法,用于终端设备,该方法包括:
接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
发送第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH;所述第一物理上行共享信道PUSCH采用所述天线端口指示字段指示的第一解调参考信号DMRS端口集合,所述第二物理上行共享信道PUSCH采用的第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
可选的,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
可选的,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
可选的,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
可选的,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
可选的,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
第二方面,本公开还提供一种传输方法,用于网络侧设备,该方法包括:
发送下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
在所述天线端口指示字段指示的第一解调参考信号DMRS端口集合接收第一物理上行共享信道PUSCH;
在第二解调参考信号DMRS端口集合接收至少一个第二物理上行共享信道PUSCH,所述第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
可选的,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
可选的,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
可选的,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
可选的,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
可选的,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
第三方面,本公开实施例还提供另一种传输方法,用于终端设备,该方法包括:
接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
分别采用所述N个解调参考信号DMRS端口集合发送N个物理上行共享信道PUSCH。
第四方面,本公开实施例还提供另一种传输方法,用于网络侧设备,该方法包括:
发送下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
在所述N个解调参考信号DMRS端口集合分别接收N个物理上行共享信道PUSCH。
第五方面,本公开实施例还提供一种终端设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现本公开提供的终端设备对应的传输方法。
第六方面,本公开实施例还提供一种网络侧设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述处理器执行所述程序时实现本公开提供的网络侧设备对应的传输方法。
第七方面,本公开实施例还提供一种可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现本公开提供的网络侧设备或终端设备对应的传输方法中的步骤。
本公开的上述技术方案至少具有如下有益效果:
本公开具体实施例中,终端通过一个天线端口指示字段来确定多个PUSCH对应的DMRS端口集合,相对于相关技术中的天线端口指示字段和DMRS端口集合一一对应关系,能够减少DCI开销。
附图说明
图1是本公开实施例提供的终端设备和网络侧设备进行信息传输的示意图;
图2是本公开实施例提供的PUSCH在时域上的传输示意图;
图3是本公开实施例提供的终端设备的传输方法的流程图之一;
图4是本公开实施例提供的网络侧设备的传输方法的流程图之一;
图5是本公开实施例提供的终端设备的传输方法的流程图之二;
图6是本公开实施例提供的网络侧设备的传输方法的流程图之二;
图7是本公开实施例提供的终端设备的结构图之一;
图8是本公开实施例提供的网络侧设备的结构图之一;
图9是本公开实施例提供的终端设备的结构图之二;
图10是本公开实施例提供的网络侧设备的结构图之二。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图3,图3是本公开实施例提供的传输方法的流程示意图,该方法应用于终端设备。如图3所示,包括以下步骤:
步骤301、接收网络侧设备发送的DCI(Downlink Control Information,下行控制信息),所述DCI包括天线端口指示字段,所述天线端口指示字段用于指示DMRS(Demodulation Reference Signal,解调参考信号)端口集合。
在重复传输的场景中,网络侧设备向终端设备发送DCI,终端设备接收DCI后,获取DCI中的天线端口指示字段所指示的DMRS端口集合,并采用该DMRS端口集合发送PUSCH。
其中,DCI中可以包含至少一个天线端口指示字段,每个天线端口指示 字段用于指示一个DMRS端口集合。天线端口指示字段所指示的DMRS端口集合可以参见表1至表18所示。
其中,如表1定义的2位,如果启用了转换预编码器,则DMRS-Type(DMRS型号)=1,最大长度(max Length)=1。
如表2定义的4位,如果启用了转换预编码器,则DMRS-Type=1,max Length=2。
表1
Figure PCTCN2021119382-appb-000001
表2
Figure PCTCN2021119382-appb-000002
表3
Figure PCTCN2021119382-appb-000003
表4
Figure PCTCN2021119382-appb-000004
Figure PCTCN2021119382-appb-000005
由表3、4、5、6定义的3位,如果禁用了转换预编码器,则DMRS-Type=1,max Length=1。
表5
Figure PCTCN2021119382-appb-000006
表6
Figure PCTCN2021119382-appb-000007
表7
Figure PCTCN2021119382-appb-000008
表8
Figure PCTCN2021119382-appb-000009
表9
Figure PCTCN2021119382-appb-000010
由表7、8、9、10定义的4位,如果禁用了转换预编码器,则DMRS-Type=1,max Length=2。
表10
Figure PCTCN2021119382-appb-000011
表11
Figure PCTCN2021119382-appb-000012
表12
