WO2022061528A1 - 一种磁分选微流控芯片及其制作方法 - Google Patents

一种磁分选微流控芯片及其制作方法 Download PDF

Info

Publication number
WO2022061528A1
WO2022061528A1 PCT/CN2020/116866 CN2020116866W WO2022061528A1 WO 2022061528 A1 WO2022061528 A1 WO 2022061528A1 CN 2020116866 W CN2020116866 W CN 2020116866W WO 2022061528 A1 WO2022061528 A1 WO 2022061528A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic pole
channel
sorting
permanent magnet
Prior art date
Application number
PCT/CN2020/116866
Other languages
English (en)
French (fr)
Inventor
杨慧
曾霖
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2020/116866 priority Critical patent/WO2022061528A1/zh
Publication of WO2022061528A1 publication Critical patent/WO2022061528A1/zh
Priority to US17/883,289 priority patent/US20220379312A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0266Investigating particle size or size distribution with electrical classification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • G01N15/01
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0288Sorting the particles

Definitions

  • the invention relates to the technical field of magnetic separation microfluidic chips, in particular to a magnetic separation microfluidic chip and a manufacturing method thereof.
  • the sorting methods for micron-sized cells or particles are relatively mature, but due to the scale effect, these methods cannot achieve good results or even work when applied to the sorting of nanoparticles.
  • some methods for sorting and purifying nanoparticles have been developed, but some of these methods will cause damage to biological samples, such as Joule heat generated by optical methods, and surface potential of dielectrophoresis methods may be
  • ultrasonic methods are also not suitable for sorting biological samples due to limitations in resolution and throughput.
  • For the separation and purification of submicron biological samples there are some mature conventional methods.
  • Microfluidic technology provides a relatively simple, low-cost and continuous separation method.
  • Microfluidic magnetic sorting combined with magnetic bead immunoassay is currently the most studied.
  • magnetic sorting has the characteristics of no damage to biological samples, flexible and controllable magnetic field, relatively simple system, low cost, high flux, and magnetic beads, as magnetic media, have been obtained in the sorting and capture of micron-scale cells. Due to the wide range of applications, magnetic sorting has great potential in the processing of nanoscale biological samples.
  • magnetic sorting can be divided into labeled sorting and non-labeling sorting, corresponding to positive magnetophoretic sorting (or magnetophoretic sorting for short) and negative magnetophoretic sorting.
  • Labeled sorting usually uses magnetic beads to label biological samples, and then the magnetic beads are manipulated by the magnetophoretic force generated by an external magnetic field to separate them from the complete sample system, thereby realizing the sorting of specific samples.
  • the advantage of magnetic labeling is that the magnetic beads can be precisely manipulated by an external magnetic field. At present, the manipulation of nano-magnetic beads has been realized, and the surface modification of the magnetic beads can be immunologically combined with specific cells to achieve specific capture.
  • Label-free is divided into two methods. One is to use the paramagnetism or diamagnetism of the cell itself to separate by an external magnetic field. However, this method needs to rely on the characteristics of the cell itself, and its application is limited. Another method is to separate cells by negative magnetophoresis in a paramagnetic salt solution or a ferromagnetic solution combined with an external high gradient magnetic field. This method has a simple structure and is easy to implement, but it is currently focused on the sorting of micron-scale cells or particles. , the resolution in terms of size needs to be improved.
  • the resolution of negative magnetophoresis sorting currently only stays at the cell level ( ⁇ 3.5 ⁇ m),
  • the resolution of the sorting size difference is greater than or equal to 5 microns, that is, only biological samples with a size difference of more than 5 microns can be sorted.
  • the present invention provides a magnetic separation microfluidic chip and a manufacturing method thereof;
  • the present invention proposes the following specific embodiments:
  • An embodiment of the present invention proposes a magnetic separation microfluidic chip, comprising: a substrate, a chip model material layer, a microchannel unit, and a magnetic separation unit; the chip model material layer is disposed on the substrate, and the microchannel Both the channel unit and the associated magnetic sorting unit are arranged in the chip model material layer;
  • the microchannel unit includes a sorting channel and a magnetic pole channel; the sorting channel is provided with a plurality of sorting channel inlets and a plurality of sorting channel outlets;
  • the magnetic sorting unit comprises a permanent magnet, a high magnetic permeability alloy, and a magnetic pole array arranged in the magnetic pole channel; wherein, the high magnetic permeability alloy is used to conduct the magnetic field of the permanent magnet to the magnetic pole array, So that the magnetic pole array generates two magnetic fields with high intensity and high gradient and opposite polarities on the same side of the sorting channel, and then the particles to be processed are sorted into different sizes in the sorting channel. of the sorting channel outlet.
  • the magnetic pole channel includes a first magnetic pole channel and a second magnetic pole channel arranged symmetrically; the first magnetic pole channel is provided with a first magnetic pole channel inlet, and the second magnetic pole channel is provided with a first magnetic pole channel inlet.
  • Two magnetic pole channel inlets; both the first magnetic pole channel and the second magnetic pole channel are provided with a common magnetic pole channel outlet; and both the first magnetic pole channel and the second magnetic pole channel are provided with micro channel filter column;
  • the magnetic polarities of the magnetic pole arrays inside both the first magnetic pole channel and the second magnetic pole channel are opposite to each other.
  • the sorting channel inlet includes: a particle inlet and an entrainment inlet; the sum of the widths of the particle inlet and the entrainment inlet is the same as the width of the sorting channel.
  • the ratio of the width of the particle inlet to the entrainment inlet is in the range of 1:4-1:0.5.
  • the height of the microchannel unit ranges from 10 to 800 microns
  • the width of the magnetic pole channel ranges from 5 to 500 microns
  • the width of the sorting channel ranges from 10 to 1000 microns
  • the magnetic pole array is composed of ferromagnetic powder with triangular structure or ferromagnetic powder with semicircular structure;
  • the distance from the tip of the pole array to the sorting channel is 1-25 microns;
  • the particle size range of the ferromagnetic powder is 1-20 microns
  • the high magnetic permeability alloy is a soft magnetic alloy; the thickness of the high magnetic permeability alloy is 10-800 microns.
  • the substrate is made of glass or transparent resin material
  • the chip model material layer is made of polydimethylsiloxane, glass or transparent resin material.
  • the embodiment of the present invention also provides a method for manufacturing a magnetic separation microfluidic chip, including:
  • a microfluidic chip is fabricated by MEMS process, soft lithography method or by 3D printer printing; the microfluidic chip has a microchannel unit and a plurality of high magnetic conductivity alloy embedded regions; the microchannel unit includes: a sorting channel , magnetic pole channel; the number of the magnetic pole channel is two; the high magnetic permeability alloy embedded area includes a first area, a second area, and a third area; each of the two magnetic pole channels has a magnetic pole channel entrance, and the two The magnetic pole channels share one magnetic pole channel outlet;
  • a third high magnetic permeability alloy is embedded in the third region, and a third permanent magnet is fixed above the third high magnetic permeability alloy, and the direction of the magnetic field lines of the third permanent magnet is perpendicular to the third high permeability The plane where the magnetic alloy is located;
  • a solution that is uniformly mixed with ferromagnetic powder and pure water is injected into the two magnetic pole channels from the two magnetic pole channel inlets, so that the third high magnetic permeability alloy, the third permanent magnet and the magnetic pole channel Under the action of the filter column structure in the ferromagnetic powder, the ferromagnetic powder is preliminarily fixed in the preset magnetic pole array area;
  • the liquid PDMS is injected into the two magnetic pole channels from the two magnetic pole channel inlets, and passes through the microchannel filter column structure, and the first high magnetic permeability alloy and the second high permeability are respectively embedded in the first region and the second region.
  • the distance between the magnetic alloy, the first high magnetic permeability alloy and the second high magnetic permeability alloy to the magnetic pole array is 5-20 microns, and then the liquid PDMS is solidified, so that the ferromagnetic powder is completely fixed in the preset magnetic pole array area ;
  • the third high magnetic permeability alloy and the third permanent magnet are withdrawn from the microfluidic chip, and then the first permanent magnet is fixed above the first high magnetic permeability alloy, and the second A second permanent magnet is fixed above the magnetic conductive alloy; the magnetic field lines of the first permanent magnet and the second permanent magnet are both perpendicular to the plane, but the magnetic pole directions of the two are opposite.
  • the mass ratio of ferromagnetic powder to pure water in the solution ranges from 1:500 to 1:50; the solution is oscillated uniformly by a vibrator and an ultrasonic oscillator.
  • the ratio of the prepolymer to the curing agent in the liquid PDMS ranges from 3:1 to 12:1;
  • Liquid PDMS is cured by being placed in an oven at 80°C for 0.5-24 hours.
  • the volume of the third permanent magnet is greater than or equal to 1 ⁇ 10 -6 cubic meters, and the material remanence is greater than or equal to 0.5 Tesla;
  • the distance between the third permanent magnet and the sidewall surface of the sorting channel is 100-200 microns.
  • the embodiments of the present invention have the following technical effects: the solution solves the problem of low resolution of negative magnetophoresis sorting, and improves the resolution of negative magnetophoresis sorting of biological samples and particles from micron level to submicron level.
  • FIG. 1 is an overall structural diagram of a magnetic separation microfluidic chip proposed in an embodiment of the present invention
  • FIG. 2 is a front view of a magnetic separation microfluidic chip proposed in an embodiment of the present invention
  • FIG. 3 is a partial enlarged view of a magnetic separation unit in a magnetic separation microfluidic chip proposed in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the structure and size of a magnetic separation unit in a magnetic separation microfluidic chip proposed by an embodiment of the present invention
  • FIG. 5 is a schematic diagram of the structure and size of a sorting channel in a magnetic sorting microfluidic chip proposed by an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for manufacturing a magnetic separation microfluidic chip according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a method for manufacturing a magnetic separation microfluidic chip according to an embodiment of the present invention.
