WO2022059414A1 - Processing liquid supply device, substrate processing device, and processing liquid supply method - Google Patents

Processing liquid supply device, substrate processing device, and processing liquid supply method Download PDF

Info

Publication number
WO2022059414A1
WO2022059414A1 PCT/JP2021/030354 JP2021030354W WO2022059414A1 WO 2022059414 A1 WO2022059414 A1 WO 2022059414A1 JP 2021030354 W JP2021030354 W JP 2021030354W WO 2022059414 A1 WO2022059414 A1 WO 2022059414A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
treatment liquid
sensitive gel
circulation
liquid
Prior art date
Application number
PCT/JP2021/030354
Other languages
French (fr)
Japanese (ja)
Inventor
直子 有馬
真樹 鰍場
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2022059414A1 publication Critical patent/WO2022059414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to an apparatus for supplying a processing liquid to a substrate, an apparatus for processing a substrate with the processing liquid, and a method for supplying the processing liquid to the substrate.
  • the substrate to be processed includes, for example, a substrate for FPD (Flat Panel Display) such as a semiconductor wafer, a liquid crystal display device and an organic EL (Electroluminescence) display device, a substrate for an optical disk, a substrate for a magnetic disk, and a substrate for an optical magnetic disk.
  • FPD Full Panel Display
  • organic EL Electrode
  • Photomask substrate, ceramic substrate, solar cell substrate, etc. are included.
  • a method of treating the surface of a substrate with a treatment liquid is known.
  • a precise circuit pattern is formed on the substrate. Therefore, in order to suppress the adhesion of impurities to the substrate, the pipe for sending the treatment liquid is provided with a filter for removing impurities in the treatment liquid (see Patent Document 1 below).
  • the filter disclosed in Patent Document 1 is configured to capture impurities larger than its pore diameter. Therefore, as the usage time elapses, the filter becomes clogged and the impurity removal efficiency decreases, so that it is necessary to replace the filter regularly.
  • one object of the present invention is to provide a treatment liquid supply device, a substrate treatment device, and a treatment liquid supply method capable of recovering the impurity removal efficiency without replacing the filter when the impurity removal efficiency of the filter is lowered. To provide.
  • One embodiment of the present invention provides a processing liquid supply device that supplies a processing liquid to a substrate and supplies the processing liquid to a processing unit that processes the substrate.
  • This treatment liquid supply device includes an impurity removing unit that removes impurities in the treatment liquid, a drainage flow path that drains the treatment liquid from the impurity removal unit, and a treatment liquid from the impurity removal unit toward the treatment unit. It is equipped with a supply channel for sending.
  • the impurity removing unit is a storage tank for storing the treatment liquid and a temperature-sensitive gel filter housed in the storage tank, and is either hydrophilic or hydrophobic with the transition temperature as a boundary.
  • a temperature-sensitive gel filter having a temperature-sensitive gel that changes, and a circulation flow path that circulates the treatment liquid by drawing the treatment liquid from the storage tank and returning the treatment liquid to the storage tank. It includes a circulation flow path for passing the circulating treatment liquid through the temperature-sensitive gel filter, and a heating unit for heating the temperature-sensitive gel filter to a temperature equal to or higher than the transition temperature.
  • a temperature-sensitive gel filter having a temperature-sensitive gel is housed in a storage tank.
  • the temperature-sensitive gel has the property of changing from one of hydrophilic and hydrophobic to the other with the transition temperature as a boundary.
  • Impurities present in the treatment liquid are mainly hydrophobic substances such as metals and organic substances. Therefore, when the temperature-sensitive gel is hydrophobic, the temperature-sensitive gel captures the impurities due to the hydrophobic interaction between the temperature-sensitive gel and the impurities. On the other hand, when the temperature-sensitive gel is hydrophilic, the hydrophobic interaction between the temperature-sensitive gel and the impurities does not sufficiently act, and the impurities are released from the temperature-sensitive gel. Therefore, the temperature-sensitive gel filter is either in a state where impurities in the treatment liquid can be captured or in a state where impurities can be released into the treatment liquid by being heated to a temperature equal to or higher than the transition temperature by the heating unit. Can be switched to.
  • the treatment liquid is circulated through the circulation flow path and passed through the temperature-sensitive gel filter to heat-sensitive impurities in the treatment liquid flowing through the storage tank and the circulation flow path.
  • Impurities can be removed from the treatment liquid by capturing it in a sex gel filter. Then, the treatment liquid from which impurities have been sufficiently removed can be supplied to the treatment unit via the supply flow path.
  • the treatment liquid can be passed through the temperature-sensitive gel filter with the temperature-sensitive gel changed to hydrophilic. Impurities can be released from the thermal gel filter and the impurities can be released into the treatment liquid. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter can be restored. Then, by removing the treatment liquid containing a large amount of impurities from the storage tank via the drainage flow path, the impurity removal unit can be returned to a usable state again.
  • the impurity removal efficiency of the temperature-sensitive gel filter is lowered, the impurity removal efficiency can be restored without replacing the temperature-sensitive gel filter.
  • the temperature-sensitive gel may be an LCST-type temperature-sensitive gel that exhibits hydrophobicity at a temperature equal to or higher than the lower limit critical solution temperature (LCST: Lower Critical Solution Temperature).
  • LCST corresponds to the transition temperature of the LCST type thermosensitive gel.
  • the temperature-sensitive gel may be a UCST-type temperature-sensitive gel that exhibits hydrophobicity when the temperature becomes lower than the upper limit critical solution temperature (UCST: Upper Critical Solution Temperature).
  • UCST corresponds to the transition temperature of the UCST type thermosensitive gel.
  • the state of the temperature-sensitive gel can be rapidly changed from hydrophilic to hydrophobic by heating. Therefore, the capture of impurities by the temperature-sensitive gel filter can be started promptly. As a result, the supply of the treatment liquid from which impurities have been removed to the supply flow path can be started promptly.
  • Changing the temperature-sensitive gel from hydrophilic to hydrophobic by controlling the temperature is expressed as making the temperature-sensitive gel hydrophobic.
  • changing the temperature-sensitive gel from hydrophobic to hydrophilic by controlling the temperature is expressed as making the temperature-sensitive gel hydrophilic.
  • the impurity removing unit further includes an impurity amount measuring unit for measuring the amount of impurities in the processing liquid circulated by the circulation flow path.
  • an impurity amount measuring unit for measuring the amount of impurities in the processing liquid circulated by the circulation flow path.
  • the delivery destination of the treatment liquid is switched based on the amount of impurities measured by the impurity amount measuring unit. Therefore, the delivery destination of the treatment liquid can be appropriately switched based on the impurity removal efficiency of the temperature-sensitive gel.
  • the temperature-sensitive gel filter further includes a filter member that holds the temperature-sensitive gel while allowing the treatment liquid to pass through. Therefore, even when the hydrophilic temperature-sensitive gel absorbs liquid and swells, the temperature-sensitive gel can be maintained at a predetermined position in the storage tank without flowing out to the outside of the temperature-sensitive gel filter.
  • the inside of the storage tank is partitioned into a first storage portion and a second storage portion by the temperature-sensitive gel filter.
  • the first accommodating portion is located on the upstream side of the second accommodating portion in the circulation direction of the treatment liquid with the temperature-sensitive gel filter interposed therebetween.
  • the drainage flow path is connected to the first accommodating portion, and the supply flow path is connected to the second accommodating portion.
  • the treatment liquid having a relatively large amount of impurities on the upstream side in the circulation direction can be sent to the drainage flow path as compared with the temperature-sensitive gel filter.
  • a treatment liquid having a relatively small amount of impurities on the downstream side in the circulation direction can be sent to the supply flow path as compared with the temperature-sensitive gel filter.
  • the supply flow path is an upstream supply flow path through which the treatment liquid sent from the impurity removal unit flows, and a treatment liquid supplied from the impurity removal unit via the upstream supply flow path.
  • a supply tank for storing the liquid
  • a downstream supply flow path for supplying the treatment liquid in the supply tank to the treatment unit.
  • the treatment liquid from which impurities have been sufficiently removed is sent out from the impurity removal unit and stored in the supply tank. Therefore, in order to restore the impurity removal efficiency of the temperature-sensitive gel filter, even if the delivery of the treatment liquid from the impurity removal unit to the supply flow path is temporarily stopped, the treatment liquid in the supply tank is used. Can be supplied to the processing unit. Therefore, the treatment liquid can be stably supplied to the treatment unit while recovering the impurity removal efficiency of the temperature-sensitive gel filter.
  • the circulation flow path stores the upstream circulation flow path to which the treatment liquid is sent from the storage tank and the treatment liquid supplied from the storage tank via the upstream circulation flow path. It includes a tank and a downstream circulation flow path for returning the treatment liquid in the circulation tank to the storage tank.
  • the treatment liquid can be stored in the circulation tank which is a part of the circulation flow path. Therefore, the amount of the treatment liquid circulating in the circulation flow path and the storage tank can be increased.
  • the substrate processing apparatus further includes a return flow path for returning the contamination treatment liquid discharged from the treatment unit to the impurity removal unit. Therefore, by reusing the contamination treatment liquid discharged from the treatment unit, the cost and environmental load required for substrate treatment can be reduced.
  • the substrate processing apparatus further includes a new liquid flow path for supplying the new processing liquid not used in the processing unit to the circulation tank.
  • the amount of impurities in the new treatment liquid not used in the treatment unit is very small compared to the contamination treatment liquid used in the treatment unit. However, if the amount of impurities is further reduced from the new treatment liquid by using the impurity removal unit including the temperature sensitive gel filter, the treatment liquid having higher cleanliness can be supplied to the treatment unit.
  • the impurity removing unit further includes a cleaning liquid flow path that supplies a cleaning liquid for cleaning the temperature-sensitive gel filter to the storage tank. Therefore, when the efficiency of removing impurities of the temperature-sensitive gel filter is lowered, the cleaning liquid can be supplied into the storage tank to quickly clean the temperature-sensitive gel filter.
  • a plurality of the impurity removing units are provided.
  • Each of the impurity removing units is configured to switch the delivery destination of the treatment liquid to either the supply flow path or the drainage flow path. Therefore, even if the impurity removal efficiency of the temperature-sensitive gel filter of the impurity removal unit decreases, impurities are released from the temperature-sensitive gel of the temperature-sensitive gel filter of the impurity removal unit to recover the impurity removal efficiency. While doing so, impurities can be sufficiently removed from the treatment liquid using another impurity removal unit, and the treatment liquid can be sent to the supply flow path.
  • a substrate processing apparatus including the processing liquid supply apparatus and the processing unit is provided. According to this substrate processing apparatus, the above-mentioned effect is obtained.
  • Another embodiment of the present invention provides a treatment liquid supply method for supplying a treatment liquid to a treatment unit that treats a substrate with the treatment liquid.
  • the treatment liquid is applied to the temperature-sensitive gel filter in a state where the temperature-sensitive gel contained in the temperature-sensitive gel filter housed in the storage tank for storing the treatment liquid is hydrophobic.
  • the impurity removing step of allowing the temperature-sensitive gel filter to capture the impurities in the treatment liquid and removing the impurities from the treatment liquid, and the impurity removing step, the treatment liquid is sent to the treatment unit.
  • the cleaning liquid is passed through the temperature-sensitive gel filter in a state where the temperature-sensitive gel is hydrophilic.
  • the impurity discharge step of releasing impurities from the temperature-sensitive gel filter to the cleaning liquid and the impurity discharge step the drainage liquid for removing the treatment liquid from the storage tank via the drainage flow path. Including the process.
  • the treatment liquid is passed through the temperature-sensitive gel filter to capture impurities in the treatment liquid by the temperature-sensitive gel filter and from the treatment liquid. Impurities can be removed. Then, the treatment liquid from which impurities have been sufficiently removed can be supplied to the treatment unit via the supply flow path.
  • the treatment liquid in the storage tank is passed through the temperature-sensitive gel filter in a hydrophilic state of the temperature-sensitive gel. Impurities captured by the temperature-sensitive gel filter can be released into the treatment liquid. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter can be restored. Then, by removing a large amount of impurities from the storage tank together with the treatment liquid through the drainage flow path, the impurity removal unit can be returned to a usable state again.
  • the impurity removal efficiency of the temperature-sensitive gel filter is lowered, the impurity removal efficiency can be restored without replacing the temperature-sensitive gel filter.
  • the treatment liquid supply method is a hydrophobizing step of changing the temperature-sensitive gel to hydrophobicity by heating the temperature-sensitive gel filter to a temperature equal to or higher than the transition temperature. Further includes a hydrophilization step of changing the state of the temperature-sensitive gel to hydrophilicity by cooling the temperature-sensitive gel filter to a temperature lower than the transition temperature.
  • the temperature-sensitive gel becomes hydrophobic by heating, and the temperature-sensitive gel becomes hydrophilic by cooling. That is, the temperature-sensitive gel is an LCST type temperature-sensitive gel.
  • the temperature-sensitive gel can be quickly hydrophobized, for example, by heating with a heater. Therefore, the capture of impurities by the temperature-sensitive gel filter can be started promptly. As a result, the supply of the treatment liquid from which impurities have been removed to the supply flow path can be started promptly.
  • the impurity removing step causes the treatment liquid to be circulated by a circulation flow path that draws the liquid from the storage tank and returns the liquid to the storage tank, whereby the temperature-sensitive gel filter is used.
  • the impurity release step includes a circulation cleaning step of allowing the cleaning liquid to pass through the temperature-sensitive gel filter by circulating the cleaning liquid through the circulation flow path.
  • impurities are removed from the treatment liquid by circulating the treatment liquid through the circulation flow path and passing the treatment liquid through the temperature-sensitive gel filter, and the cleaning liquid is circulated through the circulation flow path to cause the temperature-sensitive gel. Impurities are released from the temperature sensitive gel filter by passing the cleaning solution through the filter.
  • the liquid circulation allows the treatment liquid and the cleaning liquid to efficiently pass through the temperature-sensitive gel filter. As a result, impurities are quickly removed from the treatment liquid and the impurity removal efficiency is quickly restored.
  • the treatment liquid supply method further includes a return step of returning the contaminated treatment liquid used in the treatment unit to the storage tank via the return flow path.
  • the treatment liquid circulated by the circulation flow path in the circulation removal step is the contamination treatment liquid
  • the cleaning liquid circulated by the circulation flow path in the circulation cleaning step is the contamination treatment liquid. ..
  • the contaminated treatment liquid discharged from the treatment unit returns to the storage tank. That is, the contamination treatment liquid is reused. This makes it possible to reduce the cost and environmental load required for substrate processing.
  • a contamination treatment liquid is used as a treatment liquid for capturing impurities in the temperature-sensitive gel filter and a cleaning liquid for releasing impurities from the temperature-sensitive gel filter. Therefore, when the impurity removal efficiency of the temperature-sensitive gel filter is lowered, it is not necessary to change the liquid type of the liquid circulated by the circulation flow path, so that the recovery of the impurity removal efficiency can be started promptly. Therefore, impurities can be rapidly released from the temperature-sensitive gel filter as compared with the configuration in which a cleaning liquid of a type different from the contamination treatment liquid is passed through the temperature-sensitive gel filter.
  • the cleaning liquid in the impurity release step, is supplied to the storage tank, the temperature-sensitive gel filter is immersed in the cleaning liquid, and the cleaning liquid in the storage tank is drained. It includes a dipping cleaning step of draining liquid from the liquid flow path to form a drainage flow in the storage tank.
  • the temperature-sensitive gel filter is immersed in the cleaning liquid supplied in the storage tank.
  • impurities are released from the temperature-sensitive gel into the cleaning liquid.
  • a drainage flow is formed in the storage tank by draining the cleaning liquid in the storage tank from the drainage flow path. Impurities released into the cleaning liquid are removed from the storage tank together with the cleaning liquid by this drainage flow. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter can be restored.
  • a first storage tank and a second storage tank are provided as the storage tank.
  • the impurity release step is performed on the first temperature-sensitive gel filter in a state where the first temperature-sensitive gel contained in the first temperature-sensitive gel filter housed in the first storage tank is hydrophilic.
  • the step includes a step of releasing impurities from the first temperature-sensitive gel filter into the cleaning liquid by passing the cleaning liquid through the cleaning liquid.
  • the second temperature-sensitive gel contained in the second temperature-sensitive gel filter housed in the second storage tank is hydrophobic while the impurity discharge step is being executed.
  • the impurities are released from the first temperature-sensitive gel filter housed in the first storage tank into the cleaning liquid, they are housed in another storage tank (second storage tank).
  • the second temperature-sensitive gel filter can sufficiently remove impurities from the treatment liquid.
  • Impurities can be sufficiently removed from the treatment liquid using a temperature-sensitive gel filter, and the treatment liquid can be sent to the supply flow path.
  • the processing liquid can be stably supplied to the processing unit by using the temperature-sensitive gel filter in another storage tank while recovering the impurity removal efficiency of the temperature-sensitive gel filter in the storage tank.
  • Yet another embodiment of the present invention provides a treatment liquid supply method for supplying a treatment liquid to a treatment unit that treats a substrate with the treatment liquid.
  • the treatment liquid in a storage tank containing a temperature-sensitive gel filter having a temperature-sensitive gel that changes from one of hydrophilic and hydrophobic to the other is circulated with the transition temperature as a boundary.
  • Whether or not the amount of impurities in the treatment liquid passing through the temperature-sensitive gel filter is less than the predetermined reference impurity amount in a state where the temperature of the temperature-sensitive gel filter is adjusted to a temperature at which the gel becomes hydrophobic. Includes an impurity amount determination step for determining. Further, when the amount of impurities measured by the impurity amount determination step is smaller than the reference impurity amount, the supply step of sending the treatment liquid to the supply flow path for sending the treatment liquid toward the treatment unit is executed.
  • the temperature of the temperature-sensitive gel filter is adjusted to a temperature at which the temperature-sensitive gel becomes hydrophilic, and then the temperature of the temperature-sensitive gel filter is adjusted.
  • the supply step and the drainage step are selectively executed so that the drainage step of delivering the treatment liquid to the drainage flow path for draining the treatment liquid is executed.
  • FIG. 1 is a schematic view showing a configuration example of a substrate processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing an example of an electrical configuration of a main part of the substrate processing apparatus.
  • FIG. 3 is a flowchart for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus.
  • FIG. 4A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus.
  • FIG. 4B is a schematic diagram for explaining an operation example of the impurity removing unit.
  • FIG. 4C is a schematic diagram for explaining an operation example of the impurity removing unit.
  • FIG. 4D is a schematic diagram for explaining an operation example of the impurity removing unit.
  • FIG. 4A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus.
  • FIG. 4B is a schematic diagram for explaining an operation example of the impurity removing unit.
  • FIG. 4E is a schematic diagram for explaining an operation example of the impurity removing unit.
  • FIG. 5 is a schematic view showing a configuration example of the substrate processing apparatus according to the second embodiment of the present invention.
  • FIG. 6A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus according to the second embodiment.
  • FIG. 6B is a schematic diagram for explaining an operation example of the impurity removing unit according to the second embodiment.
  • FIG. 6C is a schematic diagram for explaining an operation example of the impurity removing unit according to the second embodiment.
  • FIG. 6D is a schematic diagram for explaining an operation example of the impurity removing unit according to the second embodiment.
  • FIG. 6A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus according to the second embodiment.
  • FIG. 6B is a schematic diagram for explaining an operation example of the impurity removing unit according to the second embodiment.
  • FIG. 6C is a
  • FIG. 7 is a schematic view showing a configuration example of the substrate processing apparatus according to the third embodiment of the present invention.
  • FIG. 8A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus according to the third embodiment.
  • FIG. 8B is a schematic diagram for explaining an operation example of the impurity removing unit according to the third embodiment.
  • FIG. 9 is a schematic diagram showing a configuration example of the substrate processing apparatus according to the fourth embodiment of the present invention.
  • FIG. 10A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus according to the fourth embodiment.
  • FIG. 10B is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth embodiment.
  • FIG. 10A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus according to the fourth embodiment.
  • FIG. 10B is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth
  • FIG. 10C is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth embodiment.
  • FIG. 10D is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth embodiment.
  • FIG. 10E is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth embodiment.
  • FIG. 11 is a schematic diagram for explaining a modified example of the storage tank provided in the impurity removing unit.
  • FIG. 12 is a schematic view showing a configuration example of a substrate processing apparatus when the impurity removing unit according to the first embodiment and the impurity removing unit according to the fourth embodiment are combined.
  • FIG. 13 is a flowchart for explaining an operation example of the impurity removing unit when the temperature sensitive gel provided in the impurity removing unit according to the first embodiment is a UCST type temperature sensitive gel.
  • FIG. 1 is a schematic view showing a configuration example of the substrate processing apparatus 1 according to the first embodiment of the present invention.
  • the substrate processing device 1 is a single-wafer processing device that processes disk-shaped substrates W such as semiconductor wafers one by one.
  • the substrate processing apparatus 1 includes a processing unit 2 that processes the substrate W with the processing liquid, a transfer robot (not shown) that conveys the substrate W to the processing unit 2, and a processing liquid supply device that supplies the processing liquid to the processing unit 2. 3 and a controller 4 (see FIG. 2) that controls the substrate processing apparatus 1.
  • the treatment liquid supplied to the substrate W in the treatment unit 2 includes a chemical liquid, a rinse liquid, and the like.
  • the chemical solution is, for example, hydrofluoric acid (hydrogen fluoride water: HF).
  • the chemical solution is not limited to hydrofluoric acid, but sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, buffered hydrofluoric acid (BHF), dilute hydrofluoric acid (DHF), ammonia water, hydrogen peroxide solution, surfactant, corrosion inhibitor. It may be a liquid containing at least one of them.
  • Examples of the chemical solution in which these are mixed include SPM (sulfuric acid hydrogen peroxide solution mixed solution), SC1 (ammonia hydrogen peroxide solution mixed solution: APM), SC2 (hydrochloric acid hydrogen peroxide solution mixed solution: HPM) and the like. ..
  • the rinse liquid is, for example, Deionized Water (DIW).
  • DIW Deionized Water
  • the rinsing solution is not limited to DIW, but includes carbonated water, electrolytic ionized water, ozone water, hydrochloric acid water having a diluted concentration (for example, 10 ppm or more and 100 ppm or less), ammonia water, reduced water (hydrogen water), and a hydrophilic organic solvent. It may be a liquid containing at least one of.
  • the hydrophilic organic solvent may be, for example, a liquid containing at least one of IPA (isopropyl alcohol), methanol, ethanol, and acetone.
  • IPA isopropyl alcohol
  • the processing unit 2 includes a spin chuck 10, a processing liquid nozzle 11, a cup 12, and a processing chamber 13.
  • the spin chuck 10 rotates the substrate W around the vertical rotation axis A1 passing through the central portion of the substrate W while holding one substrate W in a horizontal posture.
  • the treatment liquid nozzle 11 supplies the treatment liquid to the upper surface of the substrate W.
  • the cup 12 surrounds the spin chuck 10 and receives the processing liquid scattered from the substrate W.
  • the processing chamber 13 houses the spin chuck 10, the processing liquid nozzle 11 and the cup 12.
  • the treatment liquid used in the treatment unit 2 is referred to as a contamination treatment liquid. Therefore, the treatment liquid discharged from the bottom of the cup 12 is a contamination treatment liquid.
  • the spin chuck 10 includes a plurality of chuck pins 15, a spin base 16, a rotating shaft 17, and a spin motor 18.
  • the plurality of chuck pins 15 are arranged on the upper surface of the spin base 16 at intervals in the circumferential direction.
  • the plurality of chuck pins 15 grip the substrate W so that the substrate W can rotate integrally with the spin base 16.
  • the rotation axis 17 extends in the vertical direction along the rotation axis A1.
  • the upper end of the rotating shaft 17 is coupled to the center of the lower surface of the spin base 16.
  • the spin motor 18 rotates the spin base 16 and the substrate W by applying a rotational force to the rotating shaft 17.
  • the treatment liquid supply device 3 includes an impurity removing unit 20 for removing impurities in the treatment liquid, a drainage pipe 21 for draining the treatment liquid from the impurity removal unit 20, and an impurity removal unit 20 for removing the contamination treatment liquid from the treatment unit 2. It is provided with a return pipe 22 for returning to the surface and a supply unit 19 for sending a processing liquid from the impurity removing unit 20 toward the processing unit 2.
  • the supply unit 19 includes an upstream supply pipe 23 through which the processing liquid sent from the impurity removal unit 20 flows, a supply tank 24 for storing the treatment liquid supplied from the impurity removal unit 20 via the upstream supply pipe 23, and a supply tank. Further, a downstream supply pipe 25 for supplying the treatment liquid in the treatment unit 2 to the treatment unit 2 and a supply side return pipe 26 for returning the treatment liquid from the downstream supply pipe 25 to the supply tank 24 are further provided.
  • the supply flow path is composed of the flow path in the upstream supply pipe 23, the internal space of the supply tank 24, and the flow path in the downstream supply pipe 25.
  • the impurity removing unit 20 includes a storage tank 30 for storing the treatment liquid, a temperature-sensitive gel filter 31 housed in the storage tank 30, and a circulation pipe 32 for circulating the treatment liquid in the storage tank 30.
  • the circulation pipe 32 draws the treatment liquid in the storage tank 30 into the circulation pipe 32, moves the treatment liquid drawn into the circulation pipe 32 from one end to the other end, and returns the treatment liquid to the storage tank 30 to circulate the treatment liquid. Let me. As a result, the treatment liquid circulating in the circulation pipe 32 and the storage tank 30 passes through the temperature-sensitive gel filter 31.
  • the circulation pipe 32 is a pipe that forms a circulation flow path inside the circulation pipe 32.
  • the storage tank 30 has an internal space 33 for storing the treatment liquid.
  • the internal space 33 of the storage tank 30 is divided into a first accommodating portion 33a and a second accommodating portion 33b by a temperature-sensitive gel filter 31.
  • the first accommodating portion 33a is located on the upstream side of the second accommodating portion 33b in the circulation direction C of the treatment liquid with the temperature-sensitive gel filter 31 interposed therebetween.
  • the upstream end of the circulation pipe 32 is connected to the second accommodating portion 33b, and the downstream end of the circulation pipe 32 is connected to the first accommodating portion 33a.
  • the temperature-sensitive gel filter 31 partitions the internal space 33 of the storage tank 30 so that the second accommodating portion 33b is located above the first accommodating portion 33a. Therefore, while the circulation pipe 32 circulates the treatment liquid, the circulation pipe 32 extends to the inside of the storage tank 30 so that the upstream end of the circulation pipe 32 is located below the liquid level of the treatment liquid. There is.
  • a liquid level sensor 34 for detecting the height of the liquid level of the processing liquid in the storage tank 30 is provided in the storage tank 30.
  • the liquid level sensor 34 is preferably a non-contact type level sensor, and may be, for example, an ultrasonic type level sensor.
  • the impurity removing unit 20 includes a circulation pump 40, an upstream circulation valve 41, an impurity amount measuring unit 42, an intermediate circulation valve 43, a downstream circulation valve 44, a circulation heater 45, and a circulation thermometer 46.
  • the circulation pump 40, the upstream circulation valve 41, the impurity amount measuring unit 42, the intermediate circulation valve 43, the downstream circulation valve 44, the circulation heater 45, and the circulation thermometer 46 are directed from the upstream end side to the downstream end side of the circulation pipe 32. And they are intervened in this order.
  • the circulation pump 40 sends the processing liquid in the storage tank 30 to the circulation pipe 32.
  • the upstream circulation valve 41, the intermediate circulation valve 43, and the downstream circulation valve 44 open and close the circulation flow path in the circulation pipe 32.
  • the impurity amount measuring unit 42 is, for example, a device including at least one of a submerged particle measuring device and a metal concentration measuring device.
  • the submerged particle measuring instrument irradiates the sample with light, measures the scattering intensity of the light from the particles, and extracts the light intensity proportional to the size of the particles as an electric signal to determine the particle diameter and the number of particles. It is a device to measure.
  • the metal concentration measuring device is a device that measures a specific ion concentration in a liquid by an electrochemical measurement method using an ion-selective electrode method (ISE: Ion Selective Electrode).
  • ISE Ion Selective Electrode
  • the circulation thermometer 46 is an example of a circulation temperature detection unit that detects the temperature of the processing liquid in the circulation pipe 32.
  • the circulation heater 45 heats the processing liquid in the circulation pipe 32.
  • the circulation heater 45 is an example of a heating unit.
  • the circulation heating portion 32a heated by the circulation heater 45 in the flow path in the circulation pipe 32 is set on the downstream side of the downstream circulation valve 44 and on the upstream side of the circulation thermometer 46.
  • the circulation heater 45 is configured to heat the circulation heating portion 32a on the downstream side of the downstream circulation valve 44 and on the upstream side of the circulation thermometer 46, the circulation heater 45 is not configured to be interposed in the circulation pipe 32.
  • the circulation pipe 32 may be heated from the outside.
  • the temperature-sensitive gel filter 31 holds the temperature-sensitive gel 50 having the property of changing from one of hydrophilic and hydrophobic to the other with the transition temperature as a boundary, and the temperature-sensitive gel 50 while allowing the treatment liquid to pass through.
  • a filter member 51 includes a pair of sheet-like filters 52 that sandwich the temperature-sensitive gel 50 from both sides in the circulation direction C.
  • the temperature-sensitive gel 50 is a polymer copolymer that undergoes a pro-hydrophobic transition with the transition temperature as a boundary.
  • the prohydrophobic transition is the property of changing from one of hydrophilic and hydrophobic to the other.
  • Impurities present in the treatment liquid are mainly hydrophobic substances such as metals and organic substances. Therefore, when the temperature-sensitive gel 50 is hydrophobic, the temperature-sensitive gel 50 captures (adsorbs) impurities in the treatment liquid by hydrophobic interaction. On the other hand, when the temperature-sensitive gel 50 is hydrophilic, the hydrophobic interaction is weak, so that the temperature-sensitive gel 50 releases impurities into the treatment liquid.
  • the temperature-sensitive gel 50 changes reversibly from one of hydrophobic and hydrophilic to the other by changing the temperature.
  • the temperature-sensitive gel 50 exhibits a volumetric phase transition in which it absorbs water and swells under hydrophilic conditions, and dehydrates and contracts (aggregates) under hydrophobic conditions.
  • the temperature-sensitive gel 50 shows hydrophobicity at a temperature higher than the transition temperature and hydrophilicity at a temperature lower than the transition temperature
  • LCST-type temperature-sensitive gel 50 shows hydrophobicity at a temperature lower than the transition temperature and undergoes transition. It is classified as a UCST type temperature sensitive gel that exhibits hydrophilicity at a temperature higher than the temperature.
  • the LCST type thermosensitive gel exhibits hydrophobicity at a temperature higher than the transition temperature and hydrophilicity at a temperature lower than the transition temperature.
  • the UCST type thermosensitive gel exhibits hydrophobicity at a temperature below the transition temperature and hydrophilicity at a temperature higher than the transition temperature.
  • the LCST type temperature sensitive gel contains, for example, at least one of poly (N-alkylacrylamide), poly (N-isopropylacrylamide), poly (N-vinylalkylamide), polyvinylalkyl ether, and methylcellulose. May be good.
  • the UCST type temperature sensitive gel may contain at least one of poly (acrylamide-CO-acrylonitrile), poly (allylamine-CO-allylurea), and sulfobetaine polymer.
  • the temperature-sensitive gel is an LCST type temperature-sensitive gel.
  • the transition temperature (LCST) of the LCST type thermosensitive gel is higher than normal temperature (temperature of 5 ° C. or higher and 25 ° C. or lower), for example, 30 ° C. or higher and 50 ° C. or lower. Therefore, the change of the temperature-sensitive gel 50 from hydrophilic to hydrophobic requires heating by a heater, but the change of the temperature-sensitive gel 50 from hydrophobic to hydrophilic can be achieved by natural cooling. Natural cooling means that the temperature-sensitive gel filter 31 and the treatment liquid are cooled by the heat radiation of the temperature-sensitive gel filter 31 and the treatment liquid without using a cooling unit such as a cooler.
  • the return pipe 22 is a pipe that forms a return flow path inside the return pipe 22.
  • the upstream end of the return pipe 22 is connected to, for example, the cup 12.
  • the downstream end of the return pipe 22 is branched and connected to, for example, the circulation pipe 32.
  • the position where the return pipe 22 branches in the circulation pipe 32 is located on the downstream side of the intermediate circulation valve 43 and on the upstream side of the downstream circulation valve 44.
  • the return pipe 22 is not directly connected to the storage tank 30, but the return pipe 22 is branched and connected to the circulation pipe 32. Therefore, the treatment liquid is not sent directly from the return pipe 22 to the storage tank 30, but is sent to the storage tank 30 via the circulation pipe 32. Unlike this embodiment, the return pipe 22 may be directly connected to the first accommodating portion 33a of the storage tank 30.
  • the processing liquid supply device 3 is interposed in the return pipe 22 and includes a return valve 60 that opens and closes the flow path in the return pipe 22.
  • the drainage pipe 21 is a pipe that forms a drainage flow path inside the drainage pipe 21.
  • the upstream end of the drainage pipe 21 is connected to the first accommodating portion 33a of the storage tank 30.
  • the treatment liquid supply device 3 is further provided with a drainage valve 70 that is interposed in the drainage pipe 21 and opens and closes a flow path in the drainage pipe 21.
  • the treatment liquid supply device 3 may further include a drainage pipe (not shown) connected to the second accommodating portion 33b, and the drainage pipe may be further provided depending on the application. And the drainage pipe 21 may be used properly.
  • the upstream supply pipe 23 is a pipe that forms an upstream supply flow path inside the upstream supply pipe 23.
  • the upstream end of the upstream supply pipe 23 is branched and connected to, for example, the circulation pipe 32. It is preferable that the upstream end of the upstream supply pipe 23 is connected to the circulation pipe 32 on the downstream side of the circulation pump 40 and on the upstream side of the upstream circulation valve 41.
  • the pump that sends the processing liquid to the upstream supply pipe 23 can be omitted.
  • the downstream end of the upstream supply pipe 23 is connected to the supply tank 24.
  • the upstream supply pipe 23 is connected to the circulation pipe 32, but unlike this embodiment, the upstream supply pipe 23 may be directly connected to the first accommodating portion 33a of the storage tank 30.
  • the processing liquid supply device 3 is further provided with an upstream supply valve 80 that is interposed in the upstream supply pipe 23 and opens and closes the flow path in the upstream supply pipe 23.
  • the downstream supply pipe 25 is a pipe that forms a downstream supply flow path inside the downstream supply pipe 25.
  • the downstream supply pipe 25 extends to the inside of the supply tank 24 so that the upstream end of the downstream supply pipe 25 is located below the liquid level of the treatment liquid.
  • the downstream end of the downstream supply pipe 25 is connected to the treatment liquid nozzle 11.
  • the supply unit 19 includes a supply pump 81, a supply heater 82, a supply filter 83, and a downstream supply valve 84.
  • the supply pump 81, the supply heater 82, the supply filter 83, and the downstream supply valve 84 are interposed in the downstream supply pipe 25 in this order from the upstream side of the downstream supply pipe 25.
  • the supply pump 81 sends the processing liquid in the supply tank 24 to the downstream supply pipe 25.
  • the supply filter 83 is a filter that removes impurities in the processing liquid in the downstream supply pipe 25.
