WO2022062192A1 - 电机、动力装置、无人机及云台 - Google Patents

电机、动力装置、无人机及云台 Download PDF

Info

Publication number
WO2022062192A1
WO2022062192A1 PCT/CN2020/135224 CN2020135224W WO2022062192A1 WO 2022062192 A1 WO2022062192 A1 WO 2022062192A1 CN 2020135224 W CN2020135224 W CN 2020135224W WO 2022062192 A1 WO2022062192 A1 WO 2022062192A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
yoke
iron core
width
average
Prior art date
Application number
PCT/CN2020/135224
Other languages
English (en)
French (fr)
Inventor
黄宏升
王海龙
张振
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Publication of WO2022062192A1 publication Critical patent/WO2022062192A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos

Definitions

  • the present application relates to the technical field of driving devices, and more particularly, to a motor, a power device, an unmanned aerial vehicle, and a gimbal.
  • Permanent magnet synchronous motors are widely used in robots, robotic arms, PTZs and automation equipment.
  • the larger the motor constant the larger the volume of the motor, the smaller the input power required for the same output torque, and the greater the output torque for the same input power. Therefore, how to reasonably design the size of the motor to balance the output torque and the volume of the motor has become an urgent problem to be solved by those skilled in the art.
  • Embodiments of the present application provide a motor, a power device, an unmanned aerial vehicle, and a gimbal.
  • the motor of the embodiment of the present application includes a stator and a rotor rotatably provided outside the stator, the stator includes an iron core, the outer diameter of the iron core is [40.00 mm, 42.00 mm], and the iron core includes a sleeve A part and a plurality of supporting parts are provided, the width or average width of each supporting part in the circumferential direction is [2.20 mm, 2.50 mm], the shoe height of the iron core is [0.50 mm, 0.77 mm], the
  • the rotor includes a yoke and a plurality of magnets disposed on the inner wall of the yoke, each of the magnets having a width or average width along the circumferential direction of the yoke [5.00 mm, 5.50 mm].
  • the core has an outer diameter of 41.80 millimeters.
  • the width or average width of each of the support portions in the circumferential direction is 2.35 millimeters.
  • the thickness or average thickness of each of the sleeve portions in the radial direction is 3.06 mm.
  • the core has a shoe height of 0.75 mm.
  • the width or average width of each of the magnets in the circumferential direction of the yoke is 5.20 millimeters.
  • the length or average length of each of the magnets in the axial direction of the yoke is [6.00 millimeters, 12.00 millimeters].
  • the length or average length of each of the magnets in the axial direction of the yoke is 9 millimeters.
  • the thickness or average thickness of each of the magnets in the radial direction of the yoke is [1.45 mm, 2.00 mm].
  • the thickness or average thickness of each of the magnets in the radial direction of the yoke is 1.45 millimeters.
  • the magnets include any one of rectangular magnets, bread-shaped magnets, and tile-shaped magnets.
  • the height of the core in the axial direction is [6.00 mm, 10.00 mm].
  • the height of the core in the axial direction is 10.00 mm.
  • the stator further includes a coil sleeved on the support portion, and the iron core further includes a blocking portion extending from each of the support portions, and each of the blocking portions corresponds to one of the supporting portions.
  • the magnet; the distance or average distance between the coil and the support portion is 0.30 mm.
  • the stator further includes a coil sleeved on the support portion, and the iron core further includes a blocking portion extending from each of the support portions, and each of the blocking portions corresponds to one of the supporting portions.
  • the magnet; the width or average width of two adjacent blocking portions along the circumferential opening of the iron core is 1.50 mm.
  • the stator further includes a coil sleeved on the support portion, and the iron core further includes a blocking portion extending from each of the support portions, and each of the blocking portions corresponds to one of the supporting portions.
  • the magnet; the gap or average gap between each of the blocking parts and the corresponding magnet is 0.35 mm.
  • the stator further includes a coil sleeved on the support portion, and the iron core further includes a blocking portion extending from each of the support portions, and each of the blocking portions corresponds to one of the supporting portions.
  • the magnet; the outer diameter of the yoke is 48 mm.
  • the stator further includes a coil, and the coil is formed by winding a wire on the support part; when each of the support parts is wound with 40 turns to form the coil, the diameter of the wire is 0.35 mm; when 58 turns are wound on each of the support parts to form the coil, the diameter of the wire is 0.30 mm.
  • the power plant of the embodiment of the present application includes an actuator and the motor of any of the above embodiments, the actuator is connected to the motor, and the motor can drive the actuator to move.
  • the execution component includes at least one of the following: a pan/tilt shaft arm and a propeller.
  • the unmanned aerial vehicle of the embodiment of the present application includes a fuselage and the power device of any one of the above-mentioned embodiments, and the power device is mounted on the fuselage.
  • the pan/tilt according to the embodiment of the present application includes a pan/tilt body and the power device of any of the above embodiments, and the power device is installed on the pan/tilt body.
  • the motor, power device, UAV and gimbal of the embodiments of the present application make the motor smaller in size and at the same time ensure that the motor output torque is large and the torque fluctuation is small. Therefore, the motor, power device, UAV and PTZ can obtain better power performance.
  • FIG. 1 is a schematic diagram of a three-dimensional assembly of a pan/tilt head according to an embodiment of the present application
  • Fig. 2 is the plane assembly schematic diagram of the unmanned aerial vehicle of the embodiment of the present application.
  • FIG. 3 is a schematic three-dimensional assembly diagram of a motor according to an embodiment of the present application.
  • FIG. 4 is a schematic view of the plane assembly of the motor according to the embodiment of the present application.
  • FIG. 5 is a schematic plan view of an iron core in a motor according to an embodiment of the present application.
  • FIG. 6 is a schematic plan view of a magnet in a motor according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the torque boost ratio of magnets of different shapes and materials according to an embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of the iron core shown in FIG. 5 along line VIII-VIII;
  • FIG. 9 is a schematic plan view of a part of the motor of the application embodiment.
  • FIG. 10 is a schematic plan view of a magnetic yoke in a motor according to an embodiment of the present application.
  • FIG. 11 is a schematic plan view of the assembly of the stator in the motor according to the embodiment of the present application.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the power plant 1000 of the embodiment of the present application includes a motor 100 and an execution part 200 , the execution part 200 is connected to the motor 100 , and the motor 100 can drive the execution part 200 to move.
  • the power plant 1000 can be applied to a movable platform.
  • the power device 1000 can be applied to a gimbal 2000 , wherein the gimbal 2000 can be, but not limited to, a handheld gimbal, an airborne gimbal, and the like.
  • the gimbal 2000 includes the power device 1000 and the gimbal body 300 , and the power device 1000 is installed on the gimbal body 300 .
  • the execution component 200 may be a shaft arm of the pan/tilt head 2000, and the motor 100 can drive the shaft arm to rotate.
  • the motor 100 is a yaw axis motor
  • the actuator 200 is a shaft arm connected to the yaw axis motor
  • the yaw axis motor can drive the shaft arm to yaw around the gimbal 2000 Shaft turns.
  • the gimbal 2000 is a multi-axis gimbal (eg, a two-axis gimbal, a three-axis gimbal)