Figure PCTCN2021119382-appb-000013
表13
值(Value) 不含数据的DMRS码分复用组数(Number of DMRS CDM DMRS端口(DMRS
  group(s)without data) port(s))
0 2 0-2
1 3 0-2
2 3 3-5
3-15 已预留(Reserved) 已预留(Reserved)
表14
Figure PCTCN2021119382-appb-000014
由表11、12、13、14定义的4位,如果禁用了转换预编码器,则DMRS-Type=2,并且max Length=1;
表15
Figure PCTCN2021119382-appb-000015
表16
Figure PCTCN2021119382-appb-000016
Figure PCTCN2021119382-appb-000017
表17
Figure PCTCN2021119382-appb-000018
表18
Figure PCTCN2021119382-appb-000019
由表15、16、17、18定义的5位,如果禁用了转换预编码器,则DMRS-Type=2,并且max Length=2。如果较高层参数txConfig=非码本,则可以根据信道探测参考信号资源指示符字段确定秩(rank)值,如果较高层参数txConfig=码本,则可以根据预编码信息和层数字段确定秩(rank)值。
步骤302、发送第一PUSCH和至少一个第二PUSCH;所述第一PUSCH采用所述天线端口指示字段指示的第一DMRS端口集合,所述第二PUSCH 采用的第二DMRS端口集合为所述第一DMRS端口集合的子集。
终端设备可以根据天线端口指示字段先确定第一DMRS端口集合,该第一DMRS端口集合对应第一PUSCH,并基于第一DMRS端口集合进一步确定第二DMRS端口集合,该第二DMRS端口集合为第一DMRS端口集合的子集,该第二DMRS端口集合对应至少一个第二PUSCH。
其中,第一DMRS端口集合的子集可以包括真子集和端口集合本身。当第二DMRS端口集合为第一DMRS端口集合的真子集时,第二PUSCH的秩小于第一PUSCH的秩;当第二DMRS端口集合为第一DMRS端口集合的集合本身时,第一PUSCH和第二PUSCH的秩相同,也就是说,第二DMRS端口集合与第一DMRS端口集合相同。
本公开具体实施例中,终端通过一个天线端口指示字段来确定多个PUSCH对应的DMRS端口集合,相对于相关技术中的天线端口指示字段和DMRS端口集合一一对应关系,能够减少DCI开销。
可选的,所述第一PUSCH和至少一个第二PUSCH为重复传输的PUSCH。
在重复传输的场景中,终端设备向多个TRP发送重复传输的第一PUSCH和至少一个第二PUSCH,能够提高PUSCH传输的可靠性。且基于DCI中的至少一个指示字段确定了多个PUSCH的DMRS端口集合,能够减少开销,提高指示的灵活性。
可选的,所述第二PUSCH的秩小于或等于所述第一PUSCH的秩。
在该实施方式中,第二PUSCH采用的第二DMRS端口集合为基于第一PUSCH采用的第一DMRS端口集合确定的子集,在第二DMRS端口集合为第一DMRS端口集合的真子集的情况下,第二PUSCH的秩小于第一PUSCH的秩;在第二DMRS端口集合为第一DMRS端口集合的集合本身的情况下,第二PUSCH的秩等于第一PUSCH的秩。
例如,第一PUSCH采用的第一DMRS端口集合为{0,1,2,3},第二PUSCH采用的第二DMRS端口集合为基于集合{0,1,2,3}确定的子集:{0,1,2}、{0,1}、{1,2,3}、或{0,1,2,3}。
当第一PUSCH的秩和第二PUSCH的秩不同时,可以根据第一PUSCH的秩和第二PUSCH的秩中较大的秩确定采用的DMRS表格和DCI中天线端 口的bit(比特)数,并在DCI中指示较大秩的PUSCH所采用的DMRS端口,较小秩的PUSCH所对应的DMRS端口是DCI中指示的DMRS端口的一个子集。
这样,能够在不增加DCI大小或者增加DCI的较小bit数的情况下,指示多个PUSCH的DMRS端口集合,能够减少开销,提高资源利用率。
可选的,所述第二DMRS端口集合还可以依据如下信息中的至少一个确定:DMRS端口的时域位置、DMRS端口的频域位置、DMRS端口所属的CDM(Code Division Multiplexing,码分复用)组和DMRS端口的端口号。
在该实施方式中,可以基于DMRS端口的时域位置、DMRS端口的频域位置、DMRS端口所属的CDM组和DMRS端口的端口号中的一个或者多个确定第二DMRS端口集合。
例如,在相同时域位置的DMRS端口中,选择DMRS端口的端口号较小的集合作为第二DMRS端口集合;或者在相同时域位置的DMRS端口中,选择频域位置相同的DMRS端口作为第二DMRS端口集合。
依据上述信息确定第二DMRS端口集合,能够节约资源,提高DMRS的发送功率。
进一步地,所述第二DMRS端口集合依据如下规则中的至少一个确定:
第一规则、从所述第一DMRS端口集合中,选择位于不同的符号的DMRS端口。
在PUSCH重复传输的场景中,对DMRS所分配的时频资源位置是相同的,如果rank(秩)数大的PUSCH的DMRS占用的符号较多,而rank数少的PUSCH的DMRS只占用的符号较少,则会导致资源的浪费。因此,在此规则中,可以根据DMRS端口所占用的符号进行分类,选取位于不同符号的DMRS端口构成的子集作为第二DMRS端口集合,从而减少资源的浪费。
例如,终端设备发送的2个PUSCH的rank分别为rank=4和rank=2。其中,DCI指示第一DMRS端口集合A={0,2,4,6}用于rank=4的PUSCH传输,rank=2的PUSCH的第二DMRS端口集合从集合A的子集中确定。由于端口0,2位于时域第一个符号,端口4,6位于时域第二个符号,如果采用子集{0,2}作为第二DMRS端口集合则会仅仅占用1个符号,导致资源浪费,因此可以 采用子集{0,4}作为第二DMRS端口集合,子集{0,4}占用了2个符号,能减少资源的浪费,且能够在每个符号上提升DMRS的发送功率。
第二规则、从所述第一DMRS端口集合中,选择位于相同的频域RE(Resource Element,资源单元)的DMRS端口。
按照该规则确定第二DMRS端口集合,可以利用功率提升的方式提升DMRS的发送功率。
另外,还可以结合DMRS端口所在的时域位置和频域位置共同确定第二DMRS端口集合。例如,针对时域位置相同的DMRS端口,进一步根据DMRS所在的频域位置进行分类,并优先选用相同频域位置的DMRS端口构成的子集作为第二DMRS端口集合。
例如,终端设备发送的2个PUSCH的rank分别为rank=4和rank=2。其中,DCI指示第一DMRS端口集合A={0,1,2,3}用于rank=4的PUSCH传输,rank=2的PUSCH的第二DMRS端口集合从集合A的子集中确定。由于端口0,1,2,3位于时域的同一个符号,且端口0,1和2,3分别占用不同的频域资源,可以采用子集{0,1}或者子集{2,3}作为第二DMRS端口集合。选择位于相同频域位置的DMRS端口,能够提高DMRS的发送功率。
第三规则、从所述第一DMRS端口集合中,选择位于相同CDM组的DMRS端口。
