WO2022061529A1 - 打码信号检测方法、装置和打码信号检测系统 - Google Patents

打码信号检测方法、装置和打码信号检测系统 Download PDF

Info

Publication number
WO2022061529A1
WO2022061529A1 PCT/CN2020/116869 CN2020116869W WO2022061529A1 WO 2022061529 A1 WO2022061529 A1 WO 2022061529A1 CN 2020116869 W CN2020116869 W CN 2020116869W WO 2022061529 A1 WO2022061529 A1 WO 2022061529A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
data
coding
coding signal
negative
Prior art date
Application number
PCT/CN2020/116869
Other languages
English (en)
French (fr)
Inventor
袁广凯
梁启权
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2020/116869 priority Critical patent/WO2022061529A1/zh
Publication of WO2022061529A1 publication Critical patent/WO2022061529A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the embodiments of the present application relate to the field of information technology, and more particularly, to a coding signal detection method, device, and coding signal detection system.
  • a normal uplink spread spectrum signal can be printed on some detection electrodes (also called coding channels) on the touch screen, and a phase opposite uplink spread spectrum signal can be printed on some detection electrodes.
  • the signal is called negative code, but because the negative code is not a standard uplink spread spectrum signal of the active pen, the active pen cannot recognize it, which will cause the position of the electrode to be detected in part of the touch screen at some time, or the position of part of the channel, The active pen cannot receive the correct uplink spread spectrum signal, so the downlink signal is not sent, the communication between the touch screen and the active pen will be interrupted, and the probability of disconnection of the active stroke line will increase, which will affect the user experience.
  • Embodiments of the present application provide a coding signal detection method, device, and coding signal detection system, which can enable an active pen to identify negative codes, ensure that lines drawn by the active pen on a touch screen are not disconnected, and improve user experience.
  • a first aspect provides a method for detecting a coding signal, wherein each coding signal sequence includes a positive code and a negative code, and each coding signal includes a preamble area and a data area, and the method includes:
  • the data area data is identified according to the negative code encoding rule.
  • the data area data is identified according to the positive code encoding rule.
  • each coding signal sequence includes a positive code and a negative code
  • each coding signal includes a preamble area and a data area
  • the method includes:
  • the data area data is identified according to the negative code encoding rule.
  • the phase of each code in the identified preamble region data is opposite to that of each code in the transmitted preamble region data, then according to the positive
  • the code encoding rules identify the data in the data area.
  • each coding signal sequence includes a positive code and a negative code
  • each coding signal includes a preamble area and a data area
  • the device includes:
  • a receiving module for receiving data in the preamble area
  • An identification module for identifying the preamble area data according to the positive code coding rule
  • Judgment module for judging whether the identified described preamble area data and the transmitted preamble area data are identical, if each encoding in the identified described preamble area data is the same as the transmitted preamble area data
  • the phase of each code in the data is opposite, and the identification module identifies the data in the data area according to the negative code encoding rule.
  • the identification module if the identified preamble area data is the same as the transmitted preamble area data, the identification module identifies the data area according to the positive code encoding rule data.
  • each coding signal sequence includes a positive code and a negative code
  • each coding signal includes a preamble area and a data area
  • the device includes:
  • a receiving module for receiving data in the preamble area
  • An identification module for identifying the preamble area data according to the negative code coding rule
  • Judging module for judging whether the identified described preamble area data is identical with the transmitted preamble area data, if the identified described preamble area data is identical with the transmitted preamble area data, the described The identification module identifies the data in the data area according to the negative code encoding rule.
  • the identification The module identifies the data in the data area according to the positive code encoding rules.
  • a fifth aspect provides a coding signal detection system, comprising: the coding signal detection device according to the third aspect or the fourth aspect, and a coding device, the coding device comprising:
  • the coding module is used for coding the detection electrodes, and each coding signal sequence includes adjacent M positive codes and adjacent N negative codes, where ⁇ M-N ⁇ 4.
  • each coding signal sequence further includes a null code, the null code is located between the positive code and the negative code, the positive code and the The phase difference of the negative code is ⁇ .
  • FIG. 1 is a schematic diagram of the principle of communication between an active pen and a touch screen.
  • Figure 2 is a schematic diagram of the principle analysis of the water ripples generated when the two detection electrodes are coded.
  • Figure 3 is a schematic diagram of the principle of solving the water ripple problem.
  • FIG. 4 is a schematic diagram of phase description of positive and negative codes according to an embodiment of the present application.
  • FIG. 5 is a flowchart of a coding signal detection method provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of another coding signal detection method provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of another coding signal detection method provided by an embodiment of the present application.
  • FIG. 8 is a flowchart of another coding signal detection method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a coding signal according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a positive code encoding rule provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a negative code encoding rule provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a coding signal provided by an embodiment of the present application.
  • 13 to 17 are schematic diagrams of coding signal sequences provided by embodiments of the present application.
  • FIG. 18 is a schematic diagram of a coding signal detection apparatus provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a coding signal detection system provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the principle of communication between the active pen and the touch screen.
  • the detection electrodes include horizontal detection electrodes and vertical detection electrodes.
  • the active pen 110 needs to receive the touch screen 120 through the horizontal detection electrodes. And/or the uplink spread spectrum signal 131 sent by the vertical detection electrode, after the active pen 110 receives the correct uplink spread spectrum signal, the active pen 110 sends the downlink signal 132 to the touch screen 120, thereby establishing communication between the active pen and the touch screen.
  • the Bluetooth chip 111 of the active pen receives the information transmitted by the Bluetooth chip 121 of the touch screen, such as the frequency of the downlink signal.
  • the uplink spread spectrum signal 131 sent by the touch screen 120 is used to wake up the active pen 110 and establish synchronization with the active pen 110
  • the downlink signal 132 sent by the active pen 110 is used to calculate the amount of the active pen 110 on the touch screen 120 . 2D position coordinates.
  • Hover height refers to the maximum distance between the active pen and the touch screen when the active pen can receive the coding signal.
  • the self-capacitance between the horizontal detection electrode and the vertical detection electrode and the ground is about 100pF
  • the horizontal detection electrode and the vertical detection electrode are respectively connected to the ground.
  • the self-capacitance is about 500pF.
  • the uplink spread spectrum signal sent by the Y-OCTA touch screen is easier to couple into the display, and the larger the residual uplink spread spectrum signal, the more obvious the water ripples.
  • FIG. 2 is a schematic diagram illustrating the principle analysis of water ripples when coding two detection electrodes. It is shown that the equivalent resistance Rs between the cathode plate and the ground is much smaller than the equivalent impedance of the detection electrode.
  • Ztx1 and Ztx2 are the equivalent resistance of a single detection electrode, respectively, and Rtx1 and Rtx2 are the equivalent resistance of a single detection electrode.
  • the touch screen transmits the uplink spread spectrum signal (the uplink spread spectrum signal is also called the coding signal) to the active pen by simultaneously marking the horizontal detection electrode and/or the vertical detection electrode.
  • the uplink spread spectrum signal is also called the coding signal
  • the active pen can receive the uplink spread spectrum signal sent by the touch screen, and it is necessary to mark multiple detection electrodes at the same time, for example, mark all the horizontal detection electrodes or vertical detection electrodes, and the active pen
  • the received uplink spread spectrum signal is strong enough.
  • the residual upstream spread spectrum signal Vn satisfies Vn ⁇ n*Vtxn, where n is the number of coding detection electrodes, and Vtxn is the size of the upstream spread spectrum signal, that is, the more the number of detection electrodes coded at the same time, the residual upstream spread spectrum The larger the signal Vn is, the easier it is for water ripples to appear.
  • the touch screen When the active pen draws a line on the touch screen, the touch screen needs to display the line trace of the active pen in real time.
  • the active pen within the distance can receive the uplink spread spectrum signal sent by the touch screen, which requires the full-screen detection electrodes of the touch screen to work at the same time, and at this time, the display is more prone to water ripples.
  • the uplink spread spectrum signal When the touch screen sends a correct uplink spread spectrum signal to a part of the detection electrodes, the uplink spread spectrum signal is called positive code, and the touch screen sends an uplink spread spectrum signal opposite to the positive code phase to another part of the detection electrodes, the uplink spread spectrum signal The signal is called negative code.
  • the negative code By using the negative code to cancel the positive code, the residual uplink spread spectrum signal Vn is minimized, thereby eliminating the influence of water ripples.
  • Figure 3 takes two adjacent detection electrodes as an example to illustrate.
  • One of the detection electrodes transmits a positive code to the active pen, and the other detection electrode transmits a negative code to the active pen. If the equivalent resistance of the two detection electrodes and the self-capacitance to ground They are equal respectively, and the positive and negative codes are cancelled, so the residual uplink spread spectrum signal is zero, which avoids the interference caused by the uplink spread spectrum signal to the display and eliminates the influence of water ripples.
  • an embodiment of the present application provides a coding signal detection method, which can make the active pen recognize the negative code printed by the touch screen, so that the line drawn by the active pen is not broken.
  • each coding signal sequence includes a positive code and a negative code
  • each coding signal includes a preamble area and data area
  • the method includes:
  • S101 receives preamble area data
  • S102 identifies the preamble area data according to the positive code encoding rule
  • the coding signal detection method provided by the embodiment of the present application can identify negative codes, so that the active pen can continuously draw lines when the touch screen is drawn, and simultaneously code multiple detection electrodes without the problem of water ripples, which improves the user experience. experience.
  • the touch control chip in the touch screen prints a coding signal sequence through the detection electrodes
  • the coding signal sequence includes a plurality of coding signals
  • each coding signal can be a positive code or a negative code
  • each coding signal can be a positive code or a negative code.
  • the code signal sequence includes both positive and negative codes.
  • each coding signal may include a plurality of coding bits, and the coding signal as shown in FIG. ), these j codes are distributed in the preamble area and the data area, for example i codes belong to the preamble area, i.e.
  • the coded signal includes i preambles, or it can be said that the coded signal includes i preamble area data; (ji ) codes belong to the data area, that is, the coding signal includes (ji) data area data.
  • the preamble can be used for signal synchronization. In this embodiment of the present application, the preamble can also be used to identify the coded signal, that is, to determine whether the coded signal to which the preamble belongs is a positive code or a negative code according to the preamble. If the current coding signal is a positive code, the data in the data area is identified according to the positive code coding rules. If it is judged that the current coding signal is a negative code, the data in the data area is identified according to the negative code coding rules.