  • Embodiment 1 of the present invention discloses a magnetic separation microfluidic chip, as shown in Figures 1-5, comprising: a substrate 5, a chip model material layer 4, a microchannel unit, and a magnetic separation unit; the chip model material The layer 4 is arranged on the substrate 5, and the microchannel unit and the associated magnetic sorting unit are both arranged in the chip model material layer 4;
  • the microchannel unit includes a sorting channel 11 and a magnetic pole channel (for example, including a first magnetic pole channel 20 and a second magnetic pole channel 16 as shown in FIG. 1 ); the sorting channel is provided with a plurality of sorting channel inlets and a plurality of sorting channel exit;
  • the microchannel unit consists of two magnetic pole channels and one sorting channel.
  • the magnetic pole channel is used to synthesize two magnetic pole arrays with opposite magnetic polarities.
  • the magnetic pole array unit in the magnetic pole array is in the shape of a triangle or semi-circular, used to provide magnetic power for particle separation in sorting channels.
  • the carrier fluid in the sorting channel is a magnetic liquid, which is used for sorting non-magnetic particles or cells.
  • the magnetic sorting unit comprises a permanent magnet, a high magnetic permeability alloy, and a magnetic pole array arranged in the magnetic pole channel; wherein, the high magnetic permeability alloy is used to conduct the magnetic field of the permanent magnet to the magnetic pole array, So that the magnetic pole array generates two magnetic fields with high intensity and high gradient and opposite polarities on the same side of the sorting channel, and then the particles to be processed are sorted into different sizes in the sorting channel. of the sorting channel outlet.
  • the magnetic sorting unit is composed of permanent magnets, high magnetic permeability alloys and magnetic pole arrays.
  • the magnetic field of the permanent magnets is conducted to the magnetic pole arrays through the high magnetic permeability alloys.
  • the gradient magnetic field can realize the negative magnetophoretic separation of sub-micron biological samples or particles, as well as the magnetic and negative magnetophoretic separation of nano-scale magnetic particles and non-magnetic particles at the same time.
  • the magnetic separation unit is provided with a magnetic field by an external permanent magnet, and the magnetic field is conducted to the magnetic pole array through a high magnetic permeability alloy.
  • the magnetized magnetic pole array with a specific shape can form a magnetic field with high intensity and high gradient in the local area of the microchannel.
  • the permanent magnet material is a strong magnet with a remanence greater than or equal to 0.5 Tesla
  • the high magnetic permeability alloy material is a soft magnetic alloy (such as permalloy, nanocrystalline or silicon steel sheet, etc.)
  • the thickness is 10-800 microns
  • the ferromagnetic powder is made of ferrite powder or iron particle powder, and the particle size of the powder ranges from 1 to 20 microns.
  • the function of the sorting channel is to sort the particles according to their size, and the channel width is 10-1000 microns, including two channel inlets and 2-3 channel outlets (as shown in Figure 1 for the 3 sorting channel outlets). case), the channel inlet is divided into particle inlet 2 and entrainment inlet 3, the width ratio of which is 1:4-1:0.5, and the sum of the widths of particle inlet 2 and entrainment inlet 3 is the same as that of the sorting channel. No less than 2 different sizes of particles or cells can be introduced into the particle inlet 2, and the particles or cells can be focused by the action of sandwich flow, making them close to the side of the magnetic pole channel, and the focusing width is 2-600 microns.
  • the liquid carriers introduced into the particle inlet 2 and the pinch inlet 3 are both magnetic solutions (magnetic fluid or paramagnetic solution).
  • magnetic solutions magnetic fluid or paramagnetic solution.
  • the repulsive effect of the particle is far away from the magnetic pole array, and the force on it is proportional to the volume, so the negative magnetophoretic force on the large-sized particle is greater, and the lateral displacement generated by it is also greater, while the small particle is affected by the negative magnetophoretic force.
  • the force is small, and the lateral displacement is also smaller.
  • the particles can be sorted into 3 categories according to their size, and the number of channel outlets is the same as the size and category of the particles to be sorted.
  • the magnetic particles the magnetic susceptibility is greater than the magnetic susceptibility of the magnetic solution
  • the non-magnetic particles are mixed through the magnetic separation unit, the magnetic force on the two particles is in opposite directions, and the magnetic particles will be affected by the magnetophoretic force and move to the magnetic pole array. Instead, the non-magnetic particles will be moved away from the pole array by the negative magnetophoretic force, enabling both magnetophoretic and negative magnetophoretic sorting in the same microchannel.
  • the magnetic pole channel includes a symmetrically arranged first magnetic pole channel and a second magnetic pole channel; the first magnetic pole channel is provided with a first magnetic pole channel inlet 1, and the second magnetic pole channel is provided with a second magnetic pole channel inlet 15; both the first magnetic pole channel and the second magnetic pole channel are provided with a common magnetic pole channel outlet; and both the first magnetic pole channel and the second magnetic pole channel are provided with microchannel filter columns ;
  • the magnetic polarities of the magnetic pole arrays inside both the first magnetic pole channel and the second magnetic pole channel are opposite to each other.
  • the sorting channel inlet includes: a particle inlet 2 and an entrainment inlet 3; the sum of the widths of the particle inlet 2 and the entrainment inlet 3 is the same as the width of the sorting channel.
  • the width ratio of the particle inlet 2 and the pinch inlet 3 is in the range of 1:4-1:0.5; the flow rates of the particle inlet 2 and the pinch inlet 3 are equal, and the range is 0.001 m/s- 0.01 m/s; the width of the outlet is the same as the sorting channel, ranging from 10-1000 microns.
  • the height range of the microchannel unit is 10-800 microns
  • the magnetic pole channel has a width in the range of 5-500 microns, a height of 10-800 microns, and a length greater than 20 mm.
  • the sorting channel has a width in the range of 10-1000 microns and a height of 10-800 microns;
  • the magnetic pole array is composed of ferromagnetic powder with a triangular structure or a ferromagnetic powder with a semicircular structure; the length of the magnetic pole array inside the magnetic pole channel is 1-10 mm, and is composed of each triangular or semicircular structure, wherein the triangle is Equilateral triangle, the width of the base is 10-500 microns, and the height is 10-200 microns. If it is a semi-circular structure, the radius of the semi-circle is 5-250 microns. The tip of the triangle or the top edge of the semi-circle reaches the point The distance between the sidewall faces of the selected channels is 1-25 microns.
  • the rear end of the magnetic pole array in the magnetic pole channel has a filter column structure, and the width of the channel allowed to pass is 5 microns;
  • the particle size range of the ferromagnetic powder is 1-20 microns
  • the high magnetic permeability alloy is a soft magnetic alloy; the thickness of the high magnetic permeability alloy is 10-800 microns, the length is equal to the length of the magnetic pole array, the range is 1-10 mm, and the distance to the magnetic pole array is 5-20 microns.
  • the two permanent magnets in the magnetic separation unit are arranged in opposite directions of the magnetic field.
  • the magnetic field lines are perpendicular to the high magnetic permeability alloy sheet. meters, the distance from the permanent magnet to the pole array is 1-2 mm.
  • the substrate 5 is made of glass or transparent resin material
  • the chip model material layer 4 is made of polydimethylsiloxane (ie PDMS), glass or transparent resin material.
  • Embodiment 2 of the present invention also discloses a magnetic separation microfluidic chip.
  • FIG. 1 is an overall structural diagram of the magnetic separation microfluidic chip
  • FIG. 2 is a front view of the magnetic separation microfluidic chip.
  • the chip in this embodiment is Three-stage sorting chips
  • the chip model material layer 4 is polydimethylsiloxane (PDMS)
  • the substrate 5 of the chip is a glass substrate.
  • the microchannel unit of the chip includes a sorting channel 11 , a first magnetic pole channel 20 and a second magnetic pole channel 16 .
  • the sorting channel 11 includes a particle inlet 2, a sandwich flow inlet 3, a first sorting channel outlet 12, a second sorting channel outlet 13 and a third sorting channel outlet 14, and the width ratio of the particle inlet 2 and the sandwich flow inlet 3 is 1:4-1:0.5, the sum of the widths of the two is the same as the sorting channel 11, and the range is 5-1000 microns.
  • the first magnetic pole channel 20 includes a first magnetic pole channel inlet 1 and a first microchannel filter column 22
  • the second magnetic pole channel 16 includes a second magnetic pole channel inlet 15 and a second microchannel filter column 23
  • the two magnetic pole channels are arranged symmetrically , and share a magnetic pole channel outlet 18, the structure of the filter column is shown in Figure 4.
  • the magnetic sorting unit 21 of the chip includes a first magnetic pole array 7, a second magnetic pole array 10, a first high magnetic permeability alloy 6, a second high magnetic permeability alloy 9, a first permanent magnet 19 and a second permanent magnet in the magnetic pole channel 17, in which the permanent magnet is used to provide the magnetic field, the size of the two permanent magnets is the same, the magnet volume is ⁇ 1 ⁇ 10 -6 cubic meters, and the material is a strong magnet with a remanence greater than or equal to 0.5 Tesla.
  • the material of the high magnetic permeability alloy is a soft magnetic alloy (such as permalloy, nanocrystalline or silicon steel sheet, etc.), and the thickness is 10-800 microns. Taking FIG. 2 as an example, in FIG.
  • the high magnetic permeability alloy can conduct the magnetic field of the permanent magnet to the magnetic pole array composed of ferromagnetic powder.
  • the magnetic pole array consists of several triangles. The magnetized pole array can generate a high gradient magnetic field at the tip of the triangle.
  • FIG. 3 is a partial enlarged view of the magnetic sorting unit in FIG. 2 , which shows the magnetic field lines between two magnetic pole arrays, the first magnetic pole array 7 is N pole, and the second magnetic pole array 10 is S pole.
  • the length ranges (L1) and (L3) of each magnetic pole array are both 1-10 mm, and the length ranges (L2) and (L4) of the first high magnetic permeability alloy 6 and the second high magnetic permeability alloy 9 are related to the length of the magnetic pole array. Equally, the range is also 1-10mm.
  • the distance (L5) between the two magnetic pole arrays is 1-3 mm, and the length of the third high magnetic permeability alloy embedded region 8 is equal to L1+L5+L3.
  • FIG. 4 is a schematic diagram of the structure and size of the magnetic separation unit in FIG. 3 .
  • the heights of the separation channel and the magnetic pole channel are equal, and the range is 10-800 ⁇ m.
  • the width (W1) of the sorting channel is 10-1000 microns, the length is greater than 20 mm, the width (W2) of the magnetic pole channel is 5-500 microns, and the length is greater than 20 mm, the first high magnetic permeability alloy 6 and the second high magnetic permeability
