WO2022062663A1 - 终端设备及其控制方法、计算机可读存储介质 - Google Patents

终端设备及其控制方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2022062663A1
WO2022062663A1 PCT/CN2021/110089 CN2021110089W WO2022062663A1 WO 2022062663 A1 WO2022062663 A1 WO 2022062663A1 CN 2021110089 W CN2021110089 W CN 2021110089W WO 2022062663 A1 WO2022062663 A1 WO 2022062663A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
radio frequency
switch
terminal
interference
Prior art date
Application number
PCT/CN2021/110089
Other languages
English (en)
French (fr)
Inventor
王立
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022062663A1 publication Critical patent/WO2022062663A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communications technologies, and in particular, relate to a terminal device, a control method thereof, and a computer-readable storage medium.
  • terminal equipment can use antennas to transmit data in different frequency bands at the same time, that is, work in multi-channel working mode. Signals will inevitably generate various mutual interferences, which will affect the sensitivity of the frequency bands to each other, thereby reducing the throughput rate of the terminal equipment.
  • Embodiments of the present application provide a terminal device, a control method thereof, and a computer-readable storage medium.
  • an embodiment of the present application provides a terminal device, including: at least two radio frequency links, where the radio frequency links include an antenna, a coupler, and a signal detection component for detecting the power strength of an interference signal, the The coupler is provided with a first signal end, a second signal end, a first coupling end and a second coupling end, the signal detection component is provided with a signal input end and a signal output end, and the second signal end is connected with the antenna , the second coupling end is connected to the signal input end; the control component is connected to the first signal end, the first coupling end and the signal output end respectively, and is used for detecting the component according to the signal
  • the transmitted interference signal strength value determines the interference degree of the radio frequency chain, and is used to select the radio frequency chain as the main set receiving channel from the at least two radio frequency links according to the interference degree of each of the radio frequency links
  • the interfering signal strength value is obtained by detecting the interfering signal obtained from the antenna through the coupler by the signal detection component.
  • an embodiment of the present application further provides a method for controlling a terminal device, which is applied to a terminal device.
  • the terminal device includes at least two radio frequency links, and the radio frequency links include a radio frequency input end, a feedback output end, and an antenna.
  • the coupler is provided with a first signal end, a second signal end and a second coupling end
  • the signal detection component is provided with a signal input end and a signal output end
  • the first signal end is connected to the radio frequency input terminal
  • the second signal terminal is connected to the antenna
  • the second coupling terminal is connected to the signal input terminal
  • the signal output terminal is connected to the feedback output terminal;
  • the device control method includes: for each of the radio frequency links, acquiring an interference signal strength value sent by the signal detection component, and determining the interference degree of the current radio frequency link according to the interference signal strength value, wherein the interference
  • the signal strength value is obtained by detecting the interference signal obtained from the antenna through the coupler by the signal detection component; according to the interference degree of each of the radio frequency links, it is obtained from the at least two radio frequency links. Select the RF link as the primary set receive channel.
  • an embodiment of the present application further provides a terminal device, including: a memory, a processor, and a computer program stored in the memory and running on the processor, the processor implements the above when executing the computer program The described terminal device control method.
  • the embodiments of the present application further provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are used to execute the above-mentioned terminal device control method.
  • FIG. 1 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a terminal device provided by another embodiment of the present application.
  • FIG. 3 is a schematic diagram of a terminal device provided by another embodiment of the present application.
  • FIG. 4 is a schematic diagram of a terminal device provided by another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a terminal device provided by another embodiment of the present application.
  • FIG. 6 is a flowchart of a terminal device control method provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of selecting a radio frequency link as a primary set receiving channel in a terminal device control method provided by another embodiment of the present application.
  • FIG. 8 is a flowchart of selecting a radio frequency link as a main set receiving channel in a terminal device control method provided by another embodiment of the present application.
  • FIG. 9 is a flow chart of acquiring an interference signal strength value sent by a signal detection component in a terminal device control method provided by another embodiment of the present application.
  • the present application provides a terminal device, a control method thereof, and a computer-readable storage medium.
  • the signal detection component can detect the interference signal obtained from the antenna through the coupler, so as to obtain the interference signal strength value of each radio frequency link. , and then determine the degree of interference of the radio frequency link by the control component according to the value of the interference signal strength, that is, it is possible to know the degree of interference of each radio frequency link, so that it can be selected from all radio frequency links according to this influence.
  • a suitable radio frequency link is used as the main set receiving channel. Therefore, the anti-interference capability of the terminal device in the multi-channel working mode can be improved, the communication capability of the terminal device can be improved, and the throughput performance of the terminal device can be improved.
  • FIG. 1 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • the terminal device comprises two radio frequency links 100, the radio frequency links 100 comprising an antenna 110, a coupler 120 and a signal detection component 130 arranged to detect the power strength of the interfering signal, the coupler 120 being arranged with The first signal terminal IN, the second signal terminal OUT, the first coupling terminal CPL and the second coupling terminal TERM, the signal detection component 130 is provided with a signal input terminal T1 and a signal output terminal T2, and the second signal terminal OUT is connected to the antenna 110, The second coupling terminal TERM is connected to the signal input terminal T1;
  • the control component 200 is configured to determine the interference level of the radio frequency link 100 according to the interference signal strength value sent by the signal detection component 130, and
  • the radio frequency link 100 is configured to be selected from the two radio frequency links 100 as the main set of receiving channels according to the degree of interference of each radio frequency link 100, wherein the interference signal strength value is determined by the signal detection component 130 to the received channel through the coupler 120.
  • the interference signal obtained by the antenna 110 is obtained by detecting it.
  • the signal detection component 130 can detect the interference signal obtained from the antenna 110 through the coupler 120, so as to obtain the interference signal strength value of each radio frequency link 100, because the interference signal of the radio frequency link 100
  • the strength value is related to the degree of interference, that is, the greater the strength value of the interference signal, the greater the degree of interference received by the radio frequency link 100. Therefore, the degree of interference of the radio frequency link 100 can be determined according to the strength value of the interference signal.
  • a suitable radio frequency link 100 can be selected from all radio frequency links 100 as the main set receiving channel according to the influence, so it can improve the performance of the terminal equipment in the multi-channel working mode. Anti-interference ability, improve the communication ability of terminal equipment, and then improve the throughput performance of terminal equipment.
  • main set reception and “diversity reception” are two technical terms in the art.
  • the antenna 110 in the radio frequency link 100 as the main set reception channel is mainly responsible for the transmission and reception of radio frequency signals.
  • Ground, the antenna 110 in the RF link 100 which is a diversity receiving channel, is generally only responsible for receiving signals but not sending signals.
  • the base station will combine the signals received from the two channels.
  • the selected radio frequency link 100 is determined to receive the main channel by the interference degree of the channel 100, since the interference received by the antenna 110 is improved, it can perform a complete transmission and reception process for the signal, so as to be able to The anti-interference ability of the terminal equipment in the multi-channel working mode is improved, and the base station can also obtain corresponding gains.
  • the terminal device may be, but is not limited to, a 5G terminal device, or a product associated with the 5G terminal device, such as 5G network peripherals, 5G network modules, 5G network chips, 5G network data platforms, mobile Broadband products or IoT products, etc., and whether it is a 5G terminal device or a product associated with a 5G terminal device, it can support the non-standalone (NSA) or standalone (SA) mode. It can also be set in all scenarios that support Sounding Reference Signal (SRS); or, the terminal device can also be a Customer Premise Equipment (CPE) under a wireless network, which is a wireless network. router device.