  • each coding bit can represent the number of the active pen and the length of the coding. , coding frequency and other uplink spread spectrum signals.
  • Each encoding in FIG. 9 may be binary encoding, and other encoding methods may also be used to encode the coded signal, such as ternary encoding, which is not limited in this embodiment of the present application. If binary coding is used, the codes "0" and "1" can be represented by two different pulse sequences respectively.
  • FIG. 10 shows the use of positive code coding.
  • HPP Huawei Pen Protocol
  • Figure 10 shows the use of positive code coding.
  • the coding signal includes 7 coding bits. Taking the 7th coding bit from the right as an example, the coding "1" is represented by a 31-bit pulse sequence 0x4259F1BA, and the coding "0" is a 31-bit pulse.
  • the sequence 0x3DA60E45 indicates that the width of each bit is 1us, and the width of one code is 31us.
  • Figure 11 shows the "1" and "0” encoded by the negative code encoding rule.
  • the encoded "0” is represented by a 31-bit pulse sequence 0x4259F1BA
  • the encoded "1” is represented by a 31-bit pulse sequence of 0x3DA60E45.
  • the width of each bit is 1us, Then the width of one code is 31us.
  • the phase difference between the positive code and the negative code is ⁇ .
  • the encoding in the HPP protocol is used as an example for description, but in practical applications, it is not limited to such uplink spread spectrum encoding.
  • Fig. 12 is a specific embodiment of the coding signal of the present application.
  • the coding signal includes 7 coding bits. From right to left, the coding of the coding signal is "0011100", wherein "001" is Preamble data, "1100" is data area data. If the positive code coding rule is used for coding, the coding of the coding signal from right to left is “0011100”; if the negative coding coding rule is used, the coding of the coding signal is "1100011" from right to left, and the preamble becomes “1100011". "110", and the data in the data area becomes "011".
  • both positive and negative codes may be received due to the same position on the touch screen. If it is impossible to distinguish whether the current received positive code or negative code code or the negative code cannot be recognized, which may cause the active pen to not get the correct uplink spread spectrum signal, and even interrupt the communication between the active pen and the touch screen. Therefore, it is necessary to identify whether the current coding signal is a positive code or a negative code, so that the data can be correctly analyzed, that is, a correct uplink spread spectrum signal can be obtained.
  • the coding signal detection method of the embodiment of the present application identifies whether the current coding signal is a positive code or a negative code by using the preamble area data, and selects an appropriate coding rule to identify the data area data according to the identification result.
  • the coding rule of the coding signal is the negative code coding rule, so the data area data can be identified according to the negative code coding rule, and the recognized data area data is "0011" from right to left.
  • the preamble area data identified by the positive code coding rule is the same as the transmitted preamble data, for example, the identified preamble data is "001"
  • the currently received coding signal is considered to be a positive code, that is to say
  • the encoding rule of the currently received coding signal is the positive code encoding rule, so the data area data can be identified according to the positive code encoding rule, and the recognized data area data is "1100" from right to left. It can be understood that if the data of the encoded bit is "1", the data of the opposite phase is "0", that is, the phase of "0” and "1" are opposite.
  • the method further includes:
  • the coding signal detection method provided by the embodiment of the present application can identify the positive code and the negative code at the same time, so that the active pen can continuously draw lines when the touch screen is drawn, and simultaneously code a plurality of detection electrodes, and there is no problem of water ripples. , which improves the user experience.
  • each coding signal sequence includes a positive code and a negative code
  • each coding signal includes a preamble area and a data area
  • the method includes:
  • S201 receives preamble area data
  • S202 identifies the preamble area data according to the negative code coding rule
  • S203 judges whether the identified preamble area data is identical with the transmitted preamble area data
  • the coding signal detection method of the embodiment of the present application identifies whether the current coding signal is a positive code or a negative code by using the preamble area data, and selects an appropriate coding rule to identify the data area data according to the identification result.
  • each code in the identified preamble area data is the same as each code in the transmitted preamble area data, it is considered that the currently received coding signal is a negative code, that is to say
  • the coding rule of the currently received coding signal is the negative coding rule, so the data area data can be identified according to the negative coding rule.
  • the transmitted coding signal is "0011100" from right to left
  • the transmitted preamble data is "001" from right to left.
  • the code data is the same.
  • the identified preamble data is "001”
  • the currently received coding signal "0011100” is a negative code, that is to say, the coding rule of the currently received coding signal is the negative code coding rule.
  • the data in the data area can be identified according to the negative code coding rule, and the identified data in the data area is "1100" from right to left. If the phase of each code in the preamble area data identified by the negative code coding rule is opposite to that of each code in the transmitted preamble data, for example, the identified preamble data is "110", it is considered that the current receiver
  • the received coding signal is a positive code, that is to say, the coding rule of the currently received coding signal is a positive code coding rule, so the data area data can be identified according to the positive code coding rule, and the identified data area data is from right to Left is "0011".
  • the method further includes:
  • each code in the identified preamble area data is opposite to each code in the transmitted preamble area data, identify the data area data according to the positive code encoding rule.
  • the coding signal detection method provided by the embodiment of the present application can identify the positive code and the negative code at the same time, so that the active pen can continuously draw lines when the touch screen is drawn, and simultaneously code a plurality of detection electrodes, and there is no problem of water ripples. , which improves the user experience.
  • may be equal to 0, 1, 2, 3, 4.
  • M+N ⁇ P, P is the number of detection electrodes on the touch screen, that is to say, the sum of the numbers of positive codes and negative codes in each coding signal sequence is less than or equal to the number of detection electrodes.
  • each coding signal sequence also includes a null code, the null code is located between the positive code and the negative code, and the phase difference between the positive code and the negative code is ⁇ , that is, the The phases of the positive code and the negative code are opposite, and the empty code does not code the detection electrodes.
  • different coding signal sequences may include different numbers of positive codes and negative codes.
  • different coding signal sequences may also include different numbers of null codes, and some coding signal sequences may also not include null codes.
  • Fig. 13 code all the lateral detection electrodes TX1-TX17 of the touch screen in one coding cycle, in which the adjacent detection electrodes TX1-TX9 are marked with positive codes, and the adjacent detection electrodes TX10-TX17 are coded. Negative code, after 9 positive codes and 8 negative codes are cancelled, only one positive code on the detection electrode is left, and the residual voltage on the detection electrode is small, which is not easy to cause water ripples visible to the naked eye. If the active pen is at position 1 in Figure 13, the touch screen will simultaneously print positive codes through multiple detection electrodes, so the active pen can receive positive codes within a certain height range, that is to say, when the positive code detection electrodes are adjacent to each other The setting is beneficial to increase the hover height of the active pen.
  • the touch screen will simultaneously print negative codes through multiple detection electrodes, so the active pen can receive negative codes within a certain height range.
  • the negative-coded detection electrodes are adjacent to each other
  • the setting is beneficial to increase the hover height of the active pen.
  • the detection electrodes TX8 and TX10 on the left and right sides are marked with positive and negative codes, respectively, and the signals are canceled. Therefore, the height of the active pen at position 3 when it can receive the positive code is lower than that of the active pen.
  • the height at which the pen can receive the coding signal at positions 1 and 2.
  • the coding signal detection method provided by the embodiment of the present application enables the active pen to recognize negative codes.
  • the first coding signal sequence can cover all coding channels, it can ensure that the active pen can receive positive codes or negative codes in the full screen. , so that the problem of water ripples can be solved, and at the same time, it can further ensure that the active pen draws lines on the full screen without interruption.
  • the detection electrode located in the central area can also be blanked, for example, at the junction of the positive code and the negative code, it is beneficial to increase the hovering height of the active pen at the junction, that is, the active pen can be at the height.
  • the coding signal can be received.
  • the adjacent detection electrodes TX1-TX9 are marked positive
  • TX10 is blanked
  • the adjacent detection electrodes TX11-TX17 are marked negative
  • 9 positive codes and 7 After the negative codes are cancelled, only the positive codes on the two detection electrodes remain, and the residual voltage on the detection electrodes is small, which is not easy to cause water ripples visible to the naked eye.
  • the left and right sides are marked with positive code and empty code respectively. Compared with the positive code and negative code on the left and right sides, the hovering height of the active pen is higher. It can be understood that when the number of positive codes is equal to the number of negative codes, the positive codes and negative codes on the touch screen can be completely cancelled, and the residual voltage on the detection electrode is zero, which can perfectly solve the problem of water leakage. Ripple problem.
  • one coding cycle may include at least two coding signal sequences, that is, at least two rounds of coding.
  • the coding signal sequence of the first round of coding is called the first coding signal sequence
  • the coding signal sequence includes adjacent M positive codes and adjacent N negative codes, that is, for adjacent M detection electrodes
  • the positive code is marked, and the adjacent N detection electrodes are marked with a negative code, where ⁇ MN ⁇ Q, M+N ⁇ P;
  • the coding signal sequence of the second round of coding is called the second coding signal sequence.
  • the coding signal sequence includes adjacent K positive codes and adjacent L negative codes, that is, positive codes are applied to adjacent K detection electrodes, and negative codes are applied to adjacent L detection electrodes, where ⁇ KL ⁇ Q, K+L ⁇ P.
  • Q is the difference between the numbers of positive codes and negative codes in each coding signal sequence.
  • the smaller the difference between the numbers of positive codes and negative codes the better, when When the number of positive codes and negative codes is equal, the positive codes and negative codes on the touch screen can be completely cancelled, and the residual voltage on the detection electrode is zero, which can perfectly solve the problem of water ripples.
  • Q can be equal to 4, and ⁇ M-N ⁇ can be equal to 0, 1, 2, 3, 4.
  • the difference between the number of positive codes and negative codes is less than or equal to 4
  • the display of the touch screen will not produce water ripples, or the generated water ripples are almost indistinguishable by the naked eye, which will not affect the user experience.
  • P is the number of detection electrodes on the touch screen, that is to say, the sum of the number of positive codes and negative codes in each coding signal sequence is less than or equal to the number of detection electrodes.
  • M-N K-L in the two coding signal sequences in the same coding period.
  • the arrangement order of the positive code and the negative code is different.
  • a coding cycle includes two coding signal sequences, the coding signal sequence of the first round of coding is called the first coding signal sequence, and the coding signal sequence includes 9 adjacent coding signal sequences.
  • the positive code and the adjacent 8 negative codes that is, positive codes are applied to the adjacent 9 detection electrodes, and negative codes are applied to the adjacent 8 detection electrodes;
  • the coding signal sequence of the second round of coding is called the second code.
