WO2022062322A1 - 一种用于防止电池热失控的方法及系统 - Google Patents

一种用于防止电池热失控的方法及系统 Download PDF

Info

Publication number
WO2022062322A1
WO2022062322A1 PCT/CN2021/078626 CN2021078626W WO2022062322A1 WO 2022062322 A1 WO2022062322 A1 WO 2022062322A1 CN 2021078626 W CN2021078626 W CN 2021078626W WO 2022062322 A1 WO2022062322 A1 WO 2022062322A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
cell
pack
module
Prior art date
Application number
PCT/CN2021/078626
Other languages
English (en)
French (fr)
Inventor
李晓辉
杨博智
张臣
朱睿明
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Priority to CN202180001790.3A priority Critical patent/CN114600301B/zh
Publication of WO2022062322A1 publication Critical patent/WO2022062322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of battery safety, and in particular, to a method and system for preventing thermal runaway of a battery.
  • the present invention provides a method for preventing thermal runaway of a battery, comprising: detecting or predicting whether each battery cell or battery module of a battery pack is at risk of thermal runaway; and in response to detecting a thermal runaway risk; Or predict that at least one battery cell or battery module of the battery pack is at risk of thermal runaway, and transfer the battery energy of at least one battery cell or battery module to the battery pack or another battery pack as thermal energy or electrical energy.
  • detecting or predicting whether each battery cell or battery module of a battery pack has a risk of thermal runaway includes: collecting information about each battery cell or battery module in the battery pack; information to detect or predict whether each battery cell or battery module of the battery pack is at risk of thermal runaway.
  • transferring battery energy of at least one battery cell or battery module to the battery pack or another battery pack as thermal or electrical energy comprises at least one of: a first transfer mode, which passes A battery coolant circuit for the battery pack or another battery pack transfers battery energy of at least one battery cell or battery module to the battery pack or another battery pack as thermal energy; a second transfer mode, which is by attaching to a heating element on a battery side wall of a battery cell or battery module of the battery pack or another battery pack to transfer the battery energy of at least one battery cell or battery module to the battery pack or another battery pack as thermal energy; A third transfer mode that charges the battery pack or another battery pack by discharging and recovering battery energy of the at least one battery cell or battery module to charge the battery pack or another battery pack by means of the at least one step-up DC/DC converter.
  • the battery energy of the cell or battery module is transferred as electrical energy to the battery pack or to another battery pack.
  • At least one battery cell or battery module in the first transfer mode, is connected to at least one element connected to a battery of the battery pack or another battery pack In or connected to the coolant circuit: heating units, coolant pumps, traction motors, inverters, chargers.
  • the heating device includes at least one of the following: a resistance heater, a positive temperature coefficient (PTC) heater, a high voltage (HV) heater; Threshold efficiency to operate the traction motor and inverter as a heat generating device.
  • PTC positive temperature coefficient
  • HV high voltage
  • At least one element in or connected to the battery coolant circuit connected to the battery pack or another battery pack needs to be higher than the at least one battery cell or battery module.
  • the at least one battery cell or battery module is connected to the at least one element through at least one step-up DC/DC converter, which converts the at least one battery cell or the voltage of the battery module is increased to the voltage required by the at least one element.
  • the at least one battery cell or battery module in the second transfer mode, communicates with a battery sidewall of a battery cell or battery module attached to the battery pack or another battery pack connected to the heating element.
  • the heating element comprises at least one of a resistance heater, a resistance heating element.
  • the at least one battery cell or battery module in the third transfer mode, is connected to the entire battery pack, or another battery pack, through at least one step-up DC/DC converter, Or a group of battery cells or battery modules in the battery pack, or a group of battery cells or battery modules in another battery pack.
  • the first transfer mode or the second transfer mode is employed where the battery pack or another battery pack is located in an environment with a temperature below a temperature threshold; and/or, in A third transfer mode is employed without thermal management being provided to the battery pack or to another battery pack.
  • the present invention provides a system for preventing thermal runaway of a battery, comprising: a battery pack having a plurality of battery cells or battery modules; The individual battery cells or battery modules of the battery pack are connected and used to control the individual battery cells or battery modules of the battery pack upon receipt of the activation command to the protection circuit connection, detection and prediction element configured to detect or predict the whether each battery cell or battery module of the battery pack is at risk of thermal runaway, and in response to detecting or predicting that at least one battery cell or battery module of the battery pack is at risk of thermal runaway, sending an activation instruction to the at least one battery pack Each switch or pair of switches corresponding to one battery cell or battery module; when connected to the at least one battery cell or battery module, the protection circuit uses the battery energy of the at least one battery cell or battery module as thermal energy or electrical energy to the battery pack or to another battery pack.
  • the detection and prediction element is configured to detect or predict whether each battery cell or battery module of the battery pack is at risk of thermal runaway by collecting each of the battery packs Information of battery cells or battery modules; according to the collected information, detect or predict whether there is a risk of thermal runaway for each battery cell or battery module of the battery pack.
  • the protection circuit when connected to the at least one battery cell or battery module, diverts the battery energy of the at least one battery cell or battery module in at least one of the following modes Transfer as heat or electrical energy to the battery pack or another battery pack: a first transfer mode which transfers the battery energy of at least one battery cell or battery module through the battery coolant circuit for the battery pack or another battery pack As heat energy is transferred to the battery pack or to another battery pack; a second mode of transfer by heating elements attached to the battery side walls of cells or battery modules of the battery pack or another battery pack, at least The battery energy of one battery cell or battery module is transferred as thermal energy to the battery pack or the other battery pack; a third transfer mode, by discharging and recovering the battery energy of at least one battery cell or battery module, with the help of at least one liter
  • the voltage DC/DC converter charges the battery pack or another battery pack, and transfers the battery energy of at least one battery cell or battery module to the battery pack or another battery pack as electrical energy.
  • the protection circuit in the first transfer mode, includes at least one of the following elements connected to the battery coolant circuit of the battery pack or another battery pack or To connect with: heating unit, coolant pump, traction motor, inverter, charger.
  • the heating device includes at least one of the following: a resistance heater, a positive temperature coefficient (PTC) heater, a high voltage (HV) heater; Threshold efficiency to operate the traction motor and inverter as a heat generating device.
  • PTC positive temperature coefficient
  • HV high voltage
  • At least one element in or connected to the battery coolant circuit connected to the battery pack or another battery pack needs to be higher than the at least one battery cell or battery module.
  • the at least one battery cell or battery module is connected to the at least one element through at least one step-up DC/DC converter, which converts the at least one battery cell or the voltage of the battery module is increased to the voltage required by the at least one element.
  • the protection circuit in the second delivery mode, includes a heating element attached to a battery sidewall of a battery cell or battery module of the battery pack or another battery pack.
  • the heating element comprises at least one of a resistance heater, a resistance heating element.
  • the protection circuit in the third transfer mode, includes at least one step-up DC/DC converter through which the at least one battery cell or battery module is boosted A type of DC/DC converter is connected to the entire battery pack, or another battery pack, or a group of battery cells or battery modules in said battery pack, or a group of battery cells or battery modules in another battery pack.
  • the first transfer mode or the second transfer mode is employed where the battery pack or another battery pack is located in an environment with a temperature below a temperature threshold; and/or, in A third transfer mode is employed without thermal management being provided to the battery pack or to another battery pack.
  • the detection and prediction element is connected to or located in a battery management system (BMS) of a battery pack.
  • BMS battery management system
  • FIG. 1 shows a flowchart of a method for preventing thermal runaway of a battery according to an embodiment of the present invention
  • FIG. 2 shows a schematic structural diagram of a system for preventing thermal runaway of a battery according to an embodiment of the present invention
  • Figures 3(a) and 3(b) illustrate schematic diagrams of the inventive concept implementing Method 1, which illustrate how to control and dissipate energy from one of the plurality of battery cells to heat the battery pack;
  • FIG. 4 shows an exemplary flowchart of a possible control algorithm for the inventive concept of method one, which includes controlling the power of high-risk batteries to heat the battery pack;
  • 5(a) to 5(d) are schematic diagrams of the inventive concept implementing Method 2, showing how to control and dissipate the energy of one of the plurality of battery cells to heat the battery pack;
  • FIG. 6 shows an exemplary flow diagram of a possible control algorithm for the idea of method two, including controlling and dissipating power from high-risk batteries to heat the battery pack;
  • 7(a) and 7(b) are schematic diagrams of the inventive concept implementing method three, showing how to control and dissipate the energy of one of the plurality of battery cells to charge a battery pack or another battery pack;
  • FIG. 8 shows an exemplary flow chart of a possible control algorithm for the inventive concept of method three, which includes controlling the power of the high risk battery and charging the battery pack.
  • the embodiment of the present invention proposes a solution to prevent the thermal runaway of the battery cell from occurring after the battery cell is predicted to be at risk of thermal runaway.
  • the idea is to control and distribute the energy of a single hazardous battery (or hazardous module) to an entire power battery pack (or other battery pack, or a group of cells/modules in a battery pack, or a group of battery cells/modules in another battery pack) modules), using existing battery and battery thermal management systems (coolant circuits, coolant pumps, cooling plates, battery heaters, etc.). Once a battery cell is powered off, the chance of thermal runaway and propagation to adjacent cells is greatly reduced.