  • NSA non-standalone
  • SA standalone
  • SRS Sounding Reference Signal
  • CPE Customer Premise Equipment
  • the number of radio frequency links 100 can also be set to any value greater than two, which is not limited in this embodiment.
  • control component 200 may be specifically configured to determine the radio frequency link 100 with the greatest interference degree from the two radio frequency chains 100 according to the interference degree of each radio frequency chain 100, and select the radio frequency chain 100 with the greatest interference degree from the two radio frequency chains 100, In the channel 100, any one of the radio frequency links 100 except the radio frequency link 100 with the greatest interference degree is selected as the radio frequency link 100 of the main set receiving channel. Since the RF link 100 with the most interference will significantly affect the performance of the antenna 110 , it can be determined that it is not suitable as the main set receiving channel, and then the RF link 100 with the most interference is removed from the two RF links 100 .
  • the radio frequency link 100 corresponding to the antenna 110 with less interference can be set as the main set receiving channel, which can improve the multi-channel performance of the terminal device. Anti-interference ability in working mode, and improve the throughput performance of terminal equipment.
  • control component 200 may also be specifically configured to select the radio frequency link 100 with the least interference degree from the two radio frequency links 100 according to the interference degree of each radio frequency link 100 as the main set receiving channel.
  • RF link 100 The antenna 110 corresponding to the radio frequency link 100 with the least interference degree is also the least interfered. Therefore, the radio frequency link 100 is suitable as the main set receiving channel, which can improve the anti-interference ability of the terminal device in the multi-channel working mode, and further Improve the throughput performance of terminal equipment.
  • the model and specification of the coupler 120 are not limited, and can be selected according to the actual situation, but in any case, the coupler 120 can be switched to the coupling mode for acquiring the signal of the antenna 110, and the signal flow direction of the coupler 120 is in sequence: The antenna 110, the second signal terminal OUT, the second coupling terminal TERM, the signal input terminal T1, the signal output terminal T2 and the control component 200. During this process, some signals also return directly to the control component through the first coupling terminal CPL.
  • the coupler 120 can also be switched to the coupling mode of the signal of the transmitting antenna 110, at this time, the signal flow goes through: the control component 200, the first signal terminal IN, the first signal terminal IN, the Two signal terminals OUT and the antenna 110; it can be seen that this embodiment can not only be used to acquire the signal of the antenna 110 to detect it, but also can couple and output the signal of the antenna 110, so it has certain versatility and can improve the use effect of the mobile terminal .
  • the terminal device is further provided with a link switch
  • the link switch is provided with a link switch input terminal connected with the control assembly 200, a link switch output terminal connected with each radio frequency link 100 respectively, and a link switch output terminal connected with the control component 200.
  • the link control end connected to the component 200, when the control component 200 selects the radio frequency link 100 as the main set receiving channel from the two radio frequency links 100 according to the interference degree of each radio frequency link 100, it only needs to pass the control chain
  • the channel control terminal turns on the corresponding link switch output terminal, that is, the conduction switching of the RF link 100 as the main set receiving channel can be realized.
  • multiple link switches can be set. Multiple link switches can also implement switching on the radio frequency link 100 serving as the main set receiving channel.
  • the basic principle is the same as that of the above-mentioned embodiment, and to avoid redundancy, it is not repeated here.
  • the terminal device is further provided with a power amplifier, and the power amplifier is connected to the control component 200.
  • the power amplifier can be used as the main set receiving channel to correspond to the radio frequency link 100.
  • the power of the signal of the antenna 110 is amplified, thereby improving the communication effect of the radio frequency link 100 serving as the main set receiving channel, thereby improving the throughput performance of the terminal device.
  • the control component 200 is provided with a radio frequency input terminal and a feedback output terminal, wherein the radio frequency input terminal is connected to the first signal terminal, the signal output terminal is connected to the feedback output terminal, and the radio frequency input terminal can be connected to the coupler through the radio frequency input terminal.
  • the interference signal strength value from the signal output end can be obtained through the feedback input end. It can be seen that setting the radio frequency input end and the feedback output end can make the control component 200 work more stably and reliably, which is beneficial to improve its working stability.
  • FIG. 2 is a schematic diagram of a terminal device provided by another embodiment of the present application.
  • the signal detection assembly comprises a filter module 131 arranged to filter the interfering signal acquired from the antenna 110 via the coupler 120 and a detection module arranged to perform signal strength detection on the filtered interfering signal 132;
  • the filtering module 131 is provided with a filtering input terminal A1 and a filtering output terminal A2
  • the detection module 132 is provided with a detection input terminal B1 and a detection output terminal B2
  • the filtering input terminal A1 is connected with the signal input terminal T1
  • the filtering output terminal A2 is connected with the detection input terminal B1
  • the detection output terminal B2 is connected to the signal output terminal T2.
  • the filtering module 131 obtains the corresponding interference signal through the filtering input terminal A1 and can filter the interference signal, and then outputs the filtered interference signal through the filtering output terminal A2, due to impurities in the filtered interference signal.
  • the components are basically filtered out, so the performance of the filtered interference signal will be more stable.
  • the detection module 132 receives the filtered interference signal and detects it, the interference signal strength value can be measured stably, that is, it can be accurately and reliably measured.
  • the interference situation in the antenna 110 is known, so that the control component 200 can accurately select the radio frequency link 100 as the main set receiving channel from the two radio frequency links 100 .
  • the filtering module 131 may use filters of various types or specifications, and the detection module 132 may be a related circuit configured to perform power detection on the filtered interference signal, that is, the power detection can
  • the filtered interference signal is digitized to obtain a corresponding digital signal, and its signal strength can be directly obtained through the digital signal.
  • the detection module 132 may also include an amplification circuit. For example, after obtaining the digital signal, If the gain, power, etc. of the converted digital signal is distorted, the detection module 132 can amplify the digital signal and supply it to the control component 200, so that the control component 200 can more easily identify the amplified digital signal and determine the radio frequency link according to it. 100 interference level.
  • FIG. 3 is a schematic diagram of a terminal device provided by another embodiment of the present application.
  • the number of filter modules 131 is multiple, and each filter module 131 has different filter frequency bands;
  • the signal detection component further includes a first switch 140, and the first switch 140 is provided with a first switch input terminal D1, The first switch output terminal D2 and the first control terminal, the first switch input terminal D1 is connected to the signal input terminal T1, the first control terminal is connected to the control component 200, the number of the first switch output terminal D2 is consistent with the number of the filter modules 131, The first switch output end D2 is connected to the filter input end A1.
  • the control component 200 can obtain the frequency band information of the interference signal in the antenna 110 through the first signal terminal IN or the first coupling terminal CPL, and feed back the information to the first control terminal corresponding to the information through the first control terminal.
  • a switch 140 only controls the first switch 140 to be turned on at the same time, then the filter module 131 corresponding to the filter frequency band is turned on to filter and output the interference signal.
  • the first switch 140 can be regarded as a conduction with multiple switch ports. Through this control method, only the filter module 131 of the corresponding filter frequency band can be controlled to be turned on, and the filter module 131 will not be turned on by mistake, that is, no useless filtering will be performed on other signals except the interference signal, which can ensure the output. Stable and reliable filtered interference signal.
  • the signal detection component further includes a second switch 150
  • the second switch 150 is provided with a second switch input terminal C1, a second switch output terminal C2 and a second control terminal
  • the second switch output terminal C2 is connected to the detection input.
  • Terminal B1 the second control terminal is connected to the control component 200
  • the number of the second switch input terminals C1 is consistent with the number of the filter modules 131
  • the second switch input terminal C1 is connected to the filter output terminal A2, wherein the second switch 150 is relative to the filter module 131.