  • the coding signal sequence, the coding signal sequence includes 8 adjacent positive codes and 9 adjacent negative codes, that is, positive codes are applied to the adjacent 8 detection electrodes, and negative codes are applied to the adjacent 9 detection electrodes. code.
  • coding is performed on all the lateral detection electrodes TX1-TX17 of the touch screen, wherein the adjacent detection electrodes TX1-TX8 are marked with negative codes, and the adjacent detection electrodes TX9-TX17 are marked with negative codes.
  • Positive code after 9 positive codes and 8 negative codes are cancelled, only one positive code on the detection electrode remains, and the residual voltage on the detection electrode is small, which is not easy to cause water ripples visible to the naked eye.
  • the touch screen will simultaneously print negative codes through multiple detection electrodes, so the active pen can receive negative codes within a certain height range, that is to say, when the negative code detection electrodes are adjacent to each other
  • the setting is beneficial to increase the hover height of the active pen.
  • the active pen is at position 2 in Figure 15, the touch screen will simultaneously print positive codes through multiple detection electrodes, so the active pen can receive positive codes within a certain height range. Similarly, when the positive code detection electrodes are adjacent to each other
  • the setting is beneficial to increase the hover height of the active pen. If the active pen is at position 3 in Figure 15, the detection electrodes TX8 and TX10 located on the left and right sides are marked with positive and negative codes, respectively, and the signals are canceled.
  • the height of the active pen at position 3 when it can receive the positive code is lower than that of the active pen.
  • the coding signal detection method provided by the embodiment of the present application can enable the active pen to identify negative codes. Since the first coding signal sequence and the second coding signal sequence can cover all coding channels, it can ensure that the active pen can be used in the full screen. It can solve the problem of water ripples by receiving a positive code or a negative code, and can further ensure that the active pen draws lines on the full screen without interruption. In addition, the order of the positive and negative codes in the first coding signal sequence and the second coding signal sequence in FIG. 15 is different.
  • the junction of the positive code and the negative code in the first coding signal sequence is located between TX9 and TX10.
  • the coding signal received by the active pen is relatively weak, and in the second coding signal sequence, TX9 and TX10 are both coded, so if the active pen is located between TX9 and TX10 In between, the coding signal received by the active pen is stronger than that at the same position in the first coding signal sequence.
  • the junction of the positive code and the negative code in the second coding signal sequence is located between TX8 and TX9, if the active pen is located between TX8 and TX9, the coding signal received by the active pen is relatively weak, while the first In the coding signal sequence, both TX8 and TX9 are coded, so if the active pen is located between TX8 and TX9, the coding signal received by the active pen is stronger than that at the same position in the second coding signal sequence. That is to say, the coding signal strengths of the first coding signal sequence and the second coding signal sequence in the full screen can be complementary to ensure that the active pen draws lines continuously in the full screen.
  • a coding cycle may include more than two coding signal sequences, for example: three or four coding signal sequences, and the position of the junction of the positive code and the negative code in each coding signal sequence may be They are not the same, so as to complement the coding signal strength and ensure that the active pen draws lines continuously on the full screen.
  • a coding signal sequence may only code part of the detection electrodes. As shown in FIG. 16 , in the first coding signal sequence, only TX2-TX17 are coded, but not on the edge. The detection electrode TX1 is coded, that is, the empty code; in the second coding signal sequence, only TX1-TX16 is coded, but the detection electrode TX17 at the edge is not coded. Since the active pen rarely clicks on the edge under normal circumstances, it will not affect the use of the active pen. In addition, since one coding cycle includes two coding signal sequences, the positions where no coding is performed are different. Each coding signal sequence can be complementary and can cover all the detection electrodes.
  • the active pen clicks on the edge area of the touch screen, it can receive the coding signal and communicate with the touch screen normally.
  • the position of the blank code in the coding signal sequence may also be located in the central area of the coding sequence, for example, at the junction of the positive code and the negative code, the blank code is printed, which is conducive to improving the The hovering height of the active pen at the junction, that is, the active pen can receive the coding signal when the height is high. For example, as shown in Fig.
  • the first coding signal sequence is positive for the adjacent detection electrodes TX1-TX9, null for TX10, negative for the adjacent detection electrodes TX11-TX17, 9 positive codes and 7 After the negative codes are cancelled, only the positive codes on the two detection electrodes remain, and the residual voltage on the detection electrodes is small, which is not easy to cause water ripples visible to the naked eye.
  • the active pen is located at position 3, the left and right sides are marked with positive code and empty code respectively. Compared with the positive code and negative code on the left and right sides, the hovering height of the active pen is higher.
  • the positive codes and negative codes on the touch screen can be completely cancelled, and the residual voltage on the detection electrode is zero, which can perfectly solve the problem of water leakage. Ripple problem.
  • the adjacent detection electrodes TX1-TX7 are negatively coded, TX8 is blanked, and the adjacent detection electrodes TX9-TX17 are marked positive. After 9 positive codes and 7 negative codes are cancelled, Only the positive codes on the two detection electrodes are left, and the residual voltage on the detection electrodes is small, which is not easy to cause water ripples visible to the naked eye.
  • the active pen is located at position 3, the left and right sides are marked with positive code and empty code respectively.
  • the hovering height of the active pen is higher.
  • the arrangement order of positive codes and negative codes is different, and the positions of blank codes in different coding signal sequences are also different, and at least two The coding signal strength of the coding signal sequence in the full screen can be complementary to ensure that the active pen draws lines continuously in the full screen.
  • the blank code is placed at the position of TX10. If the active pen is located at the position of TX10, the coding signal may not be received.
  • the coding signals of the first coding signal sequence and the second coding signal sequence in a coding cycle can complement each other in the full screen, so as to ensure that the active pen draws lines continuously in the full screen.
  • the positive code is placed at the position of TX8, and in the second coding signal sequence, the empty code is placed at the position of TX8, which will not be repeated here. It is also to ensure that the active pen draws lines on the full screen. Continuous line.
  • the coding signal detection method provided by the embodiment of the present application is applied to the situation that the coding signal sequence includes positive codes and negative codes, which can not only solve the water ripple problem that occurs when the touch screen only prints positive codes, but also It can identify positive and negative codes to ensure that the active stroke line does not break.
  • the embodiment of the present application further provides a coding device, including a coding module for coding the detection electrodes, and each coding signal sequence includes adjacent M positive codes and adjacent N negative codes , where ⁇ MN ⁇ 4.
  • each coding signal sequence also includes a null code, the null code is located between the positive code and the negative code, and the phase difference between the positive code and the negative code is ⁇ , that is, the The positive code and the negative code are in opposite phase.
  • the coding signal outputted may also be the coding signal shown in FIG. 9 to FIG. 17 , which will not be repeated here.
  • the coding device provided by the embodiment of the present application can print a sequence including a positive code and a negative code, and can effectively solve the problem of water ripples on the display.
  • the embodiment of the present application further provides a touch control chip, and the touch control chip may include the above coding device.
  • an embodiment of the present application further provides a coding signal detection apparatus 300, wherein each coding signal sequence includes a positive code and a negative code, and each coding signal includes a preamble area and a data area, and the The device includes:
  • a receiving module 301 configured to receive preamble area data
  • Identification module 302 for identifying the preamble area data according to the positive code encoding rule
  • Judging module 303 for judging whether the identified preamble area data and the transmitted preamble area data are identical, if each code in the identified preamble area data is the same as the transmitted preamble code The phase of each code in the zone data is opposite, and the identifying module 302 identifies the data zone data according to the negative code coding rule.
  • the identifying module 302 identifies the data area data according to the positive code encoding rule.
  • the coding signal detection device provided by the embodiment of the present application can identify the positive code and the negative code at the same time, so that the active pen can continuously draw lines when the touch screen is drawn, and simultaneously code a plurality of detection electrodes, and there is no problem of water ripples. , which improves the user experience.
  • each coding signal sequence includes a positive code and a negative code
  • each coding signal includes a preamble area and a data area
  • the device includes:
  • a receiving module 301 configured to receive preamble area data
  • Identification module 302 for identifying the preamble area data according to the negative code encoding rule
  • Judgment module 303 is used to judge whether the identified preamble area data is identical with the transmitted preamble area data, if the identified preamble area data is identical with the transmitted preamble area data, identifying The module 302 identifies the data area data according to the negative code encoding rule.
  • the identification module 302 identifies the data area data according to the positive code encoding rule. .
  • the coding signal detection device provided by the embodiment of the present application can identify the positive code and the negative code at the same time, so that the active pen can continuously draw lines when the touch screen is drawn, and simultaneously code a plurality of detection electrodes, and there is no problem of water ripples. , which improves the user experience.
  • the embodiment of the present application also provides an active pen, including the above-mentioned coding signal detection and detection device.
  • the active pen of the embodiment of the present application can identify the positive code and the negative code at the same time, so that the active pen does not stop when drawing lines on the touch screen .
  • an embodiment of the present application further provides a coding signal detection system 500, including: a coding signal detection device 300, and a coding device 400.
  • the coding device 400 includes:
  • the coding module is used for coding the detection electrodes, and each coding signal sequence includes adjacent M positive codes and adjacent N negative codes, where ⁇ M-N ⁇ 4.
  • the coding signal detection device 300 is used for detecting the coding signal generated by the coding device 400 .
  • the receiving module 301 in the coding signal detection device 300 is used for receiving the preamble area data of the coding signal provided by the coding module;
  • Identification module 302 for identifying the preamble area data according to the positive code encoding rule or the negative code encoding rule;
  • Judgment module 303 for judging whether the identified preamble area data is identical with the transmitted preamble area data, i.e. the coding rule for judging the current coding signal is a positive code coding rule or a negative code coding rule, and then identify Module 302 identifies the data field data of the encoded signal according to the appropriate encoding rules.
  • each coding signal sequence also includes a null code, the null code is located between the positive code and the negative code, and the phase difference between the positive code and the negative code is ⁇ , that is, the The positive code and the negative code are in opposite phase.
  • An embodiment of the present application further provides a coding signal detection system, including the above-mentioned touch control chip and an active pen.
  • a coding signal detection system including the above-mentioned touch control chip and an active pen.