  • the supply filter 83 a filter suitable for use at a temperature higher than normal temperature is used.
  • the supply filter 83 includes, for example, a PTFE (polytetrafluoroethylene) hydrophobic membrane as a filtration membrane. If the supply filter 83 includes a PTFE hydrophobic film as a filtration film, the hydrophobic compound as an impurity can be effectively removed from the treatment liquid.
  • the downstream supply valve 84 opens and closes the flow path (downstream supply flow path) in the downstream supply pipe 25.
  • the supply heater 82 heats the processing liquid in the downstream supply pipe 25.
  • the supply heating portion 25a heated by the supply heater 82 in the flow path in the downstream supply pipe 25 is set, for example, on the downstream side of the supply pump 81 and on the upstream side of the supply filter 83.
  • the supply heater 82 does not have to be interposed in the downstream supply pipe 25 as long as it is configured to heat the supply heating portion 25a on the downstream side of the supply pump 81 and on the upstream side of the supply filter 83, and supplies downstream.
  • the pipe 25 may be heated from the outside.
  • the upstream end of the supply side return pipe 26 is branched and connected to the downstream supply pipe 25.
  • the downstream end of the supply-side return pipe 26 is connected to the supply tank 24.
  • the processing liquid supply device 3 is further provided with a supply-side circulation valve 85 that is interposed in the supply-side return pipe 26 and opens and closes a flow path (supply-side return flow path) in the supply-side return pipe 26.
  • the branch connection position of the supply side return pipe 26 is preferably located on the downstream side of the supply filter 83 and on the upstream side of the downstream supply valve 84. Since the branch connection position of the supply-side return pipe 26 is on the downstream side of the supply pump 81, it is not necessary to provide a pump for delivering the processing liquid to the supply-side return pipe 26 separately from the supply pump 81. Since the branch connection position of the supply-side return pipe 26 is on the downstream side of the supply heater 82, it is not necessary to provide a heater for heating the processing liquid in the supply tank 24 separately from the supply heater 82.
  • FIG. 2 is a block diagram for explaining the electrical configuration of the main part of the substrate processing device 1.
  • the controller 4 includes a microcomputer, and controls a controlled object provided in the substrate processing apparatus 1 according to a predetermined program. More specifically, the controller 4 includes a processor (CPU) 5 and a memory 6 in which a program is stored, and the processor 5 executes various control processes for board processing by executing the program. It is configured as follows.
  • the controller 4 includes a spin motor 18, a circulation heater 45, a supply heater 82, an impurity amount measuring unit 42, a circulation pump 40, a supply pump 81, a liquid level sensor 34, a circulation thermometer 46, an upstream circulation valve 41, and an intermediate circulation valve. 43, the downstream circulation valve 44, the feedback valve 60, the drain valve 70, the upstream supply valve 80, the downstream supply valve 84, the supply side circulation valve 85, and the like are controlled.
  • the controller 4 also controls the operation of the members provided in the substrate processing devices 1P, 1Q, and 1R according to each embodiment described later.
  • the downstream supply valve 84 is closed and the supply side circulation valve 85 is opened.
  • the processing liquid in the supply tank 24 circulates in the downstream supply pipe 25 and the supply side return pipe 26. Specifically, the processing liquid in the supply tank 24 is drawn from the upstream end of the downstream supply pipe 25, and the processing liquid drawn into the downstream supply pipe 25 moves to the downstream end of the supply side return pipe 26, and the supply tank Return to within 24.
  • the temperature of the processing liquid in the supply tank 24 can be raised by operating the supply heater 82 while the processing liquid in the supply tank 24 circulates in the downstream supply pipe 25 and the supply side return pipe 26. ..
  • the downstream supply valve 84 is opened, the supply side circulation valve 85 is closed, and the supply pump 81 is operated. As a result, the processing liquid in the supply tank 24 is supplied to the processing liquid nozzle 11 of the processing unit 2.
  • the circulation of the treatment liquid in the supply tank 24 may be omitted.
  • the processing liquid discharged from the processing liquid nozzle 11 is applied to the upper surface of the rotating substrate W.
  • the treatment liquid that has landed on the upper surface of the substrate W is scattered outside the substrate W by the action of centrifugal force and is received by the cup 12.
  • the contaminated treatment liquid received by the cup 12 flows into the impurity removing unit 20 via the return pipe 22. Impurities in the contamination treatment liquid are removed by the treatment liquid flowing into the impurity removal unit 20 passing through the temperature-sensitive gel filter 31 of the impurity removal unit 20. As a result, a cleaning liquid from which impurities have been removed is produced.
  • the cleaning treatment liquid is sent to the supply tank 24 via the upstream supply pipe 23. In this way, impurities are removed from the contaminated treatment liquid to generate a cleaning treatment liquid, and the cleaning treatment liquid is returned to the supply tank 24. That is, the treatment liquid is reused.
  • the operation of the impurity removal unit 20 will be described in detail below.
  • FIG. 3 is a flowchart for explaining the operation of the impurity removing unit 20.
  • 4A to 4E are schematic views for explaining an operation example of the impurity removing unit 20.
  • FIGS. 4A-4E the open valve is shown in black and the closed valve is shown in white (also in FIGS. 6A-6D, 8A, 8B and 10A-10E described below). Similarly).
  • FIGS. 4A-4E operating heaters and pumps are described as "ON”, and non-operating heaters and pumps are described as “OFF” (FIGS. 6A to 6D, which will be described later). The same applies to FIGS. 8A, 8B and 10A to 10E).
  • the impurity amount measuring unit 42, the circulation thermometer 46, and the liquid level sensor 34 may be always in operation.
  • the return valve 60 and the downstream circulation valve 44 are opened.
  • the treatment liquid returns to the impurity removing unit 20 (return step) and is replenished in the storage tank 30 (replenishment step).
  • the treatment liquid is sent from the return pipe 22 into the storage tank 30, the liquid level of the treatment liquid in the storage tank 30 rises, and the measured value of the liquid level sensor 34 is a predetermined number above the upstream end of the circulation pipe 32.
  • the feedback valve 60 is closed and the upstream circulation valve 41 and the intermediate circulation valve 43 are opened.
  • the circulation pump 40 is operated.
  • the treatment liquid in the storage tank 30 is drawn into the circulation pipe 32 and returned from the circulation pipe 32 to the storage tank 30, so that the treatment liquid circulation is started (circulation step). ).
  • step S1 gel heating start step
  • the temperature-sensitive gel filter 31 is heated by the circulation heater 45 via the circulating treatment liquid (circulation heating step).
  • the temperature-sensitive gel filter 31 reaches the same temperature as the treatment liquid by being heated by the treatment liquid. Therefore, the temperature (gel temperature) of the temperature-sensitive gel filter 31 can be indirectly measured by measuring the temperature of the processing liquid flowing in the circulation pipe 32 with the circulation thermometer 46 (gel temperature measuring step).
  • the circulation heater 45 is also operated in the return step. Therefore, the heating of the treatment liquid is started before the circulation step is started.
  • step S1 the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31 is equal to or higher than the transition temperature (step S2: first gel temperature monitoring step). If the gel temperature is lower than the transition temperature (LCST) of the temperature-sensitive gel 50 (step S2: NO), the process returns to step S2.
  • step S2 first gel temperature monitoring step. If the gel temperature is lower than the transition temperature (LCST) of the temperature-sensitive gel 50 (step S2: NO), the process returns to step S2.
  • the treatment liquid is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50 by circulating the circulation pipe 32 and the storage tank 30 for a predetermined time.
  • the temperature-sensitive gel filter 31 is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50, the temperature-sensitive gel contained in the temperature-sensitive gel filter 31 is made hydrophobic (hydrophobicization step). That is, the temperature of the temperature-sensitive gel filter 31 is adjusted to the temperature at which the temperature-sensitive gel 50 becomes hydrophobic (temperature control step).
  • step S2 YES
  • the process proceeds to step S3.
  • step S3 the controller 4 monitors whether or not a predetermined impurity removal time has elapsed since the gel temperature reached a temperature equal to or higher than the transition temperature (step S3: elapsed time monitoring step).
  • Treatment is performed by passing the treatment liquid through the temperature-sensitive gel filter 31 in a state where the temperature-sensitive gel filter 31 is heated above the transition temperature, that is, in a state where the temperature-sensitive gel 50 is hydrophobic. Impurities in the liquid are removed by the temperature-sensitive gel filter 31 (impurity removing step, circulation removing step). When the impurity removing efficiency of the temperature-sensitive gel filter 31 is sufficiently high, the impurities are removed from the treatment liquid over time.
  • the treatment liquid supplied to the impurity removal unit 20 is a contamination treatment liquid. Therefore, the temperature-sensitive gel filter 31 captures impurities in the contaminated treatment liquid and removes the impurities from the contaminated treatment liquid.
  • Impurity removal step and hydrophobicization step are executed by heating the treatment liquid that circulates in the circulation pipe 32 and the storage tank 30.
  • the impurity removing step is performed after the hydrophobization of the temperature sensitive gel 50 by the hydrophobization step is achieved.
  • the hydrophobicization step is not executed and the circulation step is started.
  • the impurity removal step is started.
  • the controller 4 returns to step S3 when the impurity removal time has not elapsed (step S3: NO).
  • step S3: YES the controller 4 determines whether or not the impurity amount measured by the impurity amount measuring unit 42 is lower than the reference impurity amount (step S4: impurity amount determination step). ..
  • the impurity amount determination step is executed in a state where the gel temperature is adjusted to a temperature at which the temperature-sensitive gel 50 becomes hydrophobic.
  • step S4 If the amount of impurities measured by the impurity amount measuring unit 42 is lower than the reference impurity amount after the impurity removal time has elapsed (step S4: YES), as shown in FIG. 4C, while maintaining the circulation of the treatment liquid, while maintaining the circulation of the treatment liquid.
  • the upstream supply valve 80 is opened.
  • a treatment liquid (cleaning treatment liquid) from which impurities are sufficiently removed is sent from the storage tank 30 to the supply tank 24 (step S5: supply step). That is, the supply step is executed after impurities are sufficiently removed from the treatment liquid circulating in the circulation pipe 32 and the storage tank 30.
  • the liquid level of the treatment liquid in the storage tank 30 drops, and when the measured value of the liquid level sensor 34 reaches a predetermined second height H2 as shown by the two-dot chain line in FIG. 4C, it is upstream.
  • the supply valve 80, the upstream circulation valve 41 and the intermediate circulation valve 43 are closed. As a result, the circulation of the treatment liquid and the supply of the treatment liquid to the supply tank 24 are stopped. After that, when the storage tank 30 is replenished with the treatment liquid, the operation of the impurity removing unit 20 is restarted from step S1.
  • step S4 if the amount of impurities measured by the impurity amount measuring unit 42 is equal to or greater than the reference impurity amount even after the impurity removal time has elapsed (step S4: NO), the circulation heater 45 is stopped as shown in FIG. 4D. Will be done.
  • the processing liquid circulates in the circulation pipe 32 and the storage tank 30 for a predetermined time with the circulation heater 45 stopped, so that the processing liquid is naturally cooled to room temperature.
  • the temperature-sensitive gel filter 31 in the storage tank 30 is cooled by the treatment liquid (step S6: gel heating stop step).
  • the temperature-sensitive gel filter 31 is cooled via the circulating treatment liquid (circulation cooling step).
  • the temperature-sensitive gel filter 31 reaches the same temperature as the treatment liquid by being cooled by the treatment liquid.
  • step S6 the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31 is lower than the transition temperature (step S7: second gel temperature monitoring step).
  • step S7 second gel temperature monitoring step.
  • the controller 4 returns to step S7 when the temperature-sensitive gel filter 31 in the storage tank 30 is equal to or higher than the transition temperature of the temperature-sensitive gel 50 (step S7: NO).
  • the treatment liquid is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 by circulating the circulation pipe 32 and the storage tank 30 for a predetermined time.
  • the temperature-sensitive gel filter 31 By cooling the temperature-sensitive gel filter 31 to a temperature lower than the transition temperature of the temperature-sensitive gel 50, the temperature-sensitive gel contained in the temperature-sensitive gel filter 31 is hydrophilized (hydrophilicization step).
  • the treatment liquid supplied to the impurity removal unit 20 in the impurity discharge step of this embodiment is a contamination treatment liquid as a cleaning liquid. Therefore, impurities are released from the temperature-sensitive gel filter 31 into the contamination treatment liquid.
  • step S7 When the temperature-sensitive gel filter 31 in the storage tank 30 is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 (step S7: YES), the circulation of the treatment liquid is maintained as shown in FIG. 4E. Meanwhile, the drain valve 70 is opened. As a result, the processing liquid is sent from the storage tank 30 toward the drainage pipe 21 (drainage flow path) (step S8: drainage step). That is, after impurities are released into the treatment liquid circulating in the circulation pipe 32 and the storage tank 30, the drainage step is executed.
  • the supply step and the drainage step are selectively executed according to the degree of decrease in the impurity removal efficiency of the impurity removal unit 20.
  • the impurity removing efficiency of the temperature sensitive gel filter 31 has not decreased and is sufficiently high. Therefore, the amount of impurities measured by the impurity amount measuring unit 42 in the first impurity removing step is lower than the reference impurity amount. Therefore, in the operation of the impurity removing unit 20, the supply step (step S5) is executed at least once, and then the drainage step (step S8) is executed in the second and subsequent operations.
  • the treatment liquid is passed through the temperature-sensitive gel filter 31, so that impurities in the treatment liquid are captured by the temperature-sensitive gel filter 31. Impurities can be removed from the treatment liquid. Then, the processing liquid from which impurities are sufficiently removed can be supplied to the processing unit 2 via the upstream supply pipe 23, the supply tank 24, and the downstream supply pipe 25.
  • the treatment liquid as a cleaning liquid in the storage tank 30 is circulated in a state where the temperature-sensitive gel 50 is changed to hydrophilic. If it is circulated by 32 and passed through the temperature-sensitive gel filter 31, impurities captured by the temperature-sensitive gel filter 31 can be released into the treatment liquid. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter 31 can be restored. Then, by removing the treatment liquid containing a large amount of impurities from the storage tank 30 via the drainage pipe 21, the impurity removal unit 20 can be returned to a usable state again.
  • the impurity removal efficiency of the temperature-sensitive gel filter 31 can be restored without replacing the temperature-sensitive gel filter 31.
  • the state of the temperature-sensitive gel 50 can be rapidly changed from hydrophilic to hydrophobic by heating. Therefore, the capture of impurities by the temperature-sensitive gel filter 31 can be started promptly. As a result, the supply of the treatment liquid from which impurities have been removed to the upstream supply pipe 23 (supply flow path) can be promptly started.
  • the treatment liquid when the amount of impurities measured by the impurity amount measuring unit 42 is smaller than the reference impurity amount in a state where the temperature sensitive gel 50 is hydrophobic, the treatment liquid is sent to the upstream supply pipe 23. Be sent out.
  • the treatment liquid is discharged after hydrophilizing the temperature-sensitive gel 50. It is sent out to the liquid pipe 21.
  • the delivery destination of the processing liquid in the storage tank 30 can be appropriately switched based on the amount of impurities measured by the impurity amount measuring unit 42.
  • the impurity removing efficiency of the temperature-sensitive gel filter 31 is sufficiently high. Therefore, after the impurity removing step, a highly clean treatment liquid can be sent out to the upstream supply pipe 23.
  • the amount of impurities after the impurity removing step is executed is equal to or larger than the reference impurity amount, the impurity removing efficiency of the temperature-sensitive gel filter 31 is lowered. Therefore, by executing the impurity discharge step, the impurity removal efficiency of the temperature-sensitive gel filter is restored.
  • the temperature-sensitive gel filter 31 further includes a filter member 51 that holds the temperature-sensitive gel 50 while allowing the treatment liquid to pass through. Therefore, even when the hydrophilic temperature-sensitive gel 50 absorbs liquid and swells, the temperature-sensitive gel 50 does not flow out to the outside of the temperature-sensitive gel filter 31 and is located at a predetermined position in the storage tank 30. Can be maintained.
  • the internal space 33 of the storage tank 30 is partitioned into the first accommodating portion 33a and the second accommodating portion 33b by the temperature-sensitive gel filter 31.
  • the first accommodating portion 33a is located on the upstream side of the second accommodating portion 33b in the circulation direction C of the treatment liquid with the temperature-sensitive gel filter 31 interposed therebetween.
  • the upstream supply pipe 23 is connected to the second accommodating portion 33b, and the drainage pipe 21 is connected to the first accommodating portion 33a.
  • the treatment liquid having a relatively large amount of impurities on the upstream side in the circulation direction C can be sent to the drainage pipe 21 as compared with the temperature-sensitive gel filter 31.
  • the treatment liquid having relatively less impurities on the downstream side in the circulation direction C than the temperature-sensitive gel filter 31 can be sent to the upstream supply pipe 23.
  • the supply flow path is composed of the upstream supply pipe 23, the supply tank 24, and the downstream supply pipe 25. Therefore, the cleaning treatment liquid generated by the impurity removing unit 20 is stored in the supply tank 24. Therefore, even when the delivery of the processing liquid from the impurity removing unit 20 to the upstream supply pipe 23 is temporarily stopped in order to restore the impurity removing efficiency of the temperature-sensitive gel filter 31, the inside of the supply tank 24 The treatment liquid can be supplied to the treatment unit 2. Therefore, the treatment liquid can be stably supplied to the treatment unit 2 while recovering the impurity removal efficiency of the temperature-sensitive gel filter 31.
  • the contaminated treatment liquid is returned to the storage tank 30 via the return pipe 22.
  • the cost and environmental load required for substrate treatment can be reduced.
  • the impurity removing efficiency of the temperature-sensitive gel filter 31 tends to decrease.
  • the temperature-sensitive gel filter 31 can easily release impurities by cooling. Therefore, impurities can be removed from the contamination treatment liquid without replacing the temperature-sensitive gel filter 31.
  • a contamination treatment liquid is used as a treatment liquid for capturing impurities in the temperature-sensitive gel filter 31 and a cleaning liquid for releasing impurities from the temperature-sensitive gel filter 31. Therefore, when the impurity removal efficiency of the temperature-sensitive gel filter 31 is lowered, it is not necessary to change the liquid type of the liquid circulated by the circulation pipe 32, so that the recovery of the impurity removal efficiency can be started promptly. Therefore, as compared with the configuration in which a cleaning liquid different from the contamination treatment liquid is passed through the temperature-sensitive gel filter 31 to release impurities from the temperature-sensitive gel 50, impurities are quickly discharged from the temperature-sensitive gel filter 31. Can be removed.
  • the treatment liquid is circulated and the treatment liquid is passed through the temperature-sensitive gel filter 31. Therefore, the treatment liquid can be efficiently passed through the temperature-sensitive gel filter 31. As a result, impurities are quickly removed from the treatment liquid and the impurity removal efficiency is quickly restored.
  • the return pipe 22 is connected to the circulation pipe 32 on the upstream side of the circulation heater 45. Therefore, the processing liquid sent from the return pipe 22 to the storage tank 30 is heated by the circulation heater 45. Therefore, heating of the treatment liquid is started before the treatment liquid is circulated.
  • a circulation cooling step is used as a method of cooling the temperature-sensitive gel filter 31 after the gel heating stop step of step S6.
  • impurities are released from the temperature-sensitive gel filter 31 into the treatment liquid as the treatment liquid is cooled, and the impurities may contaminate the circulation pipe 32.
  • the temperature-sensitive gel filter 31 may be naturally cooled by leaving the circulation pump 40 in a stopped state.
  • a cooling unit (cooler) (not shown) is provided in the storage tank 30, and the storage tank 30 is cooled by using the cooling unit to cool the temperature-sensitive gel filter 31. It may be forcibly cooled.
  • the drainage step (step S8) may be performed without performing the circulation cooling step and the second gel temperature monitoring step (step S7).
  • the treatment liquid is naturally cooled in the process of discharging the treatment liquid from the storage tank 30, and the temperature-sensitive gel filter 31 is cooled to the temperature of the treatment liquid by the cooled treatment liquid.
  • the temperature-sensitive gel filter 31 is cooled to room temperature to release impurities. Since the impurities released into the treatment liquid are discharged to the outside of the storage tank 30 together with the treatment liquid, contamination of the circulation pipe 32 by the impurities can be suppressed.
  • FIG. 5 is a schematic view showing a configuration example of the substrate processing apparatus 1P according to the second embodiment of the present invention.
  • the same reference numerals as those shown in FIGS. 1 and 4E are assigned to the same configurations as those shown in FIGS. 1 to 4E, and the description thereof will be omitted.
  • the main difference between the substrate processing apparatus 1P and the substrate processing apparatus 1 according to the first embodiment is that the processing liquid supply device 3P includes a cleaning liquid pipe 90, a cleaning liquid pump 91, and a cleaning liquid valve 92.
  • the cleaning liquid pipe 90 supplies the cleaning liquid to the storage tank 30.
  • the cleaning liquid pipe 90 is a pipe that forms a cleaning liquid flow path inside the cleaning liquid pipe 90.
  • the upstream end of the cleaning liquid pipe 90 is connected to the cleaning liquid tank 93, and the downstream end of the cleaning liquid pipe 90 is connected to the storage tank 30.
  • the cleaning liquid pump 91 is interposed in the cleaning liquid pipe 90.
  • the cleaning liquid pump 91 sends out the cleaning liquid in the cleaning liquid tank 93 toward the cleaning liquid pipe 90.
  • the cleaning liquid valve 92 is interposed in the cleaning liquid pipe 90 on the downstream side of the cleaning liquid pump 91.
  • the cleaning liquid valve 92 opens and closes the cleaning liquid flow path in the cleaning liquid pipe 90.
  • the cleaning liquid in the second embodiment is not a contamination treatment liquid, but a DIW or the like stored in the cleaning liquid tank 93. More specifically, as the cleaning liquid, a liquid similar to the rinsing liquid can be used.
  • the cleaning liquid is not limited to DIW, but includes carbonated water, electrolytic ionized water, ozone water, hydrochloric acid water having a diluted concentration (for example, 10 ppm or more and 100 ppm or less), ammonia water, reduced water (hydrogen water), and a hydrophilic organic solvent. It may be a liquid containing at least one.
  • the operation example of the impurity removing unit 20 according to the second embodiment is almost the same as the operation example of the impurity removing unit 20 according to the first embodiment except for the drainage step (step S8) (see FIG. 3). Therefore, in the following, an operation example of the impurity removing unit 20 according to the second embodiment will be described with a focus on the drainage step (step S8).
  • 6A to 6D are schematic views for explaining an operation example of the impurity removing unit 20 according to the second embodiment.
  • the treatment liquid is the circulation pipe 32 and the storage tank.
  • the temperature-sensitive gel 50 is cooled to a temperature lower than the transition temperature (circulation cooling step).
  • step S7 When the temperature-sensitive gel filter 31 in the storage tank 30 is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 (step S7: YES), as shown in FIG. 6A, the upstream circulation valve 41 and the intermediate circulation The valve 43 and the downstream circulation valve 44 are closed and the drain valve 70 is opened. Further, the circulation pump 40 is stopped.
  • the drainage valve 70 is closed and the cleaning liquid valve 92 is opened.
  • the cleaning liquid pump 91 is operated.
  • the cleaning liquid is supplied into the storage tank 30.
  • the cleaning liquid valve 92 is closed.
  • the first height H1 is set at a position higher than that of the temperature-sensitive gel filter 31.
  • the temperature-sensitive gel filter 31 is immersed in the cleaning liquid (cleaning liquid immersion step).
  • the drain valve 70 is opened again. As a result, as shown in FIG. 6C, the cleaning liquid in the storage tank 30 is drained from the drainage pipe 21 while forming the drainage flow D in the storage tank 30 (immersion cleaning step).
  • the immersion cleaning step (see FIGS. 6B and 6C) is repeated. Specifically, the cleaning liquid is supplied to the storage tank 30 again, the temperature-sensitive gel filter 31 is immersed in the cleaning liquid, the cleaning liquid in the storage tank 30 is drained from the drainage pipe 21, and the liquid is drained into the storage tank 30. A flow D is formed. The drainage flow D is a flow of the cleaning liquid from the upper side to the lower side.
  • the return valve 60 and the downstream circulation valve 44 are opened with the drain valve 70 closed, and the contaminated liquid is supplied to the storage tank 30 as shown in FIG. 6D. Will be done.
  • the return valve 60 and the downstream circulation valve 44 are closed.
  • the temperature-sensitive gel filter 31 is immersed in the contamination treatment liquid (contamination treatment liquid immersion step).
  • the drain valve 70 is opened and the contaminated liquid in the storage tank 30 is drained.
  • the cleaning liquid remaining in the storage tank 30 is replaced by the contamination treatment liquid.
  • the temperature-sensitive gel filter 31 is immersed in the cleaning liquid supplied into the storage tank 30. As a result, impurities are released from the temperature-sensitive gel 50 into the cleaning liquid. After that, the drainage flow D is formed in the storage tank 30 by draining the cleaning liquid in the storage tank 30 from the drainage pipe 21. Impurities released into the cleaning liquid are removed from the storage tank 30 together with the cleaning liquid by this drainage flow D. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter 31 can be restored.
  • the cleaning liquid is supplied from the cleaning liquid tank 93 to the storage tank 30 via the cleaning liquid pipe 90. Therefore, the temperature-sensitive gel filter 31 can be quickly washed.
  • the temperature-sensitive gel filter 31 in order to cool the temperature-sensitive gel filter 31 without performing the circulation cooling step, the temperature-sensitive gel filter 31 is naturally cooled by leaving the circulation pump 40 stopped. May be good. Further, in order to promote the temperature decrease of the temperature-sensitive gel filter 31, a cooling unit (cooler) (not shown) is provided in the storage tank 30, and the storage tank 30 is cooled by using the cooling unit to cool the storage tank 30. May be forcibly cooled.
  • a cooling unit (cooler) (not shown) is provided in the storage tank 30, and the storage tank 30 is cooled by using the cooling unit to cool the storage tank 30. May be forcibly cooled.
  • the drainage step may be performed without performing the circulation cooling step and the second gel temperature monitoring step (step S7). That is, in the gel heating stop step, the circulation heater 45 is stopped, the circulation pump 40 is stopped, and the drain valve 70 is opened. As a result, the treatment liquid in the storage tank 30 is drained before the temperature-sensitive gel filter 31 is cooled. After that, the temperature-sensitive gel filter 31 is cooled to the temperature of the treatment liquid by the cleaning liquid supplied into the storage tank 30. As a result, the temperature-sensitive gel filter 31 releases impurities. Since the impurities released into the treatment liquid are discharged to the outside of the storage tank 30 together with the treatment liquid, contamination of the circulation pipe 32 by the impurities can be suppressed.
  • FIG. 7 is a schematic diagram showing a configuration example of the substrate processing apparatus 1Q according to the third embodiment of the present invention.
  • 7 and 8A and 8B which will be described later, have the same reference numerals as those shown in FIGS. 1 and 6D, and the description thereof will be omitted.
  • the main difference between the substrate processing apparatus 1Q and the substrate processing apparatus 1 according to the first embodiment is that the processing liquid supply apparatus 3Q includes a plurality of (two in this embodiment) impurity removing units 20. ..
  • the plurality of impurity removing units 20 include a first impurity removing unit 20A and a second impurity removing unit 20B. Both the first impurity removing unit 20A and the second impurity removing unit 20B have the same configuration.
  • the circulation heater 45 and the circulation thermometer 46 are used in the first storage tank 30A, the first temperature-sensitive gel filter 31A, the first circulation pipe 32A, the first circulation pump 40A, the first upstream circulation valve 41A, and the first, respectively. It may be expressed as an impurity amount measuring unit 42A, a first intermediate circulation valve 43A, a first downstream circulation valve 44A, a first circulation heater 45A, and a first circulation thermometer 46A.
  • the circulation heater 45 and the circulation thermometer 46 are used in the second storage tank 30B, the second temperature-sensitive gel filter 31B, the second circulation pipe 32B, the second circulation pump 40B, the second upstream circulation valve 41B, and the second, respectively. It may be expressed as an impurity amount measuring unit 42B, a second intermediate circulation valve 43B, a second downstream circulation valve 44B, a second circulation heater 45B, and a second circulation thermometer 46B.
  • the treatment liquid supply device 3Q of the third embodiment includes a plurality of return pipes 22 and a plurality of drainage pipes 21.
  • the plurality of return pipes 22 include the first return pipe 22A and the second return pipe 22B.
  • the first feedback pipe 22A is a pipe that forms a first feedback flow path inside the first feedback pipe 22A.
  • the second feedback pipe 22B is a pipe that forms a second feedback flow path inside the second feedback pipe 22B.
  • the upstream end of the first return pipe 22A is connected to, for example, the cup 12.
  • the downstream end of the first feedback pipe 22A is branched and connected to, for example, the first circulation pipe 32A.
  • the feedback valve 60 interposed in the first feedback pipe 22A is also referred to as a first feedback valve 60A that opens and closes a flow path (first feedback flow path) in the first feedback pipe 22A.
  • the upper end of the second feedback pipe 22B is connected to the first feedback pipe 22A on the upstream side of the first feedback valve 60A.
  • the downstream end of the second feedback pipe 22B is branched and connected to, for example, the second circulation pipe 32B.
  • the feedback valve 60 interposed in the second feedback pipe 22B is also referred to as a second feedback valve 60B that opens and closes the flow path (second feedback flow path) in the second feedback pipe 22B.
  • the plurality of drainage pipes 21 include a first drainage pipe 21A and a second drainage pipe 21B.
  • the upstream end of the first drainage pipe 21A and the upstream end of the second drainage pipe 21B are connected to the first storage tank 30A and the second storage tank 30B, respectively.
  • the first drainage pipe 21A is a pipe that forms a first drainage flow path inside the first drainage pipe 21A.
  • the second drainage pipe 21B is a pipe that forms a second drainage flow path inside the second drainage pipe 21B.
  • the drainage valve 70 interposed in the first return pipe 22A is also referred to as a first drainage valve 70A that opens and closes a flow path (first drainage flow path) in the first drainage pipe 21A.
  • the drainage valve 70 interposed in the second drainage pipe 21B is also referred to as a second drainage valve 70B that opens and closes a flow path (second drainage flow path) in the second drainage pipe 21B.
  • the supply unit 19 includes a plurality of upstream supply pipes 23.
  • the plurality of upstream supply pipes 23 include a first upstream supply pipe 23A and a second upstream supply pipe 23B.
  • the first upstream supply pipe 23A is a pipe that forms a first upstream supply flow path inside the first upstream supply pipe 23A.
  • the upstream end of the first upstream supply pipe 23A is branched and connected to the first circulation pipe 32A, for example, on the downstream side of the first circulation pump 40A and on the upstream side of the first upstream circulation valve 41A.
  • the upstream supply valve 80 interposed in the first upstream supply pipe 23A is also referred to as a first upstream supply valve 80A that opens and closes a flow path (first upstream supply flow path) in the first upstream supply pipe 23A.
  • the second upstream supply pipe 23B is a pipe that forms a second upstream supply flow path inside the second upstream supply pipe 23B.
  • the upstream end of the second upstream supply pipe 23B is branched and connected to the second circulation pipe 32B, for example, on the downstream side of the second circulation pump 40B and on the upstream side of the second upstream circulation valve 41B.
  • the downstream end of the second upstream supply pipe 23B is connected to the first upstream supply pipe 23A on the downstream side of the first upstream supply valve 80A.
  • the upstream supply valve 80 interposed in the second upstream supply pipe 23B is also referred to as a second upstream supply valve 80B that opens and closes a flow path (second upstream supply flow path) in the second upstream supply pipe 23B.
  • each impurity removing unit 20 according to the third embodiment is almost the same as the operation example of the impurity removing unit 20 according to the first embodiment.
  • another impurity removing unit 20 removes impurities from the treatment liquid while some impurity removing units 20 recover the impurity removing efficiency. It works on.
  • each impurity removing unit 20 will be omitted, and while the first impurity removing unit 20A recovers the impurity removing efficiency, the second impurity removing unit 20B will remove impurities from the treatment liquid. I will explain how to remove the impurities.
  • FIGS. 8A and 8B are schematic views for explaining an operation example of the plurality of impurity removing units 20 according to the third embodiment.
  • the treatment liquid is circulated to the first circulation pipe 32A and the first storage tank 30A in a state where the heating by the first circulation heater 45A is stopped. As a result, the treatment liquid is cooled, and the first temperature-sensitive gel filter 31A is cooled via the treatment liquid.
  • the treatment liquid is applied to the first temperature-sensitive gel filter 31A in a state where the first temperature-sensitive gel filter 31A is cooled to a temperature lower than the transition temperature, that is, in a state where the first temperature-sensitive gel 50A is hydrophilic. Impurities are released from the first temperature-sensitive gel filter 31A into the treatment liquid (impurity release step, circulation release step).
  • the first temperature-sensitive gel filter 31A in order to cool the first temperature-sensitive gel filter 31A, the first temperature-sensitive gel filter 31A is operated at room temperature with the first circulation pump 40A stopped without circulating the treatment liquid. May be naturally cooled.
  • a cooling unit (cooler) (not shown) is provided in the first storage tank 30A, and the first storage tank 30A is cooled by using the cooling unit.
  • the temperature sensitive gel filter 31A may be forcibly cooled.
  • the processing liquid circulates in the second circulation pipe 32B and the second storage tank 30B while being heated by the second circulation heater 45B. As a result, the treatment liquid is heated, and the second temperature-sensitive gel filter 31B is heated via the treatment liquid.
  • the treatment liquid is applied to the second temperature-sensitive gel filter 31B in a state where the second temperature-sensitive gel filter 31B is heated above the transition temperature, that is, in a state where the second temperature-sensitive gel 50B is hydrophobic.
  • impurities in the treatment liquid are captured by the second temperature-sensitive gel filter 31B and removed from the treatment liquid (impurity removal step, circulation removal step).
  • the first drain valve 70A is opened while maintaining the circulation of the processing liquid.
  • the processing liquid is sent from the first storage tank 30A toward the first drainage pipe 21A (first drainage flow path) (drainage step). That is, after impurities are released from the first temperature-sensitive gel filter 31A into the treatment liquid circulating in the first circulation pipe 32A and the first storage tank 30A, the drainage step is executed.
  • the second upstream supply valve 80B is opened while maintaining the circulation of the treatment liquid.
  • the cleaning treatment liquid is sent from the second storage tank 30B toward the supply tank 24 (supply flow path) (supply process). That is, the supply step is executed after impurities are sufficiently removed from the treatment liquid circulating in the second circulation pipe 32B and the second storage tank 30B by the second temperature-sensitive gel filter 31B.
  • the second storage tank As described above, in the third embodiment, while the impurities are released from the first temperature-sensitive gel filter 31A housed in the first storage tank 30A into the cleaning liquid, another storage tank (second storage tank) is used.
  • the second temperature-sensitive gel filter 31B contained in 30B) can sufficiently remove impurities from the treatment liquid.
  • the treatment liquid is stabilized in the processing unit 2 by using the temperature-sensitive gel filter 31 in another storage tank 30. Can be supplied.
  • the impurity removing step may be executed in the first impurity removing unit 20A, and the impurity releasing step may be executed in the second impurity removing unit 20B.
  • the second temperature-sensitive gel filter 31B in order to cool the second temperature-sensitive gel filter 31B, the second temperature-sensitive gel filter 31B is naturally cooled to room temperature with the second circulation pump 40B stopped without circulating the treatment liquid. You may.