  • the distance (W3) from alloy 9 to the magnetic pole array is 5-20 microns, the distance (W4) from the triangular tip of the magnetic pole array to the side of the sorting channel is 1-25 microns, and the distance between the two pole tips (W5) is 10-500 microns, the distance is the length of the base of the triangle.
  • the channel width (W7) allowed to pass is 5 microns.
  • the distance (W8) of the first permanent magnet 19 and the second permanent magnet 17 to the pole array is 1-2 mm.
  • Figure 5 is a schematic view of the structure and size of the sorting channel.
  • the distance (W11) from the third high magnetic permeability alloy embedded region 8 to the side of the sorting channel is 50-100 microns, and the width (W9) of the outlet of the sorting channel is equal to the width (W1) of the sorting channel, which is 10-1000 microns , the widths of the outlets of the three sorting channels are equal, and the distance (W10) between each two outlet channels is 2-100 microns.
  • the particles or cells of different sizes are uniformly mixed in the magnetic liquid, and the particle concentration is 2 ⁇ 10 7 /ml.
  • the particle concentration is 2 ⁇ 10 7 /ml.
  • a magnetic liquid magnetic fluid or paramagnetic solution
  • the mixed liquid from the particle inlet 2 with a flow rate of 0.001 m/s-0.01 m/s.
  • the particle-free magnetic liquid is injected from the pinch flow inlet 3 at the same flow rate, and the particles or cells can be focused by the action of the pinch flow to make it close to the side of the magnetic pole channel, and its focusing width is 2-600 microns.
  • the pole array can generate high-intensity ( ⁇ 2.3 Tesla) and high-gradient ( ⁇ 1100 Tesla/m) magnetic fields, so it can generate sufficient magnetic separation for small-sized particles, and the particles
  • the magnetic force is proportional to the volume, so the negative magnetophoretic force of the large-sized particles is larger, and the lateral displacement is also larger, while the small particles are smaller due to the smaller force, and the lateral displacement is also smaller.
  • particles or cells of different sizes at the outlet of the sorting channel will enter different outlets of the sorting channel.
  • 0.5 micron particles will enter the third sorting channel outlet 14, and 1 micron particles will enter Entering the outlet 13 of the second sorting channel, the 2-micron particles will enter the first sorting channel 12, thereby realizing the separation of particles of three different sizes.
  • the nano-magnetic particles the magnetic susceptibility is greater than the magnetic susceptibility of the magnetic solution, the diameter is 0.2-1 ⁇ m
  • the non-magnetic particles the diameter is greater than or equal to 0.5 ⁇ m
  • the magnetic solution is injected into the pinch inlet 3
  • the magnetic force of the two kinds of particles is in opposite directions.
  • the magnetic particles will be affected by the magnetophoretic force and move to the magnetic pole array, while the non-magnetic particles will be negatively affected The magnetophoretic force moves away from the magnetic pole array.
  • the non-magnetic particles of 0.5 microns will enter the second sorting channel outlet 13 and the first sorting channel outlet 12, and the nano-magnetic particles of 0.2-1 microns will enter the third sorting channel.
  • the outlet 14 of the channel is selected, thereby realizing both magnetophoresis and negative magnetophoresis sorting in the same microchannel.
  • Embodiment 2 of the present invention also discloses a method for manufacturing a magnetic separation microfluidic chip, as shown in Figures 6-7, including:
  • Step 201 Use MEMS (Micro Electro Mechanical Systems) technology, soft lithography method or printing by 3D printer to make a microfluidic chip;
  • the microfluidic chip has a microchannel unit and a plurality of high magnetic conductivity alloy embedded regions;
  • the micro-channel unit includes: a sorting channel and a magnetic pole channel; the number of the magnetic pole channels is two;
  • the high magnetic permeability alloy embedded area includes a first area, a second area, and a third area; each of the two magnetic pole channels There is a magnetic pole channel inlet, and two of the magnetic pole channels share a magnetic pole channel outlet;
  • Step 202 Embed a third high magnetic permeability alloy in the third region, and fix a third permanent magnet above the third high magnetic permeability alloy, the direction of the magnetic field lines of the third permanent magnet is perpendicular to the first The plane where the three high magnetic permeability alloys are located;
  • Step 203 injecting a solution that is uniformly mixed with ferromagnetic powder and pure water into the two magnetic pole channels through the two magnetic pole channel inlets, so as to make the third high magnetic permeability alloy, the third permanent magnet and all the magnetic pole channels.
  • the ferromagnetic powder is preliminarily fixed in the preset magnetic pole array area;
  • Step 204 inject liquid PDMS (polydimethylsiloxane) into the two magnetic pole channels from the two magnetic pole channel inlets, and pass through the microchannel filter column structure, and respectively in the first area and the second area.
  • the first high magnetic permeability alloy 6 and the second high magnetic permeability alloy are embedded, and then the liquid PDMS is solidified, so that the ferromagnetic powder is completely fixed in the preset magnetic pole array area; the first high magnetic permeability alloy and the first high magnetic permeability alloy are The distance between the two high magnetic permeability alloys and the magnetic pole array is 5-20 microns;
  • Step 205 withdraw the third high magnetic permeability alloy and the third permanent magnet from the microfluidic chip, and then fix the first permanent magnet above the first high magnetic permeability alloy 6, and then fix the first permanent magnet on the A second permanent magnet is fixed above the second high magnetic permeability alloy; the magnetic field lines of the first permanent magnet and the second permanent magnet are both perpendicular to the plane, but the magnetic pole directions of the two are opposite.
  • the mass ratio of ferromagnetic powder to pure water in the solution ranges from 1:500 to 1:50; the solution is oscillated uniformly by a vibrator and an ultrasonic oscillator.
  • the ratio of the prepolymer to the curing agent in the liquid PDMS ranges from 3:1 to 12:1;
  • Liquid PDMS is cured by being placed in an oven at 80°C for 0.5-24 hours.
  • the volume of the third permanent magnet is greater than or equal to 1 ⁇ 10 -6 cubic meters, and the material remanence is greater than or equal to 0.5 Tesla;
  • the distance between the third permanent magnet and the sidewall surface of the sorting channel is 100-200 microns
  • FIG. 7 is a flowchart of a method for manufacturing a magnetic separation chip, which can be divided into six steps.
  • the first step is to fabricate a conventional microfluidic chip by soft lithography.
  • the microchannel unit of the chip can be fabricated, including the first magnetic pole channel 20, the second magnetic pole channel 16 and the sorting channel 11, and the first high The magnetic permeability alloy embedded region 25 , the second high magnetic permeability alloy embedded region 26 and the third high magnetic permeability alloy embedded region 8 .
  • the second step is to embed a third high magnetic permeability alloy 24 in the third high magnetic permeability alloy embedded region 8, so that the distance from the side wall surface of the sorting channel is 100-200 microns.
  • the third step is to fix the third permanent magnet 27 above the third high magnetic permeability alloy 24.
  • the volume of the third permanent magnet 27 is greater than or equal to 1 ⁇ 10 -6 cubic meters, and the material is a strong magnet with a remanence greater than or equal to 0.5 Tesla. Orientation is perpendicular to the paper side down.
  • the fourth step is to configure the ferromagnetic powder (the material is ferrite powder or iron particle powder, the particle size range is 1-20 microns) and pure water into a mixed liquid according to the mass ratio of 1:50-1:500, using a vibrator.
  • the ferromagnetic powder the material is ferrite powder or iron particle powder, the particle size range is 1-20 microns
  • pure water into a mixed liquid according to the mass ratio of 1:50-1:500, using a vibrator.
  • the fifth step is to inject liquid polydimethylsiloxane (PDMS, the ratio of prepolymer and curing agent is 3:1-12:1) into the magnetic pole from the first magnetic pole channel inlet 1 and the second magnetic pole channel inlet 15 channel through the microchannel filter column structure, and then the first high magnetic permeability alloy 6 and the second high magnetic permeability alloy 9 are embedded in the first high magnetic permeability alloy embedded region 25 and the second high magnetic permeability alloy embedded region 26 respectively. , and then placed in an oven at 80 °C for 1-2 hours to solidify the liquid PDMS, thereby fixing the ferromagnetic powder in the magnetic pole array area.
  • PDMS liquid polydimethylsiloxane
  • the sixth step is to withdraw the third high magnetic permeability alloy 24 and the third permanent magnet 27 from the chip, and then 19 and the second permanent magnet 17.
  • the magnetic induction of the two permanent magnets is: the direction of the magnetic field of the first permanent magnet 19
  • the direction of the magnetic field of the second permanent magnet 17 is perpendicular to the paper surface upwards, so that the magnetic fields generated by the two magnetic pole arrays are opposite in direction and parallel to the bottom surface of the microchannel, thus completing the fabrication of the magnetic separation chip.
  • the resolution of negative magnetophoretic separation is increased to the sub-micron level, and the resolution of the separation size difference is increased to 1 micron. at the same time,
  • the invention can construct a magnetic pole array in the area of 1-25 micrometers away from the microchannel, so that the magnetic action distance between the magnetic pole array and the sorted sample can be shortened to within 25 micrometers, and the strong magnetic field generated by the permanent magnet is conducted to the magnetic field through the soft magnetic alloy.
  • the magnetic pole array generates a sufficiently strong magnetic field intensity and magnetic field intensity gradient inside the microchannel, which greatly improves the magnetic force on the sorted samples.
  • the secondary and tertiary sorting of non-magnetic particles or biological samples with a diameter of 0.5 microns and above can be realized, and the resolution of negative magnetophoretic sorting can be improved from micron level to submicron level.
  • the resolution of particle sorting size difference is improved to 0.5 microns, that is, particles or cells with a diameter size difference of 0.5 microns can be sorted, for example, 0.5 micron and 1 micron non-magnetic particles can be sorted.
  • the sorting of nano-scale magnetic particles and non-magnetic particles of 0.5 microns and above can be realized.
  • the throughput of the above two sorting modes can reach 10 6 /h.
  • the present invention can also be used to capture magnetic particles, such as capturing biochemical samples specifically bound to magnetic beads.
  • the biological binding effect is adsorbed on the surface of the biochemical sample, so that the biochemical sample is magnetically captured near the magnetic pole array.
  • the liquid carrier in the sorting channel is a non-magnetic liquid.
  • modules in the device in the implementation scenario may be distributed in the device in the implementation scenario according to the description of the implementation scenario, or may be located in one or more devices different from the implementation scenario with corresponding changes.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.