  • the first switch 140 can be set independently, or can be set at both ends of the filter module 131 in cooperation with the first switch 140, which is consistent with the technical effect achieved by the second switch 150. For example, in the example of FIG.
  • a first switch 140 is provided, and a second switch 150 is also provided.
  • the filtering module 131 corresponding to the filtering frequency band is turned on to filter and output the interference signal
  • the input terminal C1 of the second switch corresponding to the filtering module 131 can be controlled to conduct.
  • the detection module 132 can obtain the filtered interference signal stably.
  • the timing of controlling the first switch 140 to be turned on and the corresponding filtering module 131 to realize filtering can be set to a specific interval during the signal operation and transmission process of the antenna 110, such as a time slot in the NR mode in 5G, so that The detection method will not cause excessive influence on the operation and transmission of the signal of the antenna 110, or, those skilled in the art can also set the corresponding timing according to the actual situation to control the first switch 140 to be turned on and the corresponding filter module 131 to realize filtering. .
  • FIG. 4 is a schematic diagram of a terminal device provided by another embodiment of the present application.
  • the radio frequency link 100 further includes a third switch 160 , and the first coupling terminal CPL is connected to the control component 200 through the third switch 160 .
  • the third switch 160 may be a single-pole, double-throw switch.
  • the third switch 160 is provided with a third switch input terminal and a switchable third switch output terminal, and the third switch input terminal is connected to the first switch.
  • Coupling terminal CPL when the coupler 120 is in the coupling mode of transmitting antenna signals, the third switch output terminal is connected to the control component 200 to play an auxiliary coupling role; in another case, when the coupler 120 is in the coupling mode of receiving antenna signals In the mode, the third switch output terminal is switched to be connected to the ground through the load, so as to achieve impedance matching, and it can also prevent part of the antenna signal input from the second signal terminal from being received by the first coupling terminal CPL, so as to avoid its influence Interference signal detection accuracy.
  • the third switch 160 can also be various types of relays, the relay is provided with a contact switch, one end of the contact switch is connected to the first coupling end CPL, and the other end can be connected between the load and the control assembly 200. Switching between them can also play the same role as the above-mentioned embodiment, which is not repeated here.
  • the radio frequency link 100 may further include a fourth switch 170 , and the second coupling terminal TERM is connected to the signal input terminal T1 through the fourth switch 170 , wherein the fourth switch 170 can be independently set relative to the third switch 160 , can also be arranged at both ends of the coupler 120 in cooperation with the third switch 160, which is consistent with the technical effect achieved by the fourth switch 170.
  • the fourth switch 170 in addition to the third switch 160, A fourth switch 170 is also provided, and the third switch 160 can also be a SPDT switch or various types of relays.
  • the fourth switch 170 is a SPDT switch
  • the fourth switch 170 is provided with a fourth switch input terminal.
  • the first coupling terminal CPL Or the second coupling end TERM can adaptively adjust the impedance matching according to the actual situation of the radio frequency link 100 , which is not limited in this embodiment.
  • the radio frequency chain 100 can be assisted to work. It can be seen that in this embodiment, there is no need to add an additional active device or/or to the radio frequency chain 100. Assisted with passive components, this can not only reduce the insertion loss that may be caused by additional components, but also relatively save the material cost of the radio frequency link 100 .
  • FIG. 5 is a schematic diagram of a terminal device 300 provided by another embodiment of the present application.
  • the terminal device 300 includes: one or more control processors and memories.
  • one control processor and one memory are used as an example.
  • control processor and the memory may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 6 .
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the memory may include remote memories located remotely from the control processor, which may be connected to the control processor through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the terminal device 300 and application scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • terminal device 300 shown in FIG. 5 does not constitute a limitation on the embodiments of the present application, and may include more or less components than those shown in the figure, or combine some components, or different Component placement.
  • the corresponding control method of the terminal device 300 may be executed by the control processor based on the instructions stored in the memory thereof.
  • the specific implementation of the terminal device 300 in this embodiment may refer to the description of the terminal device 300 in the above embodiments. In a specific embodiment, in order to avoid redundancy, the specific implementation manner of the terminal device 300 in this embodiment is not repeated here.
  • FIG. 6 is a flowchart of a terminal device control method provided by an embodiment of the present application.
  • the terminal device control method may be applied to the terminal device shown in FIG. 1 or FIG. 5 , and the method includes but is not limited to :
  • Step S100 for each radio frequency link, obtain the interference signal strength value sent by the signal detection component, and determine the interference degree of the current radio frequency link according to the interference signal strength value, wherein the interference signal strength value is determined by the signal detection component through coupling. It is obtained by detecting the interference signal obtained by the antenna from the antenna;
  • Step S200 Select a radio frequency link from at least two radio frequency links as the main set receiving channel according to the interference degree of each radio frequency link.
  • the signal detection component can detect the interference signal obtained from the antenna through the coupler, so as to obtain the interference signal strength value of each radio frequency link, and then use the control component to detect the interference signal according to the signal.
  • the interference signal strength value determines the degree of interference of the radio frequency link, that is, it is possible to know the influence of the interference degree of each radio frequency link, so that the appropriate radio frequency link can be selected from all the radio frequency links as the main channel according to this influence. Therefore, the anti-interference capability of the terminal device in the multi-channel working mode can be improved, the communication capability of the terminal device can be improved, and the throughput performance of the terminal device can be further improved.
  • the terminal device after selecting the radio frequency link as the main set receiving channel from the at least two radio frequency links, the terminal device will still rely on all the radio frequency links to work at the same time to achieve communication, that is, this embodiment mainly reduces In order to improve the anti-interference ability of the terminal equipment in the multi-channel working mode, the interference received by the radio frequency link as the main set receiving channel is reduced.
  • the terminal device in the example can maintain to work in the multi-channel working mode, so that it can have stronger communication transmission capability and higher throughput performance.
  • terminal device control method in this embodiment belongs to the same inventive concept as the terminal device in the above-mentioned embodiments of FIG. 1 and FIG. 6 , other specific implementations of the terminal device control method in this embodiment may be Referring to the specific embodiments of the terminal device in the above-mentioned embodiments, in order to avoid redundancy, other specific implementation manners of the terminal device control method in this embodiment are not repeated here.
  • step S200 also includes but is not limited to:
  • Step S210 according to the interference degree of each radio frequency link, determine the radio frequency link with the most interference degree from the at least two radio frequency links, and select the radio frequency link with the most interference degree from the at least two radio frequency links. Any other radio frequency link is used as the radio frequency link of the main set receiving channel.
  • the radio frequency link with the most interference degree will significantly affect the performance of the antenna, it can be determined that it is not suitable as the main set receiving channel, and then the radio frequency with the most interference degree is removed from the two radio frequency chains. link and select the corresponding RF link from the remaining RF links, the RF link corresponding to the antenna with less interference can be set as the main set receiving channel, which can improve the multi-channel working mode of the terminal device. high anti-interference ability, and improve the throughput performance of terminal equipment.
  • step S200 also includes but is not limited to:
  • Step S220 according to the interference degree of each radio frequency link, the radio frequency link with the least interference degree is selected from the at least two radio frequency links as the radio frequency link of the main set receiving channel.
  • the antenna corresponding to the radio frequency link with the least interference degree is also the least interfered. Therefore, the radio frequency link is suitable as the main set receiving channel, which can improve the anti-interference of the terminal device in the multi-channel working mode. capacity, thereby improving the throughput performance of the terminal device.