  • the energy of the battery cell or module in question can be transferred to the battery pack or other battery packs as thermal energy (through the battery coolant loop or sidewall heating elements) or electrical energy (through the charging circuit).
  • the thermal mass of the battery pack is usually several times (usually 10-100 times) the thermal mass of a single battery cell or module, so the power battery pack is naturally a large heat sink that absorbs the energy of the battery cells before thermal runaway occurs.
  • the entire thermal management system (coolant and electric motor/inverter/gearbox), and even the body can also be part of the radiator.
  • a battery pack as an electrical energy storage device can be used to store electrical energy released from a problem battery after a predicted thermal runaway of the battery.
  • FIG. 1 shows a flowchart of a method for preventing thermal runaway of a battery according to an embodiment of the present invention. As shown in FIG. 1 , the method for preventing thermal runaway of a battery includes the following steps S102 and S104.
  • step S102 whether there is a risk of thermal runaway in each battery cell or battery module of the battery pack is detected or predicted.
  • step S102 may be implemented in the following manner: collecting information of each battery cell or battery module of the battery pack; detecting or predicting each battery cell of the battery pack according to the collected information Or whether the battery module is at risk of thermal runaway.
  • step S102 may include at least one of the following operations.
  • an internal short circuit inside at least one battery cell or battery module is detected.
  • Various means are available to detect or predict an internal short circuit inside a battery cell or battery module.
  • the operation of detecting or predicting an internal short circuit within the at least one battery cell or battery module may include calculating real-time information for each battery cell of the battery pack, wherein the real-time information includes at least the following: One: partial derivative of voltage and time, real-time internal resistance, phase of real-time internal impedance; according to real-time information, determine whether each battery cell or battery module of the battery pack has a risk of thermal runaway.
  • the method for preventing thermal runaway of a battery in the embodiment of the present invention does not limit the specific method for detecting or predicting an internal short circuit.
  • unwanted lithium plating on the anode of at least one battery cell or battery module is detected.
  • Unwanted lithium plating on the anode of a battery cell or battery module can sometimes cause an internal short circuit followed by thermal runaway, or a rapid temperature rise followed by thermal runaway. Therefore, if energy can be removed from a cell or battery module when unwanted lithium plating on the cell anode is detected or predicted, it should prevent subsequent thermal runaway of the battery.
  • a preset temperature increase amount within a preset time period in at least one battery cell or battery module is detected. This operation is done to detect or predict a relatively rapid temperature increase in a battery cell or battery module, which is also a factor in the thermal runaway of the battery. Therefore, if energy can be removed from a battery cell or battery module when a preset temperature increase over a predetermined period of time is detected or predicted in at least one battery cell or battery module, it should be possible to prevent subsequent battery thermal runaway . There may be various means to detect or predict a rapid increase in temperature in at least one battery cell or battery module.
  • detecting or predicting a rapid temperature increase may include detecting a predetermined amount of temperature increase within a predetermined time period in at least one battery cell or battery module, where The specific values of the preset amount and the preset time period can be obtained through experiments or simulations, so that the abnormal temperature increase can be effectively and correctly detected or predicted.
  • step S104 in response to detecting or predicting a thermal runaway risk in at least one battery cell or battery module of the battery pack, transferring battery energy of at least one battery cell or battery module to the battery pack or another battery pack as thermal energy or electrical energy a battery pack.
  • battery energy of at least one battery cell or battery module may be transferred to a battery pack or another battery pack as thermal energy or electrical energy in at least one of the following modes.
  • the first transfer mode is to transfer the battery energy of at least one battery cell or battery module to the battery pack or another battery pack as thermal energy through the battery coolant circuit for the battery pack or another battery pack.
  • At least one battery cell or battery module may be connected to at least one of the following elements, which is connected to or connected to the battery coolant circuit of the battery pack or another battery pack: a heating device ( May include at least one of the following: resistance heaters, positive temperature coefficient (PTC) heaters, high voltage (HV) heaters, coolant pumps (to drive coolant flow in the battery coolant circuit so that exchanges can be components in or connected to the battery coolant circuit), traction motors, inverters (traction motors and inverters can operate with efficiencies below a preset efficiency threshold (e.g., zero torque results in zero efficiency) as heating device), charger.
  • a heating device May include at least one of the following: resistance heaters, positive temperature coefficient (PTC) heaters, high voltage (HV) heaters, coolant pumps (to drive coolant flow in the battery coolant circuit so that exchanges can be components in or connected to the battery coolant circuit), traction motors, inverters (traction motors and inverters can operate with efficiencies below a preset efficiency
  • At least one element in or connected to a battery coolant circuit connected to the battery pack or another battery pack requires a higher voltage than the at least one battery cell or battery module
  • the at least one battery cell or battery module can be connected to the at least one element via at least one step-up DC/DC converter, the step-up DC/DC converter The voltage of the at least one battery cell or battery module is increased to the voltage required by the at least one element.
  • the second transfer mode is to transfer the battery energy of at least one battery cell or battery module to the battery pack as thermal energy through a heating element attached to the side wall of the battery pack or a battery cell or battery module of another battery pack or another battery pack.
  • At least one battery cell or battery module may interact with a heating element (which may include a resistive heater, resistive heating element at least one of) is connected so that energy from at least one battery cell or battery module can be transferred to heat the battery pack or around a battery cell or battery module of another battery pack.
  • a heating element which may include a resistive heater, resistive heating element at least one of
  • the third transfer mode is to discharge and recover the battery energy of at least one battery cell or battery module, and transfer the battery energy of at least one battery cell or battery module to a battery pack or another battery pack as electrical energy, so as to use At least one step-up DC/DC converter charges the battery pack or another battery pack.
  • At least one battery cell or battery module may be connected to the entire battery pack, or another battery pack, or a group of battery cells or battery modules in a battery pack through at least one step-up DC/DC converter , or a group of battery cells or battery modules in another battery pack.
  • the first transfer mode and the second transfer mode are more suitable for a battery pack or another battery pack since they have the effect of converting the energy of a dangerous battery cell or battery module into heat It is located in an environment where the temperature is lower than the temperature threshold (which can be set according to actual requirements).
  • the third transfer mode may be employed for situations where the battery pack or another battery pack is located in an environment with a temperature above a temperature threshold, or where no thermal management is provided for the battery pack or another battery pack.
  • FIG. 2 shows a schematic structural diagram of a system for preventing thermal runaway of a battery according to an embodiment of the present invention.
  • the system for preventing battery thermal runaway includes:
  • a battery pack 20 having a plurality of battery cells or battery modules 200;
  • a switch or pair of switches 22 (in FIG. 2 , a pair of switches 22 is shown connected to each battery cell or battery module 200 , it will be understood by those skilled in the art that the switch 22 is connected to each battery cell or battery module 200 The case of connection is conceivable) is connected with the individual battery cells or battery modules 200 of the battery pack 20, and is used to control the connection of the individual battery cells or battery modules 200 of the battery pack 20 to the protection circuit 26 after receiving the activation command, wherein each switch or pair of switches 22 disconnects the battery cell or battery module 200 corresponding to the switch or pair of switches 22 to the protection circuit 26 in an initial state, and turns on the switch in response to receiving an activation command or the connection of the battery cells or battery modules 200 corresponding to the pair of switches 22 to the protection circuit 26;
  • a detection and prediction element 24 (which may be connected to or located in the battery management system (BMS) of the battery pack 20 ) is configured to detect or predict whether each battery cell or battery module 200 of the battery pack 20 is There is a risk of thermal runaway, and in response to detecting or predicting that at least one battery cell or battery module 200 of the battery pack 20 is at risk of thermal runaway, an activation command is sent to each switch corresponding to the at least one battery cell or battery module 200 or Each pair of switches 22; the protection circuit 26, when connected to the at least one battery cell or battery module 200, transfers the battery energy of the at least one battery cell or battery module 200 to the battery pack 20 or another as thermal energy or electrical energy.
  • a battery pack 20 .
  • the detection and prediction component 24 may be configured to detect or predict whether each battery cell or battery module 200 of the battery pack 20 is at risk of thermal runaway by collecting the Information of each battery cell or battery module 200 ; based on the collected information, detecting or predicting whether each battery cell or battery module 200 of the battery pack 20 is at risk of thermal runaway.
  • the protection circuit 26 when the protection circuit 26 is connected to the at least one battery cell or battery module 200, it can use the battery energy of the at least one battery cell or battery module 200 as thermal energy or electrical energy in at least one of the following modes to the battery pack 20 or another battery pack 20 .
  • the first transfer mode is to transfer the battery energy of at least one battery cell or battery module 200 to the battery pack 20 or another battery pack as thermal energy through the battery coolant circuit for the battery pack 20 or another battery pack 20 20.
  • the protection circuit 26 includes at least one of the following elements connected to or connected to the battery coolant circuit of the battery pack 20 or another battery pack 20: a heating device (which may include at least one of the following : Resistance heaters, Positive Temperature Coefficient (PTC) heaters, High Voltage (HV) heaters, Coolant pumps (for driving the coolant flow in the battery coolant circuit so that exchanges can be made by connecting in the battery coolant circuit or components connected to it), traction motors, inverters (traction motors and inverters can operate with efficiencies below a preset efficiency threshold (e.g., zero torque results in zero efficiency) as heat-generating devices), chargers .