Abstract

本申请提供一种打码方法,其中每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述方法包括:接收前导码区数据;根据正码编码规则识别所述前导码区数据;判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同;若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,则根据负码编码规则识别数据区数据。本申请提供的方法能够使得主动笔识别负码,保证主动笔在触控屏画线不发生断线,提升用户体验。

Description

打码信号检测方法、装置和打码信号检测系统 技术领域
本申请实施例涉及信息技术领域,并且更具体地,涉及一种打码信号检测方法、装置和打码信号检测系统。
背景技术
目前,很多的应用软件需要较高精度的触摸,尤其是绘画类软件,因此推动了主动笔的快速发展。然而在触控屏工作时,显示器上会出现各种形式的显示波纹,有时犹如水的涟漪般向前推进,有时看到几条移动的亮线,或看到时有时无的波纹,这些现象称为水波纹现象。为了缓解水波纹现象,可以对触控屏的上的部分检测电极(也可以称为打码通道)打出正常的上行扩频信号,称为正码,对部分检测电极打出相位相反的上行扩频信号,称为负码,但由于负码不是标准的主动笔上行扩频信号,主动笔无法识别,会造成在某些时刻在触控屏的部分检测电极的位置,或者说部分通道的位置,主动笔无法收到正确的上行扩频信号,因而不发下行信号,触控屏与主动笔通信会中断,主动笔画线断线的几率变大,进而影响用户体验。
发明内容
本申请实施例提供一种打码信号检测方法、装置和打码信号检测系统,能够使得主动笔识别负码,保证主动笔在触控屏画线不发生断线,提升用户体验。
第一方面,提供了一种打码信号检测方法,其中,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述方法包括:
接收前导码区数据;
根据正码编码规则识别所述前导码区数据;
判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同;
若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,则根据负码编码规则识别数据区数据。
根据第一方面,在一种可能的实现方式中,若所识别出的所述前导码区数据与所传输的前导码区数据相同,则根据所述正码编码规则识别数据区数据。
第二方面,提供了一种打码信号检测方法,其中,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述方法包括:
接收前导码区数据;
根据负码编码规则识别所述前导码区数据;
判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同;
若所识别出的所述前导码区数据与所传输的前导码区数据相同,则根据所述负码编码规则识别数据区数据。
根据第二方面,在一种可能的实现方式中,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,则根据正码编码规则识别数据区数据。
第三方面,提供了一种打码信号检测装置,其中,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述装置包括:
接收模块,用于接收前导码区数据;
识别模块,用于根据正码编码规则识别所述前导码区数据;
判断模块,用于判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,所述识别模块则根据负码编码规则识别数据区数据。
根据第三方面,在一种可能的实现方式中,若所识别出的所述前导码区数据与所传输的前导码区数据相同,所述识别模块则根据所述正码编码规则识别数据区数据。
第四方面,提供了一种每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述装置包括:
接收模块,用于接收前导码区数据;
识别模块,用于根据负码编码规则识别所述前导码区数据;
判断模块,用于判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同,若所识别出的所述前导码区数据与所传输的前导码区数据相 同,所述识别模块则根据所述负码编码规则识别数据区数据。
根据第四方面,在一种可能的实现方式中,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,所述识别模块则根据正码编码规则识别数据区数据。
第五方面,提供了一种打码信号检测系统,其中包括:根据第三方面或第四方面所述的打码信号检测装置,以及打码装置,所述打码装置包括:
打码模块,用于对检测电极进行打码,每个打码信号序列包括相邻的M个正码和相邻的N个负码,其中│M-N│≤4。
根据第五方面,在一种可能的实现方式中,所述每个打码信号序列还包括空码,所述空码位于所述正码和所述负码之间,所述正码和所述负码的相位差为π。
基于上述技术方案,能够保证主动笔在触控屏画线时不断线,同时对多个检测电极同时打正码和负码,也解决了显示器水波纹的问题,提升了用户体验。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制。以下各个实施例的划分是为了描述方便,不应对本发明的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
图1是主动笔与触控屏通信的原理示意图。
图2是对两个检测电极打正码时水波纹产生的原理分析示意图。
图3是解决水波纹问题的原理示意图。
图4是本申请实施例的正码和负码相位描述的示意图。
图5是本申请实施例提供的一种打码信号检测方法的流程图。
图6是本申请实施例提供的另一种打码信号检测方法的流程图。
图7是本申请实施例提供的又一种打码信号检测方法的流程图。
图8是本申请实施例提供的又一种打码信号检测方法的流程图。
图9是本申请实施例的打码信号的示意图。
图10是本申请实施例提供的一种正码编码规则的示意图。
图11是本申请实施例提供的一种负码编码规则的示意图。
图12是本申请实施例提供的一种打码信号的示意图。
图13至图17是本申请实施例提供的打码信号序列的示意图。
图18是本申请实施例提供的一种打码信号检测装置的示意图。
图19是本申请实施例提供的一种打码信号检测系统的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
图1为主动笔与触控屏通信的原理示意图,触控屏120上分布着一定数量检测电极,检测电极包括横向检测电极和纵向检测电极,主动笔110需要接收触控屏120通过横向检测电极和/或纵向检测电极发出的上行扩频信号131,主动笔110接收到正确的上行扩频信号后,主动笔110向触控屏120发出下行信号132,从而主动笔与触控屏建立通信。主动笔的蓝牙芯片111接收触控屏的蓝牙芯片121传输的信息,例如下行信号的频率。其中,触控屏120发出的上行扩频信号131用于唤醒主动笔110以及与主动笔110之间建立同步,主动笔110发出的下行信号132用于计算主动笔110在触控屏120上的二维位置坐标。为了保证主动笔110画线不断线,且在一定的悬停高度时,触控屏120能够顺利唤醒主动笔110,需要在触控屏120的全屏都有上行扩频信号131,而且需要多个通道同时工作,即触控屏120需要通过多个检测电极发出上行扩频信号。而多个通道工作时,在触控屏的显示器上极易引起水波纹现象。悬停高度指主动笔能接收到打码信号时与触控屏之间的最大距离。
在传统的触控屏中,横向检测电极和纵向检测电极分别与地之间的自容均为100pF左右,而在Y-OCTA触控屏中,横向检测电极和纵向检测电极分别与地之间的自容为500pF左右。相比于传统触控屏,Y-OCTA触控屏发送的上行扩频信号更加容易耦合到显示器中,残留的上行扩频信号越大,水波纹越明显。
请参考图2,图2为对两个检测电极打码时水波纹产生的原理分析示意图。显示阴极板和地之间的等效电阻Rs远小于检测电极的等效阻抗,Ztx1、Ztx2分别为单个检测电极的等效阻抗,Rtx1、Rtx2分别为单个检测电极的等效电阻。在主动笔应用中,触控屏通过对横向检测电极和/或纵向检测电极同时打正码向主动笔传送上行扩频信号(上行扩频信号也称为打码信号),为保证主动笔与触控屏在一定距离内主动笔能接收到触控屏发送的上行扩频信号,需要同时对多个检测电极打正码,例如对全部的横向检测电极或纵向检测电极打正码,主动笔接收到的上行扩频信号足够强。但是,残留的上行扩频信号Vn满足Vn∝n*Vtxn,n为打码检测电极的数目,Vtxn为上行扩频信号的大小,即同时打码的检测电极数目越多,残留的上行扩频信号Vn越大,越容易出现水波纹。
主动笔在触控屏上划线时,触控屏需要实时显示主动笔的划线痕迹,为保证触控屏显示主动笔的划线痕迹不出现断线,以及主动笔与触控屏在一定距离内主动笔能接收触控屏发出的上行扩频信号,需要触控屏的全屏检测电极同时工作,而此时,显示器也更容易出现水波纹。