  • step S100 further includes but is not limited to:
  • Step S110 determining the frequency band where the interference signal is located according to the interference signal obtained from the antenna through the coupler;
  • Step S120 determining a target filtering module matching the interference signal from a plurality of filtering modules according to the frequency band where the interference signal is located;
  • Step S130 controlling the first switch and the second switch to select the target filtering module.
  • step S140 the interference signal strength value sent by the detection module is acquired, and the interference signal strength value is obtained by the detection module performing signal strength detection on the interference signal passing through the target filtering module.
  • a target filter module matching the interference signal can be determined from a plurality of filter modules, so that the corresponding ports of the first switch and the second switch can be controlled to be opened, so that Only the signal passing through the target filtering module can be turned on (including the input signal and the output signal), which can avoid the influence of other signals in the antenna on the detection of the interference signal, thus greatly improving the detection accuracy of the interference signal.
  • an embodiment of the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by a processor or controller, for example, by the above-mentioned Executed by a processor in the node embodiment, the above-mentioned processor can execute the terminal device control method in the above-mentioned embodiment, for example, to execute the above-described method steps S100 to S200 in FIG. 6 , method steps S210 in FIG. 7 , Method step S220 in FIG. 8 or method steps S110 to S140 in FIG. 9 .
  • a terminal device includes at least two radio frequency links
  • the radio frequency links include an antenna, a coupler, and a signal detection component configured to detect the power intensity of an interference signal
  • the coupler is provided with a first signal end, a second a signal end, a first coupling end and a second coupling end
  • the signal detection component is provided with a signal input end and a signal output end
  • the second signal end is connected with the antenna
  • the second coupling end is connected with the signal input end
  • the control component is respectively connected with The first signal end, the first coupling end and the signal output end are connected, and are set to determine the interference degree of the radio frequency link according to the strength value of the interference signal sent by the signal detection component, and are set to be according to the interference degree of each radio frequency link
  • the level is selected from at least two radio frequency links as the radio frequency link of the main set of receiving channels, wherein the interference signal strength value is obtained by detecting the interference signal obtained from the antenna through the coupler by the signal detection component.
  • the signal detection component can detect the interference signal obtained from the antenna through the coupler, so as to obtain the interference signal strength value of each radio frequency link, and then the control component can determine the radio frequency according to the interference signal strength value.
  • the interference degree of the link that is, it is possible to know the influence of the interference degree of each radio frequency link, so that the appropriate radio frequency link can be selected from all the radio frequency links as the main set receiving channel according to the influence situation. Therefore, The anti-interference capability of the terminal device in the multi-channel working mode can be improved, the communication capability of the terminal device can be improved, and the throughput performance of the terminal device can be further improved.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program components, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种终端设备及其控制方法、计算机可读存储介质。其中,所述终端设备包括至少两个射频链路(100),射频链路(100)包括天线(110)、耦合器(120)和信号检测组件(130),耦合器(120)设置有第一信号端(IN)、第二信号端(OUT)、第一耦合端(CPL)和第二耦合端(TERM),信号检测组件(130)设置有信号输入端(T1)和信号输出端(T2),第二信号端(OUT)与天线(110)连接,第二耦合端(TERM)与信号输入端(T1)连接;控制组件(200),分别与第一信号端(IN)、第一耦合端(CPL)和信号输出端(T2)连接,被设置成根据干扰信号强度值确定射频链路(100)的受干扰程度,并且被设置成根据各个射频链路(100)的受干扰程度选择作为主集接收通道的射频链路(100)。

