WO2022063010A1 - 一种业务保护方法和网络节点 - Google Patents

一种业务保护方法和网络节点 Download PDF

Info

Publication number
WO2022063010A1
WO2022063010A1 PCT/CN2021/118631 CN2021118631W WO2022063010A1 WO 2022063010 A1 WO2022063010 A1 WO 2022063010A1 CN 2021118631 W CN2021118631 W CN 2021118631W WO 2022063010 A1 WO2022063010 A1 WO 2022063010A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
bandwidth
service
protection
path
Prior art date
Application number
PCT/CN2021/118631
Other languages
English (en)
French (fr)
Inventor
罗贤龙
谢刚
李�浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21871381.6A priority Critical patent/EP4207633A4/en
Publication of WO2022063010A1 publication Critical patent/WO2022063010A1/zh
Priority to US18/189,283 priority patent/US20230232139A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0663Performing the actions predefined by failover planning, e.g. switching to standby network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0043Fault tolerance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0075Wavelength grouping or hierarchical aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the invention relates to the technical field of optical networks, in particular to a service protection method and a network node.
  • optical transmission network With the development of optical transmission network, the protection and restoration of optical transmission network has become an important concern in the operation of current optical transmission network design, operation and maintenance. Efficient and flexible protection and recovery methods have become an important feature of optical transport networks.
  • ASON Automatically Switched Optical Network
  • ITU International Telecommunication Union
  • ASON network has basically covered the wavelength division network such as metropolitan area and core backbone at present.
  • OSPF Open Shortest Path First
  • CSPF Constrained Shortest Path First
  • an end-to-end recovery path can be automatically established through Generalized Multi-Protocol Label Switching (GMPLS) and Resource Reservation Protocol-Traffic Engineering (RSVP-TE) based on traffic engineering extensions. , to provide real-time rerouting protection and recovery capabilities for services.
  • GPLS Generalized Multi-Protocol Label Switching
  • RSVP-TE Resource Reservation Protocol-Traffic Engineering
  • real-time rerouting recovery can be performed only after a fiber failure occurs in the network.
  • the recovery speed is slow, and the recovery time is on the order of 100 milliseconds, for example, 200 ms.
  • the present application provides a method for service protection:
  • the present application provides a service protection method, which is applied to a communication system, where the communication system includes a first node, a second node, and a third node, wherein the first node is a first working path and a first protection The common head node of the path, the second node is the common sink node of the first working path and the first protection path, and the third node is any node other than the first node and the second node on the first protection path.
  • a node where the first working path is the current communication path of the service, and the first protection path is the backup path of the first working path, including: the first node determining that the first working path is faulty; the first node is based on the first working path
  • a bandwidth activation message is generated, and the bandwidth activation message is used to instruct the third node to adjust the bandwidth of the service from the protection bandwidth to the target bandwidth, where the protection bandwidth represents the pre-occupied bandwidth of the first protection path before the service is transmitted, and the target bandwidth represents the transmission bandwidth.
  • the actual occupied bandwidth of the service the first node sends a bandwidth activation message on the first protection path.
  • a virtual connection of the first protection path is established through the protection bandwidth before the service fails, and when the service fails, the head node can simultaneously send the bandwidth activation message along the first protection path to the first protection path In this way, the end-to-end recovery of services can be quickly achieved, and at the same time, only the protection bandwidth is occupied before the service fails, which reduces the protection cost.
  • the first node sending the bandwidth activation message on the first protection path includes: the first node inserting the bandwidth activation message into the payload area of the first data frame; the first node The first data frame is sent on the first protection path. Inserting the bandwidth activation message into the payload area of the first data frame instead of the overhead area can reduce the cost of acquiring the bandwidth activation message by the node and speed up service recovery.
  • the first data frame may be an OTN frame, specifically an OPUk frame, ODUk frame, OTUk frame, or a flexible data frame, such as an ODUFlex frame, or an optical service unit OSU frame.
  • the bandwidth activation message is further used to instruct the second node to switch the service to the first protection path. Specifically, it is agreed in the network node through a protocol that when the end node of the protection path receives the bandwidth activation message, it automatically switches the service from the working path to the protection path.
  • the payload area of the first data frame includes multiple optical service units, and each optical service unit in the multiple optical service units includes a unit overhead area and a unit net.
  • the first node sends a bandwidth activation message on the first protection path, including:
  • the first node inserts the bandwidth activation message into the unit payload area of one or more of the optical service units;
  • the first node sends the first data frame on the first protection path.
  • the bandwidth activation message may be located in the same optical service unit or in a different optical service unit, which is not carried out in this application. limited.
  • the payload area of the first data frame also carries an automatic protection switching APS message, where the APS message is used to instruct the second node to switch the service to the on the first protection path.
  • the payload area of the first data frame further includes at least one item of the following information: a message type and a first protection path service ID, where the message type is used to indicate the first The message carried by the data frame.
  • the node receives the first data frame, it can know the frame type of the data frame through the message type.
  • the third node determines other services that share the bandwidth of the third node with the service according to the service ID of the first protection path.
  • the overhead area of the first data frame further includes a signaling type Type field, where the Type field is used to indicate the message type of the first data frame.
  • this method and the aforementioned method of carrying the message type in the payload area are two parallel methods of marking the frame type of the first data frame, and one of the fields may be selected to carry the message type during specific implementation.
  • the method further includes: the first node switches the service to the first protection path.
  • bandwidth activation message is sent to the downstream node before the protection switching is performed is to transmit the message to the opposite end of the protection path as soon as possible.
  • Multiple nodes can perform bandwidth adjustment in parallel to realize the protection switching of the service as soon as possible. .
  • the method further includes: the first node obtains the ID of the service from the path failure message, and determines according to the ID of the service Service ID of the first protection path of the service.
  • a preset condition of the above implementation manner is that the first node has stored the corresponding relationship between the service ID and the service ID of the first protection path in the node. It should also be noted that the first protection path service ID can be used to determine whether there are other services sharing the bandwidth of the current node with the existing service according to the first protection path service ID when the remaining bandwidth of the downstream node is less than the target bandwidth of the service. , and then determine whether to perform bandwidth adjustment according to the determination result.
  • the length of the first data frame is 192 bytes, 240 bytes, 128 bytes or 64 bytes.
  • the present application provides a service protection method.
  • the method is applied to a communication system.
  • the communication system includes a first node, a second node, and a third node, wherein the first node is the first working path and the first node.
  • the common head node of the protection path, the second node is the common sink node of the first working path and the first protection path, and the third node is any one other than the first node and the second node on the first protection path node
  • the first working path is the current communication path of the service
  • the first protection path is the backup path of the first working path
  • the method includes:
  • the first node receives a path failure message, where the path failure message is used to indicate that the first working path between the first node and the second node is faulty; the first node generates a service protection message according to the path failure message, and the service protection message is used for Each node on the first protection path is instructed to perform service recovery; the first node inserts a service protection message into the payload area of the first data frame, and sends the first data frame on the first protection path.
  • the extraction cost of the node can be reduced, and the rapid recovery of the service can be realized.
  • the service protection message includes a bandwidth activation message and an APS message, and the service protection message is used to instruct each node on the first protection path to perform service recovery.
  • the service protection message includes: the bandwidth activation message is used for Each node on the first protection path is instructed to adjust the bandwidth of the service from the protection bandwidth to the target bandwidth, and the APS message is used to instruct the second node to switch the service to the first protection path.
  • the payload area of the first data frame further includes at least one item of the following information: protocol packet length, message type, and first protection path service ID, wherein the message type
  • the bandwidth used for instructing the first data frame to be used for the service is adjusted from the protection bandwidth to the target bandwidth and APS switching is performed.
  • the present application provides a service protection method, which is applied in a communication system, where the communication system includes a first node, a second node, and a third node, wherein the first node is a part of a first working path and a first protection path.
  • the common head node, the second node is the common sink node of the first working path and the first protection path, the third node is any node on the first protection path except the first node and the second node, and the first working path is The current communication path of the service, the first protection path is a backup path of the first working path, and the method includes:
  • the third node receives the first data frame; the third node obtains the bandwidth activation message from the first data frame; the bandwidth activation message is used to instruct the third node to adjust the bandwidth of the service from the protection bandwidth to the target bandwidth, where the protection bandwidth represents the first The pre-occupied bandwidth of a protection path before the transmission service, and the target bandwidth represents the actual occupied bandwidth of the transmission service; the third node adjusts the service bandwidth from the protection bandwidth to the target bandwidth according to the bandwidth activation message.
  • a virtual connection of the first protection path is established through the protection bandwidth before service failure.
  • the bandwidth is adjusted from the protection bandwidth to the target bandwidth, so that end-to-end service recovery can be quickly achieved, and only the protection bandwidth is occupied before a service failure occurs, reducing protection costs.
  • the bandwidth activation message is carried in the payload area of the first data frame. In this way, the extraction cost of the bandwidth activation message by the node can be reduced, and the fast forwarding of the service protection information can be realized.
  • the payload area of the first data frame includes multiple optical service units, and each optical service unit in the multiple optical service units includes a unit overhead area and a unit payload area.
  • the bandwidth activation message is carried in the unit payload area of one or more optical service units.
  • the bandwidth activation message may be located in the same optical service unit or in a different optical service unit, which is not carried out in this application. limited.
  • the payload area of the first data frame further includes at least one of the following information: protocol message length, message type, version number, first protection path service ID, automatic Protection switching APS information, where the message type is used to indicate that the first data frame is used to adjust the bandwidth of the service from the protection bandwidth to the target bandwidth and perform APS protection switching, and the APS information is used to instruct the second node to switch the service. to the first protection path.
  • the overhead area of the first data frame further includes a signaling type Type field, where the Type field is used to indicate a message type of the first data frame.
  • the method further includes: the third node determines whether there are other services shared with the current service according to the service ID of the first protection path. The bandwidth of the third node; the third node determines whether to perform bandwidth adjustment according to the determined result.
  • the method further includes:
  • the third node determines that the sum of the remaining bandwidth and the protection bandwidth*(N+1) is greater than or equal to the target bandwidth; the third node obtains other service IDs that share the bandwidth of the third node with the current service according to the service ID of the first protection path; the third node Adjust the protection bandwidth of at least one other service to 0 according to the other service ID; the third node adjusts the bandwidth of the current service from the protection bandwidth to the target bandwidth.
  • bandwidth resources on the protection path can be assembled to the maximum extent for service recovery.
  • receiving the first data frame by the third node includes: the third node receives the OTN frame from the first node, and demaps the OTN frame to obtain the first data frame.
  • the method before the third node adjusts the bandwidth of the service from the target bandwidth to the target bandwidth according to the bandwidth activation message, the method further includes: the third node converts the bandwidth activation message and the APS message along the first The protection path is forwarded to the downstream node of the third node.
  • bandwidth activation message and APS message are sent to the downstream node before bandwidth adjustment is to transmit the message to the opposite end of the protection path as soon as possible.
  • Multiple nodes can perform bandwidth adjustment in parallel to realize the service as soon as possible. protection switching.
  • the present application provides a service protection method, which is applied in a communication system, where the communication system includes a first node, a second node, and a third node, wherein the first node is a part of a first working path and a first protection path.
  • the common head node, the second node is the common sink node of the first working path and the first protection path, the third node is any node on the first protection path except the first node and the second node, and the first working path is The current communication path of the service, the first protection path is the backup path of the first working path, including: the second node receives the first data frame from the third node, the first data frame includes a bandwidth activation message, and the bandwidth activation message is used to indicate
  • the second node adjusts the bandwidth of the service from the protection bandwidth to the target bandwidth, where the protection bandwidth represents the pre-occupied bandwidth of the first protection path before the service is transmitted, and the target bandwidth represents the actual occupied bandwidth of the transmission service.
  • the second node adjusts the bandwidth of the service from the protection bandwidth to the target bandwidth according to the bandwidth activation message.
  • a virtual connection of the first protection path is established through the protection bandwidth before the service fails.
  • the end node on the protection path receives the bandwidth activation message, and the service
  • the bandwidth is adjusted from the protection bandwidth to the target bandwidth, so that end-to-end service recovery can be quickly achieved, and only the protection bandwidth is occupied before a service failure occurs, reducing protection costs.
  • the first data frame further carries an automatic protection switching APS message, which is used to instruct the second node to switch the service to the first protection path
  • the first data frame includes a first overhead
  • the path failure message is located in the first overhead
  • the second data frame includes a payload area
  • a bandwidth activation message and/or APS messages are located in the payload area.
  • the present application provides a network node, comprising: a determining unit for determining that a fault occurs on the first working path; a processing unit for generating a bandwidth activation message based on the fault, where the bandwidth activation message is used to instruct the third node to
  • the bandwidth of the service is adjusted from the protection bandwidth to the target bandwidth, where the protection bandwidth represents the pre-occupied bandwidth of the first protection path before the service is transmitted, the target bandwidth represents the actual bandwidth occupied by the transmission service, and the third node is the first protection path divided by the first protection path.
  • Any node other than the first node and the second node; the second node is the sink node of the first protection path.
  • a sending unit configured to send a bandwidth activation message on the first protection path.
  • the first data frame further carries an automatic protection switching APS message, which is used to instruct the network node to switch the service to the first protection path.
  • the processing unit is further configured to: insert the bandwidth activation message and the APS message into the payload area of the first data frame, and the sending unit is specifically configured to: in the first data frame The first data frame is sent on the protection path.
  • the length of the first data frame is 192 bytes, 240 bytes, 128 bytes or 64 bytes.
  • the payload area of the first data frame further includes at least one item of the following information: protocol message length, message type, version number, and the first protection path service ID , where the message type is used to indicate the information carried in the first data frame.
  • the processing module is further configured to: switch the service to the first protection path.
  • the present application provides a network node, comprising: a receiving unit for receiving a first data frame; an obtaining unit for obtaining a bandwidth activation message from the first data frame, where the bandwidth activation message is used to instruct the network node to
  • the bandwidth of the service is adjusted from the protection bandwidth to the target bandwidth, where the protection bandwidth represents the pre-occupied bandwidth of the first protection path before the service is transmitted, and the target bandwidth represents the actual bandwidth occupied by the transmission service;
  • the configuration unit is used to convert the service according to the bandwidth activation message.
  • the bandwidth is adjusted from the guard bandwidth to the target bandwidth.
  • the length of the first data frame is 192 bytes, 240 bytes, 128 bytes or 64 bytes.
  • the payload area of the first data frame includes multiple optical service units, and each optical service unit in the multiple optical service units includes a unit overhead area and a unit payload. area, the bandwidth activation message is located in the unit payload area of one or more optical service units.
  • the payload area of the first data frame further includes at least one of the following information: protocol message length, message type, version number, first protection path service ID, automatic Protection switching APS message, where the message type is used to indicate that the first data frame is used to adjust the bandwidth of the service from the protection bandwidth to the target bandwidth and perform APS switching, and the APS information is used to instruct the network node to switch the service. to the first protection path.
  • the configuration unit is further configured to: determine whether there are other services and the current service according to the service ID of the first protection path of the service. Share the bandwidth of the current network node; determine whether to adjust the bandwidth according to the determined result.
  • the configuration unit when the network node determines according to the first protection path service ID that there are N (N ⁇ 1) services sharing the bandwidth of the network node with the current service, the configuration unit also uses At:
  • the bandwidth of the current service is adjusted from the protection bandwidth to the target bandwidth.
  • the present application provides a network node, including:
  • a receiving unit configured to receive a first data frame, where the first data frame includes a bandwidth activation message, and the bandwidth activation message is used to instruct the network node to adjust the bandwidth of the service from the protection bandwidth to the target bandwidth;
  • the processing unit is further configured to adjust the bandwidth of the service from the protection bandwidth to the target bandwidth according to the bandwidth activation message.
  • the first data frame further carries an APS message, where the APS message is used to instruct the network node to switch the service to the first protection path.
  • the bandwidth activation message and the APS message are carried in the payload area of the first data frame.
  • the present application provides a communication device, comprising a processor and a memory, the memory is used to store computer programs or instructions, when the computer programs or instructions are executed on the processor, such that the first aspect and in combination with the first aspect Any of the possible implementations of the second aspect are performed, or any possible implementations such as the second aspect and in combination with the second aspect are performed, or the third aspect and any possible implementations thereof are performed. .
  • the present application provides a computer-readable storage medium storing computer programs or instructions, where the computer programs or instructions are used to implement the first aspect and any possible implementation in combination with the first aspect, or to implement the The second aspect and any possible implementation manners in combination with the second aspect, or implementations such as the third aspect and any possible implementation manners thereof.
  • the present application provides a computer program product, including a computer program, which, when the computer program is executed, causes the computer to execute any possible implementation manner of the first aspect and combination of the first aspect, or to execute the second aspect.
  • a computer program product including a computer program, which, when the computer program is executed, causes the computer to execute any possible implementation manner of the first aspect and combination of the first aspect, or to execute the second aspect.
  • a virtual connection of the first protection path is established through the protection bandwidth before the service fails.
  • the head node can pass the bandwidth activation message along the first
  • the protection path is sent to each node on the first protection path, and each node adjusts the service bandwidth according to the bandwidth activation message, so that the end-to-end service recovery can be quickly realized, and at the same time, only the protection bandwidth is occupied before the service fails, which reduces the protection cost .
  • FIG. 1 is a schematic diagram of an ASON network architecture according to an embodiment of the application.
  • FIG. 2 is a schematic diagram of an OSU frame structure according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a service recovery method
  • FIG. 5 is a schematic diagram of node configuration of an ASON network according to an embodiment of the present application.
  • FIG. 6 is a system sequence diagram of a service protection method provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a service protection method provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of another service protection method provided by an embodiment of the present application.
  • FIG. 10 is a scene diagram to which the service protection method provided by the embodiment of the present application can be applied.
  • FIG. 11 is another scenario diagram to which the service protection method provided by the embodiment of the present application can be applied.
  • FIG. 12 is a schematic structural diagram of a service protection device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another service protection device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of still another service protection device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another service protection apparatus provided by an embodiment of the present application.
  • node 1 node 1, node 2, node 3, and node 4 respectively.
  • the number of nodes included in the ASON may be more than 4 nodes, or the number of nodes included in the ASON may also be greater than or equal to 2.
  • interface #1 and interface #8 are the physical ports of node #1
  • interface #2 and interface #3 are the physical ports of node #2
  • interface #4 and interface #5 are the physical ports of node #3
  • interface #6 and interface #7 is the physical port of node #4.
  • connection between two adjacent nodes is called a link.
  • a link can be represented by a link (node-interface, node-interface), whether there is a link between two adjacent nodes can be used to indicate whether information such as network protocol messages and/or traffic data can be transmitted between the two nodes. Forwarding between adjacent nodes, for example, if there is a link between two adjacent nodes, information such as network protocol messages and/or traffic data can be forwarded between the two adjacent nodes; similarly, If there is no link between two adjacent nodes, information such as network protocol messages and/or traffic data cannot be forwarded between the two adjacent nodes.
  • a link (node 1-interface 1, node 2-interface 2) indicates that information such as network protocol messages and/or traffic data can be sent from interface 1 of node 1 and then received on node 2 and interface 2.
  • link 1-2 node 1-interface 1->node 2-interface 1
  • link 1-4 node 1-interface 8->node 4-interface 7
  • link 2-1 node 2-interface 2->node 1-interface 1
  • link 2-3 node 2-interface 3->node 3-interface 4
  • link 3-2 node 3-interface 4->node 2-interface 3
  • link 3-4 node 3-interface 5->node 4-interface 6
  • link 4-3 node 4-interface 6->node 3-interface 5
  • link 4-1 node 4-interface 7->node 1-interface 8).
  • ASON network can provide fast end-to-end establishment, query, deletion, attribute modification and recovery functions of services through RSVP-TE protocol.
  • the network management sends the service creation command to the source node NE, and then the source node NE implements route calculation and initiates the service configuration process through the RSVP-TE signaling protocol, and establishes a cross-connection point by point from the source node to the downstream node to complete the service creation. .
  • This method makes full use of the routing and signaling functions of each network element and shortens the service configuration time.
  • Source node 1 calculates the service path through CSPF (Constrained Shortest Path First, constraint-based shortest path first): node 1-node 2 -Node 3, the source node carries the end-to-end path information along the calculated path, and the designated link 1-2 interface sends a Path message (a type of RSVP-TE protocol packet) to the intermediate node 2, and node 2 receives the After the signaling message is received, the cross-configuration association information of the current node is solved and a reverse cross-connection is established, and then the intermediate node 2 carries the end-to-end path message to specify the link 2-3 interface to send the Path message to the sink node 3 direction.
  • CSPF Consstrained Shortest Path First, constraint-based shortest path first
  • the corresponding cross configuration message is solved at the sink node 3 and the reverse cross connection of the local station is established; the sink node 3 sends a Resv message (a kind of RSVP-TE protocol message) to the source node 1 via the intermediate node 2, and each node along the way A forward cross connection is established; in the same process, the source node 1 sends a Path message to the sink node 3 via the intermediate node 2, and turns on the alarm monitoring of the service along the way.
  • the sink node 3 sends a Resv message to the source node 1 via the intermediate node 2 for confirmation. The whole process automatically completes the end-to-end configuration and establishment of services 1-3 by RSVP-TE signaling.
  • the service path may include a working path, a restoration path, a protection path, etc., and is used for data transmission of the bearing service.
  • a service path is a route between the first node and the last node, and one or more nodes may exist between the first node and the last node.
  • the first node of the service path represents the sending node of the service data
  • the end node of the service path represents the receiving node of the service data.
  • a service path can be represented by service (first node-end node).
  • the service path represents the route between the first node and the last node, it can also be called an end-to-end service path, wherein "end-to-end" represents the first node to the last node.
  • ASON can provide end-to-end establishment, query, deletion, attribute modification and recovery functions of service paths through the RSVP-TE protocol.
  • the end-to-end establishment of the service path includes: the network management sends the service path creation command to the head node, then the head node implements route calculation and initiates the service path configuration process through the RSVP-TE signaling protocol, and establishes a crossover point by point from the head node to the downstream node. connection to complete the end-to-end establishment of the service path.
  • the service paths in this application include both working paths and protection paths.
  • the switching of the service path may indicate that the service is switched from the working path to the protection path, or that the service is switched back from the protection path to the working path.
  • OTN Optical transport network
  • OTN can be applied to backbone, metro core and aggregation networks, and is further extended to access networks.
  • the data frame structure used in the OTN network is an OTN frame, and the OTN frame may also be called an OTN transmission frame.
  • OTN frames are used to carry various service data and provide rich management and monitoring functions.
  • OTN also needs to have transmission capabilities as low as several megabits per second in the future.
  • Liquid OTN introduces a service-oriented flexible container based on the traditional OTN frame structure - flexible optical service unit frame (flexible optical service unit, OSUflex), which is defined by flexible pipe bandwidth (such as n*2.4Mbit/s, n Indicates the number of pipes) to efficiently carry small particle signals.
  • the OTN frame may be an OSUflex frame, and the OSUflex frame may also be referred to as an OSU frame for short.
  • FIG. 2 is a schematic structural diagram of an OSU frame provided by an embodiment of the present application.
  • an optical payload unit-k optical payload unit-k, OPUk
  • OPUflex is divided into multiple payload blocks (Payload Block, PB), each PB contains an OSU frame and its corresponding index number TPN.
  • TPN can be used as the unique channel identifier of OSU frames at the service layer.
  • Each OSU frame includes an overhead area and a payload area.
  • the overhead area includes but is not limited to overhead information such as signaling type, version identifier, and check bit, and the payload area is used to carry service data information.
  • the length of the OSU frame is generally a fixed size, for example, the length is 192 bytes, 240 bytes, 128 bytes, or 64 bytes.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 3 is a schematic diagram of a service path restoration.
  • the node can realize the end-to-end automatic recovery of the service path through the RSVP-TE protocol.
  • the original service paths of the services 1-3 that are automatically established by the services 1-3 through RSVP-TE are: node 1-node 2-node 3, where the original service path may also be called a working path. If the optical fiber between node 1 and node 2 is interrupted, the automatic recovery of the end-to-end service path through the RSVP-TE protocol includes:
  • Node 2 senses the fault alarm information, finds the affected services 1-3 according to the port alarm information carried in the fault alarm information, and then advertises the fault information to the affected services 1-3 through the RSVP notification (Notify) message the first node (node 1).
  • how node 2 perceives the fault alarm information is not limited, and it may be the fiber interruption between node 1 and node 2 (for example, the fiber interruption in the direction from node 1 to node 2, node 2 After the fiber to the direction of node 1 is not interrupted), the bottom layer of node 2 senses the fiber interruption (eg, senses the interruption of information transmission).
  • how node 2 transmits the RSVP advertisement message to node 1 is not limited, and it may be through the optical fiber in the direction from node 2 to node 1, or when the optical fiber in the direction from node 2 to node 1 is also interrupted In this case, transmit the RSVP Notify message to node 1 through other paths.
  • node 1 After node 1 receives the RSVP Notify message, it learns the affected services 1-3 through the fault information, and automatically determines the recovery path that can continue to implement services 1-3 (node 1-node 4-node 3 as shown in Figure 2). ). Then the nodes in the ASON establish a cross-connection hop-by-hop along the service recovery path (node 1-node 4-node 3) through RSVP-TE signaling (Path and Resv messages), and automatically complete the establishment of the end-to-end recovery path, and restore the After the trail is established, services 1-3 are automatically restored.
  • RSVP-TE signaling Path and Resv messages
  • FIG. 4 is a schematic diagram of another service path restoration.
  • a 1+1 dedicated protection group is configured between node 1 and node 4 to implement fast service switching after a network failure.