当触控屏对一部分检测电极发出正确的上行扩频信号,该上行扩频信号称为正码,触控屏对另一部分检测电极发出与正码相位相反的上行扩频信号,该上行扩频信号称为负码。利用负码抵消正码的方式,使得残留的上行扩频信号Vn达到最小,从而消除水波纹的影响。
图3以相邻两个检测电极为例进行说明,其中一个检测电极向主动笔传送正码,另外一个检测电极对主动笔传送负码,若两个检测电极的等效电阻和对地自容分别相等,正码和负码抵消,则残留的上行扩频信号为零,避免了上行扩频信号对显示器造成的干扰,消除了水波纹的影响。
如图4所示,正码和负码相位越对称,抵消越完美,当正码和负码的相位完全对称,显示器上残留的上行扩频信号Vn为零。
但是由于负码并不是标准的主动笔上行扩频信号,主动笔无法识别,会造成在某些时刻在触控屏的部分检测电极的位置,或者说部分通道的位置,主动笔无法收到正码,因而不发下行信号,触控屏与主动笔通信会中断,主动笔会出现画线断线的情况。为解决此问题,本申请实施例提供了一种打码信号检测方法,能够使得主动笔识别触控屏打出的负码,进而使 得主动笔的画线不出现断线。
图5为本申请实施例提供的一种打码信号检测方法的流程图,本申请实施例中,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述方法包括:
S101接收前导码区数据;
S102根据正码编码规则识别所述前导码区数据;
S103判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同;
S104若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,则根据负码编码规则识别数据区数据。
本申请实施例提供的打码信号检测方法能够识别负码,使得主动笔在触控屏画线时不断线,同时对多个检测电极同时打码,也不存在水波纹的问题,提升了用户体验。
可选地,触控屏中的触控芯片通过检测电极打出打码信号序列,打码信号序列包括多个打码信号,每个打码信号可以是正码,也可以是负码,每个打码信号序列中同时包括正码和负码。其中,每个打码信号又可以包括多个编码位,如图9所示出的打码信号包括j个编码位(也可以称为数据位),即包括j个编码(也可以称为数据),这j个编码分布于前导码区和数据区,例如i个编码属于前导码区,即打码信号包括i个前导码,或者可以说打码信号包括i个前导码区数据;(j-i)个编码属于数据区,即打码信号包括(j-i)个数据区数据。前导码可以用于做信号同步,本申请实施例中,还可以利用前导码来进行打码信号的识别,即根据前导码判断前导码所属的打码信号为正码还是负码,若判断出当前的打码信号为正码,则按照正码编码规则识别数据区数据,若判断出当前的打码信号为负码,则按照负码编码规则识别数据区数据。也就是说能够使得主动笔识别触控屏打出的负码,进而使得主动笔的画线不出现断线。本申请实施例中的数据区可以根据不同的协议定义每个编码位的所表示的信息,实现触控屏到主动笔的命令传输,例如每个编码位可以表示主动笔的编号,打码长度、打码频率等上行扩频信号。图9中每一个编码可以为二进制编码,还可以采用其他的编码方式对打码信号进行编码,例如三进制编码,本申请实施例不做限定。如果采用二进制编码,则编 码“0”和“1”可以分别用两种不同的脉冲序列表示,本申请以华为主动笔(Huawei Pen Protocol,HPP)协议为例,例如图10为采用正码编码规则编码的“1”和“0”,假设打码信号包括7个编码位,以右起第7个编码位为例,编码“1”采用31bit脉冲序列0x4259F1BA表示,编码“0”采用31bit脉冲序列0x3DA60E45表示,每个bit的宽度为1us,则一个编码的宽度为31us。
图11为采用负码编码规则编码的“1”和“0”,其中,编码“0”采用31bit脉冲序列0x4259F1BA表示,编码“1”采用31bit脉冲序列0x3DA60E45表示,每个bit的宽度为1us,则一个编码的宽度为31us。结合图10和图11可以理解,正码和负码的相位差为π。本申请实施例中只是以HPP协议中编码为例进行描述,但在实际应用中并不局限于此种上行扩频编码。
图12为本申请打码信号的一种具体的实施例,具体地,打码信号包括7个编码位,由右至左,打码信号的编码依次为“0011100”,其中,“001”为前导码数据,“1100”为数据区数据。若采用正码编码规则编码,则打码信号的编码由右至左为“0011100”;若采用负码编码规则编码,则打码信号的编码由右至左为“1100011”,前导码变成了“110”,而数据区数据变成了“011”。由此可知,如果打码信号序列中同时包括正码和负码时,由于在触控屏同一个位置,正码和负码都可能被接收到,如果无法区分当前接收到的是正码还是负码或者无法识别负码,可能导致主动笔得不到正确的上行扩频信号,甚至会使得主动笔和触控屏的通信中断。因此需要识别出当前的打码信号为正码还是负码,才能正确解析数据,即能够得到正确的上行扩频信号。
本申请实施例的打码信号检测方法通过前导码区数据来识别当前的打码信号为正码还是负码,根据识别的结果来选择合适的编码规则来识别数据区数据。
S104中,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,则认为当前收到的打码信号为负码,也就是说当前收到的打码信号的编码规则为负码编码规则,因此可以根据负码编码规则来识别数据区数据。例如,所传输的打码信号由右至左为“0011100”,所传输的前导码数据由右至左为“001”,若采用正码编码规则识别出的前导码区数据中的每个编码与所传输的前导码数据中的每个编码的相位相反,例如识别出的前导码数据为“110”,则认为当前收到的打码信号 “0011100”为负码,也就是说当前收到的打码信号的编码规则为负码编码规则,因此可以根据负码编码规则来识别数据区数据,识别出的数据区数据由右至左为“0011”。若采用正码编码规则识别出的前导码区数据与所传输的前导码数据相同,例如识别出的前导码数据为“001”,则认为当前收到的打码信号为正码,也就是说当前收到的打码信号的编码规则为正码编码规则,因此可以根据正码编码规则来识别数据区数据,识别出的数据区数据由右至左为“1100”。可以理解如果编码位的数据为“1”,则相反相位的数据为“0”,即“0”与“1”的相位相反。
因此,可参见图6,所述方法还包括:
S105若所识别出的所述前导码区数据与所传输的前导码区数据相同,则根据所述正码编码规则识别数据区数据。
本申请实施例提供的打码信号检测方法能够同时识别正码和负码,使得主动笔在触控屏画线时不断线,同时对多个检测电极同时打码,也不存在水波纹的问题,提升了用户体验。
图7为本申请实施例提供的另一种打码信号检测方法的流程图,本申请实施例中,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述方法包括:
S201接收前导码区数据;
S202根据负码编码规则识别所述前导码区数据;
S203判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同;
S204若所识别出的所述前导码区数据与所传输的前导码区数据相同,则根据所述负码编码规则识别数据区数据。
本申请实施例的打码信号检测方法通过前导码区数据来识别当前的打码信号为正码还是负码,根据识别的结果来选择合适的编码规则来识别数据区数据。
S204中,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码相同,则认为当前收到的打码信号为负码,也就是说当前收到的打码信号的编码规则为负码编码规则,因此可以根据所述负码编码规则来识别数据区数据。例如,所传输的打码信号由右至左为“0011100”, 所传输的前导码数据由右至左为“001”,若采用负码编码规则识别出的前导码区数据与所传输的前导码数据相同,例如识别出的前导码数据为“001”,则认为当前收到的打码信号“0011100”为负码,也就是说当前收到的打码信号的编码规则为负码编码规则,因此可以根据负码编码规则来识别数据区数据,识别出的数据区数据由右至左为“1100”。若采用负码编码规则识别出的前导码区数据中的每个编码与所传输的前导码数据中的每个编码的相位相反,例如识别出的前导码数据为“110”,则认为当前收到的打码信号为正码,也就是说当前收到的打码信号的编码规则为正码编码规则,因此可以根据正码编码规则来识别数据区数据,识别出的数据区数据由右至左为“0011”。
因此,可参见图8,所述方法还包括:
S205若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,则根据正码编码规则识别数据区数据。
本申请实施例提供的打码信号检测方法能够同时识别正码和负码,使得主动笔在触控屏画线时不断线,同时对多个检测电极同时打码,也不存在水波纹的问题,提升了用户体验。
作为一种可选的实施例,图5至图8所述的打码信号检测方法中,每个打码信号序列包括相邻的M个正码和相邻的N个负码,其中│M-N│≤Q,例如Q=4,│M-N│可以等于0,1,2,3,4。当正码和负码个数的差值小于等于4时,触控屏的显示器不会产生水波纹,或者产生的水波纹现象几乎肉眼难以分辨,不会影响用户体验。可选的,M+N≤P,P为触控屏上检测电极的数量,也就是说每个打码信号序列中正码和负码的数量之和小于等于检测电极的数量。
