WO2022063065A1 - 一种路由信息传输方法及装置 - Google Patents

一种路由信息传输方法及装置 Download PDF

Info

Publication number
WO2022063065A1
WO2022063065A1 PCT/CN2021/119207 CN2021119207W WO2022063065A1 WO 2022063065 A1 WO2022063065 A1 WO 2022063065A1 CN 2021119207 W CN2021119207 W CN 2021119207W WO 2022063065 A1 WO2022063065 A1 WO 2022063065A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
network device
identifier
routing information
service
Prior art date
Application number
PCT/CN2021/119207
Other languages
English (en)
French (fr)
Inventor
梁艳荣
徐国其
王玉箫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21871435.0A priority Critical patent/EP4199596A4/en
Priority to JP2023518516A priority patent/JP2023543199A/ja
Priority to KR1020237010661A priority patent/KR20230057459A/ko
Publication of WO2022063065A1 publication Critical patent/WO2022063065A1/zh
Priority to US18/187,425 priority patent/US20230224236A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/246Connectivity information discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/58Association of routers
    • H04L45/586Association of routers of virtual routers

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and device for transmitting routing information.
  • the object of mobile network services is no longer a simple mobile phone, but various types of devices, such as mobile phones, tablets, fixed sensors, vehicles, and so on.
  • the application scenarios are also diversified, such as mobile broadband, large-scale Internet, mission-critical Internet, etc.
  • network sharding technology came into being.
  • Network slicing essentially divides the operator's physical network into multiple virtual networks. Each virtual network is divided according to different service requirements, such as delay, bandwidth, security, and reliability, so as to flexibly respond to different network application scenarios.
  • service requirements such as delay, bandwidth, security, and reliability
  • the embodiments of the present application provide a routing information transmission method and device, which can solve the problem of forwarding different business flows by using network segments that meet their service requirements.
  • a method for transmitting routing information comprising: a first network device receiving first BGP routing information sent by a second network device, where the first BGP routing information includes services The identifier and the identifier of the first network fragment, the first network device is located in the first network fragment; the first network device determines the first forwarding entry according to the first BGP routing information, and the first network device determines the first forwarding entry according to the first BGP routing information.
  • a forwarding table entry is used to forward the service traffic corresponding to the service identifier to the second network device through the first network segment.
  • the first network device before sending the service traffic to the second network device, receives the first BGP routing information sent by the second network device, where the first BGP routing information includes the service identifier and the information of the first network fragment. identifier, the first network device determines the first forwarding entry according to the first BGP routing information, and the first forwarding entry is used to forward the service traffic corresponding to the service identifier to the second network device through the first network fragment, so that the first forwarding entry is A network device can forward the service traffic according to the first forwarding entry, so as to meet the corresponding service requirements when the service traffic is forwarded.
  • the first network device and the second network device belong to the same network domain, and the first network device determines the first forwarding entry according to the first BGP routing information, including: The first network device generates a first forwarding entry according to the service identifier and the identifier of the first network segment.
  • the first network device receives the first BGP routing information, it generates a first forwarding entry according to the service identifier in the first BGP routing information and the identifier of the first network fragment, and then uses the first forwarding entry.
  • a forwarding table entry indicates service traffic forwarding information corresponding to the service identifier.
  • the first network device and the second network device belong to the same network domain
  • the method further includes: the first network device according to the identifier of the first network fragment and The corresponding relationship determines the identifier of the second network fragment, and the corresponding relationship includes the corresponding relationship between the identifier of the first network fragment and the identifier of the second network fragment; the first network device reports to the third network fragment.
  • the network device sends second BGP routing information, where the second BGP routing information includes the service identifier and the identifier of the second network segment, so that the third network device determines the first BGP routing information according to the second BGP routing information.
  • Two forwarding entries the second forwarding entry is used to forward the service traffic to the first network device through the second network segment, the third network device and the second network device belong to different In the network domain, the third network device is located in the second network slice.
  • the first network device is sending the first BGP routing information sent by the second network device to the third network device.
  • the first network device may determine the second network segment according to the identifier of the first network segment and the correspondence between the identifier of the first network segment and the identifier of the second network segment, and the third network device is located within the second network shard.
  • the first network device sends the second BGP routing information to the third network device, where the second BGP routing information includes the service identifier and the identifier of the second network segment, so that the third network device can determine the second BGP routing information according to the second BGP routing information.
  • a forwarding entry where the second forwarding entry is used to forward service traffic to the first network device through the second network segment.
  • the method further includes: the first network device sends the service traffic to the second network device through the first network segment by using the first forwarding table entry. After the first network device determines the first forwarding entry according to the first BGP routing information, when the first network device has service traffic corresponding to the service identifier, the first forwarding entry can be used to segment the service through the first network. The traffic is sent to the second network device.
  • the method further includes: after the first network device determines the first forwarding entry, the first network device may establish a corresponding relationship between the service identifier and the first forwarding entry, and there is a local forwarding entry. Publishing. When the first network device acquires the service flow corresponding to the service identifier, the first forwarding entry may be determined according to the service identifier and the above-mentioned corresponding relationship.
  • the first forwarding entry includes an identifier of the first network segment.
  • the first forwarding entry may include the identifier of the first network fragment, so that the first network device can determine the first network fragment according to the identifier of the first network fragment, and then use the first network fragment Send service traffic to the second network device.
  • the service identifier is a virtual private network identifier, and the virtual private network identifier is used to identify the virtual private network of the network device corresponding to the destination address of the service traffic, or the service identifier is a prefix,
  • the prefix is the prefix of the network device corresponding to the destination address of the service traffic.
  • the service identifiers can be set based on the divided virtual private networks, different service identifiers correspond to different virtual private network identifiers, and different virtual private networks can transmit different service flows for users.
  • the service identifier is a prefix
  • the prefix is the prefix of the destination address of the service traffic corresponding to the network device, so that different prefixes correspond to the service traffic of users in different network segments.
  • the identifier of the first network fragment is located in the extended community attribute of the first BGP routing information.
  • the identifier of the first network fragment can be added by adding a new attribute to the extended community attribute in the first BGP routing information.
  • a routing information transmission method includes: a second network device obtains first BGP routing information, where the first BGP routing information includes a service identifier and a first network fragment identifier; the second network device sends the first BGP routing information to the first network device in the first network segment, so that the first network device sends the The second network device forwards the service traffic corresponding to the service identifier.
  • the second network device may acquire first BGP routing information, where the first BGP routing information includes a service identifier and an identifier of the first network fragment, and send the first network fragment to the first network located in the first network fragment.
  • the device sends the first BGP routing information, so that the first network device can determine the first network fragment according to the first BGP routing information, and use the first network fragment to send the service traffic corresponding to the service identifier to the second network device.
  • acquiring, by the second network device, the first BGP routing information includes: the second network device obtains the first BGP routing information according to the correspondence between the service identifier and the identifier of the first network segment. The first BGP routing information is generated. In this implementation manner, the second network device may generate the first BGP routing information through the correspondence between the service identifier and the identifier of the first network fragment.
  • the correspondence between the service identifier and the identifier of the first network segment is configured on the second network device, or the service identifier and the first network segment are configured in a corresponding relationship.
  • the correspondence between the identifiers of the slices is acquired by the first network device according to the IGP routing information.
  • the correspondence between the service identifier and the identifier of the first network segment may be preconfigured on the second network device, or determined by the second network device according to the IGP routing information.
  • a routing information transmission apparatus includes: a receiving unit configured to receive first BGP routing information sent by a second network device, where the first BGP routing information includes services an identifier and an identifier of a first network fragment, where the first network device is located in the first network fragment; a determining unit, configured to determine a first forwarding entry according to the first BGP routing information, the first The forwarding table entry is used to forward the service traffic corresponding to the service identifier to the second network device through the first network fragment.
  • the network device where the apparatus is located and the second network device belong to the same network domain
  • the determining unit is specifically configured to, according to the service identifier and the first network fragmentation, belong to the same network domain. Identifies generating the first forwarding entry.
  • the apparatus further includes: a sending unit; the determining unit is further configured to: The identifier of the fragment and the corresponding relationship determine the identifier of the second network fragment, and the corresponding relationship includes the corresponding relationship between the identifier of the first network fragment and the identifier of the second network fragment; the sending unit , which is used to send second BGP routing information to the third network device, where the second BGP routing information includes the service identifier and the identifier of the second network fragment, so that the third network device can
  • the BGP routing information determines a second forwarding entry, where the second forwarding entry is used to forward the service traffic to the apparatus through the second network segment, and the third network device communicates with the second network
  • the devices belong to different network domains, and the third network device is located in the second network slice.
  • the apparatus further includes: a sending unit; the sending unit is configured to use the first forwarding entry to send the data to the second network device through the first network slice business flow.
  • the first forwarding entry includes an identifier of the first network segment.
  • the service identifier is a virtual private network identifier
  • the virtual private network identifier is used to identify the virtual private network of the network device corresponding to the destination address of the service traffic, or the service identifier is a prefix
  • the prefix is the prefix of the network device corresponding to the destination address of the service traffic.
  • the identifier of the first network fragment is located in the extended community attribute of the first BGP routing information.
  • a routing information transmission device includes: an obtaining unit, configured to obtain first BGP routing information, where the first BGP routing information includes a service identifier and a first network distribution The identifier of the slice; a sending unit, configured to send the first BGP routing information to the first network device in the first network slice, so that the first network device sends the information to the first network slice through the first network slice The network device where the apparatus is located forwards the service traffic corresponding to the service identifier.
  • the obtaining unit is specifically configured to generate the first BGP routing information according to the correspondence between the service identifier and the identifier of the first network segment.
  • the correspondence between the service identifier and the identifier of the first network segment is configured on the second network device, or the service identifier and the first network segment are configured in a corresponding relationship.
  • the correspondence between the identifiers of the slices is acquired by the first network device according to the IGP routing information.
  • a communication device in a fifth aspect of the embodiments of the present application, the device includes: a processor and a memory; the memory is used to store instructions or computer programs; the processor is used to execute the memory in the memory.
  • the instructions or computer program of the device cause the communication device to perform the method of the first aspect or the second aspect.
  • a computer-readable storage medium including instructions or computer programs, which, when executed on a computer, cause the computer to execute the method described in the first aspect or the second aspect.
  • a network system including a first network device and a second network device, wherein the first network device includes the routing information transmission apparatus described in the third aspect, and the second network device includes The routing information transmission apparatus described in the fourth aspect, or the network system includes the communication device described in the fifth aspect.
  • the first network device before forwarding the service traffic packet, receives the first BGP routing information sent by the second network device, and uses the first network device according to the service identifier in the first BGP routing information and the first network device.
  • the identifier of the fragment determines the first forwarding entry, where the first forwarding entry is used to instruct to forward the service traffic corresponding to the service identifier to the second network device through the first network fragment.
  • the first network device receives the service traffic packet corresponding to the service identifier, it determines the first network segment according to the first forwarding entry, and then sends the service traffic to the second network device through the first network segment. . That is, network devices determine the forwarding entry by sending BGP routing information including the identifier of the network segment and the service identifier, so as to use the forwarding entry to determine the network segment through which the service traffic is forwarded, thereby satisfying service forwarding need.
  • FIG. 1a is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 1b is a schematic diagram of a network fragmentation provided by an embodiment of the present application.
  • FIG. 1c is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • FIG. 1d is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • FIG. 1e is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for transmitting routing information provided by an embodiment of the present application
  • 3a is a schematic diagram of a message structure provided by an embodiment of the present application.
  • FIG. 3b is a schematic diagram of a newly added attribute structure according to an embodiment of the present application.
  • FIG. 4 is a structural diagram of a routing information transmission apparatus provided by an embodiment of the present application.
  • FIG. 5 is a structural diagram of another routing information transmission apparatus provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another network device according to an embodiment of the present application.
  • the figure includes one border egress device and two border ingress devices, namely border egress device O, border ingress device P and border ingress device Q, as an example for description.
  • Network slicing refers to dividing basic network resources between adjacent network devices according to user needs and assigning them to users for use. Among them, user requirements include delay, bandwidth, and the like.
  • a schematic diagram of network slicing is shown in Figure 1b.
  • the total bandwidth resource reserved by the border egress device O is 40G. For example, it can be divided into 4 network slices.
  • the reserved bandwidth of the network slice sliceID1 is 5G, and the network slice sliceID2 is reserved.
  • the reserved bandwidth is 5G
  • the reserved bandwidth of the network slice sliceID3 is 10G
  • the reserved bandwidth of the network slice sliceID4 is 20G. That is, the border egress device has 4 network slices, and different network slices can be used to transmit service traffic (data streams) with different bandwidth requirements.
  • network sharding can include soft sharding and hard sharding. Soft sharding refers to partial isolation between different users, but the degree of isolation is not complete. Hard sharding refers to strong isolation between different users. From the perspective of service experience, as many network resources are allocated to users, users must use as many network resources.
  • a border egress device refers to a device on the boundary of a network slice. Service traffic transmitted in a network slice leaves the network slice at the border egress device and continues to be forwarded to other network domains.
  • the border egress device may send border gateway protocol (border gateway protocol, BGP) routing information including network fragmentation information to the border ingress device, and the BGP routing information may include service identifiers and network fragmentation identifiers.
  • BGP border gateway protocol
  • the BGP routing information sent by the border egress device O to the border ingress device P includes the service identifier 2 and the network slice identifier sliceID1, which means that the border ingress device P can use the network slice corresponding to sliceID1 to send services to the border egress device. Identifies the service traffic corresponding to 1.
  • the border egress device can send BGP routing information to the corresponding border ingress device based on the information of the divided network segments, so as to realize the unified planning of service traffic transmission through the BGP routing information, without the need to configure the transmission information separately, reducing the amount of configuration. .
  • a border entry device refers to a device on the boundary of a network slice. Service traffic enters the network slice at the border entry device for transmission.
  • the border ingress device can learn the network fragment information corresponding to the border egress device through the BGP routing information, and determine the forwarding entry according to the received BGP routing information, and then send the source network device through the network fragment indicated by the forwarding entry.
  • the service traffic corresponding to the service ID is forwarded to the border egress device.
  • the application scenario includes two network devices, namely network device router1 and network device router2, wherein router1 is a border entry device and router2 is a border egress device.
  • router1 and router2 can be divided into three virtual local area networks (virtual local area network, VLAN), respectively, vlan1, vlan12 and vlan22.
