WO2020221080A1 - 信道测量方法和装置 - Google Patents

信道测量方法和装置 Download PDF

Info

Publication number
WO2020221080A1
WO2020221080A1 PCT/CN2020/086141 CN2020086141W WO2020221080A1 WO 2020221080 A1 WO2020221080 A1 WO 2020221080A1 CN 2020086141 W CN2020086141 W CN 2020086141W WO 2020221080 A1 WO2020221080 A1 WO 2020221080A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement resource
channel
interference measurement
type
information
Prior art date
Application number
PCT/CN2020/086141
Other languages
English (en)
French (fr)
Inventor
肖华华
高波
张淑娟
鲁照华
蒋创新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20799390.8A priority Critical patent/EP3965310A4/en
Priority to KR1020217039276A priority patent/KR20220004162A/ko
Publication of WO2020221080A1 publication Critical patent/WO2020221080A1/zh
Priority to US17/513,788 priority patent/US20220060266A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • This application relates to a wireless communication network, for example, to a channel measurement method and device.
  • multi-array sub-array antennas are generally used to obtain beamforming gain, and beamforming gain is used to compensate for the influence of path loss.
  • beamforming gain it is necessary to select the best beam matching the channel of the user terminal according to the channel where the user terminal is located.
  • the release of the new radio access technology (New Radio Access Technology, NR) of the 5th Generation (5th Generation, 5G) mobile communications (Release) version 15 is based on the reference signal received power (RSRP) selection
  • RSRP reference signal received power
  • the present application provides a channel measurement method and device, so that the base station can select the optimal beam to establish a communication connection with the terminal, can better reflect the role of interference in beam management, and can select a better beam to improve system performance .
  • An embodiment of the application provides a channel measurement method, including:
  • Configure measurement resource information which is used to obtain channel state information, where the measurement resource information includes N channel measurement resource information and M interference measurement resource information, and N and M are positive integers;
  • An embodiment of the application provides a channel measurement method, including:
  • the measurement resource information includes N channel measurement resource information and M interference measurement resource information, and N and M are positive integers;
  • the channel state information includes channel-related parameters and/or interference-related parameters
  • the embodiment of the present application provides a method for determining spatial reception parameters, including:
  • the determined type A channel and/or group information associated with the signal at least one of the following is determined: at least one of the type A channels and/or signals and/or spatial reception parameters of the signals, type A channels and/or signals Transmission method;
  • the intersection between the time domain resources occupied by type A channels and/or signals is not empty, and A is a positive integer greater than or equal to 2.
  • the embodiment of the present application provides a channel measurement device, including:
  • the configuration module is configured to configure measurement resource information, which is used to obtain channel state information, where the measurement resource information includes N channel measurement resource information and M interference measurement resource information, and N and M are positive integers;
  • the sending module is set to send measurement resource information.
  • An embodiment of the present application provides a channel measurement device, including:
  • the receiving module is configured to receive measurement resource information, where the measurement resource information includes N channel measurement resource information and M interference measurement resource information, and N and M are positive integers;
  • the measurement module is configured to obtain channel state information according to the measurement resource information, and the channel state information includes channel-related parameters and/or interference-related parameters;
  • the sending module is set to transmit channel state information to the base station.
  • An embodiment of the present application provides an apparatus for determining spatial reception parameters, including:
  • the group information determining module is set to determine the group information associated with the Type A channel and/or signal;
  • the parameter determination module is configured to determine at least one of the following: a type A channel and/or at least one type of channel and/or a spatial reception parameter of the signal according to the determined type A channel and/or group information associated with the signal, A Class channel and/or signal transmission method;
  • the intersection between the time domain resources occupied by type A channels and/or signals is not empty, and A is a positive integer greater than or equal to 2.
  • FIG. 1 is a schematic diagram of multi-beam transmission provided by an embodiment
  • FIG. 2 is a flowchart of a channel measurement method provided by an embodiment
  • FIG. 3 is a schematic diagram of the association relationship between CMR and IMR resources provided by an embodiment
  • FIG. 4 is a flowchart of another channel measurement method provided by an embodiment
  • FIG. 5 is a schematic structural diagram of a channel measurement device provided by an embodiment
  • FIG. 6 is a schematic structural diagram of another channel measurement device provided by an embodiment
  • FIG. 7 is a schematic structural diagram of an apparatus for determining spatial reception parameters provided by an embodiment
  • FIG. 8 is a schematic structural diagram of a base station provided by an embodiment
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment.
  • FIG. 1 is a schematic diagram of multi-beam transmission provided by an embodiment.
  • a base station and a terminal respectively implement multi-beams through multi-array sub-array antennas.
  • the adopted beam selection method is selected based on RSRP, but because the base station and the terminal perform multi-beamforming, other beams of the same frequency will interfere with the beam to be selected, thereby affecting the beam selection. Therefore, it is necessary to accurately measure the channel information and interference information of the beam, so as to achieve accurate selection of the beam according to the measurement result.
  • Fig. 2 is a flowchart of a channel measurement method provided by an embodiment. As shown in Fig. 2, the method provided in this embodiment includes the following steps.
  • Step S2010 Configure measurement resource information, which is used to obtain channel state information, where the measurement resource information includes N channel measurement resource information and M interference measurement resource information, and N and M are positive integers.
  • the channel measurement method provided in this embodiment is applied to a base station device in a wireless communication system, referred to as a base station.
  • the base station allocates various transmission resources to the terminal and sends various configuration information to the terminal so that the terminal can determine the resources used for transmission and various measurement or transmission instructions that need to be executed.
  • the terminal When the base station and terminal implement multi-beam forming through multi-array sub-array antennas, the terminal needs to measure the multiple beams formed by the base station, and transmit the measured beam status to the base station, so that the base station selects the beam with the largest gain as The best beam establishes a channel with the terminal for data transmission.
  • the terminal measures and feeds back the RSRP of each beam, that is, the beam with the highest received power is used as the beam used by the terminal, but this does not consider the interference of other beams of the same frequency, which may affect the selection of the beam.
  • the base station configures measurement resource information, and the measurement resource information is used to obtain channel state information.
  • the measurement resource information includes N channel measurement resource (Channel Measurement Resource, CMR) information and M interference measurement resource (Interference Measurement Resource, IMR) information, and N and M are positive integers.
  • the base station configures measurement resource information in a report configuration (report config) or report setting (reporting setting).
  • N pieces of CMR information are used for the terminal to measure the channel state of each beam
  • M pieces of IMR information are used for the terminal to measure the interference received by each beam.
  • CMR information includes channel measurement resource set (CMR set) and/or channel measurement resource subset (CMR subset).
  • One channel measurement resource set includes at least one channel measurement resource subset and one channel measurement resource.
  • the set includes at least one channel measurement resource, and one channel measurement resource subset includes at least one channel measurement resource.
  • the channel measurement resource refers to the reference signal resource used for channel measurement, including but not limited to channel state information-reference signal (CSI-RS) resource, synchronization signal block (Synchronization Signals Block, SSB) resource , Physical Broadcast Channel (PBCH) resources, Synchronous Broadcast Block/Physical Broadcast Channel (SSB/PBCH) resources, and uplink Sounding Reference Signal (Sounding Reference Signal, SRS) resources.
  • CSI-RS resources mainly refer to non-zero power channel state information-reference signal (Non Zero Power Channel State Information-Reference Signal, NZP-CSI-RS) resources.
  • NZP-CSI-RS Non Zero Power Channel State Information-Reference Signal
  • the channel measurement resources in each channel measurement resource subset have the same spatial characteristics, and/or the channel measurement resources between different channel measurement resource subsets have different spatial characteristics.
  • the channel measurement resource subset includes at least one channel measurement resource, the channel measurement resources included in the channel measurement resource subset have the same spatial characteristics, and the channel measurement resources between different channel measurement resource subsets have different spatial characteristics.
  • the number of channel measurement resource subsets included in each channel measurement resource set may be different or the same, and the number of channel measurement resources included in each channel measurement resource subset may also be the same or different.
  • the channel measurement resource subset in the channel measurement resource set can also be configured according to the high-level signaling.
  • the channel measurement resource identifiers (Identify, ID) contained in the channel measurement resource set and/or the channel measurement resource subset are ordered uniformly or overall, so the channel measurement resources contained in the channel measurement resource set and/or the channel measurement resource subset ID is a unique number, there will be no duplicate ID.
  • the IMR information includes at least one of an interference measurement resource set (IMR set), an interference measurement resource subset (IMR subset), and an interference measurement resource subset (IMR subset).
  • An interference measurement resource set includes at least one interference measurement resource subset, an interference measurement resource set includes at least one interference measurement resource, an interference measurement resource subset includes at least one interference measurement resource subset, and an interference measurement resource subset includes At least one interference measurement resource.
  • interference measurement resources refer to reference signal resources used for interference measurement, including but not limited to non-zero power channel state information-reference signals (Non Zero Power Channel State Information-Reference Signal, NZP-CSI-RS) used to measure interference Resources, channel state information interference measurement (Channel State Information-Interference Measurement, CSI-IM) resources, and zero power channel state reference signal (Zero Power Channel State Information-Reference Signal, ZP-CSI-RS) resources.
  • the sequence resource is configured in the NZP-CSI-RS interference measurement resource, that is, the measurement reference signal is configured, and the interference power is obtained according to the measurement reference signal in the NZP-CSI-RS interference measurement resource.
  • No sequence resource or measurement reference signal is configured in the CSI-IM interference measurement resource.
  • the power received on the CSI-IM interference measurement resource is the power of the interference.
  • IMR information includes M interference measurement resource sets, the sum of all interference measurement resource subsets included in M information interference measurement resource sets is M1, and/or, all interference measurements included in M interference measurement resource sets The sum of the number of resource subsets is M2. Then M1 and/or M2 are greater than 1.
  • the interference measurement resource set includes only one interference measurement resource subset, the interference measurement resource information is the interference measurement resource set, otherwise it may be the interference measurement resource subset. If the interference measurement resource subset is divided into the interference measurement resource subset, then the interference measurement resource information is the interference measurement resource subset.
  • the interference measurement resources in each interference measurement resource subset have the same spatial characteristics, and/or the interference measurement resources between different interference measurement resource subsets have different spatial characteristics.
  • the interference measurement resource subset includes at least one interference measurement resource, the interference measurement resources included in the interference measurement resource subset have the same spatial characteristics, and the interference measurement resources between different interference measurement resource subsets have different spatial characteristics.
  • the i-th interference measurement resource subset includes Li IMRs, and the interference measurement resources in the Li-th interference measurement resource subset have the same spatial characteristics, and the Li-th interference measurement resource subset has the same spatial characteristics.
  • the number of interference measurement resource subsets protected by each interference measurement resource set may be different or the same, and the interference measurement resource subset may be divided into at least one interference measurement resource subset.
  • the interference measurement resource IDs contained in the interference measurement resource set and/or the interference measurement resource subset are ordered uniformly or overall, so the interference measurement resource IDs contained in the interference measurement resource set and/or interference measurement resource subset are uniquely numbered , There will be no duplicate IDs.
  • the M interference measurement information includes one of the following specific configurations: B1: M interference measurement resource sets, each interference measurement resource set includes at least one interference measurement resource, and each interference measurement resource set has only one interference measurement resource subset.
  • B2: M 1 interference measurement resource set, each interference measurement resource set is divided into 0 interference measurement resource subsets, each interference measurement resource subset includes at least one interference measurement resource, or, each interference measurement resource subset It is divided into at least one subset of interference measurement resources.
  • B3: M>1 interference measurement resource set, the i-th interference measurement resource set is divided into Oi interference measurement resource subsets, each interference measurement resource subset includes at least one interference measurement resource, i 1,...,M, Or, each interference measurement resource subset is divided into at least one interference measurement resource subset.
  • any channel measurement resource information configuration A1, A2, A3 channel measurement resource set or channel measurement resource subset can be combined with any interference measurement resource information configuration B1, B2, B3 an interference measurement resource set or interference
  • the measurement resource subset, or the interference measurement resource subset is associated.
  • a channel measurement resource set in A1 is associated with an interference measurement resource set in B1; a channel measurement resource subset in A2 and an interference measurement resource subset and/or interference measurement resource in B2 Sub-subset association;
  • a channel measurement resource subset in A3 is associated with an interference measurement resource subset and/or interference measurement resource subset in B3;
  • a channel measurement resource subset in A2 is associated with an interference in B3
  • the measurement resource subset and/or the interference measurement resource subset are associated.
  • Which channel measurement resource subset (set) is associated with or corresponds to which interference measurement resource subset (set) is defined in advance, or configured by the base station, or determined by signaling.
  • the signaling includes physical layer signaling and/or higher layer signaling .
  • FIG. 3 is a schematic diagram of the association relationship between CMR and IMR resources provided by an embodiment.
  • Step S2020 sending measurement resource information.
  • the base station can send the measurement resource information to the terminal.
  • the base station can send measurement resource information to the terminal through any kind of downlink control channel.
  • the terminal After the terminal receives the measurement resource information, it can measure the channel and interference respectively according to the N channel measurement resource information and the M interference measurement resource information included in the measurement resource information.
  • the terminal receives channel measurement resource information and interference measurement resource information configured by the base station, and obtains the channel measurement resource information and interference measurement resource information associated information, and uses the channel measurement resource information, interference measurement resource information and their association relationship to calculate channel state information.
  • the channel measurement resources of the i-th channel measurement resource subset and the interference measurement resources of the j-th interference measurement resource subset are used to calculate the channel state information, where the i-th channel measurement resource subset (set) and the j-th interference
  • the base station may also receive channel state information sent by the terminal, where the channel state information includes channel-related parameters and/or interference-related parameters.
  • the base station can determine the channel state and interference situation of each beam sent by the base station to the terminal, so that the base station can select the optimal beam to establish a communication connection with the terminal for data transmission.
  • the base station receives various measured parameters sent by the terminal, that is, channel state information, which includes channel-related parameters and/or interference-related parameters.
  • channel-related parameters are the parameters measured by the terminal in response to the channel measurement resources
  • interference-related parameters are the parameters measured by the terminal in response to the interference measurement resources.
  • Channel state information includes at least one of the following: channel state information-reference signal resource indicator (CSI-RS Resource Indicator, CRI), interference measurement resource indicator (Interference Measurement Resource Indicator, IMRI), synchronization signal block resource indicator (Synchronization Signals Block Resource) Indicator, SSBRI), RSRP, Differential RSRP (Differential RSRP), Interference Quality Indicator (IQI), Differential IQI (Differential IQI).
  • CRI channel state information-reference signal resource indicator
  • IMRI Interference Measurement Resource Indicator
  • IMRI Interference Measurement Resource Indicator
  • SSBRI Synchronation Signals Block Resource
  • RSRP Differential RSRP (Differential RSRP), Interference Quality Indicator (IQI), Differential IQI (Differential IQI).
  • the interference quality indicator includes but is not limited to at least one of the following: interference reference signal received power (IRSRP), level 1 signal-to-interference-plus-noise ratio (L1-signal-to-interference-plus-noise ratio, L1-SINR), differential IQI includes at least one of the following: Differential interference reference signal received power (Differential IRSRP) (that is, the difference between IRSRPi and IRSRP or the difference between IRSRPi and RSRP, where IRSRPi represents the i-th interference resource information obtained IRSRPi), the difference between L1-SINRi and L1-SINR, where L1-SINRi represents the average power of the resource corresponding to the i-th channel measurement information and the interference measurement resource corresponding to the i-th interference measurement information
  • the average received power ratio such as the average received power of the CSI-RS resources in the channel measurement information (including the channel measurement information set or the channel measurement information subset), and the received power ratio of the corresponding interference measurement information (wherein
  • the channel state information includes channel-related parameters and interference-related parameters.
  • the channel-related parameters include at least one of the following: CRI, SSBRI, RSRP, and differential RSRP.
  • the interference-related parameters include at least one of the following: IMRI, IQI, and differential IQI.
  • the channel measurement method provided in this embodiment first configures measurement resource information, which is used to obtain channel state information, where the measurement resource information includes N channel measurement resource information and M interference measurement resource information, and N and M are positive Integer, and then send the measurement resource information to the terminal, so that the terminal can measure the channel conditions and interference conditions of multiple beams generated by the base station, which can better reflect the role of interference in beam management, so that a better beam can be selected. Improve system performance.
  • the association relationship between N channel measurement resource information and M interference measurement resource information may also be determined according to a preset rule.
  • the association relationship between the N channel measurement resource information and the M interference measurement resource information may be preset in the base station or in the terminal. If the association relationship is preset in the base station, the base station sends first signaling to the terminal after determining the association relationship. The first signaling is used to determine the association relationship between N channel measurement resource information and M interference measurement resource information.
  • the association relationship between N channel measurement resource information and M interference measurement resource information may also be referred to as an association relationship.
  • the association relationship here includes at least one of the following: the value of one parameter is obtained based on the value of another parameter; the value range of one parameter is obtained based on the value or value range of another parameter; some of the two parameters are taken The value combination cannot appear at the same time; the configuration information of parameter 1 is configured as parameter 2 associated with parameter 1; the relationship between the two parameters is determined through the first signaling and/or predetermined rules.