  • the motor 100 can be at least one of a yaw axis motor, a roll axis motor, and a pitch axis motor.
  • the 200 is at least one of the shaft arm connected with the yaw shaft motor, the shaft arm connected with the roll shaft motor, and the shaft arm connected with the pitch shaft motor, and the yaw shaft motor can drive the shaft arm connected with it to go around the gimbal
  • the yaw axis of the 2000 rotates
  • the roll axis motor can drive the axis arm connected to it to rotate around the roll axis of the gimbal 2000
  • the pitch axis motor can drive the axis arm connected to it to rotate around the pitch axis of the gimbal 2000.
  • the power plant 1000 can also be applied to the unmanned aerial vehicle 3000, the unmanned vehicle, the unmanned boat, and the like.
  • the UAV 3000 includes the power device 1000 and the fuselage 400 , and the power device 1000 can be installed on the fuselage 400 through the arm 500 .
  • the actuator 200 may be a propeller, and the motor 100 can drive the propeller to rotate to provide lift for the drone 3000 to fly.
  • the drone 3000 can be a small four-axis drone of 500 grams to 600 grams.
  • the weight of the small four-axis drone can be 500 grams, 510 grams, 520 grams, 530 grams, 540 grams, 550 grams , 560 grams, 570 grams, 580 grams, 590 grams, 600 grams, etc.
  • the UAV 3000 can also be a multi-axis UAV such as a six-axis UAV, an eight-axis UAV, a six-axis UAV, etc., and the UAV 3000 can also be a multi-axis UAV of other weight classes. , such as 450 grams, 650 grams, 700 grams and other weights, which are not listed here.
  • the motor 100 of the embodiment of the present application includes a stator 10 and a rotor 20 .
  • the rotor 20 is rotatably provided outside the stator 10 .
  • the rotor 20 can be connected with one of the above-mentioned actuator components 200 (shaft arm or propeller).
  • the actuator component 200 is driven to rotate relative to the stator 10 .
  • the stator 10 includes an iron core 11, and the outer diameter D1 of the iron core 11 is [40.00 mm, 42.00 mm], that is, the outer diameter D1 of the iron core 11 is greater than or equal to 40.00 mm and less than or equal to 42.00 mm .
  • the iron core 11 may include a sleeve portion 111 and a plurality of support portions 112, and the width W1 or the average width W1 of each support portion 112 in the circumferential direction is [2.20 mm, 2.50 mm], that is, the width W1 or the average width W1 is greater than equal to 2.20 mm and less than or equal to 2.50 mm.
  • the shoe height H1 of the iron core 11 is [0.50 mm, 0.77 mm], that is, the shoe height H1 is greater than or equal to 0.50 mm and less than or equal to 0.77 mm.
  • the rotor 20 includes a magnetic yoke 21 and a plurality of magnets 22 arranged on the inner wall 212 of the magnetic yoke 21, and the width W2 or the average width W2 of each magnet 22 along the circumferential direction of the magnetic yoke 21 is [5.00 mm, 5.50 mm], That is, the width W2 or the average width W2 is 5.00 mm or more and 5.50 mm or less.
  • the outer diameter D1 of the iron core 11, the width W1 or average width W1 of the support portion 112 in the circumferential direction, the shoe height H1 of the iron core 11, and the width W2 of the magnet 22 in the circumferential direction of the yoke 21 in the embodiment of the present application The average width W2, by optimizing the size of the iron core 11 of the stator 10 and the size of the magnet 22 of the rotor 20, makes the motor 100 smaller in size and at the same time ensures that the motor 100 has a larger output torque, thereby having good power performance.
  • the outer diameter D1 of the iron core 11 may be any value between 40.00 mm and 42.00 mm.
  • the outer diameter D1 of the iron core 11 may be any of 40.00 mm, 40.20 mm, 40.40 mm, 40.60 mm, 40.70 mm, 40.80 mm, 41.00 mm, 41.20 mm, 41.40 mm, 41.60 mm, 41.80 mm, 42.00 mm, etc.
  • the outer diameter D1 of the iron core 11 is 41.80 mm.
  • the iron core 11 may be made of silicon steel sheets, specifically, the iron core 11 may be made by stacking multiple silicon steel sheets of equal thickness, for example, the iron core 11 is made by stacking silicon steel sheets with a thickness of 0.50 mm.
  • the outer diameter D1 of the iron core 11 is any value between 40.00 mm and 42.00 mm, the motor 100 can have sufficient output torque, and the outer diameter D1 of the iron core 11 will not be too large to cause the motor 100 to be too bulky.
  • the shoe height H1 of the iron core 11 is any value between 0.50 mm and 0.77 mm.
  • the shoe height H1 of the iron core 11 may be 0.50 mm, 0.51 mm, 0.53 mm, 0.55 mm, 0.57 mm, 0.59 mm, 0.61 mm, 0.63 mm, 0.65 mm, 0.67 mm, 0.69 mm, 0.71 mm, 0.73 mm, Any of 0.75mm, 0.77mm, etc. or any other value between 0.50mm and 0.77mm.
  • the shoe height H1 of the iron core 11 is 0.75 mm.
  • the iron core 11 has sufficient magnetic flux, and the iron core 11 will not make the magnetic density too concentrated due to the high shoe height.
  • the sleeve portion 111 is substantially cylindrical, and the circular hole in the sleeve portion 111 is used to pass through the rotating shaft (not shown in the drawings).
  • the thickness H2 or the average thickness H2 of the sleeve portion 111 in the radial direction may be 3.06 mm.
  • the iron core 11 can have sufficient magnetic permeability, and the conduction path of the iron core 11 will not be too narrow because the thickness H2 or the average thickness H2 of the sleeve portion 111 in the radial direction is too narrow, which will affect the iron core 11 . Magnetic permeability of the core 11 .
  • the support portion 112 may be disposed on the outer peripheral surface of the sleeve portion 111 .
  • the number of support parts 112 may be multiple, for example, the number of support parts 112 may be ten, twelve, fourteen, sixteen, eighteen, twenty, etc.
  • the outer peripheral surface of the setting portion 111 is equally spaced at equal angles.
  • the shape and size of each support portion 112 may be identical.
  • the support portion 112 may be substantially in the shape of a rectangular plate, the width W1 of the support portion 112 may be equal from the end close to the sleeve portion 111 to the end away from the sleeve portion 111 , and the width W1 may be the width of the shorter side of the rectangle.
  • the support portion 112 may be substantially trapezoidal, and the width W1 of the support portion 112 may gradually increase or decrease gradually from the end close to the sleeve portion 111 to the end away from the sleeve portion 111 , which can be measured by the average width W1 .
  • the width W1 or the average width W1 of the support portion 112 in the circumferential direction may be any value between 2.20 mm and 2.50 mm.
  • the width W1 or average width W1 of the support portion 112 in the circumferential direction may be 2.20 mm, 2.21 mm, 2.23 mm, 2.25 mm, 2.27 mm, 2.29 mm, 2.31 mm, 2.33 mm, 2.35 mm, 2.37 mm, 2.39 mm , 2.41mm, 2.43mm, 2.45mm, 2.47mm, 2.49mm, 2.50mm, etc. or any other value between 2.20mm and 2.50mm.
  • the width W1 or average width W1 of the support portion 112 in the circumferential direction is 2.35 mm.
  • the support portion 112 can have sufficient strength and magnetic permeability, and the support portion 112 will not be too wide and The space between the support parts 112 for winding the coil 12 (shown in FIG. 11 ) is compressed, and at this time, the width W1 or the average width W1 of the support parts 112 in the circumferential direction is the maximum of the cross section of the iron core 11 and the copper cross section. Therefore, the torque performance of the motor 100 can be improved.
  • the width W2 or average width W2 of the magnet 22 in the circumferential direction of the yoke 21 may be a value between 5.00 mm and 5.50 mm.
  • the width W2 or the average width W2 of the magnet 22 in the circumferential direction of the yoke 21 may be any one of 5.00 mm, 5.10 mm, 5.20 mm, 5.30 mm, 5.40 mm, 5.50 mm, etc., or the other is 5.00 mm to 5.50 mm Any value between millimeters.
  • the width W2 or average width W2 of the magnet 22 in the circumferential direction of the yoke 21 is 5.20 mm.
  • the width W2 or the average width W2 of the magnet 22 in the circumferential direction of the yoke 21 is any value between 5.00 mm and 5.50 mm, at this time, the iron core 11 has a stable torque fluctuation, and the magnet 22 does not overshoot The width of the motor 100 results in a larger volume.