可选地,每个打码信号序列还包括空码,所述空码位于所述正码和所述负码之间,所述正码和所述负码的相位差为π,即所述正码和所述负码的相位相反,空码即不对检测电极进行打码。
可选地,不同的打码信号序列中可以包括不同数量的正码和负码。
可选地不同的打码信号序列中也可以包括不同数量的空码,有的打码信号序列中也可以不包括空码。
请参见图13,在一个打码周期内对触控屏的全部横向检测电极TX1-TX17进行打码,其中对相邻的检测电极TX1-TX9打正码,对相邻的检测电 极TX10-TX17打负码,9个正码与8个负码抵消后,只剩下一个检测电极上的正码,检测电极上残留的电压较小,不易引起肉眼可见的水波纹。若主动笔在图13中位置1处,触控屏通过多个检测电极同时打正码,因而主动笔可以在一定高度范围内接收到正码,也就是说当打正码的检测电极相邻设置有利于提高主动笔的悬停高度。若主动笔在图13中位置2处,触控屏通过多个检测电极同时打负码,因而主动笔可以在一定高度范围内接收到负码,同样地,当打负码的检测电极相邻设置有利于提高主动笔的悬停高度。若主动笔在图13中位置3处,位于左右两边的检测电极TX8和TX10分别打正码和负码,信号发生抵消,因而主动笔在位置3处能够接收到正码时的高度低于主动笔在位置1和位置2处能接收到打码信号时的高度。本申请实施例提供的打码信号检测方法能够使得主动笔可以识别负码,由于第一打码信号序列能覆盖所有的打码通道,能够保证主动笔在全屏都能收到正码或者负码,因而能够解决水波纹的问题的同时,进一步还能够保证主动笔在全屏画线,均不断线。作为一种可选的实施例,也可以只对部分检测电极打码,而不对另一部分检测电极打码,例如,只对TX2-TX17打码,而不对边缘处的检测电极TX1打码,也就是打空码,主动笔在一般情况下很少点击边缘处,因此不会影响主动笔的使用。当然也可以对位于中心区域的检测电极打空码,例如在打正码和打负码的交界处打空码,这样有利于提升交界处的主动笔的悬停高度,即主动笔可以在高度较高的时候就能接收到打码信号。如图14所示,在一个打码周期内对相邻的检测电极TX1-TX9打正码,对TX10打空码,对相邻的检测电极TX11-TX17打负码,9个正码与7个负码抵消后,只剩下两个检测电极上的正码,检测电极上残留的电压较小,不易引起肉眼可见的水波纹。当主动笔位于位置3处,左右两侧分别打正码和空码相比于左右两侧分别打正码和负码,主动笔的悬停高度更高。可以理解的是,当正码的个数与负码的个数相等时,此时触控屏上的正码和负码可以完全抵消,检测电极上残留的电压为零,可以完美的解决水波纹的问题。
作为另一种可选的实施例,在一个打码周期内可以包括至少两个打码信号序列,即包括至少两轮打码。第一轮打码的打码信号序列称为第一打码信号序列,该打码信号序列包括相邻的M个正码和相邻的N个负码,即对相邻的M个检测电极打正码,对相邻的N个检测电极打负码,其中,│M-N│≤Q, M+N≤P;第二轮打码的打码信号序列称为第二打码信号序列,该打码信号序列包括相邻的K个正码和相邻的L个负码,即对相邻的K个检测电极打正码,对相邻的L个检测电极打负码,其中,│K-L│≤Q,K+L≤P。Q为每个打码信号序列中,正码与负码个数的差值,本申请实施例中,每个打码序列中,正码与负码个数的差值越小越好,当正码与负码的个数相等时,此时触控屏上的正码和负码可以完全抵消,检测电极上残留的电压为零,可以完美的解决水波纹的问题。这里Q可以等于4,│M-N│可以等于0,1,2,3,4。当正码和负码个数的差值小于等于4时,触控屏的显示器不会产生水波纹,或者产生的水波纹现象几乎肉眼难以分辨,不会影响用户体验。P为触控屏上检测电极的数量,也就是说每个打码信号序列中正码和负码的数量之和小于等于检测电极的数量。
作为一种可选的实施例,同一个打码周期的两个打码信号序列中M-N=K-L。
作为一种可选的实施例,同一个打码周期的两个打码信号序列中的,正码和负码的排列顺序不同。
如图15所示,在一个打码周期内包括两个打码信号序列,第一轮打码的打码信号序列称为第一打码信号序列,该打码信号序列包括相邻的9个正码和相邻的8个负码,即对相邻的9个检测电极打正码,对相邻的8个检测电极打负码;第二轮打码的打码信号序列称为第二打码信号序列,该打码信号序列包括相邻的8个正码和相邻的9个负码,即对相邻的8个检测电极打正码,对相邻的9个检测电极打负码。
在第一打码信号序列的阶段,这里不再赘述,可以参考图14相关的描述。
在第二打码信号序列的阶段,对触控屏的全部横向检测电极TX1-TX17进行打码,其中对相邻的检测电极TX1-TX8打负码,对相邻的检测电极TX9-TX17打正码,9个正码与8个负码抵消后,只剩下一个检测电极上的正码,检测电极上残留的电压较小,不易引起肉眼可见的水波纹。若主动笔在图15中位置1处,触控屏通过多个检测电极同时打负码,因而主动笔可以在一定高度范围内接收到负码,也就是说当打负码的检测电极相邻设置有利于提高主动笔的悬停高度。若主动笔在图15中位置2处,触控屏通过多个检测电 极同时打正码,因而主动笔可以在一定高度范围内接收到正码,同样地,当打正码的检测电极相邻设置有利于提高主动笔的悬停高度。若主动笔在图15中位置3处,位于左右两边的检测电极TX8和TX10分别打正码和负码,信号发生抵消,因而主动笔在位置3处能够接收到正码时的高度低于主动笔在位置1和位置2处能接收到打码信号时的高度。本申请实施例提供的打码信号检测方法能够使得主动笔可以识别负码,由于第一打码信号序列和第二打码信号序列能覆盖所有的打码通道,能够保证主动笔在全屏都能收到正码或者负码,因而能够解决水波纹的问题,进一步还能够保证主动笔在全屏画线,均不断线。此外,图15中第一打码信号序列和第二打码信号序列中正码和负码的排列顺序不同,具体的,第一打码信号序列中正码和负码的交界处位于TX9和TX10之间,这时若主动笔位于TX9和TX10之间,主动笔接收到的打码信号相对较弱,而第二打码信号序列中TX9和TX10均打正码,因此若主动笔位于TX9和TX10之间时,主动笔接收到的打码信号比在第一打码信号序列中的相同位置处强。又因为第二打码信号序列中正码和负码的交界处位于TX8和TX9之间,这时若主动笔位于TX8和TX9之间,主动笔接收到的打码信号相对较弱,而第一打码信号序列中TX8和TX9均打正码,因此若主动笔位于TX8和TX9之间时,主动笔接收到的打码信号比在第二打码信号序列中的相同位置处强。也就是说第一打码信号序列和第二打码信号序列在全屏的打码信号强度可以互补,以保证主动笔在全屏画线不断线。因此,在同一打码周期内包括至少两个打码信号序列,每个打码信号序列中正码和负码的交界处信号较弱,至少两个打码信号序列的正码和负码的交界处不同时,能够有效提高主动笔接收打码信号的效果,保证主动笔在全屏画线不断线,提高了性能和用户体验。可以理解的是,一个打码周期中可以包括两个以上的打码信号序列,例如:三个或四个打码信号序列,每个打码信号序列中正码和负码的交界处的位置可以不相同,以进行打码信号强度的互补,保证主动笔在全屏画线不断线。
作为一种可选的实施例,一个打码信号序列可以只对部分检测电极打码,如图16所示,第一打码信号序列中,只对TX2-TX17打码,而不对边缘处的检测电极TX1打码,也就是打空码;第二打码信号序列中,只对TX1-TX16打码,而不对边缘处的检测电极TX17打码。由于主动笔在一般情况下很少 点击边缘处,因此不会影响主动笔的使用,此外由于一个打码周期内,包括两个打码信号序列,不打码的位置不同,因而整体上,两个打码信号序列可以互补,能够覆盖到所有的检测电极,即便主动笔点击到了触控屏的边缘区域,也能够接收到打码信号,与触控屏正常通信。作为另一种可选的实施例,打码信号序列中打空码的位置也可以位于打码序列的中心区域,例如在打正码和打负码的交界处打空码,这样有利于提升交界处的主动笔的悬停高度,即主动笔可以在高度较高的时候就能接收到打码信号。例如图17所示,第一打码信号序列对相邻的检测电极TX1-TX9打正码,对TX10打空码,对相邻的检测电极TX11-TX17打负码,9个正码与7个负码抵消后,只剩下两个检测电极上的正码,检测电极上残留的电压较小,不易引起肉眼可见的水波纹。当主动笔位于位置3处,左右两侧分别打正码和空码相比于左右两侧分别打正码和负码,主动笔的悬停高度更高。可以理解的是,当正码的个数与负码的个数相等时,此时触控屏上的正码和负码可以完全抵消,检测电极上残留的电压为零,可以完美的解决水波纹的问题。第二打码信号序列对相邻的检测电极TX1-TX7打负码,对TX8打空码,对相邻的检测电极TX9-TX17打正码,9个正码与7个负码抵消后,只剩下两个检测电极上的正码,检测电极上残留的电压较小,不易引起肉眼可见的水波纹。当主动笔位于位置3处,左右两侧分别打正码和空码相比于左右两侧分别打正码和负码,主动笔的悬停高度更高。本申请实施例中,一个打码周期内的至少两个打码信号序列中,正码和负码的排列顺序不同,并且不同的打码信号序列中打空码的位置也不同,至少两个打码信号序列在全屏的打码信号强度可以互补,以保证主动笔在全屏画线不断线。如图17所示,第一打码信号序列中,在TX10的位置打空码,若主动笔位于TX10的位置,那么可能接收不到打码信号,而第二打码信号序列中,在TX10的位置打正码,一个打码周期中的第一打码信号序列和第二打码信号序列在全屏的打码信号可以互补,以保证主动笔在全屏画线不断线。对于第一打码信号序列中,在TX8的位置打正码,第二打码信号序列中,在TX8的位置打空码的情况,这里不再赘述,同样是为了保证主动笔在全屏画线不断线。