Description

终端设备及其控制方法、计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202011042303.1、申请日为2020年09月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种终端设备及其控制方法、计算机可读存储介质。
背景技术
随着终端设备的发展和演进,目前终端设备可以利用天线在不同频段同时进行数据传输,即工作于多通道工作模式,当应用于终端设备数据传输的不同频段同时工作时,各频段间的射频信号不可避免的会产生各种各样的互相干扰,从而会影响频段彼此之间的灵敏度,进而导致终端设备的吞吐率下降。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种终端设备及其控制方法、计算机可读存储介质。
第一方面,本申请实施例提供了一种终端设备,包括:至少两个射频链路,所述射频链路包括天线、耦合器和用于检测干扰信号的功率强度的信号检测组件,所述耦合器设置有第一信号端、第二信号端、第一耦合端和第二耦合端,所述信号检测组件设置有信号输入端和信号输出端,所述第二信号端与所述天线连接,所述第二耦合端与所述信号输入端连接;控制组件,分别与所述第一信号端、所述第一耦合端和所述信号输出端连接,用于根据由所述信号检测组件发送的干扰信号强度值确定所述射频链路的受干扰程度,并且用于根据各个所述射频链路的受干扰程度从所述至少两个射频链路中选择作为主集接收通道的射频链路,其中,所述干扰信号强度值由所述信号检测组件对通过所述耦合器从所述天线获取到的干扰信号进行检测而得到。
第二方面,本申请实施例还提供了一种终端设备控制方法,应用于终端设备,所述终端设备包括至少两个射频链路,所述射频链路包括射频输入端、反馈输出端、天线、耦合器和信号检测组件,所述耦合器设置有第一信号端、第二信号端和第二耦合端,所述信号检测组件设置有信号输入端和信号输出端,所述第一信号端连接于所述射频输入端,所述第二信号端与所述天线连接,所述第二耦合端与所述信号输入端连接,所述信号输出端连接于所述反馈输出端;所述终端设备控制方法包括:针对各个所述射频链路,获取由所述信号检测组件发送的干扰信号强度值,并根据所述干扰信号强度值确定当前射频链路的受干扰程度,其中,所述干扰信号强度值由所述信号检测组件对通过所述耦合器从所述天线 获取到的干扰信号进行检测而得到;根据各个所述射频链路的受干扰程度从所述至少两个射频链路中选择作为主集接收通道的射频链路。
第三方面,本申请实施例还提供了一种终端设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述的终端设备控制方法。
第四方面,本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行如上所述的终端设备控制方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是本申请一个实施例提供的终端设备的示意图;
图2是本申请另一个实施例提供的终端设备的示意图;
图3是本申请另一个实施例提供的终端设备的示意图;
图4是本申请另一个实施例提供的终端设备的示意图;
图5是本申请另一个实施例提供的终端设备的示意图;
图6是本申请一个实施例提供的终端设备控制方法的流程图;
图7是本申请另一个实施例提供的终端设备控制方法中选择作为主集接收通道的射频链路的流程图;
图8是本申请另一个实施例提供的终端设备控制方法中选择作为主集接收通道的射频链路的流程图;
图9是本申请另一个实施例提供的终端设备控制方法中获取由信号检测组件发送的干扰信号强度值的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能组件划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的组件划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请提供了一种终端设备及其控制方法、计算机可读存储介质,通过信号检测组件能够对通过耦合器从天线获取到的干扰信号进行检测,从而获取到各个射频链路的干扰信号强度值,进而通过控制组件根据该干扰信号强度值确定射频链路的受干扰程度,即,能够了解到各个射频链路所受到干扰的程度影响,从而可根据此影响情况从全部射频链路中 选择出合适的射频链路作为主集接收通道,因此,能够提高终端设备在多通道工作模式下的抗干扰能力,改善终端设备的通信能力,进而提升终端设备的吞吐性能。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,图1是本申请一个实施例提供的终端设备的示意图。
在图1的示例中,该终端设备包括两个射频链路100,射频链路100包括天线110、耦合器120和被设置成检测干扰信号的功率强度的信号检测组件130,耦合器120设置有第一信号端IN、第二信号端OUT、第一耦合端CPL和第二耦合端TERM,信号检测组件130设置有信号输入端T1和信号输出端T2,第二信号端OUT与天线110连接,第二耦合端TERM与信号输入端T1连接;
控制组件200,分别与第一信号端IN、第一耦合端CPL和信号输出端T2连接,被设置成根据由信号检测组件130发送的干扰信号强度值确定射频链路100的受干扰程度,并且被设置成根据各个射频链路100的受干扰程度从两个射频链路100中选择作为主集接收通道的射频链路100,其中,干扰信号强度值由信号检测组件130对通过耦合器120从天线110获取到的干扰信号进行检测而得到。
应当说明的是,由于两个射频链路100的结构及工作方式等均是相同的,为免冗余,在图1中仅示出其中一个射频链路100的具体结构,相应地,另一射频链路100(即图1中所示的BLOCK与天线110所组合形成的结构)的具体结构也可由此得到。
在一实施例中,通过信号检测组件130能够对通过耦合器120从天线110获取到的干扰信号进行检测,从而获取到各个射频链路100的干扰信号强度值,由于射频链路100的干扰信号强度值与其受干扰程度相关,即,干扰信号强度值越大,射频链路100所受到的干扰程度越大,因此可以根据该干扰信号强度值确定射频链路100的受干扰程度,当确定各个射频链路100所受到干扰的程度影响后,可以根据此影响情况从全部射频链路100中选择出合适的射频链路100作为主集接收通道,因此能够提高终端设备在多通道工作模式下的抗干扰能力,改善终端设备的通信能力,进而提升终端设备的吞吐性能。
在一实施例中,“主集接收”与“分集接收”是本领域的两个技术术语,作为主集接收通道的射频链路100中的天线110,主要负责射频信号的发送和接收,相应地,作为分集接收通道的射频链路100中的天线110,一般只负责接收信号而不发送信号,最终基站会把从两个通道所收到的信号进行合并处理,可见,当根据各个射频链路100的受干扰程度所选出的射频链路100被确定为主集通道进行接收时,由于改善了该天线110所受到的干扰,因此其能够对信号执行完整的发送和接收流程,从而能够提高终端设备在多通道工作模式下的抗干扰能力,进而也能够使基站获得相应增益。
在一实施例中,终端设备可以但不限于是5G终端设备,也可以是与5G终端设备相关联的产品,比如5G网络外围设备、5G网络模组、5G网络芯片、5G网络数据平台、移动宽带产品或者物联网产品等,并且无论是5G终端设备还是与5G终端设备相关联的产品,均能够支持在非独立组网(Non-Standalone,NSA)或独立组网(Standalone,SA)模式下进行设置,也能够在所有支持探测参考信号(Sounding Reference Signal,SRS)的场景下进行设置;或者,终端设备也可以是无线网络下的客户前置设备(Customer Premise Equipment,CPE),即为无线路由器设备。
在一实施例中,根据终端设备在实际中不同场景下的应用情况,射频链路100的数量 也可设置为大于两个的任意值,这在本实施例中并未限制。
在一实施例中,控制组件200,可以具体被设置成根据各个射频链路100的受干扰程度从两个射频链路100中确定受干扰程度最大的射频链路100,并从两个射频链路100中选择除受干扰程度最大的射频链路100之外的任意一条射频链路100作为主集接收通道的射频链路100。由于受干扰程度最大的射频链路100会显著影响到天线110的性能,因此可以确定其不适宜作为主集接收通道,进而从两个射频链路100中去除受干扰程度最大的射频链路100并从剩下的射频链路100中选取相应的射频链路100,则可以将受干扰较小的天线110所对应的射频链路100设置为主集接收通道,进而能够提高终端设备在多通道工作模式下的抗干扰能力,并且提升终端设备的吞吐性能。
在一实施例中,控制组件200,也可以具体被设置成根据各个射频链路100的受干扰程度从两个射频链路100中选择受干扰程度最小的射频链路100作为主集接收通道的射频链路100。受干扰程度最小的射频链路100所对应的天线110受干扰程度也最小,因此,该射频链路100适宜作为主集接收通道,能够提高终端设备在多通道工作模式下的抗干扰能力,进而提升终端设备的吞吐性能。