Abstract

本发明提出一种磁分选微流控芯片,包括:基底、芯片模型材料层、微通道单元、磁分选单元;芯片模型材料层设置在基底上,微通道单元与所属磁分选单元均设置在芯片模型材料层中;微通道单元包括分选通道、磁极通道;分选通道设置有多个分选通道入口与多个分选通道出口;磁分选单元包括永磁体、高导磁合金、设置在磁极通道中的磁极阵列;高导磁合金将永磁体的磁场传导至磁极阵列,使磁极阵列在分选通道的左右位置产生极性相反的磁场,在分选通道将待处理颗粒按照尺寸大小分选到不同的分选通道出口。本方案将生物样品和颗粒的负磁泳分选分辨率从微米级提升到纳米级。

Description

一种磁分选微流控芯片及其制作方法 技术领域
本发明涉及磁分选微流控芯片的技术领域,特别涉及一种磁分选微流控芯片及其制作方法。
背景技术
细胞、细菌和微粒等样品的分离提纯是生化样品制备的关键环节,将特定尺寸的生化样品从复杂样品中分选出来,或者将几种不同尺寸或类别的生化样品分开,都能够为后续的检测分析的准确性提供保障。近些年亚微米级别的生物样品例如细胞外囊泡(30-1000nm)等凸显出愈发重要的科研意义,因此生物样品分选对象的尺度也急需由微米级向纳米级发展。
目前用于微米级细胞或者颗粒的分选方法已经相对成熟,但是由于尺度效应,将这些方法应用于纳米颗粒的分选时却达不到良好的效果,甚至不起作用。在此基础上对各种方法进行改进之后发展了一些纳米颗粒的分选提纯方法,但是这其中有些方法会对生物样品产生损伤,例如光学法会产生焦耳热,介电泳法的表面电位可能会损伤细胞,超声法则由于分辨率和通量的限制,也不适用于分选生物样品。对于亚微米生物样品的分离提纯目前有一些比较成熟的常规方法,以细胞外囊泡的分离纯化为例,主要有超速离心法,密度梯度离心法,超滤法和体积排阻色谱法。然而这些方法都有一定的局限性,例如超速离心法和密度梯度离心法所需的仪器昂贵,处理时间长且需要的样本量大,超滤法则容易因阻塞导致分离效率低,而体积排阻色谱法则受到上样量和色谱柱使用次数限制,因此急需发展新方法来克服这些缺陷,以达到高效分离提纯细胞外囊泡等亚微米级生物样品的目的。近几年基于微流控芯片的细胞外囊泡分离提纯逐渐成为研究热点,微流控技术提供了一种相对简单、低成本且连续的分离方法,其中由于微纳磁珠的重要介质作用,微流控磁分选结合磁珠免疫法是目前研究最多的。与其他方法相比,磁分选具有不损伤生物样品、磁场灵活可控、系统相对简单、成本低、通量高等特点,并且磁珠作为磁介质,已经在微米级细胞的分选捕获中得到广泛应用,因此磁分选在纳米生物样品的处理中极具潜力。
磁分选在生物样品的处理中可分为有标记分选和无标记分选,对应正磁泳分选(或简称磁泳分选)和负磁泳分选两种方式。有标记分选通常是借助磁珠在生物样品上进行标记,然后将磁珠通过 外部磁场产生的磁泳力进行操纵,从完整样品体系中分离出来,从而实现特定样品的分选。磁标记的优点是磁珠可以通过外部磁场进行精确操控,目前已经实现对纳米磁珠的操控,并且对磁珠进行表面修饰后可以和特定的细胞进行免疫性结合,从而实现特定捕获,其缺点是磁珠和细胞结合后再移除相对困难,并且当不同细胞样品具有相同表面标记物时,都会被磁珠特异性结合,从而干扰样品的纯度。无标记分由两种方法,一个是利用细胞本身的顺磁性或反磁性,通过外部磁场进行分离,但这种方法需要依赖细胞本身的特性,应用受限。另一种方式就是在顺磁性盐溶液或者铁磁溶液中,结合外部高梯度磁场对细胞进行负磁泳分离,该方法结构简单,易于实现,但是目前基本集中在微米级细胞或者颗粒的分选,在尺寸方面的分辨率有待提高。
现有的无标记磁分选技术(负磁泳分选)大都采用永磁体直接提供磁分选力,其缺点是永磁体无法靠近分选样品,在磁分选微流控芯片中,永磁体到分选通道的距离都大于等于500微米,另一方面,在距离永磁体越近的区域,其产生的磁场强度和磁场强度梯度会越大,从而作用在颗粒样品上的磁力也越大(磁力正比于磁场强度、磁场强度梯度,颗粒体积和颗粒与溶液的磁化率差值),由于受到该距离的限制,负磁泳分选的分辨率目前只停留在细胞层面(≥3.5微米),分选尺寸差别的分辨率大于等于5微米,即只能分选尺寸差别在5微米以上的生物样品。
发明内容
针对现有技术中的缺陷,本发明提出了一种磁分选微流控芯片及其制作方法;
具体的,本发明提出了以下具体的实施例:
本发明实施例提出了一种磁分选微流控芯片,包括:基底、芯片模型材料层、微通道单元、磁分选单元;所述芯片模型材料层设置在所述基底上,所述微通道单元与所属磁分选单元均设置在所述芯片模型材料层中;
所述微通道单元包括分选通道、磁极通道;所述分选通道设置有多个分选通道入口与多个分选通道出口;
所述磁分选单元包括永磁体、高导磁合金、设置在所述磁极通道中的磁极阵列;其中,所述高导磁合金用于将所述永磁体的磁场传导至所述磁极阵列,以使所述磁极阵列在所述分选通道的同一侧左右位置产生高强度与高梯度且极性相反的两个磁场,进而在所述分选通道将待处理颗 粒按照尺寸大小分选到不同的所述分选通道出口。
在一个具体的实施例中,所述磁极通道包括对称排布的第一磁极通道与第二磁极通道;所述第一磁极通道设置有第一磁极通道入口、所述第二磁极通道设置有第二磁极通道入口;所述第一磁极通道与所述第二磁极通道两者设置有一个共用的磁极通道出口;且所述第一磁极通道与所述第二磁极通道两者中均设置有微通道过滤柱;
所述第一磁极通道与所述第二磁极通道两者内部的磁极阵列的磁极性相反。
在一个具体的实施例中,所述分选通道入口包括:颗粒入口、夹流入口;所述颗粒入口与所述夹流入口两者的宽度之和与所述分选通道的宽度相同。
在一个具体的实施例中,所述颗粒入口与所述夹流入口的宽度比范围为1:4-1:0.5。
在一个具体的实施例中,所述微通道单元的高度范围为10-800微米;
所述磁极通道的宽度范围为5-500微米;
所述分选通道宽度范围为10-1000微米;
所述磁极阵列由三角形结构的铁磁粉末或者半圆形结构的铁磁粉末组成;
磁极阵列尖端处到分选通道的距离为1-25微米;
所述铁磁粉末的粒径范围为1-20微米;
所述高导磁合金为软磁合金;所述高导磁合金的厚度范围为10-800微米。
在一个具体的实施例中,所述基底由玻璃或透明树脂材料制成,所述芯片模型材料层由聚二甲基硅氧烷、玻璃或者透明树脂材料制成。
本发明实施例还提出了一种磁分选微流控芯片的制作方法,包括:
用MEMS工艺、软光刻方法或通过3D打印机打印制作微流控芯片;所述微流控芯片中具有微通道单元和多个高导磁合金嵌入区域;所述微通道单元包括:分选通道、磁极通道;所述磁极通道的数量为两个;所述高导磁合金嵌入区域包括第一区域、第二区域、第三区域;两个所述磁极通道各有一磁极通道入口,两个所述磁极通道共用一个磁极通道出口;
在所述第三区域嵌入第三高导磁合金,并在所述第三高导磁合金上方固定第三永磁体,所 述第三永磁体的磁感线方向垂直于所述第三高导磁合金所在平面;
将由铁磁粉末与纯水混合均匀的溶液由两个所述磁极通道入口注入两个所述磁极通道中,以在所述第三高导磁合金、所述第三永磁体以及所述磁极通道中的过滤柱结构的作用下,将所述铁磁粉末初步固定在预设磁极阵列区域;
将液态PDMS由两个所述磁极通道入口注入两个所述磁极通道,并穿过微通道过滤柱结构,且在第一区域和第二区域分别嵌入第一高导磁合金与第二高导磁合金,第一高导磁合金和第二高导磁合金到磁极阵列的距离为5-20微米,然后使液态PDMS固化,从而将所述铁磁粉末完全固定在所述预设磁极阵列区域;
将所述第三高导磁合金和所述第三永磁体从所述微流控芯片中撤出,然后在所述第一高导磁合金上方固定第一永磁体,在所述第二高导磁合金上方固定第二永磁体;所述第一永磁体与所述第二永磁体两者的磁感线均垂直于所述平面,但两者的磁极方向相反。
在一个具体的实施例中,所述溶液中铁磁粉末与纯水的质量比例范围为1:500-1:50;所述溶液通过振动器和超声振荡器振荡均匀。
在一个具体的实施例中,所述液态PDMS中的预聚体和固化剂的比例范围为3:1-12:1;
液态PDMS通过被放置在烘箱中用80℃的温度烘烤0.5-24小时实现固化。
在一个具体的实施例中,
所述第三永磁体的体积≥1×10 -6立方米,材质剩磁大于等于0.5特斯拉;
所述第三永磁体与所述分选通道侧壁面的距离为100-200微米。
以此,本发明实施例具有以下技术效果:本方案解决了负磁泳分选分辨率低的问题,将生物样品和颗粒的负磁泳分选分辨率从微米级提升到亚微米级。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例提出的一种磁分选微流控芯片的整体结构图;
图2为本发明实施例提出的一种磁分选微流控芯片的正视图;
图3为本发明实施例提出的一种磁分选微流控芯片中磁分选单元的局部放大图;
图4为本发明实施例提出的一种磁分选微流控芯片中磁分选单元结构尺寸示意图;