  • channel measurement resource information with the same index of channel measurement resource information and index of interference measurement resource information is associated with interference measurement resource information, which specifically includes but is not limited to one of the following: interference measurement resource subset ID and channel
  • interference measurement resource subset ID and channel The interference measurement resource subset with the same measurement resource subset ID is associated or corresponding to the channel measurement resource subset; the interference measurement resource subset ID and the channel measurement resource subset are the same as the channel measurement resource subset.
  • the subset has an association relationship or a corresponding relationship;
  • the interference measurement resource subset ID and the channel measurement resource subset ID are the same as the channel measurement resource subset ID and the interference measurement resource subset has an association or correspondence relationship with the channel measurement resource;
  • the interference measurement resource set ID and the channel measurement The interference measurement resource set with the same resource set ID has an association relationship or a corresponding relationship with the channel measurement resource set.
  • the predetermined rule is to determine the association relationship between the channel measurement resource information and the interference measurement resource information according to the spatial characteristics of the channel measurement resource information and the interference measurement resource information. That is, the channel measurement resource information and the interference measurement resource information that have the same spatial characteristics of the channel measurement resource information and the interference measurement resource information have an association relationship. Including one of the following:
  • a channel measurement resource in the channel measurement resource information and an interference measurement resource in the interference measurement resource information have the same spatial characteristics, so they have an association relationship;
  • a channel measurement resource subset in the channel measurement resource information and an interference measurement resource subset in the interference measurement resource information have the same spatial characteristics, so they have an association relationship;
  • a channel measurement resource subset in the channel measurement resource information and an interference measurement resource subset in the interference measurement resource information have the same spatial characteristics, so they have an association relationship;
  • a channel measurement resource set in the channel measurement resource information and an interference measurement resource set in the interference measurement resource information have the same spatial characteristics, so they have an association relationship.
  • the channel measurement resource information and the interference measurement resource information with an association relationship can be sent or received at the same time.
  • the first signaling may be higher layer signaling and/or physical layer signaling.
  • the high-level signaling includes at least one of the following: resource information link list, resource information link status, and resource information bitmap mapping.
  • the resource information link list (BeamManageStateList) includes at least one resource information link state (BeamManageState), and the resource information link state is used to determine an association relationship between one channel measurement resource information and at least one interference measurement resource information.
  • BeamManageStateList includes at least one resource information link state (BeamManageState), and the resource information link state is used to determine an association relationship between one channel measurement resource information and at least one interference measurement resource information.
  • BeamManageStateList includes at least one resource information link state (BeamManageState), and the resource information link state is used to determine an association relationship between one channel measurement resource information and at least one interference measurement resource information.
  • BeamManageStateList For each resource information link status carries one of the following information:
  • the interference measurement resource subset ID and the channel measurement resource subset ID carried in the resource information link state respectively correspond to the interference measurement resource subset and the channel measurement resource subset; the interference measurement resource subset ID carried in the resource information link state
  • the interference measurement resource subsets corresponding to the channel measurement resource subset IDs are associated with the channel measurement resource subsets; the interference measurement resource subset ID and the channel measurement resource ID carried in the resource information link state respectively correspond to the interference measurement resources
  • the sub-subset has an associated relationship with the channel measurement resource; the interference measurement resource set corresponding to the interference measurement resource set ID and the channel measurement resource set ID carried in the resource information link state are associated with the channel measurement resource set.
  • a physical layer signaling can be used to dynamically trigger a resource information link in the selected resource information link list. If the resource information link list contains resource information When the number of link states is greater than L, one MAC CE signaling is needed to select L from the N resource information link state numbers, and the physical layer signaling is used to dynamically select one resource among the L resource information link state numbers selected by MAC CE Information link status number. Where L is the high-level signaling configuration.
  • the resource bitmap mapping (BeamManageBitmap) includes the association relationship between all configured channel measurement resource information and interference measurement resource information.
  • the i-th channel measurement resource information and the j-th interference measurement resource information correspond to the i-th row and j-th column (or j-th row and i-column) of the 2-dimensional bitmap, if the i-th row and j-th column (or j-th row and i-column)
  • the bit value of v1 indicates that the i-th channel measurement resource information is related to the j-th interference measurement resource information.
  • the value of the bit in the i-th row and j column is v0, it means the i-th
  • the first dimension of the bit map is interference measurement resource information, the above i-th row and j-th column need to be changed to j-th Row i column.
  • the value of the K-th bit is v1
  • the value of the K-th bit is v0
  • the first signaling determines the association or correspondence between interference measurement resource information and channel measurement resource information, including but not limited to configuring a BeamManageStateList, where the BeamManageStateList includes at least one BeamManageState, and one of the following information is configured for each BeamManageState:
  • the interference measurement resource subset corresponding to the interference measurement resource subset ID and the channel measurement resource subset ID configured by each BeamManageState are associated with the channel measurement resource subset;
  • the interference measurement resource subset corresponding to the interference measurement resource subset ID and the channel measurement resource subset ID configured by each BeamManageState are associated with the channel measurement resource subset;
  • the interference measurement resource subset corresponding to the interference measurement resource subset ID and the channel measurement resource subset ID configured by each BeamManageState are associated with the channel measurement resource set;
  • the interference measurement resource set corresponding to the interference measurement resource set ID and the channel measurement resource set ID configured by each BeamManageState is associated with the channel measurement resource set.
  • the above ID represents a representation of a collection or sub-collection or resource, and is a non-negative integer.
  • the association relationship between N channel measurement resource information and M interference measurement resource information includes at least one of the following: a channel measurement resource in the channel measurement resource information is associated with an interference measurement resource in the interference measurement resource information; channel measurement resource A channel measurement resource subset in the information is associated with an interference measurement resource subset in the interference measurement resource information; a channel measurement resource subset in the channel measurement resource information and an interference measurement resource subset in the interference measurement resource information The subset has an association relationship; a channel measurement resource set in the channel measurement resource information is associated with an interference measurement resource set in the interference measurement resource information.
  • the channel measurement resource information and interference measurement resource information having an association relationship can be sent at the same time or the channel measurement resource information and interference measurement resource information having an association relationship have the same spatial characteristics.
  • Spatial characteristics include at least one of the following: quasi co-location (QCL), transmission configuration indication (TCI), transmission configuration state (transmission configuration state), QCL type D (QCL Type D), reception Spatial characteristics, transmit spatial characteristics, receive beam group, transmit beam group, receive beam, transmit beam, and spatial receive parameter (Spatial Rx Parameter).
  • the same spatial characteristic means that at least one of the above-mentioned spatial characteristic parameters has the same value.
  • the spatial characteristics mainly include QCL Type D or Spatial Rx Parameter.
  • the quasi-co-location relationship between two reference signals regarding a type of quasi-co-location parameter includes at least one of the following: the quasi-co-location parameter of one reference signal can be obtained from the quasi-co-location parameter of the other reference signal; two reference signals
  • the quasi-co-location reference signal for a type of quasi-co-location parameter is the same.
  • the quasi-co-location reference signal of CSI-RS1 for spatial reception parameters is CSI-RS3
  • the quasi-co-location reference signal of CSI-RS2 for spatial reception parameters is CSI-RS3, then CSI-RS1 and CSI-RS2 meet the quasi co-location relationship with respect to spatial reception parameters.
  • the spatial characteristic of the interference measurement resource information is determined by the spatial characteristic of the channel measurement resource information associated with the interference measurement resource information.
  • the interference measurement resource information here mainly includes at least one of the following: NZP CSI-RS resource, NZP CSI-RS resource set, NZP CSI-RS resource subset, and NZP CSI-RS resource subset.
  • the reference pilot corresponding to the spatial characteristic of the interference measurement resource information is determined by the reference pilot corresponding to the spatial characteristic of the channel measurement resource information associated with the interference measurement resource information.
  • the value of the spatial characteristic of the channel measurement resource information is A
  • the corresponding spatial characteristic reference pilot is B
  • the value of the spatial characteristic of the associated interference measurement resource information is also A
  • the corresponding spatial characteristic reference pilot also B. That is, the spatial characteristic value of the interference measurement resource information is the same as the spatial characteristic value of the channel measurement resource information associated with it, and the corresponding spatial characteristic reference pilot is the same.
  • the spatial characteristic of the channel measurement resource subset and the channel measurement resource information are the same.
  • the (corresponding) interference measurement resource subset or the channel interference resource subset associated with the measurement resource subset have the same spatial reception parameters.
  • the channel measurement resource information and the interference measurement resource information include repetition parameters.
  • the interference measurement resource information and the repetition parameters of the interference measurement resource information are determined by any of the following methods: the repetition parameter of the interference measurement resource set is determined by the repetition parameter of the channel measurement resource set associated with the interference measurement resource set; the repetition of the interference measurement resource subset The parameters are determined by the repeat parameters of the channel measurement resource subset associated with the interference measurement resource subset; the repeat parameters of the interference measurement resource subset are determined by the repeat parameter of the channel measurement resource subset associated with the interference measurement resource subset; the interference measurement resource set The repetition parameters of the interference measurement resource set and the channel measurement resource set associated with the interference measurement resource set are determined by independent high-level parameters; the interference measurement resource subset repetition parameter and the interference measurement resource subset associated channel measurement resource subset repetition parameters are determined by the independent The high-level parameters are determined; the repetition parameters of the interference measurement resource subset are determined by the independent high-level parameters of the channel measurement resource subsets associated with the interference measurement resource subset.
  • the value of the repetition parameter of the channel measurement resource information is on, the value of the repetition parameter of the interference measurement resource information associated with it is on. For example, determine the value of the interference measurement resource subset and/or the interference measurement resource subset according to the value of the repetition parameter of the channel measurement resource subset; determine the interference measurement resource subset and the value of the interference measurement resource subset according to the value of the repetition parameter of the channel measurement resource / Or the value of the repeated parameter of the interference measurement resource subset.
  • the base station Since the base station does not know the total number of bits of channel state information that the terminal needs to transmit when sending measurement resource information to the terminal, the base station cannot accurately schedule uplink resources. In addition, when the terminal transmits channel state information, it also needs to transmit channel state information (CSI) related parameters in addition to channel related parameters and interference related parameters to the base station.
  • CSI channel state information
  • HARQ Hybrid automatic repeat request
  • the CSI outside the channel-related parameters and interference-related parameters include but are not limited to at least one of the following, Channel Quality Indicator (Channel Quality Indicator) , CQI), precoding matrix indicator (precoding matrix indicator, PMI), channel state information reference signal resource indicator (CSI-RS resource indicator, CRI), layer indicator (layer indicator, LI), rank indicator (rank indicator, RI) .
  • Channel Quality Indicator Channel Quality Indicator
  • precoding matrix indicator precoding matrix indicator
  • PMI channel state information reference signal resource indicator
  • CRI channel state information reference signal resource indicator
  • layer indicator layer indicator
  • rank indicator rank indicator
  • the priority of CSI related parameters includes at least one of the following:
  • the priority of IQI is not higher than the priority of RSRP.
  • the priority of IMRI is not higher than the priority of CRI or SSBRI.
  • the priority of IMRI is not lower than the priority of RI.
  • the priority of IMRI is not lower than the priority of PMI.
  • the priority of IMRI is not lower than the priority of LI.
  • the priority of IMRI is not lower than the priority of CQI.
  • the priority of IMRI is higher than the priority of IQI and/or Differential IQI.
  • the priority of IMRI is higher than the priority of RSRP and/or Differential RSRP.
  • the priority of RSRP is not lower than the priority of IQI and/or Differential IQI.
  • the priority of Differential IQI is not higher than the priority of Differential RSRP.
  • the priority of IQI and/or Differential IQI is higher than the priority of RI and/or LI;
  • the priority of IQI and/or Differential IQI is higher than the priority of PMI and/or CQI.
  • the terminal encodes the CSI-related parameters according to the aforementioned priority, and it is possible that when the coding rate requirement does not meet the system requirement, the parameter with low priority is discarded until the system coding rate requirement is reached.
  • the base station decodes the CSI related parameters according to the above-mentioned priority, and then the channel state information sent by the terminal is received, including at least one of the following situations:
  • At least one CRI, at least one IMRI, RSRP and/or differential RSRP, IQI and/or differential IQI are received.
  • the channel state information sent by the terminal can be received, and the channel state information transmitted by the terminal through uplink resources can be received.
  • the channel-related parameters and interference-related parameters in the channel state information need to be encoded in a certain encoding method, then The base station can then use a decoding method corresponding to the terminal to achieve decoding.
  • Uplink resources include physical uplink channels and high-level signaling.
  • the physical uplink channel includes at least one of the following: physical uplink shared channel (PUSCH), physical uplink control channel (PUCCH), physical random-access channel (Physical random-access channel, PRACH) ).
  • the high-level signaling includes radio resource control (Radio Resource Control, RRC) signaling and media access control layer control element (Media Access Control control element, MAC CE) signaling. All the uplink resources here can be used to transmit channel state information.
  • the channel state information needs to be encoded first.
  • the number of bits of each variable of the channel state information needs to be determined before encoding.
  • the number of bits for parameters such as CRI, SSBRI, and RSRP has been set in the current standard, as shown in Table 1.
  • Table 2 and Table 3 show the number of bits of IMRI, IQI, and Differential IQI. Table 2 does not include IMRI, because IMRI may be implicitly transmitted by CRI.
  • the channel state information After knowing the transmission bits of the channel state information and their priority, the channel state information can be encoded, and the encoded channel state information can be transmitted to the base station in the uplink resource.
  • the specific method for encoding channel state information can be performed in the following three ways:
  • the channel-related parameters and interference-related parameters in the channel state information are jointly coded in one coding block.
  • the uplink resource is PUCCH
  • the channel-related parameters and interference-related parameters in the channel state information are jointly coded.
  • the specific coding method is shown in Table 6.
  • the channel related parameters and interference related parameters in the channel state information are coded independently in two coding blocks.
  • the uplink resource is PUCCH
  • the channel-related parameters and interference-related parameters in the channel state information are coded independently, as shown in Table 7 and Table 8.
  • Table 7 is the coding method of channel-related parameters
  • Table 8 is the coding method of interference-related parameters. Encoding.
  • RSRP is encoded in the first part of the coding block, and IQI is encoded in the wideband or subband part of the second part of the coding block; when the channel state information includes differential RSRP and IQI, the differential RSRP is in the first part.
  • RSRP is coded in the first coding block, and the differential IQI is coded in the wideband or subband of the second coding block.
  • Sub-band partial coding when the channel state information includes differential RSRP and differential IQI, the differential RSRP is coded in the first part of the coding block, and the differential IQI is coded in the broadband or subband part of the second part of the coding block; the channel state information includes IQI but not When RSRP and/or differential RSRP, IQI is encoded in the first part of the coding block; when the channel state information includes differential IQI but does not include RSRP and/or differential RSRP, the differential IQI is encoded in the first part of the coding block; wherein, the first part of the coding block
  • the transmission priority of is higher than the transmission priority of the second part of the coding block. That is, after the terminal completes the encoding, it will preferentially transmit the information encoded in the first part of the encoding block.
  • At least one of CRI, SSBRI, IMIR is coded in the first part of the coding block, as shown in Table 9, and at least one of IQI, RSRP, Differential IQI, and Differential RSRP is coded in the second part of the coding block, as shown in Table 10. .
  • the terminal encodes the channel state information by means of Table 6 to Table 10. If there are other CSI parameters, it can also be encoded together.
  • the encoded data is modulated, resource mapping and other operations are then transmitted to the base station on the PUCCH.
  • the channel state information is received on the PUCCH resource, and beamforming-related parameters are obtained through a series of operations such as demodulation and decoding.
  • Table 11 all channel state information is encoded in the first part of the CSI report.
  • Table 12 at least one of the following parameters is encoded in the first part of the CSI report: CRI, SSBRI, IMRI, RSRP, Differential RSRP;
  • Table 13 shows that at least one of the following parameters is coded in the wideband part of the second part of the coding block of the CSI report: IQI and Differential IQI.
  • Channel-related parameters and interference-related parameters are all coded jointly in the first part of the CSI report, or at least one of CRI, SSBRI, IMR, RSRP, and Differential RSRP is coded in the first part of the CSI report, and IQI and Differential IQI are at least one of them. -Coding the wideband part of the first part of the CSI report or the subband part of the first part of the CSI report.
  • the terminal encodes the channel state information in the manner shown in Table 6 to Table 13. If there are other CSI parameters, it can also be encoded together.
  • the encoded data is modulated, resource mapping and other operations are then transmitted to the base station on PUSCH.
  • Channel state information is received on PUSCH resources, and beamforming-related parameters are obtained through a series of operations such as demodulation and decoding.
  • the terminal can also encode channel state information in the manner of Table 6-Table 13, and transmit some channel state information on the PUCCH, while another part of the channel state information is transmitted on the PUSCH or higher layer signaling.