按照该规则确定第二DMRS端口集合,可以利用功率提升的方式提升DMRS的发送功率。
另外,还可以针对时域位置相同的DMRS端口,进一步根据DMRS端口所在的CDM组进行分类,优先选取相同的CDM组中的DMRS端口构成子集作为第二DMRS端口集合。
例如,终端设备发送的2个PUSCH的rank分别为rank=4和rank=2。其中,DCI指示第一DMRS端口集合A={0,1,2,3}用于rank=4的PUSCH传输,rank=2的PUSCH的第二DMRS端口集合从集合A的子集中确定。由于端口0,1,2,3位于时域的同一个符号,且DMRS端口0,1属于CDM组0,DMRS端口2,3属于CDM组1,因此,可以采用子集{0,1}或{2,3}作为第二DMRS端口集合。选择位于相同CDM组的DMRS端口,能够提高DMRS的发送功 率。
第四规则、从所述第一DMRS端口集合中,按端口号从小到大的顺序选择DMRS端口。
在本规则中,可以将第一DMRS端口集合中的DMRS端口按照从小到大的顺序进行排序,并优先选择端口号较小的DMRS端口的集合作为第二DMRS端口集合。另外,还可以在相同时域、相同频域或者相同CDM组的DMRS端口中,进一步选择端口号较小的DMRS端口集合作为第二DMRS端口集合。
在具体实施时,可以选择上述任一规则,或者将上述规则结合确定。
可选的,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
在具体实施时,可以按照上述规则的优先级顺序确定第二DMRS端口集合。另外,还可以结合上述多个规则,以及上述规则的优先级顺序,按照以下步骤确定第二DMRS端口集合:
步骤一、根据DMRS端口所占用的时域位置进行分类,优先选取不同时域位置的DMRS端口构成子集。在步骤一条件不存在的情况下,还可以根据步骤二或步骤三确定。
步骤二、针对时域位置相同的DMRS端口,进一步根据DMRS端口所在的CDM组(或所在的频域资源)进行分类,优先选取位于相同的CDM组(或相同频域资源)的DMRS端口构成子集。
步骤三、对于相同时域位置,位于相同CDM组内(或相同频域资源)的DMRS端口,进一步根据DMRS端口号大小进行分类,优先选取端口号较小的DMRS端口。
基于上述步骤可以选取N个DMRS端口,其中,N为rank数较小的PUSCH所对应的rank。
为了便于理解上述方案,以下进行举例说明。
例如,2个PUSCH的rank分别为rank=4和rank=2,其中,DCI指示rank=4对应的PUSCH的端口集合A={0,2,4,6}。rank=2对应的PUSCH的端口集合 的确定过程可以按照以下步骤的优先级顺序确定:
第一步,UE根据时域位置选取位于不同时域位置的两个DMRS端口,即分别选取{0,2}中的1个和{4,6}中的一个。在第一步的条件不成立的情况下,可以获取时域位置相同,且频域资源相同的DMRS端口集合,即执行第二步。
第二步,由于时域位置相同的端口号0和2的频域位置不同,时域位置相同的4和6的频域位置不同,第二步无法再缩小集合;在第二步的条件不成立的情况下,还可以执行第三步。
第三步,针对相同CDM组内的DMRS端口,根据端口号大小分类,按照从小到大的原则选择端口集合,确定子集={0,4}。
按照上述优先级顺序确定第二DMRS端口集合,能够利用有限的DCI的空间大小,灵活地确定多种PUSCH的DMRS端口集合,能够节约DCI的开销,且能够提高DMRS的发送功率。
此外,终端设备还可以依照如下规则从第一DMRS端口集合中确定第二DMRS端口集合。
规则一、根据端口号大小选择
例如,终端设备向2个TRP发送重复传输的第一PUSCH和第二PUSCH。若DCI指示第一PUSCH采用的第一DMRS端口集合为{0,1,2,3},则第二PUSCH采用的第二DMRS端口集合可以从集合{0,1,2,3}中选择端口号最小的子集,即{0,1},或者可以从集合{0,1,2,3}中选择端口号最大的子集,即{2,3}。
在具体实施时,可以将第一DMRS端口集合按照端口号的大小进行排序后,然后选取前K个构成子集,K为秩数较小的PUSCH所对应的秩。例如,终端设备发送的2个PUSCH的秩分别为4和2,其中,DCI指示秩为4的PUSCH的DMRS端口集合为{0,1,2,3},终端设备选择端口号最小的子集,确定秩为2的PUSCH的DMRS端口集合为{0,1}。
规则二、随机选择
例如,终端设备向2个TRP发送重复传输的第一PUSCH和第二PUSCH。若DCI指示第一PUSCH采用的第一DMRS端口集合为{0,2,4,6},则第二PUSCH采用的第二DMRS端口集合可以从集合{0,2,4,6}中随机选择,当第二PUSCH的秩为3时,得到的端口集合可以为{0,2,4},{0,2,6},{2,4,6}或{0,4,6}。
对于DCI指示了多个天线端口指示字段,且该字段的数量少于PUSCH的数量的情况,以终端设备向4个TRP发送重复传输的PUSCH的情况为例,第二DMRS端口集合还可以采用以下规则确定:
规则三、基于天线端口指示字段指示的两个端口集合中的至少一个确定
例如,终端设备发送的两个第一PUSCH采用的第一端口集合为由DCI指示的两个端口集合{0,1,2,3}和{0,2,4,6},两个第二PUSCH采用的第二DMRS端口集合则可以基于{0,1,2,3}和{0,2,4,6}中的至少一个集合获取两个子集。则第二DMRS端口集合可以有以下几种确定方式:
A、分别从{0,1,2,3}和{0,2,4,6}中选取子集,确定第二DMRS端口集合为{0,1,2}和{0,2,4},或,{0,2,3}和{0,4,6},或,{1,2,3}和{2,4,6};
B、从{0,1,2,3}中选取子集,确定第二DMRS端口集合分别为{0,1,2}和{0,2,3},或,{0,2,3}和{1,2,3};
C、从{0,2,4,6}中选取子集,确定第二DMRS端口集合分别为{0,2,4}和{0,4,6},或,{0,4,6}和{2,4,6}。
规则四、基于天线端口指示字段指示的三个端口集合中的一个确定
例如,终端设备发送了四个PUSCH,其中一个PUSCH采用的DMRS端口集合为由DCI指示的{0,1,2,3},一个PUSCH采用的第二DMRS端口集合则可以基于{0,1,2,3}获取子集确定。其余的两个PUSCH的DMRS端口集合也可以由DCI直接指示确定。
在这种规则下,通过增加DCI中DMRS端口指示的bit数,分别指示了多个PUSCH的DMRS端口。虽然DCI中增加了bit数,由于天线指示字段的数量小于PUSCH的数量,能够节约DCI的大小,减少开销。
上述几种规则仅仅是举例,在实际应用时可以不限于此。由于DCI中指示了一个天线指示字段,终端设备能够根据该指示字段指示的DMRS端口集合确定至少两个DMRS端口集合,这样,在调度PUSCH进行传输时,能够利用有限的DCI大小,指示多个PUSCH的DMRS端口集合,能够减少DCI的开销。
参见图4,图4是本公开实施例提供的传输方法的流程图,该传输方法应用于网络侧设备,如图4所示,包括以下步骤:
步骤401、发送下行控制信息DCI,所述DCI包括天线端口指示字段,所述天线端口指示字段用于指示DMRS端口集合。
步骤402、在所述天线端口指示字段指示的第一DMRS端口集合接收第一PUSCH。
步骤403、在第二DMRS端口集合接收至少一个第二PUSCH,所述第二DMRS端口集合为所述第一DMRS端口集合的子集。