可以理解的是,本申请实施例提供的打码信号检测方法应用于打码信号序列中包括正码和负码的情形,既能解决触控屏只打正码时出现的水波纹问 题,又能够识别正码和负码,保证主动笔画线不发生断线。
本申请实施例,还提供了一种打码装置,包括打码模块,用于对检测电极进行打码,每个打码信号序列包括相邻的M个正码和相邻的N个负码,其中│M-N│≤4。
可选地,每个打码信号序列还包括空码,所述空码位于所述正码和所述负码之间,所述正码和所述负码的相位差为π,即所述正码和所述负码的相位相反。
可选地,本申请实施例提供的打码装置,打出的打码信号还可以是图9至图17所示的打码信号,这里不再赘述。
本申请实施例提供的打码装置能够打出包括正码和负码的序列,能够有效解决显示器出现水波纹的问题。
本申请实施例还提供了一种触控芯片,该触控芯片可以包括上述的打码装置。
如图18所示,本申请实施例还提供一种打码信号检测装置300,其中每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述装置包括:
接收模块301,用于接收前导码区数据;
识别模块302,用于根据正码编码规则识别所述前导码区数据;
判断模块303,用于判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,识别模块302则根据负码编码规则识别数据区数据。
可选地,若所识别出的所述前导码区数据与所传输的前导码区数据相同,识别模块302则根据所述正码编码规则识别数据区数据。
本申请实施例提供的打码信号检测装置能够同时识别正码和负码,使得主动笔在触控屏画线时不断线,同时对多个检测电极同时打码,也不存在水波纹的问题,提升了用户体验。
本申请实施例还提供另一种打码信号检测装置300,其中每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述装置包括:
接收模块301,用于接收前导码区数据;
识别模块302,用于根据负码编码规则识别所述前导码区数据;
判断模块303,用于判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同,若所识别出的所述前导码区数据与所传输的前导码区数据相同,识别模块302则根据所述负码编码规则识别数据区数据。
可选地,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,识别模块302则根据正码编码规则识别数据区数据。
本申请实施例提供的打码信号检测装置能够同时识别正码和负码,使得主动笔在触控屏画线时不断线,同时对多个检测电极同时打码,也不存在水波纹的问题,提升了用户体验。
可选地,本申请实施例提供的打码信号检测检测装置中的打码信号序列,可以参见图9至图17,这里不再赘述。
本申请实施例还提供了一种主动笔,包括上述的打码信号检测检测装置,本申请实施例的主动笔能够同时识别正码和负码,使得主动笔在触控屏画线时不断线。
如图19所示,本申请实施例还提供一种打码信号检测系统500,包括:打码信号检测装置300,以及打码装置400,打码装置400包括:
打码模块,用于对检测电极进行打码,每个打码信号序列包括相邻的M个正码和相邻的N个负码,其中│M-N│≤4。
其中,打码信号检测装置300用于检测打码装置400产生的打码信号。打码信号检测装置300中的接收模块301用于接收所述打码模块提供的打码信号的前导码区数据;
识别模块302,用于根据正码编码规则或者负码编码规则识别所述前导码区数据;
判断模块303,用于判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同,即判断当前的打码信号的编码规则是正码编码规则还是负码编码规则,然后识别模块302根据合适的编码规则来识别打码信号的数据区数据。
可选地,每个打码信号序列还包括空码,所述空码位于所述正码和所述负码之间,所述正码和所述负码的相位差为π,即所述正码和所述负码的相 位相反。
本申请实施例还提供了一种打码信号检测系统,包括上述的触控芯片和主动笔。该打码信号检测系统在工作时,触控屏的显示器不会出现水波纹现象,同时主动笔能够同时识别正码和负码,因而主动笔在触控屏画线时不断线,能够极大的提升用户体验。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本申请的保护范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种打码信号检测方法,其特征在于,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述方法包括:
    接收前导码区数据;
    根据正码编码规则识别所述前导码区数据;
    判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同;
    若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,则根据负码编码规则识别数据区数据。
  2. 根据权利要求1所述的检测方法,其特征在于,还包括:
    若所识别出的所述前导码区数据与所传输的前导码区数据相同,则根据所述正码编码规则识别数据区数据。
  3. 一种打码信号检测方法,其特征在于,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述方法包括:
    接收前导码区数据;
    根据负码编码规则识别所述前导码区数据;
    判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同;
    若所识别出的所述前导码区数据与所传输的前导码区数据相同,则根据所述负码编码规则识别数据区数据。
  4. 根据权利要求3所述的检测方法,其特征在于,还包括:
    若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,则根据正码编码规则识别数据区数据。
  5. 一种打码信号检测装置,其特征在于,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述装置包括:
    接收模块,用于接收前导码区数据;
    识别模块,用于根据正码编码规则识别所述前导码区数据;
    判断模块,用于判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,所述识别模块则根据负码编码规则识别数据区数据。
  6. 根据权利要求5所述的检测装置,其特征在于,若所识别出的所述 前导码区数据与所传输的前导码区数据相同,所述识别模块则根据所述正码编码规则识别数据区数据。
  7. 一种打码信号检测装置,其特征在于,每个打码信号序列包括正码和负码,每个打码信号包括前导码区和数据区,所述装置包括:
    接收模块,用于接收前导码区数据;
    识别模块,用于根据负码编码规则识别所述前导码区数据;
    判断模块,用于判断所识别出的所述前导码区数据与所传输的前导码区数据是否相同,若所识别出的所述前导码区数据与所传输的前导码区数据相同,所述识别模块则根据所述负码编码规则识别数据区数据。
  8. 根据权利要求7所述的检测装置,其特征在于,若所识别出的所述前导码区数据中的每个编码与所传输的前导码区数据中的每个编码的相位相反,所述识别模块则根据正码编码规则识别数据区数据。
  9. 一种打码信号检测系统,其特征在于,包括:根据权利要求5至8任一项所述的打码信号检测装置,以及打码装置,所述打码装置包括:
    打码模块,用于对检测电极进行打码,每个打码信号序列包括相邻的M个正码和相邻的N个负码,其中│M-N│≤4。
  10. 根据权利要求9所述的系统,其特征在于,所述每个打码信号序列还包括空码,所述空码位于所述正码和所述负码之间,所述正码和所述负码的相位差为π。
PCT/CN2020/116869 2020-09-22 2020-09-22 打码信号检测方法、装置和打码信号检测系统 WO2022061529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116869 WO2022061529A1 (zh) 2020-09-22 2020-09-22 打码信号检测方法、装置和打码信号检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116869 WO2022061529A1 (zh) 2020-09-22 2020-09-22 打码信号检测方法、装置和打码信号检测系统

