WO2022062840A1 - 光机和ar设备 - Google Patents

光机和ar设备 Download PDF

Info

Publication number
WO2022062840A1
WO2022062840A1 PCT/CN2021/115286 CN2021115286W WO2022062840A1 WO 2022062840 A1 WO2022062840 A1 WO 2022062840A1 CN 2021115286 W CN2021115286 W CN 2021115286W WO 2022062840 A1 WO2022062840 A1 WO 2022062840A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
self
luminous display
optomechanical
display chip
Prior art date
Application number
PCT/CN2021/115286
Other languages
English (en)
French (fr)
Inventor
邓杨春
赵望妮
宋青林
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US18/028,826 priority Critical patent/US20240053616A1/en
Publication of WO2022062840A1 publication Critical patent/WO2022062840A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present invention relates to the technical field of projection imaging, in particular to opto-mechanical and AR equipment.
  • micro-projection technology With the gradual popularization of micro-projection technology, due to its small size, easy to move, and low requirements for application occasions, it can be applied in more and more fields. With the development of micro-projection technology, light The requirements of the machine are also getting higher and higher, but due to the miniaturization and the realization of its performance must be ensured, the general optical machine can only achieve 10 cubic centimeters, and its volume is still large.
  • the main purpose of the present invention is to propose an opto-mechanical, which aims to solve the technical problem of the large volume of the opto-mechanical.
  • an opto-mechanical comprising:
  • the lens assembly is arranged on the light-emitting side of the self-luminous display chip, and the lens assembly includes at least three lenses.
  • the total focal length of the lens assembly ranges from 10mm to 13mm.
  • the lens assembly includes, in order from the image side to the object side: a first lens, a second lens, and a third lens, and the third lens is provided on the second lens and the self-luminous display chip between;
  • the first lens is a positive meniscus lens
  • the second lens is a negative meniscus lens
  • the third lens is a biconvex lens.
  • the first lens includes a first surface and a second surface, the first surface and the second surface are spherical, the second lens includes a third surface and a fourth surface, the third surface The surface and the fourth surface are even-order aspheric surfaces; the third lens includes a fifth surface and a sixth surface, and the fifth surface and the sixth surface are even-order aspheric surfaces.
  • the lens assembly includes, in order from the image side to the object side: a first lens, a second lens, and a third lens, and the third lens is provided on the second lens and the self-luminous display chip between;
  • the first lens is a positive meniscus lens
  • the second lens is a double concave lens
  • the third lens is a positive meniscus lens.
  • the first lens includes a first surface and a second surface, the first surface and the second surface are both even-order aspheric surfaces, the second lens includes a third surface and a fourth surface, The third surface and the fourth surface are both even-order aspherical surfaces; the third lens includes a fifth surface and a sixth surface, and the fifth surface and the sixth surface are spherical surfaces.
  • the self-luminous display chip is a MicroLED self-luminous display chip or a FL-LCOS self-luminous display chip.
  • the total length of the optomechanical range is 17mm-19mm.
  • the optomechanical further includes:
  • a uniform light structure arranged between the lens assembly and the self-luminous display chip;
  • the chip protection glass is arranged on the surface of the self-luminous display chip.
  • the present invention also proposes an AR device, including the above-mentioned opto-mechanical.
  • the optical machine includes a self-luminous display chip and a lens assembly, the lens assembly is disposed on the light-emitting side of the self-luminous display chip, and the lens assembly includes at least three lenses.
  • the self-luminous display chip can emit light and transmit light
  • the lens assembly transmits the light output from the self-luminous display chip to the outside to realize micro-projection.
  • DLP Digital Light Processing
  • RTIR real-time infrared
  • TIR infrared
  • LCOS Liquid Crystal On Silicon, liquid crystal on silicon
  • PBS Polarizing Beam Splitter, polarizing beam splitter prism
  • FIG. 1 is a schematic structural diagram of an embodiment of an opto-mechanical device of the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of an optical machine according to the present invention.
  • 3 is a schematic diagram of the modulation transfer function value-spatial frequency of the first embodiment of the optical machine of the present invention
  • FIG. 4 is a schematic diagram of the field of view angle-lateral chromatic aberration of the chip surface of the optomechanical of the present invention
  • FIG. 5 is a schematic diagram of the optical transfer function value-spatial frequency of the second embodiment of the optical machine of the present invention.
  • FIG. 6 is a schematic diagram of the field of view angle-lateral chromatic aberration of the second embodiment of the optical machine of the present invention.
  • the present invention proposes an optomechanical, which aims to solve the technical problem of the large volume of the optomechanical.
  • the opto-mechanical generally uses DLP (Digital Light Processing) display chips and LCOS (Liquid Crystal On Silicon) display chips to achieve light output, but DLP (Digital Light Processing) display chips, LCOS (Liquid Crystal On Silicon) display chips
  • DLP Digital Light Processing
  • LCOS Liquid Crystal On Silicon
  • Light source modules need to be added, among which RTIR (real-time infrared) or TIR (infrared) modules are essential for DLP light source modules, and PBS (Polarizing Beam Splitter, polarization is essential for LCOS (Liquid Crystal On Silicon) display chips).
  • Beam splitting prism polarized beam splitting module.
  • the optical machine includes a self-luminous display chip 10 and a lens assembly 20 .
  • the lens assembly 20 is disposed on the light-emitting side of the self-luminous display chip 10 , and the lens assembly 20 includes at least three lenses.
  • the self-luminous display chip 10 can self-luminesce and transmit light, and the lens assembly 20 transmits the light output from the self-luminous display chip 10 to the outside to realize micro-projection.
  • the light source module of the opto-mechanical can be omitted, such as the DLP light source module of DLP (Digital Light Processing) display chip, RTIR (real-time infrared) or TIR (infrared) module, LCOS (Liquid Crystal On Silicon, liquid crystal on silicon)