  • VLAN virtual local area network
  • Different VLANs can correspond to different virtual private network (virtual private network, VPN) instances, that is, virtual routing forwarding (virtual routing forwarding, VRF), so as to correspond to network fragments through VRF.
  • VPN virtual private network
  • VRF virtual routing forwarding
  • router2 corresponds to 3 network slices
  • vlan1 corresponds to VRF1
  • VRF1 corresponds to network slice 1
  • vlan12 corresponds to VRF2
  • VRF2 corresponds to network slice 2
  • vlan22 corresponds to VRF3
  • VRF3 corresponds to network slice 3.
  • VLANs can provide services for users located in different Internet Protocol (Internet Protocol, IP) network segments through different logical interfaces.
  • IP Internet Protocol
  • vlan1 of router1 provides services to users on IP1 network segment through logical interfaces
  • vlan12 provides services to users on IP2 network segment through logical interfaces
  • vlan22 provides services to users on IP2 network segment through logical interfaces.
  • a network domain may include multiple network devices.
  • Network devices refer to devices that provide routing and forwarding functions in the network system, such as routers, Switch or label switching router (label switching router, LSR), etc.
  • Figure 1d includes a network device A and a network device B, respectively.
  • the network device A may be a border entry device, and the network device B may be a border egress device.
  • network device A may be router1 in FIG. 1c, and network device B may be router2 in FIG. 1c.
  • the network device B has 4 network slices, namely, network slice 1, network slice 2, network slice 3, and network slice 4.
  • four network slices can correspond to different bandwidth resources to transmit service traffic with different bandwidth requirements. For example, configure network slice 1 on network device B to transmit service traffic corresponding to service identifier 1, network slice 2 to transmit service traffic corresponding to service identifier 2, and network slice 3 to transmit services corresponding to service identifier 4 Traffic, the network segment 4 is used to transmit the service traffic corresponding to the service identifier 3.
  • BGP routing information including the service identifier and the network segment identifier to network device A
  • network device B instructs network device A to use the network segment when sending the service traffic corresponding to the service identifier to network device B.
  • a border entry device eg, network device A
  • a border egress device eg, network device B
  • network segmentation may be performed between the border egress device and the intermediate forwarding device
  • network segmentation may be performed between the intermediate forwarding device and the border ingress device.
  • the border egress device, border ingress device, and intermediate forwarding device belong to the same network domain, such as in the same autonomous system (AS) domain
  • AS autonomous system
  • the network fragmentation situation between border entry devices can be the same.
  • the number of divided network segments and the bandwidth resources corresponding to each network segment may be the same.
  • FIG. 1d uses an example in which the forwarding path of the service traffic involves at least two network domains.
  • network device A can be connected not only to network domain 1, but also to network domain 2.
  • network device B is the border egress device in network domain 1
  • network device A is network domain 1.
  • the border entry device in the network device A is the border egress device in the network domain 2
  • the network device C is the border entry device of the network domain 2.
  • the network device A serving as the relay device may only have one network device A.
  • the network device A belongs to two network domains at the same time, or there are at least two network devices A, for example, the network device A1 and the network device A1.
  • the situation of network fragmentation between network device B and network device A may be different from the situation of network fragmentation between network device A and network device C.
  • Different division situations may include different numbers of network segments divided by two network domains, or different bandwidths corresponding to the divided network segments.
  • four network slices are divided between the network device B and the network A device, namely slice 1, slice 2, slice 3 and slice 4.
  • Three network slices are divided between network device A and network device C, namely slice 5, slice 6 and slice 7.
  • the network fragmentation situation corresponding to the border egress devices belonging to different network domains may be planned according to actual needs, which is not limited in this embodiment.
  • FIG. 2 is a flowchart of a method for transmitting routing information provided by an embodiment of the present application. As shown in FIG. 2 , the method includes:
  • the second network device obtains first BGP routing information, where the first BGP routing information includes a service identifier and an identifier of a first network segment.
  • the second network device as a network device that acquires BGP routing information, such as network device B in FIG. 1d or FIG. 1e, or network device A in FIG. 1e, first acquires the first BGP routing information, the first The BGP routing information includes a service identifier and an identifier of the first network segment.
  • the first BGP routing information is used to indicate that forwarding the service traffic corresponding to the service identifier will use the first network fragment.
  • the service identifier may indicate that there is service traffic required by different service level agreements (service level agreement, SLA), and the SLA requirements may be bandwidth, delay, or jitter rate, and the like.
  • SLA service level agreement
  • the correspondence between service identifiers and service traffic may be determined based on service types.
  • service types such as video, audio, or text correspond to different service identifiers; or, it may also be determined based on users, for example, different user groups correspond to Different business logos.
  • the service identifier may be a virtual private network (virtual private network, VPN) identifier, that is, different VPNs can transmit different service traffic, and the virtual private network identifier is used to identify the destination address of the service traffic corresponding to the network device's address.
  • Virtual Private Network Virtual Private Network.
  • router2 has three VPN instances, vlan1 corresponds to VPN1, vlan12 corresponds to VPN2, and vlan22 corresponds to VPN3, and the service identifier can be any one of the VPN instances.
  • the service identifier may be a prefix, and the prefix is the prefix of the network device corresponding to the destination address of the service traffic.
  • the manner in which the second network device obtains the first BGP routing information may include: the second network device obtains the correspondence between the service identifier and the identifier of the first network fragment, and according to the service identifier and the first The first BGP routing information is generated by the correspondence between the identifiers of a network segment.
  • the correspondence between the service identifier acquired by the second network device and the identifier of the first network slice may be acquired in the following ways. One is that the correspondence between the service identifier and the identifier of the first network slice is directly configured in the On the second network device, the second network device reads the corresponding relationship from the local configuration.
  • the other is that the second network device obtains the correspondence between the service identifier and the identifier of the first network slice according to a local configuration policy, where the configuration policy includes the correspondence between the service identifier and the identifier of the first network slice .
  • the configuration policy may be manually configured by the user on the second network device according to the service traffic sent by the user, or may be obtained by the second network device from an external device such as a controller.
  • the configuration policy may be based on VPN planning for network segments. For example, VPN1 corresponds to network segment 1, VPN2 corresponds to network segment 3, and VPN3 corresponds to network segment 4.
  • the configuration policy plans network segments based on IP network segments. For example, network segment 1 corresponds to network segment 4, other network segments correspond to network segment 3, and so on.
  • the second network device obtains the correspondence between the service identifier and the identifier of the first network device according to (IGP) routing information, where the IGP routing information includes the relationship between the service identifier and the identifier of the first network fragment. Correspondence.
  • the BGP routing information is carried in a BGP packet, and the BGP packet may include an IP header, a transmission control protocol (TCP) header, and an update UPDATE message, etc.
  • TCP transmission control protocol
  • the format of the BGP packet is shown in Figure 3a, where , the UPDATE message can include information such as prefix and extended community attributes.
  • the identifier of the first network fragment may be located in the extended community attribute of the first BGP routing information, and a specific expression form may be defined by a type-length-value (type-length-value, TLV) in the extended community attribute.
  • the Type field is used to indicate the extended community attribute type
  • the Length field is used to indicate the number of bytes included in the "Vlaue" field, such as 8 bytes (Byte)
  • the Vlaue field is used to indicate the identifier of the first network fragment, such as shown in Figure 3b.
  • S202 The second network device sends the first BGP routing information to the first network device.
  • the second network device may forward it to the next-hop network device located in the first network segment, that is, the first network device.
  • the second network device is network device B
  • the first network device may be border entry device A.
  • FIG. 1e when the second network device is network device B, the first network device is network device A; when the second network device is network device A, the first network device is network device A.
  • the network device is network device C.
  • S203 The first network device determines the first forwarding entry according to the first BGP routing information.
  • the first network device After the first network device receives the first BGP routing information sent by the second network device, it can determine the first forwarding table entry according to the first BGP routing information, where the first forwarding table entry is used to instruct the The second network device forwards the service traffic corresponding to the service identifier.
  • the first forwarding entry stores the identifier of the first network segment, and the first network device is located in the first network segment, that is, the first network device can identify the identifier of the first network segment.
  • the first network device after receiving the first BGP routing information, the first network device, after receiving the first BGP routing information, according to the service identifier in the first BGP routing information and the first network fragmentation
  • the identification generates the first forwarding entry, that is, the mapping relationship between the service identification and the identification of the first network segment is established.
  • the first network device determines the first forwarding entry according to the first BGP routing information, it can establish a correspondence between the service identifier and the first forwarding entry, and store the correspondence in the forwarding table of the first network device , so that the first network device can forward the subsequent service traffic according to the forwarding table.
  • the first network device no longer forwards the first BGP routing information after determining the first forwarding entry according to the first BGP routing information. For example, when the first network device does not have other neighbor network devices, or when the first network device is a device connected to the user equipment.
  • the first network device has other neighboring network devices (such as a third network device) other than the second network device, in order to ensure that the third network device can identify the network partition used when forwarding the service traffic
  • the first network device sends the first BGP routing information to the third network device, so that the third network device can determine the corresponding forwarding entry according to the first BGP routing information.
  • the service traffic corresponding to the same service identifier in the network domain can be forwarded using the same network fragment.
  • a network device may directly forward the first BGP routing information to the third network device.
  • the first BGP routing information sent by the second network device to the first network device is and the first BGP routing information sent by the first network device to the third network device are called first BGP routing information, but understandably, the first BGP routing information sent by the second network device to the first network device and the first BGP routing information
  • the first BGP routing information sent by the network device to the third network device differs in actual application scenarios.
  • TTL time to live
  • next-hop network device that is, when the first network device forwards the first BGP routing information sent by the second network device to the third network device , which may actually be the updated first BGP routing information in which some necessary information is modified.
  • the third network device and the second network device belong to different network domains
  • different network segments may be configured for the same service traffic in different network domains.
  • the identifier of the slice and the corresponding relationship determine the identifier of the second network slice.
  • the identifier of the first network fragment is applied to the network domain to which the second network device belongs
  • the identifier of the second network fragment is applied to the network domain to which the third network device belongs
  • the corresponding relationship includes the identifier of the first network fragment and the Correspondence between the identifiers of the second network segment.
  • the corresponding relationship may be manually configured by the user on the first network device according to actual application requirements, or may be obtained from the controller for the first network device.
  • the first network device uses the identifier of the second network segment to update the identifier of the first network segment in the first BGP routing information, obtains the second BGP routing information, and sends the second BGP routing information to the third network device.
  • the third network device may determine a second forwarding entry according to the service identifier in the second BGP routing information and the identifier of the second network segment, where the second forwarding entry is used to indicate that the The second network segment forwards the service traffic corresponding to the service identifier to the first network device.
  • the second forwarding entry includes the identifier of the second network segment, and the second network device is located in the second network segment, that is, the second network device can identify the identifier of the second network segment.
  • network device B belongs to network domain 1
  • the service traffic corresponding to the service identifier defined in network domain 1 is forwarded through network slice 1
  • network device C belongs to network domain 2
  • the service identifier is defined in network domain 2.
  • the corresponding service traffic is forwarded through network fragment 5.
  • network device A receives the first BGP routing information sent by network device B, it can The correspondence between the network slices 5 in the network domain 2 determines the network slice 5, and uses the network slice 5 to update the network slice 1 in the first BGP routing information, thereby obtaining the second BGP routing information.
  • the network device A sends the second BGP routing information to the network device C.
  • the third network device determining the second forwarding entry according to the second BGP routing information reference may be made to the detailed description of the first network device determining the first forwarding entry according to the first BGP routing information.
  • different network domains may set different service identifiers for the same service traffic.
  • the third network device can identify the service identifier in the BGP routing information, it can obtain the service identifier used in another network domain according to the service identifier carried in the first BGP routing information and can be used in the current network domain, which is to be used in another network domain.
  • a service identity used in a network may be referred to as an updated service identity.
  • the first network device may replace the service identifier in the second BGP routing information with the updated service identifier, thereby sending the second BGP routing information carrying the updated service identifier and the identifier of the second network fragment to the third network device , so that the third network device can identify the updated service identifier and the identifier of the second network segment in the second BGP routing information, and determine the second forwarding entry.
  • the second forwarding entry includes the identifier of the second network segment.
  • the network domain may be an AS domain, a management domain, or the like.
  • the management domain may include multiple AS domains, and the multiple AS domains are uniformly managed by the controller.
  • the packet format corresponding to the second BGP routing information can refer to the BGP packet shown in FIG. 3a
  • the identifier of the second network fragment can be located in the extended community attribute of the second BGP routing information, and the specific expression can be obtained through the extended community
  • the type-length-value (TLV) in the attribute is defined.
  • the Type field is used to indicate the extended community attribute type
  • the Length field is used to indicate the number of bytes included in the "Vlaue" field, such as 8 bytes (Byte)
  • the Vlaue field is used to indicate the identifier of the second network fragment, such as shown in Figure 3b.
  • the first network device may also perform specific reasonable operations in combination with other practical application scenarios.
  • the third network device and the second network device belong to different network domains, if the network devices between different network domains predetermine the same service identifier and/or network fragment identifier through mechanisms such as negotiation, the first When a network device performs cross-domain forwarding, it may not update the service identifier and/or the identifier of the network segment.
  • the first network device uses the first forwarding entry to send the service traffic corresponding to the service identifier to the second network device through the first network slice.
  • the first network device when the first network device acquires the service flow corresponding to the service identifier, it can determine the first forwarding table entry corresponding to the service identifier according to the service identifier and the corresponding relationship in the stored forwarding table. The first network device forwards the service traffic to the second network device by using the first network segment included in the first forwarding entry.
  • the first network device may acquire the service traffic in the following manner.
  • the first network device acts as a border entry device and can receive the service traffic sent by the source network device.
  • the first network device can receive service traffic sent by a previous-hop network device (eg, a third network device).
  • the previous-hop network device (third network device) may send service traffic to the first network device according to the network segment indicated by its corresponding forwarding entry.
  • the third network device and the second network device belong to the same network domain
  • the third network device sends service traffic to the first network device by using the first network fragment, and the first network device uses the first network fragment to send service traffic to the second network device.
  • the slice sends business traffic.
  • the third network device uses the second network fragment to send service traffic to the first network device, and the first network device uses the first network fragment to send service traffic to the second network device.
  • Send business traffic when the third network device acquires the service traffic, it can determine the second forwarding entry according to the service identifier corresponding to the service traffic and the corresponding relationship in the stored forwarding table, and use the second forwarding entry in the second forwarding entry.
  • the second network fragment of the device sends service traffic to the first network device.
  • the first network device may determine the first forwarding entry according to the service identifier corresponding to the service traffic and the corresponding relationship in the stored forwarding table, and use the The first network segment in the first forwarding entry sends service traffic to the second network device.