  • Table 6 to Table 13 are only some embodiments for encoding channel state information, and there may be other encoding methods for arbitrary combination and splitting of channel state information, which are not listed here.
  • Fig. 4 is a flowchart of another channel measurement method provided by an embodiment. As shown in Fig. 4, the method provided by this embodiment includes the following steps.
  • Step S4010 Receive measurement resource information, where the measurement resource information includes N channel measurement resource information and M interference measurement resource information, and N and M are positive integers.
  • the channel measurement method provided in this embodiment is applied to terminal equipment in a wireless communication system, referred to as terminal.
  • the terminal completes data transmission according to the transmission resources allocated by the base station, and receives various configuration information sent by the base station, determines the resources required for transmission according to the various configuration information, and executes the measurement instructions indicated by the various configuration information.
  • the terminal When the base station and terminal implement multi-beam forming through multi-array sub-array antennas, the terminal needs to measure the multiple beams formed by the base station, and transmit the measured beam status to the base station, so that the base station selects the beam with the largest gain as The best beam establishes a channel with the terminal for data transmission.
  • the terminal measures and transmits the RSRP of each beam, that is, the beam with the highest received power is used as the beam used by the terminal, but this does not consider the interference of other beams of the same frequency, which may affect the selection of the beam.
  • the terminal receives the measurement resource information sent by the base station, where the measurement resource information includes N channel measurement resource information and M interference measurement resource information, and N and M are positive integers.
  • the measurement resource information, and the specific meaning and mutual relationship of the N channel measurement resource information and the M interference measurement resource information in the measurement resource information have been described in detail in the embodiment shown in FIG. 2 and will not be repeated here.
  • Step S4020 Acquire channel state information according to the measurement resource information, where the channel state information includes channel-related parameters and/or interference-related parameters.
  • the terminal After receiving the measurement resource information, the terminal can measure the channel and interference respectively according to the N channel measurement resource information and M interference measurement resource information included in the measurement resource information, and obtain channel state information, which includes channel-related parameters And/or interference related parameters.
  • Step S4030 Transmit channel state information to the base station.
  • the terminal After obtaining the channel state information, the terminal transmits the channel state information to the base station.
  • the base station receives various measured parameters sent by the terminal, that is, channel state information, which includes channel-related parameters and/or interference-related parameters.
  • the channel-related parameters are the parameters measured by the terminal in response to the channel measurement resources
  • the interference-related parameters are the parameters measured by the terminal in response to the interference measurement resources.
  • composition and correlation of channel measurement resources and interference measurement resources the composition and correlation of channel-related parameters and interference-related parameters, how the base station transmits channel state information to the base station, and how to encode channel state information
  • the specific method has been described in detail in the foregoing embodiment, and will not be repeated here.
  • the base station configures measurement resource information and receives channel state information sent by the terminal after measuring the resource information to the terminal as an example for description, that is, the channel state information is transmitted through uplink resources.
  • the channel state information can also be transmitted through downlink resources, that is, the base station transmits the channel state information to the terminal, so that the terminal can select a suitable uplink beam.
  • the specific method Similar to the method provided in the embodiment of this application the only difference is that the uplink resource is changed to the downlink resource.
  • Those skilled in the art can realize the transmission of channel state information on the downlink resource according to the channel measurement method provided in this application. I won't repeat it in the example.
  • the same receiving beam is used on the same symbol to receive signals. This does not correspond well to different TRPs when multiple transmission and reception points (TRP) are jointly transmitted.
  • TRP transmission and reception points
  • a method for determining spatial reception parameters in an embodiment of the present application includes: determining a type A channel and/or group information associated with a signal;
  • the determined type A channel and/or group information associated with the signal at least one of the following is determined: at least one of the type A channels and/or signals and/or spatial reception parameters of the signals, type A channels and/or signals Transmission method;
  • the intersection between the time domain resources occupied by type A channels and/or signals is not empty, and A is a positive integer greater than or equal to 2.
  • determine the type A channel and/or signal association group information determine at least one type of the type A channel and/or signal according to the group information associated with the type A channel and/or signal The space to receive parameters.
  • determining the spatial reception parameters of at least one type of channels and/or signals in the type A channels and/or signals includes at least one of the following:
  • the type A channel and/or signal meets the quasi co-location relationship with respect to the spatial reception parameters
  • the type A channel and/or signal meets the quasi co-location relationship with respect to the spatial reception parameters in the intersection part;
  • type A channels and/or signals are respectively associated with a spatial reception parameter
  • the type A channels and/or signals are respectively associated with a spatial reception parameter in the intersection part.
  • the group information associated with the type A channel and/or signal is the same, the following relationship is satisfied. If the type A channel and/or group information is different, the following does not need to be satisfied relationship.
  • Case 1 When the distance between the downlink control information (Downlink Control Information, DCI) and the physical downlink shared channel (PUSCH) for scheduling the PDSCH is less than the predetermined threshold, the PDSCH and the control resource set (CORESET) The time domain intersection between) is not empty (CORESET is a time-frequency resource block configured to transmit downlink control information), the'QCL-TypeD' (i.e. spatial reception parameters) of PDSCH and CORESET are different, and PDSCH and CORESET are associated with the same group When sending information, the physical downlink control channel (PUCCH) in CORESET is preferentially received.
  • DCI Downlink Control Information
  • PUSCH Physical downlink shared channel
  • the'QCL-TypeD' of the PDSCH is the'QCL-TypeD' of the CORESET associated with at least one search space to be detected in the closest time unit to the PDSCH with the lowest CORESETID and in the carrier component (CC) where the PDSCH is located .
  • Case 2 If the UE is configured with CSI-RS resources and a search space set (a search space set) associated CORESET has at least one same Orthogonal Frequency Division Multiplexing (OFDM) symbol, and CSI-RS It has the same group ID as CORESET. If'QCL-TypeD' is configured, the terminal assumes that the CSI-RS and the demodulation reference signal (Demodulation Reference Sgnal, DMRS) of all PDCCHs contained in CORESET associated with these search space sets are related to'QCL' -TypeD' satisfies the quasi co-location relationship. This can also be applied to the case where CSI-RS and CORESET transition group carriers in different bands (intra-band component carriers).
  • OFDM Orthogonal Frequency Division Multiplexing
  • Case 3 If the intersection of the CSI-RS resource configured by the terminal and the OFDM time domain symbol occupied by the SS/PBCH resource block is not empty, and the CSI-RS resource and the SS/PBCH resource block have the same group ID, if'QCL-TypeD' If it is applied, then the CSI-RS and SS/PBCH resource blocks are related to'QCL-TypeD' satisfying the quasi co-location relationship.
  • Case 4 If the intersection of the DMRS of the PDSCH received by the terminal and the OFDM symbol occupied by the SS/PBCH resource block is not empty, the DMRS of the PDSCH and the SS/PBCH resource block have the same group ID, and if'QCL-TypeD' is configured, Then the DM-RS and SS/PBCH resource blocks are about the'QCL-TypeD' meeting the quasi co-location relationship.
  • Case 5 If the terminal is configured in single-carrier or carrier aggregation (Carrier Aggregation, CA) mode, the intersection of the PDCCH detection opportunities (occasions) belonging to multiple CORESETs is not empty, and these CORESETs have the same group index, then The terminal detects one of the CORESET and the PDCCH in the CORESET that meets QCL-TypeD between the CORESET.
  • Carrier Aggregation, CA Carrier Aggregation
  • the above-mentioned group ID is at least one of the following: downlink control channel element group index, transmission configuration indicator (Transmission Configuration Indicator TCI) state group index, antenna group index, channel and/or signal group index, channel and/or signal parameter value group index.
  • the downlink control channel elements include one of the following: CORESET, search space set, search space, and candidate PDCCH. For example, different groups correspond to different TRPs.
  • the QCL-typeD that is, the spatial reception parameter
  • the QCL-typeD quasi co-located reference signal between type A channels and/or signals
  • the number of reference signals included is less than the third predetermined threshold, or the set of quasi co-located reference signals for QCL-typeD (ie, spatial reception parameters) between Type A channels and/or signals includes The number of reference signals that do not satisfy the quasi co-location relationship is less than the third predetermined threshold. For example, for a TRP terminal, more than one receiving beam can be shot.
  • type A channels and/or signals do not need to meet the quasi co-location relationship with respect to QCL-typeD (that is, spatial reception parameters), type A channels
  • the number of reference signals that do not satisfy the quasi co-location relationship included in the set of quasi co-location reference signals related to QCL-typeD (ie, spatial reception parameters) between signals is less than the fourth predetermined threshold, where the fourth The threshold is greater than the third predetermined threshold.
  • the terminal can emit a predetermined number of receive beams for each TRP terminal, and the number of receive beams that the terminal can emit for two TRP terminals is greater than the number of receive beams that the terminal can emit for one TRP terminal. number.
  • a channel and/or signal is associated with a downlink control channel element group, including at least one of the following:
  • the physical layer control channel of the scheduling channel and/or signal is transmitted in the downlink control channel element group;
  • the high-level signaling of the scheduling channel and/or signal is included in the downlink data channel scheduled by the control channel transmitted in the downlink control channel element group; for example, the RRC/MAC-CE command of the scheduling period or semi-persistent channel and/or signal is included in one In the PDCCH of CORESET group 1, the CORESET group associated with these periodic or semi-persistent channels and/or signals is called CORESET group 1.
  • the group information associated with the Type A channel and/or signal when the group information associated with the Type A channel and/or signal is different, it includes at least one of the following features:
  • the group information associated with type A channels and/or signals is different, and the number of reference signals that do not satisfy the quasi-co-location relationship in the set of quasi-co-location reference signals of type A channels and/or signals with respect to spatial reception parameters is less than or equal to G When, transmit Type A channels and/or signals;
  • the group information associated with Type A channels and/or signals is the same, and the number of reference signals that do not satisfy the quasi-co-location relationship in the set of quasi-co-location reference signals of type A channels and/or signals with respect to spatial reception parameters is less than or equal to H When, transmit Type A channels and/or signals;
  • G and H are positive integers greater than or equal to 1, and/or the value of G is obtained according to at least one of the following information: downlink control channel element group, TCI status group, antenna group, channel and/or signal group, and/or H Less than G.
  • channels and/or signals of the same group are sent by the same TRP, and channels and/or signals of different groups are sent by different TRPs.
  • the two types of channels and/or signals are associated with different group information, and the two types of channels and/or signals do not satisfy the quasi-co-location in the set of quasi-co-location reference signals with respect to spatial reception parameters.
  • the number of reference signals in the address relationship is less than or equal to 2, two types of channels and/or signals are transmitted;
  • CORESET groups there are two CORESET groups, each corresponding to a TRP.
  • the group information of the two types of channels and/or signals is the same, and the set of quasi-co-location reference signals of the two types of channels and/or signals with respect to spatial reception parameters does not satisfy the quasi-co-location.
  • the number of reference signals in the address relationship is greater than 1, one of the two types of channels and/or signals is transmitted;
  • the transmission of all parts in the specification of this application includes sending and/or receiving.
  • the sending end of the channel and/or signal means sending, and the receiving end of the channel and/or signal means receiving.
  • determining the transmission mode of the Type A channel and/or signal includes at least one of the following:
  • the type A channel and/or B in the signal is transmitted according to the priority of the group information Class channel and/or signal, where the value of B is a positive integer less than the value of A; for example, the channel and/or signal with the smallest group information index has the highest priority.
  • different group information corresponds to different TRP.
  • the type A channel and/or the type B channel and/or signal in the type A channel and/or signal are transmitted, according to the type A channel and /Or the relationship between the number of reference signals included in the reference signal set formed by the quasi co-located reference signals of the signal and the spatial reception parameter and the first predetermined value, and the B value is determined.
  • the number of reference signals included is greater than the first predetermined value, the value B is less than the value A, or according to the type A channel and/ Or the relationship between the group information associated with the signal determines the B value, otherwise the B value is equal to the A value.
  • the first predetermined value and/or the second predetermined value according to at least one of the following information, the downlink control channel element group, the TCI status group, the antenna group, the channel and/or the signal group.
  • different group information corresponds to different TRP.
  • the type A channel and/or the type B channel and/or signal in the type A channel and/or signal are transmitted, according to the type A channel and /Or the relationship between the number of reference signals whose spatial reception parameters do not satisfy the quasi co-location relationship and the second predetermined value included in the reference signal set formed by the quasi co-located reference signals of the signal related to the spatial reception parameter, and the B value is determined.
  • the B value is less than the A value or the B value is determined according to the relationship between the type A channel and/or the group information associated with the signal, otherwise the B value is equal to the A value.
  • Figure 5 is a schematic structural diagram of a channel measurement device provided by an embodiment.
  • the channel measurement device provided in this embodiment includes: a configuration module 51 configured to configure measurement resource information, and the measurement resource information is used to obtain Channel state information, where the measurement resource information includes N channel measurement resource information and M interference measurement resource information, where N and M are positive integers; the sending module 52 is configured to send the measurement resource information.
  • the channel measurement device provided in this embodiment is used to implement the channel measurement method of the embodiment shown in FIG. 2.
  • the implementation principle and technical effect of the channel measurement device provided in this embodiment are similar, and will not be repeated here.
  • FIG. 6 is a schematic structural diagram of another channel measurement device provided by an embodiment.
  • the channel measurement device provided in this embodiment includes: a receiving module 61 configured to receive measurement resource information, where the measurement resource information It includes N channel measurement resource information and M interference measurement resource information, where N and M are positive integers; the measurement module 62 is configured to obtain channel state information according to the measurement resource information, and the channel state information includes channel-related parameters and/or interference-related parameters ; The sending module 63 is configured to transmit channel state information to the base station.
  • the channel measurement device provided in this embodiment is used to implement the channel measurement method of the embodiment shown in FIG. 4, and the implementation principle and technical effect of the channel measurement device provided in this embodiment are similar, and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of an apparatus for determining spatial reception parameters provided by an embodiment.
  • the apparatus for determining spatial reception parameters provided in this embodiment includes: a group information determining module 71, which is configured to determine type A Channel and/or signal-associated group information; the parameter determining module 72 is configured to determine at least one of the following: Type A channels and/or signal-associated group information according to the determined A-channel and/or signal-associated group information Channel and/or signal spatial reception parameters, type A channel and/or signal transmission mode; where the intersection between the time domain resources occupied by type A channels and/or signals is not empty, and A is a positive integer greater than or equal to 2 .
  • FIG. 8 is a schematic structural diagram of a base station provided by an embodiment.
  • the base station includes a processor 81, a memory 82, a receiver 83 and a transmitter 84; the number of processors 81 in the base station can be one or There are multiple.
  • One processor 81 is taken as an example in FIG. 8; the processor 81 and the memory 82 in the base station can be connected through a bus or other methods. In FIG. 8, the connection through a bus is taken as an example.
  • the memory 82 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the channel measurement method in the embodiment of FIG. 2 of the present application.
  • the processor 81 runs the software programs, instructions, and modules stored in the memory 82, so that the base station implements at least one functional application and data processing, that is, implements the aforementioned channel measurement method.
  • the memory 82 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the base station.
  • the memory 82 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the receiver 83 is a module or a combination of devices that can receive radio frequency signals from space, for example, a combination of radio frequency receivers, antennas, and other devices.
  • the transmitter 84 is a module or a combination of devices capable of transmitting radio frequency signals into space, for example, a combination of radio frequency transmitters, antennas, and other devices.
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment.
  • the terminal includes a processor 91, a memory 92, a receiver 93, and a transmitter 94; the number of processors 91 in the terminal can be one or There are multiple.
  • One processor 91 is taken as an example in FIG. 9; the processor 91 and the memory 92 in the terminal can be connected through a bus or other methods. In FIG. 9, the connection through a bus is taken as an example.
  • the memory 92 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the channel measurement method in the embodiment of FIG. 4 of the present application.
  • the processor 91 implements at least one functional application and data processing of the terminal by running software programs, instructions, and modules stored in the memory 92, that is, implements the aforementioned channel measurement method.
  • the memory 92 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required for at least one function; the data storage area may store data created according to the use of the terminal.
  • the memory 92 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the receiver 93 is a module or a combination of devices capable of receiving radio frequency signals from space, for example, a combination of radio frequency receivers, antennas, and other devices.
  • the transmitter 94 is a module or a combination of devices capable of transmitting radio frequency signals into space, for example, a combination of radio frequency transmitters, antennas, and other devices.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a channel measurement method when executed by a computer processor.
  • the method includes: configuring measurement resource information, and measuring resource information.
  • the measurement resource information includes N channel measurement resource information and M interference measurement resource information, where N and M are positive integers; the measurement resource information is sent.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a channel measurement method when executed by a computer processor.
  • the method includes: receiving measurement resource information, wherein the measurement resource
  • the information includes N channel measurement resource information and M interference measurement resource information, where N and M are positive integers; obtain channel state information according to the measurement resource information, which includes channel-related parameters and/or interference-related parameters; transmit channels to the base station status information.
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, status setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logical flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented by any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disc (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FGPA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种信道测量方法和装置,其中,信道测量方法包括:配置测量资源信息,测量资源信息用于获取信道状态信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;发送测量资源信息;接收终端发送的信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数。