  • a cooling unit (cooler) (not shown) is provided in the second storage tank 30B, and the second storage tank 30B is cooled by using the cooling unit to cool the second storage tank 30B.
  • the temperature sensitive gel filter 31B may be forcibly cooled.
  • FIG. 9 is a schematic view showing a configuration example of the substrate processing apparatus 1R according to the fourth embodiment of the present invention.
  • FIGS. 9A to 10E which will be described later, the same reference numerals as those in FIGS. 1 and the like are given to the same configurations as those shown in FIGS. 1 to 8B, and the description thereof will be omitted.
  • the main difference between the substrate processing apparatus 1R and the substrate processing apparatus 1 according to the first embodiment is that the treatment liquid supplied to the impurity removing unit 20R of the treatment liquid supply device 3R is a new treatment liquid supplied from the new liquid tank 141.
  • the circulation flow path is formed by the upstream circulation pipe 100, the circulation tank 101, and the downstream circulation pipe 102.
  • the impurity removing unit 20R is a process supplied from the storage tank 30R, the upstream circulation pipe 100 to which the treatment liquid is sent from the storage tank 30R, and the storage tank 30R via the upstream circulation pipe 100. It includes a circulation tank 101 for storing the liquid and a downstream circulation pipe 102 for returning the processing liquid in the circulation tank 101 to the storage tank 30R.
  • the configuration inside the storage tank 30R is the same as that of the storage tank 30 according to the first embodiment.
  • the upstream circulation pipe 100 is a pipe that forms an upstream circulation flow path inside the upstream circulation pipe 100.
  • the upstream end of the upstream circulation pipe 100 is connected to the storage tank 30R, and the downstream end of the upstream circulation pipe 100 is connected to the circulation tank 101.
  • the upstream end of the upstream circulation pipe 100 is specifically connected to the second accommodating portion 33b, and the upstream end of the upstream circulation pipe 100 is the liquid level of the treatment liquid while the treatment liquid is flowing in the upstream circulation pipe 100.
  • the upstream end of the upstream circulation pipe 100 extends to the inside of the storage tank 30R so as to be maintained below.
  • the downstream circulation pipe 102 is a pipe that forms a downstream circulation flow path inside the downstream circulation pipe 102.
  • the upstream end of the downstream circulation pipe 102 is connected to the circulation tank 101, and the downstream end of the downstream circulation pipe 102 is connected to the first accommodating portion 33a of the storage tank 30R.
  • the upstream end of the downstream circulation pipe 102 is inside the circulation tank 101 so that the upstream end of the downstream circulation pipe 102 is located below the liquid level of the treatment liquid while the treatment liquid is flowing in the downstream circulation pipe 102. It extends to.
  • the impurity removal unit 20 includes an impurity amount measuring unit 110, an upstream circulation valve 111, a circulation pump 112, a first downstream circulation valve 113, a circulation heater 114, a circulation filter 115, a second downstream circulation valve 116, a third downstream circulation valve 117 and the like. It is equipped with a circulation thermometer 118.
  • the impurity amount measuring unit 110 and the upstream circulation valve 111 are interposed in the upstream circulation pipe 100 in this order from the upstream side of the upstream circulation pipe 100.
  • the impurity amount measuring unit 110 has the same configuration as the impurity amount measuring unit 42.
  • the upstream circulation valve 111 opens and closes a flow path (upstream circulation flow path) in the upstream circulation pipe 100.
  • the circulation pump 112, the first downstream circulation valve 113, the second downstream circulation valve 116, the third downstream circulation valve 117, and the circulation thermometer 118 are in this order from the upstream side to the downstream side of the downstream circulation pipe 102. It is interposed in the downstream circulation pipe 102.
  • the circulation pump 112 sends the treatment liquid in the circulation tank 101 to the downstream circulation pipe 102.
  • the processing liquid is sent out to the downstream circulation pipe 102
  • the treatment liquid in the downstream circulation pipe 102 is sent out into the storage tank 30R
  • the treatment liquid in the storage tank 30R is sent out into the upstream circulation pipe 100.
  • the circulation pump 112 sends the treatment liquid in the storage tank 30R to the upstream circulation pipe 100.
  • the circulation pump 112 may be interposed in the upstream circulation pipe 100.
  • the first downstream circulation valve 113, the second downstream circulation valve 116, and the third downstream circulation valve 117 open and close the flow path (downstream circulation flow path) in the downstream circulation pipe 102.
  • the circulation filter 115 is a filter that removes impurities in the treatment liquid in the downstream circulation pipe 102.
  • a filter suitable for use at a temperature higher than normal temperature is used.
  • the circulation filter 115 includes, for example, a PTFE hydrophobic membrane as a filtration membrane. If the circulation filter 115 includes a PTFE hydrophobic membrane as a filtration membrane, the hydrophobic compound as an impurity can be effectively removed from the treatment liquid.
  • the circulation heater 114 heats the processing liquid in the downstream circulation pipe 102.
  • the circulation heater 114 is an example of a heating unit.
  • the circulation heating portion 102a heated by the circulation heater 114 in the downstream circulation pipe 102 is set at a position downstream of the first downstream circulation valve 113 and upstream of the circulation filter 115 in the downstream circulation pipe 102. ..
  • the circulation heater 114 is configured to heat the circulation heating portion 102a on the downstream side of the first downstream circulation valve 113 and on the upstream side of the circulation filter 115, the circulation heater 114 is configured to be interposed in the downstream circulation pipe 102. It may not be necessary, and the downstream circulation pipe 102 may be heated from the outside.
  • the circulation thermometer 118 is an example of a circulation temperature detection unit that detects the temperature of the processing liquid in the downstream circulation pipe 102.
  • the impurity removal unit 20R further includes a branch circulation pipe 103 that is branched and connected to the downstream circulation pipe 102.
  • the upstream end of the branch circulation pipe 103 is branched and connected to the downstream circulation pipe 102 on the downstream side of the circulation pump 112 and on the upstream side of the first downstream circulation valve 113.
  • the downstream end of the branch circulation pipe 103 is branched and connected to the downstream circulation pipe 102 on the downstream side of the second downstream circulation valve 116 and on the upstream side of the third downstream circulation valve 117.
  • the impurity removal unit 20R includes a first branch valve 120, a second branch valve 121, and a circulation cooler 122.
  • the first branch valve 120 and the second branch valve 121 are interposed in the branch circulation pipe 103 in this order from the upstream side.
  • the first branch valve 120 and the second branch valve 121 open and close the flow path (branch circulation flow path) in the branch circulation pipe 103.
  • the circulation cooler 122 cools the processing liquid in the branch circulation pipe 103.
  • the circulation cooler 122 is an example of a cooling unit that cools the temperature-sensitive gel filter 31R.
  • the circulation cooling portion 103a cooled by the circulation cooler 122 in the branch circulation pipe 103 is set at a position downstream of the first branch valve 120 and upstream of the second branch valve 121 in the branch circulation pipe 103. There is.
  • the circulation cooler 122 is configured to cool the circulation cooling portion 103a on the downstream side of the first branch valve 120 and on the upstream side of the second branch valve 121, the circulation cooler 122 is interposed in the branch circulation pipe 103. It does not have to be, and the branch circulation pipe 103 may be heated from the outside.
  • the supply pipe 130 for sending the treatment liquid from the impurity removal unit 20R toward the treatment unit 2 and the treatment liquid (new treatment liquid) not used in the treatment unit 2 are subjected to impurities.
  • a new liquid pipe 140 for supplying to the removal unit 20 and a drainage pipe 21 for draining the treatment liquid from the impurity removal unit 20 are provided.
  • the drainage pipe 21 has the same configuration as that of the first embodiment.
  • the treatment liquid that is not used in the treatment unit 2 is not the treatment liquid that has been discharged from the treatment liquid nozzle 11 and then returned to the circulation flow path via the pipe, but is newly added to the circulation flow path from the new liquid tank 141. It is the processing liquid to be supplied.
  • the supply pipe 130 is a pipe that forms a supply flow path inside the supply pipe 130.
  • the upstream end of the supply pipe 130 is branched and connected to the upstream side of the impurity amount measuring unit 110 in the upstream circulation pipe 100, for example.
  • the downstream end of the supply pipe 130 is connected to the treatment liquid nozzle 11.
  • the upstream end of the supply pipe 130 may be connected to the second accommodating portion 33b of the storage tank 30R.
  • the processing liquid supply device 3R is further provided with a supply valve 131 that is interposed in the supply pipe 130 and opens and closes the flow path (supply flow path) in the supply pipe 130.
  • the new liquid pipe 140 supplies the new treatment liquid to the circulation tank 101.
  • the new treatment liquid is a treatment liquid that is not used in the treatment unit 2, and has a higher degree of cleanliness than the contamination treatment liquid.
  • the new liquid pipe 140 is a pipe that forms a new liquid flow path inside the new liquid pipe 140. The upstream end of the new liquid pipe 140 is connected to the new liquid tank 141, and the downstream end of the new liquid pipe 140 is connected to the circulation tank 101.
  • the processing liquid supply device 3 includes a new liquid pump 142 interposed in the new liquid pipe 140 and a new liquid valve 143 interposed in the new liquid pipe 140 on the downstream side of the new liquid pump 142.
  • the new liquid pump 142 sends out the new liquid in the new liquid tank 141 toward the new liquid pipe 140.
  • the new liquid valve 143 is interposed in the new liquid pipe 140 on the downstream side of the new liquid pump 142.
  • the new liquid valve 143 opens and closes the new liquid flow path in the new liquid pipe 140.
  • FIGS. 3 and 10A to 10E are schematic views for explaining an operation example of the impurity removing unit 20R.
  • the impurity amount measuring unit 110, the circulation thermometer 118 and the liquid level sensor 34 may be always in operation.
  • the new treatment liquid is replenished to the circulation tank 101 of the impurity removal unit 20R (replenishment step).
  • replenishment of the new treatment liquid to the impurity removing unit 20R can be omitted.
  • the circulation pump 112 and the circulation heater 114 are operated in a state where the treatment liquid is stored in the circulation tank 101, and the first downstream circulation valve 113, the second downstream circulation valve 116 and the third downstream circulation are operated. Valve 117 is opened. As a result, the storage tank 30R is replenished with the treatment liquid.
  • the treatment liquid is sent into the storage tank 30R, the liquid level of the treatment liquid in the storage tank 30R rises, and the measured value of the liquid level sensor 34 is a predetermined first height above the upstream end of the upstream circulation pipe 100.
  • H1 the new liquid valve 143 is closed and the new liquid pump 142 is stopped.
  • the upstream circulation valve 111 is opened.
  • the treatment liquid in the storage tank 30R is drawn into the upstream circulation pipe 100 and returned from the downstream circulation pipe 102 into the storage tank 30R, so that the treatment liquid circulation is started ( Circulation process).
  • step S1 gel heating start step
  • a pump (not shown) may be further interposed in the upstream circulation pipe 100. good.
  • the temperature-sensitive gel filter 31R is heated by the circulation heater 114 via the circulating treatment liquid (circulation heating step).
  • the temperature-sensitive gel filter 31R reaches the same temperature as the treatment liquid by being heated by the treatment liquid. Therefore, the temperature (gel temperature) of the temperature-sensitive gel filter 31R is indirectly measured by measuring the temperature of the processing liquid flowing in the downstream circulation pipe 102 with the circulation thermometer 118 (gel temperature measuring step).
  • step S1 the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31R is lower than the transition temperature (step S2: first gel temperature monitoring step). If the gel temperature is lower than the transition temperature of the temperature-sensitive gel 50 (step S2: NO), the process returns to step S2.
  • the treatment liquid reaches a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50 by circulating the circulation flow path composed of the upstream circulation pipe 100, the circulation tank 101 and the downstream circulation pipe 102 and the storage tank 30R for a predetermined time. Be heated.
  • the temperature-sensitive gel filter 31R is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50
  • the temperature-sensitive gel contained in the temperature-sensitive gel filter 31R is hydrophobic (hydrophobicization step).
  • step S2 YES
  • the process proceeds to step S3.
  • step S3 the controller 4 monitors whether or not a predetermined impurity removal time has elapsed since the gel temperature reached a temperature equal to or higher than the transition temperature (step S3: elapsed time monitoring step).
  • Treatment is performed by passing the treatment liquid through the temperature-sensitive gel filter 31R in a state where the temperature-sensitive gel filter 31R is heated above the transition temperature, that is, in a state where the temperature-sensitive gel 50 is hydrophobic. Impurities in the liquid are captured by the temperature-sensitive gel filter 31R and removed from the treatment liquid (impurity removal step, circulation removal step). When the impurity removing efficiency of the temperature-sensitive gel filter 31R is sufficiently high, the impurities are removed from the treatment liquid over time.
  • the treatment liquid supplied to the impurity removing unit 20R is a new liquid. Therefore, the temperature-sensitive gel filter 31R captures impurities in the contaminated treatment liquid and removes the impurities from the contaminated treatment liquid.
  • Impurity removal step and hydrophobicization step are performed by heating the treatment liquid that circulates between the circulation flow path (upstream circulation pipe 100, circulation tank 101 and downstream circulation pipe 102) and the storage tank 30R.
  • the impurity removing step is performed after the hydrophobization of the temperature sensitive gel 50 by the hydrophobization step is achieved.
  • step S3 The controller 4 returns to step S3 when the impurity removal time has not elapsed (step S3: NO).
  • step S3: YES it is determined whether or not the impurity amount detected by the impurity amount measuring unit 42 is lower than the reference impurity amount (step S4: impurity amount determination step).
  • the impurity amount determination step is executed in a state where the gel temperature is adjusted to a temperature at which the temperature-sensitive gel 50 becomes hydrophobic.
  • step S4 If the amount of impurities measured by the impurity amount measuring unit 110 is lower than the reference impurity amount after the impurity removal time has elapsed (step S4: YES), as shown in FIG. 10C, while maintaining the circulation of the treatment liquid, while maintaining the circulation of the treatment liquid, while maintaining the circulation of the treatment liquid.
  • the supply valve 131 is opened.
  • a treatment liquid (cleaning treatment liquid) from which impurities are sufficiently removed is sent from the storage tank 30R toward the supply pipe 130 (supply flow path) (step S5: supply step). That is, the supply step is executed after impurities are sufficiently removed from the treatment liquid circulating in the circulation flow path and the storage tank 30R.
  • the supply pipe 130 since the supply pipe 130 is directly connected to the processing liquid nozzle 11 (see FIG. 9) of the processing unit 2, when the supply valve 131 is opened, the processing liquid is supplied to the upper surface of the substrate W.
  • the liquid level of the processing liquid in the circulation tank 101 and the storage tank 30R drops, and when the measured value of the liquid level sensor 34 reaches a predetermined second height H2, the supply valve 131 is closed.
  • the supply valve 131 is closed after the supply process is continued for a predetermined time. Then, while maintaining the circulation of the treatment liquid, the supply of the new liquid from the new liquid tank 141 to the circulation tank 101 is started. After that, when the storage tank 30R is replenished with the treatment liquid, the operation of the impurity removing unit 20 is restarted.
  • step S4 if the amount of impurities measured by the impurity amount measuring unit 110 is equal to or greater than the reference impurity amount even after the impurity removal time has elapsed (step S4: NO), the circulation heater 114 is stopped as shown in FIG. 10D. Then, the first downstream circulation valve 113 and the second downstream circulation valve 116 are closed. Instead, the circulation cooler 122 is activated to open the first branch valve 120 and the second branch valve 121.
  • step S6 gel heating stop step, gel cooling step
  • the temperature-sensitive gel filter 31R is cooled via the circulating treatment liquid (circulation cooling step).
  • the temperature-sensitive gel filter 31R reaches the same temperature as the treatment liquid by being cooled by the treatment liquid.
  • step S6 the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31R is lower than the transition temperature (step S7: second gel temperature monitoring step). If the temperature-sensitive gel filter 31R in the storage tank 30R is equal to or higher than the transition temperature of the temperature-sensitive gel (step S7: NO), the process returns to step S7.
  • the treatment liquid is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 by circulating in the circulation flow path and the storage tank 30R for a predetermined time.
  • the temperature-sensitive gel filter 31R By cooling the temperature-sensitive gel filter 31R to a temperature lower than the transition temperature of the temperature-sensitive gel 50, the temperature-sensitive gel contained in the temperature-sensitive gel filter 31R is hydrophilized (hydrophilicization step).
  • the treatment liquid supplied to the impurity removal unit 20 in the impurity discharge step of this embodiment is a new liquid as a cleaning liquid. Therefore, impurities are released from the temperature-sensitive gel filter 31R into the new liquid.
  • step S7 When the temperature-sensitive gel filter 31R in the storage tank 30R is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 (step S7: YES), the circulation of the treatment liquid is maintained as shown in FIG. 10E. Meanwhile, the drain valve 70 is opened. As a result, the processing liquid is sent from the storage tank 30R toward the drainage pipe 21 (drainage flow path) (step S8: drainage step). That is, after impurities are released into the treatment liquid circulating in the circulation flow path and the storage tank 30R, the drainage step is executed.
  • the liquid level of the processing liquid in the storage tank 30R drops, and when the measured value of the liquid level sensor 34 reaches a predetermined second height H2, the drainage valve 70, the upstream circulation valve 41 and The intermediate circulation valve 43 is closed. Alternatively, after the drainage step is continued for a predetermined time, the drainage valve 70 is closed. As a result, the circulation and drainage of the treatment liquid are stopped. After that, when the storage tank 30R is replenished with the treatment liquid, the operation of the impurity removing unit 20R is restarted from step S1.
  • the supply step and the drainage step are selectively executed according to the degree of decrease in the impurity removal efficiency of the impurity removal unit 20R.
  • the impurity removing efficiency of the temperature-sensitive gel filter 31R has not decreased and is sufficiently high. Therefore, the amount of impurities measured by the impurity amount measuring unit 110 in the first impurity removing step is lower than the reference impurity amount. Therefore, in the operation of the impurity removing unit 20R, the supply step (step S5) is executed at least once, and then the drainage step (step S8) is executed in the second and subsequent operations.
  • the amount of impurities in the new treatment liquid is very small compared to the contamination treatment liquid used in the treatment unit 2.
  • the impurity removal unit 20 including the temperature sensitive gel filter 31R the treatment liquid having higher cleanliness can be supplied to the treatment unit 2.
  • a circulation cooling step is used as a method for cooling the temperature-sensitive gel filter 31R after the gel heating stop step in step S6.
  • the temperature-sensitive gel filter 31R may be naturally cooled to room temperature with the circulation pump 112 stopped without circulating the treatment liquid.
  • a cooling unit (cooler) (not shown) is provided in the storage tank 30R, and the storage tank 30R is cooled by using the cooling unit to force the temperature-sensitive gel filter 31R. May be cooled.
  • the cooled treatment liquid is injected into the storage tank 30R, and the temperature-sensitive gel filter 31R is immersed and cooled. It may be good (immersion cleaning step). As a result, impurities are released from the temperature-sensitive gel filter 31R into the treatment liquid. After that, by opening the drain valve 70, the treated liquid can be drained from the storage tank 30R together with impurities.
  • the treatment liquid may be injected into the storage tank 30R a plurality of times. That is, the temperature-sensitive gel filter 31R may be washed a plurality of times by immersion.
  • the first accommodating portion 33a and the second accommodating portion 33b face each other in the lateral direction (horizontal direction) with the temperature-sensitive gel filter 31 interposed therebetween.
  • the temperature-sensitive gel filter 31 may be used for partitioning.
  • each pipe (circulation pipe 32, drainage pipe 21, etc.) connected to the storage tank 30 is connected to either the first storage portion 33a or the second storage portion 33b of the storage tank 30 regardless of whether the pipe is connected to the storage tank 30.
  • the storage tank 30 is connected to the lower end portion.
  • the treatment liquid can be circulated in the circulation pipe 32 without considering the positional relationship between the liquid level of the treatment liquid and the end of the pipe.
  • this configuration can be applied not only to the storage tank 30 according to the first to third embodiments but also to the storage tank 30R according to the fourth embodiment shown in FIG.
  • the supply tank 24 may be configured to be able to supply the new treatment liquid.
  • the treatment liquid supply devices 3, 3P, 3Q have a new liquid pipe 151 in which the new treatment liquid is sent from the new liquid tank 150, a new liquid pump 152 interposed in the new liquid pipe 151, and a new liquid pump. It may include a new liquid valve 153 interposed in the new liquid pipe 151 on the downstream side of 152.
  • the first embodiment and the fourth embodiment may be combined. That is, the contamination treatment liquid is supplied from the feedback pipe 22 to the impurity removal unit 20, and the purification treatment liquid is supplied from the impurity removal unit 20 to the impurity removal unit 20R. Then, the treatment liquid further purified by the impurity removal unit 20R is supplied to the treatment unit 2.
  • the fourth embodiment it is also possible to provide a plurality of impurity removing units 20R.
  • the treatment liquid supply device 3 according to the first embodiment (see FIG. 1), the treatment liquid supply device 3P according to the second embodiment (see FIG. 5), and the treatment liquid supply device 3Q according to the third embodiment (see FIG. 5).
  • the impurity removing unit 20 may have a cooler (cooling unit) for cooling the treatment liquid, as in the fourth embodiment. In this case, the temperature-sensitive gel filter 31 is cooled via the treatment liquid cooled by the cooler.
  • the heating of the temperature-sensitive gel filter 31 is performed via the treatment liquid in the circulation flow path.
  • a heater may be provided in the storage tank 30 to heat the treatment liquid in the storage tank 30, and the temperature-sensitive gel filter 31 may be heated via the treatment liquid.
  • the temperature sensitive gel filter 31 may be directly heated.
  • the temperature-sensitive gel 50 is an LCST type temperature-sensitive gel. Unlike the above-described embodiment, the temperature-sensitive gel 50 may be a UCST type temperature-sensitive gel.
  • the transition temperature (UCST) of the UCST type thermosensitive gel is higher than normal temperature, for example, 30 ° C. or higher and 50 ° C. or lower. That is, the UCST type temperature sensitive gel is hydrophobic at room temperature. Therefore, impurities can be removed from the treatment liquid by passing the treatment liquid through the temperature-sensitive gel filter 31 without heating the treatment liquid. By maintaining the temperature of the treatment liquid at room temperature, the temperature of the temperature-sensitive gel filter 31 is adjusted (temperature adjustment step).
  • the operation example of the impurity removing unit 20 is slightly different from the operation example shown in FIG. 3, as shown in FIG.
  • step S1 the controller 4 omits the gel heating start step (step S1), and first monitors whether the gel temperature is lower than the transition temperature (step S10: first gel temperature monitoring step). If the gel temperature is equal to or higher than the transition temperature (UCST) of the temperature-sensitive gel 50 (step S10: NO), the process returns to step S10.
  • step S10 first gel temperature monitoring step
  • step S10 When the gel temperature is lower than the transition temperature of the temperature-sensitive gel 50 (step S10: YES), the controller 4 determines the predetermined impurity removal time from the time when the gel temperature reaches a temperature equal to or higher than the transition temperature. It monitors whether or not it has passed (step S3: elapsed time monitoring step).
  • step S3 NO.
  • step S4 impurity amount determination step
  • step S5 If the amount of impurities measured by the impurity amount measuring unit 42 is lower than the reference impurity amount after the impurity removal time has elapsed (step S4: YES), the supply step (step S5) is executed.
  • step S4 if the amount of impurities measured by the impurity amount measuring unit 42 is equal to or greater than the reference impurity amount even after the impurity removal time has elapsed (step S4: NO), the circulation heater 45 is operated and the temperature-sensitive gel filter is operated. The heating of 31 is started (step S11: gel heating start step).
  • step S12 second gel temperature monitoring step. If the temperature-sensitive gel filter 31 in the storage tank 30 is lower than the transition temperature of the temperature-sensitive gel 50 (step S12: NO), the process returns to step S12.
  • step S8 when the temperature-sensitive gel filter 31 in the storage tank 30 is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50 (step S12: YES), the drainage step (step S8) is executed.
  • the supply step and the drainage step are selectively executed. Specifically, when the amount of impurities is smaller than the amount of reference impurities, the processing liquid is sent to the supply unit 19. When the amount of impurities is equal to or more than the reference amount of impurities, the temperature of the temperature-sensitive gel filter 31 is adjusted to a temperature at which the temperature-sensitive gel 50 becomes hydrophilic (a temperature equal to or higher than the transition temperature), and then the drainage pipe is used. The processing liquid is sent to 21.
  • the above-mentioned embodiment is an example, and various changes can be made.
  • it is possible to make changes such as installing a new liquid supply unit that is directly connected to the storage tank and supplies new liquid to the storage tank, and a cleaning liquid supply unit that is directly connected to the storage tank and supplies cleaning liquid to the storage tank. be.
  • Substrate processing device 1P Substrate processing device 1Q: Substrate processing device 1R: Substrate processing device 2: Processing unit 3: Treatment liquid supply device 3P: Treatment liquid supply device 3Q: Treatment liquid supply device 3R: Treatment liquid supply device 19: Supply unit (supply flow path) 20: Impurity removal unit 20A: First impurity removal unit 20B: Second impurity removal unit 20R: Impurity removal unit 21: Drainage pipe (drainage flow path) 21A: First drainage pipe (drainage flow path) 21B: Second drainage pipe (drainage flow path) 22: Return piping (return flow path) 22A: First feedback pipe (return flow path) 22B: Second feedback pipe (return flow path) 23: Upstream supply piping (supply flow path) 23A: First upstream supply pipe (supply flow path) 23B: Second upstream supply pipe (supply flow path) 24: Supply tank (supply flow path) 25: Downstream supply piping (supply flow path) 30: Storage tank 30A: 1s

Abstract

This processing liquid supply device supplies a processing liquid to a processing unit which supplies the processing liquid to a substrate to process the substrate. The processing liquid supply device is provided with: an impurity removing unit for removing impurity in a processing liquid; a liquid discharging flow path for discharging the processing liquid from the impurity removing unit; and a supply flow path for sending the processing liquid from the impurity removing unit to the processing unit. The impurity removing unit comprises: a storage tank for storing the processing liquid; a thermosensitive gel filter housed in the storage tank and including a thermosensitive gel that changes from being one of hydrophilic and hydrophobic to the other across a transition temperature boundary; a circulation flow path for drawing the processing liquid from the storage tank and returning the processing liquid back into the storage tank to circulate the processing liquid, the circulation flow path allowing the circulating processing liquid to be passed through the thermosensitive gel filter; and a heating unit for heating the thermosensitive gel filter to a temperature greater than or equal to the transition temperature.

Description

処理液供給装置、基板処理装置および処理液供給方法Processing liquid supply equipment, substrate processing equipment and processing liquid supply method
 この発明は、基板に処理液を供給する装置、処理液で基板を処理する装置、および、基板に処理液を供給する方法に関する。処理の対象となる基板には、たとえば、半導体ウエハ、液晶表示装置および有機EL(Electroluminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板等が含まれる。 The present invention relates to an apparatus for supplying a processing liquid to a substrate, an apparatus for processing a substrate with the processing liquid, and a method for supplying the processing liquid to the substrate. The substrate to be processed includes, for example, a substrate for FPD (Flat Panel Display) such as a semiconductor wafer, a liquid crystal display device and an organic EL (Electroluminescence) display device, a substrate for an optical disk, a substrate for a magnetic disk, and a substrate for an optical magnetic disk. , Photomask substrate, ceramic substrate, solar cell substrate, etc. are included.
 処理液によって基板の表面を処理する手法が知られている。基板上には緻密な回路パターンが形成されている。そのため、基板への不純物の付着を抑制するために、処理液を送液する配管には、処理液中の不純物を除去するフィルタが設けられている(下記特許文献1を参照)。 A method of treating the surface of a substrate with a treatment liquid is known. A precise circuit pattern is formed on the substrate. Therefore, in order to suppress the adhesion of impurities to the substrate, the pipe for sending the treatment liquid is provided with a filter for removing impurities in the treatment liquid (see Patent Document 1 below).
米国特許出願公開第2019/056066号明細書U.S. Patent Application Publication No. 2019/056066
 特許文献1に開示されているフィルタは、そのポア径よりも大きい不純物を捕獲するように構成されている。そのため、使用時間の経過とともにフィルタが目詰まりを起こして不純物除去効率が低下するので、定期的に交換する必要がある。 The filter disclosed in Patent Document 1 is configured to capture impurities larger than its pore diameter. Therefore, as the usage time elapses, the filter becomes clogged and the impurity removal efficiency decreases, so that it is necessary to replace the filter regularly.
 そこで、この発明の1つの目的は、フィルタの不純物除去効率が低下した場合に、フィルタを交換することなく不純物除去効率を回復させることができる処理液供給装置、基板処理装置および処理液供給方法を提供することである。 Therefore, one object of the present invention is to provide a treatment liquid supply device, a substrate treatment device, and a treatment liquid supply method capable of recovering the impurity removal efficiency without replacing the filter when the impurity removal efficiency of the filter is lowered. To provide.
 この発明の一実施形態は、基板に処理液を供給して前記基板を処理する処理ユニットに処理液を供給する処理液供給装置を提供する。この処理液供給装置は、処理液中の不純物を除去する不純物除去ユニットと、前記不純物除去ユニットから処理液を排液する排液流路と、前記不純物除去ユニットから前記処理ユニットに向けて処理液を送る供給流路とを備える。 One embodiment of the present invention provides a processing liquid supply device that supplies a processing liquid to a substrate and supplies the processing liquid to a processing unit that processes the substrate. This treatment liquid supply device includes an impurity removing unit that removes impurities in the treatment liquid, a drainage flow path that drains the treatment liquid from the impurity removal unit, and a treatment liquid from the impurity removal unit toward the treatment unit. It is equipped with a supply channel for sending.
 そして、前記不純物除去ユニットが、処理液を貯留する貯留タンクと、前記貯留タンクに収容されている感温性ゲルフィルタであって、転移温度を境界として、親水性および疎水性のうちの一方から他方に変化する感温性ゲルを有する感温性ゲルフィルタと、前記貯留タンクから処理液を引き込み、前記貯留タンク内に処理液を戻すことで処理液を循環させる循環流路であって、前記循環する処理液を前記感温性ゲルフィルタに通過させる循環流路と、前記転移温度以上の温度に前記感温性ゲルフィルタを加熱する加熱ユニットとを含む。 The impurity removing unit is a storage tank for storing the treatment liquid and a temperature-sensitive gel filter housed in the storage tank, and is either hydrophilic or hydrophobic with the transition temperature as a boundary. On the other hand, a temperature-sensitive gel filter having a temperature-sensitive gel that changes, and a circulation flow path that circulates the treatment liquid by drawing the treatment liquid from the storage tank and returning the treatment liquid to the storage tank. It includes a circulation flow path for passing the circulating treatment liquid through the temperature-sensitive gel filter, and a heating unit for heating the temperature-sensitive gel filter to a temperature equal to or higher than the transition temperature.
 この装置によれば、感温性ゲルを有する感温性ゲルフィルタが貯留タンクに収容されている。感温性ゲルは、転移温度を境界として、親水性および疎水性の一方から他方に変化する性質を有する。 According to this device, a temperature-sensitive gel filter having a temperature-sensitive gel is housed in a storage tank. The temperature-sensitive gel has the property of changing from one of hydrophilic and hydrophobic to the other with the transition temperature as a boundary.
 処理液中に存在する不純物は、主に、金属や有機物等の疎水性物質である。そのため、感温性ゲルが疎水性であるときには、感温性ゲルと不純物との間の疎水性相互作用によって感温性ゲルが不純物を捕獲する。一方、感温性ゲルが親水性であるときには、感温性ゲルと不純物との間の疎水性相互作用が充分に作用せず、感温性ゲルから不純物が放出される。そのため、感温性ゲルフィルタは、加熱ユニットで転移温度以上の温度に加熱されることによって、処理液中の不純物を捕獲可能な状態と、処理液中に不純物を放出可能な状態とのいずれかに切り替えられる。 Impurities present in the treatment liquid are mainly hydrophobic substances such as metals and organic substances. Therefore, when the temperature-sensitive gel is hydrophobic, the temperature-sensitive gel captures the impurities due to the hydrophobic interaction between the temperature-sensitive gel and the impurities. On the other hand, when the temperature-sensitive gel is hydrophilic, the hydrophobic interaction between the temperature-sensitive gel and the impurities does not sufficiently act, and the impurities are released from the temperature-sensitive gel. Therefore, the temperature-sensitive gel filter is either in a state where impurities in the treatment liquid can be captured or in a state where impurities can be released into the treatment liquid by being heated to a temperature equal to or higher than the transition temperature by the heating unit. Can be switched to.
 そこで、感温性ゲルが疎水性であるときに循環流路によって処理液を循環させて感温性ゲルフィルタに通過させることによって、貯留タンクおよび循環流路を流れる処理液中の不純物を感温性ゲルフィルタに捕獲させて処理液中から不純物を除去できる。そして、不純物が充分に除去された処理液を、供給流路を介して処理ユニットに供給できる。 Therefore, when the temperature-sensitive gel is hydrophobic, the treatment liquid is circulated through the circulation flow path and passed through the temperature-sensitive gel filter to heat-sensitive impurities in the treatment liquid flowing through the storage tank and the circulation flow path. Impurities can be removed from the treatment liquid by capturing it in a sex gel filter. Then, the treatment liquid from which impurities have been sufficiently removed can be supplied to the treatment unit via the supply flow path.
 不純物を捕獲することによって感温性ゲルフィルタの不純物除去効率が低下した場合には、感温性ゲルを親水性に変化させた状態で処理液を感温性ゲルフィルタに通過させれば、感温性ゲルフィルタから不純物を解放させ、不純物を処理液中に放出できる。これにより、感温性ゲルフィルタの不純物除去効率を回復させることができる。そして、不純物を多量に含んだ処理液を、排液流路を介して貯留タンクから排除することで、不純物除去ユニットを再び利用可能な状態に戻すことができる。 If the efficiency of removing impurities from the temperature-sensitive gel filter is reduced by capturing impurities, the treatment liquid can be passed through the temperature-sensitive gel filter with the temperature-sensitive gel changed to hydrophilic. Impurities can be released from the thermal gel filter and the impurities can be released into the treatment liquid. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter can be restored. Then, by removing the treatment liquid containing a large amount of impurities from the storage tank via the drainage flow path, the impurity removal unit can be returned to a usable state again.
 以上のように、感温性ゲルフィルタの不純物除去効率が低下した場合であっても、感温性ゲルフィルタを交換することなく不純物除去効率を回復させることができる。 As described above, even when the impurity removal efficiency of the temperature-sensitive gel filter is lowered, the impurity removal efficiency can be restored without replacing the temperature-sensitive gel filter.
 感温性ゲルは、下限臨界溶液温度(LCST: Lower Critical Solution Temperature)以上の温度になると疎水性を示すLCST型感温性ゲルであってもよい。LCSTは、LCST型感温性ゲルの転移温度に相当する。 The temperature-sensitive gel may be an LCST-type temperature-sensitive gel that exhibits hydrophobicity at a temperature equal to or higher than the lower limit critical solution temperature (LCST: Lower Critical Solution Temperature). LCST corresponds to the transition temperature of the LCST type thermosensitive gel.