图5为本发明实施例提出的一种磁分选微流控芯片中分选通道结构尺寸示意图;
图6为本发明实施例提出的一种磁分选微流控芯片的制作方法流程示意图;
图7为本发明实施例提出的一种磁分选微流控芯片的制作方法流程图。
图例说明:
1-第一磁极通道入口;2-颗粒入口;3-夹流入口;4-芯片模型材料层;5-基底;6-第一高导磁合金;7-第一磁极阵列;8-第三高导磁合金嵌入区域;9-第二高导磁合金;10-第二磁极阵列;11-分选通道;12-第一分选通道出口;13-第二分选通道出口;14-第三分选通道出口;15-第二磁极通道入口;16-第二磁极通道;17-第二永磁体;18-磁极通道出口;19-第一永磁体;20-第一磁极通道;21-磁分选单元,22-第一微通道过滤柱;23-第二微通道过滤柱;24-第三高导磁合金;25-第一高导磁合金嵌入区域;26-第二高导磁合金嵌入区域;27-第三永磁体。
具体实施方式
在下文中,将更全面地描述本公开的各种实施例。本公开可具有各种实施例,并且可在其中做出调整和改变。然而,应理解:不存在将本公开的各种实施例限于在此公开的特定实施例的意图,而是应将本公开理解为涵盖落入本公开的各种实施例的精神和范围内的所有调整、等同物和/或可选方案。
在本公开的各种实施例中使用的术语仅用于描述特定实施例的目的并且并非意在限制本公开的各种实施例。如在此所使用,单数形式意在也包括复数形式,除非上下文清楚地另有指示。除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本公开的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化 的含义或过于正式的含义,除非在本公开的各种实施例中被清楚地限定。
实施例1
本发明实施例1公开了一种磁分选微流控芯片,如图1-5所示,包括:基底5、芯片模型材料层4、微通道单元、磁分选单元;所述芯片模型材料层4设置在所述基底5上,所述微通道单元与所属磁分选单元均设置在所述芯片模型材料层4中;
所述微通道单元包括分选通道11、磁极通道(例如如图1所示包括第一磁极通道20和第二磁极通道16);所述分选通道设置有多个分选通道入口与多个分选通道出口;
具体的,如图1-2所示,微通道单元由两个磁极通道和一个分选通道组成,磁极通道用于合成两个磁极性相反的磁极阵列,磁极阵列中的磁极阵列单元形状为三角形或半圆形,用于为分选通道中的颗粒分离提供磁动力。分选通道内的载流体为磁性液体,用于分选非磁性颗粒或者细胞。
所述磁分选单元包括永磁体、高导磁合金、设置在所述磁极通道中的磁极阵列;其中,所述高导磁合金用于将所述永磁体的磁场传导至所述磁极阵列,以使所述磁极阵列在所述分选通道的同一侧左右位置产生高强度与高梯度且极性相反的两个磁场,进而在所述分选通道将待处理颗粒按照尺寸大小分选到不同的所述分选通道出口。
磁分选单元由永磁体、高导磁合金以及磁极阵列组成,永磁体的磁场通过高导磁合金传导至磁极阵列处,被磁化的磁极阵列能够在分选通道的局部区域产生高强度和高梯度的磁场,可以实现亚微米级别的生物样品或者颗粒的负磁泳分选,以及同时对纳米级磁性颗粒和非磁性颗粒的磁泳和负磁泳分选。
磁分选单元由外部的永磁体提供磁场,通过高导磁合金将磁场传导至磁极阵列,被磁化后的具有特定形状的磁极阵列能够在微通道局部区域形成具有高强度和高梯度的磁场。其中永磁体材质剩磁大于等于0.5特斯拉的强磁铁,高导磁合金材质为软磁合金(例如坡莫合金、纳米晶或者硅钢片等),厚度为10-800微米,磁极阵列中的铁磁粉末材质为铁氧体粉末或者铁颗粒粉末,粉末粒径范围为1-20微米。
分选通道的作用是将颗粒按照尺寸大小进行分选,通道宽度为10-1000微米,包括两个通道入口和2-3个通道出口(如图1中所示为3个分选通道出口的情况),通道入口分为颗粒入口2和夹流入口3,其宽度比为1:4-1:0.5,颗粒入口2和夹流入口3的宽度之和与分选通道相同。在 颗粒入口2可通入不少于2种不同尺寸的颗粒或细胞,通过夹流作用可将颗粒或细胞进行聚焦,使其靠近磁极通道一侧,其聚焦宽度为2-600微米。颗粒入口2和夹流入口3中通入的液体载体均为磁性溶液(磁流体或者顺磁性溶液),当处于磁性溶液中的非磁性颗粒或细胞经过分选单元时,将会受到负磁泳力的排斥作用而远离磁极阵列,并且其所受的作用力与体积成正比,因此大尺寸的颗粒所受的负磁泳力较大,其产生的侧向位移也更大,而小颗粒由于所受作用力小,侧向位移也更小,通过侧向位移的不同,在分选通道的出口处不同尺寸的颗粒或细胞将进入不同的分选通道出口,附图1中所示为3个分选通道出口,可将颗粒按照尺寸大小分选为3类,通道出口的数量与需要分选的颗粒的尺寸种类相同。当磁性颗粒(磁化率大于磁性溶液的磁化率)和非磁性颗粒混合经过磁分选单元时,两种颗粒所受的磁力方向相反,此时磁性颗粒将受到磁泳力作用而向磁极阵列移动,而非磁性颗粒将受到负磁泳力而远离磁极阵列移动,从而在同一个微通道中同时实现了磁泳和负磁泳分选。
进一步的,所述磁极通道包括对称排布的第一磁极通道与第二磁极通道;所述第一磁极通道设置有第一磁极通道入口1、所述第二磁极通道设置有第二磁极通道入口15;所述第一磁极通道与所述第二磁极通道两者设置有一个共用的磁极通道出口;且所述第一磁极通道与所述第二磁极通道两者中均设置有微通道过滤柱;
所述第一磁极通道与所述第二磁极通道两者内部的磁极阵列的磁极性相反。
此外,所述分选通道入口包括:颗粒入口2、夹流入口3;所述颗粒入口2与所述夹流入口3两者的宽度之和与所述分选通道的宽度相同。
进一步的,所述颗粒入口2与所述夹流入口3的宽度比范围为1:4-1:0.5;颗粒入口2与夹流入口3两个入口的流速相等,范围为0.001米/秒-0.01米/秒;出口的宽度与分选通道相同,范围为10-1000微米。
进一步的,所述微通道单元的高度范围为10-800微米;
所述磁极通道的宽度范围为5-500微米,高度为10-800微米,长度大于20毫米。
所述分选通道宽度范围为10-1000微米,高度为10-800微米;
所述磁极阵列由三角形结构的铁磁粉末或者半圆形结构的铁磁粉末组成;磁极通道内部的磁极阵列长度为1-10毫米,由若各个三角形或者半圆形结构组成,其中三角形的为等边三角形, 底边宽为10-500微米,高度为10-200微米,若是半圆形结构,则半圆形的半径为5-250微米,三角形的尖端处或者半圆形顶端边缘到分选通道的侧壁面的距离为1-25微米。磁极通道中磁极阵列后端具有过滤柱结构,允许通过的通道宽度为5微米;
所述铁磁粉末的粒径范围为1-20微米;
所述高导磁合金为软磁合金;所述高导磁合金的厚度范围为10-800微米,长度与磁极阵列长度相等,范围为1-10毫米,其到磁极阵列的距离为5-20微米。
磁分选单元中的两个永磁体呈磁场方向相反布置,磁感线均垂直于高导磁合金片,材质为剩磁大于等于0.5特斯拉的强磁铁,体积≥1×10 -6立方米,永磁体到磁极阵列的距离为1-2毫米。
所述基底5由玻璃或透明树脂材料制成,所述芯片模型材料层4由聚二甲基硅氧烷(也即PDMS)、玻璃或者透明树脂材料制成。
实施例2
本发明实施例2还公开了一种磁分选微流控芯片,图1是磁分选微流控芯片整体结构图,图2是磁分选微流控芯片正视图,此实施例芯片为三级分选芯片,芯片模型材料层4为聚二甲基硅氧烷(PDMS),芯片的基底5为玻璃基底。
芯片的微通道单元包括分选通道11、第一磁极通道20和第二磁极通道16。分选通道11包括颗粒入口2、夹流入口3、第一分选通道出口12、第二分选通道出口13和第三分选通道出口14,颗粒入口2和夹流入口3的宽度比为1:4-1:0.5,两者的宽度之和与分选通道11相同,范围为5-1000微米。第一磁极通道20包括第一磁极通道入口1和第一微通道过虑柱22,第二磁极通道16包括第二磁极通道入口15和第二微通道过虑柱23,两个磁极通道呈对称排布,并且共用一个磁极通道出口18,过滤柱结构详见附图4。
芯片的磁分选单元21包括磁极通道内的第一磁极阵列7、第二磁极阵列10、第一高导磁合金6、第二高导磁合金9、第一永磁体19和第二永磁体17组成,其中永磁体用于提供磁场,两个永磁体的尺寸相同,磁体体积≥1×10 -6立方米,材质为剩磁大于等于0.5特斯拉的强磁铁。高导磁合金材质为软磁合金(例如坡莫合金、纳米晶或者硅钢片等),厚度为10-800微米。以图2为例,图2中第一永磁体A19的磁场方向为垂直纸面向下,第二永磁体17的磁场方向为垂直纸面向上。高导磁合金能够将永磁体的磁场传导至由铁磁粉末构成的磁极阵列处,磁极阵列由若干个三角形组成,被磁化后的磁极阵列能够在三角形尖端处产生高梯度的磁场。