  • a heating device which may include at least one of the following : Resistance heaters, Positive Temperature Coefficient (PTC) heaters, High Voltage (HV) heaters, Coolant pumps (for driving the coolant flow in the battery coolant circuit so that exchanges can be made by connecting in the battery coolant circuit or components connected to it), traction motors, inverters (traction motor
  • the heating device includes at least one of: a resistance heater, a positive temperature coefficient (PTC) heater, a high voltage (HV) heater; or by an efficiency below a preset efficiency threshold Run the traction motor and inverter as heat generating devices.
  • PTC positive temperature coefficient
  • HV high voltage
  • At least one element in or connected to the battery coolant circuit connected to the battery pack 20 or another battery pack 20 needs to be higher than the at least one battery cell or battery module
  • a voltage of 200 for example, if an HV heater is used as the heating device, the at least one battery cell or battery module 200 can be connected to the at least one element through at least one step-up DC/DC converter, which boosts the voltage.
  • a type DC/DC converter increases the voltage of the at least one battery cell or battery module 200 to a voltage required by the at least one element.
  • the second transfer mode is to use the battery energy of at least one battery cell or battery module 200 as thermal energy through a heating element attached to the side wall of the battery cell or battery module 200 of the battery pack 20 or another battery pack 20 to the battery pack 20 or to another battery pack 20 .
  • the protection circuit 26 includes a heating element (which may include a resistive heater, the at least one).
  • the third transfer mode is to transfer the battery energy of at least one battery cell or battery module 200 as electrical energy to the battery pack 20 or another battery pack by discharging and recovering the battery energy of at least one battery cell or battery module 200 20 to charge the battery pack 20 or another battery pack 20 by means of at least one step-up DC/DC converter.
  • the protection circuit 26 includes at least one step-up DC/DC converter through which at least one battery cell or battery module 200 can be connected to the entire battery pack 20, Or another battery pack 20 , or a group of battery cells or battery modules 200 in a battery pack 20 , or a group of battery cells or battery modules 200 in another battery pack 20 .
  • these two transfer modes are more suitable for the battery pack 20 or another The case where the battery pack 20 is located in an environment where the temperature is lower than a temperature threshold (which can be set according to actual requirements).
  • a third transfer mode may be employed for situations where the battery pack 20 or another battery pack 20 is located in an environment with a temperature above a temperature threshold, or where thermal management is not provided for the battery pack 20 or another battery pack 20 .
  • thermal runaway of the battery inside the dangerous battery cell or battery module 200 can be effectively prevented.
  • Modules or components described as separate parts may or may not be physically separate.
  • the part shown as a module may or may not be a physical module, that is, it can be placed in one location or distributed across multiple network modules. Some or all of the modules or elements may be selected according to actual needs to achieve the purpose of the technical solution of the present invention.
  • all functional modules or elements in the embodiments of the present invention may be integrated into one processing module; or these modules or elements exist separately and physically; or two or more modules or elements are integrated into one module.
  • Integrated modules can be implemented in the form of hardware or software functional modules.
  • the energy of a single dangerous battery cell is transferred to the entire battery pack as heat through the existing battery coolant circuit, coolant pump, cooling plate, etc.;
  • the energy of a single hazardous battery cell is discharged and recovered to charge a battery pack or another battery pack with the aid of a DC/DC converter.
  • Figures 3(a) and 3(b) illustrate schematic diagrams of the inventive concept implementing Method 1, showing how the energy of one of the plurality of battery cells is controlled and dissipated to heat the battery pack.
  • the circuits shown in Figures 3(a) and 3(b) (eg, with each battery cell connected to one or two switches) are independent of the original battery electrical connections.
  • Figures 3(a) and 3(b) show only one example of an implementation, and many other similar variations are possible.
  • the battery coolant circuit is used for the conventional purpose of battery thermal management.
  • resistance heaters or PTC heaters are used to heat the coolant in the coolant circuit to pretreat battery packs in cold weather.
  • the cell is immediately connected to a resistance heater or PTC heater.
  • a DC-DC converter can be used to increase the battery cell voltage to an appropriate value to dissipate the battery cell energy to the battery heater . It is also possible to add a low pressure coolant heater (with a voltage that matches the cell voltage) so that the cell energy can be drained directly to that particular coolant heater without the need for a DC-DC converter. In most cases, the coolant pump can easily be powered by the 12V DC low voltage battery on the vehicle.
  • a DC-DC converter may be required to boost the cell voltage to the desired high level. If a low voltage heater is used, a DC-DC converter is not required.
  • FIG. 4 shows an exemplary flowchart of a possible control algorithm for the inventive concept of method one, wherein the power of the high risk battery is controlled to heat the battery pack.
  • This algorithm is just one example of a control algorithm. Various other algorithms are possible.
  • an algorithm is used to calculate key information related to battery thermal runaway detection.
  • a protection circuit is attached to the dangerous battery (connecting a heater, a DC/DC converter, a coolant pump, etc.).
  • the battery pack is heated by the electric energy from the battery cells through the existing battery coolant circuit.
  • the coolant circuit of the power battery pack can also be connected in series with the traction motor, inverter, DC/DC converter, charger or other components.
  • the battery cooling circuit and electric motor/inverter can be connected in series or parallel.
  • other components can also be used as a heat sink, which can further increase the total thermal mass (heat absorption capacity) of the heat sink.
  • FIGS. 5(a) to 5(d) are schematic diagrams of the inventive concept implementing Method 2, which illustrate how the energy of one of the plurality of battery cells is controlled and dissipated to heat the battery pack.
  • Figures 5(a) to 5(d) eg, each battery cell is connected to one or two switches
  • no coolant circuit is used for conventional purposes of battery thermal management (eg, a refrigerant circuit is used for battery thermal management). Instead, attach some resistive heaters or heating elements to the battery sidewalls to pre-treat the battery pack in cold weather. When a potential thermal runaway warning of a battery cell is detected, the battery cell is immediately connected to a resistive heater or heating element.
  • FIG. 6 shows an exemplary flowchart of a possible control algorithm for the inventive concept of method two, wherein the electrical energy of the high risk battery is controlled and dissipated to heat the battery pack.
  • This algorithm is just one example of a control algorithm. Various other algorithms are possible.
  • the external heating element is connected to the battery with the TR warning.
  • the battery pack is heated with power from the battery with the TR warning.
  • FIGS. 7(a) and 7(b) are schematic diagrams of the inventive concept implementing method three, showing how energy from one of the plurality of battery cells is controlled and dissipated to heat a battery pack or another battery pack.
  • Figures 7(a) and 7(b) eg, each cell contains two switches
  • the battery system has no thermal management. This could be due to lack of space or other reasons. In this case, thermal runaway could still occur in one of the battery cells.
  • the energy of the problem cell is controlled to charge the entire pack or a group of cells (eg, other cells/modules in a power pack). If desired, several DC/DC converters can be provided to increase the voltage to the desired level.
  • the batteries to be charged can be other battery cells or other modules of the same battery pack, or other battery modules/packs. Note that this method will not work when all battery cells are 100% charged, which is very rare. What is shown in the figures is only one example of an implementation and many other variations are possible.
  • FIG. 8 shows an exemplary flowchart of a possible control algorithm for the inventive concept of method three, wherein the power of the high risk battery is controlled to charge the battery pack.
  • the following is just an example of the control algorithm.
  • This algorithm is just one example of a control algorithm.
  • Various other algorithms are possible.
  • a protection circuit is connected to a battery at risk of thermal runaway.
  • the protection circuit converts the low voltage direct current to high voltage direct current.
  • the battery coolant circuit does not have a specified resistive heater (eg, PTC heaters, ribbon heaters, film heaters used in most EVs).
  • a specified resistive heater eg, PTC heaters, ribbon heaters, film heaters used in most EVs.
  • the drive unit inverter + electric motor + gearbox
  • low efficiency such as zero torque (zero efficiency) or low torque (low efficiency)
  • waste heat from the motor/inverter is used to heat the battery pack through the coolant loop.
  • the energy of the dangerous battery cells can be dissipated directly to the motor/inverter.
  • the system will operate in the original waste heat mode. No PTC heater required.
  • the battery unit drains all the power to the drive unit, which can transfer heat to the battery pack through the existing battery coolant circuit. In fact, the drive unit has a large thermal mass and can act as a heat sink in addition to the battery pack. A DC converter may be required.
  • An attached battery heater can be added through which the battery can be used to heat the coolant circuit without running the electric motor. It's like a normal vehicle without waste heat mode.
  • inventive concepts mentioned in this application can be applied to prevent various failures of battery cells, including but not limited to thermal runaway due to internal short circuits, lithium dendrite growth, or other mechanisms.
  • the problem battery cell can be replaced by a problem module, and the energy dissipation concepts above will still apply.
  • the concept can also be applied to other types of lithium-ion batteries in other application fields, such as mobile phones, laptops, portable devices, energy storage stations, power banks, electric vehicles, electric bicycles, electric robots, etc.
  • the proposed method contains hardware (DC/DC converters, heaters, switches, etc.) and control algorithms.
  • the hardware will be installed on electric vehicles (or other related devices).
  • the solutions of the embodiments of the present invention use existing batteries and battery thermal management systems (coolant circuits, coolant pumps, cooling plates, battery heaters, etc.), or by using the electrical energy of hazardous battery cells/modules for
  • the battery pack or another battery pack is charged to control and dissipate the energy of a single hazardous battery cell/module (or multiple hazardous battery cells/modules) to the entire power battery pack (or another battery pack).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明提供了一种用于防止电池热失控的方法和系统。该方法包括:检测或预测电池包的每个电池单元或电池模块是否存在热失控风险;以及响应于检测到或预测到所述电池包的至少一个电池单元或电池模块存在热失控风险,将至少一个电池单元或电池模块的电池能量作为热能或电能传递给所述电池包或另一电池包。