  • services 1-3 respectively establish working paths of services 1-3 through RSVP-TE: node 1-node 2-node 3 and protection paths: node 1-node 4-node 3.
  • the first node 1 of the services 1-3 transmits two channels of service information through the working path and the protection path, and selects and receives one channel at the end node 3, for example, selects and receives service data on the working path.
  • the fault state of the working path and protection path is detected by the dedicated overhead of the protection group protocol.
  • node 1 or node 3 quickly senses the failure and initiates a fast switching of the protection group of the current node to switch services 1-3 from the working path to the protection path.
  • service path restoration can also be understood as service restoration, because after the service path restoration, the services carried on the service path can also be correspondingly restored for transmission.
  • the present application provides a service recovery method and a network node.
  • the service recovery method realizes rapid recovery of faulty services and reduces costs by establishing shared protection segments for different services between network nodes.
  • FIG. 5 is a schematic diagram of node configuration of an ASON network according to an embodiment of the present application.
  • the architecture includes an intelligent network management (Network Cloud Engine, NCE), node A, node B, and node C.
  • NCE Network Cloud Engine
  • Each node deploys an RSVP (Resource Reservation Protocol, resource reservation protocol) control unit, a protection group switching unit and a bandwidth activation unit.
  • RSVP Resource Reservation Protocol, resource reservation protocol
  • the ASON architecture also includes network equipment for path computation.
  • the network device includes a path computation element (Path computation element, PCE) controller, that is, the ASON is provided with at least one PCE controller.
  • PCE path computation element
  • the network device is a node with a path calculation function, for example, at least one node in the ASON is deployed with a PCE controller; also for example, at least one node in the ASON is deployed with a path calculation function module.
  • NCE is used for automatic provision and deletion of services.
  • a PCE controller may be included.
  • the PCE controller is used to: calculate the shared protection path of the service based on the bandwidth sharing policy; manage the life cycle of the shared protection path, such as configuring, deleting, updating, etc.; and configure the service relationship of multiple protection paths sharing the bandwidth.
  • the RSVP control unit is used for establishment, deletion, update and reconstruction of service shared protection paths; it is also used for end-to-end maintenance of shared protection paths.
  • the protection group switching unit is used for quickly switching the protection group to the standby protection path after the service first node or the last node senses the working path of the service fails.
  • the bandwidth activation unit is used to find the corresponding service ID after sensing the fault of the working path, and generate the channel-associated signaling including the service ID, so as to activate the bandwidth of the end-to-end protection path;
  • the channel-associated signaling performs centralized bandwidth decision processing, thereby activating the target bandwidth of the configured service.
  • the accompanying path in this application means that before the service is opened, the crossover of the protection path of the service has been established. Therefore, when the working path of the service fails, the protection path head node (which may also be the protection section The head node) transmits the signaling for bandwidth activation to the protection path sink node (or protection section sink node) along the protection path, that is, the channel for which the cross-connection has been established. Since this channel is a dedicated channel for the faulty service, therefore There is no need to carry the service ID, but only the bandwidth activation information. This process is called as-path sending of signaling. What needs to be distinguished from it is the co-channel transmission of signaling.
  • the co-channel transmission of signaling refers to sending the signaling used for a service recovery in a channel shared by multiple services. Therefore, in order to accurately identify the target node, it needs to be recovered. service, the service ID that needs to be restored needs to be carried in the signaling.
  • FIG. 5 is only a schematic diagram provided for the convenience of understanding the application, and does not constitute any limitation to the protection scope of the application.
  • the names of the above-mentioned various units are only examples, and other units or modules that can achieve the same function are substituted.
  • FIG. 6 is a system sequence diagram of a service protection method provided by an embodiment of the present application, which may be applied to an ASON network, and the network may include multiple nodes as shown in FIG. 5 .
  • the embodiment of the present application is described by taking an example that two services (a first service and a second service) are protected by sharing through an OSU frame.
  • the nodes with the path calculation function and the PCE controller are collectively referred to as network devices
  • the first service is carried on the first working path
  • the head node of the first working path is called the first head node
  • the second service is carried on the first working path.
  • the second working path, the head node of the second working path is called the second head node.
  • the network device may be the head node of the first service, or the network device may be the head node of the second service.
  • first working path and the second working path may be the same working path, that is, multiple services are carried on the working path.
  • first restoration path corresponding to the first working path and the second restoration path corresponding to the second working path may also be the same restoration path, and the restoration path may restore multiple services carried on a certain working path.
  • the service protection method in FIG. 6 includes at least all or part of the following steps:
  • S610 The network device determines the shared protection path.
  • the network device determines a first protection path of the first working path and a second protection path of the second working path, where the first protection path is used to protect the first working path when a fault occurs on the first working path.
  • a working path performs service protection switching
  • the second protection path is configured to perform service protection switching on the second working path when the second working path fails.
  • the first protection path and the prime second protection path have the same protection path segment.
  • the network device can obtain the services and topology in the network, determine the protection path corresponding to the working path carrying the service based on the fault link and the shared protection policy, and pass multiple services with the same protection path segment through the service group ID binding association, the service group ID identifies multiple services with the same protection path segment, or multiple service paths with the same protection path segment.
  • the ID involved in this embodiment may be understood as identification information, which is used to identify a service or a path used to carry the service, and the identification information may also be referred to as index information or indication information. For convenience of description, it is hereinafter referred to as is ID.
  • the fault link sharing protection policy refers to the network device, on the premise that a certain link in the network is assumed to be faulty, when determining the protection paths corresponding to the working paths affected by the faulty link, as many as possible. Protection paths have the same protection path segments.
  • the same protection path segment involved in the embodiments of this application is the common partial path segment or the overlapping partial path segment of the first protection path and the second protection path, and can also be understood as overlapping protection path segments, shared protection path segments, etc. In this paper, it is referred to as the protection path segment for short.
  • the first protection path and the second protection path have the same protection path segment, and the same protection path segment may be a partial path segment of the first protection path or the second protection path, or may be the first protection path or the second protection path All path segments of the protected path.
  • the specific reasons for the failure of the working path are not limited in the embodiments of the present application.
  • the above-mentioned failure of the first working path may be that one or more links in the first working path fail, or a node on the first working path fails, or an interface of a node on the first working path fails, etc.;
  • the failure of the second working path includes failure of one or more links in the second working path, or failure of a node on the second working path, or failure of an interface of a node on the second working path. Wait.
  • the paths in the embodiments of the present application are directional.
  • the first working path and the first protection path are both unidirectional paths with the first head node as the first service sending node; the failure of the first working path refers to the failure of the single path.
  • the second working path and the second protection path are unidirectional paths with the second head node as the second service sending node; the failure of the second working path refers to the failure of the unidirectional path.
  • S620 The network device delivers a configuration message to the head node.
  • this step includes the network device delivering the first configuration message to the first head node S621.
  • the first configuration message includes routing information of the first protection path, and may also include whether the protection path segments of the first protection path are shared, the degree of sharing, and the service group ID.
  • this step further includes the network device delivering the second configuration message to the second head node S622.
  • the second configuration message includes routing information of the second protection path, and whether the protection path segment is shared, the degree of sharing, and the service group ID.
  • the degree of sharing indicates how many services the protection path segment is shared by, and the service group ID indicates a plurality of services sharing the protection path segment.
  • the embodiment of the present application is described by taking the protection path segment shared by the first service and the second service, and the sharing degree is 2 as an example.
  • the first configuration message may be a Path Computation Element Communication Protocol (PCEP) message, or the first configuration message may be a protocol message having the same function as PCEP.
  • PCEP Path Computation Element Communication Protocol
  • the first configuration message may be implemented through a newly added field (for example, an extended PCEP field) in the original signaling between the network device and the first head node.
  • the second configuration message may be a PCEP message, or the second configuration message may be a protocol message having the same function as PCEP.
  • the second configuration message may be implemented through a newly added field (for example, an extended PCEP field) in the original signaling between the network device and the second head node.
  • the network device may further notify the above-mentioned first configuration message to the third node, and notify the third node of the second configuration message.
  • the third node is the first node of the protection path segment. Specifically, based on the identity of the above network devices in the network, it is divided into the following methods:
  • Method 1 The network device is PCE
  • the network device is a PCE controller set in the network, and the PCE controller is a device deployed independently of the first node of the working path and the first and last nodes of the protection path segment.
  • the above-mentioned first configuration message includes routing information of the first protection path, and may also include whether the protection path segment of the first protection path is shared, the degree of sharing, and the service group ID.
  • the above-mentioned second configuration message includes routing information of the second protection path, and whether the protection path segment is shared, the degree of sharing, and the service group ID.
  • the above-mentioned first configuration message may be a message or a collective term for multiple messages, that is, the routing information, sharing group information and service group ID of the above-mentioned first protection path may be sent to the first head node through one message, It can also be sent to the first head node through multiple messages; similarly, the above-mentioned second configuration message can be a single message or a collective name of multiple messages, that is, the routing information of the above-mentioned second protection path, shared group information and The service group ID may be sent to the second head node through one message, or may be sent to the second head node through multiple messages.
  • the first configuration message and the second configuration message may be referred to as extended TLV information.
  • TLV is a variable format, meaning: type (Type), length (Length), value (Value), where the Type field is information about the label and encoding format; the Length field is the length that defines the value; the Value field Indicates the actual value.
  • Type is information about the label and encoding format
  • Length field is the length that defines the value
  • the Value field Indicates the actual value.
  • the lengths of Type and Length are generally fixed, for example, 2 or 4 bytes.
  • the packet formats of the first configuration message and the second configuration message in this application may be as follows:
  • the new shared group information can include: whether to share, degree of sharing, and shared business group ID"
  • Table 1 is a message format of the shared group information provided by the embodiment of the present application.
  • Table 2 The meanings and values of the fields contained in Table 1 are shown in Table 2 below.
  • Type TLV type new Hop sharing type
  • Length TLV length in bytes A 16-bit value Share Flag Whether the Hop resource is shared
  • Share Number The Hop resource sharing degree
  • Share Service ID Shared business group ID A 32-bit value
  • Manner 2 The network device is the head node of the first working path.
  • the above-mentioned network device is the head node of the first working path, then the head node (first head node) of the first working path can learn the routing information and sharing group information of the first protection path by itself.
  • the second network device does not need to send the first configuration message to the first head node, that is, it does not need to perform S621.
  • Manner 3 The network device is the first node of the second working path.
  • the above-mentioned network device is the head node of the second working path, then the head node (the second head node) of the second working path can learn the routing information and sharing group information of the second protection path by itself.
  • the secondary network device does not need to send the first configuration message to the second head node, that is, it does not need to perform S622.
  • Mode 4 The network device is the first node of the protection path segment.
  • the head node on the protection path segment can learn the routing information of the protection path segment.
  • the difference from the first mode is that in mode 4, the network device does not need to send a configuration message to the head node of the protection path segment, that is, the network device does not need to send the third configuration message and the fourth configuration message to the head node of the protection path segment.
  • the signaling interaction process between the other nodes (the first head node, the second head node, and the end node) and the network device is the same as that in the first mode, and will not be repeated here.
  • S630 The service head node establishes a service protection group according to the configuration message.
  • This step is described in detail by taking the above manner 1 as an example.
  • This step specifically includes: S631, the first head node establishes the service protection group of the first protection path according to the received first configuration message, and S632, the second head node establishes the service protection of the second protection path according to the received second configuration message.
  • the first configuration message includes routing information of the first protection path
  • the first head node establishes a service protection group according to the routing information of the first protection path, which is used when the first working path transmitting the first service fails , the first service is switched to the first protection path for transmission.
  • the second head node establishes a second protection group at its own node according to the second configuration message, for switching the second service to the second protection path for transmission when the second working path for transmitting the second service fails.
  • S640 The service head node sends a configuration message to other downstream nodes.
  • This step specifically includes:
  • the third node sends a sixth configuration message to the fifth node.
  • the third node is the first node of the protection path segment
  • the fourth node is the end node of the first working path
  • the fifth node is the end node of the second working path.
  • the third configuration message includes routing information of the first protection path, whether the protection path segment is shared, the degree of sharing, and the service group ID.
  • the fourth configuration message includes routing information of the second protection path, whether the protection path segments are shared, the degree of sharing, and the service group ID.
  • the fifth configuration message includes routing information of the first protection path.
  • the sixth configuration message includes routing information of the second protection path.
  • the network device may deliver the first configuration message, the second configuration message, the third configuration message, the fourth configuration message, the fifth configuration message, and the sixth configuration message to the corresponding nodes respectively.
  • each node in this embodiment is only used for example, and does not constitute a limitation to the technical solution. In fact, many nodes may pass through the working path and protection path of the service, and this embodiment is only a simplest node architecture.
  • the third node establishes the virtual connection of the first protection path according to the third configuration message
  • the third node establishes the virtual connection of the second protection path according to the fourth configuration message.
  • the fourth node establishes the virtual connection of the first protection path according to the fifth configuration message
  • the fifth node establishes the virtual connection of the second protection path according to the sixth configuration message.
  • the virtual connection means that the first protection path only occupies small bandwidth resources (eg, 2M) of each node, and is used to establish a cross-connection of the first protection path corresponding to the first service, without transmitting the first service on the protection path.
  • the bandwidth occupied by the establishment of the protection path is referred to as the protection bandwidth.
  • a third protection group needs to be established locally to protect the first working path for transmitting the first service when the first working path fails. The service is switched to the first protection path for transmission.
  • a fourth protection group needs to be established locally to switch the second service to the second protection path when the second working path for transmitting the second service fails. transfer up.
  • the cross-connection of the virtual connection described in this embodiment may include the ingress port, channel, bandwidth, and egress port of the first service on the current node, and the ingress port, channel, bandwidth, and egress port of the second service on the current node. port.
  • the first service passes through ingress port number 1-channel 1-egress port 1 at the current node, occupying 2M bandwidth; for another example, the second service passes through ingress port 2-channel 2-egress port 2 at the current node, occupying 2M bandwidth.
  • the configuration message sent by the service head node to other downstream nodes may be an RSVP-TE signaling message, or the configuration message may be a protocol message with the same function as RSVP-TE.
  • the third configuration message may be implemented through a newly added field (for example, an extended RSVP field) in the original signaling between the first header node and the third node.
  • the packet format of the configuration message in this application can be as follows:
  • this step further includes that each downstream node sends a response message to the head node to indicate that this node has established the service protection path virtual connection.
  • the third node sends a first response message to the first head node, which is used to indicate that the third node has established a protection path virtual connection for the first service, and at the same time, the third node sends a second response message to the second head node, using to indicate that the third node has established a protection path virtual connection for the second service.
  • the fourth node sends a third response message to the first head node, which is used to indicate that the fourth node has established a protection path virtual connection of the first service.
  • the fifth node sends a fourth response message to the second head node, which is used to indicate that the fifth node has established the protection path virtual connection of the second service.
  • the first head node reports the first protection path virtual connection establishment success message to the NCE, and the NCE delivers the first service to the first head node.
  • the second head node reports the second protection path virtual connection establishment success message to the NCE, and the NCE delivers the second service to the second head node.
  • S650 The first head node receives the path failure message of the fourth node.
  • the fourth node when the working path between the first head node and the fourth node is faulty (for example, a fiber is broken), the fourth node sends a path failure message to the first head node, and the path failure message is used to indicate the first head node.
  • the working path to the fourth node has failed.
  • the path failure message is carried in the overhead of the data frame.
  • the path failure message includes the ID of the affected service, and also includes automatic protection switching (automatic protection switching, APS) information, and the APS message is specifically used to instruct the first head node to switch the first service to the first protection switch. on the path.
  • automatic protection switching automatic protection switching
  • the first head node receives the path fault information of the fourth node is only an example, and does not actually constitute a limitation on the technical solution.
  • the other node may also receive the path failure information from the fourth node.
  • the node may be the head node of the protection path segment.
  • the first head node can also sense the failure of the working path by itself, and does not need to receive the path failure information sent by the fourth node.
  • S660 The first head node sends a bandwidth activation message to the third node.
  • the first head node inserts a bandwidth activation message into the first data frame, where the bandwidth activation message is used to instruct the downstream node to activate and configure the target bandwidth of the first service.
  • the bandwidth activation message includes at least the target bandwidth of the first service, and the target bandwidth is specifically used to instruct the downstream node to adjust the bandwidth of the first service from the protection bandwidth to the target bandwidth.
  • the protection bandwidth is the bandwidth occupied by the virtual connection for establishing the first protection path for the first service.
  • the first data frame also includes an APS message, where the APS message is used to instruct the fourth node to switch the first service to the first protection path.
  • the first data frame includes a payload area, and the bandwidth activation message and the APS message are carried in the payload area.
  • the payload area further includes at least one item of the following information: protocol message length, message type, version number, and service ID of the first protection path, where the message type is used to indicate that the first data frame carries a bandwidth activation message and APS messages.
  • the first head node switches the first service to the first protection path.
  • the bandwidth activation message is sent first and then the switching of the local protection group is performed, on the one hand, it can ensure that the bandwidth activation signaling can be sent out smoothly. Because if the protection group is switched first, the bandwidth of the service data flow is generally much larger than the protection bandwidth because the downstream node has not yet completed the bandwidth adjustment, which makes it difficult to send the bandwidth activation signaling. On the other hand, it can ensure that the bandwidth activation signaling is quickly transmitted to the peer node for protection switching, thereby realizing rapid service recovery.
  • the first head node Before executing this step, the first head node also needs to obtain the affected service ID in the path fault message, that is, the first service ID, and then find the virtual connection service ID corresponding to sharing protection according to the first service ID.
  • the virtual connection service ID can be used by the downstream node to determine whether there are other services sharing bandwidth resources with the first service in the protection path segment.
  • the downstream node completes the target bandwidth configuration and path switching of the first service according to the bandwidth activation message and the APS message.
  • the first service is switched from the first working path to the first protection path.
  • the specific configuration, that is, the switching process, is not repeated here.
  • the third node simultaneously forwards an APS message to the fourth node, where the APS message is used to instruct the fourth node to switch the service to the first protection path.
  • the fourth node switches the service to the first protection path according to the APS message.
  • S680 The first head node sends service path switching success information to the network device.
  • the first head node When the first head node detects that there is no alarm in the end-to-end service state, it notifies the network device that the first service has been successfully switched from the first working path to the first protection path.
  • FIG. 7 is a flowchart of a service protection method provided by an embodiment of the present application.
  • the execution body of the method may be the first head node in FIG. 6 , that is, the service head node, or may be the head node of the shared protection section.
  • S710 The first node determines that the first working path is faulty.
  • This embodiment is described by taking the execution subject as the first header node in FIG. 6 as an example.
  • the first head node receives a path failure message from the fourth node, where the path failure message is used to indicate that the first working path between the first head node and the fourth node is faulty, so that the first head node determines that the first working path is faulty.
  • a working path has failed.
  • the failure of the first working path may include: a node on the first working path fails, or a link between adjacent nodes on the first working path fails, for example, a fiber is broken. This embodiment does not limit this.
  • the first head node determines that the first working path is faulty according to the path fault message.
  • the path failure message may be an RSVP Notify message, which is a kind of path event notification message, and the format of the RSVP Notify message may refer to the existing Notify message, carrying the affected service ID and failure point information.
  • the fault point information may include a fault of a link between a node and an adjacent node, or a fault of a node port, or other types of faults, which are not limited in this embodiment.
  • the path failure message carries the first service ID and the failure point information of the failure of the link between the first head node and the fourth node.
  • the path failure message is inserted into the first OSU frame by the fourth node and transmitted to the first head node.
  • path failure information is inserted into the operation, administration and maintenance (OAM) overhead of the OSU frame.
  • OAM operation, administration and maintenance
  • the first head node receiving the path failure message includes: the first head node receives the data frame from the fourth node, demaps the data frame to obtain the OSU frame, and then obtains the path failure message from the overhead of the OSU frame. .
  • S720 The first node generates a bandwidth activation message based on the failure of the first working path.
  • the bandwidth activation message is used to instruct each node of the first protection path to adjust the service bandwidth from the protection bandwidth to the target bandwidth.
  • the first node generates an APS message based on the failure of the first working path, where the APS message is used to instruct the second node to switch the service to the first protection path.
  • the first protection path Since the first protection path is a virtual connection, before the service is switched, the first protection path only occupies a small bandwidth resource, such as 2M, which is called protection bandwidth in this application, indicating that the first protection path is before the service is transmitted. pre-occupied bandwidth.
  • the bandwidth activation message is specifically used to instruct each node of the first protection path to adjust the first service from the protection bandwidth to the target bandwidth, for example, 100M, so as to transmit the service normally.
  • the first head node Take the first head node shown in Figure 6 as the execution body. For example, the first head node first determines the target bandwidth of the service according to the affected service ID carried in the path fault message, and converts the target bandwidth into a field of the bandwidth activation message.
  • the first head node may also determine the virtual connection service ID of the service according to the affected service ID carried in the path fault message, as a sending option. Wherein, the first head node pre-stores the corresponding relationship between the affected service ID and the virtual connection service ID in the node, and obtains it when receiving a path failure message sent by other nodes.
  • the first node inserts the bandwidth activation message and the APS message into the first data frame.
  • the first data frame may be a flexible optical service unit OSU frame.
  • the length of the OSU frame can be 192 bytes, or one of 240 bytes, 128 bytes, and 64 bytes. It can be other number of bytes, which is not limited in this application, and only takes the length of the OSU frame as 192 bytes as an example for description.
  • the OSU frame includes an overhead area and a payload area, and the payload area field can be defined by yourself.
  • the bandwidth activation message is inserted into the payload area, occupying four bytes and 32 bits in total.
  • the second OSU frame also carries an automatic protection switching APS message
  • the APS message is inserted into the payload area of the payload area, occupies two bytes, and has 16 bits in total.
  • the APS message is used to instruct the end node of the first protection path to switch services to the first protection path.
  • the protection switching information is transparently transmitted at the intermediate node (eg, the third node) of the first protection path, and is only acquired at the end node. The intermediate node only needs to obtain the bandwidth activation information.
  • the second OSU frame also carries the length of the protocol message, the length of the protocol message is inserted into the payload area, occupies one byte, and has 8 bits in total.
  • the second OSU frame further carries a message type, indicating that the OSU frame carries a bandwidth activation message and/or an APS message.
  • the message type is inserted into the payload area, occupies one byte, and has 8 bits in total.
  • the second OSU frame also carries a service ID, which is a virtual connection service ID in this embodiment.
  • a service ID which is a virtual connection service ID in this embodiment.
  • the virtual connection service ID is used by the downstream node to determine whether other services share the bandwidth with the first service.
  • the virtual connection service ID is inserted into the payload area, occupying four bytes and a total of 32 bits.
  • Table 5 is a message format of a payload area provided by this embodiment, wherein the meanings of fields in the message format are as shown in Table 6, and Table 7 is a frame format of an OSU frame.
  • S730 The first node sends the bandwidth activation message on the first protection path.
  • the first node sends the first data frame carrying the bandwidth activation message on the first protection path.
  • the first data frame also carries an APS message.
  • the following description will be given by taking the first data frame as an OSU frame as an example.
  • the first node since the cross-connection of the first protection path has been established, the first node can directly send the OSU frame on the first protection path. Moreover, the first protection path is a backup path corresponding to the first service, so the node of the first protection path can automatically identify the target bandwidth in the OSU frame for bandwidth activation for the first service.
  • This step specifically further includes: the first node maps the OSU frame to a high-order OTN frame, such as an ODUk frame, and then sends the OTN frame on the first protection path.
  • a high-order OTN frame such as an ODUk frame
  • the first node switches the first service to the first protection path.
  • the bandwidth activation message is sent first and then the switching of the local protection group is performed, on the one hand, it can ensure that the bandwidth activation signaling can be sent out smoothly. Because if the protection group is switched first, the bandwidth of the service data flow is generally much larger than the protection bandwidth because the downstream node has not yet completed the bandwidth adjustment, which makes it difficult to send the bandwidth activation signaling. On the other hand, it can ensure that the bandwidth activation signaling is quickly transmitted to the peer node for protection switching, thereby realizing rapid service recovery.
  • the end-to-end establishment of the virtual connection sharing the protection path is completed in advance before the service fails.
  • End-to-end forwarding combined with bandwidth activation signaling through the protection switching mechanism of the first and last nodes, enables the protection path of the service to take effect quickly, so that the service performance can be quickly restored.