  • the PBS (Polarizing Beam Splitter, polarizing beam splitter) polarization beam splitter module of the display chip can greatly reduce the volume of the optomechanical by reducing the number of parts of the optomechanical. About 60%, solve the technical problem of the larger volume of the opto-mechanical.
  • the self-luminous display chip 10 is a MicroLED self-luminous display chip 10 or a FL-LCOS (Front Lit Liquid Crystal On Silicon) self-luminous display chip 10 .
  • the focal length of the optomechanical is the total focal length of the combined lens in which the first lens 201 , the second lens 202 and the third lens 203 are combined.
  • the sum of the first focal length and the third focal length is greater than the total focal length.
  • the second lens 202 has a negative focal length, and the above combination can fully ensure the requirements of zoom-in and zoom-out projection of the opto-mechanical, and it is also convenient for various combined lenses in the actual design to form an opto-mechanical that meets the design requirements. Scope of application.
  • the lens assembly 20 includes, in order from the image side to the object side: a first lens 201 , a second lens 202 , and a third lens 203 , and the third lens 203 is disposed on the second lens
  • the first lens 201 is a positive meniscus lens.
  • the second lens 202 is a negative meniscus lens.
  • the third lens 203 is a biconvex lens.
  • the above combination can fully meet the requirements of zoom-in and zoom-out projection of the optomechanical, and it is also convenient for various combined lenses in the actual design to form an optomechanical that meets the design requirements, thereby expanding the scope of application of the miniaturized optomechanical.
  • the focal length of the first lens 201 is 10.855 mm
  • the focal length of the second lens 202 is -6.700 mm
  • the focal length of the third lens 203 is 6.523 mm.
  • the more detailed lens parameters are as follows:
  • the volume of the optical machine can be 4 cubic centimeters.
  • the schematic diagram of the realized spatial frequency-optical transfer function is shown in Figure 3.
  • the wavelength selection range is 470nm to 650nm, and the half field of view is 0°, 3°, 6°, 9°, 12°, 14°, and the meridional direction is displayed respectively.
  • the line marked as diffraction limit in Figure 3 is the modulation transfer function value-spatial frequency in the meridional and sagittal directions when the half field of view is diffraction limited Curve
  • the line marked as meridian a0 in Figure 3 is the modulation transfer function value-spatial frequency curve in the meridional direction when the half field of view is 0°
  • the line marked as meridian a3 in Figure 3 is the modulation in the meridian direction when the half field of view is 3°
  • the line marked meridian a6 in Figure 3 is the modulation transfer function value-spatial frequency curve in the meridional direction when the half field of view is 6°
  • the line marked meridian a9 in Figure 3 is the half field of view is 9
  • MTF (Imax-Imin)/(Imax+Imin), the larger the LP/mm, the smaller the MTF value.
  • a and d are the field of view angle-lateral chromatic aberration curves of the Airy disk, and b is the visual field of 0.5876um wavelength.
  • Field angle-lateral chromatic aberration curve, c is the field of view angle-lateral chromatic aberration curve at a wavelength of 0.4861um.
  • d is the center 0 line, which is the field of view angle-lateral chromatic aberration curve with a wavelength of 0.5876um.
  • the lens chromatic aberration of the optical machine is small and controlled within one pixel.
  • the first lens 201 includes a first surface 2 and a second surface 3, the first surface 2 and the second surface 3 are spherical surfaces, the second lens 202 includes a third surface 4 and a fourth surface 5, and the third surface 4 and the fourth surface 5 are even-order aspheric surfaces; the third lens 203 includes a fifth surface 6 and a sixth surface, and the fifth surface 6 and the sixth surface 7 are even-order aspheric surfaces.
  • the volume of the optomechanical can be further reduced by combining the third surface 4 , the fourth surface 5 , the fifth surface 6 and the sixth surface 7 .
  • setting the first surface 2 and the second surface 3 as spherical surfaces can also save the cost of mold opening.
  • the first lens 201 may be a plastic or glass lens
  • the second lens 202 may be a plastic or glass lens
  • the third lens 203 may be a plastic or glass lens.
  • the cost of mold opening can be saved to the greatest extent.
  • the distance between the first lens 201 and the second lens 202 is 2.044mm
  • the distance between the second lens 202 and the third lens 203 is 2.681mm
  • the third lens 203 and the chip protection The distance between the glasses is 3.000mm.
  • the overall focal length of lens assembly 20 ranges from 10mm to 13mm.
  • the total focal length is in the range of 10mm-13mm, which can fully cover the general design requirements of the current projector light machine, and can fully guarantee the projection effect of the light machine on the projection surface 30 on the basis of reducing the volume.
  • the projection surface 30 may be a curtain or an optical waveguide structure.
  • the total length of the optomechanical is in the range of 17mm-19mm.
  • the total length of the optomechanical when the total length of the optomechanical is within 17mm-19mm, it has the optimal volume ratio.
  • the aperture of the optomechanical When the total length of the optomechanical is less than 17mm, the aperture of the optomechanical will increase greatly as the total length of the optomechanical decreases. This results in a further increase in volume.
  • the total length of the optomechanical is greater than 19mm, the volume of the optomechanical will increase greatly with the increase of the total length of the optomechanical.
  • the lens assembly 20 includes, in order from the image side to the object side: a first lens 201 , a second lens 202 , and a third lens 203 , and the third lens 203 is disposed on the second lens 202 and the self-luminous display chip;
  • the first lens 201 is a positive meniscus lens;
  • the second lens 202 is a biconcave lens;
  • the third lens 203 is a positive meniscus lens.
  • the above combination can fully meet the requirements of zoom-in and zoom-out projection of the optomechanical, and it is also convenient for various combined lenses in the actual design to form an optomechanical that meets the design requirements, thereby expanding the scope of application of the miniaturized optomechanical.
  • the focal length of the first lens 201 is 8.613 mm
  • the focal length of the second lens 202 is -7.285 mm
  • the focal length of the third lens 203 is 10.669 mm.