  • the motor 100 , the power device 1000 , the gimbal 2000 and the drone 3000 optimize the size of the stator 10 and the rotor 20 , so that the size of the motor 100 is smaller, and the size and weight of the actuator 200 connected to the motor 100 are can be effectively controlled.
  • the output torque of the motor 100 is large and the fluctuation is small, so that the motor 100 has a low impact on the working efficiency of the execution unit 200, so that the pan/tilt 2000 can work more smoothly or the drone 3000 can fly more stably. In this way, the performance of the motor 100 is fully exerted, and the power plant 1000 can obtain better power performance.
  • the rotor 20 includes a magnet 22 and a yoke 21 , the magnet 22 is arranged on the inner wall 212 of the yoke 21 , and the yoke 21 is covered outside the stator 10 .
  • the length L1 or the average length L1 of the magnet 22 in the axial direction of the yoke 21 is [6.00 mm, 12.00 mm], that is, the length L1 or the average length L1 is 6.00 mm or more and 12.00 mm or less.
  • the thickness H3 or average thickness H3 of the magnet 22 in the radial direction of the yoke 21 is [1.45 mm, 2.00 mm], that is, the thickness H3 is greater or the average thickness H3 is 1.45 mm or less and 2.00 mm or less.
  • the yoke 21 is substantially cylindrical, and the stator 10 is covered by the yoke 21 .
  • the shape of the yoke 21 can also be set according to the interface of the load, for example, it can be set to any suitable shape such as a circle, a rectangle, a polygon, etc., which is not limited here.
  • the peripheral wall of the yoke 21 is cylindrical as an example.
  • the magnets 22 are disposed on the inner wall 212 of the magnetic yoke 21 , and the number of the magnets 22 may be multiple, and the plurality of magnets 22 may be respectively disposed at different positions on the inner wall 212 of the magnetic yoke 21 .
  • the number of magnets 22 may be ten, twelve, fourteen, sixteen, eighteen, twenty, and the like.
  • the plurality of magnets 22 are uniformly arranged on the inner wall 212 of the yoke 21 , that is, the distances between the plurality of magnets 22 on the peripheral wall of the yoke 21 are equal.
  • the length L1 or the average length L1 of the magnet 22 in the axial direction of the yoke 21 is a value of 6.00 mm to 12.00 mm.
  • the length L1 or the average length L1 of the magnet 22 in the axial direction of the yoke 21 may be any one of 6.00 mm, 7.00 mm, 8.00 mm, 9.00 mm, 10.00 mm, 11.00 mm, 12.00 mm, etc. or the other at 6.00 mm Any value between mm and 12.00 mm.
  • the length L1 or the average length L1 of the magnet 22 in the axial direction of the yoke 21 is 9.00 mm.
  • the motor 100 can have a good output torque, and the length of the magnet 22 in the axial direction of the yoke 21 is any value.
  • the length L1 or the average length L1 is not too long to cause the motor 100 to be heavy.
  • the thickness H3 or average thickness H3 of the magnet 22 in the radial direction of the yoke 21 is a value of 1.45 mm to 2.00 mm.
  • the thickness H3 or average thickness H3 of the magnet 22 in the radial direction of the yoke 21 may be 1.45 mm, 1.55 mm, 1.60 mm, 1.65 mm, 1.75 mm, 1.85 mm, 1.88 mm, 1.90 mm, 1.95 mm, 2.00 mm etc. or any other value between 1.45mm and 2.00mm.
  • the thickness H3 or average thickness H3 of the magnet 22 in the radial direction of the yoke 21 is 1.45 mm.
  • the magnet 22 can have a sufficient magnetic field range, and the magnet 22 will not be too thick and As a result, the mass of the motor 100 is heavier.
  • the shape of the magnet 22 can be any one of various shapes such as rectangle, bread shape, tile shape and the like.
  • FIG. 7 is a bar graph of the torque increase ratio of the motor 100 for rectangular magnets, bread-shaped magnets, and tile-shaped magnets of different materials, in which the abscissa represents the material type, the ordinate represents the torque increase ratio, and the corresponding Bar charts, from left to right, represent rectangular, loaf, and tile magnets.
  • the motor 100 , the power device 1000 , the gimbal 2000 , and the UAV 3000 reduce the volume of the motor 100 by optimizing the size of the magnet 22 , and by selecting the magnet 22 of suitable material and shape, to achieve the required output of the motor 100 torque, and considering the economy, the magnet 22 of the appropriate price is selected, thereby saving the cost and improving the economy.
  • the height H4 of the iron core 11 in the axial direction is [6.00 mm, 10.00 mm], that is, the height H4 is greater than or equal to 6.00 mm and less than or equal to 10.00 mm.
  • the height H4 of the iron core 11 in the axial direction may be any value between 6.00 mm and 10.00 mm.
  • the height H4 of the iron core 11 in the axial direction may be any one of 6.00 mm, 7.00 mm, 8.00 mm, 9.00 mm, 10.00 mm, etc. or any other value between 6.00 mm and 10.00 mm.
  • the height H4 of the iron core 11 in the axial direction is 10.00 mm.
  • the motor 100 has sufficient output torque at this time, and the iron core 11 will not be too high to cause the volume and weight of the motor 100 to increase. Big.
  • the motor 100 , the power device 1000 , the gimbal 2000 and the UAV 3000 optimize the height H4 of the iron core 10 in the axial direction, thereby reducing the volume of the motor 100 , thereby achieving the required output torque of the motor 100 , ensuring Good power performance of the motor 100 is achieved.
  • the stator 10 may further include a coil 12 , and the iron core 11 further includes a blocking portion 113 extending from each support portion 112 , and each blocking portion 113 corresponds to a magnet 22 .
  • the coil 12 is wound on the support portion 112 .
  • the stopper portion 113 is provided at the end of the support portion 112 .
  • the number of the stopper parts 113 corresponds to the number of the support parts 112 .
  • the shape and size of each stopper portion 113 are also identical, and the circumferential dimension is larger than that of the support portion 112 , so as to prevent the coil 12 from falling off the support portion 112 .
  • the distance H5 or the average distance H5 between the coil 12 and the support portion 112 is 0.30 mm.
  • the width W3 or the average width W3 of the circumferential openings of the two adjacent blocking portions 113 along the iron core 10 is 1.50 mm.
  • the gap W4 or average gap W4 between each blocking portion 113 and the corresponding magnet 22 is 0.35 mm.
  • the magnet 22 can have a sufficient magnetic field strength, and will not cause interference of various components due to the deformation of the structure in the motor 100 .
  • the outer diameter D2 of the yoke is 48 mm. At this time, the motor 100 can obtain sufficient output torque, and the outer diameter D2 of the magnetic yoke will not be too large, resulting in a large volume and mass of the motor 100 .
  • the motor 100 , the power device 1000 , the gimbal 2000 and the UAV 3000 according to the embodiments of the present application set the fixed standard spacing size and the size of the rotor 20 to obtain the optimal weight and required output torque of the motor 100 under the size, ensuring that Better performance of the powerplant 1000.
  • the coil 12 is formed by winding the wire 121 on the support portion 112 .
  • the wire 121 can be wound around the support portion 112 for multiple turns to form the coil 12 .
  • the diameter D3 of the wire 121 is 0.35 mm; in another embodiment, the wire 121 is wound around the support portion 112 for 58 turns to form the coil 12 , the diameter of the wire D3 is 0.30 mm.
  • the motor 100 , the power device 1000 , the gimbal 2000 and the drone 3000 can obtain the maximum output of different motors 100 under the same current by winding the number of turns of the coil 12 and the diameter D3 of the wire 121 torque to meet the various demands of the power plant 1000 .
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features delimited with “first”, “second” may expressly or implicitly include at least one of said features. In the description of the present application, “plurality” means at least two, such as two, three, unless expressly and specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种电机(100)、动力装置(1000)、云台(2000)及无人机(3000),电机包括定子(10)及转子(20)),铁芯(11)的外直径为[40.00毫米,42.00毫米],每个支撑部(112)沿周向方向的宽度或平均宽度为[2.20毫米,2.50毫米],铁芯(11)的靴高为[0.50毫米,0.77毫米],每个磁体(22)沿磁轭(21)的周向方向的宽度或平均宽度为[5.00毫米,5.50毫米]。