 また、感温性ゲルは、上限臨界溶液温度(UCST: Upper Critical Solution Temperature)よりも低い温度になると疎水性を示すUCST型感温性ゲルであってもよい。UCSTは、UCST型感温性ゲルの転移温度に相当する。 Further, the temperature-sensitive gel may be a UCST-type temperature-sensitive gel that exhibits hydrophobicity when the temperature becomes lower than the upper limit critical solution temperature (UCST: Upper Critical Solution Temperature). UCST corresponds to the transition temperature of the UCST type thermosensitive gel.
 感温性ゲルがLCST型感温性ゲルである場合、加熱によって親水性から疎水性へ感温性ゲルの状態を速やかに変化させることができる。そのため、感温性ゲルフィルタによる不純物の捕獲を速やかに開始することができる。ひいては、不純物が除去された処理液の供給流路への供給を速やかに開始できる。 When the temperature-sensitive gel is an LCST type temperature-sensitive gel, the state of the temperature-sensitive gel can be rapidly changed from hydrophilic to hydrophobic by heating. Therefore, the capture of impurities by the temperature-sensitive gel filter can be started promptly. As a result, the supply of the treatment liquid from which impurities have been removed to the supply flow path can be started promptly.
 温度調節によって、親水性から疎水性へ感温性ゲルを変化させることを、感温性ゲルを疎水化すると表現する。同様に、温度調節によって、疎水性から親水性へ感温性ゲルを変化させることを、感温性ゲルを親水化すると表現する。 Changing the temperature-sensitive gel from hydrophilic to hydrophobic by controlling the temperature is expressed as making the temperature-sensitive gel hydrophobic. Similarly, changing the temperature-sensitive gel from hydrophobic to hydrophilic by controlling the temperature is expressed as making the temperature-sensitive gel hydrophilic.
 この発明の一実施形態では、前記不純物除去ユニットが、前記循環流路によって循環される処理液中の不純物量を測定する不純物量測定ユニットをさらに含む。そして、前記感温性ゲルが疎水性である状態で前記不純物量測定ユニットによって測定される不純物量が基準不純物量よりも少ない場合には、前記処理液が前記供給流路に送り出され、前記感温性ゲルが疎水性である状態で前記不純物量測定ユニットによって測定される不純物量が基準不純物量以上である場合には、前記感温性ゲルを親水化した後に前記処理液が前記排液流路に送り出される。 In one embodiment of the present invention, the impurity removing unit further includes an impurity amount measuring unit for measuring the amount of impurities in the processing liquid circulated by the circulation flow path. When the amount of impurities measured by the impurity amount measuring unit is smaller than the reference impurity amount in a state where the temperature-sensitive gel is hydrophobic, the treatment liquid is sent out to the supply flow path, and the feeling is felt. When the amount of impurities measured by the impurity amount measuring unit is equal to or more than the reference impurity amount in a state where the warm gel is hydrophobic, the treatment liquid is drained after the temperature-sensitive gel is hydrophilized. Sent out on the road.
 この構成によれば、処理液の送出先が、不純物量測定ユニットによって測定される不純物量に基づいて切り替えられる。したがって、処理液の送出先を、感温性ゲルの不純物除去効率に基づいて、適切に切り替えることができる。 According to this configuration, the delivery destination of the treatment liquid is switched based on the amount of impurities measured by the impurity amount measuring unit. Therefore, the delivery destination of the treatment liquid can be appropriately switched based on the impurity removal efficiency of the temperature-sensitive gel.
 この発明の一実施形態では、前記感温性ゲルフィルタが、前記処理液を通過させつつ前記感温性ゲルを保持するフィルタ部材をさらに含む。そのため、親水性の感温性ゲルが吸液して膨潤した場合であっても、感温性ゲルを感温性ゲルフィルタの外部に流出させることなく貯留タンク内の所定の位置に維持できる。 In one embodiment of the present invention, the temperature-sensitive gel filter further includes a filter member that holds the temperature-sensitive gel while allowing the treatment liquid to pass through. Therefore, even when the hydrophilic temperature-sensitive gel absorbs liquid and swells, the temperature-sensitive gel can be maintained at a predetermined position in the storage tank without flowing out to the outside of the temperature-sensitive gel filter.
 この発明の一実施形態では、前記貯留タンクの内部が、前記感温性ゲルフィルタによって、第1収容部および第2収容部に仕切られている。前記第1収容部は、前記感温性ゲルフィルタを挟んで前記第2収容部よりも処理液の循環方向の上流側に位置する。そして、前記第1収容部には、前記排液流路が接続されており、前記第2収容部には、前記供給流路が接続されている。 In one embodiment of the present invention, the inside of the storage tank is partitioned into a first storage portion and a second storage portion by the temperature-sensitive gel filter. The first accommodating portion is located on the upstream side of the second accommodating portion in the circulation direction of the treatment liquid with the temperature-sensitive gel filter interposed therebetween. The drainage flow path is connected to the first accommodating portion, and the supply flow path is connected to the second accommodating portion.
 そのため、感温性ゲルフィルタよりも循環方向の上流側の不純物が比較的多い処理液を排液流路に送ることができる。一方、感温性ゲルフィルタよりも循環方向の下流側の不純物が比較的少ない処理液を供給流路に送ることができる。 Therefore, the treatment liquid having a relatively large amount of impurities on the upstream side in the circulation direction can be sent to the drainage flow path as compared with the temperature-sensitive gel filter. On the other hand, a treatment liquid having a relatively small amount of impurities on the downstream side in the circulation direction can be sent to the supply flow path as compared with the temperature-sensitive gel filter.
 この発明の一実施形態では、前記供給流路が、前記不純物除去ユニットから送出される処理液が流れる上流供給流路と、前記上流供給流路を介して前記不純物除去ユニットから供給される処理液を貯留する供給タンクと、前記供給タンク内の処理液を前記処理ユニットに供給する下流供給流路とを含む。 In one embodiment of the present invention, the supply flow path is an upstream supply flow path through which the treatment liquid sent from the impurity removal unit flows, and a treatment liquid supplied from the impurity removal unit via the upstream supply flow path. Includes a supply tank for storing the liquid and a downstream supply flow path for supplying the treatment liquid in the supply tank to the treatment unit.
 この構成によれば、不純物が充分に除去された処理液が、不純物除去ユニットから送出され、供給タンクに貯留される。そのため、感温性ゲルフィルタの不純物除去効率を回復させるために不純物除去ユニットから供給流路への処理液の送出が一時的に停止されている場合であっても、供給タンク内の処理液を処理ユニットに供給できる。したがって、感温性ゲルフィルタの不純物除去効率を回復させつつ、処理ユニットに処理液を安定して供給できる。 According to this configuration, the treatment liquid from which impurities have been sufficiently removed is sent out from the impurity removal unit and stored in the supply tank. Therefore, in order to restore the impurity removal efficiency of the temperature-sensitive gel filter, even if the delivery of the treatment liquid from the impurity removal unit to the supply flow path is temporarily stopped, the treatment liquid in the supply tank is used. Can be supplied to the processing unit. Therefore, the treatment liquid can be stably supplied to the treatment unit while recovering the impurity removal efficiency of the temperature-sensitive gel filter.
 この発明の一実施形態では、前記循環流路が、前記貯留タンクから処理液が送られる上流循環流路と、前記上流循環流路を介して前記貯留タンクから供給される処理液を貯留する循環タンクと、前記循環タンク内の処理液を前記貯留タンクに戻す下流循環流路とを含む。 In one embodiment of the present invention, the circulation flow path stores the upstream circulation flow path to which the treatment liquid is sent from the storage tank and the treatment liquid supplied from the storage tank via the upstream circulation flow path. It includes a tank and a downstream circulation flow path for returning the treatment liquid in the circulation tank to the storage tank.
 この構成によれば、循環流路の一部である循環タンク内に処理液を貯留することができる。そのため、循環流路および貯留タンクを循環する処理液の量を増大させることができる。 According to this configuration, the treatment liquid can be stored in the circulation tank which is a part of the circulation flow path. Therefore, the amount of the treatment liquid circulating in the circulation flow path and the storage tank can be increased.
 この発明の一実施形態では、前記基板処理装置が、前記処理ユニットから排出される汚染処理液を前記不純物除去ユニットに戻す帰還流路をさらに備える。そのため、処理ユニットから排出される汚染処理液を再利用することで、基板処理に要するコストおよび環境負荷を低減できる。 In one embodiment of the present invention, the substrate processing apparatus further includes a return flow path for returning the contamination treatment liquid discharged from the treatment unit to the impurity removal unit. Therefore, by reusing the contamination treatment liquid discharged from the treatment unit, the cost and environmental load required for substrate treatment can be reduced.
 その一方で、処理ユニットから排出される汚染処理液中には不純物が多量に存在している。そのため、汚染処理液を不純物除去ユニットに戻した場合、感温性ゲルフィルタの不純物除去効率が低下しやすい。しかしながら、感温性ゲルフィルタを含む不純物除去ユニットを用いれば、汚染処理液からの不純物の除去によって不純物除去効率が低下した場合であっても、温度調節によって容易に不純物を放出できる。そのため、感温性ゲルフィルタを交換することなく汚染処理液から不純物を除去できる。 On the other hand, a large amount of impurities are present in the contamination treatment liquid discharged from the treatment unit. Therefore, when the contamination treatment liquid is returned to the impurity removing unit, the impurity removing efficiency of the temperature-sensitive gel filter tends to decrease. However, if an impurity removing unit including a temperature-sensitive gel filter is used, impurities can be easily released by temperature control even when the impurity removing efficiency is lowered due to the removal of impurities from the contamination treatment liquid. Therefore, impurities can be removed from the contaminated treatment liquid without replacing the temperature-sensitive gel filter.
 この発明の一実施形態では、前記基板処理装置が、前記処理ユニットで使用されていない新処理液を前記循環タンクに供給する新液流路をさらに備える。 In one embodiment of the present invention, the substrate processing apparatus further includes a new liquid flow path for supplying the new processing liquid not used in the processing unit to the circulation tank.
 処理ユニットで使用されていない新処理液中の不純物量は、処理ユニットで使用された汚染処理液と比較して非常に少ない。しかしながら、感温性ゲルフィルタを含む不純物除去ユニットを用いて不純物量を新処理液中から一層低減すれば、清浄度が一層高い処理液を処理ユニットに供給できる。 The amount of impurities in the new treatment liquid not used in the treatment unit is very small compared to the contamination treatment liquid used in the treatment unit. However, if the amount of impurities is further reduced from the new treatment liquid by using the impurity removal unit including the temperature sensitive gel filter, the treatment liquid having higher cleanliness can be supplied to the treatment unit.
 この発明の一実施形態では、前記不純物除去ユニットが、前記感温性ゲルフィルタを洗浄する洗浄液を前記貯留タンクに供給する洗浄液流路をさらに含む。そのため、感温性ゲルフィルタの不純物除去効率が低下した場合には、貯留タンク内に洗浄液を供給して感温性ゲルフィルタを速やかに洗浄できる。 In one embodiment of the present invention, the impurity removing unit further includes a cleaning liquid flow path that supplies a cleaning liquid for cleaning the temperature-sensitive gel filter to the storage tank. Therefore, when the efficiency of removing impurities of the temperature-sensitive gel filter is lowered, the cleaning liquid can be supplied into the storage tank to quickly clean the temperature-sensitive gel filter.
 この発明の一実施形態では、前記不純物除去ユニットが、複数設けられている。そして、各前記不純物除去ユニットが、処理液の送出先を前記供給流路および前記排液流路のいずれかに切り替えるように構成されている。そのため、不純物除去ユニットの感温性ゲルフィルタの不純物除去効率が低下した場合であっても、その不純物除去ユニットの感温性ゲルフィルタの感温性ゲルから不純物を放出させて不純物除去効率を回復させつつ、別の不純物除去ユニットを用いて処理液から不純物を充分に除去し、その処理液を供給流路に送出できる。 In one embodiment of the present invention, a plurality of the impurity removing units are provided. Each of the impurity removing units is configured to switch the delivery destination of the treatment liquid to either the supply flow path or the drainage flow path. Therefore, even if the impurity removal efficiency of the temperature-sensitive gel filter of the impurity removal unit decreases, impurities are released from the temperature-sensitive gel of the temperature-sensitive gel filter of the impurity removal unit to recover the impurity removal efficiency. While doing so, impurities can be sufficiently removed from the treatment liquid using another impurity removal unit, and the treatment liquid can be sent to the supply flow path.
 この発明の一実施形態では、前記処理液供給装置と前記処理ユニットとを含む、基板処理装置が提供される。この基板処理装置によれば、上述の効果を奏する。 In one embodiment of the present invention, a substrate processing apparatus including the processing liquid supply apparatus and the processing unit is provided. According to this substrate processing apparatus, the above-mentioned effect is obtained.
 この発明の他の実施形態は、処理液で基板を処理する処理ユニットに処理液を供給する処理液供給方法を提供する。この処理液供給方法は、処理液を貯留する貯留タンク内に収容されている感温性ゲルフィルタに含まれる感温性ゲルが疎水性となっている状態で前記感温性ゲルフィルタに処理液を通過させることによって、前記感温性ゲルフィルタに前記処理液中の不純物を捕獲させて前記処理液中から不純物を除去する不純物除去工程と、前記不純物除去工程の後、前記処理ユニットに処理液を供給する供給流路へ向けて前記貯留タンクから前記処理液を送り出す供給工程と、前記供給工程の後、前記感温性ゲルが親水性である状態で前記感温性ゲルフィルタに洗浄液を通過させることによって、前記感温性ゲルフィルタから前記洗浄液に不純物を放出させる不純物放出工程と、前記不純物放出工程の後、排液流路を介して、前記貯留タンクから前記処理液を排除する排液工程とを含む。 Another embodiment of the present invention provides a treatment liquid supply method for supplying a treatment liquid to a treatment unit that treats a substrate with the treatment liquid. In this treatment liquid supply method, the treatment liquid is applied to the temperature-sensitive gel filter in a state where the temperature-sensitive gel contained in the temperature-sensitive gel filter housed in the storage tank for storing the treatment liquid is hydrophobic. After the impurity removing step of allowing the temperature-sensitive gel filter to capture the impurities in the treatment liquid and removing the impurities from the treatment liquid, and the impurity removing step, the treatment liquid is sent to the treatment unit. After the supply step of feeding the treatment liquid from the storage tank toward the supply flow path for supplying the liquid and the supply step, the cleaning liquid is passed through the temperature-sensitive gel filter in a state where the temperature-sensitive gel is hydrophilic. After the impurity discharge step of releasing impurities from the temperature-sensitive gel filter to the cleaning liquid and the impurity discharge step, the drainage liquid for removing the treatment liquid from the storage tank via the drainage flow path. Including the process.
 この方法によれば、感温性ゲルが疎水性であるときに処理液を感温性ゲルフィルタに通過させることによって、処理液中の不純物を感温性ゲルフィルタに捕獲させて処理液中から不純物を除去できる。そして、不純物が充分に除去された処理液を、供給流路を介して処理ユニットに供給できる。 According to this method, when the temperature-sensitive gel is hydrophobic, the treatment liquid is passed through the temperature-sensitive gel filter to capture impurities in the treatment liquid by the temperature-sensitive gel filter and from the treatment liquid. Impurities can be removed. Then, the treatment liquid from which impurities have been sufficiently removed can be supplied to the treatment unit via the supply flow path.
 不純物を捕獲することによって感温性ゲルフィルタの不純物除去効率が低下した場合には、感温性ゲルを親水化した状態で貯留タンク内の処理液を感温性ゲルフィルタに通過させることで、感温性ゲルフィルタによって捕獲されていた不純物を処理液中に放出できる。これにより、感温性ゲルフィルタの不純物除去効率を回復させることができる。そして、排液流路を介して、処理液とともに多量の不純物を貯留タンクから排除することで、不純物除去ユニットを再び利用可能な状態に戻すことができる。 When the impurity removal efficiency of the temperature-sensitive gel filter is reduced by capturing impurities, the treatment liquid in the storage tank is passed through the temperature-sensitive gel filter in a hydrophilic state of the temperature-sensitive gel. Impurities captured by the temperature-sensitive gel filter can be released into the treatment liquid. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter can be restored. Then, by removing a large amount of impurities from the storage tank together with the treatment liquid through the drainage flow path, the impurity removal unit can be returned to a usable state again.
 以上のように、感温性ゲルフィルタの不純物除去効率が低下した場合であっても、感温性ゲルフィルタを交換することなく不純物除去効率を回復させることができる。 As described above, even when the impurity removal efficiency of the temperature-sensitive gel filter is lowered, the impurity removal efficiency can be restored without replacing the temperature-sensitive gel filter.
 この発明の他の実施形態によれば、前記処理液供給方法が、前記感温性ゲルフィルタを転移温度以上の温度に加熱することによって、前記感温性ゲルを疎水性に変化させる疎水化工程と、前記感温性ゲルフィルタを前記転移温度よりも低い温度に冷却することによって、前記感温性ゲルの状態を親水性に変化させる親水化工程とをさらに含む。 According to another embodiment of the present invention, the treatment liquid supply method is a hydrophobizing step of changing the temperature-sensitive gel to hydrophobicity by heating the temperature-sensitive gel filter to a temperature equal to or higher than the transition temperature. Further includes a hydrophilization step of changing the state of the temperature-sensitive gel to hydrophilicity by cooling the temperature-sensitive gel filter to a temperature lower than the transition temperature.
 この方法によれば、加熱によって感温性ゲルが疎水化し、冷却によって感温性ゲルが親水化する。すなわち、感温性ゲルが、LCST型感温性ゲルである。 According to this method, the temperature-sensitive gel becomes hydrophobic by heating, and the temperature-sensitive gel becomes hydrophilic by cooling. That is, the temperature-sensitive gel is an LCST type temperature-sensitive gel.
 この場合、たとえばヒータによる加熱によって感温性ゲルを速やかに疎水化させることができる。そのため、感温性ゲルフィルタによる不純物の捕獲を速やかに開始できる。ひいては、不純物が除去された処理液の供給流路への供給を速やかに開始できる。 In this case, the temperature-sensitive gel can be quickly hydrophobized, for example, by heating with a heater. Therefore, the capture of impurities by the temperature-sensitive gel filter can be started promptly. As a result, the supply of the treatment liquid from which impurities have been removed to the supply flow path can be started promptly.
 この発明の他の実施形態によれば、前記不純物除去工程が、前記貯留タンクから液体を引き込み前記貯留タンク内に液体を戻す循環流路によって処理液を循環させることによって、前記感温性ゲルフィルタに前記処理液を通過させる循環除去工程を含む。そして、前記不純物放出工程が、前記循環流路によって前記洗浄液を循環させることによって、前記感温性ゲルフィルタに前記洗浄液を通過させる循環洗浄工程を含む。 According to another embodiment of the present invention, the impurity removing step causes the treatment liquid to be circulated by a circulation flow path that draws the liquid from the storage tank and returns the liquid to the storage tank, whereby the temperature-sensitive gel filter is used. Includes a circulation removal step of passing the treatment liquid through. The impurity release step includes a circulation cleaning step of allowing the cleaning liquid to pass through the temperature-sensitive gel filter by circulating the cleaning liquid through the circulation flow path.
 この方法によれば、循環流路によって処理液を循環させて感温性ゲルフィルタに処理液を通過させることによって処理液から不純物が除去され、循環流路によって洗浄液を循環させて感温性ゲルフィルタに洗浄液を通過させることによって感温性ゲルフィルタから不純物が放出される。液体の循環によって処理液および洗浄液を感温性ゲルフィルタに効率良く通過させることができる。これにより、処理液から不純物の除去、および、不純物除去効率の回復が速やかに行われる。 According to this method, impurities are removed from the treatment liquid by circulating the treatment liquid through the circulation flow path and passing the treatment liquid through the temperature-sensitive gel filter, and the cleaning liquid is circulated through the circulation flow path to cause the temperature-sensitive gel. Impurities are released from the temperature sensitive gel filter by passing the cleaning solution through the filter. The liquid circulation allows the treatment liquid and the cleaning liquid to efficiently pass through the temperature-sensitive gel filter. As a result, impurities are quickly removed from the treatment liquid and the impurity removal efficiency is quickly restored.
 この発明の他の実施形態によれば、前記処理液供給方法が、前記処理ユニットで使用された汚染処理液を、帰還流路を介して前記貯留タンクに帰還させる帰還工程をさらに含む。そして、前記循環除去工程において前記循環流路によって循環される前記処理液が、前記汚染処理液であり、前記循環洗浄工程において前記循環流路によって循環される前記洗浄液が、前記汚染処理液である。 According to another embodiment of the present invention, the treatment liquid supply method further includes a return step of returning the contaminated treatment liquid used in the treatment unit to the storage tank via the return flow path. The treatment liquid circulated by the circulation flow path in the circulation removal step is the contamination treatment liquid, and the cleaning liquid circulated by the circulation flow path in the circulation cleaning step is the contamination treatment liquid. ..
 この方法によれば、処理ユニットから排出される汚染処理液が貯留タンクに帰還する。すなわち、汚染処理液が再利用される。これにより、基板処理に要するコストおよび環境負荷を低減できる。 According to this method, the contaminated treatment liquid discharged from the treatment unit returns to the storage tank. That is, the contamination treatment liquid is reused. This makes it possible to reduce the cost and environmental load required for substrate processing.
 その一方で、汚染処理液中には不純物が多量に存在している。そのため、汚染処理液を不純物除去ユニットに戻した場合、感温性ゲルフィルタの不純物除去効率が低下しやすい。しかしながら、感温性ゲルフィルタを用いれば、汚染処理液からの不純物の除去によって不純物除去効率が低下した場合であっても、温度調節によって容易に不純物を放出できる。そのため、感温性ゲルフィルタを交換することなく汚染処理液から不純物を除去できる。 On the other hand, a large amount of impurities are present in the contamination treatment liquid. Therefore, when the contamination treatment liquid is returned to the impurity removing unit, the impurity removing efficiency of the temperature-sensitive gel filter tends to decrease. However, if a temperature-sensitive gel filter is used, impurities can be easily released by temperature control even when the impurity removal efficiency is lowered due to the removal of impurities from the contamination treatment liquid. Therefore, impurities can be removed from the contaminated treatment liquid without replacing the temperature-sensitive gel filter.
 さらに、感温性ゲルフィルタに不純物を捕獲させるための処理液、および、感温性ゲルフィルタから不純物を放出させるための洗浄液として、汚染処理液が用いられる。そのため、感温性ゲルフィルタの不純物除去効率が低下した際には、循環流路によって循環される液体の液種を変更する必要がないため、不純物除去効率の回復に速やかに開始できる。したがって、汚染処理液とは別の種類の洗浄液を感温性ゲルフィルタに通過させる構成と比較して、不純物を感温性ゲルフィルタから速やかに放出させることができる。 Further, a contamination treatment liquid is used as a treatment liquid for capturing impurities in the temperature-sensitive gel filter and a cleaning liquid for releasing impurities from the temperature-sensitive gel filter. Therefore, when the impurity removal efficiency of the temperature-sensitive gel filter is lowered, it is not necessary to change the liquid type of the liquid circulated by the circulation flow path, so that the recovery of the impurity removal efficiency can be started promptly. Therefore, impurities can be rapidly released from the temperature-sensitive gel filter as compared with the configuration in which a cleaning liquid of a type different from the contamination treatment liquid is passed through the temperature-sensitive gel filter.
 この発明の他の実施形態によれば、前記不純物放出工程が、前記貯留タンクに前記洗浄液を供給して前記感温性ゲルフィルタを前記洗浄液に浸漬させ、前記貯留タンク内の前記洗浄液を前記排液流路から排液して前記貯留タンク内に排液流を形成する浸漬洗浄工程を含む。 According to another embodiment of the present invention, in the impurity release step, the cleaning liquid is supplied to the storage tank, the temperature-sensitive gel filter is immersed in the cleaning liquid, and the cleaning liquid in the storage tank is drained. It includes a dipping cleaning step of draining liquid from the liquid flow path to form a drainage flow in the storage tank.
 この構成によれば、貯留タンク内に供給された洗浄液に感温性ゲルフィルタが浸漬される。これにより、洗浄液中に感温性ゲルから不純物が放出される。その後、貯留タンク内の洗浄液を排液流路から排液することによって貯留タンク内に排液流が形成される。洗浄液中に放出された不純物が、この排液流によって洗浄液とともに貯留タンク内から除去される。これにより、感温性ゲルフィルタの不純物除去効率を回復させることができる。 According to this configuration, the temperature-sensitive gel filter is immersed in the cleaning liquid supplied in the storage tank. As a result, impurities are released from the temperature-sensitive gel into the cleaning liquid. After that, a drainage flow is formed in the storage tank by draining the cleaning liquid in the storage tank from the drainage flow path. Impurities released into the cleaning liquid are removed from the storage tank together with the cleaning liquid by this drainage flow. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter can be restored.
 この発明の他の実施形態によれば、前記貯留タンクとして、第1貯留タンクおよび第2貯留タンクが設けられている。前記不純物放出工程が、前記第1貯留タンク内に収容されている第1感温性ゲルフィルタに含まれる第1感温性ゲルが親水性である状態で、前記第1感温性ゲルフィルタに洗浄液を通過させることによって、前記第1感温性ゲルフィルタから前記洗浄液に不純物を放出させる工程を含む。そして、前記不純物除去工程は、前記不純物放出工程が実行されている間に、前記第2貯留タンク内に収容されている第2感温性ゲルフィルタに含まれる前記第2感温性ゲルが疎水性である状態で前記第2貯留タンク内の処理液を前記第2感温性ゲルフィルタに通過させることによって、前記感温性ゲルフィルタに前記処理液中の不純物を捕獲させて前記処理液中から不純物を除去する工程を含む。 According to another embodiment of the present invention, a first storage tank and a second storage tank are provided as the storage tank. The impurity release step is performed on the first temperature-sensitive gel filter in a state where the first temperature-sensitive gel contained in the first temperature-sensitive gel filter housed in the first storage tank is hydrophilic. The step includes a step of releasing impurities from the first temperature-sensitive gel filter into the cleaning liquid by passing the cleaning liquid through the cleaning liquid. Then, in the impurity removing step, the second temperature-sensitive gel contained in the second temperature-sensitive gel filter housed in the second storage tank is hydrophobic while the impurity discharge step is being executed. By passing the treatment liquid in the second storage tank through the second temperature-sensitive gel filter in a state of being sexual, the temperature-sensitive gel filter captures impurities in the treatment liquid and is contained in the treatment liquid. Includes a step of removing impurities from the gel.
 この方法によれば、第1貯留タンク内に収容されている第1感温性ゲルフィルタから洗浄液に不純物を放出させている間に、別の貯留タンク(第2貯留タンク)に収容されている第2感温性ゲルフィルタによって、処理液から不純物を充分に除去できる。 According to this method, while the impurities are released from the first temperature-sensitive gel filter housed in the first storage tank into the cleaning liquid, they are housed in another storage tank (second storage tank). The second temperature-sensitive gel filter can sufficiently remove impurities from the treatment liquid.
 そのため、一方の感温性ゲルフィルタの不純物除去効率が低下した場合にであっても、その感温性ゲルフィルタの感温性ゲルから不純物を放出させて不純物除去効率を回復させつつ、別の感温性ゲルフィルタを用いて処理液から不純物を充分に除去し、その処理液を供給流路に送出できる。 Therefore, even when the impurity removal efficiency of one of the temperature-sensitive gel filters is lowered, impurities are released from the temperature-sensitive gel of the temperature-sensitive gel filter to recover the impurity removal efficiency, and another. Impurities can be sufficiently removed from the treatment liquid using a temperature-sensitive gel filter, and the treatment liquid can be sent to the supply flow path.
 したがって、貯留タンク内の感温性ゲルフィルタの不純物除去効率を回復させつつ、別の貯留タンク内の感温性ゲルフィルタを用いて処理ユニットに処理液を安定して供給できる。 Therefore, the processing liquid can be stably supplied to the processing unit by using the temperature-sensitive gel filter in another storage tank while recovering the impurity removal efficiency of the temperature-sensitive gel filter in the storage tank.
 この発明のさらに他の実施形態は、処理液で基板を処理する処理ユニットに処理液を供給する処理液供給方法を提供する。この処理液供給方法は、転移温度を境界として、親水性および疎水性のうちの一方から他方に変化する感温性ゲルを有する感温性ゲルフィルタを収容する貯留タンク内の処理液を循環させて、前記感温性ゲルフィルタに処理液を通過させる循環工程と、前記感温性ゲルが疎水性となる温度に前記感温性ゲルフィルタの温度を調節する温度調節工程と、前記感温性ゲルが疎水性となる温度に前記感温性ゲルフィルタの温度が調節されている状態で、前記感温性ゲルフィルタを通過する処理液の不純物量が所定の基準不純物量よりも少ないか否かを判定する不純物量判定工程とを含む。さらに、前記不純物量判定工程によって測定される不純物量が、前記基準不純物量よりも少ない場合には、前記処理ユニットに向けて処理液を送る供給流路に処理液を送出する供給工程が実行され、前記不純物量判定工程によって測定される不純物量が、前記基準不純物量以上である場合には、前記感温性ゲルが親水性となる温度に前記感温性ゲルフィルタの温度を調節した後、前記処理液を排液する排液流路に処理液を送出する排液工程が実行されるように、前記供給工程および前記排液工程が選択的に実行される。 Yet another embodiment of the present invention provides a treatment liquid supply method for supplying a treatment liquid to a treatment unit that treats a substrate with the treatment liquid. In this treatment liquid supply method, the treatment liquid in a storage tank containing a temperature-sensitive gel filter having a temperature-sensitive gel that changes from one of hydrophilic and hydrophobic to the other is circulated with the transition temperature as a boundary. A circulation step of passing the treatment liquid through the temperature-sensitive gel filter, a temperature control step of adjusting the temperature of the temperature-sensitive gel filter to a temperature at which the temperature-sensitive gel becomes hydrophobic, and the temperature-sensitive property. Whether or not the amount of impurities in the treatment liquid passing through the temperature-sensitive gel filter is less than the predetermined reference impurity amount in a state where the temperature of the temperature-sensitive gel filter is adjusted to a temperature at which the gel becomes hydrophobic. Includes an impurity amount determination step for determining. Further, when the amount of impurities measured by the impurity amount determination step is smaller than the reference impurity amount, the supply step of sending the treatment liquid to the supply flow path for sending the treatment liquid toward the treatment unit is executed. When the amount of impurities measured by the step of determining the amount of impurities is equal to or greater than the reference amount of impurities, the temperature of the temperature-sensitive gel filter is adjusted to a temperature at which the temperature-sensitive gel becomes hydrophilic, and then the temperature of the temperature-sensitive gel filter is adjusted. The supply step and the drainage step are selectively executed so that the drainage step of delivering the treatment liquid to the drainage flow path for draining the treatment liquid is executed.
 この処理液供給方法によれば、上述の処理液供給方法と同様の効果を奏する。 According to this treatment liquid supply method, the same effect as the above-mentioned treatment liquid supply method is obtained.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-mentioned or still other purposes, features and effects of the present invention will be clarified by the description of the embodiments described below with reference to the accompanying drawings.
図1は、この発明の第1実施形態に係る基板処理装置の構成例を示す模式図である。FIG. 1 is a schematic view showing a configuration example of a substrate processing apparatus according to the first embodiment of the present invention. 図2は、前記基板処理装置の主要部の電気的構成例を示すブロック図である。FIG. 2 is a block diagram showing an example of an electrical configuration of a main part of the substrate processing apparatus. 図3は、前記基板処理装置に備えられる不純物除去ユニットの動作例を説明するためのフローチャートである。FIG. 3 is a flowchart for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus. 図4Aは、前記基板処理装置に備えられる不純物除去ユニットの動作例を説明するための模式図である。FIG. 4A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus. 図4Bは、前記不純物除去ユニットの動作例を説明するための模式図である。FIG. 4B is a schematic diagram for explaining an operation example of the impurity removing unit. 図4Cは、前記不純物除去ユニットの動作例を説明するための模式図である。FIG. 4C is a schematic diagram for explaining an operation example of the impurity removing unit. 図4Dは、前記不純物除去ユニットの動作例を説明するための模式図である。FIG. 4D is a schematic diagram for explaining an operation example of the impurity removing unit. 図4Eは、前記不純物除去ユニットの動作例を説明するための模式図である。FIG. 4E is a schematic diagram for explaining an operation example of the impurity removing unit. 図5は、この発明の第2実施形態に係る基板処理装置の構成例を示す模式図である。FIG. 5 is a schematic view showing a configuration example of the substrate processing apparatus according to the second embodiment of the present invention. 図6Aは、第2実施形態に係る基板処理装置に備えられる不純物除去ユニットの動作例を説明するための模式図である。FIG. 6A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus according to the second embodiment. 図6Bは、第2実施形態に係る不純物除去ユニットの動作例を説明するための模式図である。FIG. 6B is a schematic diagram for explaining an operation example of the impurity removing unit according to the second embodiment. 図6Cは、第2実施形態に係る不純物除去ユニットの動作例を説明するための模式図である。FIG. 6C is a schematic diagram for explaining an operation example of the impurity removing unit according to the second embodiment. 図6Dは、第2実施形態に係る不純物除去ユニットの動作例を説明するための模式図である。FIG. 6D is a schematic diagram for explaining an operation example of the impurity removing unit according to the second embodiment. 図7は、この発明の第3実施形態に係る基板処理装置の構成例を示す模式図である。FIG. 7 is a schematic view showing a configuration example of the substrate processing apparatus according to the third embodiment of the present invention. 図8Aは、第3実施形態に係る基板処理装置に備えられる不純物除去ユニットの動作例を説明するための模式図である。FIG. 8A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus according to the third embodiment. 図8Bは、第3実施形態に係る不純物除去ユニットの動作例を説明するための模式図である。FIG. 8B is a schematic diagram for explaining an operation example of the impurity removing unit according to the third embodiment. 図9は、この発明の第4実施形態に係る基板処理装置の構成例を示す模式図である。FIG. 9 is a schematic diagram showing a configuration example of the substrate processing apparatus according to the fourth embodiment of the present invention. 図10Aは、第4実施形態に係る基板処理装置に備えられる不純物除去ユニットの動作例を説明するための模式図である。FIG. 10A is a schematic diagram for explaining an operation example of the impurity removing unit provided in the substrate processing apparatus according to the fourth embodiment. 図10Bは、第4実施形態に係る不純物除去ユニットの動作例を説明するための模式図である。FIG. 10B is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth embodiment. 図10Cは、第4実施形態に係る不純物除去ユニットの動作例を説明するための模式図である。FIG. 10C is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth embodiment. 図10Dは、第4実施形態に係る不純物除去ユニットの動作例を説明するための模式図である。FIG. 10D is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth embodiment. 図10Eは、第4実施形態に係る不純物除去ユニットの動作例を説明するための模式図である。FIG. 10E is a schematic diagram for explaining an operation example of the impurity removing unit according to the fourth embodiment. 図11は、前記不純物除去ユニットに備えられる貯留タンクの変形例について説明するための模式図である。FIG. 11 is a schematic diagram for explaining a modified example of the storage tank provided in the impurity removing unit. 図12は、第1実施形態に係る不純物除去ユニットと第4実施形態に係る不純物除去ユニットとを組み合わせた場合の基板処理装置の構成例を示す模式図である。FIG. 12 is a schematic view showing a configuration example of a substrate processing apparatus when the impurity removing unit according to the first embodiment and the impurity removing unit according to the fourth embodiment are combined. 図13は、第1実施形態に係る不純物除去ユニットに備えられる感温性ゲルがUCST型感温性ゲルである場合の、不純物除去ユニットの動作例を説明するためのフローチャートである。FIG. 13 is a flowchart for explaining an operation example of the impurity removing unit when the temperature sensitive gel provided in the impurity removing unit according to the first embodiment is a UCST type temperature sensitive gel.