  • more detailed lens parameters are shown in the following table:
  • the volume of the optical machine can be 4 cubic centimeters.
  • the schematic effect of the realized spatial frequency-optical transfer function is shown in Figure 5.
  • the wavelength selection range is 470nm to 650nm, and the half field of view is 0°, 3°, 6°, 9°, 12°, 14°.
  • the line marked meridian b6 in Figure 5 is the modulation transfer function value-spatial frequency curve in the meridional direction when the half field of view is 6°
  • the line marked meridian b9 in Figure 5 is the modulation transfer function value-spatial frequency curve in the meridional direction when the
  • the modulation transfer function value-spatial frequency curve in the sagittal direction at 6° is the modulation transfer function value in the sagittal direction when the half-field of view is 9°-spatial frequency curve, the mark in Figure 5
  • the line of sagittal b12 is the modulation transfer function value-spatial frequency curve in the sagittal direction when the half field of view is 12°
  • the line marked sagittal b14 in Figure 5 is the modulation transfer in the sagittal direction when the half field of view is 14°
  • the function value-spatial frequency curve, specifically, the modulation transfer function (MTF) value of the spatial frequency 0lp/mm to 83lp/mm is between 0.41 and 1.0, and the central field of view (the central field of view refers to the field of view of 0°) )
  • the value of the modulation transfer function is between 0.83 and 1.0, indicating that the resolution of the final projected image is higher, and the lens group
  • a11 and d11 are the field of view angle-lateral chromatic aberration curves of the Airy disk, and b11 is the visual field of 0.5876um wavelength.
  • Field angle-lateral chromatic aberration curve, c11 is the field angle-lateral chromatic aberration curve when c11 is 0.4861um wavelength.
  • d11 is the center 0 line, which is the field of view angle-lateral chromatic aberration curve with a wavelength of 0.5876um.
  • the lens chromatic aberration of the optical machine is small and controlled within one pixel.
  • the first lens 201 includes a first surface 2 and a second surface 3, the first surface 2 and the second surface 3 are even-order aspheric surfaces, the second lens 202 includes a third surface 4 and a fourth surface 5, and the first The third surface 4 and the fourth surface 5 are even-order aspheric surfaces; the third lens 203 includes a fifth surface 6 and a sixth surface, and the fifth surface 6 and the sixth surface 7 are spherical surfaces.
  • the volume of the optomechanical can be further reduced by combining the third surface 4 , the fourth surface 5 , the fifth surface 6 and the sixth surface 7 .
  • setting the first surface 2 and the second surface 3 as spherical surfaces can also save the cost of mold opening.
  • the distance between the first lens 201 and the second lens 202 is 1.500 mm
  • the distance between the second lens 202 and the third lens 203 is 2.914 mm
  • the distance between the third lens 203 and the chip protection glass is 2.914 mm.
  • the distance is 2.062mm.
  • the first lens 201 includes a first surface 2 and a second surface 3, the first surface 2 and the second surface 3 are even-order aspheric surfaces, the second lens 202 includes a third surface 4 and a fourth surface 5, and the first The third surface 4 and the fourth surface 5 are even-order aspheric surfaces; the third lens 203 includes a fifth surface 6 and a sixth surface 7, and the fifth surface 6 and the sixth surface 7 are spherical surfaces.
  • the volume of the optomechanical can be further reduced by combining the first surface 2 , the second surface 3 , the third surface 4 , and the fourth surface 5 .
  • setting the fifth surface 6 and the sixth surface 7 as spherical surfaces can also save the cost of mold opening.
  • the even-order aspheric surface determines the position Z at the height Y along the optical axis direction according to the following formula
  • Y is the height of the center of the mirror surface
  • Z is the position of the aspheric structure along the optical axis at a height of Y
  • the surface vertex is used as a reference to the displacement value from the optical axis
  • C is the vertex curvature radius of the aspheric surface
  • K is the cone coefficient
  • ⁇ i represents the i-th aspheric coefficient.
  • the optical machine further includes a light-distribution structure 40 and a chip protection glass, wherein the light-distribution structure 40 is disposed between the first lens 201 and the self-luminous display chip 10 .
  • the chip protection glass is disposed on the surface of the self-luminous display chip 10 .
  • the uniform light structure 40 evenly emits light from the chip, and the chip protection glass can protect the chip without affecting the light output.
  • the optical machine further includes a light homogenizing structure 40 , wherein the light homogenizing structure 40 is disposed between the lens assembly 20 and the self-luminous display chip 10 .
  • the uniform light structure 40 uniformizes the light output of the chip.
  • the optomechanical further includes chip protection glass, and the chip protection glass is arranged on the surface of the self-luminous display chip 10.
  • the chip protection glass can protect the chip without affecting its light output.
  • the overall focal length of lens assembly 20 ranges from 10mm to 13mm.
  • the total focal length is in the range of 10mm-13mm, which can fully cover the general design requirements of the current projector light machine, and can fully guarantee the projection effect of the light machine on the projection surface 30 on the basis of reducing the volume.
  • the total length of the optomechanical is in the range of 17mm-19mm.
  • the total length of the optomechanical when the total length of the optomechanical is within 17mm-19mm, it has the optimal volume ratio.
  • the aperture of the optomechanical When the total length of the optomechanical is less than 17mm, the aperture of the optomechanical will increase greatly as the total length of the optomechanical decreases. This results in a further increase in volume.
  • the total length of the optomechanical is greater than 19mm, the volume of the optomechanical will increase greatly with the increase of the total length of the optomechanical.
  • the present invention also provides an AR device, which includes a projection surface 30 and the above optical machine.
  • the AR device of the present invention includes all the embodiments of the above-mentioned opto-mechanical, the AR device of the present invention has all the beneficial effects of the above-mentioned opto-mechanical, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