Description

电机、动力装置、无人机及云台
优先权信息
本申请请求2020年09月28日向中国国家知识产权局提交的、专利申请号为202022179911.9的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及驱动装置技术领域,更具体而言,涉及一种电机、动力装置、无人机及云台。
背景技术
永磁同步电机被广泛应用于机器人、机械臂、云台及自动化设备等领域。然而,电机常数越大,电机的体积越大,同样输出扭矩需要的输入功率却越小,而同样输入功率时的输出扭矩也就越大。因此,如何合理的设计电机的尺寸以平衡输出扭矩及电机体积成为本领域技术人员亟需解决的问题。
发明内容
本申请实施方式提供一种电机、动力装置、无人机及云台。
本申请实施方式的电机包括定子以及能够转动地设置在所述定子外的转子,所述定子包括铁芯,所述铁芯的外直径为[40.00毫米,42.00毫米],所述铁芯包括套设部及多个支撑部,每个所述支撑部沿周向方向的宽度或平均宽度为[2.20毫米,2.50毫米],所述铁芯的靴高为[0.50毫米,0.77毫米],所述转子包括磁轭及设置在所述磁轭的内壁上的多个磁体,每个所述磁体沿所述磁轭的周向方向的宽度或平均宽度为[5.00毫米,5.50毫米]。
在某些实施方式中,所述铁芯的外直径为41.80毫米。
在某些实施方式中,每个所述支撑部沿周向方向的宽度或平均宽度为2.35毫米。
在某些实施方式中,每个所述套设部沿径向方向的厚度或平均厚度为3.06毫米。
在某些实施方式中,所述铁芯的靴高为0.75毫米。
在某些实施方式中,每个所述磁体沿所述磁轭的周向方向的宽度或平均宽度为5.20毫米。
在某些实施方式中,每个所述磁体沿所述磁轭的轴向方向的长度或平均长度为[6.00毫米,12.00毫米]。
在某些实施方式中,每个所述磁体沿所述磁轭的轴向方向的长度或平均长度为9毫 米。
在某些实施方式中,每个所述磁体沿所述磁轭的径向方向的厚度或平均厚度为[1.45毫米,2.00毫米]。
在某些实施方式中,每个所述磁体沿所述磁轭的径向方向的厚度或平均厚度为1.45毫米。
在某些实施方式中,所述磁体包括矩形磁体、面包形磁体、瓦形磁体中的任意一种。
在某些实施方式中,所述铁芯沿轴向方向的高度为[6.00毫米,10.00毫米]。
在某些实施方式中,所述铁芯沿轴向方向的高度为10.00毫米。
在某些实施方式中,所述定子还包括套设在所述支撑部上的线圈,所述铁芯还包括自每个所述支撑部延伸的阻挡部,每个所述阻挡部对应一个所述磁体;所述线圈与所述支撑部之间的间距或平均间距为0.30毫米。
在某些实施方式中,所述定子还包括套设在所述支撑部上的线圈,所述铁芯还包括自每个所述支撑部延伸的阻挡部,每个所述阻挡部对应一个所述磁体;相邻两个所述阻挡部沿所述铁芯的周向开口的宽度或平均宽度为1.50毫米。
在某些实施方式中,所述定子还包括套设在所述支撑部上的线圈,所述铁芯还包括自每个所述支撑部延伸的阻挡部,每个所述阻挡部对应一个所述磁体;每个所述阻挡部与对应的所述磁体之间的间隙或平均间隙为0.35毫米。
在某些实施方式中,所述定子还包括套设在所述支撑部上的线圈,所述铁芯还包括自每个所述支撑部延伸的阻挡部,每个所述阻挡部对应一个所述磁体;所述磁轭的外直径为48毫米。
在某些实施方式中,定子还包括线圈,所述线圈通过导线绕设在所述支撑部上形成;每个所述支撑部上绕设40匝形成所述线圈时,所述导线的直径为0.35毫米;每个所述支撑部上绕设58匝形成所述线圈时,所述导线的直径为0.30毫米。
本申请实施方式的动力装置包括执行部件及上述任一实施方式的电机,所述执行部件与所述电机连接,所述电机能够驱动所述执行部件运动。
在某些实施方式中,所述执行部件包括如下至少一种:云台轴臂、螺旋桨。
本申请实施方式的无人机包括机身及上述任一实施方式的动力装置,所述动力装置安装在所述机身上。
本申请实施方式的云台包括云台本体及上述任一实施方式的动力装置,所述动力装置安装在所述云台本体上。
本申请实施方式的电机、动力装置、无人机及云台通过优化转子的磁体尺寸及定子的铁芯尺寸,使得电机的体积较小的同时,保证电机输出扭矩较大且转矩波动小,从而使电 机、动力装置、无人机及云台能获得较好地动力性能。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的云台的立体装配示意图;
图2是本申请实施方式的无人飞行器的平面装配示意图;
图3是本申请实施方式的电机的立体装配示意图;
图4是本申请实施方式的电机的平面装配示意图;
图5是本申请实施方式的电机中铁芯的平面示意图;
图6是本申请实施方式的电机中磁体的平面示意图;
图7是本申请实施方式的不同形状和材质的磁体力矩提升比例的示意图;
图8是图5所示的铁芯沿VIII-VIII线的截面示意图;
图9是申请实施方式的部分电机的平面示意图;
图10是本申请实施方式的电机中磁轭的平面示意图;
图11是本申请实施方式的电机中定子的平面装配示意图。
具体实施方式
以下结合附图对本申请的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可以是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请参阅图1及图2,本申请实施方式的动力装置1000包括电机100及执行部件200,执行部件200与电机100连接,电机100能够驱动执行部件200运动。动力装置1000可 以应用于可移动平台。