 <第1実施形態>
 図1は、本発明の第1実施形態に係る基板処理装置1の構成例を示す模式図である。基板処理装置1は、半導体ウエハなどの円板状の基板Wを一枚ずつ処理する枚葉式の装置である。基板処理装置1は、処理液で基板Wを処理する処理ユニット2と、処理ユニット2に基板Wを搬送する搬送ロボット(図示せず)と、処理ユニット2に処理液を供給する処理液供給装置3と、基板処理装置1を制御するコントローラ4(図2を参照)とを含む。
<First Embodiment>
FIG. 1 is a schematic view showing a configuration example of the substrate processing apparatus 1 according to the first embodiment of the present invention. The substrate processing device 1 is a single-wafer processing device that processes disk-shaped substrates W such as semiconductor wafers one by one. The substrate processing apparatus 1 includes a processing unit 2 that processes the substrate W with the processing liquid, a transfer robot (not shown) that conveys the substrate W to the processing unit 2, and a processing liquid supply device that supplies the processing liquid to the processing unit 2. 3 and a controller 4 (see FIG. 2) that controls the substrate processing apparatus 1.
 処理ユニット2内で基板Wに対して供給される処理液には、薬液やリンス液等が含まれる。薬液は、たとえば、フッ酸(フッ化水素水:HF)である。薬液は、フッ酸に限られず、硫酸、酢酸、硝酸、塩酸、フッ酸、バッファードフッ酸(BHF)、希フッ酸(DHF)、アンモニア水、過酸化水素水、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液であってもよい。これらを混合した薬液の例としては、SPM(硫酸過酸化水素水混合液)、SC1(アンモニア過酸化水素水混合液:APM)、SC2(塩酸過酸化水素水混合液:HPM)等が挙げられる。 The treatment liquid supplied to the substrate W in the treatment unit 2 includes a chemical liquid, a rinse liquid, and the like. The chemical solution is, for example, hydrofluoric acid (hydrogen fluoride water: HF). The chemical solution is not limited to hydrofluoric acid, but sulfuric acid, acetic acid, nitric acid, hydrochloric acid, hydrofluoric acid, buffered hydrofluoric acid (BHF), dilute hydrofluoric acid (DHF), ammonia water, hydrogen peroxide solution, surfactant, corrosion inhibitor. It may be a liquid containing at least one of them. Examples of the chemical solution in which these are mixed include SPM (sulfuric acid hydrogen peroxide solution mixed solution), SC1 (ammonia hydrogen peroxide solution mixed solution: APM), SC2 (hydrochloric acid hydrogen peroxide solution mixed solution: HPM) and the like. ..
 リンス液とは、たとえば、脱イオン水(Deionized Water: DIW)である。リンス液は、DIWに限られず、炭酸水、電解イオン水、オゾン水、希釈濃度(たとえば、10ppm以上100ppm以下)の塩酸水、アンモニア水、還元水(水素水)、親水性の有機溶剤のうちの少なくとも1つを含む液であってもよい。 The rinse liquid is, for example, Deionized Water (DIW). The rinsing solution is not limited to DIW, but includes carbonated water, electrolytic ionized water, ozone water, hydrochloric acid water having a diluted concentration (for example, 10 ppm or more and 100 ppm or less), ammonia water, reduced water (hydrogen water), and a hydrophilic organic solvent. It may be a liquid containing at least one of.
 親水性の有機溶剤は、たとえば、IPA(イソプロピルアルコール)、メタノール、エタノール、およびアセトンのうちの少なくとも1つを含む液であってもよい。 The hydrophilic organic solvent may be, for example, a liquid containing at least one of IPA (isopropyl alcohol), methanol, ethanol, and acetone.
 処理ユニット2は、スピンチャック10と、処理液ノズル11と、カップ12と、処理チャンバ13とを含む。スピンチャック10は、一枚の基板Wを水平な姿勢で保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに基板Wを回転させる。処理液ノズル11は、基板Wの上面に処理液を供給する。カップ12は、スピンチャック10を取り囲み、基板Wから飛散する処理液を受ける。処理チャンバ13は、スピンチャック10、処理液ノズル11およびカップ12を収容する。処理ユニット2内で使用された処理液を汚染処理液という。したがって、カップ12の底部から排出される処理液は、汚染処理液である。 The processing unit 2 includes a spin chuck 10, a processing liquid nozzle 11, a cup 12, and a processing chamber 13. The spin chuck 10 rotates the substrate W around the vertical rotation axis A1 passing through the central portion of the substrate W while holding one substrate W in a horizontal posture. The treatment liquid nozzle 11 supplies the treatment liquid to the upper surface of the substrate W. The cup 12 surrounds the spin chuck 10 and receives the processing liquid scattered from the substrate W. The processing chamber 13 houses the spin chuck 10, the processing liquid nozzle 11 and the cup 12. The treatment liquid used in the treatment unit 2 is referred to as a contamination treatment liquid. Therefore, the treatment liquid discharged from the bottom of the cup 12 is a contamination treatment liquid.
 スピンチャック10は、複数のチャックピン15と、スピンベース16と、回転軸17と、スピンモータ18とを含む。複数のチャックピン15は、スピンベース16の上面に周方向に間隔を空けて配置されている。複数のチャックピン15は、基板Wがスピンベース16と一体回転可能なように、基板Wを把持する。回転軸17は、回転軸線A1に沿って鉛直方向に延びている。回転軸17の上端は、スピンベース16の下面中央に結合されている。スピンモータ18は、回転軸17に回転力を与えることによって、スピンベース16および基板Wを回転させる。 The spin chuck 10 includes a plurality of chuck pins 15, a spin base 16, a rotating shaft 17, and a spin motor 18. The plurality of chuck pins 15 are arranged on the upper surface of the spin base 16 at intervals in the circumferential direction. The plurality of chuck pins 15 grip the substrate W so that the substrate W can rotate integrally with the spin base 16. The rotation axis 17 extends in the vertical direction along the rotation axis A1. The upper end of the rotating shaft 17 is coupled to the center of the lower surface of the spin base 16. The spin motor 18 rotates the spin base 16 and the substrate W by applying a rotational force to the rotating shaft 17.
 処理液供給装置3は、処理液中の不純物を除去する不純物除去ユニット20と、不純物除去ユニット20から処理液を排液する排液配管21と、汚染処理液を処理ユニット2から不純物除去ユニット20に戻す帰還配管22と、不純物除去ユニット20から処理ユニット2に向けて処理液を送る供給ユニット19とを備えている。 The treatment liquid supply device 3 includes an impurity removing unit 20 for removing impurities in the treatment liquid, a drainage pipe 21 for draining the treatment liquid from the impurity removal unit 20, and an impurity removal unit 20 for removing the contamination treatment liquid from the treatment unit 2. It is provided with a return pipe 22 for returning to the surface and a supply unit 19 for sending a processing liquid from the impurity removing unit 20 toward the processing unit 2.
 供給ユニット19は、不純物除去ユニット20から送出される処理液が流れる上流供給配管23と、上流供給配管23を介して不純物除去ユニット20から供給される処理液を貯留する供給タンク24と、供給タンク24内の処理液を処理ユニット2に供給する下流供給配管25と、下流供給配管25から供給タンク24へ処理液を戻す供給側戻り配管26とをさらに備えている。上流供給配管23内の流路と、供給タンク24の内部空間と、下流供給配管25内の流路とによって、供給流路が構成されている。 The supply unit 19 includes an upstream supply pipe 23 through which the processing liquid sent from the impurity removal unit 20 flows, a supply tank 24 for storing the treatment liquid supplied from the impurity removal unit 20 via the upstream supply pipe 23, and a supply tank. Further, a downstream supply pipe 25 for supplying the treatment liquid in the treatment unit 2 to the treatment unit 2 and a supply side return pipe 26 for returning the treatment liquid from the downstream supply pipe 25 to the supply tank 24 are further provided. The supply flow path is composed of the flow path in the upstream supply pipe 23, the internal space of the supply tank 24, and the flow path in the downstream supply pipe 25.
 不純物除去ユニット20は、処理液を貯留する貯留タンク30と、貯留タンク30に収容されている感温性ゲルフィルタ31と、貯留タンク30内の処理液を循環させる循環配管32とを含む。 The impurity removing unit 20 includes a storage tank 30 for storing the treatment liquid, a temperature-sensitive gel filter 31 housed in the storage tank 30, and a circulation pipe 32 for circulating the treatment liquid in the storage tank 30.
 循環配管32は、その内部に貯留タンク30内の処理液を引き込み、循環配管32内に引き込んだ処理液をその一端から他端まで移動させ、貯留タンク30内に戻すことによって、処理液を循環させる。これにより、循環配管32および貯留タンク30を循環する処理液が感温性ゲルフィルタ31内を通過する。循環配管32は、その内部に循環流路を形成する配管である。 The circulation pipe 32 draws the treatment liquid in the storage tank 30 into the circulation pipe 32, moves the treatment liquid drawn into the circulation pipe 32 from one end to the other end, and returns the treatment liquid to the storage tank 30 to circulate the treatment liquid. Let me. As a result, the treatment liquid circulating in the circulation pipe 32 and the storage tank 30 passes through the temperature-sensitive gel filter 31. The circulation pipe 32 is a pipe that forms a circulation flow path inside the circulation pipe 32.
 貯留タンク30は、処理液を貯留する内部空間33を有する。貯留タンク30の内部空間33は、感温性ゲルフィルタ31によって、第1収容部33aと第2収容部33bとに仕切られている。第1収容部33aは、感温性ゲルフィルタ31を挟んで第2収容部33bよりも処理液の循環方向Cの上流側に位置する。循環配管32の上流端は、第2収容部33bに接続されており、循環配管32の下流端は、第1収容部33aに接続されている。 The storage tank 30 has an internal space 33 for storing the treatment liquid. The internal space 33 of the storage tank 30 is divided into a first accommodating portion 33a and a second accommodating portion 33b by a temperature-sensitive gel filter 31. The first accommodating portion 33a is located on the upstream side of the second accommodating portion 33b in the circulation direction C of the treatment liquid with the temperature-sensitive gel filter 31 interposed therebetween. The upstream end of the circulation pipe 32 is connected to the second accommodating portion 33b, and the downstream end of the circulation pipe 32 is connected to the first accommodating portion 33a.
 この実施形態では、感温性ゲルフィルタ31は、第2収容部33bが第1収容部33aよりも上方に位置するように貯留タンク30の内部空間33を仕切っている。そのため、循環配管32が処理液を循環させている間、循環配管32の上流端が処理液の液面よりも下方に位置するように、循環配管32は、貯留タンク30の内部にまで延びている。 In this embodiment, the temperature-sensitive gel filter 31 partitions the internal space 33 of the storage tank 30 so that the second accommodating portion 33b is located above the first accommodating portion 33a. Therefore, while the circulation pipe 32 circulates the treatment liquid, the circulation pipe 32 extends to the inside of the storage tank 30 so that the upstream end of the circulation pipe 32 is located below the liquid level of the treatment liquid. There is.
 貯留タンク30内には、貯留タンク30内の処理液の液面の高さを検知する液面センサ34が設けられている。液面センサ34は、非接触式のレベルセンサが好ましく、たとえば、超音波式のレベルセンサであってもよい。 A liquid level sensor 34 for detecting the height of the liquid level of the processing liquid in the storage tank 30 is provided in the storage tank 30. The liquid level sensor 34 is preferably a non-contact type level sensor, and may be, for example, an ultrasonic type level sensor.
 不純物除去ユニット20は、循環ポンプ40、上流循環バルブ41、不純物量測定ユニット42、中間循環バルブ43、下流循環バルブ44、循環ヒータ45、および、循環温度計46を含む。循環ポンプ40、上流循環バルブ41、不純物量測定ユニット42、中間循環バルブ43、下流循環バルブ44、循環ヒータ45、および、循環温度計46は、循環配管32の上流端側から下流端側に向かって、この順番で介装されている。 The impurity removing unit 20 includes a circulation pump 40, an upstream circulation valve 41, an impurity amount measuring unit 42, an intermediate circulation valve 43, a downstream circulation valve 44, a circulation heater 45, and a circulation thermometer 46. The circulation pump 40, the upstream circulation valve 41, the impurity amount measuring unit 42, the intermediate circulation valve 43, the downstream circulation valve 44, the circulation heater 45, and the circulation thermometer 46 are directed from the upstream end side to the downstream end side of the circulation pipe 32. And they are intervened in this order.
 循環ポンプ40は、貯留タンク30内の処理液を循環配管32に送り出す。上流循環バルブ41、中間循環バルブ43および下流循環バルブ44は、循環配管32内の循環流路を開閉する。 The circulation pump 40 sends the processing liquid in the storage tank 30 to the circulation pipe 32. The upstream circulation valve 41, the intermediate circulation valve 43, and the downstream circulation valve 44 open and close the circulation flow path in the circulation pipe 32.
 不純物量測定ユニット42は、たとえば、液中パーティクル測定器および金属濃度測定器の少なくとも一方を含む機器である。液中パーティクル測定器は、サンプルに光を照射して、パーティクルからの光の散乱の強さを測り、そのパーティクルの大きさに比例した光強度を電気信号として取り出すことでパーティクル径およびパーティクル数を測定する機器である。 The impurity amount measuring unit 42 is, for example, a device including at least one of a submerged particle measuring device and a metal concentration measuring device. The submerged particle measuring instrument irradiates the sample with light, measures the scattering intensity of the light from the particles, and extracts the light intensity proportional to the size of the particles as an electric signal to determine the particle diameter and the number of particles. It is a device to measure.
 金属濃度測定器は、イオン選択性電極法(ISE: Ion Selective Electrode)を用いた電気化学的測定手法によって、液中の特定イオン濃度を測定する機器である。 The metal concentration measuring device is a device that measures a specific ion concentration in a liquid by an electrochemical measurement method using an ion-selective electrode method (ISE: Ion Selective Electrode).
 循環温度計46は、循環配管32内の処理液の温度を検出する循環温度検出ユニットの一例である。 The circulation thermometer 46 is an example of a circulation temperature detection unit that detects the temperature of the processing liquid in the circulation pipe 32.
 循環ヒータ45は、循環配管32内の処理液を加熱する。循環ヒータ45は、加熱ユニットの一例である。循環配管32内の流路において循環ヒータ45によって加熱される循環加熱部分32aは、下流循環バルブ44よりも下流側で、かつ、循環温度計46よりも上流側に設定される。 The circulation heater 45 heats the processing liquid in the circulation pipe 32. The circulation heater 45 is an example of a heating unit. The circulation heating portion 32a heated by the circulation heater 45 in the flow path in the circulation pipe 32 is set on the downstream side of the downstream circulation valve 44 and on the upstream side of the circulation thermometer 46.
 循環ヒータ45は、下流循環バルブ44よりも下流側で、かつ、循環温度計46よりも上流側の循環加熱部分32aを加熱する構成であれば、循環配管32に介装されている構成でなくてもよく、循環配管32を外部から加熱する構成であってもよい。 If the circulation heater 45 is configured to heat the circulation heating portion 32a on the downstream side of the downstream circulation valve 44 and on the upstream side of the circulation thermometer 46, the circulation heater 45 is not configured to be interposed in the circulation pipe 32. Alternatively, the circulation pipe 32 may be heated from the outside.
 感温性ゲルフィルタ31は、転移温度を境界として、親水性および疎水性の一方から他方に変化する性質を有する感温性ゲル50と、処理液を通過させつつ感温性ゲル50を保持するフィルタ部材51とを含む。この実施形態では、フィルタ部材51は、循環方向Cの両側から感温性ゲル50を挟む一対のシート状フィルタ52を含む。 The temperature-sensitive gel filter 31 holds the temperature-sensitive gel 50 having the property of changing from one of hydrophilic and hydrophobic to the other with the transition temperature as a boundary, and the temperature-sensitive gel 50 while allowing the treatment liquid to pass through. Includes a filter member 51. In this embodiment, the filter member 51 includes a pair of sheet-like filters 52 that sandwich the temperature-sensitive gel 50 from both sides in the circulation direction C.
 感温性ゲル50は、転移温度を境界として、親疎水転移する高分子の共重合体である。親疎水転移とは、親水性および疎水性の一方から他方に変化する性質のことである。 The temperature-sensitive gel 50 is a polymer copolymer that undergoes a pro-hydrophobic transition with the transition temperature as a boundary. The prohydrophobic transition is the property of changing from one of hydrophilic and hydrophobic to the other.
 処理液中に存在する不純物は、主に、金属や有機物等の疎水性物質である。そのため、感温性ゲル50が疎水性であるときには、疎水性相互作用によって感温性ゲル50が処理液中の不純物を捕獲(吸着)する。一方、感温性ゲル50が親水性であるときには、疎水性相互作用が弱いため、感温性ゲル50は、処理液中に不純物を放出する。感温性ゲル50は、温度変化によって、疎水性および親水性の一方から他方に可逆的に変化する。感温性ゲル50は、親水条件下では吸水して膨潤し、疎水条件下では脱水して収縮(凝集)する体積相転移を発現する。 Impurities present in the treatment liquid are mainly hydrophobic substances such as metals and organic substances. Therefore, when the temperature-sensitive gel 50 is hydrophobic, the temperature-sensitive gel 50 captures (adsorbs) impurities in the treatment liquid by hydrophobic interaction. On the other hand, when the temperature-sensitive gel 50 is hydrophilic, the hydrophobic interaction is weak, so that the temperature-sensitive gel 50 releases impurities into the treatment liquid. The temperature-sensitive gel 50 changes reversibly from one of hydrophobic and hydrophilic to the other by changing the temperature. The temperature-sensitive gel 50 exhibits a volumetric phase transition in which it absorbs water and swells under hydrophilic conditions, and dehydrates and contracts (aggregates) under hydrophobic conditions.
 感温性ゲル50は、転移温度以上の温度で疎水性を示し、転移温度よりも低い温度で親水性を示すLCST型感温性ゲルと、転移温度よりも低い温度で疎水性を示し、転移温度以上の温度で親水性を示すUCST型感温性ゲルとに分類される。LCST型感温性ゲルは、転移温度以上の温度で疎水性を示し、転移温度よりも低い温度で親水性を示す。UCST型感温性ゲルは、転移温度以下の温度で疎水性を示し、転移温度よりも高い温度で親水性を示す。 The temperature-sensitive gel 50 shows hydrophobicity at a temperature higher than the transition temperature and hydrophilicity at a temperature lower than the transition temperature, and LCST-type temperature-sensitive gel 50 shows hydrophobicity at a temperature lower than the transition temperature and undergoes transition. It is classified as a UCST type temperature sensitive gel that exhibits hydrophilicity at a temperature higher than the temperature. The LCST type thermosensitive gel exhibits hydrophobicity at a temperature higher than the transition temperature and hydrophilicity at a temperature lower than the transition temperature. The UCST type thermosensitive gel exhibits hydrophobicity at a temperature below the transition temperature and hydrophilicity at a temperature higher than the transition temperature.
 LCST型感温性ゲルは、たとえば、ポリ(N-アルキルアクリルアミド)、ポリ(N-イソプロピルアクリルアミド)、ポリ(N-ビニルアルキルアミド)、ポリビニルアルキルエーテル、メチルセルロースのうちの少なくとも1つを含んでいてもよい。 The LCST type temperature sensitive gel contains, for example, at least one of poly (N-alkylacrylamide), poly (N-isopropylacrylamide), poly (N-vinylalkylamide), polyvinylalkyl ether, and methylcellulose. May be good.
 UCST型感温性ゲルは、ポリ(アクリルアミド-CO-アクリロニトリル)、ポリ(アリルアミン-CO-アリルウレア)、スルフォベタインポリマーのうちの少なくとも1つを含んでいてもよい。 The UCST type temperature sensitive gel may contain at least one of poly (acrylamide-CO-acrylonitrile), poly (allylamine-CO-allylurea), and sulfobetaine polymer.
 この実施形態では、感温性ゲルがLCST型感温性ゲルである例について説明する。LCST型感温性ゲルの転移温度(LCST)は、常温(5℃以上25℃以下の温度)よりも高く、たとえば、30℃以上で、かつ、50℃以下である。そのため、感温性ゲル50を親水性から疎水性への変化は、ヒータによる加熱が必要であるが、感温性ゲル50を疎水性から親水性への変化は、自然冷却によって達成できる。自然冷却とは、クーラ等の冷却ユニットを用いずに、感温性ゲルフィルタ31および処理液の放熱によって、感温性ゲルフィルタ31および処理液が冷却されることをいう。 In this embodiment, an example in which the temperature-sensitive gel is an LCST type temperature-sensitive gel will be described. The transition temperature (LCST) of the LCST type thermosensitive gel is higher than normal temperature (temperature of 5 ° C. or higher and 25 ° C. or lower), for example, 30 ° C. or higher and 50 ° C. or lower. Therefore, the change of the temperature-sensitive gel 50 from hydrophilic to hydrophobic requires heating by a heater, but the change of the temperature-sensitive gel 50 from hydrophobic to hydrophilic can be achieved by natural cooling. Natural cooling means that the temperature-sensitive gel filter 31 and the treatment liquid are cooled by the heat radiation of the temperature-sensitive gel filter 31 and the treatment liquid without using a cooling unit such as a cooler.
 帰還配管22は、その内部に帰還流路を形成する配管である。帰還配管22の上流端は、たとえば、カップ12に接続されている。帰還配管22の下流端は、たとえば、循環配管32に分岐接続されている。循環配管32において帰還配管22が分岐する位置は、中間循環バルブ43よりも下流側で、かつ、下流循環バルブ44よりも上流側に位置する。 The return pipe 22 is a pipe that forms a return flow path inside the return pipe 22. The upstream end of the return pipe 22 is connected to, for example, the cup 12. The downstream end of the return pipe 22 is branched and connected to, for example, the circulation pipe 32. The position where the return pipe 22 branches in the circulation pipe 32 is located on the downstream side of the intermediate circulation valve 43 and on the upstream side of the downstream circulation valve 44.
 この実施形態では、帰還配管22が貯留タンク30に直接接続されているのではなく、帰還配管22は、循環配管32に分岐接続されている。そのため、処理液が、帰還配管22から貯留タンク30に直接送られるのではなく、循環配管32を介して貯留タンク30に送られる。この実施形態とは異なり、帰還配管22は、貯留タンク30の第1収容部33aに直接接続されていてもよい。 In this embodiment, the return pipe 22 is not directly connected to the storage tank 30, but the return pipe 22 is branched and connected to the circulation pipe 32. Therefore, the treatment liquid is not sent directly from the return pipe 22 to the storage tank 30, but is sent to the storage tank 30 via the circulation pipe 32. Unlike this embodiment, the return pipe 22 may be directly connected to the first accommodating portion 33a of the storage tank 30.
 処理液供給装置3は、帰還配管22に介装され、帰還配管22内の流路を開閉する帰還バルブ60を備えている。 The processing liquid supply device 3 is interposed in the return pipe 22 and includes a return valve 60 that opens and closes the flow path in the return pipe 22.
 排液配管21は、その内部に排液流路を形成する配管である。排液配管21の上流端は、貯留タンク30の第1収容部33aに接続されている。処理液供給装置3は、排液配管21に介装され、排液配管21内の流路を開閉する排液バルブ70をさらに備えている。なお、この実施形態とは異なり、処理液供給装置3は、第2収容部33bに接続される排液配管(図示せず)をさらに備えていてもよく、用途に応じて、当該排液配管と排液配管21とが使い分けられてもよい。 The drainage pipe 21 is a pipe that forms a drainage flow path inside the drainage pipe 21. The upstream end of the drainage pipe 21 is connected to the first accommodating portion 33a of the storage tank 30. The treatment liquid supply device 3 is further provided with a drainage valve 70 that is interposed in the drainage pipe 21 and opens and closes a flow path in the drainage pipe 21. In addition, unlike this embodiment, the treatment liquid supply device 3 may further include a drainage pipe (not shown) connected to the second accommodating portion 33b, and the drainage pipe may be further provided depending on the application. And the drainage pipe 21 may be used properly.
 上流供給配管23は、その内部に上流供給流路を形成する配管である。上流供給配管23の上流端は、たとえば、循環配管32に分岐接続されている。上流供給配管23の上流端は、循環ポンプ40よりも下流側で、かつ、上流循環バルブ41よりも上流側において循環配管32に接続されていることが好ましい。 The upstream supply pipe 23 is a pipe that forms an upstream supply flow path inside the upstream supply pipe 23. The upstream end of the upstream supply pipe 23 is branched and connected to, for example, the circulation pipe 32. It is preferable that the upstream end of the upstream supply pipe 23 is connected to the circulation pipe 32 on the downstream side of the circulation pump 40 and on the upstream side of the upstream circulation valve 41.
 この実施形態のように、上流供給配管23の分岐接続位置が循環ポンプ40よりも下流側に位置する構成であれば、上流供給配管23に処理液を送り出すポンプを省略できる。上流供給配管23の下流端は、供給タンク24に接続されている。上流供給配管23は、この実施形態では、循環配管32に接続されているが、この実施形態とは異なり、貯留タンク30の第1収容部33aに直接接続されていてもよい。 If the branch connection position of the upstream supply pipe 23 is located on the downstream side of the circulation pump 40 as in this embodiment, the pump that sends the processing liquid to the upstream supply pipe 23 can be omitted. The downstream end of the upstream supply pipe 23 is connected to the supply tank 24. In this embodiment, the upstream supply pipe 23 is connected to the circulation pipe 32, but unlike this embodiment, the upstream supply pipe 23 may be directly connected to the first accommodating portion 33a of the storage tank 30.
 処理液供給装置3は、上流供給配管23に介装され、上流供給配管23内の流路を開閉する上流供給バルブ80をさらに備えている。 The processing liquid supply device 3 is further provided with an upstream supply valve 80 that is interposed in the upstream supply pipe 23 and opens and closes the flow path in the upstream supply pipe 23.
 下流供給配管25は、その内部に下流供給流路を形成する配管である。下流供給配管25は、下流供給配管25の上流端が処理液の液面よりも下方に位置するように、供給タンク24の内部にまで延びている。下流供給配管25の下流端は、処理液ノズル11に接続されている。供給ユニット19は、供給ポンプ81、供給ヒータ82、供給フィルタ83、および下流供給バルブ84を含む。供給ポンプ81、供給ヒータ82、供給フィルタ83、および下流供給バルブ84は、下流供給配管25の上流側からこの順番で下流供給配管25に介装されている。 The downstream supply pipe 25 is a pipe that forms a downstream supply flow path inside the downstream supply pipe 25. The downstream supply pipe 25 extends to the inside of the supply tank 24 so that the upstream end of the downstream supply pipe 25 is located below the liquid level of the treatment liquid. The downstream end of the downstream supply pipe 25 is connected to the treatment liquid nozzle 11. The supply unit 19 includes a supply pump 81, a supply heater 82, a supply filter 83, and a downstream supply valve 84. The supply pump 81, the supply heater 82, the supply filter 83, and the downstream supply valve 84 are interposed in the downstream supply pipe 25 in this order from the upstream side of the downstream supply pipe 25.
 供給ポンプ81は、供給タンク24内の処理液を下流供給配管25に送り出す。供給フィルタ83は、下流供給配管25内の処理液中の不純物を除去するフィルタである。供給フィルタ83としては、常温よりも高温での使用に適したフィルタが用いられる。供給フィルタ83は、たとえば、PTFE(ポリテトラフルオロエチレン)疎水膜をろ過膜として含む。供給フィルタ83が濾過膜としてPTFE疎水膜を含む構成であれば、不純物としての疎水性化合物を処理液から効果的に除去できる。 The supply pump 81 sends the processing liquid in the supply tank 24 to the downstream supply pipe 25. The supply filter 83 is a filter that removes impurities in the processing liquid in the downstream supply pipe 25. As the supply filter 83, a filter suitable for use at a temperature higher than normal temperature is used. The supply filter 83 includes, for example, a PTFE (polytetrafluoroethylene) hydrophobic membrane as a filtration membrane. If the supply filter 83 includes a PTFE hydrophobic film as a filtration film, the hydrophobic compound as an impurity can be effectively removed from the treatment liquid.
 下流供給バルブ84は、下流供給配管25内の流路(下流供給流路)を開閉する。 The downstream supply valve 84 opens and closes the flow path (downstream supply flow path) in the downstream supply pipe 25.
 供給ヒータ82は、下流供給配管25内の処理液を加熱する。下流供給配管25内の流路において供給ヒータ82によって加熱される供給加熱部分25aは、たとえば、供給ポンプ81よりも下流側でかつ供給フィルタ83よりも上流側に設定される。 The supply heater 82 heats the processing liquid in the downstream supply pipe 25. The supply heating portion 25a heated by the supply heater 82 in the flow path in the downstream supply pipe 25 is set, for example, on the downstream side of the supply pump 81 and on the upstream side of the supply filter 83.
 供給ヒータ82は、供給ポンプ81よりも下流側でかつ供給フィルタ83よりも上流側の供給加熱部分25aを加熱する構成であれば、下流供給配管25に介装されていなくてもよく、下流供給配管25を外部から加熱する構成であってもよい。 The supply heater 82 does not have to be interposed in the downstream supply pipe 25 as long as it is configured to heat the supply heating portion 25a on the downstream side of the supply pump 81 and on the upstream side of the supply filter 83, and supplies downstream. The pipe 25 may be heated from the outside.
 供給側戻り配管26の上流端は、下流供給配管25に分岐接続されている。供給側戻り配管26の下流端は、供給タンク24に接続されている。処理液供給装置3は、供給側戻り配管26に介装され、供給側戻り配管26内の流路(供給側戻り流路)を開閉する供給側循環バルブ85をさらに備えている。 The upstream end of the supply side return pipe 26 is branched and connected to the downstream supply pipe 25. The downstream end of the supply-side return pipe 26 is connected to the supply tank 24. The processing liquid supply device 3 is further provided with a supply-side circulation valve 85 that is interposed in the supply-side return pipe 26 and opens and closes a flow path (supply-side return flow path) in the supply-side return pipe 26.
 供給側戻り配管26の分岐接続位置は、供給フィルタ83よりも下流側で、かつ、下流供給バルブ84よりも上流側に位置することが好ましい。供給側戻り配管26の分岐接続位置が、供給ポンプ81よりも下流側であるため、供給側戻り配管26に処理液を送り出すポンプを供給ポンプ81とは別に設ける必要がない。供給側戻り配管26の分岐接続位置が、供給ヒータ82よりも下流側であるため、供給タンク24内の処理液を加熱するためのヒータを供給ヒータ82とは別に設ける必要がない。 The branch connection position of the supply side return pipe 26 is preferably located on the downstream side of the supply filter 83 and on the upstream side of the downstream supply valve 84. Since the branch connection position of the supply-side return pipe 26 is on the downstream side of the supply pump 81, it is not necessary to provide a pump for delivering the processing liquid to the supply-side return pipe 26 separately from the supply pump 81. Since the branch connection position of the supply-side return pipe 26 is on the downstream side of the supply heater 82, it is not necessary to provide a heater for heating the processing liquid in the supply tank 24 separately from the supply heater 82.
 図2は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。コントローラ4は、マイクロコンピュータを備えており、所定のプログラムに従って、基板処理装置1に備えられた制御対象を制御する。より具体的には、コントローラ4は、プロセッサ(CPU)5と、プログラムが格納されたメモリ6とを含み、プロセッサ5がプログラムを実行することによって、基板処理のための様々な制御処理を実行するように構成されている。 FIG. 2 is a block diagram for explaining the electrical configuration of the main part of the substrate processing device 1. The controller 4 includes a microcomputer, and controls a controlled object provided in the substrate processing apparatus 1 according to a predetermined program. More specifically, the controller 4 includes a processor (CPU) 5 and a memory 6 in which a program is stored, and the processor 5 executes various control processes for board processing by executing the program. It is configured as follows.
 特に、コントローラ4は、スピンモータ18、循環ヒータ45、供給ヒータ82、不純物量測定ユニット42、循環ポンプ40、供給ポンプ81、液面センサ34、循環温度計46、上流循環バルブ41、中間循環バルブ43、下流循環バルブ44、帰還バルブ60、排液バルブ70、上流供給バルブ80、下流供給バルブ84、供給側循環バルブ85等の動作を制御する。その他、コントローラ4は、後述する各実施形態に係る基板処理装置1P、1Q、1Rに備えられる部材の動作も制御する。 In particular, the controller 4 includes a spin motor 18, a circulation heater 45, a supply heater 82, an impurity amount measuring unit 42, a circulation pump 40, a supply pump 81, a liquid level sensor 34, a circulation thermometer 46, an upstream circulation valve 41, and an intermediate circulation valve. 43, the downstream circulation valve 44, the feedback valve 60, the drain valve 70, the upstream supply valve 80, the downstream supply valve 84, the supply side circulation valve 85, and the like are controlled. In addition, the controller 4 also controls the operation of the members provided in the substrate processing devices 1P, 1Q, and 1R according to each embodiment described later.
 次に、処理液供給装置3の全体の動作について説明する。 Next, the overall operation of the processing liquid supply device 3 will be described.
 まず、処理ユニット2へ処理液を供給する前に、下流供給バルブ84が閉じられかつ供給側循環バルブ85が開かれる。この状態で、供給ポンプ81を作動させることで、供給タンク24内の処理液が、下流供給配管25および供給側戻り配管26を循環する。詳しくは、供給タンク24の内の処理液が、下流供給配管25の上流端から引き込まれ、下流供給配管25内に引き込まれた処理液が供給側戻り配管26の下流端まで移動し、供給タンク24内に戻る。 First, before supplying the processing liquid to the processing unit 2, the downstream supply valve 84 is closed and the supply side circulation valve 85 is opened. By operating the supply pump 81 in this state, the processing liquid in the supply tank 24 circulates in the downstream supply pipe 25 and the supply side return pipe 26. Specifically, the processing liquid in the supply tank 24 is drawn from the upstream end of the downstream supply pipe 25, and the processing liquid drawn into the downstream supply pipe 25 moves to the downstream end of the supply side return pipe 26, and the supply tank Return to within 24.
 供給タンク24内の処理液が、下流供給配管25および供給側戻り配管26を循環している間、供給ヒータ82を作動させることによって、供給タンク24内の処理液の温度を上昇させることができる。 The temperature of the processing liquid in the supply tank 24 can be raised by operating the supply heater 82 while the processing liquid in the supply tank 24 circulates in the downstream supply pipe 25 and the supply side return pipe 26. ..
 処理液の温度が充分に上昇した後、下流供給バルブ84が開かれ、供給側循環バルブ85が閉じられ、供給ポンプ81が作動される。これにより、供給タンク24内の処理液が、処理ユニット2の処理液ノズル11に供給される。 After the temperature of the processing liquid has risen sufficiently, the downstream supply valve 84 is opened, the supply side circulation valve 85 is closed, and the supply pump 81 is operated. As a result, the processing liquid in the supply tank 24 is supplied to the processing liquid nozzle 11 of the processing unit 2.
 処理液を加熱する必要がない場合には、供給タンク24内の処理液の循環を省略してもよい。 If it is not necessary to heat the treatment liquid, the circulation of the treatment liquid in the supply tank 24 may be omitted.