  • each border egress device can send its corresponding BGP routing information to the border ingress device.
  • the border ingress device can select the destination border egress device according to the policy or priority configured by itself, and determine the forwarding entry according to the BGP routing information sent by the destination border egress device.
  • the border ingress device acquires the service traffic, it can forward the service traffic to the destination border egress device according to the network segment corresponding to the forwarding entry.
  • the embodiments of the present application further provide a routing information transmission device, which will be described below with reference to the accompanying drawings.
  • the apparatus 400 may be applied to a first network device to perform the function of the first network device in the embodiment shown in FIG. 2 , the device 400 may include: a receiving unit 401 and a determining unit 402 .
  • the receiving unit 401 is configured to receive first BGP routing information sent by a second network device, where the first BGP routing information includes a service identifier and an identifier of a first network fragment, and the first network device is located in the first BGP routing information. within a network shard.
  • first BGP routing information includes a service identifier and an identifier of a first network fragment
  • the first network device is located in the first BGP routing information. within a network shard.
  • the determining unit 402 is configured to determine a first forwarding entry according to the first BGP routing information, where the first forwarding entry is used to forward the corresponding service identifier to the second network device through the first network segment. business flow.
  • the determining unit 402 reference may be made to the detailed description of S203 in the embodiment shown in FIG. 2 .
  • the network device where the apparatus is located and the second network device belong to the same network domain
  • the determining unit 402 is specifically configured to segment the first network with the service identifier according to the The identifier of generates the first forwarding entry.
  • the determining unit 402 reference may be made to the detailed description of S203 in the embodiment shown in FIG. 2 .
  • the first network device and the second network device are in the same network domain, and the apparatus further includes: a sending unit (not shown in FIG. 4 );
  • the determining unit 402 is further configured to determine the identifier of the second network fragment according to the identifier of the first network fragment and the corresponding relationship, and the corresponding relationship includes the identifier of the first network fragment and the second network fragment.
  • the sending unit is configured to send second BGP routing information to a third network device, where the second BGP routing information includes the service identifier and the identifier of the second network fragment, so that the third network device A second forwarding entry is determined according to the second BGP routing information, where the second forwarding entry is used to forward the service traffic to the apparatus through the second network segment, and the third network device is connected to the
  • the second network device belongs to a different network domain, and the third network device is located in the second network slice.
  • the apparatus further includes: a sending unit (not shown in FIG. 4 );
  • the sending unit is configured to use the first forwarding entry to send the service traffic to the second network device through the first network segment.
  • the sending unit For the specific implementation of the sending unit, reference may be made to the detailed description of S204 in the embodiment shown in FIG. 2 .
  • the first forwarding entry includes the identifier of the first network segment.
  • the service identifier is a virtual private network identifier
  • the virtual private network identifier is used to identify the virtual private network of the network device corresponding to the destination address of the service traffic, or the service identifier is a prefix
  • the prefix is the prefix of the network device corresponding to the destination address of the service traffic.
  • the identifier of the first network fragment is located in the extended community attribute of the first BGP routing information.
  • the apparatus 500 can be applied to a second network device to perform the functions of the second network device in FIG. 2 , and the device includes: obtaining unit 501 and sending unit 502.
  • the obtaining unit 501 is configured to obtain first BGP routing information, where the first BGP routing information includes a service identifier and an identifier of a first network segment.
  • first BGP routing information includes a service identifier and an identifier of a first network segment.
  • a sending unit 502 configured to send the first BGP routing information to a first network device in the first network fragment, so that the first network device sends the information to the device where the device is located through the first network fragment
  • the network device forwards the service traffic corresponding to the service identifier.
  • the obtaining unit 501 is specifically configured to generate the first BGP routing information according to the correspondence between the service identifier and the identifier of the first network segment.
  • the specific implementation of the obtaining unit 501 may refer to the relevant description of S202 in the embodiment shown in FIG. 2 .
  • the correspondence between the service identifier and the identifier of the first network segment is configured on the second network device, or the service identifier and the first network segment are configured in a corresponding relationship.
  • the correspondence between the identifiers of the slices is acquired by the first network device according to the IGP routing information.
  • the relevant description of S201 in the embodiment shown in FIG. 2 reference may be made to the relevant description of S201 in the embodiment shown in FIG. 2 .
  • FIG. 6 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • the network device may be, for example, the first network device, the second network device, or the third network device in the embodiment shown in FIG. 2 , or may also be The device implementation of the routing transmission apparatus 400 in the embodiment shown in FIG. 4 and the routing transmission apparatus 500 in the embodiment shown in FIG. 5 .
  • the network device 600 includes: a processor 610 , a communication interface 620 and a memory 630 .
  • the number of processors 610 in the packet forwarding device 600 may be one or more, and one processor is taken as an example in FIG. 6 .
  • the processor 610, the communication interface 620, and the memory 630 may be connected through a bus system or other manners, wherein the connection through the bus system 640 is taken as an example in FIG. 6 .
  • Processor 610 may be a CPU, NP, or a combination of CPU and NP.
  • the processor 610 may further include hardware chips.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the communication interface 620 is used for receiving and sending BGP routing information or service traffic.
  • the communication interface 620 may include a receiving interface and a sending interface.
  • the receiving interface may be used to receive BGP routing information or service traffic
  • the sending interface may be used to send BGP routing information or service traffic.
  • the number of communication interfaces 620 may be one or more.
  • the memory 630 may include a volatile memory (English: volatile memory), such as random-access memory (RAM); the memory 630 may also include a non-volatile memory (English: non-volatile memory), such as a fast memory A flash memory (English: flash memory), a hard disk drive (HDD) or a solid-state drive (SSD); the memory 630 may also include a combination of the above-mentioned types of memory.
  • the memory 630 may, for example, store the aforementioned correspondence between the service identifier and the forwarding entry.
  • the memory 630 stores an operating system and programs, executable modules or data structures, or their subsets, or their extended sets, wherein the programs may include various operation instructions for implementing various operations.
  • the operating system may include various system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 610 may read the program in the memory 630 to implement the routing information transmission method provided by the embodiment of the present application.
  • the memory 630 may be a storage device in the network device 600 , or may be a storage device independent of the network device 600 .
  • the bus system 640 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus or the like.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus system 640 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 6, but it does not mean that there is only one bus or one type of bus.
  • FIG. 7 is a schematic structural diagram of another network device 700 provided by an embodiment of the present application.
  • the network device 700 may be configured as the first network device, the second network device, or the third network device in the foregoing embodiments, or the foregoing embodiments.
  • the network device 700 includes: a main control board 710 and an interface board 730 .
  • the main control board 710 is also called the main processing unit (main processing unit, MPU) or the route processor card (route processor card).
  • the main control board 710 controls and manages various components in the network device 700, including route calculation, Equipment maintenance, protocol processing functions.
  • the main control board 710 includes: a central processing unit 711 and a memory 712 .
  • the interface board 730 is also referred to as a line processing unit (LPU), a line card or a service board.
  • the interface board 730 is used to provide various service interfaces and realize data packet forwarding.
  • the service interface includes, but is not limited to, an Ethernet interface, a POS (Packet over SONET/SDH) interface, etc.
  • the Ethernet interface is, for example, a flexible Ethernet service interface (Flexible Ethernet Clients, FlexE Clients).
  • the interface board 730 includes: a central processing unit 731 , a network processor 732 , a forwarding table entry memory 734 and a physical interface card (ph8sical interface card, PIC) 733 .
  • the central processing unit 731 on the interface board 730 is used to control and manage the interface board 730 and communicate with the central processing unit 711 on the main control board 710 .
  • the network processor 732 is used to implement packet forwarding processing.
  • the network processor 732 may be in the form of a forwarding chip.
  • the processing of the uplink packet includes: processing of the incoming interface of the packet, and searching of the forwarding table; processing of the downlink packet: searching of the forwarding table, and so on.
  • the physical interface card 733 is used to realize the interconnection function of the physical layer, the original traffic enters the interface board 730 through this, and the processed packets are sent from the physical interface card 733 .
  • the physical interface card 733 includes at least one physical interface, and the physical interface is also called a physical port.
  • the physical interface card 733 corresponds to the FlexE physical interface 204 in the system architecture 200 .
  • the physical interface card 733 is also called a daughter card, which can be installed on the interface board 730 , and is responsible for converting the photoelectric signal into a message, checking the validity of the message and forwarding it to the network processor 732 for processing.
  • the central processor 731 of the interface board 703 can also perform the functions of the network processor 732 , such as implementing software forwarding based on a general-purpose CPU, so that the network processor 732 is not required in the physical interface card 733 .
  • the network device 700 includes multiple interface boards.
  • the network device 700 further includes an interface board 740 .
  • the interface board 740 includes a central processing unit 741 , a network processor 742 , a forwarding table entry storage 744 and a physical interface card 743 .
  • the network device 700 further includes a switch fabric board 720 .
  • the switch fabric unit 720 may also be referred to as a switch fabric unit (switch fabric unit, SFU).
  • SFU switch fabric unit
  • the switching network board 720 is used to complete data exchange between the interface boards.
  • the interface board 730 and the interface board 740 can communicate through the switch fabric board 720 .
  • the main control board 710 and the interface board 730 are coupled.
  • the main control board 710 , the interface board 730 , the interface board 740 , and the switch fabric board 720 are connected to the system backplane through a system bus to achieve intercommunication.
  • an inter-process communication (IPC) channel is established between the main control board 710 and the interface board 730, and the main control board 710 and the interface board 730 communicate through the IPC channel.
  • IPC inter-process communication
  • the network device 700 includes a control plane and a forwarding plane.
  • the control plane includes a main control board 710 and a central processing unit 731.
  • the forwarding plane includes various components that perform forwarding, such as forwarding entry storage 734, physical interface card 733, and network processing. device 732.
  • the control plane performs functions such as routers, generating forwarding tables, processing signaling and protocol packets, and configuring and maintaining the status of devices.
  • the control plane issues the generated forwarding tables to the forwarding plane.
  • the network processor 732 is based on the control plane.
  • the delivered forwarding table forwards the packets received by the physical interface card 733 by looking up the table.
  • the forwarding table issued by the control plane may be stored in the forwarding table entry storage 734 . In some embodiments, the control plane and forwarding plane may be completely separate and not on the same device.
  • the central processing unit 711 may acquire the first BGP routing information; and determine the forwarding entry according to the first BGP routing information.
  • the network processor 732 may trigger the physical interface card 733 to send the service traffic to the second network device according to the determined forwarding entry.
  • the central processor 711 may acquire the first BGP routing information.
  • the network processor 732 may trigger the physical interface card 733 to send the first BGP routing information to the first network device.
  • the receiving unit 401 and the sending unit in the routing transmission apparatus 400 may be equivalent to the physical interface card 733 or the physical interface card 743 in the network device 700 ; the determining unit 402 and the like in the routing transmission apparatus 400 may be equivalent to the network device 700 The central processing unit 711 or the central processing unit 731 in the .
  • the operations on the interface board 740 in the embodiments of the present application are the same as the operations on the interface board 730 , and for brevity, details are not repeated here.
  • the network device 700 in this embodiment may correspond to the first network device or the second network device in the foregoing method embodiments, and the main control board 710 , the interface board 730 and/or the interface board 740 in the network device 700
  • the functions and/or various steps performed by the first network device or the second network device in the foregoing method embodiments can be implemented, which are not repeated here for brevity.
  • main control boards there may be one or more main control boards, and when there are more than one main control board, it may include an active main control board and a backup main control board.
  • a network device may have at least one switching network board, and the switching network board realizes data exchange between multiple interface boards, providing large-capacity data exchange and processing capabilities. Therefore, the data access and processing capabilities of network devices in a distributed architecture are greater than those in a centralized architecture.
  • the form of the network device can also be that there is only one board, that is, there is no switching network board, and the functions of the interface board and the main control board are integrated on this board.
  • the central processing unit on the board can be combined into a central processing unit on this board to perform the functions of the two superimposed, the data exchange and processing capacity of this form of equipment is low (for example, low-end switches or routers and other networks. equipment).
  • the specific architecture used depends on the specific networking deployment scenario.
  • the above-mentioned first network device or second network device may be implemented as a virtualized device.
  • the virtualization device may be a virtual machine (English: Virtual Machine, VM) running a program for sending a message, and the virtual machine is deployed on a hardware device (for example, a physical server).
  • a virtual machine refers to a complete computer system with complete hardware system functions simulated by software and running in a completely isolated environment.
  • the virtual machine can be configured as a first network device or a second network device.
  • the first network device or the second network device may be implemented based on a general-purpose physical server in combination with a network function virtualization (Network Functions Virtualization, NFV) technology.
  • Network Functions Virtualization Network Functions Virtualization
  • the first network device or the second network device is a virtual host, a virtual router or a virtual switch.
  • Those skilled in the art can virtualize a first network device or a second network device having the above functions on a general physical server in combination with the NFV technology by reading this application, and details are not described herein again.
  • network devices in the above-mentioned various product forms respectively have any functions of the first network device or the second network device in the above method embodiments, and details are not described herein again.
  • An embodiment of the present application also provides a chip, including a processor and an interface circuit, the interface circuit is used to receive instructions and transmit them to the processor; the processor, for example, may be a specific embodiment of the routing transmission device 400 shown in FIG. 4 .
  • the implementation form can be used to execute the above method for message transmission.
  • the processor is coupled to a memory, and the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the chip system is made to implement the method in any of the above method embodiments.
  • the number of processors in the chip system may be one or more.
  • the processor can be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor implemented by reading software codes stored in memory.
  • the memory may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can be a non-transitory processor, such as a read-only memory ROM, which can be integrated with the processor on the same chip, or can be provided on different chips.
  • the setting method of the processor is not particularly limited.
  • the system-on-chip may be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), It can also be a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), or a microcontroller (microcontroller).
  • controller unit, MCU it can also be a programmable logic device (PLD) or other integrated chips.
  • Embodiments of the present application also provide a computer-readable storage medium, including instructions or computer programs, which, when executed on a computer, cause the computer to execute the routing information transmission method provided by the above embodiments.
  • the embodiments of the present application also provide a computer program product including instructions or computer programs, which, when running on a computer, cause the computer to execute the routing information transmission method provided by the above embodiments.
  • An embodiment of the present application further provides a network system, where the system includes a first network device and a second network device.
  • the first network device may include a routing transmission apparatus 400
  • the second network device may include a routing transmission apparatus 500 .
  • the network system may further include a third network device, wherein the third network device and the second network device may belong to different network domains.
  • the third network device For the functions performed by the third network device, reference may be made to the specific implementation of the third network device in the embodiment shown in FIG. 2 .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of units is only a logical business division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each service unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of a software business unit.
  • the integrated unit if implemented as a software business unit and sold or used as a stand-alone product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .
  • the services described in the present invention may be implemented by hardware, software, firmware or any combination thereof.
  • the services may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种路由信息传输方法及装置,第一网络设备在转发业务流量报文之前,接收第二网络设备发送的第一BGP路由信息,以根据第一该BGP路由信息中的业务标识和第一网络分片的标识确定第一转发表项,该第一转发表项用于指示通过第一网络分片向第二网络设备转发业务标识对应的业务流量。当第一网络设备接收到属于业务标识所对应的业务流量报文时,根据第一转发表项确定出第一网络分片,进而通过该第一网络分片向第二网络设备发送该业务流量。即,网络设备之间通过发送包括网络分片的标识和业务标识的BGP路由信息的方式来确定转发表项,以便利用该转发表项确定转发业务流量所通过的网络分片,进而满足业务转发需求。