具体地,在一个例子中,如图1所示,动力装置1000可以应用在云台2000上,其中,云台2000可以但不限于手持云台、机载云台等。换句话说,云台2000包括动力装置1000及云台本体300,动力装置1000安装在云台本体300上。此时,执行部件200可以是云台2000的轴臂,电机100能够驱动轴臂转动。当云台2000为单轴云台时,电机100为偏航轴电机,执行部件200为与偏航轴电机连接的轴臂,偏航轴电机能够驱动该轴臂绕着云台2000的偏航轴转动。当云台2000为多轴云台(例如两轴云台、三轴云台)时,电机100可为偏航轴电机、横滚轴电机、俯仰轴电机中的至少一个,相应地,执行部件200为与偏航轴电机连接的轴臂、与横滚轴电机连接的轴臂、与俯仰轴电机连接的轴臂中的至少一个,偏航轴电机能够驱动与其连接的轴臂绕着云台2000的偏航轴转动,横滚轴电机能够驱动与其连接的轴臂绕着云台2000的横滚轴转动,俯仰轴电机能够驱动与其连接的轴臂绕着云台2000的俯仰轴转动。
在另外一个例子中,如图2所示,动力装置1000还可以应用在无人机3000、无人车、无人船等上。当动力装置1000应用在无人机3000上时,无人机3000包括动力装置1000及机身400,动力装置1000可通过机臂500安装在机身400上。此时,执行部件200可以是螺旋桨,电机100能够驱动螺旋桨转动以提供使无人机3000飞行的升力。其中,无人机3000可以是500克至600克级别的小型四轴无人机,例如小型四轴无人机的重量可以是500克、510克、520克、530克、540克、550克、560克、570克、580克、590克、600克等。当然,无人机3000还可以是六轴无人机、八轴无人机、十六轴无人机等多轴无人机,无人机3000还可以是其他重量级别的多轴无人机,例如450克、650克、700克等重量,在此不一一列举。
具体地,请参阅图3和图4,本申请实施方式的电机100包括定子10及转子20。转子20能够转动地设置在定子10外。转子20能够与上述的一个执行部件200(轴臂或螺旋桨)连接,当转子20相对于定子10转动时,带动执行部件200相对于定子10转动。
请结合图4和图5,定子10包括铁芯11,铁芯11的外直径D1为[40.00毫米,42.00毫米],即,铁芯11的外直径D1大于等于40.00毫米,且小于等于42.00毫米。铁芯11可包括套设部111及多个支撑部112,每个支撑部112沿周向方向的宽度W1或平均宽度W1为[2.20毫米,2.50毫米],即,宽度W1或平均宽度W1大于等于2.20毫米,且小于等于2.50毫米。铁芯11的靴高H1为[0.50毫米,0.77毫米],即,靴高H1大于等于0.50毫米,且小于等于0.77毫米。转子20包括磁轭21及设置在磁轭21的内壁212上的多个磁体22,每个磁体22沿磁轭21的周向方向的宽度W2或平均宽度W2为[5.00毫米,5.50毫米],即,宽度W2或平均宽度W2大于等于5.00毫米,且小于等于5.50毫米。
本申请实施方式的铁芯11的外直径D1、支撑部112沿周向方向的宽度W1或平均宽度W1、铁芯11的靴高H1及磁体22沿磁轭21的周向方向的宽度W2或平均宽度W2,通过优化定子10的铁芯11尺寸及转子20的磁体22尺寸,使得电机100的体积较小的同时,保证电机100输出转矩较大,从而具有良好的动力性能。
更具体地,铁芯11的外直径D1可以是40.00毫米至42.00毫米之间的任意值。例如,铁芯11的外直径D1可以是40.00毫米、40.20毫米、40.40毫米、40.60毫米、40.70毫米、40.80毫米、41.00毫米、41.20毫米、41.40毫米、41.60毫米、41.80毫米、42.00毫米等中的任意一个或其他在40.00毫米与42.00毫米之间的任意值。在一个实施例中,铁芯11的外直径D1为41.80毫米。其中,铁芯11可以是由硅钢片制成,具体地,铁芯11可由多个厚度相等的硅钢片相互堆叠制成,例如铁芯11使用0.50毫米厚度的硅钢片相互堆叠制成。当铁芯11的外直径D1是40.00毫米至42.00毫米之间的任意值时,电机100可以具有足够的输出扭矩,且铁芯11的外直径D1不会过大而导致电机100体积过大。
铁芯11的靴高H1为0.50毫米至0.77毫米之间的任意值。例如,铁芯11的靴高H1可以是0.50毫米、0.51毫米、0.53毫米、0.55毫米、0.57毫米、0.59毫米、0.61毫米、0.63毫米、0.65毫米、0.67毫米、0.69毫米、0.71毫米、0.73毫米、0.75毫米、0.77毫米等中的任意一个或其他在0.50毫米至0.77毫米之间的任意值。在一个实施例中,铁芯11的靴高H1为0.75毫米。当铁芯11的靴高H1为0.50毫米至0.77毫米之间的任意值时,铁芯11具体足够的磁通量,且铁芯11不会因为靴高过高而使得磁密过于集中。
请继续参阅图4及图5,在某些实施方式中,套设部111基本呈圆筒状,套设部111中的圆孔用于穿设转轴(在图中未标出)。套设部111沿径向方向的厚度H2或平均厚度H2可以为3.06毫米。此时,铁芯11可以具有足够的导磁能力,且不会因为套设部111沿径向方向的厚度H2或平均厚度H2过窄而导致铁芯11的导通通路过窄,影响到铁芯11的导磁能力。
支撑部112可以设置在套设部111的外周面上。支撑部112的数量可以是多个,例如支撑部112的数量可以是十个、十二个、十四个、十六个、十八个、二十个等,多个支撑部112可以在套设部111的外周面上等角度均匀间隔设置。每个支撑部112的形状和尺寸可以完全相同。支撑部112可以大致呈矩形板状,支撑部112的宽度W1从靠近套设部111的一端到远离套设部111的一端可以均相等,宽度W1可以是该矩形的较短边的宽度。支撑部112可以大致呈梯形,支撑部112的宽度W1从靠近套设部111的一端到远离套设部111的一端可以逐渐增大或逐渐减小,则可以以平均宽度W1来衡量。
支撑部112沿周向方向的宽度W1或平均宽度W1可以是2.20毫米至2.50毫米之间的任意值。例如,支撑部112沿周向方向的宽度W1或平均宽度W1可以是2.20毫米、2.21 毫米、2.23毫米、2.25毫米、2.27毫米、2.29毫米、2.31毫米、2.33毫米、2.35毫米、2.37毫米、2.39毫米、2.41毫米、2.43毫米、2.45毫米、2.47毫米、2.49毫米、2.50毫米等中的任意一个或其他在2.20毫米至2.50毫米之间的任意值。在一个实施例中,支撑部112沿周向方向的宽度W1或平均宽度W1为2.35毫米。当支撑部112沿周向方向的宽度W1或平均宽度W1是2.20毫米至2.50毫米之间的任意值时,支撑部112可以具有足够的强度及导磁能力,且支撑部112不会过宽而压缩支撑部112之间用于绕设线圈12(图11所示)的空间,且此时支撑部112沿周向方向的宽度W1或平均宽度W1的尺寸为铁芯11截面与铜截面的最优结果,从而可以提升电机100的扭矩性能。