附图3是图2中磁分选单元的局部放大图,其中展示了两个磁极阵列之间的磁感线,第一磁极阵列7为N极,第二磁极阵列10位S极。每个磁极阵列的长度范围(L1)和(L3)均为1-10毫米,第一高导磁合金6和第二高导磁合金9的长度范围(L2)和(L4)与磁极阵列长度相等,范围也是 1-10毫米。两个磁极阵列之间的距离(L5)为1-3毫米,第三高导磁合金嵌入区域8的长度等于L1+L5+L3。
附图4是图3中磁分选单元结构尺寸示意图,分选通道和磁极通道的高度相等,范围为10-800微米。分选通道的宽度(W1)为10-1000微米,长度大于20毫米,磁极通道的宽度(W2)为5-500微米,长度大于20毫米,第一高导磁合金6和第二高导磁合金9到磁极阵列的距离(W3)为5-20微米,磁极阵列三角形尖端处到分选通道侧面的距离(W4)为1-25微米,两个磁极尖端的距离(W5)为10-500微米,该距离即为三角形的底边长度。在磁极通道内的过滤柱结构中,允许通过的通道宽度(W7)为5微米。第一永磁体19和第二永磁体17到磁极阵列的距离(W8)为1-2毫米。
附图5是分选通道结构尺寸示意图。其中第三高导磁合金嵌入区域8到分选通道侧面的距离(W11)为50-100微米,分选通道出口的宽度(W9)与分选通道宽度(W1)相等,为10-1000微米,三个分选通道出口的宽度相等,每两个出口通道之间的距离(W10)为2-100微米。
在进行颗粒或者细胞分选时,首先将不同尺寸的颗粒或者细胞在磁性液体中均匀混合,颗粒浓度均为2×10 7个/毫升,此实施例中以直径为0.5微米、1微米和2微米的颗粒为例,将三种颗粒在磁性液体(磁流体或者顺磁性溶液)中等量均匀混合,然后用0.001米/秒-0.01米/秒的流速将颗粒混合液体从颗粒入口2注入分选通道11,同时用相同的流速将无颗粒的磁性液体从夹流入口3注入,通过夹流作用可将颗粒或细胞进行聚焦,使其靠近磁极通道一侧,其聚焦宽度为2-600微米。当处于磁性溶液中的非磁性颗粒或细胞经过磁分选单元21时,将会受到磁极阵列产生的负磁泳力作用而远离磁极阵列,由于磁极阵列尖端处离分选通道11的距离为5微米之内,在此范围内磁极阵列能够产生高强度(≥2.3特斯拉)和高梯度(≥1100特斯拉/米)的磁场,因此能够对小尺寸颗粒产生足够的分选磁力,并且颗粒所受的磁力与体积成正比,因此大尺寸的颗粒所受的负磁泳力较大,其产生的侧向位移也更大,而小颗粒由于所受作用力小,侧向位移也更小,通过侧向位移的不同,在分选通道的出口处不同尺寸的颗粒或细胞将进入不同的分选通道出口,附图1中0.5微米颗粒将进入第三分选通道出口14,1微米颗粒将进入第二分选通道出口13,2微米颗粒将进入第一分选通道12,从而实现了三种不同尺寸颗粒的分离。
当纳米磁性颗粒(磁化率大于磁性溶液的磁化率,直径为0.2-1微米)和非磁性颗粒(直径大于等于0.5微米)以及磁性溶液混合,然后从夹流入口3注入,并且将颗粒入口2作为夹流入口3注入磁性液体,在经过磁分选单元21时,两种颗粒所受的磁力方向相反,此时磁性颗粒将受到磁泳力作用而向磁极阵列移动,而非磁性颗粒将受到负磁泳力而远离磁极阵列移动,在附图1中0.5微米的非磁性颗粒将进入第二分选通道出口13和第一分选通道出口12,0.2-1微米的纳米磁性颗粒将进入第三分选通道出口14,从而在同一个微通道中同时实现了磁泳和负磁泳分选。
实施例3
本发明实施例2还公开了一种磁分选微流控芯片的制作方法,如图6-7所示,包括:
步骤201、用MEMS(微机电系统)工艺、软光刻方法或通过3D打印机打印制作微流控芯片;所述微流控芯片中具有微通道单元和多个高导磁合金嵌入区域;所述微通道单元包括:分选通道、磁极通道;所述磁极通道的数量为两个;所述高导磁合金嵌入区域包括第一区域、第二区域、第三区域;两个所述磁极通道各有一磁极通道入口,两个所述磁极通道共用一个磁极通道出口;
步骤202、在所述第三区域嵌入第三高导磁合金,并在所述第三高导磁合金上方固定第三永磁体,所述第三永磁体的磁感线方向垂直于所述第三高导磁合金所在平面;
步骤203、将由铁磁粉末与纯水混合均匀的溶液由两个所述磁极通道入口注入两个所述磁极通道中,以在所述第三高导磁合金、所述第三永磁体以及所述磁极通道中的过滤柱结构的作用下,将所述铁磁粉末初步固定在预设磁极阵列区域;
步骤204、将液态PDMS(聚二甲基硅氧烷)由两个所述磁极通道入口注入两个所述磁极通道,并穿过微通道过滤柱结构,且在第一区域和第二区域分别嵌入第一高导磁合金6与第二高导磁合金,然后使液态PDMS固化,从而将所述铁磁粉末完全固定在所述预设磁极阵列区域;所述第一高导磁合金和第二高导磁合金到磁极阵列的距离为5-20微米;
步骤205、将所述第三高导磁合金和所述第三永磁体从所述微流控芯片中撤出,然后在所述第一高导磁合金6上方固定第一永磁体,在所述第二高导磁合金上方固定第二永磁体;所述第一永磁体与所述第二永磁体两者的磁感线均垂直于所述平面,但两者的磁极方向相反。
在一个具体的实施例中,所述溶液中铁磁粉末与纯水的质量比例范围为1:500-1:50;所述溶液通过振动器和超声振荡器振荡均匀。
在一个具体的实施例中,所述液态PDMS中的预聚体和固化剂的比例范围为3:1-12:1;
液态PDMS通过被放置在烘箱中用80℃的温度烘烤0.5-24小时实现固化。
在一个具体的实施例中,
所述第三永磁体的体积≥1×10 -6立方米,材质剩磁大于等于0.5特斯拉;
所述第三永磁体与所述分选通道侧壁面的距离为100-200微米
具体的,附图7是磁分选芯片制作方法流程图,可以分为六个步骤。
第一步是用软光刻方法制作常规的微流控芯片,通过该步骤可制作芯片的微通道单元,包括第一磁极通道20、第二磁极通道16和分选通道11,以及第一高导磁合金嵌入区域25、第二高导磁合 金嵌入区域26和第三高导磁合金嵌入区域8。
第二步是在第三高导磁合金嵌入区域8中嵌入第三高导磁合金24,使其到分选通道侧壁面的距离为100-200微米。
第三步是在第三高导磁合金24上方固定第三永磁体27,第三永磁体27的体积≥1×10 -6立方米,材质剩磁大于等于0.5特斯拉的强磁铁,磁场方向垂直纸面向下。
第四步是将铁磁粉末(材质为铁氧体粉末或者铁颗粒粉末,粒径范围1-20微米)与纯水按照1:50-1:500的质量比例配置成混合液体,用振动器振动1分钟,再用超声振荡器用60瓦的功率振荡2分钟,使粉末均匀分散后从第一磁极通道入口1和第二磁极通道入口15注入磁极通道中,在第一微通道过滤柱22、第二微通道过滤柱23、第三高导磁合金24和第三永磁体27的作用下,将铁磁粉末初步固定在磁极阵列区域,其中微通道过滤柱能够将铁磁粉末截留,而液体则可以正常流通。
第五步是将液态的聚二甲基硅氧烷(PDMS,预聚体和固化剂的比例为3:1-12:1)由第一磁极通道入口1和第二磁极通道入口15注入磁极通道,使其穿过微通道过滤柱结构,接着在第一高导磁合金嵌入区域25和第二高导磁合金嵌入区域26分别嵌入第一高导磁合金6和第二高导磁合金9,然后放入烘箱中用80℃的温度烘烤1-2小时,使液态PDMS固化,从而将铁磁粉末固定在磁极阵列区域。
第六步是将第三高导磁合金24和第三永磁体27从芯片中撤出,然后19和第二永磁体17,两个永磁体的磁感为:第一永磁体19的磁场方向垂直纸面向上,第二永磁体17的磁场方向则垂直纸面向下,从而使两个磁极阵列产生的磁场方向相反,并且均平行于微通道底面,至此便完成了磁分选芯片的制作。
以此,通过本方案中的磁分选微流控芯片,将负磁泳分选的分辨率提高到亚微米级别,并且将分选尺寸差别的分辨率提高到1微米。与此同时,
本发明能够在距离微通道的1-25微米的区域构建磁极阵列,可使磁极阵列和分选样品的磁力作用距离缩短至25微米以内,并通过软磁合金将永磁体产生的强磁场传导至磁极阵列,在微通道内部产生足够强的磁场强度和磁场强度梯度,使分选样品所受到的磁力得到极大提升。在负磁泳模式下,可以实现直径为0.5微米及以上非磁性颗粒或者生物样品的二级分选和三级分选,将负磁泳分选的分辨率从微米级别提高到亚微米级别,并且将颗粒分选尺寸差别的分辨率提升至0.5微米,即可以分选直径尺寸差别为0.5微米的颗粒或者细胞,例如分选0.5微米和1微米非磁性颗粒。在磁泳和负磁用相结合的模式下,可以实现纳米级磁性颗粒和0.5微米及以上非磁性颗粒的分选。以上两种分选模式的通量均能达到10 6个/小时。
此外,本发明除了可以进行非磁性粒子的负磁泳分选,也可以用于磁性粒子的捕获,例如捕获与磁珠特异性结合的生化样品,经过功能性修饰的磁珠可以通过抗原抗体特异性结合作用吸附在生化样品表面,从而使生化样品带有磁性而被捕获在磁极阵列附近,此时分选通道中的液体载体为非磁性液体。
本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
上述本发明序号仅仅为了描述,不代表实施场景的优劣。
以上公开的仅为本发明的几个具体实施场景,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (10)