Description

一种路由信息传输方法及装置
本申请要求于2020年9月23日提交的申请号为202011008166.X、申请名称为“一种路由信息传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种路由信息传输方法及装置。
背景技术
在5G网络时代,移动网络服务的对象也不再是单纯的移动手机,而是各种类型的设备,比如移动手机、平板、固定传感器、车辆等等。应用场景也多样化,比如移动宽带、大规模互联网、任务关键型互联网等等。为满足不同应用场景下的需求,网络分片技术应运而生。网络切片,本质上是将运营商的物理网络划分为多个虚拟网络,每一个虚拟网络根据不同的服务需求,比如时延、带宽、安全性和可靠性等来划分,以灵活的应对不同的网络应用场景。然而,如何将不同的业务分配到可以满足其服务需求的网络分片中进行转发是急需解决的技术问题。
发明内容
本申请实施例提供了一种路由信息传输方法及装置,可以解决不同的业务流量利用满足其服务需求的网络分片进行转发的问题。
在本申请实施例的第一方面,提供了一种路由信息传输方法,所述方法包括:第一网络设备接收第二网络设备发送的第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识,所述第一网络设备位于所述第一网络分片内;所述第一网络设备根据所述第一BGP路由信息确定第一转发表项,所述第一转发表项用于通过所述第一网络分片向所述第二网络设备转发所述业务标识对应的业务流量。在该实施例中,第一网络设备在向第二网络设备发送业务流量前,接收第二网络设备发送的第一BGP路由信息,该第一BGP路由信息包括业务标识和第一网络分片的标识,第一网络设备根据在第一BGP路由信息确定第一转发表项,该第一转发表项用于通过第一网络分片向第二网络设备转发业务标识对应的业务流量,从而使得第一网络设备可以根据该第一转发表项进行业务流量的转发,从而满足业务流量转发时对应的服务需求。
在一种可能的实现方式中,所述第一网络设备和所述第二网络设备属于同一网络域,所述第一网络设备根据所述第一BGP路由信息确定第一转发表项,包括:所述第一网络设备根据所述业务标识与所述第一网络分片的标识生成第一转发表项。在该实现方式中,第一网络设备在接收到第一BGP路由信息时,根据该第一BGP路由信息中的业务标识以及第一网络分片的标识生成第一转发表项,进而通过该第一转发表项指示业务标识对应的业务流量转发信息。
在一种可能的实现方式中,所述第一网络设备与所述第二网络设备属于同一网络域, 所述方法还包括:所述第一网络设备根据所述第一网络分片的标识以及对应关系确定第二网络分片的标识,所述对应关系包括所述第一网络分片的标识与所述第二网络分片的标识之间的对应关系;所述第一网络设备向第三网络设备发送第二BGP路由信息,所述第二BGP路由信息包括所述业务标识和所述第二网络分片的标识,以使得所述第三网络设备根据所述第二BGP路由信息确定第二转发表项,所述第二转发表项用于通过所述第二网络分片向所述第一网络设备转发所述业务流量,所述第三网络设备与所述第二网络设备属于不同网络域,所述第三网络设备位于所述第二网络分片内。
在该实现方式中,当存在第三网络设备,且第三网络设备与第二网络设备属于不同的网络域时,则可能存在第二网络设备所配置的业务标识与网络分片的标识之间的对应关系,与第三网络设备所配置的业务标识与网络分片的标识之间的对应关系不同,则第一网络设备在将第二网络设备发送的第一BGP路由信息发送给第三网络设备之前,第一网络设备可以根据第一网络分片的标识以及包括第一网络分片的标识与第二网络分片的标识之间的对应关系确定第二网络分片,该第三网络设备位于第二网络分片内。第一网络设备向第三网络设备发送第二BGP路由信息,该第二BGP路由信息包括业务标识和第二网络分片的标识,从而使得第三网络设备可以根据第二BGP路由信息确定第二转发表项,该第二转发表项用于通过第二网络分片向第一网络设备转发业务流量。
在一种可能的实现方式中,所述方法还包括:所述第一网络设备利用所述第一转发表项通过所述第一网络分片向所述第二网络设备发送所述业务流量。当第一网络设备根据第一BGP路由信息确定出第一转发表项后,当第一网络设备存在业务标识对应的业务流量时,可以利用第一转发表项通过第一网络分片将该业务流量发送给第二网络设备。
在一种可能的实现方式中,所述方法还包括:第一网络设备在确定出第一转发表项后,可以建立业务标识与第一转发表项之间的对应关系,并存在在本地转发表中。当第一网络设备获取到业务标识对应的业务流量时,可以根据业务标识以及上述对应关系确定出第一转发表项。
在一种可能的实现方式中,所述第一转发表项包括所述第一网络分片的标识。该实现方式中,第一转发表项中可以包括第一网络分片的标识,以使得第一网络设备可以根据第一网络分片的标识确定第一网络分片,进而利用第一网络分片向第二网络设备发送业务流量。
在一种可能的实现方式,所述业务标识为虚拟专用网络标识,所述虚拟专用网络标识用于标识所述业务流量的目的地址对应网络设备的虚拟专用网络,或者所述业务标识为前缀,所述前缀为所述业务流量的目的地址对应网络设备的前缀。在该实现方式中,业务标识可以基于所划分的虚拟专用网络进行设置,不同的业务标识对应不同的虚拟专用网络的标识,不同的虚拟专用网络可以用户传输不同的业务流量。或者,业务标识为前缀,该前缀为业务流量的目的地址对应网络设备的前缀,以通过不同的前缀对应不同网段用户的业务流量。
在一种可能的实现方式中,所述第一网络分片的标识位于所述第一BGP路由信息的扩展团体属性中。在该实现方式中,可以通过在第一BGP路由信息中的扩展团体属性中新增 属性的方式来添加第一网络分片的标识。
在本申请实施例第二方面,提供了一种路由信息传输方法,所述方法包括:第二网络设备获取第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识;所述第二网络设备向所述第一网络分片内的第一网络设备发送所述第一BGP路由信息,以使得所述第一网络设备通过所述第一网络分片向所述第二网络设备转发所述业务标识对应的业务流量。在该实施例中,第二网络设备可以获取第一BGP路由信息,该第一BGP路由信息中包括业务标识和第一网络分片的标识,并向位于第一网络分片内的第一网络设备发送该第一BGP路由信息,以使得第一网络设备可以根据该第一BGP路由信息确定第一网络分片,利用该第一网络分片向第二网络设备发送业务标识对应的业务流量。
在一种可能的实现方式中,所述第二网络设备获取第一BGP路由信息,包括:所述第二网络设备根据所述业务标识和所述第一网络分片的标识之间的对应关系生成所述第一BGP路由信息。在该实现方式中,第二网络设备可以通过业务标识与第一网络分片的标识之间的对应关系生成第一BGP路由信息。
在一种可能的实现方式中,所述业务标识和所述第一网络分片的标识之间的对应关系配置在所述第二网络设备上,或者所述业务标识和所述第一网络分片的标识之间的对应关系由所述第一网络设备根据IGP路由信息获取。在该实现方式中,业务标识与第一网络分片的标识之间的对应关系可以预先配置在第二网络设备上,或者,由第二网络设备根据IGP路由信息确定的。
在本申请实施例第三方面,提供了一种路由信息传输装置,所述装置包括:接收单元,用于接收第二网络设备发送的第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识,所述第一网络设备位于所述第一网络分片内;确定单元,用于根据所述第一BGP路由信息确定第一转发表项,所述第一转发表项用于通过所述第一网络分片向所述第二网络设备转发所述业务标识对应的业务流量。
在一种可能的实现方式中,所述装置所在的网络设备和所述第二网络设备属于同一网络域,所述确定单元,具体用于根据所述业务标识与所述第一网络分片的标识生成第一转发表项。
在一种可能的实现方式中,所述第一网络设备与所述第二网络设备属于同一网络域,所述装置还包括:发送单元;所述确定单元,还用于根据所述第一网络分片的标识以及对应关系确定第二网络分片的标识,所述对应关系包括所述第一网络分片的标识与所述第二网络分片的标识之间的对应关系;所述发送单元,用于向第三网络设备发送第二BGP路由信息,所述第二BGP路由信息包括所述业务标识和所述第二网络分片的标识,以使得所述第三网络设备根据所述第二BGP路由信息确定第二转发表项,所述第二转发表项用于通过所述第二网络分片向所述装置转发所述业务流量,所述第三网络设备与所述第二网络设备属于不同网络域,所述第三网络设备位于所述第二网络分片内。
在一种可能的实现方式中,所述装置还包括:发送单元;所述发送单元,用于利用所述第一转发表项通过所述第一网络分片向所述第二网络设备发送所述业务流量。
在一种可能的实现方式中,所述第一转发表项包括所述第一网络分片的标识。
在一种可能的实现方式中,所述业务标识为虚拟专用网络标识,所述虚拟专用网络标识用于标识所述业务流量的目的地址对应网络设备的虚拟专用网络,或者所述业务标识为前缀,所述前缀为所述业务流量的目的地址对应网络设备的前缀。
在一种可能的实现方式中,所述第一网络分片的标识位于所述第一BGP路由信息的扩展团体属性中。
在本申请实施例第四方面,提供了一种路由信息传输装置,所述装置包括:获取单元,用于获取第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识;发送单元,用于向所述第一网络分片内的第一网络设备发送所述第一BGP路由信息,以使得所述第一网络设备通过所述第一网络分片向所述装置所在的网络设备转发所述业务标识对应的业务流量。
在一种可能的实现方式中,所述获取单元,具体用于根据所述业务标识和所述第一网络分片的标识之间的对应关系生成所述第一BGP路由信息。
在一种可能的实现方式中,所述业务标识和所述第一网络分片的标识之间的对应关系配置在所述第二网络设备上,或者所述业务标识和所述第一网络分片的标识之间的对应关系由所述第一网络设备根据IGP路由信息获取。
在本申请实施例第五方面,提供了一种通信设备,所述设备包括:处理器和存储器;所述存储器,用于存储指令或计算机程序;所述处理器,用于执行所述存储器中的所述指令或计算机程序,使得所述通信设备执行第一方面或第二方面所述的方法。
在本申请实施例第六方面,提供了一种计算机可读存储介质,包括指令或计算机程序,当其在计算机上运行时,使得计算机执行以上第一方面或第二方面所述的方法。
在本申请实施例第七方面,提供了一种网络系统,包括第一网络设备和第二网络设备,其中,第一网络设备包括第三方面所述的路由信息传输装置,第二网络设备包括第四方面所述的路由信息传输装置,或者所述网络系统包括第五方面所述的通信设备。
根据本申请实施例的技术方案,第一网络设备在转发业务流量报文之前,接收第二网络设备发送的第一BGP路由信息,以根据第一该BGP路由信息中的业务标识和第一网络分片的标识确定第一转发表项,该第一转发表项用于指示通过第一网络分片向第二网络设备转发业务标识对应的业务流量。当第一网络设备接收到属于业务标识所对应的业务流量报文时,根据第一转发表项确定出第一网络分片,进而通过该第一网络分片向第二网络设备发送该业务流量。即,网络设备之间通过发送包括网络分片的标识和业务标识的BGP路由信息的方式来确定转发表项,以便利用该转发表项确定转发业务流量所通过的网络分片,进而满足业务转发需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本申请实施例提供的一种应用场景示意图;
图1b为本申请实施例提供的一种网络分片示意图;
图1c为本申请实施例提供的另一种应用场景示意图;
图1d为本申请实施例提供的又一种应用场景示意图;
图1e为本申请实施例提供的又一种应用场景示意图;
图2为本申请实施例提供的一种路由信息传输方法流程图;
图3a为本申请实施例提供的一种报文结构示意图;
图3b为本申请实施例提供的一种新增属性结构示意图;
图4为本申请实施例提供的一种路由信息传输装置结构图;
图5为本申请实施例提供的另一种路由信息传输装置结构图;
图6为本申请实施例提供的一种网络设备结构示意图;
图7为本申请实施例提供的另一种网络设备结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。
为便于理解,下面将先对本申请实施例提供的网元和术语进行说明。
参见图1a所述的网络系统架构示意图,该图以包括1个边界出口设备和2个边界入口设备,分别为边界出口设备O、边界入口设备P和边界入口设备Q为例进行说明。网络分片,是指对相邻网络设备间的基础网络资源按用户需求进行切分,并分配给用户进行使用。其中,用户需求包括时延、带宽等。如图1b所示一种网络分片示意图,边界出口设备O预留的总带宽资源为40G,如可以划分4个网络分片,其中网络分片sliceID1预留带宽为5G,网络分片sliceID2预留带宽为5G,网络分片sliceID3预留带宽为10G,网络分片sliceID4预留带宽为20G。也就是,边界出口设备存在4个网络分片,可以利用不同的网络分片可以传输不同带宽需求的业务流量(数据流)。具体地,网络分片可以包括软分片和硬分片,软分片是指在不同用户间进行部分隔离,但隔离的程度并不彻底。硬分片是指在不同用户之间进行强隔离,从服务体验上来看,分配给用户多少网络资源,用户就一定可以用多少网络资源。
边界出口设备,是指网络分片边界上的设备,在网络分片内传输的业务流量在边界出口设备处离开该网络分片,继续向其他网络域转发。边界出口设备可以向边界入口设备发送包括网络分片信息的边界网关协议(border gateway protocol,BGP)路由信息,该BGP路由信息中可以包括业务标识和网络分片的标识。例如,边界出口设备O向边界入口设备P发送的BGP路由信息中包括业务标识2和网络分片的标识sliceID1,则表明边界入口设备P可以使用sliceID1对应的网络分片,向边界出口设备发送业务标识1对应的业务流量。其中,边界出口设备可以基于其所划分的网络分片的信息向对应的边界入口设备发送BGP路由信息,以通过该BGP路由信息实现业务流量传输的统一规划,无需单独配置传输信息, 减少配置量。
边界入口设备,是指网络分片边界上的设备,业务流量在边界入口设备处进入网络分片进行传输。边界入口设备可以通过BGP路由信息学习边界出口设备所对应的网络分片信息,并且根据所接收的BGP路由信息确定转发表项,进而通过该转发表项所指示的网络分片将源网络设备发送的业务标识对应的业务流量转发给边界出口设备。
参见图1c所示的应用场景示意图,该应用场景中包括两个网络设备,分别为网络设备router1和网络设备router2,其中,router1为边界入口设备、router2为边界出口设备。其中,router1和router2可以各划分3个虚拟局域网(virtual local area network,VLAN),分别为vlan1、vlan12和vlan22。不同的VLAN可以对应不同的虚拟专用网络(virtual private network,VPN)实例,即虚拟路由转发表(virtual routing forwarding,VRF),以通过VRF对应网络分片。例如图1c所示,router2对应3个网络分片,vlan1对应VRF1,VRF1对应网络分片1;vlan12对应VRF2,VRF2对应网络分片2;vlan22对应VRF3,VRF3对应网络分片3。
其中,不同的VLAN可以通过不同的逻辑接口为位于不同互联网协议(internet protocol,IP)网段的用户提供服务。例如图1c中,router1的vlan1通过逻辑接口向IP1网段的用户提供服务;vlan12通过逻辑接口向IP2网段的用户提供服务;vlan22通过逻辑接口向IP2网段的用户提供服务。