  • multiple services establish a protection path virtual connection in advance and share the bandwidth of the protection path segment.
  • bandwidth resources can be saved, and on the other hand, the switching speed can be increased and service performance can be quickly restored.
  • FIG. 8 is a flowchart of another service protection method provided by an embodiment of the present application, and the method may be applied to the third node in FIG. 6 .
  • the description is given by taking the execution subject as the third node in FIG. 6 as an example.
  • the third node receives an OSU frame from the first node, where the OSU frame carries a bandwidth activation message, wherein the bandwidth activation message is used to instruct the third node to activate the target bandwidth of the configured service.
  • the bandwidth activation message may be the target bandwidth of the service.
  • the OSU frame further carries an APS message, where the APS message is used to instruct the end node of the protection path segment (eg, the second node in FIG. 6 ) to switch the service to the protection path.
  • the APS message is used to instruct the end node of the protection path segment (eg, the second node in FIG. 6 ) to switch the service to the protection path.
  • the third node receives an OTN frame (eg, an ODUk frame) from the first head node, and demaps the OTN frame to obtain the OSU frame.
  • an OTN frame eg, an ODUk frame
  • S820 The third node acquires the bandwidth activation message from the first data frame.
  • the OSU frame includes an overhead area and a payload area, and the bandwidth activation message is located in the payload area of the payload area, occupying four bytes and 32 bits in total.
  • the OSU frame may also carry an APS message, where the APS message is used to instruct the end node of the working path to switch the service to the protection path.
  • the APS message is also located in the payload area, occupying two bytes and 16 bits in total.
  • the OSU frame further includes at least one item of the following information: a protocol message length, a message type, a version number, and a protection path service ID, where the message type is used to indicate a message carried by the OSU frame.
  • the protection path service ID is used by the third node to determine whether other services share resources with the first service.
  • S830 The third node adjusts the service from the protection bandwidth to the target bandwidth according to the bandwidth activation message.
  • the bandwidth activation message includes the target bandwidth of the first service
  • the third node adjusts the bandwidth of the first service from a protection bandwidth to a target bandwidth according to the bandwidth activation message, and the protection bandwidth is represented as establishing the first service for the first service.
  • the third node When the third node judges that the current remaining bandwidth is greater than the target bandwidth of the first service, it can directly activate the protection bandwidth of the ingress/egress channel corresponding to the first service of the node to the target bandwidth.
  • the third node determines that the current remaining bandwidth is less than the target bandwidth of the first service, obtains the service group ID that shares the bandwidth of the protection path segment according to the virtual connection service ID of the first service, and further obtains N associations with the shared bandwidth of the first service Business ID.
  • the third node adjusts the protection bandwidth of the associated service to zero, and then adjusts the bandwidth of the first service by the protection bandwidth is the target bandwidth.
  • the target bandwidth of the first service is 100M
  • the remaining bandwidth of the third node is 92M.
  • the third node calculates that the sum of the remaining bandwidth and the protection bandwidth of N+1 services, 92M+2M*(3+1), is equal to the target bandwidth of the first service, so the protection bandwidth of the associated service is adjusted to 0, and then Adjust the bandwidth of the first service to the target bandwidth.
  • the third node may select a part of the associated service and adjust its protection bandwidth to 0, or set the protection bandwidth to 0. The bandwidth of all associated services is adjusted to 0, and then the bandwidth of the first service is adjusted to the target bandwidth.
  • the embodiment of the present application does not limit the specific processing manner.
  • the third node when the sum of the remaining bandwidth and the protection bandwidth of N+1 services is less than the target bandwidth of the first service, the third node does not perform processing. Or, the third node sends activation failure information to the first head node.
  • S840 The third node forwards the bandwidth activation message to the downstream node along the first protection path.
  • the third node forwards the OSU frame carrying the bandwidth activation message to the downstream node along the first protection path.
  • the OSU frame also includes an APS message.
  • FIG. 9 is a flowchart of another service protection method provided by an embodiment of the present application, and the method can be applied to the fourth node shown in FIG. 5 .
  • the following description takes the execution subject as the fourth node as an example.
  • S910 The second node detects that the first working path between the first node and the second node is faulty.
  • the second node can receive service data from the first node.
  • the working path between the first node and the second node fails, the second node cannot receive service data from the first node within a certain period of time. If the service data is received, or damaged data (eg, packet loss, bit error) is received from the first node, it is determined that the first working path is faulty.
  • the failure specifically includes failure of the link between the first node and the second node, such as fiber breakage, may also include failure of the sending port of the first node, or failure of the receiving port of the second node, and may also include other Fault type.
  • S920 The second node generates a path failure message.
  • the path failure message is used to indicate that the first working path between the first node and the second node is faulty.
  • the path failure message in this embodiment may be an RSVP Notify message, and the RSVP Notify message is a path event notification message, and its specific format may refer to the existing Notify message.
  • the path fault message may carry the affected service ID, fault point information, and the like.
  • S930 The second node inserts the path failure message into the first data frame, and sends it to the first node.
  • the first node can also sense that the working path of the service is faulty.
  • S940 The second node receives the second data frame forwarded by the third node on the first protection path.
  • the second OSU frame includes a bandwidth activation message and an APS message, where the bandwidth activation message is used to instruct the second node to adjust the bandwidth of the first service from a protection bandwidth to a target bandwidth, and the APS message is used to instruct the first service
  • the two nodes switch the service to the first protection path.
  • the second data frame may also only carry the bandwidth activation message, and the second node switches the service to the first protection path according to the bandwidth activation message.
  • the second data frame is a second OSU frame
  • the bandwidth activation message and the APS message are carried in a payload area of the second OSU frame.
  • the second node adjusts the bandwidth of the first service from the protection bandwidth to the target bandwidth according to the bandwidth activation message, and switches the first service to the first protection path according to the APS message.
  • the second node obtains the bandwidth activation message and the APS message from the payload area of the second OSU frame.
  • the payload area then adjusts the bandwidth of the first service from the protection bandwidth to the target bandwidth according to the bandwidth activation message, and switches the first service to the first protection path according to the APS message.
  • FIG. 10 is a scene diagram to which the service protection method provided by the embodiment of the present application can be applied.
  • the application network in this scenario is a GMPLS/ASON network with ASON automation functions.
  • nodes A, B, C, D, E, and F all enable the ASON function, and each node is equipped with RSVP and bandwidth activation devices, and the first and last nodes of the service are also configured with protection group switching devices.
  • Network information such as nodes and links on the entire network is automatically obtained through OSPF of ASON protocol or Open Shortest Path First-Traffic Engineering (OSPF-TE) based on traffic engineering, and end-to-end service path provisioning and restoration are performed through ASON protocol RSVP-TE is automatically established.
  • OSPF-TE Open Shortest Path First-Traffic Engineering
  • the PCE automatically obtains the node, link, and service information of the entire network according to OSPF or the Path Computation Element Communication Protocol (PCEP).
  • PCEP Path Computation Element Communication Protocol
  • the PCE mainly deals with end-to-end path calculation of network services and can be deployed in server network management or similar devices. If there is no PCE in the network, the end-to-end paths of network services can be calculated by each node in a distributed manner.
  • FIG. 10 is described by taking the sharing and protection of two services as an example.
  • the service protection method provided by the embodiment of the present application includes the following steps:
  • Service 1 has a first working path A-B
  • service 2 has a second working path C-D.
  • the PCE obtains the network-wide services and network topology, and calculates the protection paths for services 1 and 2 based on different separation paths and shared resource policies.
  • the PCE determines the first protection path A-E-F-B of service 1 and the second protection path C-E-F-D of service 2.
  • E-F is a shared protection path segment, and the two services share the bandwidth of the protection path segment.
  • the PCE delivers each service protection path to the service head node.
  • the PCE delivers the first protection path AEFB to node A, and delivers the second protection path CEFD to node C.
  • the delivery content may also include whether the first protection path and the second protection path share resources, Share degree and shared business group ID.
  • the degree of sharing represents the number of services in the shared protection path segment. For example, in this embodiment, service 1 (protection path A-E-F-B) and service 2 (protection path C-E-F-D) share resources in the E-F segment, and the sharing degree is 2.
  • the PCE may deliver the service protection path to the service head nodes A and C through the PCEP protocol signaling message, or may also use the protocol message having the same function as the PCEP.
  • it can be implemented by a newly added field (eg, extended TLV information) in the original signaling between the PCE and node A.
  • TLV is a variable format, meaning: type (Type), length (Length), value (Value), where the Type field is information about the label and encoding format; the Length field is the length that defines the value; the Value field Indicates the actual value.
  • the lengths of Type and Length are generally fixed, for example, 2 or 4 bytes.
  • the first node After receiving the service protection path, the first node initiates the establishment of a bandwidth sharing protection path virtual connection. As shown in Figure 10, node A initiates signaling to establish a virtual connection of protection path A-E-F-B; node C initiates signaling to establish a virtual connection of protection path C-E-F-D.
  • the virtual connection establishment signaling sent by the A node and the C node may include whether the E-F segment is a virtual connection, whether it is shared, the degree of sharing, and the shared service group ID.
  • the virtual connection establishment signaling sent by the head node to the downstream may be an RSVP-TE signaling message, or may also be a protocol message having the same function as RSVP-TE.
  • the signaling message may be implemented through a newly added field (eg, an extended RSVP field) in the original signaling between the first head node and the third node.
  • an extended RSVP field For the format of the extended RSVP field, reference may be made to the foregoing embodiments, which will not be repeated here.
  • the head nodes A and C directly and locally establish a protection group for switching services to the protection path through the protection group when the working path fails.
  • Service data is sent and received only. Since the protection path is a virtual connection, it is not used to transmit service data.
  • the acquired signaling is to establish a shared protection virtual connection, and the resources of the E-F segment are shared, then the virtual connection crossover with the bandwidth of the protection bandwidth (eg 2M) is established locally.
  • the crossover of service 1 is ingress port 1—channel 1—bandwidth 2M, and egress port 1—channel1—bandwidth 2M;
  • the crossover of service 2 is ingress port 2—channel2—bandwidth 2M, and egress port 2—channel2—bandwidth 2M.
  • the protection channel resource sharing relationship of service 1 and service 2 is stored in the local bandwidth activation unit.
  • the target bandwidths of service 1 and service 2 are both 100M.
  • the same head nodes A and C are processed, and a protection group is established locally to switch the service to the protection path through the protection group when the working path fails.
  • Service data is sent and received only. Since the protection path is a virtual connection, it is not used to transmit service data.
  • the head node A detects the fault of the service working path through the OAM overhead of the OSU frame.
  • the OSU frame can carry bandwidth activation information and add APS protocol double-ended switching bytes. Compared with the separate APS overhead inversion alarm to the opposite node, the double-ended switching efficiency is faster.
  • the first node finds the affected service ID through the alarm, and then finds the corresponding restored shared protection virtual connection service ID, and then carries out the end-to-end bandwidth activation through the OSU frame carrying the channel-associated signaling.
  • the first node is A
  • the last node is B
  • the service path is A-E-F-B.
  • the associated bandwidth activation signaling only needs to carry the target bandwidth and APS protocol double-end switching information, and choose to carry the virtual connection service ID.
  • the head node A it is necessary to extend the channel-associated data plane cells of the OSU frame.
  • the first method is to extend and reserve a new PT number for the channel-associated bandwidth activation control signaling
  • the second method is to extend the channel-associated overhead message sub-type (the upper 4 bits of 1000) in the existing OAM data plane (PT: 111) to identify the OAM.
  • the lower 8 bits of 00000001 identify the bandwidth configuration to activate the specific control type).
  • the extension field in the payload area of the payload area carries the specific control type, and also needs to carry the bandwidth activation message and the APS message, and can optionally carry information such as the length of the protocol message, the version number, and the service virtual connection ID.
  • the node After extracting the message type of the OSU frame, it is fixedly sent to the bandwidth activation unit for processing.
  • the node judges that the current remaining bandwidth is greater than the target bandwidth of the first service, it can directly activate the protection bandwidth of the ingress/egress channel corresponding to service 1 of the node from 2M to the target bandwidth of 100M.
  • the node E judges that the current remaining bandwidth is less than the target bandwidth of service 1, it obtains the ID of the service group sharing the bandwidth of the protection path segment according to the service ID of the virtual connection of service 1, and further obtains the ID of the service group that shares the bandwidth with service 1. N associated business IDs. At this time, if the sum of the remaining bandwidth and the protection bandwidth of N+1 services is greater than the target bandwidth of service 1, the intermediate node E adjusts the protection bandwidth of the associated service to zero, and then adjusts the bandwidth of service 1 from the protection bandwidth to the target bandwidth bandwidth.
  • the target bandwidth of service 1 is 100M
  • the remaining bandwidth of node E is 92M.
  • Node E calculates that the sum of the remaining bandwidth and the protection bandwidth of N+1 services, 92M+2M*(3+1), is equal to the target bandwidth of service 1, so the protection bandwidth of the associated service is adjusted to 0, and then the service The bandwidth of 1 is adjusted to the target bandwidth of 100M.
  • node E when the sum of the remaining bandwidth and the protection bandwidth of N+1 services is greater than the target bandwidth of service 1, node E can select a part of the associated services and adjust its protection bandwidth to 0, or it can associate all associated services. The bandwidth of the service is adjusted to 0, and then the bandwidth of service 1 is adjusted to the target bandwidth.
  • the embodiment of the present application does not limit the specific processing manner.
  • node E when the sum of the remaining bandwidth and the protection bandwidth of N+1 services is less than the target bandwidth of service 1, node E does not perform processing. Or, node E sends activation failure information to head node A.
  • the head node A After sending the control signaling including the bandwidth activation message and the APS message, the head node A performs local protection group fast switching to switch the service from the working path to the protection path.
  • the purpose of sending the control signaling first and then switching the local protection group is: on the one hand, to ensure that the control signaling can be sent smoothly, because if the protection group is switched first, the bandwidth of the service flow is generally much larger than the protection bandwidth, and the control signaling cannot be sent. On the other hand, it can ensure that the control signaling is quickly transmitted to the peer end node for protection switching, which makes the end-to-end service recovery faster.
  • the end node B After receiving the OSU frame from the head node A, it obtains the message type of the OSU frame, and then performs protection group switching according to the APS message carried in the OSU frame, and switches the service to the protection path.
  • the first node detects that there is no alarm in the end-to-end service status, and it notifies the software RSVP that the protection path has been successfully switched or that the PCE service is successfully switched to the protection path. Switched to protection path (data plane and control plane data are consistent).
  • the bandwidth activation process of the service on the protection path shown in Figure 10 mainly includes the following three key points: 1) The virtual connection of the shared protection path is established for end-to-end configuration; 2) After the OAM overhead fault is quickly detected, the alarm information is reversely inserted into the OSU In the overhead, the first/last node is then transmitted, and a bidirectional protection switching mechanism is established; 3) OSU frames carry bandwidth activation and APS control signaling for end-to-end forwarding, and the transmission speed is fast. Intermediate nodes quickly activate bandwidth and enable end-to-end services. Through the protection switching mechanism of the first and last nodes combined with the end-to-end activation of shared bandwidth, the shared protection path of the service can take effect quickly and service performance can be restored.
  • FIG. 11 is an application scenario diagram of another service protection method provided by an embodiment of the present application.
  • the application network in this scenario is a GMPLS/ASON network with ASON automation functions.
  • nodes A, B, C, D, E, F, G, H, I, and J all enable the ASON function, and each node is equipped with RSVP and bandwidth activation devices, and the first and last nodes of the service are also configured with Protection group switching device.
  • Network information such as nodes and links on the entire network is automatically obtained through OSPF of ASON protocol or Open Shortest Path First-Traffic Engineering (OSPF-TE) based on traffic engineering, and end-to-end service path provisioning and restoration are performed through ASON protocol RSVP-TE is automatically established.
  • the PCE automatically obtains the node, link, and service information of the entire network according to OSPF or the Path Computation Element Communication Protocol (PCEP).
  • PCEP Path Computation Element Communication Protocol
  • the PCE mainly deals with end-to-end path calculation of network services and can be deployed in server network management or similar devices. If there is no PCE in the network, the end-to-end paths of network services can be calculated by each node in a distributed manner.
  • FIG. 11 is described by taking the sharing and protection of two services as an example.
  • the service protection method provided by the embodiment of the present application includes the following steps:
  • Service 1 has a first working path A-B-C-I
  • service 2 has a second working path C-E-F-J.
  • the PCE obtains the network-wide services and network topology, and calculates the protection paths for services 1 and 2 based on different separation paths and shared resource policies.
  • the PCE determines the first protection path A-B-G-H-C-I of service 1, the second protection path D-E-G-H-F-J of service 2, G-H is a shared protection path segment, and the two services share the bandwidth of the protection path segment.
  • the PCE delivers each service protection path to the service head node.
  • the PCE delivers the first protection path ABGHCI to node A, and delivers the second protection DEGHFJ to node D.
  • the delivery content may also include whether the first protection path and the second protection path share resources or not. degree and the shared business group ID.
  • the degree of sharing represents the number of services in the shared protection path segment. For example, in this embodiment, service 1 (protection path A-B-G-H-C-I) and service 2 (protection path D-E-G-H-F-J) share resources in the G-H segment, and the sharing degree is 2.
  • the PCE may deliver the service protection path to the service head nodes A and C through the PCEP protocol signaling message, or may also use the protocol message with the same function as the PCEP.
  • protocol signaling message or may also use the protocol message with the same function as the PCEP.
  • the difference between this embodiment and the embodiment shown in FIG. 10 is that after the working path of the service in FIG. 10 fails, the service is restored end-to-end, while in this embodiment, it is segment restoration, that is, protection switching.
  • the node is an intermediate node rather than the first node of the business. Therefore, the OSU frame channel-associated signaling carrying the bandwidth activation message is generated and sent by the head node of the section, and the bandwidth is activated along the protection path section. Therefore, in this embodiment, the head node can automatically process and generate segment protection paths according to the protection paths issued by the PCE. For example, node A generates segment protection paths B-G-H-C, and node D generates segment protection paths E-G-H-F.
  • the first node After receiving the service protection path, the first node initiates the establishment of a bandwidth sharing protection path virtual connection. As shown in Figure 11, node A initiates signaling to establish a virtual connection of protection path A-B-G-H-C-I/; node D initiates signaling to establish virtual connection of protection path D-E-G-H-F-J.
  • the virtual connection establishment signaling sent by the node A and the node D may include whether the G-H segment is a virtual connection, whether it is shared, the degree of sharing, and the shared service group ID.
  • the virtual connection establishment signaling sent by the head node to the downstream may be an RSVP-TE signaling message, or may also be a protocol message having the same function as RSVP-TE.
  • the signaling message may be implemented through a newly added field (eg, an extended RSVP field) in the original signaling between the first head node and the third node.
  • an extended RSVP field For the format of the extended RSVP field, reference may be made to the foregoing embodiments, which will not be repeated here.
  • a protection group is directly established locally to switch services to the protection path through the protection group when the working path fails. Service data is sent and received only. Since the protection path is a virtual connection, it is not used to transmit service data.
  • the local establishment bandwidth is the protection bandwidth (eg 2M) virtual connection crossover.
  • the crossover of service 1 is ingress port 1—channel 1—bandwidth 2M, and egress port 1—channel1—bandwidth 2M;
  • the crossover of service 2 is ingress port 2—channel2—bandwidth 2M, and egress port 2—channel2—bandwidth 2M.
  • the protection channel resource sharing relationship of service 1 and service 2 is stored in the local bandwidth activation unit.
  • the target bandwidths of service 1 and service 2 are both 100M.
  • the head node A and the head node D can configure the protection path of the service through the PCEP message to connect BGHC and EGHF respectively, That is, only the section protection configuration is required.
  • the head node A detects the fault of the service working path through the OAM overhead of the OSU frame.
  • the C node can carry the bandwidth activation information through the OSU frame and add the APS protocol double-ended switching bytes. Compared with the single APS overhead, the alarm is reversed to the opposite node, and the double-ended switching efficiency is improved. faster.
  • Steps 5 to 7 in the service protection in the scenario shown in FIG. 11 are the same as steps 5 to 7 in the scenario shown in FIG. 10 , and will not be repeated here.
  • FIG. 12 is a schematic diagram of an apparatus 1200 for service protection provided by the present application.
  • the apparatus 1200 includes a receiving unit 1210 , a processing unit 1220 and a sending unit 1230 .
  • the determining unit 1210 is configured to determine that the working path is faulty, for example, by receiving a path fault message to determine that the working path is faulty.
  • the path failure message is used to indicate that a failure occurs on the first working path between the first node and the second node.
  • the processing unit 1220 is configured to generate a bandwidth activation message according to the path failure message, where the bandwidth activation message is used to instruct the third node to activate and configure the target bandwidth of the service.
  • the processing unit is further configured to generate an APS message based on the failure of the working path.
  • the sending unit 1230 is configured to send the bandwidth activation message.
  • the bandwidth activation message is inserted into an OSU frame of an optical service unit, and the OSU frame is sent on the first protection path.
  • the apparatus 1200 corresponds to the head node in the method embodiment, and may specifically be the service head node or the protection section head node. Corresponding units of the apparatus 1200 are configured to perform the corresponding steps performed by the head node in the method embodiments shown in FIG. 6 to FIG. 11 .
  • the receiving unit 1210 and the transmitting unit 1230 can form a transceiver unit, and have the functions of receiving and transmitting at the same time.
  • the processing unit 1220 may specifically include a fault information acquisition unit and a bandwidth activation message generation unit, and the processing unit may be at least one processor.
  • the sending unit 1230 may be a transmitter or an interface circuit, and the receiving unit 1210 may be a receiver or an interface circuit. The receiver and transmitter can be integrated together to form a transceiver or interface circuit.
  • the apparatus 1200 may further include a storage unit for storing data and/or signaling.
  • the receiving unit 1210, the processing unit 1220, and the sending unit 1230 may interact or couple with the storage unit, for example, read or call the data in the storage unit. data and/or signaling so that the methods of the above-described embodiments are performed.
  • the above units may exist independently, or may be integrated in whole or in part.
  • FIG. 13 is a schematic diagram of an apparatus 1300 for service protection provided by the present application.
  • the apparatus 1300 includes a receiving unit 1310 , an obtaining unit 1320 , and a configuring unit 1330 .
  • the receiving unit 1310 is configured to receive a frame from an OSU, where the OSU frame includes a bandwidth activation message, where the bandwidth activation message is used to instruct to activate and configure the target bandwidth of the service.
  • the obtaining unit 1320 is configured to obtain the bandwidth activation message from the OSU frame.
  • the configuration unit 1330 is configured to activate and configure the target bandwidth of the service according to the bandwidth activation message.
  • the apparatus 1300 corresponds to an intermediate node in the method embodiment, and the apparatus 1300 may be the third node in the method embodiment, or a chip or functional module inside the node in the method embodiment.
  • Corresponding units of the apparatus 1300 are configured to perform the corresponding steps performed by the intermediate nodes in the method embodiments shown in FIG. 6 to FIG. 11 .
  • the receiving unit 1310 may have the functions of receiving and transmitting at the same time.
  • the configuration unit 1330 may be the bandwidth activation unit in FIG. 5 , and is specifically configured to activate the target bandwidth of the configuration service.
  • the receiving unit 1310 may be a receiver or an interface circuit. The receiver and transmitter can be integrated together to form a transceiver or interface circuit.
  • the above units may exist independently, or may be integrated in whole or in part.
  • FIG. 14 is a schematic diagram of a service protection apparatus 1400 provided by an embodiment of the present application.
  • the apparatus 1400 includes a monitoring unit 1410 , a fault message generating unit 1420 , a sending unit 1430 and a receiving unit 1440 .
  • the monitoring unit 1410 is configured to monitor the failure of the first working path between the nodes.
  • the processing unit 1420 is configured to generate a path failure message, where the path failure message is used to instruct the head node to switch the service on the working path to the protection path.
  • the sending unit 1430 is configured to insert the path fault message into the OSU frame and send it to the head node.
  • the apparatus 1400 further includes:
  • the receiving unit 1440 is configured to receive an OSU frame from the head node, where the OSU frame includes an APS message, and the APS message is used to instruct the current node to switch the service to the protection path.
  • the processing unit 1420 is further configured to switch the service to the protection path according to the APS message.
  • the processing unit 1420 may be at least one processor.
  • the receiving unit 1440 and the sending unit 1430 can form a transceiver unit, and have the functions of receiving and sending at the same time.
  • the sending unit 1430 may be a transmitter or an interface circuit
  • the receiving unit 1440 may be a receiver or an interface circuit.
  • the receiver and transmitter can be integrated together to form a transceiver or interface circuit.
  • FIG. 15 is a schematic structural diagram of a service protection apparatus 1500 provided by the present application.
  • the apparatus 1500 includes a processor 1510 coupled to a memory 1520 .
  • the memory 1520 may be used to store computer programs or instructions or and/or data, and the processor 1510 may be used to execute the computer programs or instructions and/or data stored in the memory 1520, so that the methods in the above method embodiments are performed.
  • the apparatus 1500 for restoring the path configuration further includes a transceiver 1530, and the transceiver 1530 is used for signal reception and/or transmission.
  • the processor 1510 is used to control the transceiver 1530 to receive and/or transmit signals.
  • the apparatus 1500 includes one or more processors 1510 .
  • the apparatus 1500 further includes a memory 1520 .
  • the service protection apparatus 1500 may include one or more memories 1520 .
  • the memory 1520 may be integrated with the processor 1510, or provided separately.
  • the processor 1510 is configured to implement the related operations performed by the node processing unit, the acquisition unit, and the configuration unit in the above method embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, on which computer instructions for implementing the method executed by the head node or the intermediate node in the foregoing method embodiments are stored.
  • Embodiments of the present application further provide a computer program product, which, when executed by a computer, enables the computer to implement the method executed by the head node in the above method embodiments.
  • Embodiments of the present application further provide a communication system, where the communication system includes the network devices and nodes in the above embodiments.
  • Computer-readable storage media corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (eg, according to a communication protocol).
  • the computer program product may comprise a computer-readable storage medium.
  • Such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices or other magnetic storage devices, flash memory, or may be used to store instructions or data structures desired program code in the form of any other medium that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • DSPs digital signal processors
  • ASSICs application specific integrated circuits
  • FPGAs field programmable logic arrays
  • processor may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
  • functionality described by the various illustrative logical blocks, modules, and steps described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or incorporated in a combined codec in the device.
  • the techniques may be fully implemented in one or more circuits or logic elements.
  • IC integrated circuit
  • ICs e.g, a chip set
  • Various components, modules, or units are described herein to emphasize functional aspects of means for performing the disclosed techniques, but do not necessarily require realization by different hardware units. Indeed, as described above, the various units may be combined in codec hardware units in conjunction with suitable software and/or firmware, or by interoperating hardware units (including one or more processors as described above) supply.
  • the term "and/or” in this application is only an association relationship to describe associated objects, which means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, and A and B exist at the same time. , there are three cases of B alone.
  • the character "/" in this document generally indicates that the contextual object is an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of , B, and C can mean: A alone exists, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, C and B exist simultaneously, and A and B and C exist simultaneously. seven situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例提供一种业务保护方法,包括:第一节点确定第一工作路径出现故障;第一节点基于该故障生成带宽激活消息,带宽激活消息用于指示第三节点将业务的带宽由保护带宽调整为目标带宽,其中,保护带宽表示第一保护路径在传输业务之前的预占用带宽,目标带宽表示传输业务的实际占用带宽;第一节点在第一保护路径上发送带宽激活消息。上述方法可以在业务的工作路径出现故障时,通过发送带宽激活消息,实现业务快速恢复,同时节省带宽资源。