本发明公开一种光机和AR设备,光机包括自发光显示芯片和透镜组件,透镜组件设于自发光显示芯片的出光侧,透镜组件包括至少三个透镜。上述方案解决光机的体积较大的技术问题。

Description

光机和AR设备 技术领域
本发明涉及投影成像的技术领域,特别涉及光机和AR设备。
背景技术
随着微型投影技术逐步普及的前提下,由于其体积较小,挪动方便,且对应用的场合要求较低,使得其能应用的领域越来越多,随着微型投影技术的发展,对光机的要求也越来越高,但是由于小型化的同时必须保证其性能的实现,一般光机只能做到10立方厘米,其所占体积还是较大。
发明内容
本发明的主要目的是提出一种光机,旨在解决光机的体积较大的技术问题。
为实现上述目的,本发明提出一种光机,所述光机包括:
自发光显示芯片;以及
透镜组件,设于所述自发光显示芯片的出光侧,所述透镜组件包括至少三个透镜。
可选地,所述透镜组件的总焦距范围为10mm-13mm。
可选地,所述透镜组件包括从像方到物方顺序包括:第一透镜、第二透镜、以及第三透镜,所述第三透镜设于所述第二透镜和所述自发光显示芯片之间;
所述第一透镜为正弯月透镜;
所述第二透镜为负弯月透镜;
所述第三透镜为双凸透镜。
可选地,所述第一透镜包括第一表面和第二表面,所述第一表面和所述第二表面为球面,所述第二透镜包括第三表面和第四表面,所述第三表面和所述第四表面为偶次非球面;所述第三透镜包括第五表面和第六表面,所述 第五表面和所述第六表面为偶次非球面。
可选地,所述透镜组件包括从像方到物方顺序包括:第一透镜、第二透镜、以及第三透镜,所述第三透镜设于所述第二透镜和所述自发光显示芯片之间;
所述第一透镜为正弯月透镜;
所述第二透镜为双凹透镜;
所述第三透镜为正弯月透镜。
可选地,所述第一透镜包括第一表面和第二表面,所述第一表面和所述第二表面均为偶次非球面,所述第二透镜包括第三表面和第四表面,所述第三表面和所述第四表面均为偶次非球面;所述第三透镜包括第五表面和第六表面,所述第五表面和所述第六表面球面。
可选地,所述自发光显示芯片为MicroLED自发光显示芯片或FL-LCOS自发光显示芯片。
可选地,所述光机的总长范围为17mm-19mm。
可选地,所述光机还包括:
匀光结构,设置于所述透镜组件和所述自发光显示芯片之间;和/或,
芯片保护玻璃,设置于所述自发光显示芯片表面。
为实现上述目的,本发明还提出一种AR设备,包括如上所述的光机。
本发明的技术方案光机包括自发光显示芯片和透镜组件,透镜组件设于所述自发光显示芯片的出光侧,所述透镜组件包括至少三个透镜。其中,自发光显示芯片可以自发光并将光线传出,透镜组件对自发光显示芯片输出的光线向外传递,以实现微型投影,由于在上述方案中,通过采用自发光显示芯片可以将光机的光源模块省略,例如DLP(Digital Light Processing,数字光处理)显示芯片的DLP光源模块、RTIR(实时红外)或TIR(红外)模块,LCOS(Liquid Crystal On Silicon,硅基液晶)显示芯片的PBS(Polarizing Beam Splitter,偏振分光棱镜)偏振分光模块,从而通过减少光机的部件数量大幅度减少光机的体积,相比于带有光源模块、偏振分光模块的光机体积减少了 约60%,解决光机的体积较大的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明光机一实施例的结构示意图;
图2为本发明光机一实施例的结构示意图;
图3为本发明光机第一实施例的调制传递函数值-空间频率示意图;
图4为本发明光机的芯片面的视场角度-横向色差示意图;
图5为本发明光机第二实施例的光学传递函数值-空间频率示意图;
图6为本发明光机第二实施例的视场角度-横向色差示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
本发明提出一种光机,旨在解决光机的体积较大的技术问题。
在示例性技术中,光机一般采用DLP(Digital Light Processing)显示芯片、LCOS(Liquid Crystal On Silicon)显示芯片实现出光,但是DLP(Digital Light Processing)显示芯片、LCOS(Liquid Crystal On Silicon)显示芯片都需要增加光源模块,其中DLP光源模块必不可少的RTIR(实时红外)或TIR(红 外)模块,LCOS(Liquid Crystal On Silicon,硅基液晶)显示芯片必不可少的PBS(Polarizing Beam Splitter,偏振分光棱镜)偏振分光模块。
在一实施例中,如图1所示,光机包括自发光显示芯片10和透镜组件20,透镜组件20设于自发光显示芯片10的出光侧,透镜组件20包括至少三个透镜。