图1d中以业务流量的转发路径涉及1个网络域为例进行说明,图1d中网络域可以包括多个网络设备,网络设备是指网络系统中提供路由转发功能的设备,例如可以为路由器、交换机或者标签交换路由器(label switching router,LSR)等。图1d中分别包括网络设备A、网络设备B。其中,网络设备A可以为边界入口设备,网络设备B可以为边界出口设备。例如,网络设备A可以是图1c中的router1,网络设备B可以是图1c中的router2。其中,网络设备B存在4个网络分片,分别为网络分片1、网络分片2、网络分片3以及网络分片4。其中,4个网络分片可以对应不同的带宽资源,以传输有不同带宽要求的业务流量。例如,在网络设备B配置网络分片1用于传输业务标识1对应的业务流量、网络分片2用于传输业务标识2对应的业务流量,网络分片3用于传输业务标识4对应的业务流量,网络分片4用于传输业务标识3对应的业务流量。网络设备B通过向网络设备A发送包括业务标识和网络分片标识的BGP路由信息,来指示网络设备A向网络设备B发送业务标识对应的业务流量时所使用的网络分片。
需要说明的是,边界入口设备(如网络设备A)与边界出口设备(如网络设备B)之间可以存在一个或多个中间转发设备。其中,边界出口设备与中间转发设备之间可以进行网络分片的划分,中间转发设备与边界入口设备之间可以进行网络分片的划分。当边界出口设备、边界入口设备和中间转发设备属于同一网络域,例如位于同一自治系统(autonomous system,AS)域,边界出口设备与中间转发设备之间的网络分片情况,与中间转发设备与边界入口设备之间的网络分片情况可以相同。例如,所划分的网络分片的个数以及每个网络分片所对应的带宽资源均可以相同。
参见图1e所示应用场景实施例,图1d以业务流量的转发路径涉及至少2个网络域为例进行说明。图1e与图1d相比,网络设备A不仅可以与网络域1连接,还与网络域2连 接,在该情况下,网络设备B为网络域1中边界出口设备、网络设备A为网络域1中的边界入口设备;网络设备A为网络域2中作为边界出口设备,网络设备C为网络域2的边界入口设备。其中,作为中继设备的网络设备A,可以仅存在一个网络设备A,在该情况下,网络设备A同时属于两个网络域,或者存在至少两个网络设备A,例如,网络设备A1和网络设备A2,其中,网络设备A1属于网络域1,网络设备A2属于网络域2。其中,网络设备B与网络设备A之间的网络分片划分情况,与网络设备A与网络设备C之间的网络分片划分情况可以不同。划分情况不同可以包括两个网络域所划分的网络分片的数量不同,或者所划分的网络分片对应的带宽不同。例如图1e所示,网络设备B与网络A设备之间划分4个网络分片,分别为分片1、分片2、分片3和分片4。网络设备A与网络设备C之间划分3个网络分片,分别为分片5、分片6和分片7。其中,关于属于不同网络域的边界出口设备所对应的网络分片划分情况可以根据实际需要进行规划,本实施例在此不进行限定。
为便于理解本申请实施例提供的路由信息传输方法,下面将以图1d和图1e所示的网络系统结构为例,对路由传输流程进行说明。参见图2,该图为本申请实施例提供的一种路由信息传输方法的流程图,如图2所示,该方法包括:
S201:第二网络设备获取第一BGP路由信息,该第一BGP路由信息包括业务标识和第一网络分片的标识。
本实施例中,第二网络设备作为获取BGP路由信息的网络设备,如图1d或图1e中的网络设备B,或者图1e中的网络设备A,首先获取第一BGP路由信息,该第一BGP路由信息中包括业务标识和第一网络分片的标识。该第一BGP路由信息用于指示转发该业务标识对应的业务流量将使用第一网络分片。其中,业务标识可以指示存在不同服务水平协议(service level agreement,SLA)要求的业务流量,该SLA要求可以为带宽、时延或抖动率等。其中,业务标识与业务流量之间的对应关系可以基于业务类型确定,例如,视频、音频或文本等业务类型分别对应不同的业务标识;或者,也可以基于用户确定,如不同的用户群体分别对应不同的业务标识。在一种情形中,该业务标识可以虚拟专用网络(virtual private network,VPN)标识,即不同的VPN可以传输不同的业务流量,该虚拟专用网络标识用于标识业务流量的目的地址对应网络设备的虚拟专用网络。例如,图1c所示,router2存在3个VPN实例,vlan1对应VPN1、vlan12对应VPN2和vlan22对应VPN3,则业务标识可以为其中任意一个VPN实例。在另一种情形中,该业务标识可以为前缀,该前缀为业务流量的目的地址对应网络设备的前缀。
在一些具体实施方式中,第二网络设备获取第一BGP路由信息的方式可以包括,第二网络设备获取业务标识与第一网络分片的标识之间的对应关系,并根据该业务标识与第一网络分片的标识之间的对应关系生成第一BGP路由信息。其中,第二网络设备获取业务标识与第一网络分片的标识之间的对应关系可以通过以下方式获取,一种是,业务标识与第一网络分片的标识之间的对应关系直接配置在第二网络设备上,第二网络设备从本地配置读取该对应关系。另一种是,第二网络设备根据本地配置策略获取业务标识与第一网络分 片的标识之间的对应关系,该配置策略中包括业务标识与第一网络分片的标识之间的对应关系。该配置策略可以是用户根据需要发送的业务流量在第二网络设备手动配置的,也可以是第二网络设备从控制器等外部设备上获取的。其中,配置策略可以基于VPN规划网络分片,例如,VPN1对应网络分片1,VPN2对应网络分片3,VPN3对应网络分片4。或者,配置策略基于IP网段规划网络分片,例如,网段1对应网络分片4,其它网段对应网络分片3等。再一种是,第二网络设备根据(IGP)路由信息获取业务标识与第一网络设备的标识之间的对应关系,该IGP路由信息中包括业务标识和第一网络分片的标识之间的对应关系。
其中,BGP路由信息承载在BGP报文中,BGP报文可以包括IP头、传输控制协议(transmission control protocol,TCP)头、以及更新UPDATE消息等,BGP报文的格式如图3a所示,其中,UPDATE消息可以包括前缀和扩展团体属性等信息。第一网络分片的标识可以位于第一BGP路由信息的扩展团体属性中,具体表现形式可以通过扩展团体属性中的类型长度值(type-length-value,TLV)进行定义。其中,Type字段用于指示扩展团体属性类型,Length字段用于指示“Vlaue”字段所包括的字节数,如8字节(Byte),Vlaue字段用于指示第一网络分片的标识,如图3b所示。
S202:第二网络设备将第一BGP路由信息发送给第一网络设备。
第二网络设备在获得第一BGP路由信息后,可以将其转发给位于第一网络分片内的下一跳网络设备,即第一网络设备。当网络系统存在一个网络域时,如图1d所示,第二网络设备为网络设备B,第一网络设备可以为边界入口设备A。当网络系统中存在多个网络域时,如图1e所示,当第二网络设备为网络设备B时,第一网络设备为网络设备A;当第二网络设备为网络设备A时,第一网络设备为网络设备C。
S203:第一网络设备根据第一BGP路由信息确定第一转发表项。
当第一网络设备接收到第二网络设备发送的第一BGP路由信息后,可以根据第一BGP路由信息确定第一转发表项,该第一转发表项用于指示通过第一网络分片向第二网络设备转发业务标识对应的业务流量。其中,第一转发表项中存储第一网络分片的标识,第一网络设备位于第一网络分片内,也就是第一网络设备可以识别第一网络分片的标识。
具体地,当第一网络设备和第二网络设备属于同一网络域时,第一网络设备在接收到第一BGP路由信息后,根据第一BGP路由信息中的业务标识与第一网络分片的标识生成第一转发表项,即建立业务标识与第一网络分片的标识之间的映射关系。当第一网络设备根据第一BGP路由信息确定出第一转发表项后,可以建立业务标识与第一转发表项之间的对应关系,并将该对应关系存储在第一网络设备的转发表中,以使得第一网络设备可以根据该转发表实现后续业务流量的转发。
其中,第一网络设备确定出第一转发表项后,在不同的应用场景下可以执行不同的处理,具体地,可以包括以下操作:
在一种情形下,第一网络设备在根据第一BGP路由信息确定第一转发表项后不再对第一BGP路由信息进行转发。例如,当第一网络设备不存在其他邻居网络设备时,或者第一网络设备为与用户设备所连接的设备时。
另一种情形,当第一网络设备存在除第二网络设备外的其它邻居网络设备(如第三网络设备)时,为保证第三网络设备可以识别出进行业务流量转发时所使用的网络分片,则第一网络设备将第一BGP路由信息发送给第三网络设备,以使得第三网络设备可以根据第一BGP路由信息确定对应的转发表项。在该情形下,当第一网络设备、第三网络设备以及第二网络设备属于同一网络域时,在该网络域中同一业务标识对应的业务流量可以使用同一网络分片进行转发,此时第一网络设备可以直接将第一BGP路由信息转发给第三网络设备。其中,关于第三网络设备根据第一BGP路由信息确定第一转发表项的具体实现可以参见上述第一网络设备根据第一BGP路由信息确定第一转发表项的详细描述。
需要说明的是,为体现路由信息(如上述提及的第一BGP路由信息等)传输的连续性,在本申请实施例中将第二网络设备向第一网络设备发送的第一BGP路由信息和第一网络设备向第三网络设备发送的第一BGP路由信息均称为第一BGP路由信息,但可以理解地,第二网络设备向第一网络设备发送的第一BGP路由信息和第一网络设备向第三网络设备发送的第一BGP路由信息在实际应用场景中存在差别。例如,生存时间(time to live,TTL)和下一跳网络设备等信息可能均存在差异,即,第一网络设备在将第二网络设备发送的第一BGP路由信息转发给第三网络设备时,实际可以为修改了一些必要信息的更新后的第一BGP路由信息。
当第三网络设备与第二网络设备属于不同的网络域时,可能存在不同网络域针对同一业务流量配置不同的网络分片的情况。为保证第三网络设备可以根据所接收的BGP路由信息建立正确的转发表项,第一网络设备在向第三网络设备发送BGP路由信息时,先根据第一BGP路由信息中的第一网络分片的标识以及对应关系确定第二网络分片的标识。其中,第一网络分片的标识应用于第二网络设备所属的网络域,第二网络分片的标识应用于第三网络设备所属的网络域,该对应关系包括第一网络分片的标识与第二网络分片的标识之间的对应关系。该对应关系可以是用户根据实际应用需要在第一网络设备上手工配置的,也可以为第一网络设备从控制器获取的。第一网络设备利用第二网络分片的标识更新第一BGP路由信息中的第一网络分片的标识,获得第二BGP路由信息,并将该第二BGP路由信息发送给第三网络设备。当第三网络设备接收到第二BGP路由信息后,可以根据第二BGP路由信息中的业务标识和第二网络分片的标识确定第二转发表项,该第二转发表项用于指示通过第二网络分片向第一网络设备转发业务标识对应的业务流量。其中,第二转发表项中包括第二网络分片的标识,第二网络设备位于第二网络分片内,即第二网络设备可以识别第二网络分片的标识。例如图1e所示,网络设备B属于网络域1,在网络域1中定义业务标识对应的业务流量通过网络分片1进行转发,网络设备C属于网络域2,在网络域2中定义业务标识对应的业务流量通过网络分片5进行转发,则网络设备A在接收到网络设备B发送的第一BGP路由信息时,可以根据第一BGP路由信息中的网络分片1以及网络分片1与网络域2中的网络分片5之间的对应关系确定网络分片5,并利用网络分片5更新第一BGP路由信息中的网络分片1,从而获得第二BGP路由信息。网络设备A将该第二BGP路由信息发送给网络设备C。其中,关于第三网络设备根据第二BGP路由信息确定第二转发表项的具体实现可以参见第一网络设备根据第一BGP路由信息确定第一转发 表项的详细描述。
进一步地,当第三网络设备与第二网络设备属于不同的网络域,可能存在不同的网络域针对同一业务流量设置不同的业务标识的情况。为保证第三网络设备可以识别BGP路由信息中的业务标识,可以根据第一BGP路由信息携带的可以在当前网络域使用的业务标识,获取在另一个网络域中使用的业务标识,该在另一个网络中使用的业务标识可以称为更新的业务标识。第一网络设备可以将第二BGP路由信息中的业务标识替换为更新的业务标识,从而将携带该更新的业务标识以及第二网络分片的标识的第二BGP路由信息发送给第三网络设备,从而使得第三网络设备可以识别第二BGP路由信息中的更新的业务标识和第二网络分片的标识,并确定出第二转发表项。其中,第二转发表项中包括第二网络分片的标识。其中,网络域可以为AS域、管理域等。该管理域例如可以包括多个AS域,该多个AS域由控制器统一进行管理。其中,关于第三网络设备根据第二BGP路由信息确定第二转发表项的具体实现可以参见第一网络设备根据第一BGP路由信息确定第一转发表项的详细描述。
其中,第二BGP路由信息对应的报文格式可以参见图3a所示的BGP报文,第二网络分片的标识可以位于第二BGP路由信息的扩展团体属性中,具体表现形式可以通过扩展团体属性中的类型长度值(type-length-value,TLV)进行定义。其中,Type字段用于指示扩展团体属性类型,Length字段用于指示“Vlaue”字段所包括的字节数,如8字节(Byte),Vlaue字段用于指示第二网络分片的标识,如图3b所示。
上述情形仅作为具体的示例,可以理解地,第一网络设备也可以结合其他实际应用场景执行具体的合理操作。例如,虽然第三网络设备与第二网络设备属于不同的网络域,但如果不同网络域之间的网络设备通过协商等机制预先确定了相同的业务标识和/或网络分片的标识,则第一网络设备在进行跨域转发时,也可以不更新业务标识和/或网络分片的标识。
S204:第一网络设备利用第一转发表项通过第一网络分片向第二网络设备发送业务标识对应的业务流量。
本实施例中,当第一网络设备获取到业务标识对应的业务流量时,可以根据该业务标识以及已存储的转发表中的对应关系确定出与该业务标识对应的第一转发表项。第一网络设备利用第一转发表项中所包括的第一网络分片将业务流量转发给第二网络设备。
其中,第一网络设备可以通过以下方式获取业务流量,一种是,第一网络设备作为边界入口设备,其可以接收源网络设备发送的业务流量。另一种,第一网络设备为中间转发设备时,其可以接收上一跳网络设备(如第三网络设备)发送的业务流量。在该种情形下,上一跳网络设备(第三网络设备)可以根据自身对应的转发表项所指示的网络分片向第一网络设备发送业务流量。当第三网络设备与第二网络设备属于同一网络域时,第三网络设备利用第一网络分片向第一网络设备发送业务流量,第一网络设备利用第一网络分片向第二网络分片发送业务流量。
当第三网络设备与第二网络设备属于不同网络域时,第三网络设备利用第二网络分片向第一网络设备发送业务流量,第一网络设备利用第一网络分片向第二网络设备发送业务 流量。在该情形下,第三网络设备在获取到业务流量时,可以根据该业务流量对应的业务标识以及已存储的转发表中的对应关系确定第二转发表项,并利用第二转发表项中的第二网络分片向第一网络设备发送业务流量。当第一网络设备在接收到第三网络设备发送的业务流量时,第一网络设备可以根据该业务流量对应的业务标识以及已存储的转发表中的对应关系确定第一转发表项,并利用第一转发表项中的第一网络分片向第二网络设备发送业务流量。
在实际应用中,可能会存在对应多个边界出口设备,该情况下每个边界出口设备均可以向边界入口设备发送各自对应的BGP路由信息。边界入口设备可以根据自身配置的策略或优先级选择目的边界出口设备,根据该目的边界出口设备发送的BGP路由信息确定转发表项。当边界入口设备获取到业务流量时,可以根据该转发表项所对应的网络分片向目的边界出口设备转发该业务流量。
基于上述方法实施例,本申请实施例还提供了一种路由信息传输装置,下面将结合附图对该装置进行说明。
参见图4,该图为本申请实施例提供的一种路由信息传输装置结构示意图,该装置400可以应用于第一网络设备,执行图2所示实施例中第一网络设备的功能,该装置400可以包括:接收单元401和确定单元402。