本公开实施例与上述实施例是分别从终端设备侧和网络设备侧实现的传输方法,因此,本公开实施例中网络侧设备对应的传输方法的实现过程和有益效果可以参见上述实施例中的描述,此处不再赘述。
其中,DCI中可以包含至少一个天线端口指示字段,指示了第一PUSCH对应的第一DMRS端口集合,终端设备还可以依据第一DMRS端口集合确定第二PUSCH对应的第二DMRS端口集合,其中,第二DMRS端口集合为第一DMRS端口集合的子集。这样,终端通过一个天线端口指示字段来确定多个PUSCH对应的DMRS端口集合,相对于相关技术中的天线端口指示字段和DMRS端口集合一一对应关系,能够减少DCI开销。
可选的,所述第一PUSCH和至少一个第二PUSCH为重复传输的PUSCH。
该实施方式中,能够减少部分TRP在传输环境较差时导致信息时延,能够提高PUSCH传输的可靠性。
可选的,所述第二PUSCH的秩小于或等于所述第一PUSCH的秩。
在该实施方式中,第二PUSCH采用的第二DMRS端口集合为基于第一PUSCH采用的第一DMRS端口集合确定的子集,第二DMRS端口集合为第一DMRS端口集合的真子集或集合本身。
当第一PUSCH的秩和第二PUSCH的秩不同时,可以根据第一PUSCH的秩和第二PUSCH的秩中较大的秩确定采用的DMRS表格和DCI中天线端口的bit(比特)数,并在DCI中指示较大秩的PUSCH所采用的DMRS端口,较小秩的PUSCH所对应的DMRS端口是DCI中指示的DMRS端口的一个子集。
这样,能够在不增加DCI大小或者增加DCI的bit数较小的情况下,指示多个PUSCH的DMRS端口集合,能够减少开销,提高资源利用率。
可选的,所述第二DMRS端口集合还可以依据如下信息中的至少一个确定:DMRS端口的时域位置、DMRS端口的频域位置、DMRS端口所属的CDM组和DMRS端口的端口号。
在该实施方式中,可以基于DMRS端口的时域位置、DMRS端口的频域位置、DMRS端口所属的CDM组和DMRS端口的端口号中的一个或者多个确定第二DMRS端口集合。
例如,在相同时域位置的DMRS端口中,选择DMRS端口的端口号较小的集合作为第二DMRS端口集合;或者在相同时域位置的DMRS端口中,选择频域位置相同的DMRS端口作为第二DMRS端口集合。
进一步地,所述第二DMRS端口集合依据如下规则中的至少一个确定:
第一规则、从所述第一DMRS端口集合中,选择位于不同的符号的DMRS端口。
在此规则中,可以根据DMRS端口所占用的符号进行分类,选取位于不同符号的DMRS端口构成的子集作为第二DMRS端口集合,从而减少资源的浪费。
第二规则、从所述第一DMRS端口集合中,选择位于相同的频域RE的DMRS端口。
按照该规则确定第二DMRS端口集合,可以利用功率提升的方式提升DMRS的发送功率。
另外,还可以结合DMRS端口所在的时域位置和频域位置共同确定第二DMRS端口集合。例如,针对时域位置相同的DMRS端口,进一步根据DMRS所在的频域位置进行分类,并优先选用相同频域位置的DMRS端口构成的子集作为第二DMRS端口集合,能够提高DMRS的发送功率。
第三规则、从所述第一DMRS端口集合中,选择位于相同CDM组的DMRS端口。
按照该规则确定第二DMRS端口集合,可以利用功率提升的方式提升DMRS的发送功率。
另外,还可以针对时域位置相同的DMRS端口,进一步根据DMRS端口所在的CDM组进行分类,优先选取相同的CDM组中的DMRS端口构成子 集作为第二DMRS端口集合,能够提高DMRS的发送功率。
第四规则、从所述第一DMRS端口集合中,按端口号从小到大的顺序选择DMRS端口。
在本规则中,可以将第一DMRS端口集合中的DMRS端口按照从小到大的顺序进行排序,并优先选择端口号较小的DMRS端口的集合作为第二DMRS端口集合。另外,还可以在相同时域、相同频域或者相同CDM组的DMRS端口中,进一步选择端口号较小的DMRS端口集合作为第二DMRS端口集合。
在具体实施时,可以选择上述任一规则,或者将上述规则结合确定。
可选的,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
在具体实施时,可以按照上述规则的优先级顺序确定第二DMRS端口集合。另外,还可以结合上述多个规则,以及上述规则的优先级顺序,按照以下步骤确定第二DMRS端口集合:
步骤一、根据DMRS端口所占用的时域位置进行分类,优先选取不同时域位置的DMRS端口构成子集。在步骤一的条件不成立的情况下,则可以根据步骤二或步骤三确定。
步骤二、针对时域位置相同的DMRS端口,进一步根据DMRS端口所在的CDM组(或所在的频域资源)进行分类,优先选取位于相同的CDM组(或相同频域资源)的DMRS端口构成子集。
步骤三,对于相同时域位置,位于相同CDM组内(或相同频域资源)的DMRS端口,进一步根据DMRS端口号大小进行分类,优先选取端口号较小的DMRS端口。
基于上述步骤可以选取N个DMRS端口,其中,N为rank数较小的PUSCH所对应的rank。
另外,此外,终端设备还可以根据以下规则确定第二DMRS端口集合,如,根据端口号大小选择、随机选择、基于多个端口集合中的一个或者多个选择。具体可以参见上述实施例的描述,以及能够达到相同的有益效果,此 处不再赘述。
本公开实施例的传输方法,网络侧设备能够利用有限的DCI的空间大小,灵活地指示多种PUSCH的DMRS端口集合,能够节约开销。
参见图5,图5是本公开实施例提供的传输方法的流程图,该传输方法应用于终端设备,如图5所示,包括以下步骤:
步骤501、接收网络侧设备发送的下行控制信息DCI,所述DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个DMRS端口集合;所述N为大于1的整数。
步骤502、分别采用所述N个DMRS端口集合发送N个PUSCH。
在重复传输的场景中,DCI中包含N个天线端口指示字段,N个天线端口指示字段分别用于指示N个DMRS端口集合,能够提高重复传输场景下数据传输的可靠性。
例如,在第一PUSCH和第二PUSCH的秩不同的情况下,网络侧设备向终端设备发送包括2个天线端口指示字段的DCI,分别用于指示第一PUSCH对应的第一DMRS端口集合和第二PUSCH对应的第二DMRS端口集合。终端设备根据DCI指示的两个端口集合,采用该两个端口集合发送第一PUSCH和第二PUSCH。
通过DCI指示多个DMRS端口集合,能够针对性地采用DMRS端口集合发送PUSCH,能够提高数据传输的可靠性。
参见图6,图6是本公开实施例提供的传输方法的流程图,该传输方法应用于网络侧设备,如图6所示,包括以下步骤:
步骤601、发送下行控制信息DCI,所述DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个DMRS端口集合;所述N为大于1的整数。
步骤602、在所述N个DMRS端口集合分别接收N个PUSCH。
本实施例与图5对应的实施例为分别从终端设备和网络侧设备实现的传输方法。因此,本实施例中网络侧设备的实现方式可以参见图5对应实施例中的描述。
在重复传输的场景中,DCI中包含N个天线端口指示字段,N个天线端 口指示字段分别用于指示N个DMRS端口集合。