Description

一种用于防止电池热失控的方法及系统
相关申请
本申请要求于2020年9月23日提交美国专利商标局、申请号为17030366、发明名称为“一种用于防止电池热失控的方法及系统”的美国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及电池安全技术领域,尤其涉及一种用于防止电池热失控的方法及系统。
背景技术
如今,电池(例如锂离子电池)的能量密度越来越高,例如电动汽车或电动自行车中的锂离子电池(例如当前用于电动汽车或电动自行车的动力锂离子电池),用于手机,笔记本电脑,便携式设备,能量存储站,移动电源,电动机器人等的锂离子电池。然而,不可控的热失控成为一个具有挑战性的问题。需要有效的方法(预测热失控,或耗散能量并降低其损坏的严重程度)来解决电池安全性(尤其是热失控)问题。
尽管已经提出了用于准确预测和防止电池热失控的各种方法来预测电池热失控,但是在预测之后,几乎没有提供解决危险电池的解决方案。一些常见的提高电池安全性的方法包括改善电池化学性能,优化电池/模块组设计,更好的冷却,使用大数据/人工智能/物理模型准确预测内部短路(热失控)以及更先进的控制和BMS(电池管理系统)等。但是到目前为止,防止电池热失控非常具有挑战性,因此需要有效的方法。
发明内容
以下呈现简化的本发明概述,以提供对本发明的一些方面的基本理解。该概述不是本发明的广泛说明。它并不旨在确定本发明的关键或重要元素。以下概述仅以简化形式呈现本发明的一些概念,作为以下具体描述的序言。
根据本发明实施例的一个方面,本发明提供了一种用于防止电池热失控的方法,包括:检测或预测电池包的每个电池单元或电池模块是否存在热失控风险;以及响应于检测到或预测到所述电池包的至少一个电池单元或电池 模块存在热失控风险,将至少一个电池单元或电池模块的电池能量作为热能或电能传递给所述电池包或另一电池包。
在本发明至少一个示例性实施例中,检测或预测电池包的每个电池单元或电池模块是否存在热失控风险包括:收集所述电池包中每个电池单元或电池模块的信息;根据收集到的信息,检测或预测所述电池包的每个电池单元或电池模块是否存在热失控风险。
在本发明至少一个示例性实施例中,将至少一个电池单元或电池模块的电池能量作为热能或电能传递到所述电池包或另一电池包包括以下至少之一:第一传递模式,其通过用于所述电池包或另一电池包的电池冷却液回路将至少一个电池单元或电池模块的电池能量作为热能传递到所述电池包或另一电池包;第二传递模式,其通过附接到所述电池包或另一电池包的电池单元或电池模块的电池侧壁上的加热元件,将至少一个电池单元或电池模块的电池能量作为热能传递到所述电池包或另一电池包;第三传递模式,其通过将至少一个电池单元或电池模块的电池能量放电和回收,以借助至少一个升压型DC/DC转换器为所述电池包或另一电池包充电,将至少一个电池单元或电池模块的电池能量作为电能传递至所述电池包或另一电池包。
在本发明至少一个示例性实施例中,在第一传递模式中,至少一个电池单元或电池模块与以下至少一个元件连接,该至少一个以下元件连接到所述电池包或另一电池包的电池冷却液回路中或与之连接:加热装置,冷却液泵,牵引电机,逆变器,充电器。
在本发明至少一个示例性实施例中,所述加热装置包括以下至少之一:电阻加热器,正温度系数(PTC)加热器,高压(HV)加热器;或者,通过以低于预设效率阈值的效率运行而用作发热装置的牵引电动机和逆变器。
在本发明至少一个示例性实施例中,在连接到所述电池包或另一电池包的电池冷却液回路中或与之连接的至少一个元件需要高于所述至少一个电池单元或电池模块的电压的情况下,所述至少一个电池单元或电池模块通过至少一个升压型DC/DC转换器与所述至少一个元件连接,所述升压型DC/DC转换器将所述至少一个电池单元或电池模块的电压增加到所述至少一个元件所需的电压。
在本发明至少一个示例性实施例中,在第二传递模式中,所述至少一个电池单元或电池模块与附接至所述电池包或另一电池包的电池单元或电池模块的电池侧壁上的加热元件连接。
在本发明至少一个示例性实施例中,所述加热元件包括电阻加热器,电阻加热元件中的至少之一。
在本发明至少一个示例性实施例中,在第三传递模式中,所述至少一个电池单元或电池模块通过至少一个升压型DC/DC转换器连接到整个电池包,或另一电池包,或所述电池包中的一组电池单元或电池模块,或另一电池包中的一组电池单元或电池模块。
在本发明至少一个示例性实施例中,在所述电池包或另一电池包位于温度低于温度阈值的环境中的情况下,采用第一传递模式或第二传递模式;和/或,在没有热管理提供给所述电池包或另一电池包的情况下,采用第三传递模式。
根据本发明实施例的另一个方面,本发明提供了一种用于防止电池热失控的系统,包括:电池包,其具有多个电池单元或电池模块;开关或成对开关,其与所述电池包的各个电池单元或电池模块连接,并且用于在接收到激活指令之后控制所述电池包的各个电池单元或电池模块到保护电路连接,检测和预测元件,其被配置为检测或预测所述电池包的每个电池单元或电池模块是否存在热失控风险,并且响应于检测到或预测到所述电池包的至少一个电池单元或电池模块存在热失控风险,发送激活指令给与所述至少一个电池单元或电池模块相对应的每个开关或每对开关;保护电路当与所述至少一个电池单元或电池模块连接时,将所述至少一个电池单元或电池模块的电池能量作为热能或电能传递给所述电池包或另一电池包。
在本发明至少一个示例性实施例中,检测和预测元件被配置为以以下方式检测或预测所述电池包的每个电池单元或电池模块是否存在热失控风险:收集所述电池包中每个电池单元或电池模块的信息;根据收集到的信息,检测或预测所述电池包的每个电池单元或电池模块是否存在热失控风险。
在本发明至少一个示例性实施例中,所述保护电路当与所述至少一个电池单元或电池模块连接时,在以下至少一种模式中,将所述至少一个电池单 元或电池模块的电池能量作为热能或电能传递给所述电池包或另一电池包:第一传递模式,其通过用于所述电池包或另一电池包的电池冷却液回路将至少一个电池单元或电池模块的电池能量作为热能传递到所述电池包或另一电池包;第二传递模式,其通过附接到所述电池包或另一电池包的电池单元或电池模块的电池侧壁上的加热元件,将至少一个电池单元或电池模块的电池能量作为热能传递到所述电池包或另一电池包;第三传递模式,其通过将至少一个电池单元或电池模块的电池能量放电和回收,以借助至少一个升压型DC/DC转换器为所述电池包或另一电池包充电,将至少一个电池单元或电池模块的电池能量作为电能传递至所述电池包或另一电池包。
在本发明至少一个示例性实施例中,在第一传递模式中,保护电路包括以下至少一个元件,所述至少一个以下元件连接到所述电池包或另一电池包的电池冷却液回路中或与之连接:加热装置,冷却液泵,牵引电机,逆变器,充电器。
在本发明至少一个示例性实施例中,所述加热装置包括以下至少之一:电阻加热器,正温度系数(PTC)加热器,高压(HV)加热器;或者,通过以低于预设效率阈值的效率运行而用作发热装置的牵引电动机和逆变器。
在本发明至少一个示例性实施例中,在连接到所述电池包或另一电池包的电池冷却液回路中或与之连接的至少一个元件需要高于所述至少一个电池单元或电池模块的电压的情况下,所述至少一个电池单元或电池模块通过至少一个升压型DC/DC转换器与所述至少一个元件连接,所述升压型DC/DC转换器将所述至少一个电池单元或电池模块的电压增加到所述至少一个元件所需的电压。
在本发明至少一个示例性实施例中,在第二传递模式中,所述保护电路包括附接至所述电池包或另一电池包的电池单元或电池模块的电池侧壁上的加热元件。
在本发明至少一个示例性实施例中,所述加热元件包括电阻加热器,电阻加热元件中的至少之一。
在本发明至少一个示例性实施例中,在第三传递模式中,所述保护电路包括至少一个升压型DC/DC转换器,所述至少一个电池单元或电池模块通 过所述至少一个升压型DC/DC转换器连接到整个电池包,或另一电池包,或所述电池包中的一组电池单元或电池模块,或另一电池包中的一组电池单元或电池模块。
在本发明至少一个示例性实施例中,在所述电池包或另一电池包位于温度低于温度阈值的环境中的情况下,采用第一传递模式或第二传递模式;和/或,在没有热管理提供给所述电池包或另一电池包的情况下,采用第三传递模式。
在本发明至少一个示例性实施例中,所述检测和预测元件与电池包的电池管理系统(BMS)连接或位于所述电池包的电池管理系统(BMS)中。
附图说明
这里描述的附图用于提供对本发明的更深入的理解,并构成本发明的一部分。示意性的实施例及其描述用于解释本发明,而不意图对本发明构成不适当的限制。在附图中:
图1示出了根据本发明实施例的一种用于防止电池热失控的方法的流程图;
图2示出了根据本发明实施例的一种用于防止电池热失控的系统的结构示意图;
图3(a)和3(b)示出了实施方法一的发明构思的示意图,其示出了如何控制和消散多个电池单元之一的能量以加热电池包;
图4示出了用于方法一的发明构思的可能的控制算法的示例性流程图,其中包括控制高风险电池的电能以加热电池包;
图5(a)至5(d)是实施方法二的发明构思的示意图,其示出了如何控制和消散多个电池单元之一的能量以加热电池包;
图6示出了用于方法二的思想的可能的控制算法的示例性流程图,其中包括控制并消散高风险电池的电能以加热电池包;
图7(a)和7(b)是实施方法三的发明构思的示意图,其示出了如何控制和消散多个电池单元之一的能量以对电池包或另一个电池包进行充电;
图8示出了用于方法三的发明构思的可能的控制算法的示例性流程图,其中包括控制高风险电池的电能并对电池包充电。
具体实施方式
当前,电池热失控被认为是解决电动汽车最重要的安全问题,甚至比续航里程,电池成本和充电时间更为重要。
鉴于此问题,本发明实施例提出了在预测该电池单元有热失控风险之后防止电池单元的热失控发生的解决方案。这个想法是控制和分散单个危险电池(或危险模块)的能量到整个动力电池包(或其他电池包,或电池包中的一组电池单元/模块,或其他电池包中的一组电池单元/模块),使用现有的电池和电池热管理系统(冷却液回路,冷却液泵,冷却板,电池加热器等)。电池单元一旦断电,热失控和传播到相邻电池单元的机会就会大大降低。问题电池单元或模块的能量可以作为热能(通过电池冷却液环路或侧壁加热元件)或电能(通过充电电路)传递到电池包或其他电池包。电池包的热质量通常是单个电池单元或模块的热质量的数倍(通常是10-100倍),因此,动力电池包自然是在热失控发生之前吸收电池单元能量的大散热器。除电池包外,整个热管理系统(冷却液和电动机/变频器/齿轮箱),甚至车身也可以作为散热器的一部分。同样,作为电能存储装置的电池包可用于存储在预测电池热失控之后从问题电池释放的电能。