其中,接收单元401,用于接收第二网络设备发送的第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识,所述第一网络设备位于所述第一网络分片内。其中,关于接收单元401的具体实现,可以参考图2所示实施例中S202的详细描述。
确定单元402,用于根据第一BGP路由信息确定第一转发表项,所述第一转发表项用于通过所述第一网络分片向所述第二网络设备转发所述业务标识对应的业务流量。关于确定单元402的具体实现,可以参见图2所示实施例中S203的详细描述。
在一种具体的实施方式中,所述装置所在的网络设备和所述第二网络设备属于同一网络域,所述确定单元402,具体用于根据所述业务标识与所述第一网络分片的标识生成第一转发表项。关于确定单元402的具体实现,可以参见图2所示实施例中S203的详细描述。
在一种具体的实施方式中,所述第一网络设备与所述第二网络设备为同一网络域,所述装置还包括:发送单元(图4中未示出);
所述确定单元402,还用于根据所述第一网络分片的标识以及对应关系确定第二网络分片的标识,所述对应关系包括所述第一网络分片的标识与所述第二网络分片的标识之间的对应关系;
所述发送单元,用于向第三网络设备发送第二BGP路由信息,所述第二BGP路由信息包括所述业务标识和所述第二网络分片的标识,以使得所述第三网络设备根据所述第二BGP路由信息确定第二转发表项,所述第二转发表项用于通过所述第二网络分片向所述装置转发所述业务流量,所述第三网络设备与所述第二网络设备属于不同网络域,所述第三网络设备位于所述第二网络分片内。
其中,关于确定单元402确定第二网络分片的标识以及发送单元发送第二BGP路由信 息的具体实现可以参见图2所示实施例中S203的相关描述。
在一种具体的实施方式中,所述装置还包括:发送单元(图4中未示出);
所述发送单元,用于利用所述第一转发表项通过所述第一网络分片向所述第二网络设备发送所述业务流量。其中,关于发送单元的具体实现可以参见图2所示实施例中S204的详细描述。
在一种具体的实施方式中,所述第一转发表项包括所述第一网络分片的标识。
在一种具体的实施方式中,所述业务标识为虚拟专用网络标识,所述虚拟专用网络标识用于标识所述业务流量的目的地址对应网络设备的虚拟专用网络,或者所述业务标识为前缀,所述前缀为所述业务流量的目的地址对应网络设备的前缀。关于业务标识的具体表现形式可以参见图2所示实例中S201的相关描述。
在一种具体的实施方式中,所述第一网络分片的标识位于所述第一BGP路由信息的扩展团体属性中。
关于传输装置400具体可执行的功能和实现,可以参见图2所示实施例中第一网络设备的相应描述,此处不再赘述。
参见图5,该图为本申请实施例提供的另一种路由信息传输装置结构示意图,该装置500能够应用于第二网络设备,执行图2中第二网络设备的功能,该装置包括:获取单元501和发送单元502。
获取单元501,用于获取第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识。其中,关于获取单元501的具体实现可以参见图2所示实施例中S201的相关描述。
发送单元502,用于向所述第一网络分片内的第一网络设备发送所述第一BGP路由信息,以使得所述第一网络设备通过所述第一网络分片向所述装置所在的网络设备转发所述业务标识对应的业务流量。其中,关于发送单元502的具体实现可以参见图2所示实施例中S202的相关描述。
在一种可能的实现方式中,所述获取单元501,具体用于根据所述业务标识和所述第一网络分片的标识之间的对应关系生成所述第一BGP路由信息。其中,关于获取单元501的具体实现可以参见图2所示实施例中S202的相关描述。
在一种可能的实现方式中,所述业务标识和所述第一网络分片的标识之间的对应关系配置在所述第二网络设备上,或者所述业务标识和所述第一网络分片的标识之间的对应关系由所述第一网络设备根据IGP路由信息获取。其中,关于第二网络设备获取对应关系的具体实现可以参见图2所示实施例中S201的相关描述。
关于传输装置500具体可执行的功能和实现,可以参见图2所示实施例中关于第二网络设备的相应描述,此处不再赘述。
图6为本申请实施例提供的一种网络设备的结构示意图,该网络设备例如可以是图2所示实施例中的第一网络设备、第二网络设备或第三网络设备,或者也可以是图4所示实 施例中的路由传输装置400和图5所示实施例中路由传输装置500的设备实现。
请参阅图6所示,网络设备600包括:处理器610、通信接口620和存储器630。其中报文转发设备600中的处理器610的数量可以一个或多个,图6中以一个处理器为例。本申请实施例中,处理器610、通信接口620和存储器630可通过总线系统或其它方式连接,其中,图6中以通过总线系统640连接为例。
处理器610可以是CPU、NP、或者CPU和NP的组合。处理器610还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
通信接口620用于接收和发送BGP路由信息或业务流量,具体地,通信接口620可以包括接收接口和发送接口。其中,接收接口可以用于接收BGP路由信息或业务流量,发送接口可以用于发送BGP路由信息或业务流量。通信接口620的个数可以为一个或多个。
存储器630可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(random-access memory,RAM);存储器630也可以包括非易失性存储器(英文:non-volatile memory),例如快闪存储器(英文:flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器630还可以包括上述种类的存储器的组合。存储器630例如可以存储前文提及的业务标识和转发表项之间的对应关系。
可选地,存储器630存储有操作系统和程序、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,程序可包括各种操作指令,用于实现各种操作。操作系统可包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。处理器610可以读取存储器630中的程序,实现本申请实施例提供的路由信息传输方法。
其中,存储器630可以为网络设备600中的存储器件,也可以为独立于网络设备600的存储装置。
总线系统640可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线系统640可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图7是本申请实施例提供的另一种网络设备700的结构示意图,网络设备700可以配置为前述各实施例中的第一网络设备、第二网络设备或第三网络设备,或前述实施例中的路由传输装置400或路由传输装置500的设备实现。
网络设备700包括:主控板710和接口板730。
主控板710也称为主处理单元(main processing unit,MPU)或路由处理卡(route processor card),主控板710对网络设备700中各个组件的控制和管理,包括路由计算、设备管理、设备维护、协议处理功能。主控板710包括:中央处理器711和存储器712。
接口板730也称为线路接口单元卡(line processing unit,LPU)、线卡(line card)或业务板。接口板730用于提供各种业务接口并实现数据包的转发。业务接口包括而不限于以太网接口、POS(Packet over SONET/SDH)接口等,以太网接口例如是灵活以太网业务接口(Flexible Ethernet Clients,FlexE Clients)。接口板730包括:中央处理器731、网络处理器732、转发表项存储器734和物理接口卡(ph8sical interface card,PIC)733。
接口板730上的中央处理器731用于对接口板730进行控制管理并与主控板710上的中央处理器711进行通信。
网络处理器732用于实现报文的转发处理。网络处理器732的形态可以是转发芯片。具体而言,上行报文的处理包括:报文入接口的处理,转发表查找;下行报文的处理:转发表查找等等。
物理接口卡733用于实现物理层的对接功能,原始的流量由此进入接口板730,以及处理后的报文从该物理接口卡733发出。物理接口卡733包括至少一个物理接口,物理接口也称物理口,物理接口卡733对应于系统架构200中的FlexE物理接口204。物理接口卡733也称为子卡,可安装在接口板730上,负责将光电信号转换为报文并对报文进行合法性检查后转发给网络处理器732处理。在一些实施例中,接口板703的中央处理器731也可执行网络处理器732的功能,比如基于通用CPU实现软件转发,从而物理接口卡733中不需要网络处理器732。
可选地,网络设备700包括多个接口板,例如网络设备700还包括接口板740,接口板740包括:中央处理器741、网络处理器742、转发表项存储器744和物理接口卡743。
可选地,网络设备700还包括交换网板720。交换网板720也可以称为交换网板单元(switch fabric unit,SFU)。在网络设备有多个接口板730的情况下,交换网板720用于完成各接口板之间的数据交换。例如,接口板730和接口板740之间可以通过交换网板720通信。
主控板710和接口板730耦合。例如。主控板710、接口板730和接口板740,以及交换网板720之间通过系统总线与系统背板相连实现互通。在一种可能的实现方式中,主控板710和接口板730之间建立进程间通信协议(inter-process communication,IPC)通道,主控板710和接口板730之间通过IPC通道进行通信。
在逻辑上,网络设备700包括控制面和转发面,控制面包括主控板710和中央处理器731,转发面包括执行转发的各个组件,比如转发表项存储器734、物理接口卡733和网络处理器732。控制面执行路由器、生成转发表、处理信令和协议报文、配置与维护设备的状态等功能,控制面将生成的转发表下发给转发面,在转发面,网络处理器732基于控制面下发的转发表对物理接口卡733收到的报文查表转发。控制面下发的转发表可以保存在转发表项存储器734中。在一些实施例中,控制面和转发面可以完全分离,不在同一设备上。
如果网络设备700被配置为第一网络设备,中央处理器711可以获取第一BGP路由信息;根据所述第一BGP路由信息确定转发表项。网络处理器732可以触发物理接口卡733根据确定的转发表项向第二网络设备发送业务流量。
如果网络设备700被配置为第二网络设备,中央处理器711可以获取第一BGP路由信息。网络处理器732可以触发物理接口卡733向第一网络设备发送第一BGP路由信息。
应理解,路由传输装置400中的接收单元401和发送单元等可以相当于网络设备700中的物理接口卡733或物理接口卡743;路由传输装置400中的确定单元402等可以相当于网络设备700中的中央处理器711或中央处理器731。
应理解,本申请实施例中接口板740上的操作与接口板730的操作一致,为了简洁,不再赘述。应理解,本实施例的网络设备700可对应于上述各个方法实施例中的第一网络设备或第二网络设备,该网络设备700中的主控板710、接口板730和/或接口板740可以实现上述各个方法实施例中的第一网络设备或第二网络设备所具有的功能和/或所实施的各种步骤,为了简洁,在此不再赘述。
应理解,主控板可能有一块或多块,有多块的时候可以包括主用主控板和备用主控板。接口板可能有一块或多块,网络设备的数据处理能力越强,提供的接口板越多。接口板上的物理接口卡也可以有一块或多块。交换网板可能没有,也可能有一块或多块,有多块的时候可以共同实现负荷分担冗余备份。在集中式转发架构下,网络设备可以不需要交换网板,接口板承担整个系统的业务数据的处理功能。在分布式转发架构下,网络设备可以有至少一块交换网板,通过交换网板实现多块接口板之间的数据交换,提供大容量的数据交换和处理能力。所以,分布式架构的网络设备的数据接入和处理能力要大于集中式架构的设备。可选地,网络设备的形态也可以是只有一块板卡,即没有交换网板,接口板和主控板的功能集成在该一块板卡上,此时接口板上的中央处理器和主控板上的中央处理器在该一块板卡上可以合并为一个中央处理器,执行两者叠加后的功能,这种形态设备的数据交换和处理能力较低(例如,低端交换机或路由器等网络设备)。具体采用哪种架构,取决于具体的组网部署场景。
在一些可能的实施例中,上述第一网络设备或第二网络设备可以实现为虚拟化设备。例如,虚拟化设备可以是运行有用于发送报文功能的程序的虚拟机(英文:Virtual Machine,VM),虚拟机部署在硬件设备上(例如,物理服务器)。虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统。可以将虚拟机配置为第一网络设备或第二网络设备。例如,可以基于通用的物理服务器结合网络功能虚拟化(Network Functions Virtualization,NFV)技术来实现第一网络设备或第二网络设备。第一网络设备或第二网络设备为虚拟主机、虚拟路由器或虚拟交换机。本领域技术人员通过阅读本申请即可结合NFV技术在通用物理服务器上虚拟出具有上述功能的第一网络设备或第二网络设备,此处不再赘述。
应理解,上述各种产品形态的网络设备,分别具有上述方法实施例中第一网络设备或第二网络设备的任意功能,此处不再赘述。
本申请实施例还提供了一种芯片,包括处理器和接口电路,接口电路,用于接收指令并传输至处理器;处理器,例如可以是图4示出的路由传输装置400的一种具体实现形式,可以用于执行上述报文传输的方法。其中,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方 法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
本申请实施例还提供了一种计算机可读存储介质,包括指令或计算机程序,当其在计算机上运行时,使得计算机执行以上实施例提供的路由信息传输方法。
本申请实施例还提供了一种包含指令或计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行以上实施例提供的路由信息传输方法。
本申请实施例还提供了一种网络系统,该系统包括第一网络设备和第二网络设备。其中,第一网络设备可以包括路由传输装置400,第二网络设备可以包括路由传输装置500。
在一种具体的实施方式中,该网络系统还可以包括第三网络设备,其中,第三网络设备可以与第二网络设备属于不同网络域。关于第三网络设备执行的功能可以参见图2所述实施例中第三网络设备的具体实现。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑业务划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合 或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各业务单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件业务单元的形式实现。
集成的单元如果以软件业务单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的业务可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些业务存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (23)