Publications (1)

Publication Number Publication Date
WO2022061529A1 true WO2022061529A1 (zh) 2022-03-31

Family

ID=80844535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116869 WO2022061529A1 (zh) 2020-09-22 2020-09-22 打码信号检测方法、装置和打码信号检测系统

Country Status (1)

Country Link
WO (1) WO2022061529A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190004664A1 (en) * 2017-06-30 2019-01-03 Microsoft Technology Licensing, Llc Phase error compensation in single correlator systems
CN110494828A (zh) * 2019-07-02 2019-11-22 深圳市汇顶科技股份有限公司 信号处理系统、芯片和主动笔
CN110892368A (zh) * 2017-11-14 2020-03-17 株式会社和冠 传感器控制器
CN111443830A (zh) * 2020-06-15 2020-07-24 深圳市汇顶科技股份有限公司 打码方法、打码装置和触控芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190004664A1 (en) * 2017-06-30 2019-01-03 Microsoft Technology Licensing, Llc Phase error compensation in single correlator systems
CN110892368A (zh) * 2017-11-14 2020-03-17 株式会社和冠 传感器控制器
CN110494828A (zh) * 2019-07-02 2019-11-22 深圳市汇顶科技股份有限公司 信号处理系统、芯片和主动笔
CN111443830A (zh) * 2020-06-15 2020-07-24 深圳市汇顶科技股份有限公司 打码方法、打码装置和触控芯片

Similar Documents

Publication Publication Date Title
CN105844892B (zh) 识别电力系统台区中的电表的装置及方法
CN105068966B (zh) 串口自动识别方法
CN102388635B (zh) 参考信号的处理方法、装置及系统
US20230195260A1 (en) Signal driving method, signal driving apparatus and touch control chip
CN103313391A (zh) 资源通知及信令解调方法和设备
CN104836636B (zh) 基于新型can帧进行通信的方法、装置及系统
CN112558798A (zh) 主动笔的通信方法、装置、终端和存储介质
KR20160052652A (ko) 터치 제어 장치와 외부 장치의 통신 방법 및 시스템
CN111443830B (zh) 打码方法、打码装置和触控芯片
WO2022061529A1 (zh) 打码信号检测方法、装置和打码信号检测系统
CN102694598B (zh) 可见光信号的编码方法和发送方法
US11614812B2 (en) Method and apparatus for pressure detection, active pen, touch control chip, and electronic device
CN105590436A (zh) 一种点对点抄表方法
CN107481356A (zh) 一种智能锁的解锁方法、开锁指令的获取方法及装置
CN104247287A (zh) 一种确定CoMP用户的方法和设备
CN111930269A (zh) 打码信号检测方法、装置和打码信号检测系统
CN103856290A (zh) 数据的传输方法及装置
CN105162553A (zh) 一种传输块类型信令指示方法及系统
CN105407500B (zh) 一种智能终端及其卫星信号质量的显示方法和装置
CN103178924B (zh) 一种数据传输方法及终端
CN115712357A (zh) 无线通信的方法、主动笔和触摸屏
CN101442380A (zh) 基于高速串行接口编码方式的误码率测试方法与装置
CN114938714A (zh) 感知测量方法和通信装置
CN103517288A (zh) 数据传输信息的获取方法及装置
CN105119636A (zh) 信息发送、接收方法以及信息发送、接收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954383

Country of ref document: EP

Kind code of ref document: A1