 処理液ノズル11から吐出された処理液は、回転状態の基板Wの上面に着液する。基板Wの上面に着液した処理液は、遠心力の作用によって基板W外に飛散し、カップ12によって受けられる。 The processing liquid discharged from the processing liquid nozzle 11 is applied to the upper surface of the rotating substrate W. The treatment liquid that has landed on the upper surface of the substrate W is scattered outside the substrate W by the action of centrifugal force and is received by the cup 12.
 カップ12によって受けられた汚染処理液は、帰還配管22を介して不純物除去ユニット20に流入する。不純物除去ユニット20に流入した処理液が不純物除去ユニット20の感温性ゲルフィルタ31を通過することによって、汚染処理液中の不純物が除去される。これにより、不純物が除去された清浄処理液が生成される。清浄処理液は、上流供給配管23を介して供給タンク24に送られる。このように、汚染処理液から不純物が除去されて清浄処理液が生成され、清浄処理液が供給タンク24に戻される。つまり、処理液が再利用される。 The contaminated treatment liquid received by the cup 12 flows into the impurity removing unit 20 via the return pipe 22. Impurities in the contamination treatment liquid are removed by the treatment liquid flowing into the impurity removal unit 20 passing through the temperature-sensitive gel filter 31 of the impurity removal unit 20. As a result, a cleaning liquid from which impurities have been removed is produced. The cleaning treatment liquid is sent to the supply tank 24 via the upstream supply pipe 23. In this way, impurities are removed from the contaminated treatment liquid to generate a cleaning treatment liquid, and the cleaning treatment liquid is returned to the supply tank 24. That is, the treatment liquid is reused.
 以下では、不純物除去ユニット20の動作について詳しく説明する。 The operation of the impurity removal unit 20 will be described in detail below.
 図3は、不純物除去ユニット20の動作について説明するためのフローチャートである。図4A~図4Eは、不純物除去ユニット20の動作例について説明するための模式図である。 FIG. 3 is a flowchart for explaining the operation of the impurity removing unit 20. 4A to 4E are schematic views for explaining an operation example of the impurity removing unit 20.
 図4A~図4Eでは、開いているバルブを黒色で示しており、閉じているバルブを白色で示している(後述する図6A~図6D、図8A、図8Bおよび図10A~図10Eにおいても同様)。図4A~図4Eでは、作動中のヒータおよびポンプには、「ON」と記載し、作動していないヒータおよびポンプには、「OFF」と記載している(後述する図6A~図6D、図8A、図8Bおよび図10A~図10Eにおいても同様)。 In FIGS. 4A-4E, the open valve is shown in black and the closed valve is shown in white (also in FIGS. 6A-6D, 8A, 8B and 10A-10E described below). Similarly). In FIGS. 4A-4E, operating heaters and pumps are described as "ON", and non-operating heaters and pumps are described as "OFF" (FIGS. 6A to 6D, which will be described later). The same applies to FIGS. 8A, 8B and 10A to 10E).
 不純物量測定ユニット42、循環温度計46および液面センサ34は、常時作動していてもよい。 The impurity amount measuring unit 42, the circulation thermometer 46, and the liquid level sensor 34 may be always in operation.
 図4Aに示すように、帰還バルブ60および下流循環バルブ44が開かれる。これにより、処理液が、不純物除去ユニット20に戻り(帰還工程)、貯留タンク30に補充される(補充工程)。 As shown in FIG. 4A, the return valve 60 and the downstream circulation valve 44 are opened. As a result, the treatment liquid returns to the impurity removing unit 20 (return step) and is replenished in the storage tank 30 (replenishment step).
 帰還配管22から貯留タンク30内に処理液が送られて貯留タンク30内の処理液の液面が上昇し、液面センサ34の測定値が循環配管32の上流端よりも上方の所定の第1高さH1に達すると、帰還バルブ60が閉じられ、上流循環バルブ41および中間循環バルブ43が開かれる。そして、循環ポンプ40が作動される。これにより、図4Bに示すように、貯留タンク30内の処理液が、循環配管32に引き込まれ循環配管32から貯留タンク30内に戻されることで、処理液の循環が開始される(循環工程)。 The treatment liquid is sent from the return pipe 22 into the storage tank 30, the liquid level of the treatment liquid in the storage tank 30 rises, and the measured value of the liquid level sensor 34 is a predetermined number above the upstream end of the circulation pipe 32. When the height H1 is reached, the feedback valve 60 is closed and the upstream circulation valve 41 and the intermediate circulation valve 43 are opened. Then, the circulation pump 40 is operated. As a result, as shown in FIG. 4B, the treatment liquid in the storage tank 30 is drawn into the circulation pipe 32 and returned from the circulation pipe 32 to the storage tank 30, so that the treatment liquid circulation is started (circulation step). ).
 循環配管32内を流れる処理液は、循環ヒータ45によって加熱される。貯留タンク30内の感温性ゲルフィルタ31は、循環ヒータ45によって加熱された処理液によって加熱される(ステップS1:ゲル加熱開始工程)。 The processing liquid flowing in the circulation pipe 32 is heated by the circulation heater 45. The temperature-sensitive gel filter 31 in the storage tank 30 is heated by the treatment liquid heated by the circulation heater 45 (step S1: gel heating start step).
 感温性ゲルフィルタ31は、循環する処理液を介して、循環ヒータ45によって加熱される(循環加熱工程)。感温性ゲルフィルタ31は、処理液によって加熱されることで、処理液と同じ温度に達する。そのため、循環配管32内を流れる処理液の温度を循環温度計46によって測定することによって、感温性ゲルフィルタ31の温度(ゲル温度)を間接的に測定できる(ゲル温度測定工程)。この実施形態では、帰還工程においても循環ヒータ45が作動している。そのため、循環工程が開始される前に処理液の加熱が開始されている。 The temperature-sensitive gel filter 31 is heated by the circulation heater 45 via the circulating treatment liquid (circulation heating step). The temperature-sensitive gel filter 31 reaches the same temperature as the treatment liquid by being heated by the treatment liquid. Therefore, the temperature (gel temperature) of the temperature-sensitive gel filter 31 can be indirectly measured by measuring the temperature of the processing liquid flowing in the circulation pipe 32 with the circulation thermometer 46 (gel temperature measuring step). In this embodiment, the circulation heater 45 is also operated in the return step. Therefore, the heating of the treatment liquid is started before the circulation step is started.
 そして、ステップS1の後、コントローラ4は、感温性ゲルフィルタ31の温度が、転移温度以上の温度であるか否かを監視する(ステップS2:第1ゲル温度監視工程)。ゲル温度が感温性ゲル50の転移温度(LCST)よりも低い場合には(ステップS2:NO)、ステップS2に戻る。 Then, after step S1, the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31 is equal to or higher than the transition temperature (step S2: first gel temperature monitoring step). If the gel temperature is lower than the transition temperature (LCST) of the temperature-sensitive gel 50 (step S2: NO), the process returns to step S2.
 処理液は、循環配管32および貯留タンク30を所定時間循環することによって、感温性ゲル50の転移温度以上の温度に加熱される。感温性ゲルフィルタ31が感温性ゲル50の転移温度以上の温度に加熱されることによって、感温性ゲルフィルタ31に含まれる感温性ゲルが疎水化される(疎水化工程)。すなわち、感温性ゲル50が疎水性となる温度に感温性ゲルフィルタ31の温度が調節される(温度調節工程)。貯留タンク30内の感温性ゲルフィルタ31が感温性ゲル50の転移温度以上の温度に加熱されると(ステップS2:YES)、ステップS3に進む。 The treatment liquid is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50 by circulating the circulation pipe 32 and the storage tank 30 for a predetermined time. When the temperature-sensitive gel filter 31 is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50, the temperature-sensitive gel contained in the temperature-sensitive gel filter 31 is made hydrophobic (hydrophobicization step). That is, the temperature of the temperature-sensitive gel filter 31 is adjusted to the temperature at which the temperature-sensitive gel 50 becomes hydrophobic (temperature control step). When the temperature-sensitive gel filter 31 in the storage tank 30 is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50 (step S2: YES), the process proceeds to step S3.
 ステップS3では、コントローラ4は、ゲル温度が転移温度以上の温度に達したときから所定の不純物除去時間が経過したか否かを監視する(ステップS3:経過時間監視工程)。 In step S3, the controller 4 monitors whether or not a predetermined impurity removal time has elapsed since the gel temperature reached a temperature equal to or higher than the transition temperature (step S3: elapsed time monitoring step).
 感温性ゲルフィルタ31が転移温度以上に加熱されている状態、すなわち、感温性ゲル50が疎水性となっている状態で、感温性ゲルフィルタ31に処理液を通過させることによって、処理液中の不純物が感温性ゲルフィルタ31によって除去される(不純物除去工程、循環除去工程)。感温性ゲルフィルタ31の不純物除去効率が充分に高い場合には、不純物は、時間経過とともに処理液から除去される。 Treatment is performed by passing the treatment liquid through the temperature-sensitive gel filter 31 in a state where the temperature-sensitive gel filter 31 is heated above the transition temperature, that is, in a state where the temperature-sensitive gel 50 is hydrophobic. Impurities in the liquid are removed by the temperature-sensitive gel filter 31 (impurity removing step, circulation removing step). When the impurity removing efficiency of the temperature-sensitive gel filter 31 is sufficiently high, the impurities are removed from the treatment liquid over time.
 この実施形態の不純物除去工程では、不純物除去ユニット20に供給される処理液は汚染処理液である。そのため、感温性ゲルフィルタ31によって汚染処理液中の不純物が捕獲されて汚染処理液から不純物が除去される。 In the impurity removal step of this embodiment, the treatment liquid supplied to the impurity removal unit 20 is a contamination treatment liquid. Therefore, the temperature-sensitive gel filter 31 captures impurities in the contaminated treatment liquid and removes the impurities from the contaminated treatment liquid.
 循環配管32および貯留タンク30を循環する処理液を加熱することで不純物除去工程および疎水化工程が実行される。不純物除去工程は、疎水化工程による感温性ゲル50の疎水化が達成された後に実行される。 Impurity removal step and hydrophobicization step are executed by heating the treatment liquid that circulates in the circulation pipe 32 and the storage tank 30. The impurity removing step is performed after the hydrophobization of the temperature sensitive gel 50 by the hydrophobization step is achieved.
 この実施形態とは異なり、処理液の温度が、貯留タンク30および循環配管32を循環する前から転移温度以上の温度であった場合には、疎水化工程は実行されず、循環工程の開始と同時に不純物除去工程が開始される。 Unlike this embodiment, when the temperature of the treatment liquid is higher than the transition temperature before circulating in the storage tank 30 and the circulation pipe 32, the hydrophobicization step is not executed and the circulation step is started. At the same time, the impurity removal step is started.
 コントローラ4は、不純物除去時間が経過していない場合(ステップS3:NO)、ステップS3に戻る。コントローラ4は、不純物除去時間が経過すると(ステップS3:YES)、不純物量測定ユニット42が測定する不純物量が、基準不純物量よりも低いか否かを判定する(ステップS4:不純物量判定工程)。不純物量判定工程は、感温性ゲル50が疎水性となる温度にゲル温度が調節されている状態で実行される。 The controller 4 returns to step S3 when the impurity removal time has not elapsed (step S3: NO). When the impurity removal time elapses (step S3: YES), the controller 4 determines whether or not the impurity amount measured by the impurity amount measuring unit 42 is lower than the reference impurity amount (step S4: impurity amount determination step). .. The impurity amount determination step is executed in a state where the gel temperature is adjusted to a temperature at which the temperature-sensitive gel 50 becomes hydrophobic.
 不純物除去時間経過後に、不純物量測定ユニット42によって測定される不純物量が基準不純物量よりも低い場合には(ステップS4:YES)、図4Cに示すように、処理液の循環を維持しながら、上流供給バルブ80が開かれる。貯留タンク30から供給タンク24に向けて、不純物が充分に除去された処理液(清浄処理液)が送られる(ステップS5:供給工程)。すなわち、循環配管32および貯留タンク30を循環する処理液から不純物が充分に除去された後、供給工程が実行される。 If the amount of impurities measured by the impurity amount measuring unit 42 is lower than the reference impurity amount after the impurity removal time has elapsed (step S4: YES), as shown in FIG. 4C, while maintaining the circulation of the treatment liquid, while maintaining the circulation of the treatment liquid. The upstream supply valve 80 is opened. A treatment liquid (cleaning treatment liquid) from which impurities are sufficiently removed is sent from the storage tank 30 to the supply tank 24 (step S5: supply step). That is, the supply step is executed after impurities are sufficiently removed from the treatment liquid circulating in the circulation pipe 32 and the storage tank 30.
 供給工程の実行によって、貯留タンク30内の処理液の液面が低下し、図4Cに二点鎖線に示すように液面センサ34の測定値が所定の第2高さH2に達すると、上流供給バルブ80、上流循環バルブ41および中間循環バルブ43が閉じられる。これにより、処理液の循環および供給タンク24への処理液の供給が停止される。その後、貯留タンク30に処理液が補充されると、不純物除去ユニット20の動作がステップS1から再び開始される。 By executing the supply step, the liquid level of the treatment liquid in the storage tank 30 drops, and when the measured value of the liquid level sensor 34 reaches a predetermined second height H2 as shown by the two-dot chain line in FIG. 4C, it is upstream. The supply valve 80, the upstream circulation valve 41 and the intermediate circulation valve 43 are closed. As a result, the circulation of the treatment liquid and the supply of the treatment liquid to the supply tank 24 are stopped. After that, when the storage tank 30 is replenished with the treatment liquid, the operation of the impurity removing unit 20 is restarted from step S1.
 一方、不純物除去時間経過後においても、不純物量測定ユニット42によって測定される不純物量が基準不純物量以上である場合には(ステップS4:NO)、図4Dに示すように、循環ヒータ45が停止される。 On the other hand, if the amount of impurities measured by the impurity amount measuring unit 42 is equal to or greater than the reference impurity amount even after the impurity removal time has elapsed (step S4: NO), the circulation heater 45 is stopped as shown in FIG. 4D. Will be done.
 循環ヒータ45が停止された状態で処理液が循環配管32および貯留タンク30を所定時間循環することによって、処理液が常温にまで自然冷却される。貯留タンク30内の感温性ゲルフィルタ31は、処理液によって冷却される(ステップS6:ゲル加熱停止工程)。 The processing liquid circulates in the circulation pipe 32 and the storage tank 30 for a predetermined time with the circulation heater 45 stopped, so that the processing liquid is naturally cooled to room temperature. The temperature-sensitive gel filter 31 in the storage tank 30 is cooled by the treatment liquid (step S6: gel heating stop step).
 感温性ゲルフィルタ31は、循環する処理液を介して、冷却される(循環冷却工程)。感温性ゲルフィルタ31は、処理液によって冷却されることで、処理液と同じ温度に達する。 The temperature-sensitive gel filter 31 is cooled via the circulating treatment liquid (circulation cooling step). The temperature-sensitive gel filter 31 reaches the same temperature as the treatment liquid by being cooled by the treatment liquid.
 ステップS6の後、コントローラ4は、感温性ゲルフィルタ31の温度が、転移温度よりも低いか否かを監視する(ステップS7:第2ゲル温度監視工程)。コントローラ4は、貯留タンク30内の感温性ゲルフィルタ31が感温性ゲル50の転移温度以上である場合には(ステップS7:NO)、ステップS7に戻る。 After step S6, the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31 is lower than the transition temperature (step S7: second gel temperature monitoring step). The controller 4 returns to step S7 when the temperature-sensitive gel filter 31 in the storage tank 30 is equal to or higher than the transition temperature of the temperature-sensitive gel 50 (step S7: NO).
 処理液は、循環配管32および貯留タンク30を所定時間循環することによって、感温性ゲル50の転移温度よりも低い温度に冷却される。感温性ゲルフィルタ31が感温性ゲル50の転移温度よりも低い温度に冷却されることによって、感温性ゲルフィルタ31に含まれる感温性ゲルが親水化される(親水化工程)。 The treatment liquid is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 by circulating the circulation pipe 32 and the storage tank 30 for a predetermined time. By cooling the temperature-sensitive gel filter 31 to a temperature lower than the transition temperature of the temperature-sensitive gel 50, the temperature-sensitive gel contained in the temperature-sensitive gel filter 31 is hydrophilized (hydrophilicization step).
 感温性ゲルフィルタ31が転移温度よりも低い温度に冷却されている状態、すなわち、感温性ゲル50が親水性となっている状態で、感温性ゲルフィルタ31に処理液を通過させることによって、感温性ゲルフィルタ31によって捕獲されていた不純物が処理液中に放出される(不純物放出工程、循環洗浄工程、循環放出工程)。 Passing the treatment liquid through the temperature-sensitive gel filter 31 in a state where the temperature-sensitive gel filter 31 is cooled to a temperature lower than the transition temperature, that is, in a state where the temperature-sensitive gel 50 is hydrophilic. The impurities captured by the temperature-sensitive gel filter 31 are released into the treatment liquid (impurity release step, circulation cleaning step, circulation release step).
 この実施形態の不純物放出工程において不純物除去ユニット20に供給される処理液は、洗浄液としての汚染処理液である。そのため、感温性ゲルフィルタ31から汚染処理液に不純物が放出される。 The treatment liquid supplied to the impurity removal unit 20 in the impurity discharge step of this embodiment is a contamination treatment liquid as a cleaning liquid. Therefore, impurities are released from the temperature-sensitive gel filter 31 into the contamination treatment liquid.
 貯留タンク30内の感温性ゲルフィルタ31が感温性ゲル50の転移温度よりも低い温度に冷却されると(ステップS7:YES)、図4Eに示すように、処理液の循環を維持しながら、排液バルブ70が開かれる。これにより、貯留タンク30から排液配管21(排液流路)に向けて処理液が送られる(ステップS8:排液工程)。すなわち、循環配管32および貯留タンク30を循環する処理液に不純物が放出された後、排液工程が実行される。 When the temperature-sensitive gel filter 31 in the storage tank 30 is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 (step S7: YES), the circulation of the treatment liquid is maintained as shown in FIG. 4E. Meanwhile, the drain valve 70 is opened. As a result, the processing liquid is sent from the storage tank 30 toward the drainage pipe 21 (drainage flow path) (step S8: drainage step). That is, after impurities are released into the treatment liquid circulating in the circulation pipe 32 and the storage tank 30, the drainage step is executed.
 排液工程の実行によって、貯留タンク30内の処理液の液面が低下し、図4Eに二点鎖線に示すように液面センサ34の測定値が所定の第2高さH2に達すると、排液バルブ70、上流循環バルブ41および中間循環バルブ43が閉じられる。これにより、処理液の循環および排液が停止される。その後、貯留タンク30に処理液が補充されると、不純物除去ユニット20の動作がステップS1から再び開始される。 When the liquid level of the treated liquid in the storage tank 30 drops due to the execution of the drainage step and the measured value of the liquid level sensor 34 reaches a predetermined second height H2 as shown by the two-dot chain line in FIG. 4E. The drain valve 70, the upstream circulation valve 41 and the intermediate circulation valve 43 are closed. As a result, the circulation and drainage of the treatment liquid are stopped. After that, when the storage tank 30 is replenished with the treatment liquid, the operation of the impurity removing unit 20 is restarted from step S1.
 このように、この実施形態では、不純物除去ユニット20の不純物除去効率の低下度合に応じて、供給工程と排液工程とが選択的に実行される。 As described above, in this embodiment, the supply step and the drainage step are selectively executed according to the degree of decrease in the impurity removal efficiency of the impurity removal unit 20.
 ただし、最初の不純物除去工程の実行前では、感温性ゲルフィルタ31の不純物除去効率は低下しておらず充分に高い。そのため、最初の不純物除去工程の際に不純物量測定ユニット42によって測定される不純物量は、基準不純物量よりも低い。したがって、不純物除去ユニット20の動作において、供給工程(ステップS5)が少なくとも一回実行された後に、二回目以降の動作において排液工程(ステップS8)が実行される。 However, before the execution of the first impurity removing step, the impurity removing efficiency of the temperature sensitive gel filter 31 has not decreased and is sufficiently high. Therefore, the amount of impurities measured by the impurity amount measuring unit 42 in the first impurity removing step is lower than the reference impurity amount. Therefore, in the operation of the impurity removing unit 20, the supply step (step S5) is executed at least once, and then the drainage step (step S8) is executed in the second and subsequent operations.
 第1実施形態によれば、感温性ゲル50が疎水性であるときに処理液を感温性ゲルフィルタ31に通過させることによって、処理液中の不純物を感温性ゲルフィルタ31に捕獲させ処理液中から不純物を除去できる。そして、不純物が充分に除去された処理液を、上流供給配管23、供給タンク24および下流供給配管25を介して処理ユニット2に供給できる。 According to the first embodiment, when the temperature-sensitive gel 50 is hydrophobic, the treatment liquid is passed through the temperature-sensitive gel filter 31, so that impurities in the treatment liquid are captured by the temperature-sensitive gel filter 31. Impurities can be removed from the treatment liquid. Then, the processing liquid from which impurities are sufficiently removed can be supplied to the processing unit 2 via the upstream supply pipe 23, the supply tank 24, and the downstream supply pipe 25.
 不純物を捕獲することによって感温性ゲルフィルタ31の不純物除去効率が低下した場合には、感温性ゲル50を親水性に変化させた状態で貯留タンク30内の洗浄液としての処理液を循環配管32によって循環させて感温性ゲルフィルタ31に通過させれば、感温性ゲルフィルタ31によって捕獲されていた不純物を処理液中に放出できる。これにより、感温性ゲルフィルタ31の不純物除去効率を回復させることができる。そして、不純物を多量に含んだ処理液を、排液配管21を介して貯留タンク30から排除することで、不純物除去ユニット20を再び利用可能な状態に戻すことができる。 When the impurity removal efficiency of the temperature-sensitive gel filter 31 is lowered by capturing impurities, the treatment liquid as a cleaning liquid in the storage tank 30 is circulated in a state where the temperature-sensitive gel 50 is changed to hydrophilic. If it is circulated by 32 and passed through the temperature-sensitive gel filter 31, impurities captured by the temperature-sensitive gel filter 31 can be released into the treatment liquid. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter 31 can be restored. Then, by removing the treatment liquid containing a large amount of impurities from the storage tank 30 via the drainage pipe 21, the impurity removal unit 20 can be returned to a usable state again.
 以上のように、感温性ゲルフィルタ31の不純物除去効率が低下した場合であっても、感温性ゲルフィルタ31を交換することなく不純物除去効率を回復させることができる。 As described above, even when the impurity removal efficiency of the temperature-sensitive gel filter 31 is lowered, the impurity removal efficiency can be restored without replacing the temperature-sensitive gel filter 31.
 この実施形態のように、感温性ゲル50がLCST型感温性ゲルである場合、加熱によって親水性から疎水性へ感温性ゲル50の状態を速やかに変化させることができる。そのため、感温性ゲルフィルタ31による不純物の捕獲を速やかに開始することができる。ひいては、不純物が除去された処理液の上流供給配管23(供給流路)への供給を速やかに開始できる。 When the temperature-sensitive gel 50 is an LCST type temperature-sensitive gel as in this embodiment, the state of the temperature-sensitive gel 50 can be rapidly changed from hydrophilic to hydrophobic by heating. Therefore, the capture of impurities by the temperature-sensitive gel filter 31 can be started promptly. As a result, the supply of the treatment liquid from which impurities have been removed to the upstream supply pipe 23 (supply flow path) can be promptly started.
 第1実施形態によれば、感温性ゲル50が疎水性である状態で不純物量測定ユニット42によって測定された不純物量が基準不純物量よりも少ない場合には、処理液が上流供給配管23に送り出される。そして、感温性ゲル50が疎水性である状態で不純物量測定ユニット42によって測定される不純物量が基準不純物量以上である場合には、感温性ゲル50を親水化した後に処理液が排液配管21に送り出される。 According to the first embodiment, when the amount of impurities measured by the impurity amount measuring unit 42 is smaller than the reference impurity amount in a state where the temperature sensitive gel 50 is hydrophobic, the treatment liquid is sent to the upstream supply pipe 23. Be sent out. When the amount of impurities measured by the impurity amount measuring unit 42 is equal to or more than the reference impurity amount in a state where the temperature-sensitive gel 50 is hydrophobic, the treatment liquid is discharged after hydrophilizing the temperature-sensitive gel 50. It is sent out to the liquid pipe 21.
 そのため、貯留タンク30内の処理液の送出先を、不純物量測定ユニット42によって測定される不純物量に基づいて適切に切り替えることができる。 Therefore, the delivery destination of the processing liquid in the storage tank 30 can be appropriately switched based on the amount of impurities measured by the impurity amount measuring unit 42.
 詳しくは、不純物除去工程が実行された後の不純物量が基準不純物量よりも少ない場合には、感温性ゲルフィルタ31の不純物除去効率が充分に高い。そのため、不純物除去工程の後、上流供給配管23に向けて清浄度の高い処理液を送り出すことができる。一方、不純物除去工程が実行された後の不純物量が基準不純物量以上である場合には、感温性ゲルフィルタ31の不純物除去効率が低下している。そのため、不純物放出工程を実行することで、感温性ゲルフィルタの不純物除去効率が回復される。 Specifically, when the amount of impurities after the impurity removing step is executed is smaller than the reference amount of impurities, the impurity removing efficiency of the temperature-sensitive gel filter 31 is sufficiently high. Therefore, after the impurity removing step, a highly clean treatment liquid can be sent out to the upstream supply pipe 23. On the other hand, when the amount of impurities after the impurity removing step is executed is equal to or larger than the reference impurity amount, the impurity removing efficiency of the temperature-sensitive gel filter 31 is lowered. Therefore, by executing the impurity discharge step, the impurity removal efficiency of the temperature-sensitive gel filter is restored.
 このように、不純物量を測定することで、適切なタイミングで不純物除去効率を回復させることができる。 By measuring the amount of impurities in this way, the efficiency of removing impurities can be restored at an appropriate timing.
 第1実施形態によれば、感温性ゲルフィルタ31が、処理液を通過させつつ感温性ゲル50を保持するフィルタ部材51をさらに含む。そのため、親水性の感温性ゲル50が吸液して膨潤した場合であっても、感温性ゲル50を感温性ゲルフィルタ31の外部に流出させることなく貯留タンク30内の所定の位置に維持できる。 According to the first embodiment, the temperature-sensitive gel filter 31 further includes a filter member 51 that holds the temperature-sensitive gel 50 while allowing the treatment liquid to pass through. Therefore, even when the hydrophilic temperature-sensitive gel 50 absorbs liquid and swells, the temperature-sensitive gel 50 does not flow out to the outside of the temperature-sensitive gel filter 31 and is located at a predetermined position in the storage tank 30. Can be maintained.
 第1実施形態によれば、貯留タンク30の内部空間33が、感温性ゲルフィルタ31によって、第1収容部33aおよび第2収容部33bに仕切られている。第1収容部33aは、感温性ゲルフィルタ31を挟んで第2収容部33bよりも処理液の循環方向Cの上流側に位置する。そして、上流供給配管23は、第2収容部33bに接続されており、第1収容部33aには、排液配管21が接続されている。 According to the first embodiment, the internal space 33 of the storage tank 30 is partitioned into the first accommodating portion 33a and the second accommodating portion 33b by the temperature-sensitive gel filter 31. The first accommodating portion 33a is located on the upstream side of the second accommodating portion 33b in the circulation direction C of the treatment liquid with the temperature-sensitive gel filter 31 interposed therebetween. The upstream supply pipe 23 is connected to the second accommodating portion 33b, and the drainage pipe 21 is connected to the first accommodating portion 33a.
 そのため、感温性ゲルフィルタ31よりも循環方向Cの上流側の不純物が比較的多い処理液を排液配管21に送ることができる。一方、感温性ゲルフィルタ31よりも循環方向Cの下流側の不純物が比較的少ない処理液を上流供給配管23に送ることができる。 Therefore, the treatment liquid having a relatively large amount of impurities on the upstream side in the circulation direction C can be sent to the drainage pipe 21 as compared with the temperature-sensitive gel filter 31. On the other hand, the treatment liquid having relatively less impurities on the downstream side in the circulation direction C than the temperature-sensitive gel filter 31 can be sent to the upstream supply pipe 23.
 第1実施形態によれば、上流供給配管23と、供給タンク24と、下流供給配管25とによって、供給流路が構成されている。そのため、不純物除去ユニット20によって生成された清浄処理液が、供給タンク24に貯留される。そのため、感温性ゲルフィルタ31の不純物除去効率を回復させるために不純物除去ユニット20から上流供給配管23への処理液の送出が一時的に停止されている場合であっても、供給タンク24内の処理液を処理ユニット2に供給できる。したがって、感温性ゲルフィルタ31の不純物除去効率を回復させつつ、処理ユニット2に処理液を安定して供給できる。 According to the first embodiment, the supply flow path is composed of the upstream supply pipe 23, the supply tank 24, and the downstream supply pipe 25. Therefore, the cleaning treatment liquid generated by the impurity removing unit 20 is stored in the supply tank 24. Therefore, even when the delivery of the processing liquid from the impurity removing unit 20 to the upstream supply pipe 23 is temporarily stopped in order to restore the impurity removing efficiency of the temperature-sensitive gel filter 31, the inside of the supply tank 24 The treatment liquid can be supplied to the treatment unit 2. Therefore, the treatment liquid can be stably supplied to the treatment unit 2 while recovering the impurity removal efficiency of the temperature-sensitive gel filter 31.
 第1実施形態によれば、汚染処理液が、帰還配管22を介して貯留タンク30に帰還させる。処理ユニット2から排出される汚染処理液を再利用することで、基板処理に要するコストおよび環境負荷を低減できる。 According to the first embodiment, the contaminated treatment liquid is returned to the storage tank 30 via the return pipe 22. By reusing the contamination treatment liquid discharged from the treatment unit 2, the cost and environmental load required for substrate treatment can be reduced.
 その一方で、汚染処理液中には不純物が多量に存在している。そのため、汚染処理液を不純物除去ユニット20に戻した場合、感温性ゲルフィルタ31の不純物除去効率が低下しやすい。しかしながら、汚染処理液からの不純物の除去によって不純物除去効率が低下した場合であっても、感温性ゲルフィルタ31は、冷却によって容易に不純物を放出できる。そのため、感温性ゲルフィルタ31を交換することなく汚染処理液から不純物を除去できる。 On the other hand, a large amount of impurities are present in the contamination treatment liquid. Therefore, when the contamination treatment liquid is returned to the impurity removing unit 20, the impurity removing efficiency of the temperature-sensitive gel filter 31 tends to decrease. However, even when the impurity removal efficiency is lowered by removing impurities from the contamination treatment liquid, the temperature-sensitive gel filter 31 can easily release impurities by cooling. Therefore, impurities can be removed from the contamination treatment liquid without replacing the temperature-sensitive gel filter 31.
 さらに、感温性ゲルフィルタ31に不純物を捕獲させるための処理液、および、感温性ゲルフィルタ31から不純物を放出させるための洗浄液として、汚染処理液が用いられる。そのため、感温性ゲルフィルタ31の不純物除去効率が低下した際には、循環配管32によって循環される液体の液種を変更する必要がないため、不純物除去効率の回復に速やかに開始できる。したがって、汚染処理液とは別の種類の洗浄液を感温性ゲルフィルタ31に通過させて感温性ゲル50から不純物を放出させる構成と比較して、感温性ゲルフィルタ31から不純物を速やかに除去できる。 Further, a contamination treatment liquid is used as a treatment liquid for capturing impurities in the temperature-sensitive gel filter 31 and a cleaning liquid for releasing impurities from the temperature-sensitive gel filter 31. Therefore, when the impurity removal efficiency of the temperature-sensitive gel filter 31 is lowered, it is not necessary to change the liquid type of the liquid circulated by the circulation pipe 32, so that the recovery of the impurity removal efficiency can be started promptly. Therefore, as compared with the configuration in which a cleaning liquid different from the contamination treatment liquid is passed through the temperature-sensitive gel filter 31 to release impurities from the temperature-sensitive gel 50, impurities are quickly discharged from the temperature-sensitive gel filter 31. Can be removed.
 第1実施形態によれば、処理液を循環させて感温性ゲルフィルタ31に処理液を通過させる。そのため、処理液を感温性ゲルフィルタ31に効率良く通過させることができる。これにより、処理液から不純物の除去、および、不純物除去効率の回復が速やかに行われる。 According to the first embodiment, the treatment liquid is circulated and the treatment liquid is passed through the temperature-sensitive gel filter 31. Therefore, the treatment liquid can be efficiently passed through the temperature-sensitive gel filter 31. As a result, impurities are quickly removed from the treatment liquid and the impurity removal efficiency is quickly restored.
 また、この実施形態では、帰還配管22は、循環ヒータ45よりも上流側で循環配管32に接続されている。そのため、帰還配管22から貯留タンク30に送られる処理液が循環ヒータ45によって加熱される。したがって、処理液が循環される前に処理液の加熱が開始される。 Further, in this embodiment, the return pipe 22 is connected to the circulation pipe 32 on the upstream side of the circulation heater 45. Therefore, the processing liquid sent from the return pipe 22 to the storage tank 30 is heated by the circulation heater 45. Therefore, heating of the treatment liquid is started before the treatment liquid is circulated.
 第1実施形態では、ステップS6のゲル加熱停止工程の後に、感温性ゲルフィルタ31を冷却する方法として、循環冷却工程が用いられる。しかしながら、循環冷却工程では、処理液の冷却に伴って、感温性ゲルフィルタ31から処理液に不純物が放出されるため、この不純物によって循環配管32が汚染されるおそれがある。 In the first embodiment, a circulation cooling step is used as a method of cooling the temperature-sensitive gel filter 31 after the gel heating stop step of step S6. However, in the circulation cooling step, impurities are released from the temperature-sensitive gel filter 31 into the treatment liquid as the treatment liquid is cooled, and the impurities may contaminate the circulation pipe 32.
 そこで、循環冷却工程を行うことなく感温性ゲルフィルタ31を冷却するために、循環ポンプ40を停止させた状態で放置して感温性ゲルフィルタ31を自然冷却させてもよい。感温性ゲルフィルタ31の温度低下を促進するために、図示しない冷却ユニット(クーラ)を貯留タンク30に設け、当該冷却ユニットを用いて貯留タンク30を冷却することで感温性ゲルフィルタ31を強制的に冷却してもよい。 Therefore, in order to cool the temperature-sensitive gel filter 31 without performing the circulation cooling step, the temperature-sensitive gel filter 31 may be naturally cooled by leaving the circulation pump 40 in a stopped state. In order to accelerate the temperature drop of the temperature-sensitive gel filter 31, a cooling unit (cooler) (not shown) is provided in the storage tank 30, and the storage tank 30 is cooled by using the cooling unit to cool the temperature-sensitive gel filter 31. It may be forcibly cooled.