在一实施例中,耦合器120的型号与规格不受限制,可以根据实际情况进行选取,但无论如何,耦合器120可以切换到获取天线110信号的耦合模式,此时其信号流向依次经过:天线110、第二信号端OUT、第二耦合端TERM、信号输入端T1、信号输出端T2和控制组件200,在这一过程中,也存在部分信号通过第一耦合端CPL直接回到控制组件200的情况,但不影响对于天线110信号的检测;另外,耦合器120也可以切换到发射天线110信号的耦合模式,此时其信号流向依次经过:控制组件200、第一信号端IN、第二信号端OUT和天线110;可见,本实施例不仅可以用于获取天线110信号以对其进行检测,同时还可以耦合输出天线110信号,因此具有一定的多用性,可以提升移动终端的使用效果。
在一实施例中,终端设备还设置有链路开关,该链路开关设置有与控制组件200连接的链路开关输入端、分别与各射频链路100连接的链路开关输出端以及与控制组件200连接的链路控制端,当控制组件200根据各个射频链路100的受干扰程度从两个射频链路100中选择作为主集接收通道的射频链路100后,则只需通过控制链路控制端开启相应的链路开关输出端,即能够实现作为主集接收通道的射频链路100的导通切换,应当说明的是,在实际应用中,链路开关可以设置有多个,通过多个链路开关也能够实现将作为主集接收通道的射频链路100进行导通切换,其基本原理与上述实施例是相同的,为免冗余,在此不作赘述。
在一实施例中,终端设备还设置有功率放大器,该功率放大器与控制组件200连接,当所获取的天线110信号出现失真时,通过功率放大器能够将作为主集接收通道的射频链路100所对应的天线110信号进行功率放大,从而提升作为主集接收通道的射频链路100的通信效果,进而提升终端设备的吞吐性能。
在一实施例中,控制组件200设置有射频输入端和反馈输出端,其中,射频输入端连接于第一信号端,信号输出端连接于反馈输出端,通过射频输入端能够与耦合器之间实现信号传输,通过反馈输入端能够获取来自信号输出端的干扰信号强度值,可见,设置射频输入端和反馈输出端可以使得控制组件200能够更加稳定可靠地进行工作,有利于提升其工作稳定性。
如图2所示,图2是本申请另一个实施例提供的终端设备的示意图。
在图2的示例中,信号检测组件包括被设置成对通过耦合器120从天线110获取到的干扰信号进行滤波的滤波模块131和被设置成对经过滤波的干扰信号进行信号强度检测的检测模块132;滤波模块131设置有滤波输入端A1和滤波输出端A2,检测模块132设置有检测输入端B1和检测输出端B2,滤波输入端A1连接信号输入端T1,滤波输出端A2连接检测输入端B1,检测输出端B2连接信号输出端T2。
在一实施例中,滤波模块131通过滤波输入端A1获取到相应的干扰信号并能够对干扰信号进行滤波,进而通过滤波输出端A2输出滤波后的干扰信号,由于滤波后的干扰信号中的杂质成分基本被滤除,因此滤波后的干扰信号的性能会更加稳定,当检测模块132接收滤波后的干扰信号并对其进行检测,则能够稳定测出干扰信号强度值,即,能够准确可靠的了解天线110中的受干扰情况,以便于控制组件200能够准确地从两个射频链路100中选择作为主集接收通道的射频链路100。
在一实施例中,滤波模块131可以采用各种型号或规格的滤波器,检测模块132可以是被设置成对经过滤波后的干扰信号进行功率检波的相关电路,即,通过功率检波能够将经过滤波后的干扰信号进行数字化处理,从而获得与其对应的数字信号,通过数字信号则能够直接获取其信号强度,另外,检测模块132还可以包括放大电路,比如,在获得所述的数字信号之后,若经过转换的数字信号的增益、功率等出现失真,则检测模块132可以将数字信号进行放大再供给控制组件200,以便于控制组件200更容易识别放大后的数字信号并根据其确定射频链路100的受干扰程度。
如图3所示,图3是本申请另一个实施例提供的终端设备的示意图。
在图3的示例中,滤波模块131的数量为多个,并且各个滤波模块131具有不同的滤波频段;信号检测组件还包括第一开关140,第一开关140设置有第一开关输入端D1、第一开关输出端D2和第一控制端,第一开关输入端D1连接信号输入端T1,第一控制端连接控制组件200,第一开关输出端D2的数量和滤波模块131的数量相一致,第一开关输出端D2连接滤波输入端A1。
在一实施例中,控制组件200通过第一信号端IN或第一耦合端CPL可以获取到天线110中干扰信号的频段信息,并通过第一控制端将该信息反馈至与该信息对应的第一开关140,同时仅控制该第一开关140打开,则对应滤波频段的滤波模块131实现导通从而对干扰信号进行滤波输出,可见,第一开关140可以看作为具有多个开关端口的导通元件,通过此种控制方式可以仅控制相应滤波频段的滤波模块131打开,不会出现滤波模块131误打开的情况,即,不会对除干扰信号之外的其它信号进行无用过滤,能够保证输出稳定可靠的经过滤波的干扰信号。
在一实施例中,信号检测组件还包括第二开关150,第二开关150设置有第二开关输入端C1、第二开关输出端C2和第二控制端,第二开关输出端C2连接检测输入端B1,第二控制端连接控制组件200,第二开关输入端C1的数量和滤波模块131的数量相一致,第二开关输入端C1连接滤波输出端A2,其中,该第二开关150相对于第一开关140可以单独设置,也可以与第一开关140配合设置在滤波模块131两端,对于第二开关150所取得的技术效果而言是一致的,比如,在图3的示例中,除了设置有第一开关140,还设置有第二开关150,当对应滤波频段的滤波模块131实现导通从而对干扰信号进行滤波输出, 可以控制与该滤波模块131对应的第二开关输入端C1导通,从而将经过滤波后的干扰信号输出到检测模块132,通过此种控制方式可以仅控制经过滤波的干扰信号只会从其对应频段的滤波输出端A2所输出,不会出现经过滤波后的干扰信号误输出的情况,使得检测模块132能够稳定获取经过滤波的干扰信号。
在一实施例中,控制第一开关140打开及对应的滤波模块131实现滤波的时机可以设定为在天线110信号工作及传输过程中的特定间隔,比如5G中NR模式下的时隙,这样的检测方式对于天线110信号的工作及传输不会造成过大的影响,或者,本领域技术人员也可以根据实际情况自行设定相应时机以控制第一开关140打开及对应的滤波模块131实现滤波。
如图4所示,图4是本申请另一个实施例提供的终端设备的示意图。
在图4的示例中,射频链路100还包括第三开关160,第一耦合端CPL通过第三开关160连接控制组件200。
在一实施例中,第三开关160可以是单刀双掷开关,此时第三开关160设置有第三开关输入端和能够进行切换的第三开关输出端,第三开关输入端连接到第一耦合端CPL;当耦合器120处于发送天线信号的耦合模式下时,第三开关输出端连接控制组件200,起到辅助耦合作用,另一种情况下,当耦合器120处于接收天线信号的耦合模式下时,第三开关输出端被切换到通过负载连接到地,从而实现阻抗匹配,也可以防止从第二信号端所输入的天线信号中部分被第一耦合端CPL所接收,以免其影响干扰信号的检测精度。
在一实施例中,第三开关160还可以是各种型号的继电器,继电器设置有触点开关,该触点开关一端连接第一耦合端CPL,另一端可以在连接负载与连接控制组件200之间进行切换,也能够起到与上述实施例相同的作用,在此不作赘述。
在一实施例中,射频链路100还可以包括第四开关170,第二耦合端TERM通过第四开关170连接信号输入端T1,其中,该第四开关170相对于第三开关160可以单独设置,也可以与第三开关160配合设置在耦合器120两端,对于第四开关170所取得的技术效果而言是一致的,比如,在图4的示例中,除了设置有第三开关160,还设置有第四开关170,第三开关160也可以是单刀双掷开关或各种型号的继电器,当第四开关170为单刀双掷开关,此时第四开关170设置有第四开关输入端和能够进行切换的第四开关输出端,第四开关输入端连接到第二耦合端TERM;当耦合器120处于发送天线信号的耦合模式下时,此时不用于获取并检测天线信号,则第四开关输出端连接通过负载连接到地,从而实现阻抗匹配,也可以防止从第一信号端IN所输出的天线信号中部分被第二耦合端TERM所接收,以免其影响天线信号的发射强度,另一种情况下,当耦合器120处于接收天线信号的耦合模式下时,第四开关输出端被切换到连接信号输入端T1,起到辅助耦合作用,应当说明的是,第一耦合端CPL或第二耦合端TERM可以根据射频链路100的实际情况来各自适应性地调整阻抗匹配,这在本实施例中并未限制。
在一实施例中,通过设置第三开关160或/和第四开关170就能够辅助射频链路100进行工作,可见,本实施例中无需在射频链路100中添加额外的有源器件或/和无源器件进行辅助,这样既能够减少额外器件可能会带来的插损,同时也相对节省了射频链路100的材料成本。
参照图5,图5是本申请另一个实施例提供的终端设备300的示意图。
如图5所示,该终端设备300包括:一个或多个控制处理器和存储器,图6中以一个控制处理器及一个存储器为例。
控制处理器和存储器可以通过总线或者其他方式连接,图6中以通过总线连接为例。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于控制处理器远程设置的远程存储器,这些远程存储器可以通过网络连接至该控制处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例描述的终端设备300以及应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着终端设备300的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图5中示出的终端设备300并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