这样,通过DCI指示多个DMRS端口集合,能够针对性地采用DMRS端口集合发送PUSCH,能够提高数据传输的可靠性。
参见图7,本公开实施例提供一种终端设备,如图7所示,终端设备700包括第一收发器701:
当终端设备700为图3对应实施例中的终端设备时,所述第一收发器701用于:
接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
发送第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH;所述第一物理上行共享信道PUSCH采用所述天线端口指示字段指示的第一解调参考信号DMRS端口集合,所述第二物理上行共享信道PUSCH采用的第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
可选的,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
可选的,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
可选的,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
可选的,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
可选的,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
上述终端设备700还可以是图5对应实施例中的终端设备,该终端设备包括第三收发器。当终端设备700为图5对应实施例中的终端设备时,则该第三收发器可以是终端设备700中的第一收发器701。第一收发器701还用于:
接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
分别采用所述N个解调参考信号DMRS端口集合发送N个物理上行共享信道PUSCH。
需要说明的是,本公开实施例中上述终端设备700可以是图3或图5所示的发明实施例中任意实施方式的终端设备,图3或图5所示的发明实施例中任意实施方式的都可以被本实施例中的终端设备700所实现,以及达到相同的有益效果,此处不再赘述。
参见图8,本公开实施例提供一种网络侧设备,如图8所示,网络侧设备800包括第二收发器801。
当网络侧设备800为图4对应的实施例中的网络侧设备时,所述第二收发器801用于:
发送下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
在所述天线端口指示字段指示的第一解调参考信号DMRS端口集合接收第一物理上行共享信道PUSCH;
在第二解调参考信号DMRS端口集合接收至少一个第二物理上行共享信 道PUSCH,所述第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
可选的,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
可选的,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
可选的,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
可选的,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
可选的,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
上述网络侧设备800还可以是图6对应实施例中的终端设备,该终端设备包括第四收发器。当网络侧设备800为图6对应的终端设备时,则该第四收发器可以是网络侧设备800中的第二收发器801。第二收发器801还用于:
发送下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
在所述N个解调参考信号DMRS端口集合分别接收N个物理上行共享信道PUSCH。
需要说明的是,本公开实施例中上述网络侧设备800可以是图4或图6对应的发明实施例中任意实施方式的网络侧设备,图4或图6对应的发明实施例中任意实施方式的都可以被本实施例中的网络侧设备800所实现,以及达到相同的有益效果,此处不再赘述。
参见图9,图9是本公开实施例提供的另一种终端设备的结构图,如图9所示,该终端设备900包括第一存储器901、第一处理器902及存储在第一存储器901上并可在第一处理器902上运行的计算机程序。
当上述终端设备900为图3对应实施例中的终端设备时,第一处理器902执行所述程序时实现:
接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
发送第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH;所述第一物理上行共享信道PUSCH采用所述天线端口指示字段指示的第一解调参考信号DMRS端口集合,所述第二物理上行共享信道PUSCH采用的第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由第一处理器902代表的一个或多个处理器和第一存储器901代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。第一总线接口提供接口。第一处理器902负责管理总线架构和通常的处理,第一存储器901可以存储第一处理器902在执行操作时所使用的数据。
可选的,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
可选的,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一 物理上行共享信道PUSCH的秩。
可选的,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
可选的,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
可选的,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
当上述终端设备900为图5对应实施例中的终端设备时,第一处理器902执行所述程序时还实现:
接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
分别采用所述N个解调参考信号DMRS端口集合发送N个物理上行共享信道PUSCH。
需要说明的是,本实施例中上述终端设备可以是图3或图5对应的实施例中的终端设备,图3或图5对应实施例中终端设备的任意实施方式都可以被本实施例中的上述终端设备所实现,以及达到相同的有益效果,此处不再赘述。
参见图10,图10是本公开实施例提供的另一种网络侧设备的结构图,如图10所示,该网络侧设备1000包括第二存储器1001、第二处理器1002及存储在第二存储器1001上并可在第二处理器1002上运行的计算机程序。
当上述网络侧设备1000为图4对应实施例中的网络侧设备时,第二处理器1002执行所述程序时实现:
发送下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