  1. 一种磁分选微流控芯片,其特征在于,包括:基底、芯片模型材料层、微通道单元、磁分选单元;所述芯片模型材料层设置在所述基底上,所述微通道单元与所属磁分选单元均设置在所述芯片模型材料层中;
    所述微通道单元包括分选通道、磁极通道;所述分选通道设置有多个分选通道入口与多个分选通道出口;
    所述磁分选单元包括永磁体、高导磁合金、设置在所述磁极通道中的磁极阵列;其中,所述高导磁合金用于将所述永磁体的磁场传导至所述磁极阵列,以使所述磁极阵列在所述分选通道的同一侧左右位置产生高强度与高梯度且极性相反的两个磁场,进而在所述分选通道将待处理颗粒按照尺寸大小分选到不同的所述分选通道出口。
  2. 如权利要求1所述的芯片,其特征在于,所述磁极通道包括对称排布的第一磁极通道与第二磁极通道;所述第一磁极通道设置有第一磁极通道入口、所述第二磁极通道设置有第二磁极通道入口;所述第一磁极通道与所述第二磁极通道两者设置有一个共用的磁极通道出口;且所述第一磁极通道与所述第二磁极通道两者中均设置有微通道过滤柱;
    所述第一磁极通道与所述第二磁极通道两者内部的磁极阵列的磁极性相反。
  3. 如权利要求1或2所述的芯片,其特征在于,所述分选通道入口包括:颗粒入口、夹流入口;所述颗粒入口与所述夹流入口两者的宽度之和与所述分选通道的宽度相同。
  4. 如权利要求3所示的方法,其特征在于,所述颗粒入口与所述夹流入口的宽度比范围为1:4-1:0.5。
  5. 如权利要求1所述的芯片,其特征在于,所述微通道单元的高度范围为10-800微米;
    所述磁极通道的宽度范围为5-500微米;
    所述分选通道宽度范围为10-1000微米;
    所述磁极阵列由三角形结构的铁磁粉末或者半圆形结构的铁磁粉末组成;
    所述铁磁粉末的粒径范围为1-20微米;
    所述磁极阵列尖端处到分选通道的距离为1-25微米;
    所述高导磁合金为软磁合金;所述高导磁合金的厚度范围为10-800微米。
  6. 如权利要求1所述的芯片,其特征在于,所述基底由玻璃或透明树脂材料制成,所述芯片模型材料层由聚二甲基硅氧烷、玻璃或者透明树脂材料制成。
  7. 一种磁分选微流控芯片的制作方法,其特征在于,包括:
    用MEMS工艺、软光刻方法或通过3D打印机打印制作微流控芯片;所述微流控芯片中具有微通道单元和多个高导磁合金嵌入区域;所述微通道单元包括:分选通道、磁极通道;所述磁极通道的数量为两个;所述高导磁合金嵌入区域包括第一区域、第二区域、第三区域;两个所述磁极通道各有一磁极通道入口,两个所述磁极通道共用一个磁极通道出口;
    在所述第三区域嵌入第三高导磁合金,并在所述第三高导磁合金上方固定第三永磁体,所述第三永磁体的磁感线方向垂直于所述第三高导磁合金所在平面;
    将由铁磁粉末与纯水混合均匀的溶液由两个所述磁极通道入口注入两个所述磁极通道中,以在所述第三高导磁合金、所述第三永磁体以及所述磁极通道中的过滤柱结构的作用下,将所述铁磁粉末初步固定在预设磁极阵列区域;
    将液态PDMS由两个所述磁极通道入口注入两个所述磁极通道,并穿过微通道过滤柱结构,且在第一区域和第二区域分别嵌入第一高导磁合金与第二高导磁合金,然后使液态PDMS固化,从而将所述铁磁粉末完全固定在所述预设磁极阵列区域;
    将所述第三高导磁合金和所述第三永磁体从所述微流控芯片中撤出,然后在所述第一高导磁合金上方固定第一永磁体,在所述第二高导磁合金上方固定第二永磁体;所述第一永磁体与所述第二永磁体两者的磁感线均垂直于所述平面,但两者的磁极方向相反;
    所述第一高导磁合金和第二高导磁合金到磁极阵列的距离为5-20微米。
  8. 如权利要求7所述的方法,其特征在于,所述溶液中铁磁粉末与纯水的质量比例范围为1:500-1:50;所述溶液通过振动器和超声振荡器振荡均匀。
  9. 如权利要求7所述的方法,其特征在于,所述液态PDMS中的预聚体和固化剂的比例范围为3:1-12:1;
    液态PDMS通过被放置在烘箱中用80℃的温度烘烤0.5-24小时实现固化。
  10. 如权利要求7所述的方法,其特征在于,
    所述第三永磁体的体积≥1×10 -6立方米,材质剩磁大于等于0.5特斯拉;
    所述第三永磁体与所述分选通道侧壁面的距离为100-200微米。
PCT/CN2020/116866 2020-09-22 2020-09-22 一种磁分选微流控芯片及其制作方法 WO2022061528A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/116866 WO2022061528A1 (zh) 2020-09-22 2020-09-22 一种磁分选微流控芯片及其制作方法
US17/883,289 US20220379312A1 (en) 2020-09-22 2022-08-08 Magnetic sorting microfluidic chip and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116866 WO2022061528A1 (zh) 2020-09-22 2020-09-22 一种磁分选微流控芯片及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/883,289 Continuation US20220379312A1 (en) 2020-09-22 2022-08-08 Magnetic sorting microfluidic chip and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2022061528A1 true WO2022061528A1 (zh) 2022-03-31