Description

信道测量方法和装置
本申请要求在2019年04月30日提交中国专利局、申请号为201910364310.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种信道测量方法和装置。
背景技术
在无线通信领域,路径损耗会随着载频的升高而增加,特别是在高频通信中,路径损耗问题对性能的影响会更加突出。为了保证覆盖,一般会使用多阵子阵列天线以获得波束赋型增益,用波束赋型增益来弥补路径损耗的影响。而为了获得波束增益,需要根据用户终端所处的信道选择与用户终端信道匹配的最佳波束。
第五代移动通信(5th Generation,5G)的新无线接入技术(New Radio Access Technology,NR)的发布(Release)15版本中采用的是基于参考信号接收功率(Reference signal received power,RSRP)选择波束的方法,即把接收功率最大的波束作为用户的发送或接收波束。而这种方法没有考虑同频干扰的影响,所以在干扰影响较大的场景,基于RSRP的方法并不能很好地准确选择波束。
发明内容
本申请提供一种信道测量方法和装置,从而使基站能够选择最优的波束与终端建立通信连接,能更好地反映干扰在波束管理中的作用,从而能选择更优的波束以提高系统性能。
本申请实施例提供一种信道测量方法,包括:
配置测量资源信息,测量资源信息用于获取信道状态信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;
发送测量资源信息。
本申请实施例提供一种信道测量方法,包括:
接收测量资源信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;
根据测量资源信息获取信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数;
向基站传输信道状态信息。
本申请实施例提供一种空间接收参数的确定方法,包括:
确定A类信道和/或信号关联的组信息;
根据确定的A类信道和/或信号关联的组信息,确定如下至少之一:A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,A类信道和/或信号的传输方式;
其中A类信道和/或信号占有的时域资源之间的交集非空,A为大于或等于2的正整数。
本申请实施例提供信道测量装置,包括:
配置模块,设置为配置测量资源信息,测量资源信息用于获取信道状态信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;
发送模块,设置为发送测量资源信息。
本申请实施例提供一种信道测量装置,包括:
接收模块,设置为接收测量资源信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;
测量模块,设置为根据测量资源信息获取信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数;
发送模块,设置为向基站传输信道状态信息。
本申请实施例提供一种空间接收参数的确定装置,包括:
组信息确定模块,设置为确定A类信道和/或信号关联的组信息;
参数确定模块,设置为根据确定的A类信道和/或信号关联的组信息,确定如下至少之一:A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,A类信道和/或信号的传输方式;
其中A类信道和/或信号占有的时域资源之间的交集非空,A为大于或等于2的正整数。
附图说明
图1为一实施例提供的多波束传输示意图;
图2为一实施例提供的一种信道测量方法的流程图;
图3为一实施例提供的CMR和IMR资源的关联关系示意图;
图4为一实施例提供的另一种信道测量方法的流程图;
图5为一实施例提供的一种信道测量装置的结构示意图;
图6为一实施例提供的另一种信道测量装置的结构示意图;
图7为一实施例提供的一种空间接收参数的确定装置的结构示意图;
图8为一实施例提供的一种基站的结构示意图;
图9为一实施例提供的一种终端的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。
在无线通信技术中,提出了通过多阵子阵列天线进行多波束赋型,从而提高波束增益,弥补路径损耗的方案。如图1所示,图1为一实施例提供的多波束传输示意图,在图1中,基站和终端之间分别通过多阵子阵列天线实现了多波束。为了获得波束增益,需要根据终端所处的信道选择与终端信道匹配的最佳波束。采用的波束选择方法是基于RSRP进行选择的,但由于基站和终端进行了多波束赋型,同频的其他波束会对所需选择的波束产生干扰,从而影响波束的选择。因此就需要对波束的信道信息和干扰信息进行准确地测量,从而根据测量结果实现波束的准确选择。
图2为一实施例提供的一种信道测量方法的流程图,如图2所示,本实施例提供的方法包括如下步骤。
步骤S2010,配置测量资源信息,测量资源信息用于获取信道状态信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数。
本实施例提供的信道测量方法应用于无线通信系统中的基站设备,简称基站。基站为终端分配各种传输资源,以及向终端发送各种配置信息,以使终端确定传输所使用的资源和所需执行的各种测量或传输指令。
在基站和终端通过多阵子阵列天线实现多波束赋型时,终端需要对基站赋型的多个波束进行测量,并向基站传输测量到的各波束的状态,从而使基站选 择增益最大的波束作为最佳波束与终端建立信道进行数据传输。终端对各波束的RSRP进行测量并反馈,也即将接收功率最大的波束作为终端所使用的的波束,但这样没有考虑到同频的其他波束的干扰,从而可能影响波束的选择。
为了解决上述问题,在本实施例中,基站配置测量资源信息,测量资源信息用于获取信道状态信息。其中,测量资源信息包括N个信道测量资源(Channel Measurement Resource,CMR)信息和M个干扰测量资源(Interference Measurement Resource,IMR)信息,N和M为正整数。基站在一个报告配置(report config)或报告设置(reporting setting)中配置测量资源信息。其中N个CMR信息用于使终端对各波束的信道状态进行测量,M个IMR信息用于使终端对各波束所受到的干扰进行测量。
CMR信息(CMR setting或者CMR config)包括信道测量资源集合(CMR set)和/或信道测量资源子集合(CMR sub set),一个信道测量资源集合包括至少一个信道测量资源子集合,一个信道测量资源集合包括至少一个信道测量资源,一个信道测量资源子集合包括至少一个信道测量资源。其中,信道测量资源表示用于信道测量的参考信号资源,包括但不限于信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)资源、同步信号块(Synchronization Signals Block,SSB)资源、物理广播信道(Physical Broadcast Channel,PBCH)资源、同步广播块/物理广播信道(SSB/PBCH)资源,上行探测参考信号(Sounding reference signal,SRS)资源。其中CSI-RS资源主要是指非零功率信道状态信息-参考信号(Non Zero Power Channel State Information-Reference Signal,NZP-CSI-RS)资源。当信道测量资源集合只包括一个信道测量资源子集合时,信道测量资源信息为信道测量资源集合,否则可以是信道测量资源子集合。
在本申请一实施例中,每个信道测量资源子集合内的信道测量资源具有相同的空间特性,和/或不同信道测量资源子集合间的信道测量资源具有不同的空间特性。
一个具体的信道测量资源配置方法如下:第l个信道测量资源集合根据预定的方式,比如空间特性分成Kl个信道测量资源子集合,Kl为正整数,l=1,…,N。其中,信道测量资源子集合中包括至少一个信道测量资源,信道测量资源子集合内包括的信道测量资源有相同的空间特性,而不同信道测量资源子集合间的信道测量资源有不同的空间特性。比如将一个信道测量资源集合分成K个子集合,第i个信道测量资源子集合包括Li个信道测量资源,其中第Li个信道测量资源子集合里的信道测量资源都有相同的空间特性,而第Li个信道测量资源子集合里的一个信道测量资源和第Lj个信道测量资源子集合里的一个信道测量 资源有不同的空间特性,i,j=1,…,K,且i不等于j。这里,每个信道测量资源集合包含的信道测量资源子集合的数目可以不同,也可以相同,每个信道测量资源子集合包含的信道测量资源数目也可以相同或者不同。这里还可以根据高层信令配置信道测量资源集合中的信道测量资源子集合。
信道测量资源集合和/或信道测量资源子集合包含的信道测量资源标识(Identify,ID)是统一排序的或者整体排序的,所以信道测量资源集合和/或信道测量资源子集合包含的信道测量资源ID是唯一编号的,不会有重复的ID。
IMR信息(IMR setting或者IMR config)包括干扰测量资源集合(IMR set)、干扰测量资源子集合(IMR sub set)、干扰测量资源子子集合(IMR sub sub set)中的至少一种。一个干扰测量资源集合包括至少一个干扰测量资源子集合,一个干扰测量资源集合包括至少一个干扰测量资源,一个干扰测量资源子集合包括至少一个干扰测量资源子子集合,一个干扰测量资源子子集合包括至少一个干扰测量资源。其中,干扰测量资源表示用于干扰测量的参考信号资源,包括但不限于用于测量干扰的非零功率信道状态信息-参考信号(Non Zero Power Channel State Information-Reference Signal,NZP-CSI-RS)资源,信道状态信息干扰测量(Channel State Information-Interference Measurement,CSI-IM)资源,零功率信道状态参考信号(Zero Power Channel State Information-Reference Signal,ZP-CSI-RS)资源。其中,NZP-CSI-RS干扰测量资源中会配置序列资源即配置测量参考信号,根据NZP-CSI-RS干扰测量资源中的测量参考信号得到干扰的功率。CSI-IM干扰测量资源中不会配置序列资源即也不配置测量参考信号,CSI-IM干扰测量资源上接收的功率即为干扰的功率,一般来说,也没有准共位置之类的参数配置。例如:IMR信息包括M个干扰测量资源集合,M个信息干扰测量资源集合包括的所有干扰测量资源子集合的个数之和为M1,和/或,M个干扰测量资源集合包括的所有干扰测量资源子子集合的个数之和为M2。那么M1和/或M2大于1。当干扰测量资源集合只包括一个干扰测量资源子集合时,干扰测量资源信息为干扰测量资源集合,否则可以是干扰测量资源子集合。如果干扰测量资源子集合被分成了干扰测量资源子子集合,那么干扰测量资源信息为干扰测量资源子子集合。
在本申请一实施例中,每个干扰测量资源子集合内的干扰测量资源具有相同的空间特性,和/或不同干扰测量资源子集合间的干扰测量资源具有不同的空间特性。
一个具体的干扰测量资源配置方法如下:干扰测量资源信息包括干扰测量资源集合和/或干扰测量资源子集合和/或干扰测量资源子子集合;当干扰测量资源信息为干扰测量资源集合时,第l个干扰测量资源集合根据空间特性分成Ol 个干扰测量资源子集合,Ol为正整数,l=1,…,M。其中,干扰测量资源子集合中包括至少一个干扰测量资源,干扰测量资源子集合内包括的干扰测量资源有相同的空间特性,而不同干扰测量资源子集合间的干扰测量资源有不同的空间特性。比如将这个干扰测量资源集合分成O个子集合,第i个干扰测量资源子集合包括Li个IMR,其中第Li个干扰测量资源子集合里的干扰测量资源都有相同的空间特性,而第Li个干扰测量资源子集合里的一个干扰测量资源和第Lj个干扰测量资源子集合里的一个干扰测量资源有不同的空间特性,i,j=1,…,K,且i不等于j。这里,每个干扰测量资源集合保护的干扰测量资源子集合的数目可以不同,也可以相同,干扰测量资源子集合可以分成至少一个干扰测量资源子子集合。
干扰测量资源集合和/或干扰测量资源子集合包含的干扰测量资源ID是统一排序的或者整体排序的,所以干扰测量资源集合和/或干扰测量资源子集合包含的干扰测量资源ID是唯一编号的,不会有重复的ID。
例如:N个信道测量资源信息包括以下之一的具体配置:A1:N个信道测量资源集合,每个信道测量资源集合包括至少一个信道测量资源,每个信道测量资源集合只有一个信道测量资源子集合。A2:N=1个信道测量资源集合,每个信道测量资源集合被分成K个信道测量资源子集合,每个信道测量资源子集合包括至少一个信道测量资源子子集合。A3:N>1个信道测量资源集合,第i个信道测量资源集合被分成Ki个信道测量资源子集合,每个信道测量资源子集合包括至少一个信道测量资源,i=1,…,N。
M个干扰测量信息包括以下之一的具体配置:B1:M个干扰测量资源集合,每个干扰测量资源集合包括至少一个干扰测量资源,每个干扰测量资源集合只有一个干扰测量资源子集合。B2:M=1个干扰测量资源集合,每个干扰测量资源集合被分成O个干扰测量资源子集合,每个干扰测量资源子集合包括至少一个干扰测量资源,或,每个干扰测量资源子集合被划分成至少一个干扰测量资源子子集合。B3:M>1个干扰测量资源集合,第i个干扰测量资源集合被分成Oi个干扰测量资源子集合,每个干扰测量资源子集合包括至少一个干扰测量资源,i=1,…,M,或,每个干扰测量资源子集合被划分成至少一个干扰测量资源子子集合。
信道测量资源信息的任何一个配置A1、A2、A3中的一个信道测量资源集合或者信道测量资源子集合可以与干扰测量资源信息的任何一个配置B1、B2、B3中的一个干扰测量资源集合或者干扰测量资源子集合,或干扰测量资源子子集合关联。在一实施例中,A1中的一个信道测量资源集合与B1中的一个干扰测量资源集合关联;A2中的一个信道测量资源子集合与B2中的一个干扰测量 资源子集合和/或干扰测量资源子子集合关联;A3中的一个信道测量资源子集合与B3中的一个干扰测量资源子集合和/或干扰测量资源子子集合关联;A2中的一个信道测量资源子集合与B3中的一个干扰测量资源子集合和/或干扰测量资源子子集合关联。具体哪个信道测量资源子集合(集合)与哪个干扰测量资源子集合(集合)关联或对应,由预先定义,或者基站配置,或者信令确定,信令包括物理层信令和/或高层信令。
图3为一实施例提供的CMR和IMR资源的关联关系示意图。
步骤S2020,发送测量资源信息。
在配置了测量资源信息后,基站即可向终端发送测量资源信息。基站可以通过任一种下行控制信道向终端发送测量资源信息。
当终端接收到测量资源信息后,即可根据测量资源信息中包括的N个信道测量资源信息和M个干扰测量资源信息分别对信道和干扰进行测量。
终端接收基站配置的信道测量资源信息和干扰测量资源信息,并获取信道测量资源信息和干扰测量资源信息的关联信息,并用信道测量资源信息和干扰测量资源信息以及它们的关联关系计算信道状态信息。比如用第i个信道测量资源子集合的信道测量资源和第j个干扰测量资源子集合的干扰测量资源计算信道状态信息,其中,第i个信道测量资源子集合(集合)和第j个干扰测量资源子集合(集合)具有关联关系,i=1,…,N,j=1,…,M,N和M分别为信道测量资源子集合(集合)和干扰测量资源子集合(集合)的个数。
可选地,基站在发送测量资源信息后,还可以接收终端发送的信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数。当基站接收到终端发送的信道状态信息,即可确定基站发出的各波束对于终端的信道状态和干扰情况,从而基站可以选择出最优波束与终端建立通信连接实现数据传输。
基站接收到终端发送的测量到的各种参数,即信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数。其中信道相关参数是终端响应于信道测量资源而测量出的参数,干扰相关参数是终端响应于干扰测量资源而测量出的参数。
信道状态信息包括以下至少之一:信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)、干扰测量资源指示(Interference Measurement Resource Indicator,IMRI),同步信号块资源指示(Synchronization Signals Block Resource Indicator,SSBRI),RSRP,差分RSRP(Differential RSRP),干扰质量指示(Interference quality indicator,IQI),差分IQI(Differential IQI)。其中,干扰质量指示包括但不限于以下至少之一:干扰参考信号接收功率(Interference  Reference signal received power,IRSRP),级1的信干扰噪声比(L1-signal-to-interference-plus-noise ratio,L1-SINR),差分IQI包括以下至少之一:差分干扰参考信号接收功率(Differential IRSRP)(即IRSRPi与IRSRP的差分值或IRSRPi相对RSRP的差分,其中,IRSRPi表示第i个干扰资源信息获得的IRSRPi),差分L1-SINRi与L1-SINR的差分值,其中,L1-SINRi表示第i个信道测量信息对应的资源的平均功率和与之对应的第i个干扰测量信息对应的干扰测量资源的平均接收功率比值,比如信道测量信息(包括信道测量信息集合或信道测量信息子集合)中的CSI-RS资源的平均接收功率,和对应的干扰测量信息的接收功率比值(其中,干扰测量信息的接收功率包括干扰测量信息集合或干扰测量信息子集合或干扰测量信息子子集合中的一个NZP CSI-RS平均接收功率或一个ZP CSI-RS接收功率或一个NZP CSI-RS平均接收功率和一个ZP CSI-RS接收功率之和,其中这里的NZP CSI-RS也可以换成SSB资源)。信道状态信息包括信道相关参数和干扰相关参数,信道相关参数包括以下至少之一:CRI、SSBRI,RSRP,差分RSRP,干扰相关参数包括以下至少之一:IMRI,IQI,差分IQI。
信道状态信息-参考信号资源指示(CSI-RS Resource Indicator,CRI)取值为i表示第i个CSI-RS资源,i=0,1,...N,N为CSI-RS资源的个数。而同步信号块资源指示(SSBRI,Synchronization Signals Block Resource Indicator)取值为i表示第i个SSB和/或PBCH资源,i=0,1,...N1,N1为SSB的资源的个数。干扰测量资源指示(IMRI,Interference Measurement Resource)取值为i表示第i个IMR资源,i=0,1,...N1,N1为IMR的资源的个数。
本实施例提供的信道测量方法,首先配置测量资源信息,测量资源信息用于获取信道状态信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数,然后向终端发送测量资源信息,使得终端能够对基站生成的多个波束的信道情况和干扰情况进行测量,能更好地反映干扰在波束管理中的作用,从而能选择更优的波束以提高系统性能。
在一实施例中,配置测量资源信息时,还可以根据预设规则确定N个信道测量资源信息和M个干扰测量资源信息的关联关系。N个信道测量资源信息和M个干扰测量资源信息的关联关系可以预设于基站中,也可以预设于终端中。若关联关系预设于基站中,则基站在确定了关联关系后,向终端发送第一信令,第一信令用于确定N个信道测量资源信息和M个干扰测量资源信息的关联关系。N个信道测量资源信息和M个干扰测量资源信息的关联关系也可称为关联关系。这里的关联关系包括如下至少一种:一个参数的取值根据另一个参数的取值得到;一个参数的取值范围根据另一个参数的取值或者取值范围得到;两个参数的某些取值组合不能同时出现;参数1的配置信息中配置为参数1关联 的参数2;通过第一信令和/或预定规则确定两个参数之间的关系。