在所述天线端口指示字段指示的第一解调参考信号DMRS端口集合接收第一物理上行共享信道PUSCH;
在第二解调参考信号DMRS端口集合接收至少一个第二物理上行共享信道PUSCH,所述第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由第二处理器1002代表的一个或多个处理器和第二存储器1001代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。第二处理器1002负责管理总线架构和通常的处理,第二存储器1001可以存储处理器1002在执行操作时所使用的数据。
可选的,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
可选的,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
可选的,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
可选的,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
可选的,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
当上述网络侧设备1000为图6对应实施例中的网络侧设备时,第二处理器1002执行所述程序时实现:
发送下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
在所述N个解调参考信号DMRS端口集合分别接收N个物理上行共享信道PUSCH。
需要说明的是,本实施例中上述网络侧设备可以是图4或图6所示的实施例中的网络侧设备,图4或图6所示实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述终端设备侧或网络侧设备对应的传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
在本公开所提供的几个实施例中,应该理解到,所揭露方法和装置,可 以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (31)

  1. 一种传输方法,用于终端设备,所述传输方法包括:
    接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
    发送第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH;所述第一物理上行共享信道PUSCH采用所述天线端口指示字段指示的第一解调参考信号DMRS端口集合,所述第二物理上行共享信道PUSCH采用的第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
  2. 根据权利要求1所述的传输方法,其中,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
  3. 根据权利要求1所述的传输方法,其中,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
  4. 根据权利要求3所述的传输方法,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
  5. 根据权利要求4所述的传输方法,其中,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
    第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
    第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
    第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
    第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小 到大的顺序选择解调参考信号DMRS端口。
  6. 根据权利要求5所述的传输方法,其中,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
  7. 一种传输方法,用于网络侧设备,所述传输方法包括:
    发送下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
    在所述天线端口指示字段指示的第一解调参考信号DMRS端口集合接收第一物理上行共享信道PUSCH;
    在第二解调参考信号DMRS端口集合接收至少一个第二物理上行共享信道PUSCH,所述第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
  8. 根据权利要求7所述的传输方法,其中,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
  9. 根据权利要求7所述的传输方法,其中,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
  10. 根据权利要求9所述的传输方法,其中,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
  11. 根据权利要求10所述的传输方法,其中,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
    第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
    第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
    第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
    第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
  12. 根据权利要求11所述的传输方法,其中,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
  13. 一种传输方法,用于终端设备,所述传输方法包括:
    接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
    分别采用所述N个解调参考信号DMRS端口集合发送N个物理上行共享信道PUSCH。
  14. 一种传输方法,用于网络侧设备,所述传输方法包括:
    发送下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
    在所述N个解调参考信号DMRS端口集合分别接收N个物理上行共享信道PUSCH。
  15. 一种终端设备,所述终端设备包括第一收发器,其中,所述第一收发器用于:
    接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
    发送第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH;所述第一物理上行共享信道PUSCH采用所述天线端口指示字段指示的第一解调参考信号DMRS端口集合,所述第二物理上行共享信道PUSCH采用的第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
  16. 根据权利要求15所述的终端设备,其中,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行 共享信道PUSCH。
  17. 根据权利要求15所述的终端设备,其中,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
  18. 根据权利要求17所述的终端设备,其中,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
  19. 根据权利要求18所述的终端设备,其中,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
    第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
    第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
    第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
    第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
  20. 根据权利要求19所述的终端设备,其中,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
  21. 一种网络侧设备,所述网络侧设备包括第二收发器,其中,所述第二收发器用于:
    发送下行控制信息DCI,所述下行控制信息DCI包括天线端口指示字段,所述天线端口指示字段用于指示解调参考信号DMRS端口集合;
    在所述天线端口指示字段指示的第一解调参考信号DMRS端口集合接收第一物理上行共享信道PUSCH;
    在第二解调参考信号DMRS端口集合接收至少一个第二物理上行共享信道PUSCH,所述第二解调参考信号DMRS端口集合为所述第一解调参考信号DMRS端口集合的子集。
  22. 根据权利要求21所述的网络侧设备,其中,所述第一物理上行共享信道PUSCH和至少一个第二物理上行共享信道PUSCH为重复传输的物理上行共享信道PUSCH。
  23. 根据权利要求21所述的网络侧设备,其中,所述第二物理上行共享信道PUSCH的秩小于或等于所述第一物理上行共享信道PUSCH的秩。
  24. 根据权利要求23所述的网络侧设备,其中,所述第二解调参考信号DMRS端口集合依据如下信息中的至少一个确定:解调参考信号DMRS端口的时域位置、解调参考信号DMRS端口的频域位置、解调参考信号DMRS端口所属的码分复用CDM组和解调参考信号DMRS端口的端口号。
  25. 根据权利要求24所述的网络侧设备,其中,所述第二解调参考信号DMRS端口集合依据如下规则中的至少一个确定:
    第一规则、从所述第一解调参考信号DMRS端口集合中,选择位于不同的符号的解调参考信号DMRS端口;
    第二规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同的频域RE的解调参考信号DMRS端口;
    第三规则、从所述第一解调参考信号DMRS端口集合中,选择位于相同码分复用CDM组的解调参考信号DMRS端口;
    第四规则、从所述第一解调参考信号DMRS端口集合中,按端口号从小到大的顺序选择解调参考信号DMRS端口。
  26. 根据权利要求25所述的网络侧设备,其中,所述第一规则的优先级最高,所述第四规则的优先级最低,第二规则和第三规则的优先级介于所述第一规则的优先级和第四规则的优先级之间。
  27. 一种终端设备,所述终端设备包括第三收发器,其中,所述第三收发器用于:
    接收网络侧设备发送的下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
    分别采用所述N个解调参考信号DMRS端口集合发送N个物理上行共享信道PUSCH。
  28. 一种网络侧设备,所述网络侧设备包括第四收发器,其中,所述第四收发器用于:
    发送下行控制信息DCI,所述下行控制信息DCI包括N个天线端口指示字段,所述N个天线端口指示字段用于指示N个解调参考信号DMRS端口集合;所述N为大于1的整数;
    在所述N个解调参考信号DMRS端口集合分别接收N个物理上行共享信道PUSCH。
  29. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至6中任意一项所述的传输方法中的步骤,或者实现如权利要求13所述的传输方法中的步骤。
  30. 一种网络侧设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求7至12中任意一项所述的传输方法中的步骤,或者实现如权利要求14所述的传输方法中的步骤。
  31. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任意一项所述的传输方法中的步骤,或者实现如权利要求13所述的传输方法中的步骤,或者实现如权利要求7至12中任意一项所述的传输方法中的步骤,或者实现如权利要求14所述的传输方法中的步骤。
PCT/CN2021/119382 2020-09-22 2021-09-18 传输方法、终端设备及网络侧设备 WO2022063088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010999105.8A CN114257354B (zh) 2020-09-22 2020-09-22 一种传输方法、终端设备及网络侧设备
CN202010999105.8 2020-09-22

Publications (1)

Publication Number Publication Date
WO2022063088A1 true WO2022063088A1 (zh) 2022-03-31

Family

ID=80789348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119382 WO2022063088A1 (zh) 2020-09-22 2021-09-18 传输方法、终端设备及网络侧设备

Country Status (2)

Country Link
CN (1) CN114257354B (zh)