Description

一种业务保护方法和网络节点
本申请要求于2020年9月27日提交中国国家知识产权局、申请号为202011032565.X、申请名称为“一种业务保护方法和网络节点”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光网络技术领域,特别涉及一种业务保护方法和网络节点。
发明背景
随着光传输网络的发展,光传输网络的保护和恢复成为当前光传输网络设计、运行和维护等操作中需要重要关注的内容。高效灵活的保护和恢复手段成为了光传输网络的重要特征。
自动交换光网络(Automatically Switched Optical Network,ASON)是由国际电信联盟(ITU)定义的基于分布控制平面且支持动态交换连接的光网络。ASON网络目前已基本覆盖城域、核心骨干等波分网络。在ASON网络中,每个ASON节点通过开放最短路径优先(Open Shortest Path First,OSPF)协议获取全网其它节点的信息,包括节点数据和链路数据等,然后通过基于约束的最短路径优先算法(Constrained Shortest Path First,CSPF)计算端到端的业务路径,最后再通过RSVP-TE完成端到端业务路径的建立。网络断纤后可通过通用多协议标签交换(Generalized Multi-Protocol Label Switching,GMPLS)以及基于流量工程扩展的资源预留协议(Resource Reservation Protocol-Traffic Engineering,RSVP-TE)自动建立端到端恢复路径,为业务提供实时重路由保护恢复能力。
对于城域/核心ASON网络,当网络中光纤故障出现以后,才可进行实时重路由恢复,恢复速度较慢,恢复时间为百毫秒量级,例如200ms。或者,可以通过配置1+1专用保护组来实现网络故障后,业务快速倒换。即配置主备1+1双份业务路径资源,来快速保障业务的恢复,但专用1+1保护成本高,需要2倍资源。
发明内容
为了加快业务恢复的速度,同时降低资源占用成本,本申请提供了一种业务保护的方法:
第一方面,本申请提供了一种业务保护方法,应用于通信系统中,该通信系统包括第一节点、第二节点,第三节点,其中,第一节点是第一工作路径和第一保护路径的共同首节点,第二节点是所述第一工作路径和所述第一保护路径的共同宿节点,第三节点为所述第一保护路径上除第一节点和第二节点外的任一节点,第一工作路径为业务的当前通信路径,第一保护路径为所述第一工作路径的备用路径,包括:第一节点确定第一工作路径出现故障;第一节点基于第一工作路径出现故障生成带宽激活消息,带宽激活消息用于指示第三节点将业务的带宽由保护带宽调整为目标带宽,其中,保护带宽表示第一保护路径在传输业务之前的预占用带宽,目标带宽表示传输业务的实际占用带宽;第一节点在第一保护路径上发送带宽激活消息。
本申请提供的业务保护方法,在业务故障前先通过保护带宽建立第一保护路径的虚连接,当业务故障时首节点可以同时将带宽激活消息沿着第一保护路径发送到第一保护路径上的各 个节点,从而可以快速实现业务的端到端恢复,同时在业务发生故障前仅占用保护带宽,降低保护成本。
结合第一方面,在一种可能的实现方式中,第一节点在第一保护路径上发送带宽激活消息,包括:第一节点将带宽激活消息插入第一数据帧的净荷区;第一节点在第一保护路径上发送第一数据帧。将带宽激活消息插入第一数据帧的净荷区而非开销区,可以降低节点对带宽激活消息的获取代价,加快业务的恢复。
例如,第一数据帧可以是OTN帧,具体可以是OPUk帧、ODUk帧、OTUk帧,还可以是灵活数据帧,例如ODUFlex帧,或者光业务单元OSU帧。
结合第一方面,在一种可能的实现方式中,所述带宽激活消息还用于指示第二节点将业务倒换至第一保护路径上。具体地,在网络节点中通过协议自行约定,当保护路径的末节点收到带宽激活消息时,自动将业务从工作路径倒换至保护路径上。
结合第一方面,在另一种可能的实现方式中,第一数据帧的净荷区包括多个光业务单元,多个光业务单元中的每一个光业务单元都包括单元开销区和单元净荷区,第一节点在第一保护路径上发送带宽激活消息,包括:
第一节点将带宽激活消息插入一个或者多个所述光业务单元的单元净荷区;
第一节点在所述第一保护路径上发送第一数据帧。
本实现方式与前述实现方式的区别之处在于,当通过灵活的光业务单元承载信息时,带宽激活消息可以位于同一个光业务单元,也可以位于不同的光业务单元,本申请对此不进行限定。
结合第一方面,在一种可能的实现方式中,第一数据帧的净荷区还携带自动保护倒换APS消息,所述APS消息用于指示所述第二节点将所述业务倒换至所述第一保护路径上。
结合第一方面,在一种可能的实现方式中,第一数据帧的净荷区还包括以下信息中至少一项:消息类型、第一保护路径业务ID,其中,消息类型用于指示第一数据帧携带的消息。这样,当节点收到第一数据帧时,可以通过消息类型获知该数据帧的帧类型。所述第三节点根据所述第一保护路径的业务ID确定与所述业务共享所述第三节点的带宽的其他业务。
结合第一方面,在一种可能的实现方式中,第一数据帧的开销区还包括信令类型Type字段,Type字段用于指示第一数据帧的所述消息类型。需要说明的是,本方式与前述在净荷区中携带消息类型的方式是两种并行的标记第一数据帧的帧类型的方式,在具体实现时可以选择其中的一个字段携带消息类型。
结合第一方面,在一种可能的实现方式中,第一节点在第一保护路径上向第三节点发送带宽激活消息之后,还包括:第一节点将业务倒换至第一保护路径上。
需要说明的是,之所以先将带宽激活消息发送给下游节点再进行保护倒换,是为了尽快将消息传到保护路径的对端,多个节点可以并行进行带宽调整,以尽快实现业务的保护倒换。
结合第一方面,在一种可能的实现方式中,第一节点接收来自第二节点的路径故障消息之后,方法还包括:第一节点从路径故障消息中获取业务的ID,根据业务的ID确定业务的第一保护路径业务ID。
上述实现方式的预置条件是,第一节点已经将业务ID和第一保护路径业务ID的对应关系存储在节点中。还需要说明的是,第一保护路径业务ID可以用于当下游节点的剩余带宽小于业务的目标带宽时,可以根据第一保护路径业务ID确定是否有其他业务与现有业务共享当前节点的带宽,然后根据确定结果确定是否进行带宽调整。
结合第一方面,在一种可能的实现方式中,第一数据帧的长度为192字节、240字节、 128字节或者64字节。
第二方面,本申请提供了一种业务保护方法,该方法应用于通信系统中,通信系统包括第一节点、第二节点,第三节点,其中,第一节点是第一工作路径和第一保护路径的共同首节点,第二节点是所述第一工作路径和所述第一保护路径的共同宿节点,第三节点为第一保护路径上除第一节点和第二节点外的任一节点,第一工作路径为业务的当前通信路径,第一保护路径为第一工作路径的备用路径,方法包括:
第一节点接收路径故障消息,路径故障消息用于指示第一节点与第二节点之间的第一工作路径出现故障;第一节点根据所述路径故障消息生成业务保护消息,业务保护消息用于指示第一保护路径上的各节点进行业务恢复;第一节点将业务保护消息插入第一数据帧的净荷区,在第一保护路径上发送所述第一数据帧。
本方面提供的业务保护方法,在业务的工作路径出现故障后,通过将业务保护消息插入数据帧的净荷区,可以减少节点的提取代价,实现业务的快速恢复。
结合第二方面,在一种可能的实现方式中,业务保护消息包括带宽激活消息和APS消息,业务保护消息用于指示第一保护路径上的各节点进行业务恢复具体包括:带宽激活消息用于指示第一保护路径上各节点将业务的带宽由保护带宽调整为目标带宽,以及,APS消息用于指示第二节点将业务倒换至第一保护路径上。
结合第二方面,在一种可能的实现方式中,第一数据帧的净荷区还包括以下信息中至少一项:协议报文长度、消息类型、第一保护路径业务ID,其中,消息类型用于指示第一数据帧用于业务的带宽由保护带宽调整为目标带宽以及进行APS倒换。这样,当节点收到第一数据帧时,可以通过消息类型获知该数据帧的帧类型
第三方面,本申请提供一种业务保护方法,应用于通信系统中,通信系统包括第一节点、第二节点,第三节点,其中,第一节点是第一工作路径和第一保护路径的共同首节点,第二节点是第一工作路径和第一保护路径的共同宿节点,第三节点为第一保护路径上除第一节点和第二节点外的任一节点,第一工作路径为业务的当前通信路径,第一保护路径为第一工作路径的备用路径,方法包括:
第三节点接收第一数据帧;第三节点从第一数据帧中获取带宽激活消息;带宽激活消息用于指示第三节点将业务的带宽由保护带宽调整为目标带宽,其中,保护带宽表示第一保护路径在传输业务之前的预占用带宽,目标带宽表示传输业务的实际占用带宽;第三节点根据带宽激活消息将业务的带宽由保护带宽调整为目标带宽。
本申请提供的业务保护方法,在业务故障前先通过保护带宽建立第一保护路径的虚连接,当业务故障时,保护路径上的节点在接收到带宽激活消息后,根据带宽激活消息将业务的带宽由保护带宽调整为目标带宽,从而可以快速实现业务的端到端恢复,同时在业务发生故障前仅占用保护带宽,降低保护成本。
结合第三方面,在一种可能的实现方式中,带宽激活消息携带于第一数据帧的净荷区。这样,可以减少节点对带宽激活消息的提取代价,实现业务保护信息的快速转发。
结合第三方面,在一种可能的实现方式中,第一数据帧的净荷区包括多个光业务单元,多个光业务单元中的每一个光业务单元包括单元开销区和单元净荷区,带宽激活消息携带于一个或者多个光业务单元的单元净荷区。
本实现方式与前述实现方式的区别之处在于,当通过灵活的光业务单元承载信息时,带宽激活消息可以位于同一个光业务单元,也可以位于不同的光业务单元,本申请对此不进行限定。
结合第三方面,在一种可能的实现方式中,第一数据帧的净荷区还包括以下信息中至少一项:协议报文长度、消息类型、版本号、第一保护路径业务ID、自动保护倒换APS信息,其中,消息类型用于指示第一数据帧用于将所述业务的带宽由保护带宽调整为所述目标带宽以及进行APS保护倒换,APS信息用于指示第二节点将业务倒换至第一保护路径上。
结合第三方面,在一种可能的实现方式中,第一数据帧的开销区还包括信令类型Type字段,Type字段用于指示第一数据帧的消息类型。
结合第三方面,在一种可能的实现方式中,当第三节点的剩余带宽小于业务的目标带宽时,还包括:第三节点根据第一保护路径业务ID确定是否有其他业务与当前业务共享第三节点的带宽;第三节点根据确定的结果判断是否进行带宽调整。
结合第三方面,在一种可能的实现方式中,当第三节点根据第一保护路径业务ID确定有N(N≥1)条业务与当前业务共享第三节点的带宽时,还包括:
第三节点确定剩余带宽与保护带宽*(N+1)之和大于或者等于目标带宽;第三节点根据第一保护路径业务ID获取与当前业务共享第三节点带宽的其他业务ID;第三节点根据其它业务ID将至少一项其他业务的保护带宽调整为0;第三节点将当前业务的带宽从保护带宽调整为目标带宽。
通过带宽调整,当业务的工作路径出现故障时,可以最大限度地集合保护路径上的带宽资源用于业务的恢复。
结合第三方面,在一种可能的实现方式中,第三节点接收第一数据帧,包括:第三节点接收来自第一节点的OTN帧,对OTN帧进行解映射,得到第一数据帧。
结合第三方面,在一种可能的实现方式中,第三节点根据带宽激活消息将业务的带宽由目标带宽调整为目标带宽之前,还包括:第三节点将带宽激活消息和APS消息沿第一保护路径转发给第三节点的下游节点。
需要说明的是,之所以先将带宽激活消息和APS消息发送给下游节点再进行带宽调整,是为了尽快将消息传到保护路径的对端,多个节点可以并行进行带宽调整,以尽快实现业务的保护倒换。
第四方面,本申请提供一种业务保护方法,应用于通信系统中,通信系统包括第一节点、第二节点、第三节点,其中,第一节点是第一工作路径和第一保护路径的共同首节点,第二节点是第一工作路径和第一保护路径的共同宿节点,第三节点为第一保护路径上除第一节点和第二节点外的任一节点,第一工作路径为业务的当前通信路径,第一保护路径为第一工作路径的备用路径,包括:第二节点接收来自第三节点的第一数据帧,第一数据帧包括带宽激活消息,带宽激活消息用于指示第二节点将业务的带宽由保护带宽调整为目标带宽,其中,保护带宽表示第一保护路径在传输业务之前的预占用带宽,目标带宽表示传输业务的实际占用带宽。第二节点根据带宽激活消息将业务的带宽由保护带宽调整为目标带宽。
本申请提供的业务保护方法,在业务故障前先通过保护带宽建立第一保护路径的虚连接,当业务故障时,保护路径上的末节点在接收到带宽激活消息,根据带宽激活消息将业务的带宽由保护带宽调整为目标带宽,从而可以快速实现业务的端到端恢复,同时在业务发生故障前仅占用保护带宽,降低保护成本。
结合第四方面,在一种可能的实现方式中,第一数据帧还携带自动保护倒换APS消息,用于指示所述第二节点将所述业务倒换至所述第一保护路径上
结合第四方面,在一种可能的实现方式中,第一数据帧包括第一开销,路径故障消息位于第一开销中,和/或第二数据帧包括净荷区,带宽激活消息和/或APS消息位于净荷区中。
第五方面,本申请提供一种网络节点,包括:确定单元,用于确定第一工作路径上出现故障;处理单元,用于基于故障生成带宽激活消息,带宽激活消息用于指示第三节点将业务的带宽由保护带宽调整为目标带宽,其中,保护带宽表示第一保护路径在传输业务之前的预占用带宽,目标带宽表示传输业务的实际占用带宽,第三节点为第一保护路径上除第一节点和第二节点以外的任一节点;第二节点为第一保护路径的宿节点。发送单元,用于在第一保护路径上发送带宽激活消息。
结合第五方面,在一种可能的实现方式中,第一数据帧还携带自动保护倒换APS消息,用于指示所述网络节点将所述业务倒换至第一保护路径上。
结合第五方面,在一种可能的实现方式中,处理单元还用于:将带宽激活消息和所述APS消息插入第一数据帧的净荷区,以及,发送单元具体用于:在第一保护路径上发送第一数据帧。
结合第五方面,在一种可能的实现方式中,第一数据帧的长度为192字节、240字节、128字节或者64字节。
结合第五方面,在一种可能的实现方式中,第一数据帧的净荷区还包括以下信息中至少一项:协议报文长度、消息类型、版本号、所述第一保护路径业务ID,其中,消息类型用于指示所述第一数据帧携带的信息。
结合第五方面,在一种可能的实现方式中,发送单元向第三节点发送第一数据帧之后,所述处理模块还用于:将业务倒换至第一保护路径上。
第六方面,本申请提供一种网络节点,包括:接收单元,用于接收第一数据帧;获取单元,用于从第一数据帧中获取带宽激活消息,带宽激活消息用于指示网络节点将业务的带宽由保护带宽调整为目标带宽,其中,保护带宽表示第一保护路径在传输业务之前的预占用带宽,目标带宽表示传输业务的实际占用带宽;配置单元,用于根据带宽激活消息将业务的带宽由保护带宽调整为目标带宽。
结合第六方面,在一种可能的实现方式中,第一数据帧的长度为192字节、240字节、128字节或者64字节。
结合第六方面,在一种可能的实现方式中,第一数据帧的净荷区包括多个光业务单元,多个光业务单元中的每一个光业务单元都包括单元开销区和单元净荷区,带宽激活消息位于一个或者多个光业务单元的单元净荷区。
结合第六方面,在一种可能的实现方式中,第一数据帧的净荷区还包括以下信息中至少一项:协议报文长度、消息类型、版本号、第一保护路径业务ID,自动保护倒换APS消息,其中,消息类型用于指示第一数据帧用于将业务的带宽由保护带宽调整为目标带宽以及进行APS倒换,所述APS信息用于指示所述网络节点将所述业务倒换至所述第一保护路径上。
结合第六方面,在一种可能的实现方式中,当网络节点的剩余带宽小于业务的目标带宽时,配置单元还用于:根据业务的第一保护路径业务ID确定是否有其他业务与当前业务共享当前网络节点的带宽;根据确定的结果判断是否进行带宽调整。
结合第六方面,在一种可能的实现方式中,当网络节点根据所述第一保护路径业务ID确定有N(N≥1)条业务与当前业务共享网络节点的带宽时,配置单元还用于:
确定剩余带宽与保护带宽*(N+1)之和大于或者等于目标带宽;
根据业务的第一保护路径业务ID获取与当前业务共享网络节点带宽的其他业务ID;
根据其它业务ID将至少一项其他业务的保护带宽调整为0,释放出空闲带宽;
基于剩余带宽和空闲带宽将当前业务的带宽由保护带宽调整为目标带宽。
第七方面,本申请提供一种网络节点,包括:
接收单元,用于接收第一数据帧,第一数据帧包括带宽激活消息,带宽激活消息用于指示网络节点将业务的带宽由保护带宽调整为目标带宽;
处理单元还用于根据带宽激活消息将业务的带宽由保护带宽调整为目标带宽。
结合第七方面,在一种可能的实现方式中,所述第一数据帧还携带APS消息,所述APS消息用于指示所述网络节点将业务倒换至第一保护路径上。
结合第七方面,在一种可能的实现方式中,所述带宽激活消息和所述APS消息携带于所述第一数据帧的净荷区。
第八方面,本申请提供一种通信设备,包括处理器和存储器,存储器用于存储计算机程序或指令,当计算机程序或指令在处理器上被执行时,使得如第一方面及结合第一方面的任一种可能的实现方式被执行,或者使得如第二方面及结合第二方面的任一种可能的实现方式被执行,或者使得如第三方面及其任一种可能的实行方式被执行。
第九方面,本申请提供一种计算机可读存储介质,存储有计算机程序或指令,计算机程序或指令用于实现如第一方面及结合第一方面的任一种可能的实现方式,或者实现如第二方面及结合第二方面的任一种可能的实现方式,或者实现如第三方面及其任一种可能的实行方式。
第十方面,本申请提供一种计算机程序产品,包括计算机程序,当计算机程序被运行时,使得计算机执行如第一方面及结合第一方面的任一种可能的实现方式,或者执行如第二方面及结合第二方面的任一种可能的实现方式,或者执行如第三方面及其任一种可能的实行方式。。
通过本申请提供的业务保护方法和相关网络节点、网络设备,在业务故障前先通过保护带宽建立第一保护路径的虚连接,当业务故障时,首节点可以通过将带宽激活消息沿着第一保护路径发送到第一保护路径上的各个节点,各个节点根据带宽激活消息分别实现业务带宽调整,从而可以快速实现业务的端到端恢复,同时在业务发生故障前仅占用保护带宽,降低保护成本。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例的ASON网络架构示意图;
图2为本申请实施例的一种OSU帧结构示意图;
图3为一种业务恢复方法示意图;
图4为另一种业务恢复方法示意图;
图5为本申请实施例提供的一种ASON网络的节点配置示意图;
图6为本申请实施例提供的一种业务保护方法的系统时序图;
图7为本申请实施例提供的一种业务保护方法的流程图;
图8为本申请实施例提供的另一种业务保护方法的流程图;
图9为本申请实施例提供的又一种业务保护方法的流程图;
图10为本申请实施例提供的业务保护方法能够应用的一种场景图;
图11为本申请实施例提供的业务保护方法能够应用的又一种场景图;
图12为本申请实施例提供的一种业务保护装置的结构示意图;
图13为本申请实施例提供的另一种业务保护装置的结构示意图;
图14为本申请实施例提供的再一种业务保护装置的结构示意图;
图15为本申请实施例提供的另一种业务保护装置的结构示意图。
具体实施方式
本申请实施例的技术方案可以应用于ASON中,为了方便理解本申请实施例的技术方案,以下对本申请实施例中使用的部分术语和技术作简单介绍。
1、节点
用于表示网络中一个独立的硬件实体,一般为一个传送网设备,如在图1中有四个节点:分别为节点1、节点2、节点3、节点4。
应理解,图1所示的ASON只是一种举例,对本申请的保护范围不构成任何的限定。ASON中包括的节点个数可以为4个节点以上,或者ASON中包括的节点个数还可以为大于或者等于2个。
2、接口
节点上用于发送并接收网络协议消息和流量数据的物理端口,如在图1中有8个接口:分别为接口1、接口2、接口3、接口4、接口5、接口6、接口7和接口8。其中,接口#1和接口#8为节点#1的物理端口、接口#2和接口#3为节点#2的物理端口、接口#4和接口#5为节点#3的物理端口、接口#6和接口#7为节点#4的物理端口。
3、链路
本申请实施例中,相邻的两个节点之间的连接称为链路。一个链路可以用链路(节点-接口,节点-接口)表示,相邻的两个节点之间是否存在链路可以用于表明网络协议消息和/或流量数据等信息是否能够在该两个相邻的节点之间转发,例如,若相邻的两个节点之间存在链路,则网络协议消息和/或流量数据等信息能够在该两个相邻的节点之间转发;同理,若相邻的两个节点之间不存在链路,则网络协议消息和/或流量数据等信息不能够在该两个相邻的节点之间转发。
例如,链路(节点1-接口1,节点2-接口2)表示网络协议消息和/或流量数据等信息能够从节点1的接口1发出后,在节点2和接口2上被收到。
图1所示的ASON中有8条链路:链路1-2(节点1-接口1->节点2-接口1)、链路1-4(节点1-接口8->节点4-接口7)、链路2-1(节点2-接口2->节点1-接口1)、链路2-3(节点2-接口3->节点3-接口4)、链路3-2(节点3-接口4->节点2-接口3)、链路3-4(节点3-接口5->节点4-接口6)、链路4-3(节点4-接口6->节点3-接口5)、链路4-1(节点4-接口7->节点1-接口8)。
4、业务
用于表示两个节点之间的物理通道连接建立,数据流量能够从源节点发送并在宿节点收到。如在图1中有业务1-3,表示节点1到节点3之间有一条可连接的数据通道。
ASON网络通过RSVP-TE协议可提供业务的快速端到端建立、查询、删除、属性修改和恢复功能。网管下发业务创建命令到源节点网元,然后源节点网元实现路由计算并通过RSVP-TE信令协议发起业务配置过程,从源节点到下游节点逐点建立交叉连接,从而完成业务的创建。该方式充分利用了各个网元的路由和信令功能,缩短了业务配置时间。如在图1 中,业务1-3信令RSVP-TE建路的具体步骤如下:源节点1通过CSPF(Constrained Shortest Path First,基于约束的最短路径优先)计算好业务路径:节点1-节点2-节点3,源节点沿着计算好的路径,携带着端到端的路径信息,指定链路1-2接口向中间节点2发送Path消息(RSVP-TE协议报文的一种),节点2收到信令消息后,解出本节点交叉配置关联信息并建立反向交叉连接,再由中间节点2携带端到端路径消息指定链路2-3接口向宿节点3方向发送Path消息,同理在宿节点3解出对应交叉配置消息并建立本站反向交叉连接;宿节点3经由中间节点2向源节点1方向发送Resv消息(RSVP-TE协议报文的一种),在沿途各节点建立正向交叉连接;同样过程源节点1经由中间节点2向宿节点3方向发送Path消息,沿途打开对业务的告警监视,宿节点3经由中间节点2向源节点1方向发送Resv消息进行确认。整个过程由RSVP-TE信令自动完成业务1-3的端到端配置建立。
在静态网络中,业务的建立是通过网管进行手工单站配置建立、删除、查询和属性修改,无法做到端到端自动化过程。如图1所示,如果通过网管创建业务1-3,首先需要人工规划出业务路径节点1-节点2-节点3,然后逐个节点进行单站交叉配置,待所有节点交叉配置完成后,业务1-3完成端到端建立。整个过程需要人工分别进行单站配置以建立业务,效率很低。
5、业务路径
业务路径可以包括工作路径、恢复路径、保护路径等,用于承载业务的数据传输。业务路径为首节点到末节点之间的路由,首节点和末节点之间可能存在一个或多个节点。其中,业务路径的首节点表示业务数据的发送节点、业务路径的末节点表示业务数据的接收节点。一个业务路径可以用业务(首节点-末节点)表示。
由于业务路径表示首节点到末节点之间的路由,也可以称之为端到端业务路径,其中,“端到端”表示首节点到末节点。
另外,ASON通过RSVP-TE协议可提供业务路径的端到端建立、查询、删除、属性修改和恢复功能。业务路径的端到端建立包括:网管下发业务路径创建命令到首节点,然后首节点实现路由计算并通过RSVP-TE信令协议发起业务路径配置过程,从首节点到下游节点逐点建立交叉连接,从而完成业务路径的端到端建立。
本申请中的业务路径既包括工作路径,也包括保护路径。业务路径的切换可以表示业务从工作路径切换到保护路径,或者,表示业务从保护路径重新切换回工作路径。
6、灵活光业务单元帧
光传送网络(optical transport network,OTN)由于具备高带宽,大容量,高可靠,低时延等特性,已经成为传送网采用的主流技术。OTN可以应用于骨干、城域核心及汇聚等网络,也进一步向接入网扩展。OTN网络中使用的数据帧结构是OTN帧,OTN帧也可以称为OTN传输帧。OTN帧用于承载各种业务数据,并提供丰富的管理和监控功能。OTN除了能够提供n*1.25Gbps、n*5Gbps等大带宽传送能力外,未来还需要具备低至几兆比特每秒的传送能力。
Liquid OTN是在传统的OTN帧结构基础上引入了面向业务的灵活容器——灵活光业务单元帧(flexible optical service unit,OSUflex),通过灵活的管道带宽定义(如n*2.4Mbit/s,n表示管道个数),实现高效承载小颗粒信号。OSUflex改变了原有的封装大小,能够直接映射到高阶光通道数据单元(optical data unit k,ODUk)管道上,其中k代表了不同的速率等级,例如,k=1表示2.5Gbps,k=4表示100Gbps。
在本申请实施例中,OTN帧可以是OSUflex帧,OSUflex帧也可以简称为OSU帧。图2是本申请实施例提供的一种OSU帧的结构示意图。如图2所示,光净荷单元帧(optical payload unit-k,OPUk)或OPUflex被划分为多个净荷块(Payload Block,PB),每个PB包含OSU 帧和与之对应的索引号TPN。当多路OSU帧映射到OPUk/Flex帧时,TPN可以作为OSU帧在服务层的唯一通道标识。每个OSU帧包括开销区和净荷区两部分,开销区包括但不限于信令类型、版本标识、校验比特等开销信息,净荷区用于承载业务数据信息。OSU帧的长度一般为固定大小,例如长度为192字节、240字节、128字节或者64字节等。
下面将进一步结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图3是一种业务路径恢复的示意图。节点可以通过RSVP-TE协议实现业务路径的端到端自动恢复。
如图3所示,业务1-3通过RSVP-TE自动建立业务1-3的原始业务路径为:节点1-节点2-节点3,其中,原始业务路径也可以称为工作路径。若节点1和节点2之间的光纤中断,通过RSVP-TE协议实现端到端业务路径自动恢复包括:
节点2感知到故障告警信息,并根据故障告警信息中携带的端口告警信息匹配查找到受影响的业务1-3,然后通过RSVP通告(Notify)消息将故障信息通告到受影响的业务1-3的首节点(节点1)。