上述预定规则为信道测量资源信息的索引和干扰测量资源信息的索引相同的信道测量资源信息和干扰测量资源信息有关联关系,具体地包括但不限于以下之一:干扰测量资源子集合ID与信道测量资源子集合ID相同的干扰测量资源子集合与信道测量资源子集合有关联关系或者对应关系;干扰测量资源子子集合ID与信道测量资源子集合相同的干扰测量资源子子集合与信道测量资源子集合有关联关系或者对应关系;干扰测量资源子子集合ID与信道测量资源子集合ID相同的干扰测量资源子子集合与信道测量资源有关联关系或者对应关系;干扰测量资源集合ID与信道测量资源集合ID相同的干扰测量资源集合与信道测量资源集合有关联关系或者对应关系。
上述预定规则为按信道测量资源信息的索引和干扰测量资源信息的索引排序一一对应关联关系。具体地包括但不限于:第i个干扰测量资源子集合与第i个信道测量资源子集合有关联关系;第i个干扰测量资源子子集合与第i个信道测量资源子集合有关联关系;第i个干扰测量资源子子集合与第i个信道测量资源有关联关系;第i个干扰测量资源集合与第i个信道测量资源集合有关联关系,i=1,…,N,N为信道测量资源信息或者干扰测量资源信息的个数。
所述预定规则为根据所述信道测量资源信息和干扰测量资源信息的空间特性确定所述信道测量资源信息和干扰测量资源信息的关联关系。即信道测量资源信息的空间特性和干扰测量资源信息的空间特性相同的信道测量资源信息和干扰测量资源信息具有关联关系。包括以下之一:
所述信道测量资源信息中的一个信道测量资源和所述干扰测量资源信息中的一个干扰测量资源有相同的空间特性,所以它们有关联关系;
所述信道测量资源信息中的一个信道测量资源子集合和所述干扰测量资源信息中的一个干扰测量资源子集合有相同的空间特性,所以它们有关联关系;
所述信道测量资源信息中的一个信道测量资源子集合和所述干扰测量资源信息中的一个干扰测量资源子子集合有相同的空间特性,所以它们有关联关系;
所述信道测量资源信息中的一个信道测量资源集合和所述干扰测量资源信息中的一个干扰测量资源集合有相同的空间特性,所以它们有关联关系。
其中,具有关联关系的信道测量资源信息和干扰测量资源信息能同时发送或接收。
本文中关联关系和对应关系是等价概念,可以相互替换。
第一信令可以为高层信令和/或物理层信令。高层信令包括以下至少之一:资源信息链接列表、资源信息链接状态、资源信息比特图映射。基站发送的第 一信令或终端接收的第一信令,其中,第一信令用于确定干扰测量资源信息和信道测量资源信息的关联关系或者对应关系;
资源信息链接列表(BeamManageStateList)包括至少一个资源信息链接状态(BeamManageState),资源信息链接状态用于确定一个信道测量资源信息与至少一个干扰测量资源信息的关联关系。对于每个资源信息链接状态携带了如下之一的信息:
资源信息链接状态携带的干扰测量资源子集合ID与信道测量资源子集合ID分别对应的干扰测量资源子集合与信道测量资源子集合有关联关系;资源信息链接状态携带的干扰测量资源子子集合ID与信道测量资源子集合ID分别对应的干扰测量资源子子集合与信道测量资源子集合有关联关系;资源信息链接状态携带的干扰测量资源子子集合ID与信道测量资源ID分别对应的干扰测量资源子子集合与信道测量资源有关联关系;资源信息链接状态携带的干扰测量资源集合ID与信道测量资源集合ID分别对应的干扰测量资源集合与信道测量资源集合有关联关系。
另外,如果资源信息链接列表包含的状态数目N小于或等于L个,那么可以通过一个物理层信令动态触发选择的资源信息链接列表中的一个资源信息链接,如果资源信息链接列表包含的资源信息链接状态数目大于L个时,需要用一个MAC CE信令从N个资源信息链接状态数中选择L个,并用物理层信令动态选择MAC CE选择的L个资源信息链接状态数中的一个资源信息链接状态数。其中L为高层信令配置。
资源比特图映射(BeamManageBitmap)包括所有配置的信道测量资源信息和干扰测量资源信息的关联关系。第i个信道测量资源信息和第j个干扰测量资源信息对应2维比特映射图的第i行j列(或第j行i列),如果第i行j列(或第j行i列)的比特取值为v1表示第i个信道测量资源信息和第j个干扰测量资源信息有关联性,如果第i行j列(或第j行i列)的比特取值为v0表示第i个信道测量资源信息和第j个干扰测量资源信息没有关联性,其中v0取值为0,v1取值为1,或者其他约定的非零整数,i=1,…,N,j=1,…,M,N,M分别对应信道测量资源信息和干扰测量资源信息的个数,这里,如果比特映射图的第一维度是干扰测量资源信息时,上述的第i行j列需要改成第j行i列。或者第i个信道测量资源信息和第j个干扰测量资源信息对应1维比特映射图的第K=(i-1)*M+j(或者K=(j-1)*N+i)个比特位,如果第K个比特位取值为v1表示第i个信道测量资源信息和第j个干扰测量资源信息有关联性,如果第K个比特位取值为v0表示第i个信道测量资源信息和第j个干扰测量资源信息没有关联性,其中v0取值为0,v1取值为1,或者其他约定的非零整数,i=1,…, N,j=1,…,M,N,M分别对应信道测量资源信息和干扰测量资源信息的个数,这里,如果i和j的索引从0开始,那么上述的K的表达式为K=i*M+j,或者K=j*N+i。
第一信令确定干扰测量资源信息和信道测量资源信息的关联关系或者对应关系,包括但不限于,配置BeamManageStateList,其中BeamManageStateList包括至少一个BeamManageState,对于每个BeamManageState配置了如下之一的信息:
每个BeamManageState配置的干扰测量资源子集合ID与信道测量资源子集合ID分别对应的干扰测量资源子集合与信道测量资源子集合有关联关系;
每个BeamManageState配置的干扰测量资源子子集合ID与信道测量资源子集合ID分别对应的干扰测量资源子子集合与信道测量资源子集合有关联关系;
每个BeamManageState配置的干扰测量资源子子集合ID与信道测量资源子集合ID分别对应的干扰测量资源子子集合与信道测量资源集合有关联关系;
每个BeamManageState配置的干扰测量资源集合ID与信道测量资源集合ID分别对应的干扰测量资源集合与信道测量资源集合有关联关系。
上述关联信息或对应关系是相互的,即如果第i个干扰测量资源信息与第j个信道测量资源信息是关联的或对应的,那么即第j个信道测量资源信息与第i个干扰测量资源信息也是关联的或对应的,i=1,…,N,j=1,…,M。
上述ID表示一个集合或子集合或资源的表示,是一个非负整数。
N个信道测量资源信息和M个干扰测量资源信息的关联关系包括至少以下之一:信道测量资源信息中的一个信道测量资源和干扰测量资源信息中的一个干扰测量资源有关联关系;信道测量资源信息中的一个信道测量资源子集合和干扰测量资源信息中的一个干扰测量资源子集合有关联关系;信道测量资源信息中的一个信道测量资源子集合和干扰测量资源信息中的一个干扰测量资源子子集合有关联关系;信道测量资源信息中的一个信道测量资源集合和干扰测量资源信息中的一个干扰测量资源集合有关联关系。其中,具有关联关系的信道测量资源信息和干扰测量资源信息能同时发送或具有关联关系的信道测量资源信息和干扰测量资源信息具有相同的空间特性。
空间特性包括以下至少之一:准共位置(quasi co-location,QCL),传输配置指示(transmission configuration indication,TCI),传输配置状态(transmission configuration state),QCL类型D(QCL Type D),接收空间特性,发送空间特性,接收波束组,发送波束组,接收波束,发送波束,空间接收参数(Spatial Rx  Parameter)。空间特性相同是指上述至少空间特性参数之一取值相同。在一实施例中,空间特性主要包括QCL Type D或空间接收参数(Spatial Rx Parameter)。
两个参考信号之间的关于一类准共址参数满足准共址关系包括以下至少之一:一个参考信号的准共址参数可以根据另一个参考信号的准共址参数获取;两个参考信号的关于一类准共址参数的准共址参考信号相同,比如,CSI-RS1关于空间接收参数的准共址参考信号为CSI-RS3,CSI-RS2关于空间接收参数的准共址参考信号为CSI-RS3,则CSI-RS1和CSI-RS2关于空间接收参数满足准共址关系。
在一实施例中,干扰测量资源信息的空间特性由与干扰测量资源信息关联的信道测量资源信息的空间特性确定。这里的干扰测量资源信息主要包括至少以下之一:NZP CSI-RS资源,NZP CSI-RS资源集合,NZP CSI-RS资源子集合,NZP CSI-RS资源子子集合。
在一实施例中,干扰测量资源信息的空间特性对应的参考导频由干扰测量资源信息关联的信道测量资源信息的空间特性对应的参考导频确定。比如,信道测量资源信息的空间特性取值为A,对应的空间特性参考导频为B,那么与之关联的干扰测量资源信息的空间特性的取值也为A,对应的空间特性参考导频也为B。即干扰测量资源信息的空间特性取值和与之关联的信道测量资源信息的空间特性取值相同,对应的空间特性参考导频相同,具体地比如信道测量资源子集合的空间特性和与这个信道测量资源子集合关联的(对应的)干扰测量资源子集合或信道干扰资源子子集合具有相同的空间接收参数。
在一实施例中,信道测量资源信息和干扰测量资源信息包括重复参数(repetition)。
干扰测量资源信息和干扰测量资源信息的重复参数由以下任一种方式确定:干扰测量资源集合的重复参数由干扰测量资源集合关联的信道测量资源集合的重复参数确定;干扰测量资源子集合的重复参数由干扰测量资源子集合关联的信道测量资源子集合的重复参数确定;干扰测量资源子子集合的重复参数由干扰测量资源子集合关联的信道测量资源子集合的重复参数确定;干扰测量资源集合的重复参数和干扰测量资源集合关联的信道测量资源集合的重复参数由独立的高层参数确定;干扰测量资源子集合的重复参数和干扰测量资源子集合关联的信道测量资源子集合的重复参数由独立的高层参数确定;干扰测量资源子子集合的重复参数由干扰测量资源子子集合关联的信道测量资源子集合的重复参数由独立的高层参数确定。
比如,信道测量资源信息的重复参数取值为on,那么与之关联的干扰测量资源信息的重复参数取值为on。例如,根据信道测量资源子集合的重复参数取 值确定干扰测量资源子集合和/或干扰测量资源子子集合的重复参数取值;根据信道测量资源的重复参数取值确定干扰测量资源子集合和/或干扰测量资源子子集合的重复参数取值。
由于基站在向终端发送测量资源信息时,并不知道终端需要传输的信道状态信息的总比特数目,因此基站无法准确调度上行资源。另外,终端在传输信道状态信息时,还需要向基站传输除了信道相关参数和干扰相关参数外的信道状态信息(Channel State Information,CSI)相关的参数,混合自动重传(Hybrid automatic repeat request,HARQ)等相关参数。其中信道相关参数和干扰相关参数外的CSI(在本文中把信道相关参数和干扰相关参数外的CSI参数统称为信道质量相关参数)包括但不限于以下至少之一,信道质量指示(Channel Quality Indicator,CQI),预编码矩阵指示(precoding matrix indicator,PMI),信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI),层指示(layer indicator,LI),秩指示(rank indicator,RI)。当终端在完成信道状态信息的检测后,当上行资源无法传输所有信道状态信息时,需要对部分信道状态信息进行舍弃。
那么就需要对信道状态信息进行优先级排序,其中CSI的相关参数的优先级包括以下至少之一:
IQI的优先级不高于RSRP的优先级。
IMRI的优先级不高于CRI或SSBRI的优先级。
IMRI的优先级不低于RI的优先级。
IMRI的优先级不低于PMI的优先级。
IMRI的优先级不低于LI的优先级。
IMRI的优先级不低于CQI的优先级。
IMRI的优先级高于IQI和/或Differential IQI的优先级。
IMRI的优先级高于RSRP和/或Differential RSRP的优先级。
RSRP的优先级不低于IQI和/或Differential IQI的优先级。
Differential IQI的优先级不高于Differential RSRP的优先级。
IQI和/或Differential IQI的优先级高于RI和/或LI的优先级;
IQI和/或Differential IQI的优先级高于PMI和/或CQI的优先级。
终端根据上述的优先级对CSI相关的参数进行编码,并有可能在编码率要求达不到系统要求时,对优先级低的参数进行舍弃直到达到系统编码率的要求。基站根据上述的优先级对CSI相关参数进行解码那么接收终端发送的信道状态 信息,包括如下情况至少之一:
当IMRI由CRI确定时,接收CRI;
当IMRI由SSBRI确定时,接收SSBRI;
接收至少一个CRI、RSRP和/或差分RSRP;
接收至少一个CRI、IQI和/或差分IQI;
接收至少一个CRI、RSRP和/或差分RSRP、IQI和/或差分IQI;
接收至少一个SSBRI、RSRP和/或差分RSRP;
接收至少一个SSBRI、IQI和/或差分IQI;
接收至少一个SSBRI、RSRP和/或差分RSRP、IQI和/或差分IQI;
接收至少一个IMRI、RSRP和/或差分RSRP;
接收至少一个IMRI、IQI和/或差分IQI;
接收至少一个IMRI、RSRP和/或差分RSRP、IQI和/或差分IQI;
接收至少一个CRI、至少一个IMRI、RSRP和/或差分RSRP;
接收至少一个CRI、至少一个IMRI、IQI和/或差分IQI;
接收至少一个CRI、至少一个IMRI、RSRP和/或差分RSRP、IQI和/或差分IQI。
在一实施例中,接收终端发送的信道状态信息,可以接收终端通过上行资源传输的信道状态信息,其中信道状态信息中的信道相关参数和干扰相关参数需要采用一定的编码方式进行编码处理,那么基站就可以采用与终端对应的解码方式实现解码。上行资源包括物理上行信道,高层信令。其中,物理上行信道至少包括以下之一:物理上行共享信道(Physical uplink shared channel,PUSCH)、物理上行控制信道(Physical uplink control channel,PUCCH),物理随机接入信道(Physical random-access channel,PRACH)。高层信令包括无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制层控制单元(Media Access Control control element,MAC CE)信令。这里的上行资源都可以用于传输信道状态信息。
为了便于描述在一个报告中如何传输信道状态信息,需要先对的信道状态信息进行编码。在编码前需要确定信道状态信息各个变量的比特数目。首先,当前标准中已经定了CRI、SSBRI、RSRP等参数的比特数目,如表1所示。
表1
Figure PCTCN2020086141-appb-000001
其中,
Figure PCTCN2020086141-appb-000002
为CSI-RS所在的CSI-RS资源集合中的CSI-RS个数,
Figure PCTCN2020086141-appb-000003
为SS/PBCH对应的SS/PBCH资源集合中的SS/PBCH块个数。
表2和表3示出IMRI、IQI、Differential IQI的比特数目。其中表2不包括IMRI,因为IMRI可能由CRI隐含传输。
表2
Figure PCTCN2020086141-appb-000004
表3
Figure PCTCN2020086141-appb-000005
其中,
Figure PCTCN2020086141-appb-000006
为干扰测量资源子集合的个数和/干扰测量资源集合的个数,a,b为正整数。例如a=7、b=4。
或者所有的信道状态信息的位宽合并为一个表4。
表4
Figure PCTCN2020086141-appb-000007
需要说明的是,如果IMRI由CRI或者SSBRI隐含指示,那么表4用表5的形式替换:
表5
Figure PCTCN2020086141-appb-000008
在知道信道状态信息的传输比特后,以及它们的优先级后就可以对信道状态信息进行编码,并将编码后的信道状态信息在上行资源中传输给基站。
对信道状态信息进行编码的具体方法可以采用如下三种方式进行:
1)信道状态信息中的信道相关参数和干扰相关参数在一个编码块里联合编码。
此时,上行资源为PUCCH,信道状态信息中的信道相关参数和干扰相关参 数联合编码,具体的编码方式如表6所示。
表6
Figure PCTCN2020086141-appb-000009
2)信道状态信息中的信道相关参数和干扰相关参数在两个编码块里独立编码。
此时,上行资源为PUCCH,信道状态信息中的信道相关参数和干扰相关参数独立编码,如图表7和表8所示,其中表7为信道相关参数的编码方式,表8为干扰相关参数的编码方式。
表7
Figure PCTCN2020086141-appb-000010
Figure PCTCN2020086141-appb-000011
表8
Figure PCTCN2020086141-appb-000012
3)信道状态信息包括RSRP和IQI时,RSRP在第一部分编码块中编码,IQI在第二部分编码块的宽带或子带部分编码;信道状态信息包括差分RSRP和IQI时,差分RSRP在第一部分编码块中编码,IQI在第二部分编码块的宽带或子带部分编码;信道状态信息包括RSRP和差分IQI时,RSRP在第一部分编码块中编码,差分IQI在第二部分编码块的宽带或子带部分编码;信道状态信息包括差分RSRP和差分IQI时,差分RSRP在第一部分编码块中编码,差分IQI在第二部分编码块的宽带或子带部分编码;信道状态信息包括IQI但不包括RSRP和/或差分RSRP时,IQI在第一部分编码块中编码;信道状态信息包括差分IQI但不包括RSRP和/或差分RSRP时,差分IQI在第一部分编码块中编码;其中,第一部分编码块的传输优先级高于第二部分编码块的传输优先级。也就是终端 完成编码后,优先传输第一部分编码块中编码的信息。
其中,CRI、SSBRI、IMIR至少之一在第一部分编码块中编码,如表9所示,IQI、RSRP、Differential IQI、Differential RSRP至少之一在第二部分编码块中编码,如表10所示。
表9
Figure PCTCN2020086141-appb-000013
表10
Figure PCTCN2020086141-appb-000014
需要说明的是,如果IQI和RSRP只有一个存在时,可以只在第一部分编码块中编码。终端通过表6-表10的方式对信道状态信息进行编码,如果还存在其 他CSI参数也可以一起进行编码,将编码后的数据进行调制,资源映射等操作后在PUCCH上传输给基站,基站在PUCCH资源上接收信道状态信息,并通过解调、解码等一系列操作获得波束赋形相关的参数。
另外,如果在PUSCH上传输,那么除了表6-表10外还可能存在其他编码方式,例如表11-表13所示的编码形式。其中表11中,所有的信道状态信息在CSI报告的第一部分编码块里编码;表12中,以下参数至少之一在CSI报告的第一部分编码块里编码,CRI、SSBRI、IMRI、RSRP,Differential RSRP;表13表示以下参数至少之一在CSI报告的第二部分编码块的宽带部分进行编码:IQI和Differential IQI。
表11
Figure PCTCN2020086141-appb-000015
表12
Figure PCTCN2020086141-appb-000016
Figure PCTCN2020086141-appb-000017
表13
Figure PCTCN2020086141-appb-000018
即,对于PUSCH传输,包括如下特征之一:
信道相关参数和干扰相关参数都在CSI报告的第一部分编码块联合编码,或CRI、SSBRI、IMR以及RSRP、Differential RSRP至少之一在CSI报告的第一部分编码块编码,而IQI、Differential IQI至少之一在CSI报告的第一部分编码块宽带部分或CSI报告的第一部分编码块子带部分编码。