磁体22沿磁轭21的周向方向的宽度W2或平均宽度W2可以是5.00毫米至5.50毫米之间的值。例如,磁体22沿磁轭21的周向方向的宽度W2或平均宽度W2可以是5.00毫米、5.10毫米、5.20毫米、5.30毫米、5.40毫米、5.50毫米等中的任意一个或其他在5.00毫米至5.50毫米之间的任意值。在一个实施例中,磁体22沿磁轭21的周向方向的宽度W2或平均宽度W2为5.20毫米。当磁体22沿磁轭21的周向方向的宽度W2或平均宽度W2是5.00毫米至5.50毫米之间的任意值时,此时,铁芯11的具有稳定的扭矩波动,且磁体22不会过宽而导致电机100的体积较大。
本申请实施方式的电机100、动力装置1000、云台2000及无人机3000通过优化定子10和转子20的尺寸,使得电机100的体积较小,与电机100连接的执行部件200的尺寸及重量都可以得到有效的控制。另外,电机100的输出扭矩大且波动小,使得电机100对执行部件200的工作效率影响也较低,使得云台2000在工作时镜头更加平稳或无人机3000飞行更加稳定。由此,电机100的性能得到充分的发挥,动力装置1000能获得更好的动力性能。
请参阅图4和图6,转子20包括磁体22及磁轭21,磁体22设置与磁轭21的内壁212上,磁轭21罩设在定子10外。磁体22沿磁轭21的轴向方向的长度L1或平均长度L1为[6.00毫米,12.00毫米],即,长度L1或平均长度L1大于等于6.00毫米,且小于等于12.00毫米。磁体22沿磁轭21的径向方向的厚度H3或平均厚度H3为[1.45毫米,2.00毫米],即,厚度H3大或平均厚度H3于等于1.45毫米,且小于等于2.00毫米。
具体地,磁轭21基本呈圆筒状,定子10被磁轭21罩设。可以理解,磁轭21的形状也可以根据负载的接口进行设置,例如可以设置成圆形、长方形、多边形等任意合适的形状,在此不做限制。本实施例以磁轭21的周壁为圆筒状为例。
磁体22设置在磁轭21的内壁212上,且磁体22的数量可以是多个,多个磁体22可以分别设置在磁轭21的内壁212上的不同位置。例如磁体22的数量可以是十个、十二个、十四个、十六个、十八个、二十个等。在一个例子中,多个磁体22均匀的设置在磁轭21 的内壁212上,即多个磁体22在磁轭21周壁上的间隔距离相等。
磁体22沿磁轭21的轴向方向的长度L1或平均长度L1为6.00毫米至12.00毫米的值。例如,磁体22沿磁轭21的轴向方向的长度L1或平均长度L1可以是6.00毫米、7.00毫米、8.00毫米、9.00毫米、10.00毫米、11.00毫米、12.00毫米等中的任意一个或其他在6.00毫米至12.00毫米之间的任意值。在一个实施例中,磁体22沿磁轭21的轴向方向的长度L1或平均长度L1为9.00毫米。当磁体22沿磁轭21的轴向方向的长度L1或平均长度L1为6.00毫米至12.00毫米之间的任意值时,电机100可以具有良好输出扭矩,磁体22沿磁轭21的轴向方向的长度L1或平均长度L1不会过长而导致电机100的质量较重。
磁体22沿磁轭21的径向方向的厚度H3或平均厚度H3为1.45毫米至2.00毫米的值。例如,磁体22沿磁轭21的径向方向的厚度H3或平均厚度H3可以是1.45毫米、1.55毫米、1.60毫米、1.65毫米、1.75毫米、1.85毫米、1.88毫米、1.90毫米、1.95毫米、2.00毫米等中的任意一个或其他在1.45毫米至2.00毫米之间的任意值。在一个实施例中,磁体22沿磁轭21的径向方向的厚度H3或平均厚度H3为1.45毫米。当磁体22沿磁轭21的径向方向的厚度H3或平均厚度H3为1.45毫米至2.00毫米之间的任意值是,此时磁体22可以具有足够的磁场范围,且磁体22不会过厚而导致电机100的质量较重。
磁体22的形状可以是矩形、面包形、瓦形等多种形状中的任意一种。请结合图7,为不同材质的矩形磁体、面包形磁体及瓦形磁体的在电机100的力矩提升比例条形图、其中横坐标代表材料型号,纵坐标代表力矩提升比例,每种材料对应的条形图,从左往右依次代表矩形、面包形、瓦形磁体。
本申请实施方式的电机100、动力装置1000、云台2000及无人机3000通过优化磁体22尺寸,从而减少电机100的体积,通过选取合适材料、形状的磁体22,从而达到电机100的需求输出扭矩,并且考虑经济性,选取合适价格的磁体22,从而节约了成本,提高了经济性。
请参阅5和图8,在某些实施方式中,铁芯11沿轴向方向的高度H4为[6.00毫米,10.00毫米],即,高度H4大于等于6.00毫米,且小于等于10.00毫米。具体地,铁芯11沿轴向方向的高度H4可以是6.00毫米至10.00毫米之间的任意值。例如,铁芯11沿轴向方向的高度H4可以是6.00毫米、7.00毫米、8.00毫米、9.00毫米、10.00毫米等中的任意一个或其他在6.00毫米至10.00毫米之间的任意值。在一个实施例中,铁芯11沿轴向方向的高度H4为10.00毫米。铁芯11沿轴向方向的高度H4为6.00毫米至10.00毫米之间的任意值时,此时电机100具有足够的输出扭矩,且铁芯11不会过高而导致电机100的体积及重量过大。
本申请实施方式的电机100、动力装置1000、云台2000及无人机3000通过优化铁芯 10沿轴向方向的高度H4,从而减少电机100的体积,从而达到电机100的需求输出扭矩,保证了电机100的良好动力性能。
请参阅图4及图11,定子10还可包括线圈12,铁芯11还包括自每个支撑部112延伸的阻挡部113,每一个阻挡部113对应一个磁体22。