需要说明的是,本申请实施例中对于节点2如何感知到故障告警信息并不限定,可以是节点1和节点2之间的光纤中断(如,节点1到节点2方向的光纤中断、节点2到节点1方向的光纤未发生中断)之后,节点2的底层感知到光纤中断(如,感知到信息传输的中断)。另外,本申请实施例中对于节点2如何将RSVP通告消息传输到节点1不限定,可以是通过节点2到节点1方向的光纤,或者,当节点2到节点1方向的光纤也发生的中断的情况下,通过其他的路径将RSVP Notify消息传输到节点1。
节点1收到RSVP Notify消息之后,通过故障信息获知受影响的业务1-3,自动确定出能够继续实现业务1-3的恢复路径(如图2中所示的节点1-节点4-节点3)。然后ASON中的节点再通过RSVP-TE信令(Path和Resv消息)沿着业务恢复路径(节点1-节点4-节点3)逐跳建立交叉连接,自动完成端到端恢复路径的建立,恢复路径建立完成后,业务1-3自动恢复。
图4是另一种业务路径恢复的示意图。节点1和节点4之间通过配置1+1专用保护组来实现网络故障后的业务快速倒换。
如图4所示,业务1-3通过RSVP-TE分别建立业务1-3的工作路径:节点1-节点2-节点3及保护路径:节点1-节点4-节点3。业务1-3的首节点1通过工作路径和保护路径双发两路业务信息,在末节点3处选收一路,例如选收工作路径上的业务数据。工作路径和保护路径的故障状态通过保护组协议的专用开销检测。当节点1-节点2之间的链路出现故障,节点1 或者节点3快速感知故障后,发起当前节点保护组的快速倒换,将业务1-3从工作路径切换到保护路径上。
需要说明的是,业务路径恢复也可以理解为业务恢复,因为业务路径恢复之后,业务路径上承载的业务也能相应的恢复传输。
上述图2和图3所示的业务恢复方法中,对于城域/核心ASON网络,图2仅当网络中光纤出现故障以后,才可进行实时重路由进行业务恢复,性能较慢。图3所示的恢复方法虽然可通过已经建立完成的保护路径进行业务恢复,但是保护成本高,需要占用2倍资源。
为了提高网络的业务恢复性能,同时节省成本,本申请提供了一种业务恢复方法和网络节点。该业务恢复方法通过在网络节点间建立不同业务的共享保护段,实现故障业务的快速恢复,同时降低成本。
图5是本申请实施例的一种ASON网络的节点配置示意图。如图5所示,该架构包括智能化网管(Network Cloud Engine,NCE)、节点A、节点B及节点C。其中每个节点均部署RSVP(Resource Reservation Protocol,资源预留协议)控制单元、保护组切换单元和带宽激活单元。
该ASON架构还包括用于路径计算的网络设备。示例性地,该网络设备包括路径计算单元(Path computation element,PCE)控制器,即该ASON中设置有至少一个PCE控制器。或者,该网络设备为具备路径计算功能的节点,例如,该ASON中至少一个节点部署有PCE控制器;还例如,该ASON中至少一个节点部署有路径计算功能模块。
其中,NCE用于业务的自动发放和删除。
当节点A为业务首节点时,可以包括PCE控制器。该PCE控制器用于:基于带宽共享策略计算业务的共享保护路径;对共享保护路径的生命周期进行管理,例如配置、删除、更新等;以及对共享带宽的多条保护路径的业务关系进行配置。
RSVP控制单元用于业务共享保护路径的建立、删除、更新及重建;还用于共享保护路径的端到端维护。
保护组切换单元用于,在业务首节点或末节点感知业务的工作路径出现故障后,进行保护组快速切换到备用保护路径。
带宽激活单元用于在感知工作路径故障后,业务首节点找到相应的业务ID,生成包含该业务ID的随路信令,从而进行端到端保护路径的带宽激活;业务中间节点根据接收到的随路信令进行带宽集中决策处理,从而激活配置业务的目标带宽。
需要说明的是,本申请中的随路表示在业务开通之前,该业务的保护路径的交叉已经建立完成,因此,当业务的工作路径出现故障时,保护路径首节点(也可以是保护区段首节点)沿着保护路径,即已经建立交叉连接的通道将用于带宽激活的信令传到保护路径宿节点(或者保护区段宿节点),由于这一通道是故障业务的专用通道,因此无需携带业务ID,仅携带带宽激活信息即可,这一过程称为信令的随路发送。需要与之区分的是信令的共路发送,信令的共路发送是指将用于某一业务恢复的信令在多个业务共用的通道中发送,因此为了使目标节点准确识别需要恢复的业务,需要在信令中携带需要恢复的业务ID。
应理解,图5只是为了便于理解本申请而提供的一种示意图,对本申请的保护范围不构成任何的限定,上述的各种单元的名称也只是举例,其他能够实现相同功能的单元或模块替代图5中所示的单元。
图6是本申请实施例提供的一种业务保护方法的系统时序图,可以应用于ASON网络中,该网络可以包括如图5所示的多个节点。
本申请实施例以两条业务(第一业务和第二业务)通过OSU帧进行共享保护为例进行说明。本申请实施例中将具有路径计算功能的节点和PCE控制器统称为网络设备,第一业务承载于第一工作路径,第一工作路径的首节点称为第一首节点,第二业务承载于第二工作路径,第二工作路径的首节点称为第二首节点。需要说明的是,网络设备可以是第一业务的首节点,或者,网络设备可以是第二业务的首节点。
还需要说明的是,第一工作路径和第二工作路径可以为同一条工作路径,即该工作路径上承载有多条业务。另外,第一工作路径对应的第一恢复路径和第二工作路径对应的第二恢复路径也可以为同一条恢复路径,该恢复路径可以恢复某条工作路径上承载的多条业务。
图6中该业务保护方法至少包括以下步骤中的全部或者部分步骤:
S610:网络设备确定共享保护路径。
具体地,网络设备确定第一工作路径的第一保护路径,以及第二工作路径的第二保护路径,所述第一保护路径用于当所述第一工作路径发生故障时,对所述第一工作路径进行业务保护倒换,所述第二保护路径用于当所述第二工作路径发生故障时,对所述第二工作路径进行业务保护倒换。所述第一保护路径和素数第二保护路径具有相同的保护路径段。
本申请实施例中,网络设备能够获取网络中的业务和拓扑,基于故障链路同共享保护策略确定承载业务的工作路径对应的保护路径,将具有相同的保护路径段的多条业务通过业务组ID捆绑关联,该业务组ID标识具有相同的保护路径段的多条业务,或者标识具有相同保护路径段的多条业务路径。本实施例中涉及的ID可以理解为标识信息,用于标识业务或者用于承载该业务的路径,还可以称该标识信息为索引(index)信息或者指示信息,为了便于描述,下文中称之为ID。
其中,故障链路同共享保护策略指的是网络设备在假设网络中的某个链路故障的前提下,确定受该故障链路影响的工作路径分别对应的保护路径时,尽可能使得多条保护路径具有相同的保护路径段。
本申请实施例中涉及的相同的保护路径段即为第一保护路径和第二保护路径的公共部分路径段或重合部分路径段,也可以理解为重合保护路径段、共享保护路径段等,下文中简称为保护路径段。另外,第一保护路径和第二保护路径具有相同的保护路径段,该相同的保护路径段可以为第一保护路径或第二保护路径的部分路径段,也可以为第一保护路径或第二保护路径的全部路径段。
本申请实施例中对于工作路径发生故障的具体原因不做限定。上述的第一工作路径发生故障可以是第一工作路径中的一条或者多条链路发生故障,或者第一工作路径上的节点发生故障,或者第一工作路径上的节点的接口发生故障等;同理,上述的第二工作路径发生故障包括第二工作路径中的一条或者多条链路发生故障,或者第二工作路径上的节点发生故障,或者第二工作路径上的节点的接口发生故障等。
需要说明的是,本申请实施例中的路径具有方向性。第一工作路径和第一保护路径均为以第一首节点为第一业务发送节点的单向路径;所述第一工作路径发生故障指该单项路径发生故障。同理,第二工作路径和第二保护路径为以第二首节点为第二业务发送节点的单向路径;所述第二工作路径发生故障指该单向路径发生故障。
本实施例中所说的共享保护可以包括以下情形:1)同速率业务1:N共享,即一份带宽资源供N条同速率业务共享使用,例如N条速率均为100M的业务共享100M带宽;2)不同速率业务1:N共享,即一份带宽资源供N条不同速率业务共享使用,例如三条速率分别为50M、70M、100M的业务共享100M带宽;3)同速率业务M:N共享,M<N,即M份 带宽资源供N条同速率业务共享使用,例如10条100M业务共享7份100M的带宽资源;4)不同速率业务M:N共享,M<N,即M份带宽资源供N条不同速率业务共享使用,例如三条速率分别为50M、70M、100M的业务共享100*2=200M带宽资源。
S620:网络设备下发配置消息到首节点。
具体地,该步骤包括网络设备下发第一配置消息到第一首节点S621。第一配置消息包括第一保护路径的路由信息,还可以包括第一保护路径的保护路径段是否共享、共享度、业务组ID。同理,该步骤还包括网络设备下发第二配置消息到第二首节点S622。第二配置消息包括第二保护路径的路由信息,以及保护路径段是否共享、共享度、业务组ID。其中,共享度表示该保护路径段由多少条业务共享,业务组ID表示共享该保护路径段的多条业务。本申请实施例以该保护路径段由第一业务和第二业务共享,共享度为2为例进行说明。
示例性地,第一配置消息可以为路径计算单元通信协议(Path Computation Element Communication Protocol,PCEP)消息,或者,第一配置消息可以是与PCEP具有相同功能的协议消息。例如,第一配置消息可以通过网络设备与第一首节点之间原有信令中新增的字段(例如,扩展PCEP字段)实现。
示例性地,第二配置消息可以为PCEP消息,或者,第二配置消息可以是与PCEP具有相同功能的协议消息。例如,第二配置消息可以通过网络设备与第二首节点之间原有信令中新增的字段(例如,扩展PCEP字段)实现。
本申请实施例中,网络设备还可以将上述第一配置消息通知到第三节点,以及将第二配置消息通知到第三节点。其中,第三节点为保护路径段的首节点。具体基于上述网络设备在网络中的身份,分为以下几种方式:
方式一:网络设备为PCE
网络设备为网络中设置的PCE控制器,并且该PCE控制器为独立于上述的工作路径的首节点以及保护路径段的首末节点部署的设备。
则在方式一中,在网络设备生成上述第一配置消息和第二配置消息后,需要将第一配置消息通知到第一首节点,将第二配置消息通知到第二首节点。
上述第一配置消息包括第一保护路径的路由信息,还可以包括第一保护路径的保护路径段是否共享、共享度、业务组ID。上述第二配置消息包括第二保护路径的路由信息,以及保护路径段是否共享、共享度、业务组ID。
示例地,上述第一配置消息可以为一条消息也可以为多条消息的统称,即上述的第一保护路径的路由信息、共享组信息以及业务组ID可以通过一条消息发送给第一首节点,也可以通过多条消息发送给第一首节点;同理,上述的第二配置消息可以为一条消息也可以为多条消息的统称,即上述的第二保护路径的路由信息、共享组信息以及业务组ID可以通过一条消息发送给第二首节点,也可以通过多条消息发送给第二首节点。
本实施例中第一配置消息和第二配置消息可以称为扩展TLV信息。TLV是一种可变的格式,意为:类型(Type)、长度(Length)、值(Value),其中,Type字段是关于标签和编码格式的信息;Length字段是定义数值的长度;Value字段表示实际的数值。Type和Length的长度一般是固定,例如为2或4个字节。
本申请中第一配置消息和第二配置消息的报文格式可以如下所示:
PCEP<Path Message>::=
<Common Header>
<MESSAGE-ID>
<HOP对象>
新增<共享组信息>TLV“HOP对象下,新增共享组信息可以包括:是否共享、共享度、共享的业务组ID”
共享组信息的消息格式如表1所示,表1是本申请实施例提供的一种共享组信息的消息格式,表1中包含的字段含义和取值如下表2所示。
表1
Figure PCTCN2021118631-appb-000001
表2
字段名 含义 取值
Type TLV类型,新增Hop共享类型 一个16bit位数值
Length TLV长度,以字节为单位 一个16bit位数值
Share Flag 该Hop资源是否共享 一个16bit位数值
Share Number 该Hop资源共享度 一个16bit位数值
Share Service ID 共享的业务组ID 一个32bit位数值
方式二:网络设备为第一工作路径的首节点。
上述的网络设备为第一工作路径的首节点,则第一工作路径的首节点(第一首节点)能够自行获知第一保护路径的路由信息及共享组信息,与上述方式一不同的是方式二中网络设备无需向第一首节点发送第一配置消息,即无需执行S621。
方式三:网络设备为第二工作路径的首节点。
上述的网络设备为第二工作路径的首节点,则第二工作路径的首节点(第二首节点)能够自行获知第二保护路径的路由信息及共享组信息,与上述方式一不同的是方式二中网络设备无需向第二首节点发送第一配置消息,即无需执行S622。
方式四:网络设备为保护路径段的首节点。
上述的网络设备为保护路径段的首节点,则保护路径段上的首节点能够获知保护路径段的路由信息。与上述的方式一不同的是方式四下网络设备无需向保护路径段的首节点发送配置消息,即网络设备无需向保护路径段的首节点发送第三配置消息、第四配置消息。
其他节点(第一首节点、第二首节点以及末节点)与网络设备之间的信令交互流程与方式一中相同,这里不再赘述。
S630:业务首节点根据配置消息建立业务保护组。
本步骤以上述方式一为例进行具体说明。
本步骤具体包括:S631,第一首节点根据接收的第一配置消息建立第一保护路径的业务保护组,以及S632,第二首节点根据接收的第二配置消息建立第二保护路径的业务保护组。具体 地,第一配置消息包括第一保护路径的路由信息,所述第一首节点根据第一保护路径的路由信息建立业务保护组,用于当传输第一业务的第一工作路径出现故障时,将第一业务切换到第一保护路径上传输。同理,第二首节点根据第二配置消息在本节点建立第二保护组,用于当传输第二业务的第二工作路径出现故障时,将第二业务切换到第二保护路径上传输。
S640:业务首节点向下游其他节点发送配置消息。
本步骤具体包括:
S641第一首节点向第三节点发送第三配置消息;以及
S642第二首节点向第三节点发送第四配置消息;以及
S643第三节点向第四节点发送第五配置消息;以及
S644第三节点向第五节点发送第六配置消息。所述第三节点为保护路径段的首节点,第四节点为第一工作路径末节点,第五节点为第二工作路径末节点。
其中,第三配置消息包括第一保护路径的路由信息、保护路径段是否共享、共享度、业务组ID。第四配置消息包括第二保护路径的路由信息、保护路径段是否共享、共享度、业务组ID。第五配置消息包括第一保护路径的路由信息。第六配置消息包括第二保护路径的路由信息。
作为一种可能的方式,网络设备可以将第一配置消息、第二配置消息、第三配置消息、第四配置消息、第五配置消息、第六配置消息分别下发给相应的节点。应理解,本实施例中的各节点仅用于举例,不用构成对技术方案的限定。事实上,业务的工作路径和保护路径上可以经过很多节点,本实施例仅为一种最简单的节点架构。
当下游其他节点接收到对应的配置消息后,在本地建立保护路径的虚连接。具体包括:第三节点根据第三配置消息建立第一保护路径的虚连接,同时第三节点根据第四配置消息建立第二保护路径的虚连接。第四节点根据第五配置消息建立第一保护路径的虚连接,第五节点根据第六配置消息建立第二保护路径的虚连接。所述虚连接是指第一保护路径仅占用各节点的小带宽资源(例如2M),用于建立第一业务对应的第一保护路径的交叉连接,而不在保护路径上传输第一业务。为了区分业务的目标带宽,在本申请实施例中,将建立保护路径所占用的带宽称为保护带宽。
通过建立保护路径的虚连接,不仅可以在业务的工作路径发生故障时快速倒换以提高倒换速度,而且该保护路径不需要占用双倍带宽资源,从而降低成本。
需要说明的是,由于第四节点为第一工作路径末节点,与中间节点不同,需要在本地建立第三保护组,用于当传输第一业务的第一工作路径出现故障时,将第一业务切换到第一保护路径上传输。同理,由于第五节点为第二工作路径末节点,需要在本地建立第四保护组,用于当传输第二业务的第二工作路径出现故障时,将第二业务切换到第二保护路径上传输。
示例地,本实施例中所述的虚连接的交叉连接可以包括第一业务在当前节点的入端口、通道、带宽、出端口,以及第二业务在当前节点的入端口、通道、带宽、出端口。例如,第一业务在当前节点经过入端口号1—通道1—出端口1,占用2M带宽;又例如,第二业务在当前节点经过入端口2—通道2—出端口2,占用2M带宽。
示例地,本实施例中业务首节点向下游其他节点发送的配置消息可以为RSVP-TE信令消息,或者,上述配置消息可以是与RSVP-TE具有相同功能的协议消息。例如,第三配置消息可以通过第一首节点与第三节点之间原有信令中新增的字段(例如,扩展RSVP字段)实现。
本申请中配置消息的报文格式可以如下所示:
Figure PCTCN2021118631-appb-000002
Figure PCTCN2021118631-appb-000003
RSVP消息中的用于表示具体Hop类型为保护虚连接的相关TLV字段如表3所示,含义如表4所示:
表3
Figure PCTCN2021118631-appb-000004
表4
Figure PCTCN2021118631-appb-000005
需要说明的是,下游其他节点根据配置消息建立保护路径虚连接之后,本步骤还包括,下游各节点向首节点发送响应消息,用于指示本节点已建立业务的保护路径虚连接。例如,第三节点向第一首节点发送第一响应消息,用于指示第三节点已建立第一业务的保护路径虚连接,同时,第三节点向第二首节点发送第二响应消息,用于指示第三节点已建立第二业务 的保护路径虚连接。第四节点向第一首节点发送第三响应消息,用于指示第四节点已建立第一业务的保护路径虚连接。第五节点向第二首节点发送第四响应消息,用于指示第五节点已建立第二业务的保护路径虚连接。
示例地,第一首节点接收到第一保护路径上各节点发送的响应消息后,向NCE上报第一保护路径虚连接建立成功消息,NCE将第一业务下发到第一首节点。示例地,第二首节点接收到第二保护路径上各节点发送的响应消息后,向NCE上报第二保护路径虚连接建立成功消息,NCE将第二业务下发到第二首节点。
S650:第一首节点接收第四节点的路径故障消息。
本实施例中,当第一首节点和第四节点之间的工作路径出现故障(例如断纤),第四节点向第一首节点发送路径故障消息,路径故障消息用于指示第一首节点与第四节点之间的工作路径出现故障。其中,所述路径故障消息携带于数据帧的开销中。
示例地,所述路径故障消息包括受影响业务的ID,还包括自动保护倒换(automatic protection switching,APS)信息,所述APS消息具体用于指示第一首节点将第一业务倒换到第一保护路径上。
需要说明的是,本实施例中第一首节点接收第四节点的路径故障信息仅为举例,实际上并不构成对技术方案的限制,例如,当第一首节点与第四节点之间在第一工作路径上还存在其他节点时,也可以是该其他节点接收来自第四节点的路径故障信息。该节点具体可以是保护路径段的首节点。或者,第一首节点也可以自行感知到工作路径出现故障,无需接收第四节点发送的路径故障信息。
S660:第一首节点向第三节点发送带宽激活消息。
第一首节点将带宽激活消息插入第一数据帧,该带宽激活消息用于指示下游节点激活配置第一业务的目标带宽。具体地,该带宽激活消息至少包括第一业务的目标带宽,该目标带宽具体用于指示下游节点将第一业务的带宽由保护带宽调整为目标带宽。其中,保护带宽为第一业务建立第一保护路径的虚连接所占用的带宽。
示例地,第一数据帧除了包括带宽激活消息,还包括APS消息,该APS消息用于指示第四节点将第一业务倒换至第一保护路径上。
示例地,第一数据帧包括净荷区,带宽激活消息和APS消息携带于净荷区。
示例地,净荷区还包括以下信息中至少一项:协议报文长度、消息类型、版本号、第一保护路径的业务ID,其中,消息类型用于指示该第一数据帧携带带宽激活消息和APS消息。
示例地,第一首节点向第一保护路径上的下游节点发送带宽激活消息之后,将第一业务倒换至第一保护路径上。这样,先发送带宽激活消息再进行本地保护组的倒换,一方面可以确保带宽激活信令可以顺利发送出去。因为如果先切换保护组,由于下游节点还未完成带宽调整,此时业务数据流的带宽一般远大于保护带宽,导致带宽激活信令很难发送出去。另一方面可以保证带宽激活信令快速传送到对端节点进行保护倒换,实现业务的快速恢复。
在执行本步骤之前,第一首节点还需要:获取路径故障消息中的受影响业务ID,即第一业务ID,进而根据第一业务ID找到对应进行共享保护的虚连接业务ID。该虚连接业务ID可以用于下游节点确定是否有其他业务与第一业务在保护路径段共享带宽资源。
之后,下游节点根据带宽激活消息和APS消息完成第一业务的目标带宽配置以及路径倒换。第一业务从第一工作路径倒换至第一保护路径上。具体配置即倒换过程此处不再进行赘述。
S670:第三节点向第四节点转发带宽激活消息。
示例地,第三节点同时向第四节点转发APS消息,所述APS消息用于指示第四节点将业务倒换至第一保护路径上。
S671:第四节点将第一业务倒换至第一保护路径上。
示例地,第四节点根据APS消息将业务倒换至第一保护路径上。
S680:第一首节点向网络设备发送业务路径切换成功信息。
第一首节点检测到端到端业务状态无告警,则通告网络设备第一业务已从第一工作路径成功倒换至第一保护路径。
图7是本申请实施例提供的一种业务保护方法的流程图。该方法的执行主体可以是图6中的第一首节点,即业务首节点,也可以是共享保护区段首节点。
S710:第一节点确定第一工作路径出现故障。
本实施例以执行主体为图6中的第一首节点为例进行说明。
示例地,第一首节点接收到来自第四节点的路径故障消息,该路径故障消息用于指示第一首节点与第四节点之间的第一工作路径出现故障,从而第一首节点确定第一工作路径出现故障。具体地,第一工作路径出现故障可以包括:第一工作路径上的节点出现故障,或者第一工作路径上相邻节点间的链路出现故障,例如断纤。本实施例对此不进行限定。第一首节点根据该路径故障消息确定第一工作路径出现故障。示例地,路径故障消息可以是RSVP Notify消息,RSVP Notify消息是一种路径事件通知消息,RSVP Notify消息的格式可以参考现有的Notify消息,携带受影响业务ID以及故障点信息。故障点信息可以包括节点与相邻节点之间的链路的故障,或者是节点端口的故障,或者是其他类型的故障,本实施例对此不进行限定。例如,该路径故障消息携带第一业务ID及第一首节点与第四节点之间的链路出现故障的故障点信息。
示例地,该路径故障消息被第四节点插入第一OSU帧中传输至第一首节点。例如,路径故障信息被插入OSU帧的操作管理维护(operation,administration and maintenance,OAM)开销中。
可选地,第一首节点接收路径故障消息包括:第一首节点接收来自第四节点的数据帧,将该数据帧进行解映射得到OSU帧,再从该OSU帧的开销中获取路径故障消息。
S720:第一节点基于第一工作路径出现故障生成带宽激活消息。
本实施例中,带宽激活消息用于指示第一保护路径的各节点将业务带宽由保护带宽调整为目标带宽。
示例地,第一节点基于第一工作路径出现故障生成APS消息,所述APS消息用于指示第二节点将业务倒换至第一保护路径上。
由于第一保护路径为虚连接,因此在将业务倒换之前,第一保护路径只占用很小的带宽资源,例如2M,本申请中将其称为保护带宽,表示第一保护路径在传输业务之前的预占用带宽。带宽激活消息则具体用于指示第一保护路径的各节点将第一业务从保护带宽调整为目标带宽,例如100M,以正常传输业务。
以图6所示的第一首节点作为执行主体。示例地,第一首节点首先根据路径故障消息中携带的受影响业务ID确定该业务的目标带宽,并将该目标带宽转换为带宽激活消息字段。
示例地,第一首节点还可以根据路径故障消息中携带的受影响业务ID确定该业务的虚连接业务ID,作为发送选择项。其中,第一首节点将受影响业务ID和虚连接业务ID的对应关系预先存储在节点内,当收到其他节点发送的路径故障消息时获取。
示例地,第一节点将带宽激活消息和APS消息插入第一数据帧。第一数据帧可以是灵活 光业务单元OSU帧。
本实施例中,作为OTN网络中一种灵活的封装格式,OSU帧的长度可以为192字节,或者240字节、128字节、64字节中的一种,随着技术的发展,也可以是其他字节数,本申请对此不进行限制,仅以OSU帧的长度为192字节为例进行说明。所述OSU帧包括开销区(overhead)和净荷区(payload),净荷区字段可自行定义。
示例地,所述带宽激活消息被插入净荷区,占用四个字节,共32个比特位。
示例地,所述第二OSU帧还携带自动保护倒换APS消息,所述APS消息被插入净荷区净荷区,占用两个字节,共16个比特位。所述APS消息用于指示第一保护路径的末节点将业务倒换至该第一保护路径上。需要说明的是,该保护倒换信息在第一保护路径的中间节点(例如第三节点)处透传,仅在末节点处被获取。中间节点仅获取带宽激活信息即可。
可选地,所述第二OSU帧还携带协议报文长度,所述协议报文长度被插入净荷区,占用一个字节,共8个比特位。
可选地,所述第二OSU帧还携带消息类型,标识该OSU帧携带带宽激活消息和/或APS消息。所述消息类型被插入净荷区,占用一个字节,共8个比特位。
可选地,所述第二OSU帧还携带业务ID,在本实施例中为虚连接业务ID。作为端到端路径唯一标识,所述虚连接业务ID用于下游节点确定是否有其他业务与第一业务共享带宽。所述虚连接业务ID被插入净荷区,占用四个字节,共32个比特位。
表5是本实施例提供的一种净荷区消息格式,其中,消息格式中的字段含义如表6所示,表7为一种OSU帧的帧格式。
表5
Figure PCTCN2021118631-appb-000006
表6
字段名 含义 取值
Len 协议报文长度 一个8bit位的数值
Message_type 具体消息类型:标识带宽激活+APS双端倒换 一个8bit位数值
Ver 版本号 一个8bit位数值
Service ID 虚连接业务ID,端到端路径唯一标识ID 一个32bit位数值
Bandwidth 业务带宽属性 一个32bit位数值
APS 协议双端倒换字节,与标准定义一致 一个16bit位数值
Reserved 预留字节,后续可扩展业务属性  
表7
Figure PCTCN2021118631-appb-000007
S730:第一节点在第一保护路径上发送所述带宽激活消息。
示例地,第一节点在第一保护路径上发送携带带宽激活消息的第一数据帧。
示例地,该第一数据帧还携带APS消息。以下以该第一数据帧为OSU帧为例进行说明。
本实施例中,由于第一保护路径的交叉连接已经建立完成,因此第一节点可直接在第一保护路径上发送所述OSU帧。而且第一保护路径是对应第一业务的备用路径,因此第一保护路径的节点可以自动识别所述OSU帧中的目标带宽用于为第一业务进行带宽激活。