终端通过表6-表13的方式对信道状态信息进行编码,如果还存在其它CSI参数也可以一起进行编码,将编码后的数据进行调制,资源映射等操作后在PUSCH上传输给基站,基站在PUSCH资源上接收信道状态信息,并通过解调、解码等一系列操作获得波束赋形相关的参数。
需要说明的是,终端也可以通过表6-表13的方式对信道状态信息进行编码,并将一些信道状态信息在PUCCH上传输,而另外一部分信道状态信息在PUSCH上或者高层信令上传输。
需要说明的是,表6-表13只是对信道状态信息编码的一些实施例,也可以有其它的对信道状态信息进行任意组合和拆分的编码方式,这里不一一例举。
图4为一实施例提供的另一种信道测量方法的流程图,如图4所示,本实施例提供的方法包括如下步骤。
步骤S4010,接收测量资源信息,其中,测量资源信息包括N个信道测量 资源信息和M个干扰测量资源信息,N和M为正整数。
本实施例提供的信道测量方法应用于无线通信系统中的终端设备,简称终端。终端根据基站分配的传输资源完成数据传输,并且接收基站发送的各种配置信息,根据各种配置信息确定传输所需资源,并执行各种配置信息所指示的测量指令。
在基站和终端通过多阵子阵列天线实现多波束赋型时,终端需要对基站赋型的多个波束进行测量,并向基站传输测量到的各波束的状态,从而使基站选择增益最大的波束作为最佳波束与终端建立信道进行数据传输。终端对各波束的RSRP进行测量并传输,也即将接收功率最大的波束作为终端所使用的的波束,但这样没有考虑到同频的其他波束的干扰,从而可能影响波束的选择。
为了解决上述问题,在本实施例中,终端接收基站发送的测量资源信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数。
测量资源信息,以及测量资源信息中N个信道测量资源信息和M个干扰测量资源信息的具体含义和相互关系在图2所示实施例中已经详细说明,此处不再赘述。
步骤S4020,根据测量资源信息获取信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数。
终端接收到测量资源信息后,即可根据测量资源信息中包括的N个信道测量资源信息和M个干扰测量资源信息分别对信道和干扰进行测量,获取信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数。
信道状态信息的含义和信道相关参数和干扰相关参数的关系在图2所示实施例中已经详细说明,此处不再赘述。
步骤S4030,向基站传输信道状态信息。
终端在获取到信道状态信息后,向基站传输信道状态信息。基站接收到终端发送的测量到的各种参数,即信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数。其中信道相关参数是终端响应于信道测量资源而测量出的参数,干扰相关参数是终端响应于干扰测量资源而测量出的参数。当基站接收到终端发送的信道状态信息,即可确定基站发出的各波束对于终端的信道状态和干扰情况,从而基站可以选择出最优波束与终端建立通信连接实现数据传输。
对于图4所示实施例,信道测量资源和干扰测量资源的组成、相互关系,信道相关参数和干扰相关参数的组成,相互关系,基站如何向基站传输信道状 态信息,以及如何编码信道状态信息的具体方法已经在上述实施例中进行了详细说明,此处不再赘述。
需要说明的是,本申请实施例中,仅以基站配置测量资源信息,向终端测量资源信息后接收终端发送的信道状态信息为例进行了说明,也即通过上行资源传输信道状态信息。但实际上,由于终端也支持多波束赋形,对于基站和终端而言,同样可以通过下行资源传输信道状态信息,即基站向终端传输信道状态信息,使得终端选择适合的上行波束,具体的方法与本申请实施例提供的方法类似,区别仅在于将上行资源变为下行资源,本领域技术人员均能根据本申请所提供的信道测量方法,在下行资源上实现信道状态信息的传输,本实施例中不再赘述。
另外,对于同一个接收端,在相同的符号上使用相同的接收波束进行接收信号,这在多个发射接收点(Transmission and Reception Point,TRP)联合传输的时候并不能很好地根据不同TRP对应的信道特征来灵活地接收信道或者信号。为此本申请实施例还提供一种空间接收参数的确定方法。
本申请实施例中的一种空间接收参数的确定方法包括:确定A类信道和/或信号关联的组信息;
根据确定的A类信道和/或信号关联的组信息,确定如下至少之一:A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,A类信道和/或信号的传输方式;
其中A类信道和/或信号占有的时域资源之间的交集非空,A为大于或等于2的正整数。
在本申请实施例中,确定A类信道和/或信号关联组信息;根据A类信道和/或信号关联的组信息,确定A类信道和/或信号中的至少一类信道和/或信号的空间接收参数。
根据确定的A类信道和/或信号关联的组信息,确定A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,包括如下至少之一:
A类信道和/或信号关联的组信息相同时,A类信道和/或信号关于空间接收参数满足准共址关系;
A类信道和/或信号关联的组信息相同时,A类信道和/或信号在交集部分关于空间接收参数满足准共址关系;
A类信道和/或信号关联的组信息不同时,A类信道和/或信号分别关联一个空间接收参数;
A类信道和/或信号关联的组信息不同时,A类信道和/或信号在交集部分分别关联一个空间接收参数。
下面以A=2为例进行说明,下述的描述中A类信道和/或信号关联的组信息相同时满足如下关系,如果A类信道和/或关联的组信息不同时,不需要满足如下关系。
情况1:当调度PDSCH的下行控制信息(Downlink Control Information,DCI)和物理下行共享信道(Physical Downlink shared channel,PUSCH)之间的间距小于预定阀值,PDSCH和控制资源集合(Control resource set,CORESET)之间时域交集非空(CORESET是配置为用于传输下行控制信息的时频资源块),PDSCH和CORESET的'QCL-TypeD'(即空间接收参数)不同,PDSCH和CORESET关联相同的组信息时,优先接收CORESET中的物理下行控制信道(Physical Downlink control channel,PUCCH)。此时PDSCH的'QCL-TypeD'是距离PDSCH最近的时间单元中关联至少一个要检测的搜索空间具有最低CORESETID且在PDSCH所在的载波组件(Carrier Component,CC)中的CORESET的'QCL-TypeD'。
情况2:如果UE被配置CSI-RS资源和一个搜索空间集合(a search space set)关联的CORESET有至少一个相同的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,且CSI-RS和CORESET有相同的组ID,如果'QCL-TypeD'被配置了,终端假设CSI-RS和这些搜索空间集合关联的CORESET包含的所有PDCCH的解调参考信号(Demodulation Reference Sgnal,DMRS)关于’QCL-TypeD’满足准共址关系,这个也可以应用于CSI-RS和CORESET在不同带内跃迁组载波(intra-band component carriers)的情况。
情况3:如果终端配置的CSI-RS资源和SS/PBCH资源块占有的OFDM时域符号交集非空,并且CSI-RS资源和SS/PBCH资源块有相同的组ID,如果'QCL-TypeD'有被应用,那么CSI-RS和SS/PBCH资源块是关于'QCL-TypeD'满足准共址关系。
情况4:如果终端接收的PDSCH的DMRS和SS/PBCH资源块占有的OFDM符号交集非空,PDSCH的DMRS和SS/PBCH资源块有相同的组ID,且如果'QCL-TypeD'被配置了,那么DM-RS和SS/PBCH资源块是关于'QCL-TypeD'满足准共址关系。
情况5:如果终端被配置成单载波或载波聚合(Carrier Aggregation,CA)模式,属于多个CORESET的PDCCH的检测机会(occasion)之间的交集非空,且这些CORESET具有相同的组索引,则终端检测其中一个CORESET和与这个CORESET之间满足QCL-TypeD的CORESET中的PDCCH。
上述组ID为如下至少之一:下行控制信道元素组索引,传输配置指示(Transmission Configuration Indicator TCI)状态组索引,天线组索引,信道和/或信号组索引,信道和/或信号的参数值组索引。其中下行控制信道元素包括如下之一:CORESET,搜索空间集合,搜索空间,候选PDCCH。比如不同的组对应不同的TRP。
上述A类信道和/或信号之间的交集非空且具有相同的组索引时,A类信道和/或信号之间关于QCL-typeD(即空间接收参数)满足准共址关系,本实施例也不排除,A类信道和/或信号之间的交集非空且具有相同的组索引时,A类信道和/或信号之间关于QCL-typeD(即空间接收参数)的准共址参考信号构成的集合中,包括的参考信号的个数小于第三预定门限,或者A类信道和/或信号之间关于QCL-typeD(即空间接收参数)的准共址参考信号构成的集合中,包括的不满足准共址关系的参考信号的个数小于第三预定门限,比如对于一个TRP终端可以打出多于一个的接收波束。
A类信道和/或信号之间的交集非空且具有不同的组索引,A类信道和/或信号之间关于QCL-typeD(即空间接收参数)不需要满足准共址关系,A类信道和/或信号之间关于QCL-typeD(即空间接收参数)的准共址参考信号构成的集合中,包括的不满足准共址关系的参考信号的个数小于第四预定门限,其中第四门限大于第三预定门限,比如终端对于每个TRP终端可以打出预定个数个接收波束,终端对于两个TRP终端可以打出的接收波束的个数大于终端对于一个TRP终端可以打出的接收波束的个数。
在一实施例中,一个信道和/或信号关联一个下行控制信道元素组,包括如下至少之一:
调度信道和/或信号的物理层控制信道在下行控制信道元素组中传输;
调度信道和/或信号的高层信令包括在下行控制信道元素组中传输的控制信道调度的下行数据信道中;比如调度周期或者半持续信道和/或信号的RRC/MAC-CE命令包括在一个CORESET组1的PDCCH中,则称这些周期或者半持续信道和/或信号关联的CORESET组为CORESET组1。
在一实施例中,在上述情况1~5中,当A类信道和/或信号关联的组信息不同时,他们之间不需要关于空间接收参数满足准共址关系。
在一实施例中,A类信道和/或信号关联的组信息不同时,包括如下特征至少之一:
A类信道和/或信号关联的组信息不同且A类信道和/或信号关于空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数大于G 时,根据组信息的优先级,传输A类信道和/或信号中的B类信道和/或信号,其中B值为小于A值的正整数;
A类信道和/或信号关联的组信息不同且A类信道和/或信号关于空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数大于G时,传输A类信道和/或信号中的B类信道和/或信号,其中B值为小于A值的正整数;
A类信道和/或信号关联的组信息不同且A类信道和/或信号关于空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数小于或者等于G时,传输A类信道和/或信号;
A类信道和/或信号关联的组信息相同且A类信道和/或信号关于空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数大于H时,传输A类信道和/或信号中的B类信道和/或信号,其中B值为小于A值的正整数;
A类信道和/或信号关联的组信息相同且A类信道和/或信号关于空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数小于或者等于H时,传输A类信道和/或信号;
其中G,H是大于或者等于1的正整数,和/或根据以下信息至少之一获取G值:下行控制信道元素组,TCI状态组,天线组,信道和/或信号组,和/或H小于G。
比如相同组的信道和/或信号由同一个TRP发送,不同组的信道和/或信号由不同TRP发送。
比如CORESET组有两个,分别对应一个TRP,两类信道和/或信号关联的组信息不同且两类信道和/或信号关于空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数小于或者等于2时,传输两类信道和/或信号;
比如CORESET组有两个,分别对应一个TRP,两类信道和/或信号关联的组信息相同且两类信道和/或信号关于空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数大于1时,传输两类信道和/或信号中的一类信道和/或信号;
需要说明的是,本申请说明书中的所有部分的传输包括发送和/或接收,在信道和/或信号的发送端就是发送,在信道和/或信号的接收端就是接收。
在本申请实施例中,确定A类信道和/或信号关联的组信息;
根据A类信道和/或信号关联的组信息,确定A类信道和/或信号的传输方式包括如下至少之一:
A类信道和/或信号关联的组信息不同且A类信道和/或信号关于空间接收参数不满足准共址关系时,根据组信息的优先级,传输A类信道和/或信号中的B类信道和/或信号,其中B值为小于A值的正整数;比如组信息索引最小的信道和/或信号的优先级最高。比如不同的组信息对应不同的TRP。
在本申请实施例中,A类信道和/或信号占有的时域资源之间的交集非空时,传输A类信道和/或信号中的B类信道和/或信号,根据A类信道和/或信号关于空间接收参数的准共址参考信号构成的参考信号集合中,包括的参考信号的个数和第一预定值的关系,确定B值。比如A类信道和/或信号关于空间接收参数的准共址参考信号构成的参考信号集合中,包括的参考信号的个数大于第一预定值,B值小于A值或者根据A类信道和/或信号关联的组信息之间的关系确定B值,否则B值等于A值。
根据以下信息至少之一获取第一预定值和/或第二预定值,下行控制信道元素组,TCI状态组,天线组,信道和/或信号组。比如不同的组信息对应不同的TRP。
在本申请实施例中,A类信道和/或信号占有的时域资源之间的交集非空时,传输A类信道和/或信号中的B类信道和/或信号,根据A类信道和/或信号关于空间接收参数的准共址参考信号构成的参考信号集合中,包括的关于空间接收参数不满足准共址关系的参考信号的个数和第二预定值的关系,确定B值。
比如A类信道和/或信号关于空间接收参数的准共址参考信号构成的参考信号集合中,包括的关于空间接收参数不满足准共址关系的参考信号的个数大于第二预定值时,B值小于A值或者根据A类信道和/或信号关联的组信息之间的关系确定B值,否则B值等于A值。
图5为一实施例提供的一种信道测量装置的结构示意图,如图5所示,本实施例提供的信道测量装置包括:配置模块51,设置为配置测量资源信息,测量资源信息用于获取信道状态信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;发送模块52,设置为发送测量资源信息。
本实施例提供的信道测量装置用于实现图2所示实施例的信道测量方法,本实施例提供的信道测量装置实现原理和技术效果类似,此处不再赘述。
图6为一实施例提供的另一种信道测量装置的结构示意图,如图6所示, 本实施例提供的信道测量装置包括:接收模块61,设置为接收测量资源信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;测量模块62,设置为根据测量资源信息获取信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数;发送模块63,设置为向基站传输信道状态信息。
本实施例提供的信道测量装置用于实现图4所示实施例的信道测量方法,本实施例提供的信道测量装置实现原理和技术效果类似,此处不再赘述。
图7为一实施例提供的一种空间接收参数的确定装置的结构示意图,如图7所示,本实施例提供的空间接收参数的确定装置包括:组信息确定模块71,设置为确定A类信道和/或信号关联的组信息;参数确定模块72,设置为根据确定的A类信道和/或信号关联的组信息,确定如下至少之一:A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,A类信道和/或信号的传输方式;其中A类信道和/或信号占有的时域资源之间的交集非空,A为大于或等于2的正整数。
图8为一实施例提供的一种基站的结构示意图,如图8所示,该基站包括处理器81、存储器82和接收器83和发送器84;基站中处理器81的数量可以是一个或多个,图8中以一个处理器81为例;基站中的处理器81和存储器82;可以通过总线或其他方式连接,图8中以通过总线连接为例。
存储器82作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图2实施例中的信道测量方法对应的程序指令/模块。处理器81通过运行存储在存储器82中的软件程序、指令以及模块,从而基站实现至少一种功能应用以及数据处理,即实现上述的信道测量方法。
存储器82可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据基站的使用所创建的数据等。此外,存储器82可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
接收器83为能够从空间中接收射频信号的模块或器件组合,例如包括射频接收机、天线以及其他器件的组合。发送器84为能够将射频信号发射至空间中的模块或器件组合,例如包括射频发射机、天线以及其他器件的组合。
图9为一实施例提供的一种终端的结构示意图,如图9所示,该终端包括处理器91、存储器92、接收器93和发送器94;终端中处理器91的数量可以是一个或多个,图9中以一个处理器91为例;终端中的处理器91和存储器92; 可以通过总线或其他方式连接,图9中以通过总线连接为例。
存储器92作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图4实施例中的信道测量方法对应的程序指令/模块。处理器91通过运行存储在存储器92中的软件程序、指令以及模块,从而实现终端的至少一种功能应用以及数据处理,即实现上述的信道测量方法方法。
存储器92可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器92可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
接收器93为能够从空间中接收射频信号的模块或器件组合,例如包括射频接收机、天线以及其他器件的组合。发送器94为能够将射频信号发射至空间中的模块或器件组合,例如包括射频发射机、天线以及其他器件的组合。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种信道测量方法,该方法包括:配置测量资源信息,测量资源信息用于获取信道状态信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;发送测量资源信息。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种信道测量方法,该方法包括:接收测量资源信息,其中,测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,N和M为正整数;根据测量资源信息获取信道状态信息,信道状态信息包括信道相关参数和/或干扰相关参数;向基站传输信道状态信息。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(InstructionSet Architecture,ISA)指 令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (42)