线圈12绕设在支撑部112上。止挡部113设置在支撑部112的末端。止挡部113的数量与支撑部112的数量相对应。每个止挡部113的形状、尺寸也完全相同且周向尺寸大于支撑部112,以防止线圈12从支撑部112上脱落。
请结合图9和图10,在某些实施方式中,线圈12与支撑部112之间的间距H5或平均间距H5为0.30毫米。
在某些实施方式中,相邻两个阻挡部113沿铁芯10的周向开口的宽度W3或平均宽度W3为1.50毫米。
在某些实施方式中,每个阻挡部113与对应的磁体22之间的间隙W4或平均间隙W4为0.35mm。此时,磁体22可以具有足够的磁场强度,且不会因为电机100中结构发生变形而导致各部分元件发生干涉。
在某些实施方式中,磁轭的外直径D2为48mm。此时,电机100可以获得足够的输出扭矩,且磁轭的外直径D2不会过大而导致电机100的体积及质量较大。
本申请实施方式的电机100、动力装置1000、云台2000及无人机3000通过设定固定标准间距尺寸及转子20尺寸,从而得到该尺寸下电机100的最佳重量及需求输出扭矩,保证了动力装置1000较好的性能。
请再参阅图4及图11,线圈12通过导线121缠绕在支撑部112上而制成。具体地,导线121绕设支撑部112多匝即可形成线圈12,其中,导线121可以单层绕设支撑部112,导线121也可以是多层绕设支撑部112,在此不做限制。
在一个实施例中,导线121在支撑部112绕设40匝形成线圈12时,导线121的直径D3为0.35毫米;在另一个实施例中,导线121在支撑部112绕设58匝形成线圈12时,导线D3的直径为0.30毫米。
本申请实施方式的电机100、动力装置1000、云台2000及无人机3000通过绕设线圈12匝数的圈数及导线121的直径D3,则可以得到不同电机100在同一电流下的最大输出扭矩,从而满足动力装置1000的多种需求。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式 或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种电机,包括定子以及能够转动地设置在所述定子外的转子,其特征在于,所述定子包括铁芯,所述铁芯的外直径为[40.00毫米,42.00毫米],所述铁芯包括套设部及多个支撑部,每个所述支撑部沿周向方向的宽度或平均宽度为[2.20毫米,2.50毫米],所述铁芯的靴高为[0.50毫米,0.77毫米],所述转子包括磁轭及设置在所述磁轭的内壁上的多个磁体,每个所述磁体沿所述磁轭的周向方向的宽度或平均宽度为[5.00毫米,5.50毫米]。
  2. 根据权利要求1所述的电机,其特征在于,
    所述铁芯的外直径为41.80毫米;和/或
    每个所述支撑部沿周向方向的宽度或平均宽度为2.35毫米;和/或
    每个所述套设部沿径向方向的厚度或平均厚度为3.06毫米;和/或
    所述铁芯的靴高为0.75毫米。
  3. 根据权利要求1所述的电机,其特征在于,每个所述磁体沿所述磁轭的周向方向的宽度或平均宽度为5.20毫米。
  4. 根据权利要求1所述的电机,其特征在于,每个所述磁体沿所述磁轭的轴向方向的长度或平均长度为[6.00毫米,12.00毫米]。
  5. 根据权利要求4所述的电机,其特征在于,每个所述磁体沿所述磁轭的轴向方向的长度或平均长度为9毫米。
  6. 根据权利要求1所述的电机,其特征在于,每个所述磁体沿所述磁轭的径向方向的厚度或平均厚度为[1.45毫米,2.00毫米]。
  7. 根据权利要求6所述的电机,其特征在于,每个所述磁体沿所述磁轭的径向方向的厚度或平均厚度为1.45毫米。
  8. 根据权利要求1所述的电机,其特征在于,所述磁体包括矩形磁体、面包形磁体、瓦形磁体中的任意一种。
  9. 根据权利要求1所述的电机,其特征在于,所述铁芯沿轴向方向的高度为[6.00毫米,10.00毫米]。
  10. 根据权利要求9所述的电机,其特征在于,所述铁芯沿轴向方向的高度为10.00毫米。
  11. 根据权利要求1所述的电机,其特征在于,所述定子还包括套设在所述支撑部上的线圈,所述铁芯还包括自每个所述支撑部延伸的阻挡部,每个所述阻挡部对应一个所述磁体;其中:
    所述线圈与所述支撑部之间的间距或平均间距为0.30毫米;和/或
    相邻两个所述阻挡部沿所述铁芯的周向开口的宽度或平均宽度为1.50毫米;和/或
    每个所述阻挡部与对应的所述磁体之间的间隙或平均间隙为0.35毫米;和/或
    所述磁轭的外直径为48.00毫米。
  12. 根据权利要求1所述的电机,其特征在于,所述定子还包括线圈,所述线圈通过导线绕设在所述支撑部上形成,其中:
    每个所述支撑部上绕设40匝所述导线形成所述线圈时,所述导线的直径为0.35毫米;
    每个所述支撑部上绕设58匝所述导线形成所述线圈时,所述导线的直径为0.30毫米。
  13. 一种动力装置,其特征在于,包括:
    执行部件;及
    权利要求1至12任意一项所述的电机,所述执行部件与所述电机连接,所述电机能够驱动所述执行部件运动。
  14. 根据权利要求13所述的动力装置,其特征在于,所述执行部件包括如下至少一种:云台轴臂、螺旋桨。
  15. 一种无人机,其特征在于,包括:
    机身;及
    权利要求13所述的动力装置,所述动力装置安装在所述机身上。
  16. 一种云台,其特征在于,包括:
    云台本体;及
    权利要求13所述的动力装置,所述动力装置安装在所述云台本体上。
PCT/CN2020/135224 2020-09-28 2020-12-10 电机、动力装置、无人机及云台 WO2022062192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022179911.9 2020-09-28
CN202022179911.9U CN213341956U (zh) 2020-09-28 2020-09-28 电机、动力装置、无人机及云台