为使本领域技术人员更好地理解本发明的技术方案,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚和完整地描述。显然,所描述的实施例仅是本发明实施例的一部分,而不是所有实施例。在本发明实施例的基础上,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应属于本发明保护的范围。
需要指出的是,本发明的说明书和权利要求以及附图中的术语“第一”、“第二”等旨在区分类似的对象,并且不需要描述特定的顺序或优先顺序。应当理解的是,可以在适当的条件下交换以这种方式使用的数据,以便这里描述的本公开的实施例可以以除了此处附图示出或描述的顺序之外的顺序来实现。另外,术语“包括”、“包含”及其变体旨在涵盖非排他性的内容。例如,包含一系列步骤或单元的过程、方法、系统、产品或设备不必限于那些明确列出的步骤或单元,并且可以包括没有清楚地显示的这些过程、方法、产品或设备的其他固有步骤或单元。
根据本发明的实施例,提供了一种用于防止电池热失控的方法。该方法可以应用于任何类型的锂离子电池,例如用于手机,笔记本电脑,便携式设备,能量存储站,移动电源,电动汽车,电动自行车,电动机器人等的电池。图1示出了本发明实施例用于防止电池热失控的方法的流程图。如图1所示,该用于防止电池热失控的方法包括以下步骤S102和S104。
在步骤S102中,电池包的每个电池单元或电池模块是否存在热失控风险被检测或预测。
在本发明的至少一个示例性实施方式中,可以通过以下方式实施步骤S102:收集电池包的每个电池单元或电池模块的信息;根据收集到的信息,检测或预测电池包的每个电池单元或电池模块是否存在热失控风险。
在实际情况下,电池热失控可能是由于机械滥用,电滥用或热滥用造成的。统计数据显示,超过90%的电池热失控是由于电池单元内的内部短路引起的,这种短路可能会在整个电池寿命期间发生。在本发明的至少一个示例性实施例中,为了有效地识别和解决电池热失控问题,步骤S102可以包括以下操作中的至少一项。
在操作S102-1中,至少一个电池单元或电池模块内部的内部短路被检测到。大多数(>90%)机械,电气和热滥用会导致内部短路,进而导致热失控。因此,如果在检测到或预测到内部短路时能够去除电池单元或电池模块中的能量,则应该能够防止接下来发生电池热失控。可以有各种手段来检测或预测电池单元或电池模块内部的内部短路。在本发明的至少一个示例性实施例中,检测或预测至少一个电池单元或电池模块内部的内部短路的操作可以包括:计算电池包的每个电池单元的实时信息,其中,实时信息包括以下至少之一:电压和时间的偏导数,实时内部电阻,实时内部阻抗的相位;根据实时信息,确定电池包的每个电池单元或电池模块是否存在热失控风险。可能还有其他检测或预测电池单元或电池模块内部短路的方法,本发明实施例中的用于防止电池热失控的方法对检测或预测内部短路的具体方法没有限制。
在操作S102-2中,在至少一个电池单元或电池模块的阳极上的不需要的锂镀层被检测到。电池单元或电池模块阳极上不必要的锂电镀有时会引起 内部短路,然后引起热失控,或者导致温度快速升高然后发生热失控。因此,如果在检测到或预测到电池单元阳极上不需要的锂镀层时能够去除电池单元或电池模块中的能量,那么应该可以防止接下来发生电池热失控。可以有多种方法在至少一个电池单元或电池模块的阳极上检测或预测不需要的锂镀层。
在操作S102-3中,在至少一个电池单元或电池模块中的预设时间段内的预设温度升高量被检测到。该操作是为了检测或预测电池单元或电池模块中相对较快的温度升高,这也是导致电池热失控的因素。因此,如果在至少一个电池单元或电池模块中检测到或预测到预定时间段内的预设温度升高量时可以去除电池单元或电池模块中的能量,则应该能够防止接下来发生电池热失控。可以有多种手段来检测或预测在至少一个电池单元或电池模块中温度的快速升高。在本发明的至少一个示例性实施例中,检测或预测温度快速升高的操作可以包括:在至少一个电池单元或电池模块中的预设时间段内检测预设量的温度升高,在此可以通过实验或模拟获得预设量和预设时间段的具体值,从而使异常的温度升高可以被有效且正确地检测或预测到。
在步骤S104中,响应于检测到或预测到在电池包的至少一个电池单元或电池模块存在热失控风险,将至少一个电池单元或电池模块的电池能量作为热能或电能传递至该电池包或另一个电池包。
在实际实施中,至少一个电池单元或电池模块的电池能量可以在以下至少一种模式下作为热能或电能被传递到电池包或另一电池包。
(1)第一传递模式是通过用于电池包或另一电池包的电池冷却液回路,将至少一个电池单元或电池模块的电池能量作为热能传递到电池包或另一电池包。
在第一传递模式中,至少一个电池单元或电池模块可以与以下至少一个元件连接,该至少一个元件连接到该电池包或另一电池包的电池冷却液回路中或与之连接:加热装置(可以包括以下至少之一:电阻加热器,正温度系数(PTC)加热器,高压(HV)加热器,冷却液泵(用于驱动冷却液在电池冷却液回路中流动,以便使交换可以通过连接在电池冷却液回路中或与之连接的元件进行),牵引电机,逆变器(牵引电机和逆变器可以通过低于预设 效率阈值的效率运行(例如,零转矩导致零效率)作为发热装置),充电器。
在本发明的至少一个示例性实施例中,在连接到该电池包或另一电池包的电池冷却液回路中或与之连接的至少一个元件需要高于该至少一个电池单元或电池模块的电压的情况下,例如,如果采用HV加热器作为加热装置,则该至少一个电池单元或电池模块可以通过至少一个升压DC/DC转换器与该至少一个元件连接,该升压DC/DC转换器将该至少一个电池单元或电池模块的电压增加到该至少一个元件所需的电压。
(2)第二传递模式是通过附接在电池包或另一电池包的电池单元或电池模块的侧壁上的加热元件,将至少一个电池单元或电池模块的电池能量作为热能传递到电池包或另一电池包。
在第二传递模式中,至少一个电池单元或电池模块可以与附接在电池包或另一电池包的电池单元或电池模块的侧壁上的加热元件(其可以包括电阻加热器,电阻加热元件中的至少之一)连接,从而至少一个电池单元或电池模块的能量可以被传递来加热电池包或另一电池包的电池单元或电池模块周围。
(3)第三传递模式是通过将至少一个电池单元或电池模块的电池能量进行放电和回收,将至少一个电池单元或电池模块的电池能量作为电能传递至电池包或另一电池包,以借助至少一个升压型DC/DC转换器为电池包或另一电池包充电。
在第三传递模式中,至少一个电池单元或电池模块可以通过至少一个升压型DC/DC转换器连接到整个电池包,或另一电池包,或电池包中的一组电池单元或电池模块,或另一电池包中的一组电池单元或电池模块。
在这三种传递模式中,由于第一传递模式和第二传递模式具有将危险电池单元或电池模块的能量转换成热量的效果,因此这两种传递模式更适用于电池包或另一电池包为位于温度低于温度阈值(可根据实际要求设置)的环境中。对于电池包或另一电池包位于温度高于温度阈值的环境中的情况,或者不对电池包或另一电池包提供热管理的情况,则可以采用第三传递模式。
通过上述实施例中的解决方案,危险电池单元或电池模块内部的电池热失控可以被有效防止。
要注意的是,为了简单说明起见,该方法的每个前述实施例被描述为一系列动作组合。但是本领域技术人员应该知道,本发明不限于所描述的动作的顺序,这是因为根据本发明,一些步骤可以以其他顺序执行或者同时执行。此外,本领域技术人员还应该知道,说明书中所描述的所有实施例都是优选实施例,所涉及的动作和模块可能不是必需的。
根据本发明的另一个实施例,提供了一种用于防止电池热失控的系统。该用于防止电池热失控的系统可以应用于带有锂离子电池的任何终端或设备或车辆,例如手机,笔记本电脑,便携式设备,储能站,移动电源,电动汽车,电动自行车,电动机器人等。图2示出了根据本发明实施例的用于防止电池热失控的系统的结构示意图。如图2所示,该用于防止电池热失控的系统包括:
电池包20,其具有多个电池单元或电池模块200;
开关或成对开关22(在图2中,示出了一对开关22与每个电池单元或电池模块200连接的情况,本领域技术人员应该理解,开关22与每个电池单元或电池模块200连接的情况是可以想到的)与电池包20的各个电池单元或电池模块200连接,并且用于在接收到激活指令之后控制电池包20的各个电池单元或电池模块200到保护电路26的连接,其中每个开关或每对开关22在初始状态切断与该开关或该对开关22相对应的电池单元或电池模块200到保护电路26的连接,并响应于接收到激活指令,接通与该开关或该对开关22相对应的电池单元或电池模块200到保护电路26的连接;
检测和预测元件24(可以与电池组20的电池管理系统(BMS)连接或位于电池管理系统(BMS)中),其被配置为检测或预测电池包20的每个电池单元或电池模块200是否存在热失控风险,并且响应于检测到或预测到电池包20的至少一个电池单元或电池模块200存在热失控风险,发送激活指令给与至少一个电池单元或电池模块200相对应的每个开关或每对开关22;保护电路26当与所述至少一个电池单元或电池模块200连接时,将所述至少一个电池单元或电池模块200的电池能量作为热能或电能传递给所述电池包20或另一电池包20。
在本发明的至少一个示例性实施例中,检测和预测组件24可以被配置 为以以下方式检测或预测电池包20的每个电池单元或电池模块200是否存在热失控风险:收集电池包20的每个电池单元或电池模块200的信息;基于收集的信息,检测或预测电池包20的每个电池单元或电池模块200是否存在热失控风险。
在实际实施中,保护电路26当与所述至少一个电池单元或电池模块200连接时,可以在以下至少一种模式中,将所述至少一个电池单元或电池模块200的电池能量作为热能或电能传递给所述电池包20或另一电池包20。
(1)第一传递模式是通过用于电池包20或另一电池包20的电池冷却液回路,将至少一个电池单元或电池模块200的电池能量作为热能传递到电池包20或另一电池包20。
在第一传递模式中,保护电路26包括以下至少一个元件,该至少一个元件连接到电池包20或另一电池包20的电池冷却液回路或与之连接:加热装置(可以包括以下至少之一:电阻加热器,正温度系数(PTC)加热器,高压(HV)加热器,冷却液泵(用于驱动冷却液在电池冷却液回路中流动,以便使交换可以通过连接在电池冷却液回路中或与之连接的元件进行),牵引电机,逆变器(牵引电机和逆变器可以通过低于预设效率阈值的效率运行(例如,零转矩导致零效率)作为发热装置),充电器。