Family

ID=80844540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116866 WO2022061528A1 (zh) 2020-09-22 2020-09-22 一种磁分选微流控芯片及其制作方法

Country Status (2)

Country Link
US (1) US20220379312A1 (zh)
WO (1) WO2022061528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575629A (zh) * 2022-09-28 2023-01-06 清华大学 磁调控标志物捕获芯片及制备方法和标志物快速检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786076B (zh) * 2022-12-14 2023-07-04 深圳市第三人民医院(深圳市肝病研究所) 一种磁分离微流控芯片装置及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842161A (zh) * 2007-08-23 2010-09-22 辛温尼奥生物系统公司 用于目标物质的俘获磁性拣选系统
WO2010117458A1 (en) * 2009-04-10 2010-10-14 President And Fellows Of Harvard College Manipulation of particles in channels
CN209451870U (zh) * 2018-12-21 2019-10-01 昆明理工大学 一种基于磁操控实现双重液滴分选的微流控装置
CN110964636A (zh) * 2019-12-05 2020-04-07 东南大学 一种基于层流的自动化核酸磁珠纯化的微流控芯片

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842161A (zh) * 2007-08-23 2010-09-22 辛温尼奥生物系统公司 用于目标物质的俘获磁性拣选系统
WO2010117458A1 (en) * 2009-04-10 2010-10-14 President And Fellows Of Harvard College Manipulation of particles in channels
CN209451870U (zh) * 2018-12-21 2019-10-01 昆明理工大学 一种基于磁操控实现双重液滴分选的微流控装置
CN110964636A (zh) * 2019-12-05 2020-04-07 东南大学 一种基于层流的自动化核酸磁珠纯化的微流控芯片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115575629A (zh) * 2022-09-28 2023-01-06 清华大学 磁调控标志物捕获芯片及制备方法和标志物快速检测方法
CN115575629B (zh) * 2022-09-28 2023-08-29 清华大学 磁调控标志物捕获芯片及制备方法和标志物快速检测方法

Also Published As

Publication number Publication date
US20220379312A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
CN114100704B (zh) 一种磁分选微流控芯片及其制作方法
US20220379312A1 (en) Magnetic sorting microfluidic chip and manufacturing method therefor
Issadore et al. Self-assembled magnetic filter for highly efficient immunomagnetic separation
US9869619B2 (en) Self-assembled magnetic arrays
Gómez-Pastora et al. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices
EP2864051B1 (en) Sorting particles using high gradient magnetic fields
Pamme et al. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow
Jung et al. Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples
Zhou et al. Microfluidic separation of magnetic particles with soft magnetic microstructures
US20120122731A1 (en) Screening molecular libraries using microfluidic devices
Teste et al. Magnetic core shell nanoparticles trapping in a microdevice generating high magnetic gradient
JP6929375B2 (ja) 軟磁性構造を用いたナノ細孔を介してdna、rnaおよび他の生体分子を引っ張る方法およびシステム
JP2006010535A (ja) 標的物質捕捉方法および装置
Descamps et al. Magnetic polymers for magnetophoretic separation in microfluidic devices
Su et al. Magnetophoresis in microfluidic lab: Recent advance
Gooneratne et al. Selective manipulation of superparamagnetic beads by a magnetic microchip
Zeng et al. Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device
Mekkaoui et al. Nanonewton magnetophoretic microtrap array for microsystems
Kong et al. An efficient microfluidic sorter: implementation of double meandering micro striplines for magnetic particles switching
KR101576624B1 (ko) 미세자기영동 채널회로 및 자성구조체를 이용한 바이오물질의 이송, 트래핑 및 탈출 장치
Baier et al. Modelling immunomagnetic cell capture in CFD
CN108918500B (zh) 基于免疫磁珠标记的sers分选方法
US20160266019A1 (en) Method for separating multiple biological materials
Descamps et al. Magnetic Polymers for Magnetophoretic Separation in Microfluidic Devices. Magnetochemistry 2021, 7, 100
CN115786076B (zh) 一种磁分离微流控芯片装置及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954382

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09.08.2023)