  1. 一种路由信息传输方法,其特征在于,所述方法包括:
    第一网络设备接收第二网络设备发送的第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识,所述第一网络设备位于所述第一网络分片内;
    所述第一网络设备根据所述第一BGP路由信息确定第一转发表项,所述第一转发表项用于通过所述第一网络分片向所述第二网络设备转发所述业务标识对应的业务流量。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络设备和所述第二网络设备属于同一网络域,所述第一网络设备根据所述第一BGP路由信息确定第一转发表项,包括:
    所述第一网络设备根据所述业务标识与所述第一网络分片的标识生成第一转发表项。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网络设备与所述第二网络设备属于同一网络域,所述方法还包括:
    所述第一网络设备根据所述第一网络分片的标识以及对应关系确定第二网络分片的标识,所述对应关系包括所述第一网络分片的标识与所述第二网络分片的标识之间的对应关系;
    所述第一网络设备向第三网络设备发送第二BGP路由信息,所述第二BGP路由信息包括所述业务标识和所述第二网络分片的标识,以使得所述第三网络设备根据所述第二BGP路由信息确定第二转发表项,所述第二转发表项用于通过所述第二网络分片向所述第一网络设备转发所述业务流量,所述第三网络设备与所述第二网络设备属于不同网络域,所述第三网络设备位于所述第二网络分片内。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网络设备利用所述第一转发表项通过所述第一网络分片向所述第二网络设备发送所述业务流量。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一转发表项包括所述第一网络分片的标识。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述业务标识为虚拟专用网络标识,所述虚拟专用网络标识用于标识所述业务流量的目的地址对应网络设备的虚拟专用网络,或者所述业务标识为前缀,所述前缀为所述业务流量的目的地址对应网络设备的前缀。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一网络分片的标识位于所述第一BGP路由信息的扩展团体属性中。
  8. 一种路由信息传输方法,其特征在于,所述方法包括:
    第二网络设备获取第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识;
    所述第二网络设备向所述第一网络分片内的第一网络设备发送所述第一BGP路由信息,以使得所述第一网络设备通过所述第一网络分片向所述第二网络设备转发所述业务标识对应的业务流量。
  9. 根据权利要求8所述的方法,其特征在于,所述第二网络设备获取第一BGP路由信息,包括:
    所述第二网络设备根据所述业务标识和所述第一网络分片的标识之间的对应关系生成所述第一BGP路由信息。
  10. 根据权利要求9所述的方法,其特征在于,所述业务标识和所述第一网络分片的标识之间的对应关系配置在所述第二网络设备上,或者所述业务标识和所述第一网络分片的标识之间的对应关系由所述第一网络设备根据IGP路由信息获取。
  11. 一种路由信息传输装置,其特征在于,所述装置包括:
    接收单元,用于接收第二网络设备发送的第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识,所述第一网络设备位于所述第一网络分片内;
    确定单元,用于根据所述第一BGP路由信息确定第一转发表项,所述第一转发表项用于通过所述第一网络分片向所述第二网络设备转发所述业务标识对应的业务流量。
  12. 根据权利要求11所述的装置,其特征在于,所述装置所在的网络设备和所述第二网络设备属于同一网络域,所述确定单元,具体用于根据所述业务标识与所述第一网络分片的标识生成第一转发表项。
  13. 根据权利要求11或12所述的装置,其特征在于,所述第一网络设备与所述第二网络设备属于同一网络域,所述装置还包括:发送单元;
    所述确定单元,还用于根据所述第一网络分片的标识以及对应关系确定第二网络分片的标识,所述对应关系包括所述第一网络分片的标识与所述第二网络分片的标识之间的对应关系;
    所述发送单元,用于向第三网络设备发送第二BGP路由信息,所述第二BGP路由信息包括所述业务标识和所述第二网络分片的标识,以使得所述第三网络设备根据所述第二BGP路由信息确定第二转发表项,所述第二转发表项用于通过所述第二网络分片向所述装置转发所述业务流量,所述第三网络设备与所述第二网络设备属于不同网络域,所述第三网络设备位于所述第二网络分片内。
  14. 根据权利要求11-13任一项所述的装置,其特征在于,所述装置还包括:发送单元;
    所述发送单元,用于利用所述第一转发表项通过所述第一网络分片向所述第二网络设备发送所述业务流量。
  15. 根据权利要11-14任一项所述的装置,其特征在于,所述第一转发表项包括所述第一网络分片的标识。
  16. 根据权利要求11-15任一项所述的装置,其特征在于,所述业务标识为虚拟专用网络标识,所述虚拟专用网络标识用于标识所述业务流量的目的地址对应网络设备的虚拟专用网络,或者所述业务标识为前缀,所述前缀为所述业务流量的目的地址对应网络设备的前缀。
  17. 根据权利要求11-16任一项所述的装置,其特征在于,所述第一网络分片的标识位于所述第一BGP路由信息的扩展团体属性中。
  18. 一种路由信息传输装置,其特征在于,所述装置包括:
    获取单元,用于获取第一BGP路由信息,所述第一BGP路由信息包括业务标识和第一网络分片的标识;
    发送单元,用于向所述第一网络分片内的第一网络设备发送所述第一BGP路由信息,以使得所述第一网络设备通过所述第一网络分片向所述装置所在的网络设备转发所述业务标识对应的业务流量。
  19. 根据权利要求18所述的装置,其特征在于,所述获取单元,具体用于根据所述业务标识和所述第一网络分片的标识之间的对应关系生成所述第一BGP路由信息。
  20. 根据权利要求19所述的装置,其特征在于,所述业务标识和所述第一网络分片的标识之间的对应关系配置在所述第二网络设备上,或者所述业务标识和所述第一网络分片的标识之间的对应关系由所述第一网络设备根据IGP路由信息获取。
  21. 一种通信设备,所述设备包括:处理器和存储器;
    所述存储器,用于存储指令或计算机程序;
    所述处理器,用于执行所述存储器中的所述指令或计算机程序,使得所述通信设备执行权利要求1-10任意一项所述的方法。
  22. 一种计算机可读存储介质,包括指令或计算机程序,当其在计算机上运行时,使得计算机执行以上权利要求1-10任意一项所述的方法。
  23. 一种网络系统,包括第一网络设备和第二网络设备,所述第一网络设备包括如权利要求11-17任一项所述的路由信息传输装置,所述第二网络设备包括如权利要求18-20任一项所述的路由信息传输装置。
PCT/CN2021/119207 2020-09-23 2021-09-18 一种路由信息传输方法及装置 WO2022063065A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21871435.0A EP4199596A4 (en) 2020-09-23 2021-09-18 METHOD AND APPARATUS FOR TRANSMITTING ROUTING INFORMATION
JP2023518516A JP2023543199A (ja) 2020-09-23 2021-09-18 ルーティング情報伝送方法および装置
KR1020237010661A KR20230057459A (ko) 2020-09-23 2021-09-18 라우팅 정보 전송 방법 및 장치
US18/187,425 US20230224236A1 (en) 2020-09-23 2023-03-21 Routing Information Transmission Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011008166.X 2020-09-23
CN202011008166.XA CN114258109A (zh) 2020-09-23 2020-09-23 一种路由信息传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/187,425 Continuation US20230224236A1 (en) 2020-09-23 2023-03-21 Routing Information Transmission Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2022063065A1 true WO2022063065A1 (zh) 2022-03-31