在图5所示的终端设备300中,可通过其存储器内部所存储的指令,由控制处理器基于该指令进行执行相应的终端设备300控制方法。
由于本实施例中的终端设备300与上述各实施例中的终端设备300属于同一发明构思,因此本实施例中的终端设备300的具体实施方式,可以参照上述各实施例中的终端设备300的具体实施例,为避免冗余,本实施例的终端设备300的具体实施方式在此不再赘述。
基于上述终端设备300的结构,提出本申请的终端设备300控制方法的各个实施例。
如图6所示,图6是本申请一个实施例提供的终端设备控制方法的流程图,该终端设备控制方法可以应用于如图1或图5所示的终端设备,该方法包括但不限于:
步骤S100,针对各个射频链路,获取由信号检测组件发送的干扰信号强度值,并根据干扰信号强度值确定当前射频链路的受干扰程度,其中,干扰信号强度值由信号检测组件对通过耦合器从天线获取到的干扰信号进行检测而得到;
步骤S200,根据各个射频链路的受干扰程度从至少两个射频链路中选择作为主集接收通道的射频链路。
在一实施例中,针对各个射频链路,通过信号检测组件能够对通过耦合器从天线获取到的干扰信号进行检测,从而获取到各个射频链路的干扰信号强度值,进而通过控制组件根据该干扰信号强度值确定射频链路的受干扰程度,即,能够了解到各个射频链路所受到干扰的程度影响,从而可根据此影响情况从全部射频链路中选择出合适的射频链路作为主集接收通道,因此,能够提高终端设备在多通道工作模式下的抗干扰能力,改善终端设备的通信能力,进而提升终端设备的吞吐性能。
值得注意的是,从至少两个射频链路中选择作为主集接收通道的射频链路之后,该终端设备仍然会依靠所有射频链路同时工作以实现通信,即,本实施例主要是通过减小作为主集接收通道的射频链路所受到的干扰以提高终端设备在多通道工作模式下的抗干扰能力,相比于相关技术中的采用算法使得互扰频段分时工作的方式,本实施例中的终端设备能够维持在多通道工作模式下进行工作,从而能够具有更强的通信传输能力和更高的吞吐 性能。
需要说明的是,由于本实施例中的终端设备控制方法与上述图1及图6实施例中的终端设备属于同一发明构思,因此本实施例中的终端设备控制方法的其它具体实施方式,可以参照上述实施例中的终端设备的具体实施例,为避免冗余,本实施例的终端设备控制方法的其它具体实施方式在此不再赘述。
如图7所示,步骤S200还包括但不限于:
步骤S210,根据各个射频链路的受干扰程度从至少两个射频链路中确定受干扰程度最大的射频链路,并从至少两个射频链路中选择除受干扰程度最大的射频链路之外的任意一条射频链路作为主集接收通道的射频链路。
在一实施例中,由于受干扰程度最大的射频链路会显著影响到天线的性能,因此可以确定其不适宜作为主集接收通道,进而从两个射频链路中去除受干扰程度最大的射频链路并从剩下的射频链路中选取相应的射频链路,则可以将受干扰较小的天线所对应的射频链路设置为主集接收通道,进而能够提高终端设备在多通道工作模式下的抗干扰能力,并且提升终端设备的吞吐性能。
如图8所示,步骤S200还包括但不限于:
步骤S220,根据各个射频链路的受干扰程度从至少两个射频链路中选择受干扰程度最小的射频链路作为主集接收通道的射频链路。
在一实施例中,受干扰程度最小的射频链路所对应的天线受干扰程度也最小,因此,该射频链路适宜作为主集接收通道,能够提高终端设备在多通道工作模式下的抗干扰能力,进而提升终端设备的吞吐性能。
如图9所示,在该终端设备控制方法还可以应用于如图2至图5中任一所示的终端设备的情况下,步骤S100还包括但不限于:
步骤S110,根据通过耦合器从天线获取到的干扰信号确定干扰信号所处频段;
步骤S120,根据干扰信号所处频段从多个滤波模块中确定与干扰信号匹配的目标滤波模块;
步骤S130,控制第一开关和第二开关选通目标滤波模块。
步骤S140,获取由检测模块发送的干扰信号强度值,干扰信号强度值由检测模块对经过目标滤波模块的干扰信号进行信号强度检测而得到。
在一实施例中,在确定干扰信号所处频段后,进而能够从多个滤波模块中确定与干扰信号匹配的目标滤波模块,从而能够对应控制第一开关和第二开关的相应端口打开,使得只有经过目标滤波模块的信号能够进行导通(包括输入信号及输出信号),可以避免天线中其它信号对于干扰信号检测所带来的影响,从而使得针对干扰信号的检测精度大大提高。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述节点实施例中的一个处理器执行,可使得上述处理器执行上述实施例中的终端设备控制方法,例如,执行以上描述的图6中的方法步骤S100至S200、图7中的方法步骤S210、图8中的方法步骤S220或图9中的方法步骤S110至S140。
本申请实施例包括:终端设备包括至少两个射频链路,射频链路包括天线、耦合器和被设置成检测干扰信号的功率强度的信号检测组件,耦合器设置有第一信号端、第二信号 端、第一耦合端和第二耦合端,信号检测组件设置有信号输入端和信号输出端,第二信号端与天线连接,第二耦合端与信号输入端连接;以及控制组件,分别与第一信号端、第一耦合端和信号输出端连接,被设置成根据由信号检测组件发送的干扰信号强度值确定射频链路的受干扰程度,并且被设置成根据各个射频链路的受干扰程度从至少两个射频链路中选择作为主集接收通道的射频链路,其中,干扰信号强度值由信号检测组件对通过耦合器从天线获取到的干扰信号进行检测而得到。本申请实施例中,通过信号检测组件能够对通过耦合器从天线获取到的干扰信号进行检测,从而获取到各个射频链路的干扰信号强度值,进而通过控制组件根据该干扰信号强度值确定射频链路的受干扰程度,即,能够了解到各个射频链路所受到干扰的程度影响,从而可根据此影响情况从全部射频链路中选择出合适的射频链路作为主集接收通道,因此,能够提高终端设备在多通道工作模式下的抗干扰能力,改善终端设备的通信能力,进而提升终端设备的吞吐性能。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序组件或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序组件或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施方式进行的具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (14)

  1. 一种终端设备,包括:
    至少两个射频链路,所述射频链路包括天线、耦合器和被设置成检测干扰信号的功率强度的信号检测组件,所述耦合器设置有第一信号端、第二信号端、第一耦合端和第二耦合端,所述信号检测组件设置有信号输入端和信号输出端,所述第二信号端与所述天线连接,所述第二耦合端与所述信号输入端连接;
    控制组件,分别与所述第一信号端、所述第一耦合端和所述信号输出端连接,被设置成根据由所述信号检测组件发送的干扰信号强度值确定所述射频链路的受干扰程度,并且被设置成根据各个所述射频链路的受干扰程度从所述至少两个射频链路中选择作为主集接收通道的射频链路,其中,所述干扰信号强度值由所述信号检测组件对通过所述耦合器从所述天线获取到的干扰信号进行检测而得到。
  2. 根据权利要求1所述的终端设备,其中,所述控制组件,被设置成根据各个所述射频链路的受干扰程度从所述至少两个射频链路中确定受干扰程度最大的射频链路,并从所述至少两个射频链路中选择除受干扰程度最大的射频链路之外的任意一条射频链路作为主集接收通道的射频链路。
  3. 根据权利要求1所述的终端设备,其中,所述控制组件,被设置成根据各个所述射频链路的受干扰程度从所述至少两个射频链路中选择受干扰程度最小的射频链路作为主集接收通道的射频链路。
  4. 根据权利要求1所述的一种终端设备,其中,所述信号检测组件包括被设置成对通过所述耦合器从所述天线获取到的干扰信号进行滤波的滤波模块和被设置成对经过滤波的干扰信号进行信号强度检测的检测模块;所述滤波模块设置有滤波输入端和滤波输出端,所述检测模块设置有检测输入端和检测输出端,所述滤波输入端连接所述信号输入端,所述滤波输出端连接所述检测输入端,所述检测输出端连接所述信号输出端。
  5. 根据权利要求4所述的一种终端设备,其中,所述滤波模块的数量为多个,并且各个所述滤波模块具有不同的滤波频段;所述信号检测组件还包括第一开关,所述第一开关设置有第一开关输入端、第一开关输出端和第一控制端,所述第一开关输入端连接所述信号输入端,所述第一控制端连接所述控制组件,所述第一开关输出端的数量和所述滤波模块的数量相一致,所述第一开关输出端连接所述滤波输入端。
  6. 根据权利要求4所述的一种终端设备,其中,所述信号检测组件还包括第二开关,所述第二开关设置有第二开关输入端、第二开关输出端和第二控制端,所述第二开关输出端连接所述检测输入端,所述第二控制端连接所述控制组件,所述第二开关输入端的数量和所述滤波模块的数量相一致,所述第二开关输入端连接所述滤波输出端。
  7. 根据权利要求1所述的终端设备,其中,所述射频链路还包括第三开关,所述第一耦合端通过所述第三开关连接所述控制组件。
  8. 根据权利要求1或7所述的终端设备,其中,所述射频链路还包括第四开关,所述第二耦合端通过所述第四开关连接所述信号输入端。
  9. 一种终端设备控制方法,应用于终端设备,其中,所述终端设备包括至少两个射频链路,所述射频链路包括射频输入端、反馈输出端、天线、耦合器和信号检测组件,所述 耦合器设置有第一信号端、第二信号端和第二耦合端,所述信号检测组件设置有信号输入端和信号输出端,所述第一信号端连接于所述射频输入端,所述第二信号端与所述天线连接,所述第二耦合端与所述信号输入端连接,所述信号输出端连接于所述反馈输出端;
    所述终端设备控制方法包括:
    针对各个所述射频链路,获取由所述信号检测组件发送的干扰信号强度值,并根据所述干扰信号强度值确定当前射频链路的受干扰程度,其中,所述干扰信号强度值由所述信号检测组件对通过所述耦合器从所述天线获取到的干扰信号进行检测而得到;
    根据各个所述射频链路的受干扰程度从所述至少两个射频链路中选择作为主集接收通道的射频链路。
  10. 根据权利要求9所述的终端设备控制方法,其中,所述根据各个所述射频链路的受干扰程度从所述至少两个射频链路中选择作为主集接收通道的射频链路,包括:
    根据各个所述射频链路的受干扰程度从所述至少两个射频链路中确定受干扰程度最大的射频链路,并从所述至少两个射频链路中选择除受干扰程度最大的射频链路之外的任意一条射频链路作为主集接收通道的射频链路。
  11. 根据权利要求9所述的终端设备控制方法,其中,所述根据各个所述射频链路的受干扰程度从所述至少两个射频链路中选择作为主集接收通道的射频链路,包括:
    根据各个所述射频链路的受干扰程度从所述至少两个射频链路中选择受干扰程度最小的射频链路作为主集接收通道的射频链路。
  12. 根据权利要求9所述的终端设备控制方法,其中,所述信号检测组件包括第一开关、第二开关、滤波模块和检测模块;所述滤波模块的数量为多个,并且各个所述滤波模块具有不同的滤波频段,所述滤波模块设置有滤波输入端和滤波输出端;所述检测模块设置有检测输入端和检测输出端;所述第一开关设置有第一开关输入端和第一开关输出端,所述第一开关输出端的数量和所述滤波模块的数量相一致;所述第二开关设置有第二开关输入端和第二开关输出端,所述第二开关输入端的数量和所述滤波模块的数量相一致;所述第一开关输入端连接所述信号输入端,所述第一开关输出端连接所述滤波输入端,所述滤波输出端连接所述第二开关输入端,所述第二开关输出端连接所述检测输入端,所述检测输出端连接所述信号输出端;
    所述获取由所述信号检测组件发送的干扰信号强度值,包括:
    根据通过所述耦合器从所述天线获取到的干扰信号确定所述干扰信号所处频段;
    根据所述干扰信号所处频段从多个所述滤波模块中确定与所述干扰信号匹配的目标滤波模块;
    控制所述第一开关和所述第二开关选通所述目标滤波模块;
    获取由所述检测模块发送的干扰信号强度值,所述干扰信号强度值由所述检测模块对经过所述目标滤波模块的干扰信号进行信号强度检测而得到。
  13. 一种终端设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求9至12中任意一项所述的终端设备控制方法。
  14. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求9至12中任意一项所述的终端设备控制方法。
PCT/CN2021/110089 2020-09-28 2021-08-02 终端设备及其控制方法、计算机可读存储介质 WO2022062663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011042303.1 2020-09-28
CN202011042303.1A CN114285424A (zh) 2020-09-28 2020-09-28 终端设备及其控制方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022062663A1 true WO2022062663A1 (zh) 2022-03-31

Family

ID=80844830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110089 WO2022062663A1 (zh) 2020-09-28 2021-08-02 终端设备及其控制方法、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN114285424A (zh)
WO (1) WO2022062663A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133950A (zh) * 2022-06-29 2022-09-30 联想(北京)有限公司 一种信号收发电路、测量方法及装置
WO2024109212A1 (zh) * 2022-11-21 2024-05-30 荣耀终端有限公司 一种射频模组

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612595A (zh) * 2017-08-14 2018-01-19 维沃移动通信有限公司 一种天线切换方法及移动终端
CN110312270A (zh) * 2019-06-17 2019-10-08 Oppo广东移动通信有限公司 通信质量的提升方法、低功耗广域网设备及存储介质
CN110677168A (zh) * 2019-10-18 2020-01-10 深圳市泰衡诺科技有限公司 5g终端信号收发装置、方法以及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612595A (zh) * 2017-08-14 2018-01-19 维沃移动通信有限公司 一种天线切换方法及移动终端
CN110312270A (zh) * 2019-06-17 2019-10-08 Oppo广东移动通信有限公司 通信质量的提升方法、低功耗广域网设备及存储介质
CN110677168A (zh) * 2019-10-18 2020-01-10 深圳市泰衡诺科技有限公司 5g终端信号收发装置、方法以及终端

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133950A (zh) * 2022-06-29 2022-09-30 联想(北京)有限公司 一种信号收发电路、测量方法及装置
CN115133950B (zh) * 2022-06-29 2024-03-26 联想(北京)有限公司 一种信号收发电路、测量方法及装置
WO2024109212A1 (zh) * 2022-11-21 2024-05-30 荣耀终端有限公司 一种射频模组

Also Published As

Publication number Publication date
CN114285424A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2018006522A1 (zh) 有源天线系统、移动终端及天线系统的配置方法
CN112805938B (zh) 一种信号放大电路及终端设备
US9049664B2 (en) Wireless communications circuit for improving current consumption and RF performance
WO2022062663A1 (zh) 终端设备及其控制方法、计算机可读存储介质
US11463124B2 (en) Full-time duplex system, full-time duplex circuit, and control method
US20120033559A1 (en) Method for controlling transmission/reception timing of base station antenna for tdd wireless communications and base station antenna using the same
US10757654B2 (en) Communication method and mobile terminal
CN108075844A (zh) 射频反射波检测装置、无线通讯系统及天线状态检测方法
JPH09289483A (ja) ダイバーシティ受信機
WO2017080165A1 (zh) 一种多天线的射频电路、射频信号处理方法
US9503149B1 (en) Electronic device and control method thereof
US20230239764A1 (en) Spatial reuse in wireless communication
CN105792259A (zh) 一种智能终端的3g通信控制方法
CN106804044B (zh) 通信故障检测方法、装置以及射频拉远电路
CN111917434A (zh) 双频并发通讯电路、双频信号选择方法、电视及存储介质
CN105763221A (zh) 一种射频电路及干扰抑制方法
CN113078961B (zh) 电子设备测试状态的检测方法及检测装置
US20130225097A1 (en) Method for cancelling intermodulation noise signal between antennas and communication terminal apparatus
CN114710180A (zh) 一种射频处理电路控制方法、射频系统及无线通信设备
CN213367788U (zh) 射频前端电路及电子设备
CN111183591A (zh) 在终端设备和天线之间放大无线电信号的程序方法和设备
CN108075846B (zh) 一种基站干扰检测方法及装置
CN112737628A (zh) 射频电路和电子设备
CN105490698A (zh) 聚合信号放大设备和方法
CN109714067A (zh) 系统频段切换方法、装置、存储介质、接收端及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21871041

Country of ref document: EP

Kind code of ref document: A1