在本发明的至少一个示例性实施例中,加热装置包括以下至少之一:电阻加热器,正温度系数(PTC)加热器,高压(HV)加热器;或者通过低于预设效率阈值的效率运行作为发热装置的牵引电机和逆变器。
在本发明的至少一个示例性实施例中,在连接到该电池包20或另一电池包20的电池冷却液回路中或与之连接的至少一个元件需要高于该至少一个电池单元或电池模块200的电压的情况下,例如,如果采用HV加热器作为加热装置,则该至少一个电池单元或电池模块200可以通过至少一个升压型DC/DC转换器与该至少一个元件连接,该升压型DC/DC转换器将该至少一个电池单元或电池模块200的电压增加到该至少一个元件所需的电压。
(2)第二传递模式是通过附接在电池包20或另一电池包20的电池单元或电池模块200的侧壁上的加热元件,将至少一个电池单元或电池模块200的电池能量作为热能传递到电池包20或另一电池包20。
在第二传递模式中,保护电路26包括附接在电池包20或另一电池包20的电池单元或电池模块200的侧壁上的加热元件(其可以包括电阻加热器,电阻加热元件中的至少之一)。
(3)第三传递模式是通过将至少一个电池单元或电池模块200的电池能量进行放电和回收,将至少一个电池单元或电池模块200的电池能量作为电能传递至电池包20或另一电池包20,以借助至少一个升压型DC/DC转换器为电池包20或另一电池包20充电。
在第三传递模式中,保护电路26包括至少一个升压型DC/DC转换器,至少一个电池单元或电池模块200可以通过该至少一个升压型DC/DC转换器连接到整个电池包20,或另一电池包20,或电池包20中的一组电池单元或电池模块200,或另一电池包20中的一组电池单元或电池模块200。
在这三种传递模式中,由于第一传递模式和第二传递模式具有将危险电池单元或电池模块200的能量转换成热量的效果,因此这两种传递模式更适用于电池包20或另一电池包20位于温度低于温度阈值(可根据实际要求设置)的环境中的情形。对于电池包20或另一电池包20位于温度高于温度阈值的环境中的情况,或者不对电池包20或另一电池包20提供热管理的情况,则可以采用第三传递模式。
通过上述实施例中的解决方案,危险电池单元或电池模块200内部的电池热失控可以被有效防止。
被描述为单独部分的模块或组件在物理上可以是分开的,也可以不是。显示为模块的部分可以是物理模块,也可以不是物理模块,也就是说,它可以放置在一个位置或分布在多个网络模块上。可以根据实际需要选择部分或全部模块或元件来实现本发明技术方案的目的。
此外,本发明实施例中的所有功能模块或元件可以集成在一处理模块中;或者这些模块或元件分别且物理地存在;或者两个或两个以上的模块或元件集成在一个模块中。集成模块可以以硬件或软件功能模块的形式实现。
根据本发明的又一个实施例,参考附图描述了用于防止电池热失控的详细解决方案。
有三种方法被提出来控制和消散单个问题电池单元的能量:
在方法一中,单个危险电池单元的能量通过现有的电池冷却液回路,冷却液泵,冷却板等作为热量传递给整个电池包;
在方法二中,单个危险电池单元的能量通过电阻加热元件作为热量传递给整个电池包;
在方法三中,单个危险电池单元的能量被放电并回收,以借助DC/DC转换器为电池包或另一电池包充电。
方法一
图3(a)和3(b)示出了实施方法一的发明构思的示意图,其示出了多个电池单元之一的能量如何被控制和消散以加热电池包。图3(a)和3(b)示出的电路(例如,每个电池单元连接到一个或两个开关)与原始的电池电气连接无关。图3(a)和3(b)仅示出实现的一个示例,并且可以存在许多其他类似的变化。
如图3(a)和3(b)所示,在方法一中,电池冷却液回路被用于电池热管理的常规目的。通常电阻加热器或PTC加热器被用来加热冷却液回路中的冷却液,以在寒冷天气中对电池包进行预处理。当检测到某个电池单元的潜在热失控警告时,该电池单元立即与电阻加热器或PTC加热器连接。
如果电池单元电压不能与现有的电池加热器(例如高压加热器)一起工作,则可以使用DC-DC转换器将电池单元电压增加到适当的值,以将电池单元能量耗散到电池加热器。也可以添加一个低压冷却液加热器(其电压与电池单元电压相匹配),这样,无需使用DC-DC转换器就可以将电池单元能量直接泄出到该特定的冷却液加热器上。在大多数情况下,冷却液泵可以很容易地由车辆上的12V DC低压电池供电。
如果使用原始的HV加热器,则可能需要DC-DC转换器才能将电池单元电压提高到所需的高电平。如果使用低压加热器,则不需要DC-DC转换器。
图4示出了用于方法一的发明构思的可能的控制算法的示例性流程图,其中,高风险电池的电能被控制以加热电池包。该算法只是控制算法的一个示例。可能有其他各种算法。
在操作S402中,收集每个电池的信息。
在操作S404中,使用算法来计算与电池热失控检测有关的关键信息。
在操作S406中,确定和预测电池单元是否处于危险中。
在操作S408中,将风险通知给用户和相关个人或实体。
在操作S410中,将保护电路接合到有危险的电池上(连接加热器,DC/DC转换器,冷却剂泵等)。
在操作S412中,通过现有的电池冷却液回路,利用来自电池单元的电能加热电池包。
在操作S414中,危险电池的存储电能最终被耗尽。
在某些车辆的热管理设计中,动力电池包的冷却液回路也可以与牵引电动机,逆变器,DC/DC转换器,充电器或其他组件串联连接。例如,在GAC AION S,AION LX车型中,电池冷却回路和电动机/逆变器可通过串联或并联方式连接。在这种情况下,除动力电池包外,其他元件也可以用作散热器,这可以进一步增加散热器的总热质量(吸热能力)。
方法二
图5(a)至5(d)是实施方法二的发明构思的示意图,其示出了多个电池单元之一的能量如何被控制和消散以加热电池包。图5(a)至5(d)(例如,每个电池单元连接到一个或两个开关)与原始的电池电气连接无关。
如图5(a)至5(d)所示,在方法二中,没有冷却液回路用于电池热管理的常规目的(例如,制冷剂回路用于电池热管理)。而是将一些电阻加热器或加热元件附接到电池侧壁,以在寒冷天气中对电池包进行预处理。当检测到电池单元潜在的热失控警告时,该电池单元立即与电阻加热器或加热元件连接。
图6示出了用于方法二的发明构思的可能的控制算法的示例性流程图,其中,高风险电池的电能被控制和消散以加热电池包。该算法只是控制算法的一个示例。可能有其他各种算法。
在操作S602中,收集每个电池的信息。
在操作S604中,计算与电池热失控检测有关的关键信息。
在操作S606中,确定和预测热失控(TR)是否发生在任何一个电池单元上。
在操作S608中,将风险通知给用户和相关个人或实体。
在操作S610中,外部加热元件连接到具有TR警告的电池。
在操作S612中,利用来自具有TR警告的电池的电能来加热电池包。
在操作S614中,问题电池的存储电能通过加热元件被完全耗尽。
方法三
图7(a)和7(b)是实施方法三的发明构思的示意图,其示出了多个电池单元之一的能量如何被控制和消散以加热电池包或另一电池包。图7(a)和7(b)(例如,每个电池单元包含两个开关)与原始的电池电气连接无关,原始的电池电气连接可以串联或并联以产生所需电压。
如图7(a)和7(b)所示,在方法三中,电池系统没有热管理。这可能是由于空间不足或其他原因所致。在这种情况下,其中一个电池单元仍然可能发生热失控。在这种情况下,检测到一电池单元的热失控风险后,问题电池单元的能量被控制为整个电池包或一组电池单元(例如,动力电池包中的其他电池单元/模块)充电后。如果需要,可以提供几个DC/DC转换器以将电压增加到所需的水平。要充电的电池可以是同一电池包的其他电池单元或其他模块,也可以是其他电池模块/组。请注意,当所有电池单元均已100%充满电时,此方法将不起作用,这非常少见。附图所示只是实现的一个示例,可能还有许多其他变化。
图8示出了用于方法三的发明构思的可能的控制算法的示例性流程图,其中,高风险电池的电能被控制以对电池包进行充电。以下只是控制算法的一个示例。该算法只是控制算法的一个示例。可能有其他各种算法。
在操作S802中,收集每个电池的信息。
在操作S804中,计算与电池热失控检测有关的关键信息。
在操作S806中,确定和预测热失控(TR)是否发生在任何一个电池单元上。
在操作S808中,将风险通知给用户和相关个人或实体。
在操作S810中,将保护电路连接到具有热失控风险的电池。保护电路将低压直流电转换为高压直流电。
在操作S812中,利用来自具有TR警告的电池的电能对一组电池充电。
在操作S814中,危险电池的存储电能通过充电电路被完全耗尽。
进一步讨论
在某些情况下,电池冷却液回路没有指定的电阻加热器(例如,大多数EV中使用的PTC加热器,带状加热器,薄膜加热器)。例如,在特斯拉Model3中,为了在寒冷的天气中加热电池加热器,驱动单元(逆变器+电动机+齿轮箱)有意以低效率运行,例如零转矩(零效率)或低转矩(低效率),而电动机/逆变器的废热则用于通过冷却液回路加热电池包。在这种情况下,可能有两种方法可以将有问题的电池能量耗散到电池包中:
(1)使用电动机/逆变器作为发热装置,可以将危险电池单元的能量直接耗散到电动机/逆变器。系统将以原始的费热模式运行。不需要PTC加热器。电池单元将所有电能泄出到驱动单元,驱动单元可以通过现有的电池冷却液回路将热量传递到电池包。实际上,驱动单元具有很大的热质量,除电池包外还可以用作吸热介质。可能需要直流转换器。
(2)可以添加一个附接的电池加热器,电池可单元以通过该加热器在不运行电动机的情况下加热冷却液回路。这就像没有废热模式的普通车辆一样。
本申请所提及的发明构思可以应用于防止电池单元的各种故障,包括但不限于由于内部短路,锂树突生长或其他机构引起的热失控。
应当注意,在本发明的以上实施例中,问题电池单元可以替代为一问题模块,并且上面的能量耗散概念将仍然适用。
除了EV电池外,该概念还可应用于其他应用领域的其他类型的锂离子电池,例如手机,笔记本电脑,便携式设备,储能站,移动电源,电动汽车,电动自行车,电动机器人等。
所提出的方法包含硬件(DC/DC转换器,加热器,开关等)和控制算法。硬件将安装在电动汽车(或其他相关装置)上。
综上所述,本发明实施例的解决方案使用现有电池和电池热管理系统(冷却液回路,冷却液泵,冷却板,电池加热器等),或通过用危险电池单元/模块的电能为电池包或另一电池包充电,来控制和耗散单个危险电池单元/模块(或多个危险电池单元/模块)的能量到整个动力电池包(或另一电池 包)。一旦电池单元/模块断电,热失控和蔓延到相邻电池的机会就会大大降低。
以上仅是本发明的示例性实施方式;应当指出的是,在不背离本发明原理的前提下,本领域普通技术人员也可以做出许多改进和补充,这些改进和补充应属于本发明的保护范围。