Family

ID=80788864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119207 WO2022063065A1 (zh) 2020-09-23 2021-09-18 一种路由信息传输方法及装置

Country Status (6)

Country Link
US (1) US20230224236A1 (zh)
EP (1) EP4199596A4 (zh)
JP (1) JP2023543199A (zh)
KR (1) KR20230057459A (zh)
CN (1) CN114258109A (zh)
WO (1) WO2022063065A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117201379A (zh) * 2022-05-31 2023-12-08 中兴通讯股份有限公司 业务传输方法、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572517A (zh) * 2015-10-09 2017-04-19 中国移动通信集团公司 网络切片的处理方法、接入网络的选择方法及装置
CN107517488A (zh) * 2016-06-15 2017-12-26 华为技术有限公司 报文处理的方法及设备
US20180035399A1 (en) * 2016-07-27 2018-02-01 Lg Electronics Inc. Method and apparatus for performing mm attach and service request procedure for network slice based new radio access technology in wireless communication system
CN109218201A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 一种生成转发表项的方法、控制器和网络设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111224874B (zh) * 2018-11-27 2022-06-14 中兴通讯股份有限公司 一种路径构建的方法及相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106572517A (zh) * 2015-10-09 2017-04-19 中国移动通信集团公司 网络切片的处理方法、接入网络的选择方法及装置
CN107517488A (zh) * 2016-06-15 2017-12-26 华为技术有限公司 报文处理的方法及设备
US20180035399A1 (en) * 2016-07-27 2018-02-01 Lg Electronics Inc. Method and apparatus for performing mm attach and service request procedure for network slice based new radio access technology in wireless communication system
CN109218201A (zh) * 2017-06-30 2019-01-15 华为技术有限公司 一种生成转发表项的方法、控制器和网络设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Network slicing architecture and slice selection mechanism", 3GPP DRAFT; S2-162652_NETWORK SLICING ARCHITECTURE AND THE SELECTION-V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Nanjing, P.R. China; 20160523 - 20160527, 23 May 2016 (2016-05-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051109402 *
See also references of EP4199596A4

Also Published As

Publication number Publication date
CN114258109A (zh) 2022-03-29
JP2023543199A (ja) 2023-10-13
EP4199596A4 (en) 2024-01-17
US20230224236A1 (en) 2023-07-13
KR20230057459A (ko) 2023-04-28
EP4199596A1 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
US9800497B2 (en) Operations, administration and management (OAM) in overlay data center environments
US9935882B2 (en) Configuration of network elements for automated policy-based routing
KR101900536B1 (ko) Openflow 데이터 플레인 및 컨트롤 플레인을 갖는 클라우드 컴퓨터에서의 3g 패킷 코어의 구현
US8315260B2 (en) Transport multiplexer-mechanisms to force ethernet traffic from one domain to be switched in a different (external) domain
CN112929274A (zh) 一种处理路由的方法、设备及系统
US20140351812A1 (en) Recording medium, management device, and network system
US10523464B2 (en) Multi-homed access
US20220191136A1 (en) Label Management Method, Data Stream Processing Method, and Device
US11799688B2 (en) Method for managing virtual private network, and device
CN108141392B (zh) 伪线负载分担的方法和设备
US20220385497A1 (en) Method for network slices to share uplink port, apparatus, and storage medium
WO2022048418A1 (zh) 一种转发报文的方法、设备和系统
CN107623636B (zh) 一种用户隔离方法和交换机
US20230224236A1 (en) Routing Information Transmission Method and Apparatus
WO2022007702A1 (zh) 一种报文处理方法及网络设备
WO2022166465A1 (zh) 一种报文处理方法及相关装置
CN114760244B (zh) 一种传输绑定段标识bsid的方法、装置和网络设备
CN114301839A (zh) 一种组播报文传输方法及装置
WO2022166464A1 (zh) 一种报文传输方法、系统及设备
WO2022213822A1 (zh) 一种控制用户设备接入网络的方法、装置及设备
WO2022048381A1 (zh) 一种报文传输方法及装置
WO2022143572A1 (zh) 一种报文处理方法及相关设备
WO2024093306A1 (zh) 通信方法及装置
WO2023143186A1 (zh) 一种数据传输方法、系统及装置
WO2023231438A1 (zh) 报文发送的方法、网络设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023518516

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010661

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021871435

Country of ref document: EP

Effective date: 20230315

NENP Non-entry into the national phase

Ref country code: DE