本步骤具体还包括:所述第一节点将所述OSU帧映射到高阶OTN帧,例如ODUk帧,然后在第一保护路径上发送该OTN帧。
示例地,第一节点向第一保护路径上的下游节点发送带宽激活消息之后,将第一业务倒换至第一保护路径上。这样,先发送带宽激活消息再进行本地保护组的倒换,一方面可以确保带宽激活信令可以顺利发送出去。因为如果先切换保护组,由于下游节点还未完成带宽调整,此时业务数据流的带宽一般远大于保护带宽,导致带宽激活信令很难发送出去。另一方面可以保证带宽激活信令快速传送到对端节点进行保护倒换,实现业务的快速恢复。
上述实施例提供的业务保护方法,在业务发生故障前预先完成共享保护路径的虚连接端到端建立,当业务的工作路径发生故障时,业务首节点通过OSU帧携带控制信令实现保护路径的端到端转发,并通过首末节点保护倒换机制结合带宽激活信令,实现业务的保护路径快速生效,使得业务性能快速恢复。通过上述方法,多条业务预先建立保护路径虚连接,同时共用保护路径段的带宽,一方面可以节省带宽资源,另一方面可以增加倒换速度,快速恢复业务性能。
图8是本申请实施例提供的另一种业务保护方法的流程图,该方法可以适用于图6中的第三节点。以执行主体为图6中的第三节点为例进行介绍。
S810:第三节点接收第一数据帧,所述第一数据帧中携带带宽激活消息。
以下以第一数据帧为OSU帧为例进行说明。
第三节点接收来自第一节点的OSU帧,所述OSU帧携带带宽激活消息,其中,所述带宽激活消息用于指示所述第三节点激活配置业务的目标带宽。例如,所述带宽激活消息可以是业务的目标带宽。
示例地,所述OSU帧还携带APS消息,所述APS消息用于指示保护路径段末节点(例如图6中的第二节点)将业务倒换至保护路径上。
具体地,以图6所示的第三节点为执行主体,第三节点接收来自来自第一首节点的OTN帧(例如ODUk帧),对该OTN帧进行解映射,得到所述OSU帧。
S820:第三节点从所述第一数据帧中获取所述带宽激活消息。
示例地,OSU帧包括开销区和净荷区净荷区,所述带宽激活消息位于净荷区净荷区中,占用四个字节,共32个比特位。所述OSU帧还可以携带APS消息,所述APS消息用于指示工作路径末节点将业务倒换至保护路径上。所述APS消息也位于所述净荷区中,占用两个字 节,共16个比特位。
示例地,所述OSU帧还包括以下信息中至少一项:协议报文长度、消息类型、版本号、保护路径业务ID,其中,所述消息类型用于指示所述OSU帧携带的消息。所述保护路径业务ID用于所述第三节点确定是否有其他业务与第一业务共享资源。
S830:第三节点根据所述带宽激活消息将所述业务由保护带宽调整为目标带宽。
示例地,所述带宽激活消息包括第一业务的目标带宽,所述第三节点根据带宽激活消息将第一业务的带宽从保护带宽调整为目标带宽,所述保护带宽表示为第一业务建立第一保护路径的虚连接所占用的带宽。
当第三节点判断当前剩余带宽大于第一业务的目标带宽时,直接激活本节点第一业务对应的入/出通道的保护带宽到目标带宽即可。
当第三节点判断当前剩余带宽小于第一业务的目标带宽时,根据第一业务的虚连接业务ID,获取共享保护路径段带宽的业务组ID,进一步获取与第一业务共享带宽的N个关联业务ID。此时,如果剩余带宽与N+1个业务的保护带宽之和大于第一业务的目标带宽,第三节点则将关联业务的保护带宽调整为零,然后将第一业务的带宽由保护带宽调整为目标带宽。例如,第一业务与其他3条关联业务(N=3)在保护路径段的保护带宽均为2M,第一业务的目标带宽为100M,且第三节点的剩余带宽为92M。第三节点通过计算得知剩余带宽与N+1个业务的保护带宽之和92M+2M*(3+1)等于第一业务的目标带宽,于是将关联业务的保护带宽均调整为0,然后将第一业务的带宽调整为目标带宽。
需要说明的是,当剩余带宽与N+1个业务的保护带宽之和大于第一业务的目标带宽时,第三节点可以选取关联业务中的部分,将其保护带宽调整为0,也可以将全部关联业务的带宽调整为0,然后将第一业务的带宽调整为目标带宽。本申请实施例对具体处理方式不进行限定。
还需要说明的是,当剩余带宽与N+1个业务的保护带宽之和小于第一业务的目标带宽时,第三节点不进行处理。或者,第三节点向第一首节点发送激活失败信息。
S840:第三节点所述带宽激活消息沿所述第一保护路径转发给下游节点。
示例地,所述第三节点将携带所述带宽激活消息的OSU帧沿第一保护路径转发给下游节点。示例地,该OSU帧还包括APS消息。
图9是本申请实施例提供的又一种业务保护方法的流程图,该方法可应用在图5所示的第四节点中。以下以执行主体为第四节点为例进行说明。
S910:第二节点监测到第一节点与第二节点之间的第一工作路径出现故障。
在正常状态下,第二节点可以接收到来自第一节点的业务数据,当第一节点与第二节点之间的工作路径出现故障时,第二节点无法在一定时间内收到来自第一节点的业务数据,或者收到来自第一节点的损坏数据(例如丢包、误码),则判定第一工作路径出现故障。所述故障具体包括第一节点与第二节点之间的链路出现故障,例如断纤,还可以包括第一节点的发送端口出现故障,或者第二节点的接收端口出现故障,还可以包括其他故障类型。
S920:第二节点生成路径故障消息。
所述路径故障消息用于指示所述第一节点到所述第二节点之间的第一工作路径出现故障。
本实施例中的路径故障消息可以是RSVP Notify消息,RSVP Notify消息是一种路径事件通知消息,其具体格式可以参考现有的Notify消息。路径故障消息可以携带受影响业务ID、故障点信息等。
S930:第二节点将路径故障消息插入第一数据帧,发送给第一节点。
示例地,第二节点将路径故障消息插入第一OSU帧的开销中,发送给第一节点。
需要说明的是,上述步骤为可选步骤,事实上,第一节点也可自行感知业务的工作路径出现故障。
S940:第二节点接收第三节点在第一保护路径上转发的第二数据帧。
示例地,第二OSU帧包括带宽激活消息和APS消息,所述带宽激活消息用于指示第二节点将第一业务的带宽由保护带宽调整为目标带宽,所述APS消息用于指示所述第二节点将所述业务倒换至所述第一保护路径上。示例地,第二数据帧也可以只携带带宽激活消息,第二节点根据带宽激活消息将业务倒换至第一保护路径上。
示例地,第二数据帧为第二OSU帧,该带宽激活消息和APS消息携带于第二OSU帧的净荷净荷区区中。
S950:第二节点根据所述带宽激活消息将第一业务的带宽由保护带宽调整为目标带宽,以及根据所述APS消息将第一业务倒换至第一保护路径上。
示例地,第二节点从第二OSU帧的净荷区获取的带宽激活消息和APS消息。净荷区然后根据所述带宽激活消息将第一业务的带宽由保护带宽调整为目标带宽,以及根据所述APS消息将第一业务倒换至第一保护路径上。
图10是本申请实施例提供的业务保护方法能够应用的一种场景图。
如图10所示,该场景的应用网络为GMPLS/ASON网络,具备ASON自动化功能。图10所示的ASON网络中有A、B、C、D、E、F六个节点。在本实施例中,节点A、B、C、D、E、F均开启ASON功能,并且每个节点都部署RSVP和带宽激活装置,业务的首末节点还配置保护组切换装置。全网节点、链路等网络信息通过ASON协议的OSPF或者基于流量工程的最短路径优先协议(Open Shortest Path First-Traffic Engineering,OSPF-TE)自动获取,端到端业务路径发放和恢复通过ASON协议的RSVP-TE自动建立。PCE根据OSPF或者路径计算单元通信协议(Path Computation Element Communication Protocol,PCEP)等自动获取全网节点、链路、业务信息。其中PCE主要集中处理网络业务端到端路径计算,可部署在服务器网管或类似设备中。如果网络中无PCE,网络业务端到端路径可通过分布式方式由各个节点计算。
本实施例以两条业务进行共享保护为例对图10进行说明。
图10所示的场景下,本申请实施例提供的业务保护方法包括以下步骤:
步骤一:
业务1具有第一工作路径A-B,业务2具有第二工作路径C-D。NCE智能化网管发放均为共享保护类型的业务1和业务2后,PCE获取全网业务和网络拓扑,基于不同分离路径及可共享资源策略计算业务1和业务2的保护路径。其中,PCE确定业务1的第一保护路径A-E-F-B,业务2的第二保护路径C-E-F-D,E-F为共享的保护路径段,两条业务共享保护路径段的带宽。
需要说明的是,本实施例中所说的共享可以包括以下情形:1)同速率业务1:N共享,即一份带宽资源供N条同速率业务共享使用,例如N条速率均为100M的业务共享100M带宽;2)不同速率业务1:N共享,即一份带宽资源供N条不同速率业务共享使用,例如三条速率分别为50M、70M、100M的业务共享100M带宽;3)同速率业务M:N共享,M<N,即M份带宽资源供N条同速率业务共享使用,例如10条100M业务共享7份100M的带宽资源;4)不同速率业务M:N共享,M<N,即M份带宽资源供N条不同速率业务共享使用, 例如三条速率分别为50M、70M、100M的业务共享100*2=200M带宽资源。
步骤二:
PCE下发各业务保护路径到业务首节点。如图10所示,PCE下发第一保护路径A-E-F-B到节点A,下发第二保护路径C-E-F-D到节点C,同时,下发内容还可以包括第一保护路径和第二保护路径是否资源共享、共享度以及共享的业务组ID。其中,共享度表示共享保护路径段的业务数。例如,本实施例中业务1(保护路径A-E-F-B)与业务2(保护路径C-E-F-D)在E-F段资源共享,共享度为2。
PCE可以通过PCEP协议信令消息向业务首节点A和C下发业务保护路径,或者,也可以通过与PCEP具有相同功能的协议消息。例如,可以通过PCE与节点A之间原有信令中新增的字段(例如,扩展TLV信息)实现。TLV是一种可变的格式,意为:类型(Type)、长度(Length)、值(Value),其中,Type字段是关于标签和编码格式的信息;Length字段是定义数值的长度;Value字段表示实际的数值。Type和Length的长度一般是固定,例如为2或4个字节。信令字段的具体格式可参考前述实施例,此处不再进行赘述。
步骤三:
首节点接收业务保护路径后,发起建立带宽共享的保护路径虚连接。如图10所示,节点A发起信令建立保护路径A-E-F-B的虚连接;节点C发起信令建立保护路径C-E-F-D的虚连接。具体地,由A节点和C节点发出的虚连接建立信令中可以包括E-F段为虚连接、是否共享、共享度、共享的业务组ID。
首节点向下游发送的虚连接建立信令可以是RSVP-TE信令消息,或者,也可以是与RSVP-TE具有相同功能的协议消息。例如,所述信令消息可以通过第一首节点与第三节点之间原有信令中新增的字段(例如,扩展RSVP字段)实现。扩展RSVP字段的格式可参考前述实施例,此处不再进行赘述。
具体地,首节点A和C直接本地建立保护组,用于当工作路径出现故障时,通过保护组将业务倒换至保护路径上。业务数据单发单收,由于保护路径为虚连接,因此不用于传输业务数据。
对于中间节点E和F,在收到虚连接建立信令后,获取信令为建立共享保护虚连接,且E-F段资源共享,则本地建立带宽为保护带宽(例如2M)的虚连接交叉。其中,业务1的交叉为入端口1—通道1—带宽2M,出端口1—通道1—带宽2M;业务2的交叉为入端口2—通道2—带宽2M,出端口2—通道2—带宽2M。同时,根据资源共享关系(共享度、共享业务组ID),将业务1和业务2的保护通道资源共享关系存入本地的带宽激活单元。业务1和业务2的目标带宽均为100M。
对于业务末节点B和D,处理同首节点A、C,在本地建立保护组,用于当工作路径出现故障时,通过保护组将业务倒换至保护路径上。业务数据单发单收,由于保护路径为虚连接,因此不用于传输业务数据。
步骤四:
当节点A-B之间出现故障,首节点A通过OSU帧的OAM开销检测到业务工作路径故障。对于A-B单向故障,可以通过OSU帧携带带宽激活信息的同时新增APS协议双端倒换字节,相比较单独的APS开销反插告警到对端节点,双端倒换效率更快。
步骤五:
首节点通过告警找到受影响业务ID,进而找到对应恢复的共享保护虚连接业务ID,然后通过OSU帧携带随路信令进行端到端带宽激活。以首节点为A、末节点为B,业务路径为 A-E-F-B的随路带宽激活信令,仅需携带目标带宽和APS协议双端倒换信息即可,选择携带虚连接业务ID。
对于首节点A,需要扩展OSU帧的随路数据面信元,目前有两种方式。方式一是扩展预留新的PT号给随路带宽激活控制信令使用,方式二是在已有OAM数据面(PT:111)扩展随路开销消息子Type类型(高4bit位1000标识该OAM为控制信令大类型,低8bit位00000001标识带宽配置激活具体控制类型)。或者,在净荷区净荷区中扩展字段携带具体控制类型,还需要携带带宽激活消息和APS消息,同时可以选择携带协议报文长度、版本号、业务虚连接ID等信息。
对于中间节点E、F和末节点B,在提取OSU帧的消息类型后,则固定上送到带宽激活单元处理。当节点判断当前剩余带宽大于第一业务的目标带宽时,直接激活本节点业务1对应的入/出通道的保护带宽2M到目标带宽100M即可。
以中间节点E为例,当节点E判断当前剩余带宽小于业务1的目标带宽时,根据业务1的虚连接业务ID,获取共享保护路径段带宽的业务组ID,进一步获取与业务1共享带宽的N个关联业务ID。此时,如果剩余带宽与N+1个业务的保护带宽之和大于业务1的目标带宽,中间节点E则将关联业务的保护带宽调整为零,然后将业务1的带宽由保护带宽调整为目标带宽。例如,业务1与其他3条关联业务(N=3)在保护路径段的保护带宽均为2M,业务1的目标带宽为100M,且节点E的剩余带宽为92M。节点E通过计算得知剩余带宽与N+1个业务的保护带宽之和92M+2M*(3+1)等于业务1的目标带宽,于是将关联业务的保护带宽均调整为0,然后将业务1的带宽调整为目标带宽100M。
需要说明的是,当剩余带宽与N+1个业务的保护带宽之和大于业务1的目标带宽时,节点E可以选取关联业务中的部分,将其保护带宽调整为0,也可以将全部关联业务的带宽调整为0,然后将业务1的带宽调整为目标带宽。本申请实施例对具体处理方式不进行限定。
还需要说明的是,当剩余带宽与N+1个业务的保护带宽之和小于业务1的目标带宽时,节点E不进行处理。或者,节点E向首节点A发送激活失败信息。
步骤六:
首节点A在发送包含带宽激活消息和APS消息的控制信令之后,进行本地保护组快速切换,将业务从工作路径切换到保护路径。先发送控制信令再进行本地保护组切换的目的是:一方面确保控制信令可以顺利发送出去,因为如果先切换保护组,此时业务流的带宽一般远大于保护带宽,控制信令无法发送出去;另一方面可以保证控制信令快速传到对端末节点进行保护倒换,使得端到端业务恢复速度更快。
对于末节点B,在接收到来自首节点A的OSU帧后,获取该OSU帧的消息类型,然后根据OSU帧中携带的APS消息进行保护组倒换,将业务切换到保护路径。
步骤七:
首节点检测端到端业务状态无告警,则通告软件RSVP倒换保护路径已成功或通告PCE业务倒换到保护路径已切换成功,软件RSVP或PCE进行端到端路径接管统一维护管理,刷新业务工作路径已切换到保护路径(数据面与控制面数据一致)。
图10所示的业务在保护路径的带宽激活过程,主要包括以下三个关键点:1)共享保护路径虚连接进行端到端配置建立;2)OAM开销故障快速检测后反插告警信息到OSU开销中,然后传输首/末节点,建立了双向保护倒换机制;3)OSU帧携带带宽激活和APS控制信令进行端到端转发,传递速度快。中间节点快速激活带宽,开启端到端业务。通过首末节点保护倒换机制结合端到端激活共享带宽,可以实现业务的共享保护路径快速生效,恢复业务性能。
图11是本申请实施例提供的另一种业务保护方法的应用场景图。
如图11所示,该场景的应用网络为GMPLS/ASON网络,具备ASON自动化功能。图11所示的ASON网络中有A、B、C、D、E、F、G、H、I、J十个节点。在本实施例中,节点A、B、C、D、E、F、G、H、I、J均开启ASON功能,并且每个节点都部署RSVP和带宽激活装置,业务的首末节点还配置保护组切换装置。全网节点、链路等网络信息通过ASON协议的OSPF或者基于流量工程的最短路径优先协议(Open Shortest Path First-Traffic Engineering,OSPF-TE)自动获取,端到端业务路径发放和恢复通过ASON协议的RSVP-TE自动建立。PCE根据OSPF或者路径计算单元通信协议(Path Computation Element Communication Protocol,PCEP)等自动获取全网节点、链路、业务信息。其中PCE主要集中处理网络业务端到端路径计算,可部署在服务器网管或类似设备中。如果网络中无PCE,网络业务端到端路径可通过分布式方式由各个节点计算。
本实施例以两条业务进行共享保护为例对图11进行说明。
图11所示的场景下,本申请实施例提供的业务保护方法包括以下步骤:
步骤一:
业务1具有第一工作路径A-B-C-I,业务2具有第二工作路径C-E-F-J。NCE智能化网管发放均为共享保护类型的业务1和业务2后,PCE获取全网业务和网络拓扑,基于不同分离路径及可共享资源策略计算业务1和业务2的保护路径。其中,PCE确定业务1的第一保护路径A-B-G-H-C-I,业务2的第二保护路径D-E-G-H-F-J,G-H为共享的保护路径段,两条业务共享保护路径段的带宽。
本实施例中的共享情形可以参考前述实施例,此处不再进行赘述。
步骤二:
PCE下发各业务保护路径到业务首节点。如图10所示,PCE下发第一保护路径A-B-G-H-C-I到节点A,下发第二保护D-E-G-H-F-J到节点D,同时,下发内容还可以包括第一保护路径和第二保护路径是否资源共享、共享度以及共享的业务组ID。其中,共享度表示共享保护路径段的业务数。例如,本实施例中业务1(保护路径A-B-G-H-C-I)与业务2(保护路径D-E-G-H-F-J)在G-H段资源共享,共享度为2。
PCE可以通过PCEP协议信令消息向业务首节点A和C下发业务保护路径,或者,也可以通过与PCEP具有相同功能的协议消息。具体消息类型以及格式可以参考前述实施例,此处不再进行赘述。
需要说明的是,本实施例与图10所示的实施例的区别在于图10中业务的工作路径发生故障后是业务端到端进行恢复,而本实施例中是区段恢复,即保护倒换的节点是中间节点而非业务的首节点。因此携带带宽激活消息的OSU帧随路信令是区段首节点产生并发出,并沿保护路径段进行带宽激活。因此,在本实施例中,首节点可以根据PCE下发的保护路径自动加工生成区段保护路径,例如,节点A生成区段保护路径B-G-H-C,节点D生成区段保护路径E-G-H-F。
步骤三:
首节点接收业务保护路径后,发起建立带宽共享的保护路径虚连接。如图11所示,节点A发起信令建立保护路径A-B-G-H-C-I/的虚连接;节点D发起信令建立保护路径D-E-G-H-F-J的虚连接。具体地,由节点A和节点D发出的虚连接建立信令中可以包括G-H段为虚连接、是否共享、共享度、共享的业务组ID。
首节点向下游发送的虚连接建立信令可以是RSVP-TE信令消息,或者,也可以是与 RSVP-TE具有相同功能的协议消息。例如,所述信令消息可以通过第一首节点与第三节点之间原有信令中新增的字段(例如,扩展RSVP字段)实现。扩展RSVP字段的格式可参考前述实施例,此处不再进行赘述。
对于中间节点B、C、E、F,作为保护区段的首节点或者末节点,直接本地建立保护组,用于当工作路径出现故障时,通过保护组将业务倒换至保护路径上。业务数据单发单收,由于保护路径为虚连接,因此不用于传输业务数据。
对于中间节点G和H,在收到虚连接建立信令后,获取信令为建立共享保护虚连接,且G-H段资源共享,则本地建立带宽为保护带宽(例如2M)的虚连接交叉。其中,业务1的交叉为入端口1—通道1—带宽2M,出端口1—通道1—带宽2M;业务2的交叉为入端口2—通道2—带宽2M,出端口2—通道2—带宽2M。同时,根据资源共享关系(共享度、共享业务组ID),将业务1和业务2的保护通道资源共享关系存入本地的带宽激活单元。业务1和业务2的目标带宽均为100M。
需要说明的是,当网络中无集中的PCE,而是通过分布式存在于每个节点中时,则首节点A和首节点D可以分别通过PCEP消息配置业务的保护路径虚连接B-G-H-C和E-G-H-F,即只需进行区段保护配置。具体方式可参考本实施例的集中式处理方式,此处不再进行赘述。
步骤四:
当节点B-C之间出现故障,首节点A通过OSU帧的OAM开销检测到业务工作路径故障。对于B-C单向故障,C节点感知故障后,可以通过OSU帧携带带宽激活信息的同时新增APS协议双端倒换字节,相比较单独的APS开销反插告警到对端节点,双端倒换效率更快。
在图11所示的场景下业务保护中的步骤五~步骤七与在图10所示的场景下的步骤五~步骤七相同,这里不再赘述。
上面结合图6-图11详细介绍了本申请实施例提供的恢复路径配置的方法,下面结合图12-图15详细介绍本申请实施例提供的业务保护的装置。
参见图12,图12是本申请提供的业务保护的装置1200的示意图。如图12所示,装置1200包括接收单元1210、处理单元1220以及发送单元1230。
确定单元1210,用于确定工作路径出现故障,例如通过接收路径故障消息确定工作路径出现故障。所述路径故障消息用于指示所述第一节点与所述第二节点之间的所述第一工作路径上出现故障。
处理单元1220,用于根据所述路径故障消息生成带宽激活消息,所述带宽激活消息用于指示所述第三节点激活配置所述业务的目标带宽。
示例地,处理单元还用于基于工作路径出现故障生成APS消息。
发送单元1230,用于将所述带宽激活消息发送出去。示例地,将所述带宽激活消息插入光业务单元OSU帧,在所述第一保护路径上发送所述OSU帧。
装置1200和方法实施例中的首节点对应,具体可以是业务首节点,也可以是保护区段首节点。装置1200的相应单元用于执行图6至图11所示的方法实施例中由首节点执行的相应步骤。
接收单元1210和发送单元1230可以组成收发单元,同时具有接收和发送的功能。其中,处理单元1220具体可以包括故障信息获取单元和带宽激活消息生成单元,处理单元可以是至少一个处理器。发送单元1230可以是发射器或者接口电路,接收单元1210可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置1200还可以包括存储单元,用于存储数据和/或信令,接收单元1210、处 理单元1220以及发送单元1230可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图13,图13是本申请提供的业务保护的装置1300的示意图。如图13所示,装置1300包括接收单元1310、获取单元1320、配置单元1330。
接收单元1310,用于接收来自OSU帧,所述OSU帧包括带宽激活消息,所述带宽激活消息用于指示激活配置所述业务的目标带宽。
获取单元1320,用于从所述OSU帧中获取所述带宽激活消息。
配置单元1330,用于根据所述带宽激活消息激活配置所述业务的所述目标带宽。
装置1300方法实施例中的中间节点对应,装置1300可以是方法实施例中的第三节点,或者方法实施例中的节点内部的芯片或功能模块。装置1300的相应单元用于执行图6至图11所示的方法实施例中由中间节点执行的相应步骤。
接收单元1310可以同时具有接收和发送的功能。其中,配置单元1330可以是图5中的带宽激活单元,具体用于激活配置业务的目标带宽。接收单元1310可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图14,图14是本申请实施例提供的一种业务保护装置1400的示意图。装置1400包括监测单元1410、故障消息生成单元1420、发送单元1430和接收单元1440。
监测单元1410,用于监测到节点之间的第一工作路径出现故障。
处理单元1420,用于生成路径故障消息,所述路径故障消息用于指示所述首节点将工作路径上的业务倒换到保护路径上。
发送单元1430,用于将路径故障消息插入OSU帧,发送给首节点。
以上单元均为可选单元,此外,装置1400还包括:
接收单元1440,用于接收来自所述首节点的OSU帧,OSU帧包括APS消息,所述APS消息用于指示当前节点将业务倒换至保护路径上。
处理单元1420还用于根据APS消息将业务倒换至保护路径上。
处理单元1420可以是至少一个处理器。接收单元1440和发送单元1430可以组成收发单元,同时具有接收和发送的功能。发送单元1430可以是发射器或者接口电路,接收单元1440可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
如图15所示,图15为本申请提供的业务保护装置1500的结构示意图。装置1500包括包括处理器1510,处理器1510和存储器1520耦合。存储器1520可以用于存储计算机程序或指令或者和/或数据,处理器1510用于执行存储器1520存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
如图15所示,该恢复路径配置的装置1500还包括收发器1530,收发器1530用于信号的接收和/或发送。例如,处理器1510用于控制收发器1530进行信号的接收和/或发送。
可选地,该装置1500包括的处理器1510为一个或多个。
可选地,如图15所示,该装置1500还包括存储器1520。
可选地,该业务保护装置1500包括的存储器1520可以为一个或多个。
可选地,该存储器1520可以与该处理器1510集成在一起,或者分离设置。
例如,处理器1510用于实现上文方法实施例中由节点处理单元、获取单元、配置单元执行的相关的操作。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由首节点或者中间节点执行的方法的计算机指令。
本申请实施例还提供一种计算机程序产品,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由首节点执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备和节点。
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读存储介质对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。计算机程序产品可包含计算机可读存储介质。
作为实例而非限制,此类计算机可读存储介质可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一或多个电路或逻辑元件中。
本申请的技术可在各种各样的装置或设备中实施,包含集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (38)