  1. 一种信道测量方法,包括:
    配置测量资源信息,所述测量资源信息用于获取信道状态信息,其中,所述测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,所述N和所述M为正整数;
    发送所述测量资源信息。
  2. 根据权利要求1所述的方法,其中,所述信道测量资源信息包括以下至少之一:信道测量资源集合、信道测量资源子集合,其中,一个信道测量资源集合包括至少一个信道测量资源子集合,一个信道测量资源集合和一个信道测量资源子集合中的至少之一包括至少一个信道测量资源。
  3. 根据权利要求2所述的方法,其中,所述方法包括以下至少之一:每个信道测量资源子集合内的信道测量资源具有相同的空间特性,不同信道测量资源子集合间的信道测量资源具有不同的空间特性。
  4. 根据权利要求1所述的方法,其中,所述干扰测量资源信息包括以下至少之一:干扰测量资源集合,干扰测量资源子集合,干扰测量资源子子集合,其中,一个干扰测量资源集合包括至少一个干扰测量资源子集合,一个干扰测量资源子集合包括至少一个干扰测量资源子子集合,一个干扰测量资源子子集合包括至少一个干扰测量资源。
  5. 根据权利要求4所述的方法,其中,所述方法包括以下至少之一:每个干扰测量资源子集合内的干扰测量资源具有相同的空间特性,不同干扰测量资源子集合间的干扰测量资源具有不同的空间特性。
  6. 根据权利要求5所述的方法,还包括:
    根据预设规则确定所述N个信道测量资源信息和所述M个干扰测量资源信息的关联关系;或配置并发送第一信令,所述第一信令用于确定所述N个信道测量资源信息和所述M个干扰测量资源信息的关联关系。
  7. 根据权利要求6所述的方法,其中,所述N个信道测量资源信息和所述M个干扰测量资源信息的关联关系包括以下至少之一:
    所述信道测量资源信息中的一个信道测量资源和所述干扰测量资源信息中的一个干扰测量资源有关联关系;
    所述信道测量资源信息中的一个信道测量资源子集合和所述干扰测量资源信息中的一个干扰测量资源子集合有关联关系;
    所述信道测量资源信息中的一个信道测量资源子集合和所述干扰测量资源信息中的一个干扰测量资源子子集合有关联关系;
    所述信道测量资源信息中的一个信道测量资源集合和所述干扰测量资源信息中的一个干扰测量资源集合有关联关系;
    其中,具有所述关联关系的所述信道测量资源信息和所述干扰测量资源信息能同时发送或具有所述关联关系的所述信道测量资源信息和所述干扰测量资源信息具有相同的空间特性。
  8. 根据权利要求6或7所述的方法,其中,所述信道测量资源信息和所述干扰测量资源信息均包括重复参数。
  9. 根据权利要求8所述的方法,其中,所述信道测量资源信息和所述干扰测量资源信息的重复参数由以下任一种方式确定:
    干扰测量资源集合的重复参数由干扰测量资源集合关联的信道测量资源集合的重复参数确定;
    干扰测量资源子集合的重复参数由干扰测量资源子集合关联的信道测量资源子集合的重复参数确定;
    干扰测量资源子子集合的重复参数由干扰测量资源子子集合关联的信道测量资源子集合的重复参数确定;
    干扰测量资源子子集合的重复参数由干扰测量资源子集合关联的信道测量资源子集合的重复参数确定;
    信道测量资源集合的重复参数由信道测量资源集合关联的干扰测量资源集合的重复参数确定;
    信道测量资源子集合的重复参数由信道测量资源子集合关联的干扰测量资源子集合的重复参数确定;
    信道测量资源子集合的重复参数由信道测量资源子集合关联的干扰测量资源子子集合的重复参数确定;
    信道测量资源子集合的信道测量资源的重复参数由信道测量资源子集合关联的干扰测量资源子集合或干扰测量资源子子集合的重复参数确定;
    干扰测量资源集合的重复参数和干扰测量资源集合关联的信道测量资源集合的重复参数由独立的高层参数确定;
    干扰测量资源子集合的重复参数和干扰测量资源子集合关联的信道测量资源子集合的重复参数由独立的高层参数确定;
    干扰测量资源子子集合的重复参数和干扰测量资源子子集合关联的信道测量资源子集合的重复参数由独立的高层参数确定。
  10. 根据权利要求1~7任一项所述的方法,还包括:
    接收终端发送的信道状态信息,所述信道状态信息包括以下至少之一:信道相关参数、干扰相关参数;
    其中,所述信道相关参数包括以下至少之一:参考信号资源指示CRI、同步信号块资源指示SSBRI、参考信号接收功率RSRP、差分RSRP;
    所述干扰相关参数包括以下至少之一:干扰测量资源指示IMRI、干扰质量指示IQI、差分IQI。
  11. 根据权利要求10所述的方法,其中,所述IMRI由所述CRI或所述SSBRI确定。
  12. 根据权利要求11所述的方法,其中,所述接收终端发送的信道状态信息,包括以下至少之一:
    在所述IMRI由所述CRI确定的情况下,接收所述CRI;
    在所述IMRI由所述SSBRI确定的情况下,接收所述SSBRI。
    接收至少一个CRI、RSRP和差分RSRP中的至少之一;
    接收至少一个CRI、IQI和差分IQI中的至少之一;
    接收至少一个CRI、RSRP和差分RSRP中的至少之一、IQI和差分IQI中的至少之一;
    接收至少一个SSBRI、RSRP和差分RSRP中的至少之一;
    接收至少一个SSBRI、IQI和差分IQI中的至少之一;
    接收至少一个SSBRI、RSRP和差分RSRP中的至少之一、IQI和差分IQI中的至少之一;
    接收至少一个IMRI、RSRP和差分RSRP中的至少之一;
    接收至少一个IMRI、IQI和差分IQI中的至少之一;
    接收至少一个IMRI、RSRP和差分RSRP中的至少之一、IQI和差分IQI中的至少之一;
    接收至少一个CRI、至少一个IMRI、RSRP和差分RSRP中的至少之一;
    接收至少一个CRI、至少一个IMRI、IQI和差分IQI中的至少之一;
    接收至少一个CRI、至少一个IMRI、RSRP和差分RSRP中的至少之一、IQI和差分IQI中的至少之一。
  13. 根据权利要求10所述的方法,其中,所述接收终端发送的信道状态信息, 包括:
    接收所述终端通过上行资源发送的所述信道状态信息,所述信道状态信息中的所述信道相关参数和所述干扰相关参数在一个编码块里联合编码。
  14. 根据权利要求10所述的方法,其中,所述接收所述终端发送的信道状态信息,包括:
    接收所述终端通过上行资源发送的所述信道状态信息,所述信道状态信息中的所述信道相关参数和所述干扰相关参数在两个编码块里独立编码。
  15. 根据权利要求10所述的方法,其中,所述接收终端发送的信道状态信息,包括:
    接收所述终端通过上行资源发送的所述信道状态信息,所述信道状态信息中的所述信道相关参数和所述干扰相关参数的编码方式包括以下至少之一:
    在所述信道状态信息包括所述RSRP和所述IQI的情况下,所述RSRP在第一部分编码块中编码,所述IQI在第二部分编码块的宽带或子带部分编码;
    在所述信道状态信息包括所述差分RSRP和所述IQI的情况下,所述差分RSRP在第一部分编码块中编码,所述IQI在第二部分编码块的宽带或子带部分编码;
    在所述信道状态信息包括所述RSRP和所述差分IQI的情况下,所述RSRP在第一部分编码块中编码,所述差分IQI在第二部分编码块的宽带或子带部分编码;
    在所述信道状态信息包括所述差分RSRP和所述差分IQI的情况下,所述差分RSRP在第一部分编码块中编码,所述差分IQI在第二部分编码块的宽带或子带部分编码;
    在所述信道状态信息包括所述IQI但不包括所述RSRP和所述差分RSRP中的至少之一的情况下,所述IQI在第一部分编码块中编码;
    在所述信道状态信息包括差分IQI但不包括所述RSRP和所述差分RSRP中的至少之一的情况下,所述差分IQI在第一部分编码块中编码。
  16. 一种信道测量方法,包括:
    接收测量资源信息,其中,所述测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,所述N和所述M为正整数;
    根据所述测量资源信息获取信道状态信息,其中,所述信道状态信息包括以下至少之一:信道相关参数、干扰相关参数;
    向基站传输所述信道状态信息。
  17. 根据权利要求16所述的方法,其中,所述信道测量资源信息包括以下至少之一:信道测量资源集合、信道测量资源子集合,其中,一个信道测量资源集合包括至少一个信道测量资源子集合,一个信道测量资源集合和信道测量资源子集合中的至少之一包括至少一个信道测量资源。
  18. 根据权利要求17所述的方法,其中,所述方法包括以下至少之一:每个信道测量资源子集合内的信道测量资源具有相同的空间特性,不同信道测量资源子集合间的信道测量资源具有不同的空间特性。
  19. 根据权利要求16所述的方法,其中,所述干扰测量资源信息包括以下至少之一:干扰测量资源集合,干扰测量资源子集合,干扰测量资源子子集合,其中,一个干扰测量资源集合包括至少一个干扰测量资源子集合,一个干扰测量资源子集合包括至少一个干扰测量资源子子集合,一个干扰测量资源子子集合包括至少一个干扰测量资源。
  20. 根据权利要求16所述的方法,其中,所述方法包括以下至少之一:每个干扰测量资源子集合内的干扰测量资源具有相同的空间特性,不同干扰测量资源子集合间的干扰测量资源具有不同的空间特性。
  21. 根据权利要求20所述的方法,还包括:根据预设规则或者根据接收的第一信令确定所述N个信道测量资源信息和所述M个干扰测量资源信息的关联关系。
  22. 根据权利要求21所述的方法,其中,所述N个信道测量资源信息和所述M个干扰测量资源信息的关联关系包括以下至少之一:
    所述信道测量资源信息中的一个信道测量资源和所述干扰测量资源信息中的一个干扰测量资源有关联关系;
    所述信道测量资源信息中的一个信道测量资源子集合和所述干扰测量资源信息中的一个干扰测量资源子集合有关联关系;
    所述信道测量资源信息中的一个信道测量资源子集合和所述干扰测量资源信息中的一个干扰测量资源子子集合有关联关系;
    所述信道测量资源信息中的一个信道测量资源集合和所述干扰测量资源信息中的一个干扰测量资源集合有关联关系;
    其中,具有所述关联关系的所述信道测量资源信息和所述干扰测量资源信息能同时接收,或具有所述关联关系的所述信道测量资源信息和所述干扰测量资源信息具有相同的空间特性。
  23. 根据权利要求21或22所述的方法,其中,所述信道测量资源信息和所述干扰测量资源信息均包括重复参数。
  24. 根据权利要求23所述的方法,其中,所述信道测量资源信息和所述干扰测量资源信息的重复参数由以下任一种方式确定:
    干扰测量资源集合的重复参数由干扰测量资源集合关联的所述信道测量资源集合的重复参数确定;
    干扰测量资源子集合的重复参数由干扰测量资源子集合关联的信道测量资源子集合的重复参数确定;
    干扰测量资源子子集合的重复参数由干扰测量资源子子集合关联的信道测量资源子集合的重复参数确定;
    干扰测量资源子子集合的重复参数由干扰测量资源子集合关联的信道测量资源子集合的重复参数确定;
    信道测量资源集合的重复参数由信道测量资源集合关联的干扰测量资源集合的重复参数确定;
    信道测量资源子集合的重复参数由信道测量资源子集合关联的干扰测量资源子集合的重复参数确定;
    信道测量资源子集合的重复参数由信道测量资源子集合关联的干扰测量资源子子集合的重复参数确定;
    信道测量资源子集合的信道测量资源的重复参数由信道测量资源子集合关联的干扰测量资源子集合或干扰测量资源子子集合的重复参数确定;
    干扰测量资源集合的重复参数和干扰测量资源集合关联的信道测量资源集合的重复参数由独立的高层参数确定;
    干扰测量资源子集合的重复参数和干扰测量资源子集合关联的信道测量资源子集合的重复参数由独立的高层参数确定;
    干扰测量资源子子集合的重复参数和干扰测量资源子子集合关联的信道测量资源子集合的重复参数由独立的高层参数确定。
  25. 根据权利要求16~22任一项所述的方法,其中,所述信道相关参数包括以下至少之一:参考信号资源指示CRI、同步信号块资源指示SSBRI、参考信号接收功率RSRP、差分RSRP;
    所述干扰相关参数包括以下至少之一:干扰测量资源指示IMRI、干扰质量指示IQI、差分IQI。
  26. 根据权利要求25所述的方法,其中,所述IMRI由所述CRI或所述SSBRI确定。
  27. 根据权利要求26所述的方法,其中,所述向基站传输所述信道状态信息,包括以下至少之一:
    在所述IMRI由所述CRI确定的情况下,向所述基站传输所述CRI;
    在所述IMRI由所述SSBRI确定的情况下,向所述基站传输所述SSBRI;
    向所述基站传输所述至少一个CRI、RSRP和差分RSRP中的至少之一;
    向所述基站传输至少一个CRI、IQI和差分IQI中的至少之一;
    向所述基站传输至少一个CRI、RSRP和差分RSRP中的至少之一、IQI和差分IQI中的至少之一;
    向所述基站传输至少一个SSBRI、RSRP和差分RSRP中的至少之一;
    向所述基站传输至少一个SSBRI、IQI和差分IQI中的至少之一;
    向所述基站传输至少一个SSBRI、RSRP和差分RSRP中的至少之一、IQI和差分IQI中的至少之一;
    向所述基站传输至少一个IMRI、RSRP和差分RSRP中的至少之一;
    向所述基站传输至少一个IMRI、IQI和差分IQI中的至少之一;
    向所述基站传输至少一个IMRI、RSRP和差分RSRP中的至少之一、IQI和差分IQI中的至少之一;
    向所述基站传输至少一个CRI、至少一个IMRI、RSRP和差分RSRP中的至少之一;
    向所述基站传输至少一个CRI、至少一个IMRI、IQI和差分IQI中的至少之一;
    向所述基站传输至少一个CRI、至少一个IMRI、RSRP和差分RSRP中的至少之一、IQI和差分IQI中的至少之一。
  28. 根据权利要求16~22任一项所述的方法,其中,所述向基站传输所述信道状态信息,包括:
    通过上行资源向所述基站传输所述信道状态信息,所述信道状态信息中的所述信道相关参数和所述干扰相关参数在一个编码块里联合编码。
  29. 根据权利要求16~22任一项所述的方法,其中,所述向基站传输所述信道状态信息,包括:
    通过上行资源向所述基站传输所述信道状态信息,所述信道状态信息中的所述信道相关参数和所述干扰相关参数在两个编码块里独立编码。
  30. 根据权利要求25所述的方法,其中,所述向基站传输所述信道状态信息,包括:
    通过上行资源向所述基站传输所述信道状态信息,所述信道状态信息中的所述信道相关参数和所述干扰相关参数的编码方式包括以下至少之一:
    在所述信道状态信息包括所述RSRP和所述IQI的情况下,所述RSRP在第一部分编码块中编码,所述IQI在第二部分编码块的宽带或子带部分编码;
    在所述信道状态信息包括所述差分RSRP和所述IQI的情况下,所述差分RSRP在第一部分编码块中编码,所述IQI在第二部分编码块的宽带或子带部分编码;
    在所述信道状态信息包括所述RSRP和所述差分IQI的情况下,所述RSRP在第一部分编码块中编码,所述差分IQI在第二部分编码块的宽带或子带部分编码;
    在所述信道状态信息包括所述差分RSRP和所述差分IQI的情况下,所述差分RSRP在第一部分编码块中编码,所述差分IQI在第二部分编码块的宽带或子带部分编码;
    在所述信道状态信息包括所述IQI但不包括所述RSRP和所述差分RSRP中的至少之一的情况下,所述IQI在第一部分编码块中编码;
    在所述信道状态信息包括所述差分IQI但不包括所述RSRP和所述差分RSRP中的至少之一的情况下,所述差分IQI在第一部分编码块中编码。
  31. 一种空间接收参数的确定方法,包括:
    确定A类信道和/或信号关联的组信息;
    根据确定的A类信道和/或信号关联的组信息,确定如下至少之一:所述A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,所述A类信道和/或信号的传输方式;
    其中,所述A类信道和/或信号占有的时域资源之间的交集非空,所述A为大于或等于2的正整数。
  32. 根据权利要求31所述的方法,所述根据确定的A类信道和/或信号关联的组信息,确定所述A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,包括如下至少之一:
    在所述A类信道和/或信号关联的组信息相同的情况下,所述A类信道和/ 或信号关于所述空间接收参数满足准共址关系;
    在所述A类信道和/或信号关联的组信息相同的情况下,所述A类信道和/或信号在所述交集部分关于所述空间接收参数满足准共址关系;
    在所述A类信道和/或信号关联的组信息不同的情况下,所述A类信道和/或信号分别关联一个空间接收参数;
    在所述A类信道和/或信号关联的组信息不同的情况下,所述A类信道和/或信号在所述交集部分分别关联一个空间接收参数。
  33. 根据权利要求31所述的方法,所述根据确定的A类信道和/或信号关联的组信息,确定所述A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,包括如下至少之一:
    在所述A类信道和/或信号关联的组信息相同的情况下,所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的集合中,包括的参考信号的个数为C;
    在所述A类信道和/或信号关联的组信息相同的情况下,所述A类信道和/或信号在所述交集部分关于所述空间接收参数的准共址参考信号构成的集合中,包括的不满足准共址关系的参考信号的个数为D;
    在所述A类信道和/或信号关联的组信息不同的情况下,所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的集合中,包括的参考信号的个数为E;
    在所述A类信道和/或信号关联的组信息不同的情况下,所述A类信道和/或信号在所述交集部分关于所述空间接收参数的准共址参考信号构成的集合中,包括的不满足准共址关系的参考信号的个数为F;
    其中,所述C,所述D,所述E和所述F满足如下特征至少之一:所述C,所述D,所述E和所述F为正整数;所述C小于所述E;所述D小于所述F。
  34. 根据权利要求31所述的方法,其中,所述A类信道和/或信号的传输方式包括如下之一:传输所述A类信道和/或信号中的B类信道和/或信号,在所述交集部分传输所述A类信道和/或信号中的B类信道和/或信号,其中所述B值为小于或等于所述A值的正整数。
  35. 根据权利要求31所述的方法,所述根据确定的A类信道和/或信号关联的组信息确定所述A类信道和/或信号的传输方式包括如下至少之一:
    在所述A类信道和/或信号关联的组信息不同且所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考 信号的个数大于G的情况下,根据所述组信息的优先级,传输所述A类信道和/或信号中的B类信道和/或信号,其中所述B值为小于所述A值的正整数;
    在所述A类信道和/或信号关联的组信息不同且所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数大于所述G的情况下,传输所述A类信道和/或信号中的B类信道和/或信号,其中所述B值为小于所述A值的正整数;
    在所述A类信道和/或信号关联的组信息不同且所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数小于或者等于所述G的情况下,传输所述A类信道和/或信号;
    在所述A类信道和/或信号关联的组信息相同且所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数大于H的情况下,传输所述A类信道和/或信号中的B类信道和/或信号,其中所述B值为小于所述A值的正整数;
    在所述A类信道和/或信号关联的组信息相同且所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的集合中不满足准共址关系的参考信号的个数小于或者等于所述H的情况下,传输所述A类信道和/或信号;
    其中,所述G和所述H是大于或者等于1的正整数,和/或根据以下信息至少之一获取所述G值:下行控制信道元素组,传输配置指示TCI状态组,天线组,信道和/或信号组和/或所述H小于所述G。
  36. 根据权利要求31~35中任一项所述的方法,其中,所述A类信道和/或信号满足如下特征至少之一:
    所述A类信道和/或信号属于不同的载波组件CC;
    所述A类信道和/或信号属于相同的频带;
    所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的参考信号集合中,包括的参考信号的个数大于第一预定值;
    所述A类信道和/或信号关于所述空间接收参数的准共址参考信号构成的参考信号集合中,包括的关于所述空间接收参数不满足准共址关系的参考信号的个数大于第二预定值;
    调度第一类信道和/或信号的控制信令和所述第一类信道和/或信号之间的时间间隔大于或者等于第一预定阈值;
    调度第二类信道和/或信号的控制信令和所述第二类信道和/或信号之间的时间间隔小于所述第一预定阈值;
    第一类信道和/或信号是物理层控制信令调度的信道和/或信号;
    第二类信道和/或信号是周期信道和/或信号;
    第二类信道和/或信号是半持续信道和/或信号;
    其中,所述控制信令包括如下信令至少之一:物理层控制信令,高层控制信令;所述第一类信道和/或信号属于所述A类信道和/或信号;所述第二类信道和/或信号属于所述A类信道和/或信号。
  37. 根据权利要求36所述的方法,还包括如下至少之一:
    在所述参考信号集合中包括的参考信号的个数小于或者等于所述第一预定值的情况下,或者所述参考信号集合中,包括的关于所述空间接收参数不满足准共址关系的参考信号的个数小于或等于所述第二预定值的情况下,传输所述A类信道和/或信号;
    根据以下信息至少之一获取所述第一预定值和/或所述第二预定值:下行控制信道元素组,TCI状态组,天线组,信道和/或信号组。
  38. 根据权利要求31~35中任一项所述的方法,其中,所述组信息包括如下至少之一:
    下行控制信道元素组,TCI状态组,天线组,信道和/或信号组,信道和/或信号的参数值组。
  39. 根据权利要求38所述的方法,还包括:一个信道和/或信号关联一个下行控制信道元素组,所述一个信道和/或信号关联一个下行控制信道元素组,包括如下至少之一:
    调度所述信道和/或信号的物理层控制信道在所述下行控制信道元素组中传输;
    调度所述信道和/或信号的高层信令包括在所述下行控制信道元素组中传输的控制信道调度的下行数据信道中。
  40. 一种信道测量装置,包括:
    配置模块,设置为配置测量资源信息,所述测量资源信息用于获取信道状态信息,其中,所述测量资源信息包括N个信道测量资源信息和M个干扰测量资源信息,所述N和所述M为正整数;
    发送模块,设置为发送所述测量资源信息。
  41. 一种信道测量装置,包括:
    接收模块,设置为接收测量资源信息,其中,所述测量资源信息包括N个 信道测量资源信息和M个干扰测量资源信息,所述N和所述M为正整数;
    测量模块,设置为根据所述测量资源信息获取信道状态信息,所述信道状态信息包括以下至少之一:信道相关参数、干扰相关参数;
    发送模块,设置为向基站传输所述信道状态信息。
  42. 一种空间接收参数的确定装置,包括:
    组信息确定模块,设置为确定A类信道和/或信号关联的组信息;
    参数确定模块,设置为根据确定的A类信道和/或信号关联的组信息,确定如下至少之一:所述A类信道和/或信号中的至少一类信道和/或信号的空间接收参数,所述A类信道和/或信号的传输方式;
    其中,所述A类信道和/或信号占有的时域资源之间的交集非空,所述A为大于或等于2的正整数。
PCT/CN2020/086141 2019-04-30 2020-04-22 信道测量方法和装置 WO2020221080A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20799390.8A EP3965310A4 (en) 2019-04-30 2020-04-22 METHOD AND DEVICE FOR DUCT MEASUREMENT
KR1020217039276A KR20220004162A (ko) 2019-04-30 2020-04-22 채널 측정 방법 및 장치
US17/513,788 US20220060266A1 (en) 2019-04-30 2021-10-28 Channel measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364310.4 2019-04-30
CN201910364310.4A CN110535515A (zh) 2019-04-30 2019-04-30 信道测量方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/513,788 Continuation US20220060266A1 (en) 2019-04-30 2021-10-28 Channel measurement method and apparatus