其中,自发光显示芯片10可以自发光并将光线传出,透镜组件20对自发光显示芯片10输出的光线向外传递,以实现微型投影,由于在上述方案中,通过采用自发光显示芯片10可以将光机的光源模块省略,例如DLP(Digital Light Processing,数字光处理)显示芯片的DLP光源模块、RTIR(实时红外)或TIR(红外)模块,LCOS(Liquid Crystal On Silicon,硅基液晶)显示芯片的PBS(Polarizing Beam Splitter,偏振分光棱镜)偏振分光模块,从而通过减少光机的部件数量大幅度减少光机的体积,相比于带有光源模块、偏振分光模块的光机体积减少了约60%,解决光机的体积较大的技术问题。
可选地,自发光显示芯片10为MicroLED自发光显示芯片10或FL-LCOS(Front Lit Liquid Crystal On Silicon)自发光显示芯片10。
可选地,光机的焦距为组合有第一透镜201、第二透镜202以及第三透镜203的组合镜头的总焦距。第一焦距与第三焦距之和大于总焦距。第二透镜202为负焦距,通过上述组合可以充分保证光机的放大、缩小投影的需求,也方便实际设计中的各种组合透镜形成满足设计需求的光机,扩大小型化后的光机的适用范围。
在一实施例中,如图1所示,透镜组件20包括从像方到物方顺序包括:第一透镜201、第二透镜202、以及第三透镜203,第三透镜203设于第二透镜202和自发光显示芯片之间,第一透镜201为正弯月透镜。第二透镜202为负弯月透镜。第三透镜203为双凸透镜。
通过上述组合可以充分保证光机的放大、缩小投影的需求,也方便实际设计中的各种组合透镜形成满足设计需求的光机,扩大小型化后的光机的适用范围。
基于上述特征,以下以第一实施例说明本方案的有益效果,以FOV(市场角)=28°,CRA(主光线角度)<2°进行小型化光机设计,其中,设计得到的光机的参数方案为:镜头总长为18mm,总焦距10.673mm,像高 5.512mm,FOV=28°,CRA<2°。其中,第一透镜201的焦距10.855mm,第二透镜202的焦距-6.700mm,第三透镜203的焦距6.523mm。此时,更为详细化的透镜参数如下:
Figure PCTCN2021115286-appb-000001
表1
此时的光机体积可做到4立方厘米。其实现的空间频率-光学传递函数示意图如图3,波长选择范围为470nm到650nm,并分别显示半视场为0°、3°、6°、9°、12°、14°时,子午方向(Tangential,T)和弧矢方向(Sagittal,S)的调制传递函数值,图3中标为衍射极限的线条为半视场为衍射极限时子午方向以及弧矢方向的调制传递函数值-空间频率曲线,图3中标为子午a0的线条为半视场为0°时子午方向的调制传递函数值-空间频率曲线、图3中标为子午a3的线条为半视场为3°时子午方向的调制传递函数值-空间频率曲线、图3中标为子午a6的线条为半视场为6°时子午方向的调制传递函数值-空间频率曲线、图3中标为子午a9的线条为半视场为9°时子午方向的调制传递函数值-空间频率曲线、图3中标为子午a12的线条为半视场为12°时子午方向的调制传递函数值-空间频率曲线、图3中标为子午a14的线条为半视场为14°时子午方向的调制传递函数值-空间频率曲线,图3中标为弧矢a0的线条为半视场为0°时弧矢方向的调制传递函数值-空间频率曲线、图3中标为弧矢a3的线条为半视场为3°时弧矢方向的调制传递函数值-空间频率曲线、图3中标为弧矢a6的线条为半视场为6°时弧矢方向的调制传递函数值-空间频率曲线、图3中标为弧矢a9的线条为半视场为9°时弧矢方向的调制 传递函数值-空间频率曲线、图3中标为弧矢a12的线条为半视场为12°时弧矢方向的调制传递函数值-空间频率曲线、图3中标为弧矢a14的线条为半视场为14°时弧矢方向的调制传递函数值-空间频率曲线,具体的,空间频率0lp/mm到83lp/mm(空间每毫米线对数)的调制传递函数数值(MTF)介于0.6至1.0之间,中心视场(中心视场指的是0°的视场)调制传递函数数值介于0.83至1.0之间,说明最终投影图像的分辨率较高,该镜头组有较优的光学性能。其中,MTF=(Imax-Imin)/(Imax+Imin),LP/mm越大,MTF数值越小。将上述数据用于仿真,测得的视场角度-横向色差示意图如图4所示,图4中的a以及d为艾里斑的视场角度-横向色差曲线,b为0.5876um波长的视场角度-横向色差曲线,c为0.4861um波长时的视场角度-横向色差曲线。d为中心0线,为波长为0.5876um的视场角度-横向色差曲线。
此时的光机的镜头色差较小,且控制在一个像素内。
可选地,第一透镜201包括第一表面2和第二表面3,第一表面2和第二表面3为球面,第二透镜202包括第三表面4和第四表面5,第三表面4和第四表面5为偶次非球面;第三透镜203包括第五表面6和第六表面,第五表面6和第六表面7为偶次非球面。
通过将第三表面4、第四表面5、第五表面6和第六表面7可以进一步减小光机的体积。另外,第一表面2、第二表面3设置为球面也可以节约开模成本。
可选地,第一透镜201可以是塑料材质或玻璃材质的镜片,第二透镜202可以是塑料材质或玻璃材质的镜片,第三透镜203可以是塑料材质或玻璃材质的镜片。在实际设计时,采用塑料镜片的透镜设计为球面时可以最大程度山节约开模成本。