  1. 一种业务保护方法,所述方法应用于通信系统中,所述通信系统包括第一节点、第二节点,第三节点,其中,所述第一节点是第一工作路径和第一保护路径的共同首节点,所述第二节点是所述第一工作路径和所述第一保护路径的共同宿节点,所述第三节点为所述第一保护路径上除所述第一节点和所述第二节点外的任一节点,所述第一工作路径为所述业务的当前通信路径,所述第一保护路径为所述第一工作路径的备用路径,其特征在于,包括:
    所述第一节点确定所述第一工作路径出现故障,基于所述第一工作路径出现故障,所述第一节点生成带宽激活消息,所述带宽激活消息用于指示所述第三节点将所述业务的带宽由保护带宽调整为目标带宽,其中,所述保护带宽表示所述第一保护路径在传输所述业务之前的预占用带宽,所述目标带宽表示所述第一保护路径传输所述业务的实际占用带宽,所述保护带宽小于所述目标带宽;
    所述第一节点在所述第一保护路径上发送所述带宽激活消息。
  2. 如权利要求1所述的方法,其特征在于,所述第一节点在所述第一保护路径上发送所述带宽激活消息,包括:
    所述第一节点将所述带宽激活消息插入第一数据帧的净荷区;
    所述第一节点在所述第一保护路径上发送所述第一数据帧。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一数据帧的净荷区包括多个光业务单元,所述多个光业务单元中的每一个光业务单元都包括单元开销区和单元净荷区,所述第一节点在所述第一保护路径上发送所述带宽激活消息,包括:
    所述第一节点将所述带宽激活消息插入一个或者多个所述光业务单元的单元净荷区;
    所述第一节点在所述第一保护路径上发送所述第一数据帧。
  4. 如权利要求1至3任一所述的方法,其特征在于,所述第一数据帧的净荷区还携带自动保护倒换APS消息,所述APS消息用于指示所述第二节点将所述业务倒换至所述第一保护路径上。
  5. 如权利要求1至4任一所述的方法,其特征在于,所述第一数据帧的净荷区还携带消息类型,所述消息类型用于指示所述第一数据帧携带所述带宽激活消息。
  6. 如权利要求1至5任一所述的方法,其特征在于,所述第一数据帧的净荷区还携带所述第一保护路径的业务ID,所述第三节点根据所述第一保护路径的业务ID确定与所述业务共享所述第三节点的带宽的其他业务。
  7. 如权利要求1至6任一所述的方法,其特征在于,所述第一节点在所述第一保护路径上向所述第三节点发送所述带宽激活消息之后,以及,所述方法还包括:
    所述第一节点将所述业务的带宽由所述保护带宽调整为所述目标带宽;
    所述第一节点将所述业务倒换至所述第一保护路径上。
  8. 如权利要求1所述的方法,其特征在于,所述第一节点确定所述第一工作路径出现故障之后,所述方法还包括:
    所述第一节点获取所述业务的ID,根据所述业务的ID确定所述所述第一保护路径的业务ID。
  9. 如权利要求1、2、4至8任一所述的方法,其特征在于,所述第一数据帧的长度为 192字节192字节、240字节、128字节或者64字节。
  10. 一种业务保护方法,所述方法应用于通信系统中,所述通信系统包括第一节点、第二节点,第三节点,其中,所述第一节点是第一工作路径和第一保护路径的共同首节点,所述第二节点是所述第一工作路径和所述第一保护路径的共同宿节点,所述第三节点为所述第一保护路径上除所述第一节点和所述第二节点外的任一节点,所述第一工作路径为所述业务的当前通信路径,所述第一保护路径为所述第一工作路径的备用路径,其特征在于,所述方法包括:
    所述第三节点接收第一数据帧;
    所述第三节点从所述第一数据帧中获取所述带宽激活消息;所述带宽激活消息用于指示所述第三节点将所述业务的带宽由保护带宽调整为目标带宽,其中,所述保护带宽表示所述第一保护路径在传输所述业务之前的预占用带宽,所述目标带宽表示传输所述业务的实际占用带宽;
    所述第三节点根据所述带宽激活消息将所述业务的带宽由所述保护带宽调整为所述目标带宽。
  11. 如权利要求10所述的方法,其特征在于,所述带宽激活消息携带于所述第一数据帧的净荷区。
  12. 如权利要求10或11所述的方法,其特征在于,所述第一数据帧的净荷区包括多个光业务单元,所述多个光业务单元中的每一个光业务单元包括单元开销区和单元净荷区,所述带宽激活消息携带于一个或者多个所述光业务单元的单元净荷区。
  13. 如权利要求10至12任一所述的方法,其特征在于,所述第一数据帧的净荷区还携带自动保护倒换APS消息,所述APS消息用于指示所述第二节点将所述业务倒换至所述第一保护路径上。
  14. 如权利要求10至13任一所述的方法,其特征在于,所述第一数据帧的净荷区还携带消息类型,所述消息类型用于指示所述第一数据帧携带所述带宽激活消息。
  15. 如权利要求10至14任一所述的方法,其特征在于,所述第一数据帧还携带所述第一保护路径的业务ID,所述第三节点根据所述第一保护路径的业务ID确定与所述业务共享所述第三节点的带宽的其他业务。
  16. 如权利要求10至14任一所述的方法,其特征在于,当所述第三节点的剩余带宽小于所述业务的所述目标带宽时,所述方法还包括:
    所述第三节点根据所述第一保护路径业务ID确定是否有其他业务与所述业务共享所述第三节点的带宽;
    所述第三节点根据确定的结果判断是否进行带宽调整。
  17. 如权利要求10至16任一所述的方法,其特征在于,当所述第三节点根据所述第一保护路径业务ID确定有N条业务与所述业务共享所述第三节点的带宽时,所述方法还包括:
    所述第三节点确定所述剩余带宽与所述保护带宽*(N+1)之和大于或者等于所述目标带宽,所述N大于或等于1;
    所述第三节点根据所述第一保护路径业务ID获取与所述业务共享所述第三节点带宽的其他业务ID;
    所述第三节点根据所述其它业务ID将至少一项所述其他业务的所述保护带宽调整为0,释放出空闲带宽;
    所述第三节点基于所述剩余带宽和所述空闲带宽将所述业务的带宽从所述保护带宽调整 为所述目标带宽。
  18. 如权利要求10至17任一所述的方法,其特征在于,所述第三节点接收所述第一数据帧,包括:
    所述第三节点接收来自所述第一节点的OTN帧,对所述OTN帧进行解映射,得到所述第一数据帧。
  19. 如权利要求10至18任一项所述的方法,其特征在于,所述第三节点根据所述带宽激活消息将所述业务的带宽由所述目标带宽调整为所述目标带宽之前,所述方法还包括:
    所述第三节点将所述带宽激活消息和所述APS消息沿所述第一保护路径转发给所述第三节点的下游节点。
  20. 一种业务保护方法,所述方法应用于通信系统中,所述通信系统包括第一节点、第二节点、第三节点,其中,所述第一节点是第一工作路径和第一保护路径的共同首节点,所述第二节点是所述第一工作路径和所述第一保护路径的共同宿节点,所述第三节点为所述第一保护路径上除所述第一节点和所述第二节点外的任一节点,所述第一工作路径为所述业务的当前通信路径,所述第一保护路径为所述第一工作路径的备用路径,其特征在于,包括:
    所述第二节点接收来自所述第三节点的第一数据帧,所述第一数据帧包括带宽激活消息,所述带宽激活消息用于指示所述第二节点将所述业务的带宽由保护带宽调整为目标带宽,其中,所述保护带宽表示所述第一保护路径在传输所述业务之前的预占用带宽,所述目标带宽表示传输所述业务的实际占用带宽,所述APS消息用于指示所述第二节点将所述业务倒换至所述第一保护路径上。
    所述第二节点根据所述带宽激活消息将所述业务的带宽由所述保护带宽调整为所述目标带宽。
  21. 如权利要求20所述的方法,其特征在于,所述第一数据帧还携带自动保护倒换APS消息,用于指示所述第二节点将所述业务倒换至所述第一保护路径上。
  22. 如权利要求20或21所述的方法,其特征在于,所述第一数据帧包括净荷区,所述带宽激活消息和所述APS消息位于所述第一数据帧的净荷区中。
  23. 一种网络节点,其特征在于,包括:
    确定单元,用于确定第一工作路径上出现故障;
    处理单元,用于基于所述第一工作路径出现故障,生成带宽激活消息,所述带宽激活消息用于指示第三节点将所述业务的带宽由保护带宽调整为目标带宽,其中,所述保护带宽表示所述第一保护路径在传输所述业务之前的预占用带宽,所述目标带宽表示传输所述业务的实际占用带宽,所述第三节点为第一保护路径上除所述第一节点和所述第二节点以外的任一节点;所述第二节点为所述第一保护路径的宿节点。
    发送单元,用于在所述第一保护路径上发送所述带宽激活消息。
  24. 如权利要求23所述的网络节点,其特征在于,所述处理单元还用于,基于所述第一工作路径出现故障生成自动保护倒换APS消息。
  25. 如权利要求23或24所述的网络节点,其特征在于,所述处理单元还用于:将所述带宽激活消息和所述APS消息插入第一数据帧的净荷区,以及,
    所述发送单元具体用于:在所述第一保护路径上发送所述第一数据帧。
  26. 如权利要求23至25任一所述的网络节点,其特征在于,所述第一数据帧的长度为192字节、240字节、128字节或者64字节。
  27. 一种网络节点,其特征在于,包括:
    接收单元,用于接收第一数据帧;
    获取单元,用于从所述第一数据帧中获取带宽激活消息,所述带宽激活消息用于指示所述网络节点将所述业务的带宽由保护带宽调整为目标带宽,其中,所述保护带宽表示所述第一保护路径在传输所述业务之前的预占用带宽,所述目标带宽表示传输所述业务的实际占用带宽;
    配置单元,用于根据所述带宽激活消息将所述业务的带宽由所述保护带宽调整为所述目标带宽。
  28. 如权利要求27所述的网络节点,其特征在于,所述第一数据帧的长度为192字节、240字节、128字节或者64字节。
  29. 如权利要求27或28所述的网络节点,其特征在于,所述第一数据帧的净荷区包括多个光业务单元,所述多个光业务单元中的每一个光业务单元都包括单元开销区和单元净荷区,所述带宽激活消息位于一个或者多个所述光业务单元的所述单元净荷区。
  30. 如权利要求27至29任一所述的网络节点,其特征在于,所述第一数据帧的净荷区还携带自动保护倒换APS消息,所述APS信息用于指示所述网络节点将所述业务倒换至所述第一保护路径上。
  31. 如权利要求27至30任一所述的网路节点,其特征在于,所述第一数据帧的净荷区还携带所述第一保护路径的业务ID,所述网络节点根据所述第一保护路径的业务ID确定与所述业务共享所述网络节点的带宽的其他业务。
  32. 如权利要求27至31任一所述的网络节点,其特征在于,当所述网络节点的剩余带宽小于所述业务的所述目标带宽时,所述配置单元还用于:
    根据所述业务的所述第一保护路径的业务ID确定是否有其他业务与所述业务共享所述网络节点的带宽;
    根据确定的结果判断是否进行带宽调整。
  33. 如权利要求27至32任一所述的网络节点,其特征在于,当所述网络节点根据所述第一保护路径业务ID确定有N(N≥1)条业务与所述业务共享所述网络节点的带宽时,所述配置单元还用于:
    确定所述剩余带宽与所述保护带宽*(N+1)之和大于或者等于所述目标带宽;
    根据所述业务的所述第一保护路径业务ID获取与所述业务共享所述网络节点带宽的其他业务ID;
    根据所述其它业务ID将至少一项所述其他业务的保护带宽调整为0,释放出空闲带宽;
    基于所述剩余带宽和所述空闲带宽将所述业务的带宽由所述保护带宽调整为所述目标带宽。
  34. 一种网络节点,其特征在于,包括:
    接收单元,用于接收第一数据帧,所述第一数据帧携带带宽激活消息,所述带宽激活消息用于指示所述网络节点将所述业务的带宽由保护带宽调整为目标带宽;
    所述处理单元还用于根据所述带宽激活消息将所述业务的带宽由所述保护带宽调整为所述目标带宽。
  35. 如权利要求34所述的网络节点,所述第一数据帧还携带自动保护倒换APS消息,所述APS消息用于只是所述网络节点将所述业务倒换至所述第一保护路径上。
  36. 一种通信设备,其特征在于,包括处理器和存储器,所述存储器用于存储计算机程序或指令,当所述计算机程序或指令在所述处理器上被执行时,使得如权利要求1至9中任 一项所述方法被执行,或者使得如权利要求10至19中任一项所述方法被执行,或者使得如权利要求20至22任一的方法被执行。
  37. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令用于实现如权利要求1至9中任一项所述的方法,或者实现如权利要求10至19中任一项所述的方法,或者实现如权利要求20至22任一所述的方法。
  38. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至9中任一项所述的方法,或者执行如权利要求10至19中任一项所述的方法,或者执行如权利要求20至22任一所述的方法。
PCT/CN2021/118631 2020-09-27 2021-09-16 一种业务保护方法和网络节点 WO2022063010A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21871381.6A EP4207633A4 (en) 2020-09-27 2021-09-16 SERVICE PROTECTION METHOD AND NETWORK NODES
US18/189,283 US20230232139A1 (en) 2020-09-27 2023-03-24 Service Protection Method and Network Node