Claims (20)

  1. 一种用于防止电池热失控的方法,包括:
    检测或预测电池包的每个电池单元或电池模块是否存在热失控风险;以及
    响应于检测到或预测到所述电池包的至少一个电池单元或电池模块存在热失控风险,将至少一个电池单元或电池模块的电池能量作为热能或电能传递给所述电池包或另一电池包。
  2. 根据权利要求1所述的方法,其中,检测或预测电池包的每个电池单元或电池模块是否存在热失控风险包括:
    收集所述电池包中每个电池单元或电池模块的信息;
    根据收集到的信息,检测或预测所述电池包的每个电池单元或电池模块是否存在热失控风险。
  3. 根据权利要求1所述的方法,其中,将至少一个电池单元或电池模块的电池能量作为热能或电能传递到所述电池包或另一电池包包括以下至少之一:
    第一传递模式,其通过用于所述电池包或另一电池包的电池冷却液回路将至少一个电池单元或电池模块的电池能量作为热能传递到所述电池包或另一电池包;
    第二传递模式,其通过附接到所述电池包或另一电池包的电池单元或电池模块的电池侧壁上的加热元件,将至少一个电池单元或电池模块的电池能量作为热能传递到所述电池包或另一电池包;
    第三传递模式,其通过将至少一个电池单元或电池模块的电池能量放电和回收,以借助至少一个升压型DC/DC转换器为所述电池包或另一电池包充电,将至少一个电池单元或电池模块的电池能量作为电能传递至所述电池包或另一电池包。
  4. 根据权利要求3所述的方法,其中,在第一传递模式中,至少一个电池单元或电池模块与以下至少一个元件连接,该至少一个以下元件连接到所述电池包或另一电池包的电池冷却液回路中或与之连接:加热装置,冷却液泵,牵引电机,逆变器,充电器。
  5. 根据权利要求4所述的方法,其中,所述加热装置包括以下至少之一:电阻加热器,正温度系数(PTC)加热器,高压(HV)加热器;或者,通过以低于预设效率阈值的效率运行而用作发热装置的牵引电动机和逆变器。
  6. 根据权利要求4所述的方法,其中,在连接到所述电池包或另一电池包的电池冷却液回路中或与之连接的至少一个元件需要高于所述至少一个电池单元或电池模块的电压的情况下,所述至少一个电池单元或电池模块通过至少一个升压型DC/DC转换器与所述至少一个元件连接,所述升压型DC/DC转换器将所述至少一个电池单元或电池模块的电压增加到所述至少一个元件所需的电压。
  7. 根据权利要求3所述的方法,其中,在第二传递模式中,所述至少一个电池单元或电池模块与附接至所述电池包或另一电池包的电池单元或电池模块的电池侧壁上的加热元件连接。
  8. 根据权利要求7所述的方法,其中,所述加热元件包括电阻加热器,电阻加热元件中的至少之一。
  9. 根据权利要求3所述的方法,其中,在第三传递模式中,所述至少一个电池单元或电池模块通过至少一个升压型DC/DC转换器连接到整个电池包,或另一电池包,或所述电池包中的一组电池单元或电池模块,或另一电池包中的一组电池单元或电池模块。
  10. 根据权利要求9所述的方法,其中,在所述电池包或另一电池包位于温度低于温度阈值的环境中的情况下,采用第一传递模式或第二传递模式;和/或,
    在没有热管理提供给所述电池包或另一电池包的情况下,采用第三传递模式。
  11. 一种用于防止电池热失控的系统,包括:
    电池包,其具有多个电池单元或电池模块;
    开关或成对开关,其与所述电池包的各个电池单元或电池模块连接,并且用于在接收到激活指令之后控制所述电池包的各个电池单元或电池模块到保护电路连接,
    检测和预测元件,其被配置为检测或预测所述电池包的每个电池单元或电池模块是否存在热失控风险,并且响应于检测到或预测到所述电池包的至少一个电池单元或电池模块存在热失控风险,发送激活指令给与所述至少一个电池单元或电池模块相对应的每个开关或每对开关;
    保护电路当与所述至少一个电池单元或电池模块连接时,将所述至少一个电池单元或电池模块的电池能量作为热能或电能传递给所述电池包或另一电池包。
  12. 根据权利要求11所述的系统,其中,检测和预测元件被配置为以以下方式检测或预测所述电池包的每个电池单元或电池模块是否存在热失控风险:
    收集所述电池包中每个电池单元或电池模块的信息;
    根据收集到的信息,检测或预测所述电池包的每个电池单元或电池模块是否存在热失控风险。
  13. 根据权利要求11所述的系统,其中,所述保护电路当与所述至少一个电池单元或电池模块连接时,在以下至少一种模式中,将所述至少一个电池单元或电池模块的电池能量作为热能或电能传递给所述电池包或另一电池包:
    第一传递模式,其通过用于所述电池包或另一电池包的电池冷却液回路将至少一个电池单元或电池模块的电池能量作为热能传递到所述电池包或另一电池包;
    第二传递模式,其通过附接到所述电池包或另一电池包的电池单元或电池模块的电池侧壁上的加热元件,将至少一个电池单元或电池模块的电池能量作为热能传递到所述电池包或另一电池包;
    第三传递模式,其通过将至少一个电池单元或电池模块的电池能量放电和回收,以借助至少一个升压型DC/DC转换器为所述电池包或另一电池包充电,将至少一个电池单元或电池模块的电池能量作为电能传递至所述电池包或另一电池包。
  14. 根据权利要求13所述的系统,其中,在第一传递模式中,保护电路包括以下至少一个元件,所述至少一个以下元件连接到所述电池包或另一 电池包的电池冷却液回路中或与之连接:加热装置,冷却液泵,牵引电机,逆变器,充电器。
  15. 根据权利要求14所述的方法,其中,所述加热装置包括以下至少之一:电阻加热器,正温度系数(PTC)加热器,高压(HV)加热器;或者,
    通过以低于预设效率阈值的效率运行而用作发热装置的牵引电动机和逆变器。
  16. 根据权利要求14所述的系统,其中,在连接到所述电池包或另一电池包的电池冷却液回路中或与之连接的至少一个元件需要高于所述至少一个电池单元或电池模块的电压的情况下,所述至少一个电池单元或电池模块通过至少一个升压型DC/DC转换器与所述至少一个元件连接,所述升压型DC/DC转换器将所述至少一个电池单元或电池模块的电压增加到所述至少一个元件所需的电压。
  17. 根据权利要求13所述的系统,其中,在第二传递模式中,所述保护电路包括附接至所述电池包或另一电池包的电池单元或电池模块的电池侧壁上的加热元件。
  18. 根据权利要求17所述的系统,其中,所述加热元件包括电阻加热器,电阻加热元件中的至少之一。
  19. 根据权利要求13所述的系统,其中,在第三传递模式中,所述保护电路包括至少一个升压型DC/DC转换器,所述至少一个电池单元或电池模块通过所述至少一个升压型DC/DC转换器连接到整个电池包,或另一电池包,或所述电池包中的一组电池单元或电池模块,或另一电池包中的一组电池单元或电池模块。
  20. 根据权利要求11所述的电池系统,其中,在所述电池包或另一电池包位于温度低于温度阈值的环境中的情况下,采用第一传递模式或第二传递模式;和/或,
    在没有热管理提供给所述电池包或另一电池包的情况下,采用第三传递模式。
PCT/CN2021/078626 2020-09-23 2021-03-02 一种用于防止电池热失控的方法及系统 WO2022062322A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180001790.3A CN114600301B (zh) 2020-09-23 2021-03-02 一种用于防止电池热失控的方法及系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/030,366 2020-09-23
US17/030,366 US11626627B2 (en) 2020-09-23 2020-09-23 Method and system for preventing battery thermal runaway