可选地,在第一实施例中,第一透镜201和第二透镜202的距离为2.044mm,第二透镜202与第三透镜203之间的距离为2.681mm,第三透镜203和芯片保护玻璃之间的距离为3.000mm。在采用上述参数限定光机时,其光学性能较好,且具有较小的体积。
可选地,透镜组件20的总焦距范围为10mm-13mm。
总焦距范围在10mm-13mm内,能充分覆盖现行投影光机的一般设计需求,能在减小体积的基础上还能充分保证光机投影至投影面30的投影效果。 可选地,投影面30可以为幕布或者光波导结构。
可选地,光机的总长范围为17mm-19mm。
此时,光机的总长范围处于17mm-19mm之内时,其具有最优的体积比,在光机的总长小于17mm时,光机的口径会随着光机总长减小而大幅度增加,从而导致体积的再次增加。在光机的总长大于19mm时,光机的体积会随着光机总长增加而大幅度增加。
在一实施例,如图2所示,透镜组件20包括从像方到物方顺序包括:第一透镜201、第二透镜202、以及第三透镜203,第三透镜203设于第二透镜202和自发光显示芯片之间;第一透镜201为正弯月透镜;第二透镜202为双凹透镜;第三透镜203为正弯月透镜。
通过上述组合可以充分保证光机的放大、缩小投影的需求,也方便实际设计中的各种组合透镜形成满足设计需求的光机,扩大小型化后的光机的适用范围。
基于上述特征,以下以第二实施例说明本方案的有益效果,以FOV(市场角)=28°,CRA(主光线角度)=3.3°进行小型化光机设计,其中,设计得到的光机的参数方案为:镜头总长为17.5mm,总焦距12.025mm,像高5.512mm,FOV=28°,CRA=3.3°。其中,第一透镜201的焦距8.613mm,第二透镜202的焦距-7.285mm,第三透镜203的焦距10.669mm。此时,更为详细化的透镜参数如下表所示:
Figure PCTCN2021115286-appb-000002
表2
此时的光机体积可做到4立方厘米。其实现的空间频率-光学传递函数示意图效果如图5,波长选择范围为470nm到650nm,并分别显示半视场为0°、 3°、6°、9°、12°、14°时,子午方向(Tangential,T)和弧矢方向(Sagittal,S)的调制传递函数值-空间频率曲线,图5中标为衍射极限b的线条为半视场为衍射极限时子午方向以及弧矢方向的调制传递函数值-空间频率曲线,图5中标为子午b0的线条为半视场为0°时子午方向的调制传递函数值-空间频率曲线、图5中标为子午b3的线条为半视场为3°时子午方向的调制传递函数值-空间频率曲线、图5中标为子午b6的线条为半视场为6°时子午方向的调制传递函数值-空间频率曲线、图5中标为子午b9的线条为半视场为9°时子午方向的调制传递函数值-空间频率曲线、图5中标为子午b12的线条为半视场为12°时子午方向的调制传递函数值-空间频率曲线、图5中标为子午b14的线条为半视场为14°时子午方向的调制传递函数值-空间频率曲线,图5中标为弧矢b0的线条为半视场为0°时弧矢方向的调制传递函数值-空间频率曲线、图5中标为弧矢b3的线条为半视场为3°时弧矢方向的调制传递函数值-空间频率曲线、图5中标为弧矢b6的线条为半视场为6°时弧矢方向的调制传递函数值-空间频率曲线、图5中标为1弧矢b9的线条为半视场为9°时弧矢方向的调制传递函数值-空间频率曲线、图5中标为弧矢b12的线条为半视场为12°时弧矢方向的调制传递函数值-空间频率曲线、图5中标为弧矢b14的线条为半视场为14°时弧矢方向的调制传递函数值-空间频率曲线,具体的,空间频率0lp/mm到83lp/mm的调制传递函数数值(MTF)介于0.41至1.0之间,中心视场(中心视场指的是0°的视场)调制传递函数数值介于0.83至1.0之间,说明最终投影图像的分辨率较高,该镜头组有较优的光学性能。其中,MTF=(Imax-Imin)/(Imax+Imin),LP/mm越大,MTF数值越小。将上述数据用于仿真,测得的视场角度-横向色差示意图如图6所示,图6中的a11以及d11为艾里斑的视场角度-横向色差曲线,b11为0.5876um波长的视场角度-横向色差曲线,c11为0.4861um波长时的视场角度-横向色差曲线。d11为中心0线,为波长为0.5876um的视场角度-横向色差曲线。此时的光机的镜头色差较小,且控制在一个像素内。
可选地,第一透镜201包括第一表面2和第二表面3,第一表面2和第二表面3为偶次非球面,第二透镜202包括第三表面4和第四表面5,第三表面4和第四表面5为偶次非球面;第三透镜203包括第五表面6和第六表面,第五表面6和第六表面7为球面。
通过将第三表面4、第四表面5、第五表面6和第六表面7可以进一步减小光机的体积。另外,第一表面2、第二表面3设置为球面也可以节约开模成本。
在第二实施例中,第一透镜201和第二透镜202的距离为1.500mm,第二透镜202与第三透镜203之间的距离为2.914mm,第三透镜203和芯片保护玻璃之间的距离为2.062mm。在采用上述参数限定光机时,其光学性能较好,且具有较小的体积。
可选地,第一透镜201包括第一表面2和第二表面3,第一表面2和第二表面3为偶次非球面,第二透镜202包括第三表面4和第四表面5,第三表面4和第四表面5为偶次非球面;第三透镜203包括第五表面6和第六表面7,第五表面6和第六表面7为球面。