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011032565.X 2020-09-27
CN202011032565.XA CN114285462B (zh) 2020-09-27 2020-09-27 一种业务保护方法和网络节点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/189,283 Continuation US20230232139A1 (en) 2020-09-27 2023-03-24 Service Protection Method and Network Node

Publications (1)

Publication Number Publication Date
WO2022063010A1 true WO2022063010A1 (zh) 2022-03-31

Family

ID=80846204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118631 WO2022063010A1 (zh) 2020-09-27 2021-09-16 一种业务保护方法和网络节点

Country Status (4)

Country Link
US (1) US20230232139A1 (zh)
EP (1) EP4207633A4 (zh)
CN (2) CN117856883A (zh)
WO (1) WO2022063010A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4109821A4 (en) * 2020-03-26 2023-08-16 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR CONFIGURING RESTORE PATHS

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117061052A (zh) * 2022-05-05 2023-11-14 中兴通讯股份有限公司 一种业务路径控制方法、装置、存储介质及电子装置
CN115514628B (zh) * 2022-09-25 2024-04-05 四川旅游学院 光纤布线和故障定位方法
CN117201434A (zh) * 2023-11-07 2023-12-08 杭州初灵信息技术股份有限公司 一种以太网数据交互方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030126287A1 (en) * 2002-01-02 2003-07-03 Cisco Technology, Inc. Implicit shared bandwidth protection for fast reroute
CN101621475A (zh) * 2009-08-21 2010-01-06 杭州华三通信技术有限公司 Frr的保护带宽调整方法和设备
CN101958809A (zh) * 2010-10-20 2011-01-26 烽火通信科技股份有限公司 基于包交换的ason网络中实现共享式恢复的方法
CN102143038A (zh) * 2010-06-23 2011-08-03 华为技术有限公司 一种建立业务的方法和节点
WO2011117570A1 (en) * 2010-03-22 2011-09-29 British Telecommunications Public Limited Company Network routing adaptation based on failure prediction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7451340B2 (en) * 2003-03-31 2008-11-11 Lucent Technologies Inc. Connection set-up extension for restoration path establishment in mesh networks
US7406032B2 (en) * 2005-01-06 2008-07-29 At&T Corporation Bandwidth management for MPLS fast rerouting
CN102195859B (zh) * 2010-03-04 2015-05-06 中兴通讯股份有限公司 基于gfp的灵活光通道数据单元带宽调整方法及系统
CN102480411A (zh) * 2010-11-23 2012-05-30 中兴通讯股份有限公司 一种保护带宽资源的预留方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030126287A1 (en) * 2002-01-02 2003-07-03 Cisco Technology, Inc. Implicit shared bandwidth protection for fast reroute
CN101621475A (zh) * 2009-08-21 2010-01-06 杭州华三通信技术有限公司 Frr的保护带宽调整方法和设备
WO2011117570A1 (en) * 2010-03-22 2011-09-29 British Telecommunications Public Limited Company Network routing adaptation based on failure prediction
CN102143038A (zh) * 2010-06-23 2011-08-03 华为技术有限公司 一种建立业务的方法和节点
CN101958809A (zh) * 2010-10-20 2011-01-26 烽火通信科技股份有限公司 基于包交换的ason网络中实现共享式恢复的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207633A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4109821A4 (en) * 2020-03-26 2023-08-16 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR CONFIGURING RESTORE PATHS

Also Published As

Publication number Publication date
CN117856883A (zh) 2024-04-09
CN114285462A (zh) 2022-04-05
EP4207633A4 (en) 2024-02-28
EP4207633A1 (en) 2023-07-05
US20230232139A1 (en) 2023-07-20
CN114285462B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2022063010A1 (zh) 一种业务保护方法和网络节点
CN106803814B (zh) 一种灵活以太网路径的建立方法、装置及系统
US10250459B2 (en) Bandwidth on-demand services in multiple layer networks
JP3762749B2 (ja) リストレーション・プロテクション方法及び装置
EP2627043B1 (en) Method, device and system for lossless bandwidth adjustment
US8335154B2 (en) Method and system for providing fault detection and notification for composite transport groups
EP1845656A1 (en) A method for implementing master and backup transmission path
US20030117950A1 (en) Link redial for mesh protection
EP2495918B1 (en) Method, system and node device for establishing label switch path
US8477600B2 (en) Composite transport functions
US7602703B2 (en) Method and system for providing ethernet protection
WO2007085173A1 (fr) Procédé de traitement d&#39;une ressource de réseau et unité de réseau d&#39;un réseau optique intelligent associé
WO2011157130A2 (zh) 路径建立方法和装置
US20230254245A1 (en) Data Frame Sending Method and Network Device
JP6269088B2 (ja) 冗長パス提供方法および伝送装置
US20110236018A1 (en) In-band control plane and management functionality in optical level one virtual private networks
Papán et al. Overview of IP fast reroute solutions
US20230078178A1 (en) Service resource preconfiguration method and device, and system
WO2012106976A1 (zh) 一种故障保护方法及设备
WO2022194023A1 (zh) 报文处理的方法、网络设备及控制器
JP5365434B2 (ja) ノード装置及び経路計算方法
CN102143410B (zh) 一种光网络中的路径计算方法及路径计算单元
ES2844098T3 (es) Método de establecimiento de trayectos de servicio, dispositivo de nodo y sistema
EP3057269B1 (en) Control channel establishment method, apparatus and system
WO2022199276A1 (zh) 业务保护方法及网络节点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021871381

Country of ref document: EP

Effective date: 20230330

NENP Non-entry into the national phase

Ref country code: DE