Publications (1)

Publication Number Publication Date
WO2020221080A1 true WO2020221080A1 (zh) 2020-11-05

Family

ID=68659663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086141 WO2020221080A1 (zh) 2019-04-30 2020-04-22 信道测量方法和装置

Country Status (5)

Country Link
US (1) US20220060266A1 (zh)
EP (1) EP3965310A4 (zh)
KR (1) KR20220004162A (zh)
CN (1) CN110535515A (zh)
WO (1) WO2020221080A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535515A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 信道测量方法和装置
EP4101090A4 (en) * 2020-02-07 2024-02-28 Qualcomm Inc DYNAMIC INTERFERENCE MEASUREMENT FOR MULTI-TRP CSI
CN115053469A (zh) * 2020-02-11 2022-09-13 中兴通讯股份有限公司 关于多个发送/接收点的信道状态信息的增强
CN114071532A (zh) * 2020-07-31 2022-02-18 大唐移动通信设备有限公司 测量结果上报方法、接收方法、终端和网络设备
CN114390554A (zh) * 2020-10-20 2022-04-22 维沃移动通信有限公司 信道状态信息确定方法、上报设置确定方法、装置及相关设备
WO2022206410A1 (zh) * 2021-04-02 2022-10-06 大唐移动通信设备有限公司 一种测量上报方法及装置
CN116171588A (zh) * 2021-09-24 2023-05-26 苹果公司 用于基于组的l1-sinr测量和报告的方法
CN114788331A (zh) * 2022-03-17 2022-07-22 北京小米移动软件有限公司 信息配置方法、装置、设备及存储介质
WO2023184523A1 (en) * 2022-04-02 2023-10-05 Qualcomm Incorporated Multi-dimensional channel measurement resource configuration
US20240022300A1 (en) * 2022-07-08 2024-01-18 Samsung Electronics Co., Ltd. Method and apparatus for configuring measurement and reporting settings
CN117675142A (zh) * 2022-08-26 2024-03-08 中兴通讯股份有限公司 一种信道状态信息处理方法、装置、通信节点及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825663A (zh) * 2014-02-21 2014-05-28 电信科学技术研究院 信道状态信息测量方法以及装置
CN104202712A (zh) * 2014-01-24 2014-12-10 中兴通讯股份有限公司 设备到设备同步信号的发送方法及装置、用户设备
US20170244533A1 (en) * 2016-02-24 2017-08-24 Samsung Electronics Co., Ltd Method and apparatus for channel state information (csi) reporting
CN107734514A (zh) * 2016-08-11 2018-02-23 中兴通讯股份有限公司 分组指示信息的反馈方法、获取方法及装置
CN108540178A (zh) * 2017-03-04 2018-09-14 上海朗帛通信技术有限公司 一种基站、用户设备中的用于多天线传输的方法和装置
CN110535515A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 信道测量方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4210269A1 (en) * 2017-01-06 2023-07-12 LG Electronics Inc. Method for transmitting reference signal in wireless communication system and apparatus therefor
KR20210095700A (ko) * 2019-01-09 2021-08-02 후지쯔 가부시끼가이샤 채널 상태 정보의 측정 목적을 표시하기 위한 방법 및 디바이스와 시스템
CN110535545A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 一种信息确定方法和装置、信息元素的处理方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202712A (zh) * 2014-01-24 2014-12-10 中兴通讯股份有限公司 设备到设备同步信号的发送方法及装置、用户设备
CN103825663A (zh) * 2014-02-21 2014-05-28 电信科学技术研究院 信道状态信息测量方法以及装置
US20170244533A1 (en) * 2016-02-24 2017-08-24 Samsung Electronics Co., Ltd Method and apparatus for channel state information (csi) reporting
CN107734514A (zh) * 2016-08-11 2018-02-23 中兴通讯股份有限公司 分组指示信息的反馈方法、获取方法及装置
CN108540178A (zh) * 2017-03-04 2018-09-14 上海朗帛通信技术有限公司 一种基站、用户设备中的用于多天线传输的方法和装置
CN110535515A (zh) * 2019-04-30 2019-12-03 中兴通讯股份有限公司 信道测量方法和装置

Also Published As

Publication number Publication date
US20220060266A1 (en) 2022-02-24
EP3965310A1 (en) 2022-03-09
KR20220004162A (ko) 2022-01-11
EP3965310A4 (en) 2023-01-18
CN110535515A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2020221080A1 (zh) 信道测量方法和装置
US11641231B2 (en) Methods and apparatus for feeding back and receiving channel state information, and device and storage medium
CN112689969B (zh) 生成csi报告的方法和装置
US11696163B2 (en) Channel status information feedback method and apparatus for a distributed antenna mobile communication system
CN109151887B (zh) 通信方法和通信装置
JP6130483B2 (ja) 参照信号およびcsiフィードバックのためのシステムおよび方法
WO2020238471A1 (zh) 信息反馈方法及装置、信息接收方法及装置、信息获取方法及装置、通信节点、存储介质
CN108292943B (zh) 用于在无线通信系统中发送和接收反馈信号的方法和设备
AU2013320765B2 (en) Interference measurement method and apparatus for use in distributed antenna system
CN111769857B (zh) 一种上报终端设备能力的方法和通信装置
CN105991231B (zh) 获取信道状态信息csi的方法及装置
KR102521728B1 (ko) 이동 통신 시스템에서의 채널 상태 정보 수신 방법 및 장치
KR102574954B1 (ko) 통신 시스템에서 기준 신호를 송수신하는 방법 및 장치
US11343828B2 (en) Transmissions based on candidate resources or candidate resource groups
US11539495B2 (en) Reference signal configuration
WO2022151955A1 (zh) 信道状态信息传输方法、装置、电子设备和存储介质
CN112672378B (zh) 资源测量的方法和装置
US20190260432A1 (en) Reference Signal Measurement Method and Apparatus
WO2018033148A1 (en) A method to transmit channel state information reference signals in large mimo systems
JP2023537378A (ja) チャネル状態情報フィードバック方法、装置、機器および記憶媒体
WO2021032029A1 (zh) 侧行链路信道状态信息传输的方法和通信装置
US11705941B2 (en) Quasi-co-location indication method and apparatus
US20240120978A1 (en) Channel state information transmission method, channel state information reception method, signaling information transmission method, node, and medium
CN116599633A (zh) 一种控制信道的发送方法、装置、设备及介质
CN110351869B (zh) 用于测量信道状态信息的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217039276

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020799390

Country of ref document: EP

Effective date: 20211130