通过将第一表面2、第二表面3、第三表面4、第四表面5可以进一步减小光机的体积。另外,第五表面6和第六表面7设置为球面也可以节约开模成本。
在一实施例中,偶次非球面根据下述公式确定沿光轴方向在高度为Y的位置Z;
Figure PCTCN2021115286-appb-000003
其中,Y为镜面中心高度,Z为非球面结构沿光轴方向在高度为Y的位置,以表面顶点作参考距光轴的位移值,C为非球面的顶点曲率半径,K为圆锥系数,α i表示第i次的非球面系数。
参考图3和图6,其中分别举例了两个实施例的前五次的非球面系数。
可选地,参照图1和图2,光机还包括匀光结构40和芯片保护玻璃,其中,匀光结构40,设置于第一透镜201和自发光显示芯片10之间。
芯片保护玻璃设置于自发光显示芯片10表面。其中,匀光结构40均匀芯片的出光,芯片保护玻璃可以在保护芯片的同时,不影响其出光。
可选地,参照图1和图2,光机还包括匀光结构40,其中,匀光结构40,设置于透镜组件20和自发光显示芯片10之间。其中,匀光结构40均匀芯片的出光。
可选地,参照图1和图2,光机还包括芯片保护玻璃,芯片保护玻璃设置 于自发光显示芯片10表面。芯片保护玻璃可以在保护芯片的同时,不影响其出光。
可选地,透镜组件20的总焦距范围为10mm-13mm。
总焦距范围在10mm-13mm内,能充分覆盖现行投影光机的一般设计需求,能在减小体积的基础上还能充分保证光机投影至投影面30的投影效果。
可选地,光机的总长范围为17mm-19mm。
此时,光机的总长范围处于17mm-19mm之内时,其具有最优的体积比,在光机的总长小于17mm时,光机的口径会随着光机总长减小而大幅度增加,从而导致体积的再次增加。在光机的总长大于19mm时,光机的体积会随着光机总长增加而大幅度增加。
为实现上述目的,本发明还提出一种AR设备,包括投影面30以及如上的光机。
值得注意的是,因为本发明AR设备包含了上述光机的全部实施例,因此本发明AR设备具有上述光机的所有有益效果,此处不再赘述。
以上仅为本发明的可选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种光机,其特征在于,所述光机包括:
    自发光显示芯片;以及
    透镜组件,设于所述自发光显示芯片的出光侧,所述透镜组件包括至少三个透镜。
  2. 如权利要求1所述的光机,其特征在于,所述透镜组件从像方到物方顺序包括:第一透镜、第二透镜、以及第三透镜,所述第三透镜设于所述第二透镜和所述自发光显示芯片之间;
    所述第一透镜为正弯月透镜;
    所述第二透镜为负弯月透镜;
    所述第三透镜为双凸透镜。
  3. 如权利要求2所述的光机,其特征在于,所述第一透镜包括第一表面和第二表面,所述第一表面和所述第二表面均为球面,所述第二透镜包括第三表面和第四表面,所述第三表面和所述第四表面均为偶次非球面;所述第三透镜包括第五表面和第六表面,所述第五表面和所述第六表面均为偶次非球面。
  4. 如权利要求1所述的光机,其特征在于,所述透镜组件从像方到物方顺序包括:第一透镜、第二透镜、以及第三透镜,所述第三透镜设于所述第二透镜和所述自发光显示芯片之间;
    所述第一透镜为正弯月透镜;
    所述第二透镜为双凹透镜;
    所述第三透镜为正弯月透镜。
  5. 如权利要求4所述的光机,其特征在于,所述第一透镜包括第一表面和第二表面,所述第一表面和所述第二表面均为偶次非球面,所述第二透镜 包括第三表面和第四表面,所述第三表面和所述第四表面均为偶次非球面;所述第三透镜包括第五表面和第六表面,所述第五表面和所述第六表面球面。
  6. 如权利要求1所述的光机,其特征在于,所述自发光显示芯片为MicroLED自发光显示芯片或FL-LCOS自发光显示芯片。
  7. 如权利要求1所述的光机,其特征在于,所述透镜组件的总焦距范围为10mm-13mm。
  8. 如权利要求1所述的光机,其特征在于,所述光机的总长范围为17mm-19mm。
  9. 如权利要求1至8任一项所述的光机,其特征在于,所述光机还包括:匀光结构,设置于所述透镜组件和所述自发光显示芯片之间;和/或,芯片保护玻璃,设置于所述自发光显示芯片表面。
  10. 一种AR设备,其特征在于,包括投影面以及如1-9任一项所述的光机。
PCT/CN2021/115286 2020-09-28 2021-08-30 光机和ar设备 WO2022062840A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/028,826 US20240053616A1 (en) 2020-09-28 2021-08-30 Optical engine and ar device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011038510.X 2020-09-28
CN202011038510.XA CN111880363B (zh) 2020-09-28 2020-09-28 光机和ar设备