WO (1) WO2022063088A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024011579A1 (zh) * 2022-07-15 2024-01-18 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN117640032A (zh) * 2022-08-12 2024-03-01 大唐移动通信设备有限公司 Dmrs端口确定方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391881A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 配置信息的发送方法及装置
CN110858800A (zh) * 2018-08-24 2020-03-03 维沃移动通信有限公司 解调参考信号天线端口映射方法、终端设备及网络设备
US20200196346A1 (en) * 2018-12-14 2020-06-18 Qualcomm Incorporated Pruning rules for dci repetition
WO2020168322A1 (en) * 2019-02-15 2020-08-20 Apple Inc. Demodulation reference signal (dmrs) indication for single downlink control information (dci) multitransmission reception point (trp) transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884640A (zh) * 2016-03-31 2022-08-09 北京三星通信技术研究有限公司 通信系统中的终端、基站及其方法
JP7060672B2 (ja) * 2017-08-04 2022-04-26 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける参照信号を送受信するための方法及びそのための装置
CN110311764B (zh) * 2018-03-27 2023-04-07 维沃移动通信有限公司 用于传输解调参考信号的方法、终端设备和网络侧设备
CN110753404B (zh) * 2019-09-30 2021-08-10 中国信息通信研究院 一种确定上行信息传输信道的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391881A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 配置信息的发送方法及装置
CN110858800A (zh) * 2018-08-24 2020-03-03 维沃移动通信有限公司 解调参考信号天线端口映射方法、终端设备及网络设备
US20200196346A1 (en) * 2018-12-14 2020-06-18 Qualcomm Incorporated Pruning rules for dci repetition
WO2020168322A1 (en) * 2019-02-15 2020-08-20 Apple Inc. Demodulation reference signal (dmrs) indication for single downlink control information (dci) multitransmission reception point (trp) transmission

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On multi-TRP/multi-panel transmission", 3GPP DRAFT; R1-1907559_MULTITRP_FINALR2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, Nevada, USA; 20190513 - 20190517, 7 May 2019 (2019-05-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051709574 *

Also Published As

Publication number Publication date
CN114257354B (zh) 2023-10-17
CN114257354A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2019128885A1 (zh) 信道状态信息获取方法及装置
CN108633052B (zh) 一种资源配置方法、装置和设备
WO2020220330A1 (zh) 无线通信的方法、终端设备和网络设备
CN108631986B (zh) 一种确定下行控制信道dmrs资源的方法和装置
WO2020221080A1 (zh) 信道测量方法和装置
WO2022063088A1 (zh) 传输方法、终端设备及网络侧设备
WO2017133306A1 (zh) 传输导频信号的方法和装置
WO2019192542A1 (zh) 映射物理下行控制信道的方法及装置
WO2018177022A1 (zh) 一种预编码颗粒度的确定方法和装置
WO2012034527A1 (zh) Tdd系统中的非周期srs的传输方法和设备
CN113747497B (zh) 干扰抑制合并方法、资源指示方法及通信装置
US11716167B2 (en) Downlink control information transmission method and receiving method, and related device
CN110199552A (zh) 一种资源指示方法、设备及系统
WO2021088778A1 (zh) 指示方法、指示信息接收方法、装置、通信节点及介质
US20230141169A1 (en) Sequence-based signal processing method and apparatus
WO2015176660A1 (zh) 测量参考信号传输的方法、用户设备及演进基站
WO2021168806A1 (zh) 信道状态信息测量的方法和装置
WO2018028654A1 (zh) 参考信号映射方法及装置
WO2018228554A1 (zh) 用于测量信道状态的方法和装置
WO2018127038A1 (zh) 信道状态信息的传输方法、装置及系统
WO2020200133A1 (zh) 一种盲检测方法及装置
WO2016127556A1 (zh) 一种基站、用户终端及载波调度指示方法
AU2019382040B2 (en) Sequence generation and processing method and apparatus
WO2020227866A1 (zh) 终端以及发送方法
WO2018184513A1 (zh) 一种数据处理方法,基站以及接收设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21871458

Country of ref document: EP

Kind code of ref document: A1