Publications (1)

Publication Number Publication Date
WO2022062322A1 true WO2022062322A1 (zh) 2022-03-31

Family

ID=80741714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078626 WO2022062322A1 (zh) 2020-09-23 2021-03-02 一种用于防止电池热失控的方法及系统

Country Status (3)

Country Link
US (1) US11626627B2 (zh)
CN (1) CN114600301B (zh)
WO (1) WO2022062322A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890995A (zh) * 2011-09-19 2014-06-25 吉.埃罗公司 防止电池中单元的热失控传播
CN106532177A (zh) * 2016-10-25 2017-03-22 中国科学技术大学 一种用于电池系统散热及阻止热失控传播的组装元件
US20170172013A1 (en) * 2012-04-23 2017-06-15 Hyundai Motor Company Electronic/electrical component housing with strips of metal plate and shape memory material forming a heat transfer path
CN107732368A (zh) * 2017-10-30 2018-02-23 清华大学 一种基于热管的电池模组热失控扩展抑制装置
CN108736079A (zh) * 2018-04-08 2018-11-02 江西优特汽车技术有限公司 一种动力电池热失控扩散预警系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157164A (en) * 1999-09-28 2000-12-05 Telcordia Technologies, Inc. Battery power system
US20140285936A1 (en) * 2013-03-20 2014-09-25 Magna E-Car Systems Of America, Inc. Battery management system for electric vehicle
US10547184B2 (en) * 2015-02-18 2020-01-28 The Boeing Company System and method for battery management
EP3166175B1 (fr) * 2015-11-04 2018-04-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Batterie électrique comportant un système d'homogénéisation de sa température interne
EP3337001B1 (en) * 2016-12-14 2022-03-02 GS Yuasa International Ltd. System and method for discharging a defective battery cell
CN107323275A (zh) * 2017-05-12 2017-11-07 安徽康力节能电器科技有限公司 一种包含储能装置的车辆
DE102018203164A1 (de) * 2018-03-02 2019-09-05 Bayerische Motoren Werke Aktiengesellschaft Sicherheitssystem und Verfahren zum Durchführen einer Notentladefunktion bei einer Batterie
CN111668398A (zh) * 2019-03-07 2020-09-15 宁德时代新能源科技股份有限公司 一种电池模块及电池包
CN209880743U (zh) * 2019-04-11 2019-12-31 郑州深澜动力科技有限公司 一种电芯、动力电池包及车辆
CN109941153B (zh) * 2019-04-19 2021-10-01 衢州职业技术学院 一种安全性高的电动汽车耦合热管理系统
KR20210017842A (ko) * 2019-08-09 2021-02-17 주식회사 엘지화학 연쇄발화 방지를 위한 에너지 드레인 저항체를 구비한 배터리 팩
CN111152677A (zh) * 2020-02-14 2020-05-15 奥动新能源汽车科技有限公司 应急仓、充电架、电能站以及电池放置架
CN111668415A (zh) * 2020-05-26 2020-09-15 华南理工大学 一种电池系统、车辆以及电池系统热失控的处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890995A (zh) * 2011-09-19 2014-06-25 吉.埃罗公司 防止电池中单元的热失控传播
US20170172013A1 (en) * 2012-04-23 2017-06-15 Hyundai Motor Company Electronic/electrical component housing with strips of metal plate and shape memory material forming a heat transfer path
CN106532177A (zh) * 2016-10-25 2017-03-22 中国科学技术大学 一种用于电池系统散热及阻止热失控传播的组装元件
CN107732368A (zh) * 2017-10-30 2018-02-23 清华大学 一种基于热管的电池模组热失控扩展抑制装置
CN108736079A (zh) * 2018-04-08 2018-11-02 江西优特汽车技术有限公司 一种动力电池热失控扩散预警系统及方法

Also Published As

Publication number Publication date
CN114600301B (zh) 2023-08-15
CN114600301A (zh) 2022-06-07
US11626627B2 (en) 2023-04-11
US20220093983A1 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
US8456133B2 (en) Control method of battery-system for improving safety
EP3054554B1 (en) Battery pack and method of controlling the same
EP2765644B1 (en) Battery system with selective thermal management
TWI558059B (zh) 電池管理設備及方法
US8471529B2 (en) Battery fault tolerant architecture for cell failure modes parallel bypass circuit
JP4133019B2 (ja) 車両の蓄電制御装置
CN111816956B (zh) 电池加热控制方法、装置及设备
US20210175485A1 (en) System and method for operating a dual battery system
Baronti et al. Design of a module switch for battery pack reconfiguration in high-power applications
TW201246753A (en) Rechargeable battery systems and rechargeable battery system operational methods
US11964586B2 (en) Battery management system, battery management method, battery pack and electric vehicle
CN114448049A (zh) 一种温度控制系统及方法、储能充电系统
JP2007166747A (ja) 組電池および組電池の充電方法
WO2022062322A1 (zh) 一种用于防止电池热失控的方法及系统
EP4068561A1 (en) Charging method and power conversion device
KR20150043842A (ko) 전원 안전 차단 기능을 가진 배터리 관리 시스템 및 그 제어 방법
US20230170538A1 (en) Battery system and method for operating the same
EP4186746A1 (en) Battery system and method for operating the same
US11249451B1 (en) Dielectric energy storage systems
Hirota et al. Energy storage system with cylindrical large formatted lithium ion batteries for industrial applications
CN117936948A (zh) 锂电池包并联控制系统及方法
WO2021247117A2 (en) Dielectric energy storage systems
CN113013502A (zh) 一种锂电池能量循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21870711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21870711

Country of ref document: EP

Kind code of ref document: A1