 また、ゲル加熱停止工程(ステップS6)の後、循環冷却工程および第2ゲル温度監視工程(ステップS7)を行うことなく、排液工程(ステップS8)が行われてもよい。貯留タンク30から処理液が排出される過程で処理液が自然冷却され、冷却された処理液によって感温性ゲルフィルタ31が処理液の温度にまで冷却される。感温性ゲルフィルタ31が常温にまで冷却されることによって、不純物を放出する。処理液に放出された不純物は、処理液とともに貯留タンク30外へ排出されるため、不純物による循環配管32の汚染を抑制できる。 Further, after the gel heating stop step (step S6), the drainage step (step S8) may be performed without performing the circulation cooling step and the second gel temperature monitoring step (step S7). The treatment liquid is naturally cooled in the process of discharging the treatment liquid from the storage tank 30, and the temperature-sensitive gel filter 31 is cooled to the temperature of the treatment liquid by the cooled treatment liquid. The temperature-sensitive gel filter 31 is cooled to room temperature to release impurities. Since the impurities released into the treatment liquid are discharged to the outside of the storage tank 30 together with the treatment liquid, contamination of the circulation pipe 32 by the impurities can be suppressed.
 <第2実施形態>
 図5は、この発明の第2実施形態に係る基板処理装置1Pの構成例を示す模式図である。図5および後述する図6A~図6Dにおいて、前述の図1~図4Eに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。基板処理装置1Pが、第1実施形態に係る基板処理装置1と主に異なる点は、処理液供給装置3Pが、洗浄液配管90、洗浄液ポンプ91および洗浄液バルブ92を備える点である。
<Second Embodiment>
FIG. 5 is a schematic view showing a configuration example of the substrate processing apparatus 1P according to the second embodiment of the present invention. In FIGS. 5A to 6D, which will be described later, the same reference numerals as those shown in FIGS. 1 and 4E are assigned to the same configurations as those shown in FIGS. 1 to 4E, and the description thereof will be omitted. The main difference between the substrate processing apparatus 1P and the substrate processing apparatus 1 according to the first embodiment is that the processing liquid supply device 3P includes a cleaning liquid pipe 90, a cleaning liquid pump 91, and a cleaning liquid valve 92.
 洗浄液配管90は、貯留タンク30に洗浄液を供給する。洗浄液配管90は、その内部に洗浄液流路を形成する配管である。洗浄液配管90の上流端は、洗浄液タンク93に接続されており、洗浄液配管90の下流端は、貯留タンク30に接続されている。 The cleaning liquid pipe 90 supplies the cleaning liquid to the storage tank 30. The cleaning liquid pipe 90 is a pipe that forms a cleaning liquid flow path inside the cleaning liquid pipe 90. The upstream end of the cleaning liquid pipe 90 is connected to the cleaning liquid tank 93, and the downstream end of the cleaning liquid pipe 90 is connected to the storage tank 30.
 洗浄液ポンプ91は、洗浄液配管90に介装されている。洗浄液ポンプ91は、洗浄液タンク93内の洗浄液を洗浄液配管90に向けて送り出す。洗浄液バルブ92は、洗浄液ポンプ91よりも下流側で洗浄液配管90に介装されている。洗浄液バルブ92は、洗浄液配管90内の洗浄液流路を開閉する。 The cleaning liquid pump 91 is interposed in the cleaning liquid pipe 90. The cleaning liquid pump 91 sends out the cleaning liquid in the cleaning liquid tank 93 toward the cleaning liquid pipe 90. The cleaning liquid valve 92 is interposed in the cleaning liquid pipe 90 on the downstream side of the cleaning liquid pump 91. The cleaning liquid valve 92 opens and closes the cleaning liquid flow path in the cleaning liquid pipe 90.
 第2実施形態における洗浄液は、汚染処理液ではなく、洗浄液タンク93内に貯留されたDIW等である。より具体的には、洗浄液としては、リンス液と同様の液体を使用することができる。洗浄液は、DIWに限られず、炭酸水、電解イオン水、オゾン水、希釈濃度(たとえば、10ppm以上100ppm以下)の塩酸水、アンモニア水、還元水(水素水)、親水性の有機溶剤のうちの少なくとも1つを含む液であってもよい。 The cleaning liquid in the second embodiment is not a contamination treatment liquid, but a DIW or the like stored in the cleaning liquid tank 93. More specifically, as the cleaning liquid, a liquid similar to the rinsing liquid can be used. The cleaning liquid is not limited to DIW, but includes carbonated water, electrolytic ionized water, ozone water, hydrochloric acid water having a diluted concentration (for example, 10 ppm or more and 100 ppm or less), ammonia water, reduced water (hydrogen water), and a hydrophilic organic solvent. It may be a liquid containing at least one.
 次に、第2実施形態に係る不純物除去ユニット20の動作例について説明する。 Next, an operation example of the impurity removing unit 20 according to the second embodiment will be described.
 第2実施形態に係る不純物除去ユニット20の動作例は、排液工程(ステップS8)を除いて第1実施形態に係る不純物除去ユニット20の動作例とほぼ同じである(図3を参照)。そのため、以下では、排液工程(ステップS8)を中心に、第2実施形態に係る不純物除去ユニット20の動作例について説明する。 The operation example of the impurity removing unit 20 according to the second embodiment is almost the same as the operation example of the impurity removing unit 20 according to the first embodiment except for the drainage step (step S8) (see FIG. 3). Therefore, in the following, an operation example of the impurity removing unit 20 according to the second embodiment will be described with a focus on the drainage step (step S8).
 図6A~図6Dは、第2実施形態に係る不純物除去ユニット20の動作例を説明するための模式図である。 6A to 6D are schematic views for explaining an operation example of the impurity removing unit 20 according to the second embodiment.
 第2実施形態においても、第1実施形態と同様に、不純物除去時間経過後に、不純物量が基準不純物量よりも低い場合には(ステップS4:YES)、処理液が、循環配管32および貯留タンク30を所定時間循環することによって感温性ゲル50の転移温度よりも低い温度に冷却される(循環冷却工程)。 Also in the second embodiment, as in the first embodiment, when the impurity amount is lower than the reference impurity amount after the impurity removal time elapses (step S4: YES), the treatment liquid is the circulation pipe 32 and the storage tank. By circulating 30 for a predetermined time, the temperature-sensitive gel 50 is cooled to a temperature lower than the transition temperature (circulation cooling step).
 貯留タンク30内の感温性ゲルフィルタ31が感温性ゲル50の転移温度よりも低い温度に冷却されると(ステップS7:YES)、図6Aに示すように、上流循環バルブ41、中間循環バルブ43、および下流循環バルブ44が閉じられ、排液バルブ70が開かれる。さらに、循環ポンプ40が停止される。 When the temperature-sensitive gel filter 31 in the storage tank 30 is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 (step S7: YES), as shown in FIG. 6A, the upstream circulation valve 41 and the intermediate circulation The valve 43 and the downstream circulation valve 44 are closed and the drain valve 70 is opened. Further, the circulation pump 40 is stopped.
 この実施形態では、排液流路が貯留タンク30の底面から開口しているため、処理液は、自重によって、貯留タンク30から排液配管21(排液流路)に向けて送られる(ステップS8:排液工程)。 In this embodiment, since the drainage flow path is open from the bottom surface of the storage tank 30, the treatment liquid is sent from the storage tank 30 toward the drainage pipe 21 (drainage flow path) by its own weight (step). S8: Drainage step).
 その後、排液バルブ70が閉じられ洗浄液バルブ92が開かれる。そして、洗浄液ポンプ91が作動される。これにより、図6Bに示すように、貯留タンク30内に洗浄液が供給される。たとえば、図6Bに二点鎖線で示すように、液面センサ34の測定値が所定の第1高さH1に達すると、洗浄液バルブ92が閉じられる。第1高さH1は、感温性ゲルフィルタ31よりも高い位置に設定されている。これにより、感温性ゲルフィルタ31が洗浄液に浸漬される(洗浄液浸漬工程)。 After that, the drainage valve 70 is closed and the cleaning liquid valve 92 is opened. Then, the cleaning liquid pump 91 is operated. As a result, as shown in FIG. 6B, the cleaning liquid is supplied into the storage tank 30. For example, as shown by the alternate long and short dash line in FIG. 6B, when the measured value of the liquid level sensor 34 reaches a predetermined first height H1, the cleaning liquid valve 92 is closed. The first height H1 is set at a position higher than that of the temperature-sensitive gel filter 31. As a result, the temperature-sensitive gel filter 31 is immersed in the cleaning liquid (cleaning liquid immersion step).
 感温性ゲルフィルタ31を洗浄液に浸漬させた後、排液バルブ70が再び開かれる。これにより、図6Cに示すように、貯留タンク30内の洗浄液が貯留タンク30内に排液流Dを形成しながら排液配管21から排液される(浸漬洗浄工程)。 After immersing the temperature-sensitive gel filter 31 in the cleaning liquid, the drain valve 70 is opened again. As a result, as shown in FIG. 6C, the cleaning liquid in the storage tank 30 is drained from the drainage pipe 21 while forming the drainage flow D in the storage tank 30 (immersion cleaning step).
 その後、浸漬洗浄工程(図6Bおよび図6Cを参照)が繰り返される。具体的には、貯留タンク30に洗浄液を再び供給して感温性ゲルフィルタ31を洗浄液に浸漬させ、貯留タンク30内の洗浄液を排液配管21から排液して貯留タンク30内に排液流Dが形成される。排液流Dは、上方から下方に向かう洗浄液の流れである。 After that, the immersion cleaning step (see FIGS. 6B and 6C) is repeated. Specifically, the cleaning liquid is supplied to the storage tank 30 again, the temperature-sensitive gel filter 31 is immersed in the cleaning liquid, the cleaning liquid in the storage tank 30 is drained from the drainage pipe 21, and the liquid is drained into the storage tank 30. A flow D is formed. The drainage flow D is a flow of the cleaning liquid from the upper side to the lower side.
 浸漬洗浄工程が複数回実行された後、排液バルブ70が閉じられた状態で、帰還バルブ60および下流循環バルブ44が開かれ、図6Dに示すように、貯留タンク30に汚染処理液が供給される。これにより、たとえば、図6Dに二点鎖線で示すように、液面センサ34の測定値が所定の第1高さH1に達すると、帰還バルブ60および下流循環バルブ44が閉じられる。これにより、感温性ゲルフィルタ31が汚染処理液に浸漬される(汚染処理液浸漬工程)。その後、排液バルブ70が開かれて貯留タンク30内の汚染処理液が排液される。これにより、貯留タンク30内に残存していた洗浄液が汚染処理液によって置換される。 After the immersion cleaning step is executed a plurality of times, the return valve 60 and the downstream circulation valve 44 are opened with the drain valve 70 closed, and the contaminated liquid is supplied to the storage tank 30 as shown in FIG. 6D. Will be done. As a result, for example, as shown by the two-dot chain line in FIG. 6D, when the measured value of the liquid level sensor 34 reaches a predetermined first height H1, the return valve 60 and the downstream circulation valve 44 are closed. As a result, the temperature-sensitive gel filter 31 is immersed in the contamination treatment liquid (contamination treatment liquid immersion step). After that, the drain valve 70 is opened and the contaminated liquid in the storage tank 30 is drained. As a result, the cleaning liquid remaining in the storage tank 30 is replaced by the contamination treatment liquid.
 第2実施形態によれば、第1実施形態と同様の効果を奏する。 According to the second embodiment, the same effect as that of the first embodiment is obtained.
 第2実施形態によれば、以下の効果も奏する。第2実施形態では、貯留タンク30内に供給された洗浄液に感温性ゲルフィルタ31が浸漬される。これにより、洗浄液中に感温性ゲル50から不純物が放出される。その後、貯留タンク30内の洗浄液を排液配管21から排液することによって貯留タンク30内に排液流Dが形成される。洗浄液中に放出された不純物が、この排液流Dによって洗浄液とともに貯留タンク30内から除去される。これにより、感温性ゲルフィルタ31の不純物除去効率を回復させることができる。 According to the second embodiment, the following effects are also achieved. In the second embodiment, the temperature-sensitive gel filter 31 is immersed in the cleaning liquid supplied into the storage tank 30. As a result, impurities are released from the temperature-sensitive gel 50 into the cleaning liquid. After that, the drainage flow D is formed in the storage tank 30 by draining the cleaning liquid in the storage tank 30 from the drainage pipe 21. Impurities released into the cleaning liquid are removed from the storage tank 30 together with the cleaning liquid by this drainage flow D. As a result, the efficiency of removing impurities from the temperature-sensitive gel filter 31 can be restored.
 また、第2実施形態によれば、洗浄液が、洗浄液配管90を介して、洗浄液タンク93から貯留タンク30に供給される。そのため、感温性ゲルフィルタ31を速やかに洗浄できる。 Further, according to the second embodiment, the cleaning liquid is supplied from the cleaning liquid tank 93 to the storage tank 30 via the cleaning liquid pipe 90. Therefore, the temperature-sensitive gel filter 31 can be quickly washed.
 第2実施形態とは異なり、循環冷却工程を行うことなく感温性ゲルフィルタ31を冷却するために、循環ポンプ40を停止させた状態で放置して感温性ゲルフィルタ31を自然冷却させてもよい。また、感温性ゲルフィルタ31の温度低下を促進するために、図示しない冷却ユニット(クーラ)を貯留タンク30に設け、冷却ユニットを用いて貯留タンク30を冷却することで感温性ゲルフィルタ31を強制的に冷却してもよい。 Unlike the second embodiment, in order to cool the temperature-sensitive gel filter 31 without performing the circulation cooling step, the temperature-sensitive gel filter 31 is naturally cooled by leaving the circulation pump 40 stopped. May be good. Further, in order to promote the temperature decrease of the temperature-sensitive gel filter 31, a cooling unit (cooler) (not shown) is provided in the storage tank 30, and the storage tank 30 is cooled by using the cooling unit to cool the storage tank 30. May be forcibly cooled.
 また、ゲル加熱停止工程(ステップS6)の後、循環冷却工程および第2ゲル温度監視工程(ステップS7)を行うことなく、排液工程(ステップS8)が行われてもよい。すなわち、ゲル加熱停止工程において循環ヒータ45が停止されるとともに、循環ポンプ40が停止され、かつ、排液バルブ70が開かれる。これにより、感温性ゲルフィルタ31が冷却される前に貯留タンク30内の処理液が排液される。その後、貯留タンク30内に供給される洗浄液によって、感温性ゲルフィルタ31が、処理液の温度にまで冷却される。それによって感温性ゲルフィルタ31が不純物を放出する。処理液に放出された不純物は、処理液とともに貯留タンク30外へ排出されるため、不純物による循環配管32の汚染を抑制できる。 Further, after the gel heating stop step (step S6), the drainage step (step S8) may be performed without performing the circulation cooling step and the second gel temperature monitoring step (step S7). That is, in the gel heating stop step, the circulation heater 45 is stopped, the circulation pump 40 is stopped, and the drain valve 70 is opened. As a result, the treatment liquid in the storage tank 30 is drained before the temperature-sensitive gel filter 31 is cooled. After that, the temperature-sensitive gel filter 31 is cooled to the temperature of the treatment liquid by the cleaning liquid supplied into the storage tank 30. As a result, the temperature-sensitive gel filter 31 releases impurities. Since the impurities released into the treatment liquid are discharged to the outside of the storage tank 30 together with the treatment liquid, contamination of the circulation pipe 32 by the impurities can be suppressed.
 <第3実施形態>
 図7は、この発明の第3実施形態に係る基板処理装置1Qの構成例を示す模式図である。図7ならびに後述する図8Aおよび図8Bにおいて、前述の図1~図6Dに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
<Third Embodiment>
FIG. 7 is a schematic diagram showing a configuration example of the substrate processing apparatus 1Q according to the third embodiment of the present invention. 7 and 8A and 8B, which will be described later, have the same reference numerals as those shown in FIGS. 1 and 6D, and the description thereof will be omitted.
 基板処理装置1Qが第1実施形態に係る基板処理装置1と主に異なる点は、処理液供給装置3Qが、複数(この実施形態では2個)の不純物除去ユニット20を備えている点である。 The main difference between the substrate processing apparatus 1Q and the substrate processing apparatus 1 according to the first embodiment is that the processing liquid supply apparatus 3Q includes a plurality of (two in this embodiment) impurity removing units 20. ..
 複数の不純物除去ユニット20は、第1不純物除去ユニット20Aと、第2不純物除去ユニット20Bとを含む。第1不純物除去ユニット20Aおよび第2不純物除去ユニット20Bは、いずれも同様の構成を有している。 The plurality of impurity removing units 20 include a first impurity removing unit 20A and a second impurity removing unit 20B. Both the first impurity removing unit 20A and the second impurity removing unit 20B have the same configuration.
 詳しくは、第1不純物除去ユニット20Aの貯留タンク30、感温性ゲルフィルタ31、循環配管32、循環ポンプ40、上流循環バルブ41、不純物量測定ユニット42、中間循環バルブ43、下流循環バルブ44、循環ヒータ45、および、循環温度計46を、それぞれ、第1貯留タンク30A、第1感温性ゲルフィルタ31A、第1循環配管32A、第1循環ポンプ40A、第1上流循環バルブ41A、第1不純物量測定ユニット42A、第1中間循環バルブ43A、第1下流循環バルブ44A、第1循環ヒータ45A、第1循環温度計46Aと表現する場合がある。 Specifically, the storage tank 30 of the first impurity removing unit 20A, the temperature sensitive gel filter 31, the circulation pipe 32, the circulation pump 40, the upstream circulation valve 41, the impurity amount measuring unit 42, the intermediate circulation valve 43, the downstream circulation valve 44, The circulation heater 45 and the circulation thermometer 46 are used in the first storage tank 30A, the first temperature-sensitive gel filter 31A, the first circulation pipe 32A, the first circulation pump 40A, the first upstream circulation valve 41A, and the first, respectively. It may be expressed as an impurity amount measuring unit 42A, a first intermediate circulation valve 43A, a first downstream circulation valve 44A, a first circulation heater 45A, and a first circulation thermometer 46A.
 同様に、第2不純物除去ユニット20Bの貯留タンク30、感温性ゲルフィルタ31、循環配管32、循環ポンプ40、上流循環バルブ41、不純物量測定ユニット42、中間循環バルブ43、下流循環バルブ44、循環ヒータ45、および、循環温度計46を、それぞれ、第2貯留タンク30B、第2感温性ゲルフィルタ31B、第2循環配管32B、第2循環ポンプ40B、第2上流循環バルブ41B、第2不純物量測定ユニット42B、第2中間循環バルブ43B、第2下流循環バルブ44B、第2循環ヒータ45B、第2循環温度計46Bと表現する場合がある。 Similarly, the storage tank 30, the temperature-sensitive gel filter 31, the circulation pipe 32, the circulation pump 40, the upstream circulation valve 41, the impurity amount measuring unit 42, the intermediate circulation valve 43, the downstream circulation valve 44, of the second impurity removing unit 20B, The circulation heater 45 and the circulation thermometer 46 are used in the second storage tank 30B, the second temperature-sensitive gel filter 31B, the second circulation pipe 32B, the second circulation pump 40B, the second upstream circulation valve 41B, and the second, respectively. It may be expressed as an impurity amount measuring unit 42B, a second intermediate circulation valve 43B, a second downstream circulation valve 44B, a second circulation heater 45B, and a second circulation thermometer 46B.
 第3実施形態の処理液供給装置3Qは、複数の帰還配管22および複数の排液配管21を備えている。 The treatment liquid supply device 3Q of the third embodiment includes a plurality of return pipes 22 and a plurality of drainage pipes 21.
 複数の帰還配管22は、第1帰還配管22Aおよび第2帰還配管22B含む。第1帰還配管22Aは、その内部に第1帰還流路を形成する配管である。第2帰還配管22Bは、その内部に第2帰還流路を形成する配管である。 The plurality of return pipes 22 include the first return pipe 22A and the second return pipe 22B. The first feedback pipe 22A is a pipe that forms a first feedback flow path inside the first feedback pipe 22A. The second feedback pipe 22B is a pipe that forms a second feedback flow path inside the second feedback pipe 22B.
 第1帰還配管22Aの上流端は、たとえば、カップ12に接続されている。第1帰還配管22Aの下流端は、たとえば、第1循環配管32Aに分岐接続されている。第1帰還配管22Aに介装されている帰還バルブ60は、第1帰還配管22A内の流路(第1帰還流路)を開閉する第1帰還バルブ60Aともいう。 The upstream end of the first return pipe 22A is connected to, for example, the cup 12. The downstream end of the first feedback pipe 22A is branched and connected to, for example, the first circulation pipe 32A. The feedback valve 60 interposed in the first feedback pipe 22A is also referred to as a first feedback valve 60A that opens and closes a flow path (first feedback flow path) in the first feedback pipe 22A.
 第2帰還配管22Bの上端部は、第1帰還バルブ60Aよりも上流側で第1帰還配管22Aに接続されている。第2帰還配管22Bの下流端は、たとえば、第2循環配管32Bに分岐接続されている。第2帰還配管22Bに介装されている帰還バルブ60は、第2帰還配管22B内の流路(第2帰還流路)を開閉する第2帰還バルブ60Bともいう。 The upper end of the second feedback pipe 22B is connected to the first feedback pipe 22A on the upstream side of the first feedback valve 60A. The downstream end of the second feedback pipe 22B is branched and connected to, for example, the second circulation pipe 32B. The feedback valve 60 interposed in the second feedback pipe 22B is also referred to as a second feedback valve 60B that opens and closes the flow path (second feedback flow path) in the second feedback pipe 22B.
 複数の排液配管21は、第1排液配管21Aおよび第2排液配管21Bを含む。第1排液配管21Aの上流端および第2排液配管21Bの上流端は、それぞれ、第1貯留タンク30Aおよび第2貯留タンク30Bに接続されている。第1排液配管21Aは、その内部に第1排液流路を形成する配管である。第2排液配管21Bは、その内部に第2排液流路を形成する配管である。 The plurality of drainage pipes 21 include a first drainage pipe 21A and a second drainage pipe 21B. The upstream end of the first drainage pipe 21A and the upstream end of the second drainage pipe 21B are connected to the first storage tank 30A and the second storage tank 30B, respectively. The first drainage pipe 21A is a pipe that forms a first drainage flow path inside the first drainage pipe 21A. The second drainage pipe 21B is a pipe that forms a second drainage flow path inside the second drainage pipe 21B.
 第1帰還配管22Aに介装されている排液バルブ70は、第1排液配管21A内の流路(第1排液流路)を開閉する第1排液バルブ70Aともいう。第2排液配管21Bに介装されている排液バルブ70は、第2排液配管21B内の流路(第2排液流路)を開閉する第2排液バルブ70Bともいう。 The drainage valve 70 interposed in the first return pipe 22A is also referred to as a first drainage valve 70A that opens and closes a flow path (first drainage flow path) in the first drainage pipe 21A. The drainage valve 70 interposed in the second drainage pipe 21B is also referred to as a second drainage valve 70B that opens and closes a flow path (second drainage flow path) in the second drainage pipe 21B.
 供給ユニット19は、複数の上流供給配管23を備える。複数の上流供給配管23は、第1上流供給配管23Aおよび第2上流供給配管23Bを含む。 The supply unit 19 includes a plurality of upstream supply pipes 23. The plurality of upstream supply pipes 23 include a first upstream supply pipe 23A and a second upstream supply pipe 23B.
 第1上流供給配管23Aは、その内部に第1上流供給流路を形成する配管である。第1上流供給配管23Aの上流端は、たとえば、第1循環ポンプ40Aよりも下流側で、かつ、第1上流循環バルブ41Aよりも上流側で、第1循環配管32Aに分岐接続されている。第1上流供給配管23Aに介装されている上流供給バルブ80は、第1上流供給配管23A内の流路(第1上流供給流路)を開閉する第1上流供給バルブ80Aともいう。 The first upstream supply pipe 23A is a pipe that forms a first upstream supply flow path inside the first upstream supply pipe 23A. The upstream end of the first upstream supply pipe 23A is branched and connected to the first circulation pipe 32A, for example, on the downstream side of the first circulation pump 40A and on the upstream side of the first upstream circulation valve 41A. The upstream supply valve 80 interposed in the first upstream supply pipe 23A is also referred to as a first upstream supply valve 80A that opens and closes a flow path (first upstream supply flow path) in the first upstream supply pipe 23A.
 第2上流供給配管23Bは、その内部に第2上流供給流路を形成する配管である。第2上流供給配管23Bの上流端は、たとえば、第2循環ポンプ40Bよりも下流側で、かつ、第2上流循環バルブ41Bよりも上流側において、第2循環配管32Bに分岐接続されている。第2上流供給配管23Bの下流端は、第1上流供給バルブ80Aよりも下流側で第1上流供給配管23Aに接続されている。第2上流供給配管23Bに介装されている上流供給バルブ80は、第2上流供給配管23B内の流路(第2上流供給流路)を開閉する第2上流供給バルブ80Bともいう。 The second upstream supply pipe 23B is a pipe that forms a second upstream supply flow path inside the second upstream supply pipe 23B. The upstream end of the second upstream supply pipe 23B is branched and connected to the second circulation pipe 32B, for example, on the downstream side of the second circulation pump 40B and on the upstream side of the second upstream circulation valve 41B. The downstream end of the second upstream supply pipe 23B is connected to the first upstream supply pipe 23A on the downstream side of the first upstream supply valve 80A. The upstream supply valve 80 interposed in the second upstream supply pipe 23B is also referred to as a second upstream supply valve 80B that opens and closes a flow path (second upstream supply flow path) in the second upstream supply pipe 23B.
 次に、第3実施形態に係る複数の不純物除去ユニット20の動作例について説明する。 Next, an operation example of the plurality of impurity removing units 20 according to the third embodiment will be described.
 第3実施形態に係る各不純物除去ユニット20の動作例は、第1実施形態に係る不純物除去ユニット20の動作例とほぼ同じである。しかしながら、第3実施形態に係る複数の不純物除去ユニット20は、一部の不純物除去ユニット20が不純物除去効率を回復させている間に、別の不純物除去ユニット20が処理液から不純物を除去するように動作される。 The operation example of each impurity removing unit 20 according to the third embodiment is almost the same as the operation example of the impurity removing unit 20 according to the first embodiment. However, in the plurality of impurity removing units 20 according to the third embodiment, another impurity removing unit 20 removes impurities from the treatment liquid while some impurity removing units 20 recover the impurity removing efficiency. It works on.
 そのため、以下では、各不純物除去ユニット20の動作の詳細については説明を省略し、第1不純物除去ユニット20Aが不純物除去効率を回復させている間に、第2不純物除去ユニット20Bが処理液から不純物を除去している様子について説明する。 Therefore, in the following, the details of the operation of each impurity removing unit 20 will be omitted, and while the first impurity removing unit 20A recovers the impurity removing efficiency, the second impurity removing unit 20B will remove impurities from the treatment liquid. I will explain how to remove the impurities.
 図8Aおよび図8Bは、第3実施形態に係る複数の不純物除去ユニット20の動作例を説明するための模式図である。 8A and 8B are schematic views for explaining an operation example of the plurality of impurity removing units 20 according to the third embodiment.
 具体的には、図8Aに示すように、第1循環ヒータ45Aによる加熱を停止した状態で、処理液を第1循環配管32Aおよび第1貯留タンク30Aに循環させる。これにより、処理液が冷却され、処理液を介して第1感温性ゲルフィルタ31Aが冷却される。第1感温性ゲルフィルタ31Aが転移温度よりも低い温度に冷却されている状態、すなわち、第1感温性ゲル50Aが親水性である状態で、第1感温性ゲルフィルタ31Aに処理液を通過させることによって、不純物が第1感温性ゲルフィルタ31Aから処理液に放出される(不純物放出工程、循環放出工程)。 Specifically, as shown in FIG. 8A, the treatment liquid is circulated to the first circulation pipe 32A and the first storage tank 30A in a state where the heating by the first circulation heater 45A is stopped. As a result, the treatment liquid is cooled, and the first temperature-sensitive gel filter 31A is cooled via the treatment liquid. The treatment liquid is applied to the first temperature-sensitive gel filter 31A in a state where the first temperature-sensitive gel filter 31A is cooled to a temperature lower than the transition temperature, that is, in a state where the first temperature-sensitive gel 50A is hydrophilic. Impurities are released from the first temperature-sensitive gel filter 31A into the treatment liquid (impurity release step, circulation release step).
 ここで、不純物放出工程において、第1感温性ゲルフィルタ31Aを冷却するために、処理液を循環させることなく、第1循環ポンプ40Aを停止した状態で第1感温性ゲルフィルタ31Aを常温に自然冷却させてもよい。第1感温性ゲルフィルタ31Aの温度低下を促進するために、図示しない冷却ユニット(クーラ)を第1貯留タンク30Aに設け、冷却ユニットを用いて第1貯留タンク30Aを冷却することで第1感温性ゲルフィルタ31Aを強制的に冷却してもよい。 Here, in the impurity discharge step, in order to cool the first temperature-sensitive gel filter 31A, the first temperature-sensitive gel filter 31A is operated at room temperature with the first circulation pump 40A stopped without circulating the treatment liquid. May be naturally cooled. In order to promote the temperature decrease of the first temperature-sensitive gel filter 31A, a cooling unit (cooler) (not shown) is provided in the first storage tank 30A, and the first storage tank 30A is cooled by using the cooling unit. The temperature sensitive gel filter 31A may be forcibly cooled.
 一方、第2不純物除去ユニット20Bでは、処理液が、第2循環ヒータ45Bによって加熱されながら、第2循環配管32Bおよび第2貯留タンク30Bを循環する。これにより、処理液が加熱され、処理液を介して第2感温性ゲルフィルタ31Bが加熱される。 On the other hand, in the second impurity removing unit 20B, the processing liquid circulates in the second circulation pipe 32B and the second storage tank 30B while being heated by the second circulation heater 45B. As a result, the treatment liquid is heated, and the second temperature-sensitive gel filter 31B is heated via the treatment liquid.
 第2感温性ゲルフィルタ31Bが転移温度以上に加熱されている状態、すなわち、第2感温性ゲル50Bが疎水性となっている状態で、第2感温性ゲルフィルタ31Bに処理液を通過させることによって、処理液中の不純物が第2感温性ゲルフィルタ31Bによって捕獲されて、処理液中から除去される(不純物除去工程、循環除去工程)。 The treatment liquid is applied to the second temperature-sensitive gel filter 31B in a state where the second temperature-sensitive gel filter 31B is heated above the transition temperature, that is, in a state where the second temperature-sensitive gel 50B is hydrophobic. By passing the gel, impurities in the treatment liquid are captured by the second temperature-sensitive gel filter 31B and removed from the treatment liquid (impurity removal step, circulation removal step).
 その後、図8Bに示すように、第1不純物除去ユニット20Aでは、処理液の循環を維持しながら、第1排液バルブ70Aが開かれる。これにより、第1貯留タンク30Aから第1排液配管21A(第1排液流路)に向けて処理液が送られる(排液工程)。すなわち、第1循環配管32Aおよび第1貯留タンク30Aを循環する処理液に第1感温性ゲルフィルタ31Aから不純物が放出された後、排液工程が実行される。 After that, as shown in FIG. 8B, in the first impurity removing unit 20A, the first drain valve 70A is opened while maintaining the circulation of the processing liquid. As a result, the processing liquid is sent from the first storage tank 30A toward the first drainage pipe 21A (first drainage flow path) (drainage step). That is, after impurities are released from the first temperature-sensitive gel filter 31A into the treatment liquid circulating in the first circulation pipe 32A and the first storage tank 30A, the drainage step is executed.
 一方、第2不純物除去ユニット20Bでは、処理液の循環を維持しながら、第2上流供給バルブ80Bが開かれる。第2貯留タンク30Bから供給タンク24(供給流路)に向けて、清浄処理液が送られる(供給工程)。すなわち、第2循環配管32Bおよび第2貯留タンク30Bを循環する処理液から不純物が第2感温性ゲルフィルタ31Bによって充分に除去された後、供給工程が実行される。 On the other hand, in the second impurity removing unit 20B, the second upstream supply valve 80B is opened while maintaining the circulation of the treatment liquid. The cleaning treatment liquid is sent from the second storage tank 30B toward the supply tank 24 (supply flow path) (supply process). That is, the supply step is executed after impurities are sufficiently removed from the treatment liquid circulating in the second circulation pipe 32B and the second storage tank 30B by the second temperature-sensitive gel filter 31B.
 このように、第3実施形態では、第1貯留タンク30A内に収容されている第1感温性ゲルフィルタ31Aから洗浄液に不純物を放出させている間に、別の貯留タンク(第2貯留タンク30B)に収容されている第2感温性ゲルフィルタ31Bによって、処理液から不純物を充分に除去できる。 As described above, in the third embodiment, while the impurities are released from the first temperature-sensitive gel filter 31A housed in the first storage tank 30A into the cleaning liquid, another storage tank (second storage tank) is used. The second temperature-sensitive gel filter 31B contained in 30B) can sufficiently remove impurities from the treatment liquid.
 そのため、一方の感温性ゲルフィルタ31の不純物除去効率が低下した場合であっても、その感温性ゲルフィルタ31の感温性ゲル50から不純物を放出させて不純物除去効率を回復させつつ、別の感温性ゲルフィルタ31を用いて処理液から不純物を充分に除去し、その処理液を供給ユニット19に送出できる。 Therefore, even when the impurity removal efficiency of one of the temperature-sensitive gel filters 31 is lowered, impurities are released from the temperature-sensitive gel 50 of the temperature-sensitive gel filter 31 to recover the impurity removal efficiency. Impurities can be sufficiently removed from the treatment liquid using another temperature-sensitive gel filter 31, and the treatment liquid can be sent to the supply unit 19.
 したがって、一部の貯留タンク30内の感温性ゲルフィルタ31の不純物除去効率を回復させつつ、別の貯留タンク30内の感温性ゲルフィルタ31を用いて処理ユニット2に処理液を安定して供給できる。 Therefore, while recovering the impurity removal efficiency of the temperature-sensitive gel filter 31 in a part of the storage tank 30, the treatment liquid is stabilized in the processing unit 2 by using the temperature-sensitive gel filter 31 in another storage tank 30. Can be supplied.
 当然、図8Aおよび図8Bとは異なり、第1不純物除去ユニット20Aにおいて不純物除去工程が実行され、第2不純物除去ユニット20Bにおいて不純物放出工程が実行されることもある。 Naturally, unlike FIGS. 8A and 8B, the impurity removing step may be executed in the first impurity removing unit 20A, and the impurity releasing step may be executed in the second impurity removing unit 20B.
 第2不純物除去ユニット20Bにおいて不純物放出工程が行われる場合であっても、第1不純物除去ユニット20Aにおいて不純物放出工程が行われるときと同様に、冷却方法を変更することが可能である。 Even when the impurity release step is performed in the second impurity removal unit 20B, it is possible to change the cooling method in the same manner as when the impurity release step is performed in the first impurity removal unit 20A.
 すなわち、第2感温性ゲルフィルタ31Bを冷却するために、処理液を循環させることなく、第2循環ポンプ40Bを停止させた状態で第2感温性ゲルフィルタ31Bを常温にまで自然冷却させてもよい。第2感温性ゲルフィルタ31Bの温度低下を促進するために、図示しない冷却ユニット(クーラ)を第2貯留タンク30Bに設け、冷却ユニットを用いて第2貯留タンク30Bを冷却することで第2感温性ゲルフィルタ31Bを強制的に冷却してもよい。 That is, in order to cool the second temperature-sensitive gel filter 31B, the second temperature-sensitive gel filter 31B is naturally cooled to room temperature with the second circulation pump 40B stopped without circulating the treatment liquid. You may. In order to promote the temperature drop of the second temperature-sensitive gel filter 31B, a cooling unit (cooler) (not shown) is provided in the second storage tank 30B, and the second storage tank 30B is cooled by using the cooling unit to cool the second storage tank 30B. The temperature sensitive gel filter 31B may be forcibly cooled.