Publications (1)

Publication Number Publication Date
WO2022062840A1 true WO2022062840A1 (zh) 2022-03-31

Family

ID=73199449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115286 WO2022062840A1 (zh) 2020-09-28 2021-08-30 光机和ar设备

Country Status (3)

Country Link
US (1) US20240053616A1 (zh)
CN (1) CN111880363B (zh)
WO (1) WO2022062840A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111880363B (zh) * 2020-09-28 2024-04-05 歌尔股份有限公司 光机和ar设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756980A (zh) * 2003-03-05 2006-04-05 3M创新有限公司 衍射透镜
CN105739084A (zh) * 2016-04-29 2016-07-06 厦门灵境信息科技有限公司 一种光学镜头系统及头戴式显示装置
CN108064352A (zh) * 2016-09-14 2018-05-22 深圳市柔宇科技有限公司 光学系统及使用该光学系统的头戴显示装置
CN108279485A (zh) * 2018-03-09 2018-07-13 浙江舜宇光学有限公司 投影镜头
CN109581669A (zh) * 2019-01-23 2019-04-05 歌尔股份有限公司 投影光路及头戴显示设备
CN110858032A (zh) * 2018-08-22 2020-03-03 佳能株式会社 观察光学系统和包括该观察光学系统的观察装置
CN111258069A (zh) * 2020-02-26 2020-06-09 歌尔股份有限公司 光学系统及增强现实设备
CN111880363A (zh) * 2020-09-28 2020-11-03 歌尔股份有限公司 光机和ar设备
CN212781467U (zh) * 2020-10-14 2021-03-23 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559637A (en) * 1994-02-04 1996-09-24 Corning Incorporated Field curvature corrector
US8845109B2 (en) * 2007-11-24 2014-09-30 Yong-Jing Wang Projection system based on self emitting display panel
CN102778746B (zh) * 2012-06-20 2014-10-22 利达光电股份有限公司 一种低成本宽光谱日夜共焦扳机镜头光学系统
EP3125011B1 (en) * 2014-03-27 2019-08-28 Nikon Corporation Variable power optical system, imaging device, and variable power optical system production method
CN108121057A (zh) * 2018-01-18 2018-06-05 平湖动态电子有限公司 一种用于车载ar-adas的摄像镜头
CN209182565U (zh) * 2018-09-14 2019-07-30 三河市蓝思泰克光电科技有限公司 一种经济型长波红外光学无热化镜头
CN211318883U (zh) * 2020-01-15 2020-08-21 贾怀昌 一种高分辨率大视场角及大出瞳直径的ar光学系统
CN111308709B (zh) * 2020-02-26 2022-02-22 歌尔光学科技有限公司 光学系统及增强现实设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1756980A (zh) * 2003-03-05 2006-04-05 3M创新有限公司 衍射透镜
CN105739084A (zh) * 2016-04-29 2016-07-06 厦门灵境信息科技有限公司 一种光学镜头系统及头戴式显示装置
CN108064352A (zh) * 2016-09-14 2018-05-22 深圳市柔宇科技有限公司 光学系统及使用该光学系统的头戴显示装置
CN108279485A (zh) * 2018-03-09 2018-07-13 浙江舜宇光学有限公司 投影镜头
CN110858032A (zh) * 2018-08-22 2020-03-03 佳能株式会社 观察光学系统和包括该观察光学系统的观察装置
CN109581669A (zh) * 2019-01-23 2019-04-05 歌尔股份有限公司 投影光路及头戴显示设备
CN111258069A (zh) * 2020-02-26 2020-06-09 歌尔股份有限公司 光学系统及增强现实设备
CN111880363A (zh) * 2020-09-28 2020-11-03 歌尔股份有限公司 光机和ar设备
CN212781467U (zh) * 2020-10-14 2021-03-23 Oppo广东移动通信有限公司 镜头、投影光机以及近眼显示系统

Also Published As

Publication number Publication date
US20240053616A1 (en) 2024-02-15
CN111880363B (zh) 2024-04-05
CN111880363A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
TWI781947B (zh) 光學鏡頭
US9285564B2 (en) Lens for projection and projection-type display apparatus
CN109073869A (zh) 投影光学系统以及投影仪
JP2009103874A (ja) 撮影光学系
TWI695993B (zh) 定焦鏡頭
CN101726833A (zh) 投影镜头
US10701251B2 (en) Imaging optical system, image projection apparatus, and camera system
CN110515188A (zh) 一种投影镜头
WO2019205874A1 (zh) 光学镜头
US10877250B2 (en) Lens assembly
JP5026929B2 (ja) 投射用レンズおよび投射型画像表示装置
US8228611B2 (en) Lens module
CN112987264A (zh) 一种大视场高亮度的超短焦投影镜头
WO2022062840A1 (zh) 光机和ar设备
JP2011154318A (ja) レンズ系及びこれを搭載する光学機器
CN116859557B (zh) 投影镜头及投影装置
CN113311566A (zh) 一种低成本超短焦投影镜头
JP2003098431A (ja) 投射レンズ
US7075622B2 (en) Projection lens and optical projector provided with the same
US20080304165A1 (en) Fixed-focus lens
WO2022088651A1 (zh) 潜望式光学成像系统、摄像模组和电子装置
TWI784262B (zh) 光學成像系統
TWI407150B (zh) 投影鏡頭
WO2023143008A1 (zh) 投影镜头、投影设备及车辆
TWI732988B (zh) 鏡頭組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18028826

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871213

Country of ref document: EP

Kind code of ref document: A1