Publications (1)

Publication Number Publication Date
WO2022062192A1 true WO2022062192A1 (zh) 2022-03-31

Family

ID=76068633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135224 WO2022062192A1 (zh) 2020-09-28 2020-12-10 电机、动力装置、无人机及云台

Country Status (2)

Country Link
CN (1) CN213341956U (zh)
WO (1) WO2022062192A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117318355B (zh) * 2023-11-28 2024-02-09 黑龙江惠达科技股份有限公司 一种无人机的电机和无人机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014195999A1 (ja) * 2013-06-03 2014-12-11 三菱電機株式会社 同期電動機
CN205429898U (zh) * 2015-11-30 2016-08-03 深圳市大疆创新科技有限公司 电机、动力装置及无人飞行器
CN205544639U (zh) * 2016-01-25 2016-08-31 深圳市大疆创新科技有限公司 电机、动力装置及无人飞行器
CN107070149A (zh) * 2017-04-28 2017-08-18 上海法雷奥汽车电器系统有限公司 一种车用交流发电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014195999A1 (ja) * 2013-06-03 2014-12-11 三菱電機株式会社 同期電動機
CN205429898U (zh) * 2015-11-30 2016-08-03 深圳市大疆创新科技有限公司 电机、动力装置及无人飞行器
CN205544639U (zh) * 2016-01-25 2016-08-31 深圳市大疆创新科技有限公司 电机、动力装置及无人飞行器
CN107070149A (zh) * 2017-04-28 2017-08-18 上海法雷奥汽车电器系统有限公司 一种车用交流发电机

Also Published As

Publication number Publication date
CN213341956U (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022062192A1 (zh) 电机、动力装置、无人机及云台
EP3892425A1 (en) Robot and robot system
US10141823B2 (en) Motor, gimbal, and mechanical arm having the same
EP3386074A1 (en) Motor, and pan-tilt and robotic arm having same
WO2020237721A1 (zh) 平面关节型机器人及内转子关节装置
US11411485B2 (en) Multi-degree-of-freedom electromagnetic machine
US20210129984A1 (en) Unmanned aerial vehicle
US11581761B2 (en) Two degree-of-freedom spherical brushless DC motor
WO2019015367A1 (zh) 电机及具有此电机的云台和机械臂
CN210490565U (zh) 电机及动力装置
JP5488131B2 (ja) 電磁アクチュエータ
US20220131452A1 (en) Motor And Robot
US20210184521A1 (en) Multi-degree-of-freedom electromagnetic machine with halbach array
CN201536310U (zh) 磁悬浮球形磁阻电动机
CN214850657U (zh) 电机、动力装置、无人机及云台
JP2020156154A (ja) 扁平型回転電機
CN211089417U (zh) 电机
CN211859747U (zh) 电机及动力装置
JP4798598B2 (ja) 風力発電機
CN109436311A (zh) 多旋翼无人机
CN112994524B (zh) 应用于航空飞行器操纵负荷系统的多自由度球型驱动器
JPH0135583Y2 (zh)
CN111030368B (zh) 一种具有驱动机构的旋转装置及变形方法
CN212752089U (zh) 电机、动力装置和移动平台
CN111953106B (zh) 一种飞行器自适应维稳方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955034

Country of ref document: EP

Kind code of ref document: A1