 <第4実施形態>
 図9は、この発明の第4実施形態に係る基板処理装置1Rの構成例を示す模式図である。図9および後述する図10A~図10Eにおいて、前述の図1~図8Bに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
<Fourth Embodiment>
FIG. 9 is a schematic view showing a configuration example of the substrate processing apparatus 1R according to the fourth embodiment of the present invention. In FIGS. 9A to 10E, which will be described later, the same reference numerals as those in FIGS. 1 and the like are given to the same configurations as those shown in FIGS. 1 to 8B, and the description thereof will be omitted.
 基板処理装置1Rが第1実施形態に係る基板処理装置1と主に異なる点は、処理液供給装置3Rの不純物除去ユニット20Rに供給される処理液が新液タンク141から供給される新処理液である点、および、循環流路が、上流循環配管100、循環タンク101および下流循環配管102によって形成されている点である。 The main difference between the substrate processing apparatus 1R and the substrate processing apparatus 1 according to the first embodiment is that the treatment liquid supplied to the impurity removing unit 20R of the treatment liquid supply device 3R is a new treatment liquid supplied from the new liquid tank 141. The point is that the circulation flow path is formed by the upstream circulation pipe 100, the circulation tank 101, and the downstream circulation pipe 102.
 詳しくは、第4実施形態に係る不純物除去ユニット20Rは、貯留タンク30Rと、貯留タンク30Rから処理液が送られる上流循環配管100と、上流循環配管100を介して貯留タンク30Rから供給される処理液を貯留する循環タンク101と、循環タンク101内の処理液を貯留タンク30Rに戻す下流循環配管102とを含む。貯留タンク30R内の構成は、第1実施形態に係る貯留タンク30と同様である。 Specifically, the impurity removing unit 20R according to the fourth embodiment is a process supplied from the storage tank 30R, the upstream circulation pipe 100 to which the treatment liquid is sent from the storage tank 30R, and the storage tank 30R via the upstream circulation pipe 100. It includes a circulation tank 101 for storing the liquid and a downstream circulation pipe 102 for returning the processing liquid in the circulation tank 101 to the storage tank 30R. The configuration inside the storage tank 30R is the same as that of the storage tank 30 according to the first embodiment.
 上流循環配管100は、その内部に上流循環流路を形成する配管である。上流循環配管100の上流端は、貯留タンク30Rに接続されており、上流循環配管100の下流端は、循環タンク101に接続されている。上流循環配管100の上流端は、詳しくは、第2収容部33bに接続されており、上流循環配管100内を処理液が流れている間に上流循環配管100の上流端が処理液の液面よりも下方に維持されるように、上流循環配管100の上流端は、貯留タンク30Rの内部にまで延びている。 The upstream circulation pipe 100 is a pipe that forms an upstream circulation flow path inside the upstream circulation pipe 100. The upstream end of the upstream circulation pipe 100 is connected to the storage tank 30R, and the downstream end of the upstream circulation pipe 100 is connected to the circulation tank 101. The upstream end of the upstream circulation pipe 100 is specifically connected to the second accommodating portion 33b, and the upstream end of the upstream circulation pipe 100 is the liquid level of the treatment liquid while the treatment liquid is flowing in the upstream circulation pipe 100. The upstream end of the upstream circulation pipe 100 extends to the inside of the storage tank 30R so as to be maintained below.
 下流循環配管102は、その内部に下流循環流路を形成する配管である。下流循環配管102の上流端は、循環タンク101に接続されており、下流循環配管102の下流端は、貯留タンク30Rの第1収容部33aに接続されている。下流循環配管102の上流端は、下流循環配管102内を処理液が流れている間において下流循環配管102の上流端が処理液の液面よりも下方に位置するように、循環タンク101の内部にまで延びている。 The downstream circulation pipe 102 is a pipe that forms a downstream circulation flow path inside the downstream circulation pipe 102. The upstream end of the downstream circulation pipe 102 is connected to the circulation tank 101, and the downstream end of the downstream circulation pipe 102 is connected to the first accommodating portion 33a of the storage tank 30R. The upstream end of the downstream circulation pipe 102 is inside the circulation tank 101 so that the upstream end of the downstream circulation pipe 102 is located below the liquid level of the treatment liquid while the treatment liquid is flowing in the downstream circulation pipe 102. It extends to.
 不純物除去ユニット20は、不純物量測定ユニット110、上流循環バルブ111、循環ポンプ112、第1下流循環バルブ113、循環ヒータ114、循環フィルタ115、第2下流循環バルブ116、第3下流循環バルブ117および循環温度計118を備えている。不純物量測定ユニット110および上流循環バルブ111は、上流循環配管100の上流側からこの順番で上流循環配管100に介装されている。 The impurity removal unit 20 includes an impurity amount measuring unit 110, an upstream circulation valve 111, a circulation pump 112, a first downstream circulation valve 113, a circulation heater 114, a circulation filter 115, a second downstream circulation valve 116, a third downstream circulation valve 117 and the like. It is equipped with a circulation thermometer 118. The impurity amount measuring unit 110 and the upstream circulation valve 111 are interposed in the upstream circulation pipe 100 in this order from the upstream side of the upstream circulation pipe 100.
 不純物量測定ユニット110は、不純物量測定ユニット42と同様の構成である。上流循環バルブ111は、上流循環配管100の内の流路(上流循環流路)を開閉する。 The impurity amount measuring unit 110 has the same configuration as the impurity amount measuring unit 42. The upstream circulation valve 111 opens and closes a flow path (upstream circulation flow path) in the upstream circulation pipe 100.
 循環ポンプ112、第1下流循環バルブ113、第2下流循環バルブ116、第3下流循環バルブ117、および、循環温度計118は、下流循環配管102の上流側から下流側に向かってこの順番で、下流循環配管102に介装されている。 The circulation pump 112, the first downstream circulation valve 113, the second downstream circulation valve 116, the third downstream circulation valve 117, and the circulation thermometer 118 are in this order from the upstream side to the downstream side of the downstream circulation pipe 102. It is interposed in the downstream circulation pipe 102.
 循環ポンプ112は、循環タンク101内の処理液を下流循環配管102に送り出す。下流循環配管102に処理液が送り出されることによって、下流循環配管102内の処理液が貯留タンク30R内に送り出され、貯留タンク30R内の処理液が上流循環配管100内に送り出される。言い換えると、循環ポンプ112は、貯留タンク30R内の処理液を上流循環配管100に送り出している。この実施形態とは異なり、循環ポンプ112は、上流循環配管100に介装されていてもよい。 The circulation pump 112 sends the treatment liquid in the circulation tank 101 to the downstream circulation pipe 102. When the processing liquid is sent out to the downstream circulation pipe 102, the treatment liquid in the downstream circulation pipe 102 is sent out into the storage tank 30R, and the treatment liquid in the storage tank 30R is sent out into the upstream circulation pipe 100. In other words, the circulation pump 112 sends the treatment liquid in the storage tank 30R to the upstream circulation pipe 100. Unlike this embodiment, the circulation pump 112 may be interposed in the upstream circulation pipe 100.
 第1下流循環バルブ113、第2下流循環バルブ116および第3下流循環バルブ117は、下流循環配管102内の流路(下流循環流路)を開閉する。 The first downstream circulation valve 113, the second downstream circulation valve 116, and the third downstream circulation valve 117 open and close the flow path (downstream circulation flow path) in the downstream circulation pipe 102.
 循環フィルタ115は、下流循環配管102内の処理液中の不純物を除去するフィルタである。循環フィルタ115としては、常温よりも高温での使用に適したフィルタが用いられる。循環フィルタ115は、たとえば、PTFE疎水膜をろ過膜として含む。循環フィルタ115が濾過膜としてPTFE疎水膜を含む構成であれば、不純物としての疎水性化合物を処理液から効果的に除去できる。 The circulation filter 115 is a filter that removes impurities in the treatment liquid in the downstream circulation pipe 102. As the circulation filter 115, a filter suitable for use at a temperature higher than normal temperature is used. The circulation filter 115 includes, for example, a PTFE hydrophobic membrane as a filtration membrane. If the circulation filter 115 includes a PTFE hydrophobic membrane as a filtration membrane, the hydrophobic compound as an impurity can be effectively removed from the treatment liquid.
 循環ヒータ114は、下流循環配管102内の処理液を加熱する。循環ヒータ114は、加熱ユニットの一例である。下流循環配管102において循環ヒータ114によって加熱される循環加熱部分102aは、下流循環配管102において第1下流循環バルブ113よりも下流側で、かつ循環フィルタ115よりも上流側の位置に設定されている。 The circulation heater 114 heats the processing liquid in the downstream circulation pipe 102. The circulation heater 114 is an example of a heating unit. The circulation heating portion 102a heated by the circulation heater 114 in the downstream circulation pipe 102 is set at a position downstream of the first downstream circulation valve 113 and upstream of the circulation filter 115 in the downstream circulation pipe 102. ..
 循環ヒータ114は、第1下流循環バルブ113よりも下流側で、かつ循環フィルタ115よりも上流側の循環加熱部分102aを加熱する構成であれば、下流循環配管102に介装されている構成でなくてもよく、下流循環配管102を外部から加熱する構成であってもよい。 If the circulation heater 114 is configured to heat the circulation heating portion 102a on the downstream side of the first downstream circulation valve 113 and on the upstream side of the circulation filter 115, the circulation heater 114 is configured to be interposed in the downstream circulation pipe 102. It may not be necessary, and the downstream circulation pipe 102 may be heated from the outside.
 循環温度計118は、下流循環配管102内の処理液の温度を検出する循環温度検出ユニットの一例である。 The circulation thermometer 118 is an example of a circulation temperature detection unit that detects the temperature of the processing liquid in the downstream circulation pipe 102.
 不純物除去ユニット20Rは、下流循環配管102に分岐接続される分岐循環配管103をさらに備えている。分岐循環配管103の上流端は、循環ポンプ112の下流側で、かつ、第1下流循環バルブ113の上流側において、下流循環配管102に分岐接続されている。分岐循環配管103の下流端は、第2下流循環バルブ116の下流側で、かつ、第3下流循環バルブ117の上流側において、下流循環配管102に分岐接続されている。 The impurity removal unit 20R further includes a branch circulation pipe 103 that is branched and connected to the downstream circulation pipe 102. The upstream end of the branch circulation pipe 103 is branched and connected to the downstream circulation pipe 102 on the downstream side of the circulation pump 112 and on the upstream side of the first downstream circulation valve 113. The downstream end of the branch circulation pipe 103 is branched and connected to the downstream circulation pipe 102 on the downstream side of the second downstream circulation valve 116 and on the upstream side of the third downstream circulation valve 117.
 不純物除去ユニット20Rは、第1分岐バルブ120、第2分岐バルブ121および循環クーラ122を備えている。分岐循環配管103には、第1分岐バルブ120および第2分岐バルブ121が、上流側からこの順番で介装されている。第1分岐バルブ120および第2分岐バルブ121は、分岐循環配管103内の流路(分岐循環流路)を開閉する。 The impurity removal unit 20R includes a first branch valve 120, a second branch valve 121, and a circulation cooler 122. The first branch valve 120 and the second branch valve 121 are interposed in the branch circulation pipe 103 in this order from the upstream side. The first branch valve 120 and the second branch valve 121 open and close the flow path (branch circulation flow path) in the branch circulation pipe 103.
 循環クーラ122は、分岐循環配管103内の処理液を冷却する。循環クーラ122は、感温性ゲルフィルタ31Rを冷却させる冷却ユニットの一例である。分岐循環配管103において循環クーラ122によって冷却される循環冷却部分103aは、分岐循環配管103において第1分岐バルブ120よりも下流側で、かつ第2分岐バルブ121よりも上流側の位置に設定されている。 The circulation cooler 122 cools the processing liquid in the branch circulation pipe 103. The circulation cooler 122 is an example of a cooling unit that cools the temperature-sensitive gel filter 31R. The circulation cooling portion 103a cooled by the circulation cooler 122 in the branch circulation pipe 103 is set at a position downstream of the first branch valve 120 and upstream of the second branch valve 121 in the branch circulation pipe 103. There is.
 循環クーラ122は、第1分岐バルブ120よりも下流側で、かつ第2分岐バルブ121よりも上流側の循環冷却部分103aを冷却する構成であれば、分岐循環配管103に介装されている構成でなくてもよく、分岐循環配管103を外部から加熱する構成であってもよい。 If the circulation cooler 122 is configured to cool the circulation cooling portion 103a on the downstream side of the first branch valve 120 and on the upstream side of the second branch valve 121, the circulation cooler 122 is interposed in the branch circulation pipe 103. It does not have to be, and the branch circulation pipe 103 may be heated from the outside.
 第4実施形態に係る処理液供給装置3Rは、不純物除去ユニット20Rから処理ユニット2に向けて処理液を送る供給配管130と、処理ユニット2で使用されていない処理液(新処理液)を不純物除去ユニット20に供給する新液配管140と、不純物除去ユニット20から処理液を排液する排液配管21とを備えている。排液配管21は、第1実施形態と同様の構成である。 In the treatment liquid supply device 3R according to the fourth embodiment, the supply pipe 130 for sending the treatment liquid from the impurity removal unit 20R toward the treatment unit 2 and the treatment liquid (new treatment liquid) not used in the treatment unit 2 are subjected to impurities. A new liquid pipe 140 for supplying to the removal unit 20 and a drainage pipe 21 for draining the treatment liquid from the impurity removal unit 20 are provided. The drainage pipe 21 has the same configuration as that of the first embodiment.
 処理ユニット2内で使用されていない処理液とは、処理液ノズル11から吐出された後、配管を介して循環流路に戻った処理液ではなく、新液タンク141から循環流路に新たに供給される処理液のことである。 The treatment liquid that is not used in the treatment unit 2 is not the treatment liquid that has been discharged from the treatment liquid nozzle 11 and then returned to the circulation flow path via the pipe, but is newly added to the circulation flow path from the new liquid tank 141. It is the processing liquid to be supplied.
 供給配管130は、その内部に供給流路を形成する配管である。供給配管130の上流端は、たとえば、上流循環配管100において不純物量測定ユニット110よりも上流側に分岐接続されている。供給配管130の下流端は、処理液ノズル11に接続されている。この実施形態とは異なり、供給配管130の上流端は、貯留タンク30Rの第2収容部33bに接続されていてもよい。 The supply pipe 130 is a pipe that forms a supply flow path inside the supply pipe 130. The upstream end of the supply pipe 130 is branched and connected to the upstream side of the impurity amount measuring unit 110 in the upstream circulation pipe 100, for example. The downstream end of the supply pipe 130 is connected to the treatment liquid nozzle 11. Unlike this embodiment, the upstream end of the supply pipe 130 may be connected to the second accommodating portion 33b of the storage tank 30R.
 処理液供給装置3Rは、供給配管130に介装され、供給配管130内の流路(供給流路)を開閉する供給バルブ131をさらに備えている。 The processing liquid supply device 3R is further provided with a supply valve 131 that is interposed in the supply pipe 130 and opens and closes the flow path (supply flow path) in the supply pipe 130.
 新液配管140は、循環タンク101に新処理液を供給する。新処理液は、処理ユニット2で使用されていない処理液であり、汚染処理液よりも清浄度が高い。新液配管140は、その内部に新液流路を形成する配管である。新液配管140の上流端は、新液タンク141に接続されており、新液配管140の下流端は、循環タンク101に接続されている。 The new liquid pipe 140 supplies the new treatment liquid to the circulation tank 101. The new treatment liquid is a treatment liquid that is not used in the treatment unit 2, and has a higher degree of cleanliness than the contamination treatment liquid. The new liquid pipe 140 is a pipe that forms a new liquid flow path inside the new liquid pipe 140. The upstream end of the new liquid pipe 140 is connected to the new liquid tank 141, and the downstream end of the new liquid pipe 140 is connected to the circulation tank 101.
 処理液供給装置3は、新液配管140に介装されている新液ポンプ142と、新液ポンプ142よりも下流側で新液配管140に介装されている新液バルブ143とを含む。新液ポンプ142は、新液タンク141内の新液を新液配管140に向けて送り出す。新液バルブ143は、新液ポンプ142よりも下流側で新液配管140に介装されている。新液バルブ143は、新液配管140内の新液流路を開閉する。 The processing liquid supply device 3 includes a new liquid pump 142 interposed in the new liquid pipe 140 and a new liquid valve 143 interposed in the new liquid pipe 140 on the downstream side of the new liquid pump 142. The new liquid pump 142 sends out the new liquid in the new liquid tank 141 toward the new liquid pipe 140. The new liquid valve 143 is interposed in the new liquid pipe 140 on the downstream side of the new liquid pump 142. The new liquid valve 143 opens and closes the new liquid flow path in the new liquid pipe 140.
 以下では、図3および図10A~図10Eを参照して、第4実施形態に係る不純物除去ユニット20Rの動作について詳しく説明する。図10A~図10Eは、不純物除去ユニット20Rの動作例について説明するための模式図である。 Hereinafter, the operation of the impurity removing unit 20R according to the fourth embodiment will be described in detail with reference to FIGS. 3 and 10A to 10E. 10A to 10E are schematic views for explaining an operation example of the impurity removing unit 20R.
 不純物量測定ユニット110、循環温度計118および液面センサ34は、常時作動していてもよい。 The impurity amount measuring unit 110, the circulation thermometer 118 and the liquid level sensor 34 may be always in operation.
 新液バルブ143が開かれ、新液ポンプ142が作動されることにより、新処理液が、不純物除去ユニット20Rの循環タンク101に補充される(補充工程)。循環タンク101に処理液が充分貯留されている場合には、不純物除去ユニット20Rへの新処理液の補充は省略可能である。 When the new liquid valve 143 is opened and the new liquid pump 142 is operated, the new treatment liquid is replenished to the circulation tank 101 of the impurity removal unit 20R (replenishment step). When the treatment liquid is sufficiently stored in the circulation tank 101, replenishment of the new treatment liquid to the impurity removing unit 20R can be omitted.
 図10Aに示すように、循環タンク101に処理液が貯留されている状態で、循環ポンプ112および循環ヒータ114が作動され、第1下流循環バルブ113、第2下流循環バルブ116および第3下流循環バルブ117が開かれる。これにより、貯留タンク30Rに処理液が補充される。 As shown in FIG. 10A, the circulation pump 112 and the circulation heater 114 are operated in a state where the treatment liquid is stored in the circulation tank 101, and the first downstream circulation valve 113, the second downstream circulation valve 116 and the third downstream circulation are operated. Valve 117 is opened. As a result, the storage tank 30R is replenished with the treatment liquid.
 貯留タンク30R内に処理液が送られて貯留タンク30R内の処理液の液面が上昇し、液面センサ34の測定値が上流循環配管100の上流端よりも上方の所定の第1高さH1に達すると、新液バルブ143が閉じられ、新液ポンプ142が停止される。そして、上流循環バルブ111が開かれる。これにより、図10Bに示すように、貯留タンク30R内の処理液が、上流循環配管100に引き込まれ下流循環配管102から貯留タンク30R内に戻されることで、処理液の循環が開始される(循環工程)。 The treatment liquid is sent into the storage tank 30R, the liquid level of the treatment liquid in the storage tank 30R rises, and the measured value of the liquid level sensor 34 is a predetermined first height above the upstream end of the upstream circulation pipe 100. When H1 is reached, the new liquid valve 143 is closed and the new liquid pump 142 is stopped. Then, the upstream circulation valve 111 is opened. As a result, as shown in FIG. 10B, the treatment liquid in the storage tank 30R is drawn into the upstream circulation pipe 100 and returned from the downstream circulation pipe 102 into the storage tank 30R, so that the treatment liquid circulation is started ( Circulation process).
 上流循環配管100内を流れる処理液は、循環ヒータ114によって加熱される。貯留タンク30R内の感温性ゲルフィルタ31Rは、循環ヒータ114によって加熱された処理液によって加熱される(ステップS1:ゲル加熱開始工程)。 The processing liquid flowing in the upstream circulation pipe 100 is heated by the circulation heater 114. The temperature-sensitive gel filter 31R in the storage tank 30R is heated by the treatment liquid heated by the circulation heater 114 (step S1: gel heating start step).
 第4実施形態とは異なり、処理液の循環や、貯留タンク30Rから上流循環配管100への処理液の供給を助けるため、上流循環配管100にポンプ(図示せず)をさらに介装させてもよい。 Unlike the fourth embodiment, in order to assist the circulation of the treatment liquid and the supply of the treatment liquid from the storage tank 30R to the upstream circulation pipe 100, a pump (not shown) may be further interposed in the upstream circulation pipe 100. good.
 感温性ゲルフィルタ31Rは、循環する処理液を介して、循環ヒータ114によって加熱される(循環加熱工程)。感温性ゲルフィルタ31Rは、処理液によって加熱されることで、処理液と同じ温度に達する。そのため、下流循環配管102内を流れる処理液の温度を循環温度計118によって測定することによって、感温性ゲルフィルタ31Rの温度(ゲル温度)が間接的に測定される(ゲル温度測定工程)。 The temperature-sensitive gel filter 31R is heated by the circulation heater 114 via the circulating treatment liquid (circulation heating step). The temperature-sensitive gel filter 31R reaches the same temperature as the treatment liquid by being heated by the treatment liquid. Therefore, the temperature (gel temperature) of the temperature-sensitive gel filter 31R is indirectly measured by measuring the temperature of the processing liquid flowing in the downstream circulation pipe 102 with the circulation thermometer 118 (gel temperature measuring step).
 そして、ステップS1の後、コントローラ4は、感温性ゲルフィルタ31Rの温度が、転移温度よりも低いか否かを監視する(ステップS2:第1ゲル温度監視工程)。ゲル温度が感温性ゲル50の転移温度よりも低い場合には(ステップS2:NO)、ステップS2に戻る。 Then, after step S1, the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31R is lower than the transition temperature (step S2: first gel temperature monitoring step). If the gel temperature is lower than the transition temperature of the temperature-sensitive gel 50 (step S2: NO), the process returns to step S2.
 処理液は、上流循環配管100、循環タンク101および下流循環配管102によって構成される循環流路と、貯留タンク30Rとを所定時間循環することによって、感温性ゲル50の転移温度以上の温度に加熱される。感温性ゲルフィルタ31Rが感温性ゲル50の転移温度以上の温度に加熱されることによって、感温性ゲルフィルタ31Rに含まれる感温性ゲルが疎水化される(疎水化工程)。貯留タンク30R内の感温性ゲルフィルタ31Rが感温性ゲル50の転移温度以上の温度に加熱されると(ステップS2:YES)、ステップS3に進む。 The treatment liquid reaches a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50 by circulating the circulation flow path composed of the upstream circulation pipe 100, the circulation tank 101 and the downstream circulation pipe 102 and the storage tank 30R for a predetermined time. Be heated. When the temperature-sensitive gel filter 31R is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50, the temperature-sensitive gel contained in the temperature-sensitive gel filter 31R is hydrophobic (hydrophobicization step). When the temperature-sensitive gel filter 31R in the storage tank 30R is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50 (step S2: YES), the process proceeds to step S3.
 ステップS3では、コントローラ4は、ゲル温度が転移温度以上の温度に達したときから所定の不純物除去時間が経過したか否かを監視する(ステップS3:経過時間監視工程)。 In step S3, the controller 4 monitors whether or not a predetermined impurity removal time has elapsed since the gel temperature reached a temperature equal to or higher than the transition temperature (step S3: elapsed time monitoring step).
 感温性ゲルフィルタ31Rが転移温度以上に加熱されている状態、すなわち、感温性ゲル50が疎水性となっている状態で、感温性ゲルフィルタ31Rに処理液を通過させることによって、処理液中の不純物が感温性ゲルフィルタ31Rによって捕獲されて、処理液中から除去される(不純物除去工程、循環除去工程)。感温性ゲルフィルタ31Rの不純物除去効率が充分に高い場合には、不純物は、時間経過とともに処理液から除去される。 Treatment is performed by passing the treatment liquid through the temperature-sensitive gel filter 31R in a state where the temperature-sensitive gel filter 31R is heated above the transition temperature, that is, in a state where the temperature-sensitive gel 50 is hydrophobic. Impurities in the liquid are captured by the temperature-sensitive gel filter 31R and removed from the treatment liquid (impurity removal step, circulation removal step). When the impurity removing efficiency of the temperature-sensitive gel filter 31R is sufficiently high, the impurities are removed from the treatment liquid over time.
 この実施形態の不純物除去工程では、不純物除去ユニット20Rに供給される処理液は、新液である。そのため、感温性ゲルフィルタ31Rによって汚染処理液中の不純物が捕獲されて汚染処理液から不純物が除去される。 In the impurity removing step of this embodiment, the treatment liquid supplied to the impurity removing unit 20R is a new liquid. Therefore, the temperature-sensitive gel filter 31R captures impurities in the contaminated treatment liquid and removes the impurities from the contaminated treatment liquid.
 循環流路(上流循環配管100、循環タンク101および下流循環配管102)と貯留タンク30Rとを循環する処理液を加熱することで不純物除去工程および疎水化工程が行われる。不純物除去工程は、疎水化工程による感温性ゲル50の疎水化が達成された後に実行される。 Impurity removal step and hydrophobicization step are performed by heating the treatment liquid that circulates between the circulation flow path (upstream circulation pipe 100, circulation tank 101 and downstream circulation pipe 102) and the storage tank 30R. The impurity removing step is performed after the hydrophobization of the temperature sensitive gel 50 by the hydrophobization step is achieved.
 この実施形態とは異なり、処理液の温度が、貯留タンク30Rおよび循環流路(上流循環配管100、循環タンク101および下流循環配管102)を循環する前から転移温度以上の温度であった場合には、循環工程の開始と同時に不純物除去工程が開始される。 Unlike this embodiment, when the temperature of the treatment liquid is equal to or higher than the transition temperature before circulating in the storage tank 30R and the circulation flow path (upstream circulation pipe 100, circulation tank 101 and downstream circulation pipe 102). Starts the impurity removal step at the same time as the start of the circulation step.
 コントローラ4は、不純物除去時間が経過していない場合(ステップS3:NO)、ステップS3に戻る。不純物除去時間が経過すると(ステップS3:YES)、不純物量測定ユニット42が検出する不純物量が、基準不純物量よりも低いか否かを判定する(ステップS4:不純物量判定工程)。不純物量判定工程は、感温性ゲル50が疎水性となる温度にゲル温度が調節されている状態で実行される。 The controller 4 returns to step S3 when the impurity removal time has not elapsed (step S3: NO). When the impurity removal time elapses (step S3: YES), it is determined whether or not the impurity amount detected by the impurity amount measuring unit 42 is lower than the reference impurity amount (step S4: impurity amount determination step). The impurity amount determination step is executed in a state where the gel temperature is adjusted to a temperature at which the temperature-sensitive gel 50 becomes hydrophobic.
 不純物除去時間経過後に、不純物量測定ユニット110によって測定される不純物量が基準不純物量よりも低い場合には(ステップS4:YES)、図10Cに示すように、処理液の循環を維持しながら、供給バルブ131が開かれる。貯留タンク30Rから供給配管130(供給流路)に向けて、不純物が充分に除去された処理液(清浄処理液)が送られる(ステップS5:供給工程)。すなわち、循環流路および貯留タンク30Rを循環する処理液から不純物が充分に除去された後、供給工程が実行される。この実施形態では、供給配管130は、処理ユニット2の処理液ノズル11(図9を参照)に直接接続されているので、供給バルブ131が開かれると、基板Wの上面に処理液が供給される。 If the amount of impurities measured by the impurity amount measuring unit 110 is lower than the reference impurity amount after the impurity removal time has elapsed (step S4: YES), as shown in FIG. 10C, while maintaining the circulation of the treatment liquid, while maintaining the circulation of the treatment liquid, while maintaining the circulation of the treatment liquid. The supply valve 131 is opened. A treatment liquid (cleaning treatment liquid) from which impurities are sufficiently removed is sent from the storage tank 30R toward the supply pipe 130 (supply flow path) (step S5: supply step). That is, the supply step is executed after impurities are sufficiently removed from the treatment liquid circulating in the circulation flow path and the storage tank 30R. In this embodiment, since the supply pipe 130 is directly connected to the processing liquid nozzle 11 (see FIG. 9) of the processing unit 2, when the supply valve 131 is opened, the processing liquid is supplied to the upper surface of the substrate W. To.
 供給工程の実行によって、循環タンク101および貯留タンク30R内の処理液の液面が低下し、液面センサ34の測定値が所定の第2高さH2に達すると、供給バルブ131が閉じられる。あるいは、所定時間供給工程が継続された後、供給バルブ131が閉じられる。そして、処理液の循環を維持しながら、新液タンク141から循環タンク101への新液の供給が開始される。その後、貯留タンク30Rに処理液が補充されると、不純物除去ユニット20の動作が再び開始される。 By executing the supply process, the liquid level of the processing liquid in the circulation tank 101 and the storage tank 30R drops, and when the measured value of the liquid level sensor 34 reaches a predetermined second height H2, the supply valve 131 is closed. Alternatively, the supply valve 131 is closed after the supply process is continued for a predetermined time. Then, while maintaining the circulation of the treatment liquid, the supply of the new liquid from the new liquid tank 141 to the circulation tank 101 is started. After that, when the storage tank 30R is replenished with the treatment liquid, the operation of the impurity removing unit 20 is restarted.
 一方、不純物除去時間経過後においても、不純物量測定ユニット110によって測定される不純物量が基準不純物量以上である場合には(ステップS4:NO)、図10Dに示すように、循環ヒータ114が停止され、第1下流循環バルブ113および第2下流循環バルブ116が閉じられる。その代わりに、循環クーラ122が作動され、第1分岐バルブ120および第2分岐バルブ121が開かれる。 On the other hand, if the amount of impurities measured by the impurity amount measuring unit 110 is equal to or greater than the reference impurity amount even after the impurity removal time has elapsed (step S4: NO), the circulation heater 114 is stopped as shown in FIG. 10D. Then, the first downstream circulation valve 113 and the second downstream circulation valve 116 are closed. Instead, the circulation cooler 122 is activated to open the first branch valve 120 and the second branch valve 121.
 分岐循環配管103を流れる処理液は、循環クーラ122によって冷却される。貯留タンク30R内の感温性ゲルフィルタ31Rは、循環クーラ122によって冷却された処理液によって冷却される(ステップS6:ゲル加熱停止工程、ゲル冷却工程)。 The processing liquid flowing through the branch circulation pipe 103 is cooled by the circulation cooler 122. The temperature-sensitive gel filter 31R in the storage tank 30R is cooled by the treatment liquid cooled by the circulation cooler 122 (step S6: gel heating stop step, gel cooling step).
 感温性ゲルフィルタ31Rは、循環する処理液を介して、冷却される(循環冷却工程)。感温性ゲルフィルタ31Rは、処理液によって冷却されることで、処理液と同じ温度に達する。 The temperature-sensitive gel filter 31R is cooled via the circulating treatment liquid (circulation cooling step). The temperature-sensitive gel filter 31R reaches the same temperature as the treatment liquid by being cooled by the treatment liquid.
 ステップS6の後、コントローラ4は、感温性ゲルフィルタ31Rの温度が、転移温度よりも低いか否かを監視する(ステップS7:第2ゲル温度監視工程)。貯留タンク30R内の感温性ゲルフィルタ31Rが感温性ゲルの転移温度以上である場合には(ステップS7:NO)、ステップS7に戻る。 After step S6, the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31R is lower than the transition temperature (step S7: second gel temperature monitoring step). If the temperature-sensitive gel filter 31R in the storage tank 30R is equal to or higher than the transition temperature of the temperature-sensitive gel (step S7: NO), the process returns to step S7.
 処理液は、循環流路および貯留タンク30Rを所定時間循環することによって、感温性ゲル50の転移温度よりも低い温度に冷却される。感温性ゲルフィルタ31Rが感温性ゲル50の転移温度よりも低い温度に冷却されることによって、感温性ゲルフィルタ31Rに含まれる感温性ゲルが親水化される(親水化工程)。 The treatment liquid is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 by circulating in the circulation flow path and the storage tank 30R for a predetermined time. By cooling the temperature-sensitive gel filter 31R to a temperature lower than the transition temperature of the temperature-sensitive gel 50, the temperature-sensitive gel contained in the temperature-sensitive gel filter 31R is hydrophilized (hydrophilicization step).
 感温性ゲルフィルタ31Rが転移温度よりも低い温度に冷却されている状態、すなわち、感温性ゲル50が親水性となっている状態で、感温性ゲルフィルタ31Rに処理液を通過させることによって、感温性ゲルフィルタ31Rによって捕獲されていた不純物が処理液中に放出される(不純物放出工程、循環放出工程)。 Passing the treatment liquid through the temperature-sensitive gel filter 31R in a state where the temperature-sensitive gel filter 31R is cooled to a temperature lower than the transition temperature, that is, in a state where the temperature-sensitive gel 50 is hydrophilic. The impurities captured by the temperature-sensitive gel filter 31R are released into the treatment liquid (impurity release step, circulation release step).
 この実施形態の不純物放出工程において不純物除去ユニット20に供給される処理液は、洗浄液としての新液である。そのため、感温性ゲルフィルタ31Rから新液に不純物が放出される。 The treatment liquid supplied to the impurity removal unit 20 in the impurity discharge step of this embodiment is a new liquid as a cleaning liquid. Therefore, impurities are released from the temperature-sensitive gel filter 31R into the new liquid.
 貯留タンク30R内の感温性ゲルフィルタ31Rが感温性ゲル50の転移温度よりも低い温度に冷却されると(ステップS7:YES)、図10Eに示すように、処理液の循環を維持しながら、排液バルブ70が開かれる。これにより、貯留タンク30Rから排液配管21(排液流路)に向けて処理液が送られる(ステップS8:排液工程)。すなわち、循環流路および貯留タンク30Rを循環する処理液に不純物が放出された後、排液工程が実行される。 When the temperature-sensitive gel filter 31R in the storage tank 30R is cooled to a temperature lower than the transition temperature of the temperature-sensitive gel 50 (step S7: YES), the circulation of the treatment liquid is maintained as shown in FIG. 10E. Meanwhile, the drain valve 70 is opened. As a result, the processing liquid is sent from the storage tank 30R toward the drainage pipe 21 (drainage flow path) (step S8: drainage step). That is, after impurities are released into the treatment liquid circulating in the circulation flow path and the storage tank 30R, the drainage step is executed.
 排液工程の実行によって、貯留タンク30R内の処理液の液面が低下し、液面センサ34の測定値が所定の第2高さH2に達すると、排液バルブ70、上流循環バルブ41および中間循環バルブ43が閉じられる。あるいは、所定時間排液工程が継続された後、排液バルブ70が閉じられる。これにより、処理液の循環および排液が停止される。その後、貯留タンク30Rに処理液が補充されると、不純物除去ユニット20Rの動作がステップS1から再び開始される。 By executing the drainage step, the liquid level of the processing liquid in the storage tank 30R drops, and when the measured value of the liquid level sensor 34 reaches a predetermined second height H2, the drainage valve 70, the upstream circulation valve 41 and The intermediate circulation valve 43 is closed. Alternatively, after the drainage step is continued for a predetermined time, the drainage valve 70 is closed. As a result, the circulation and drainage of the treatment liquid are stopped. After that, when the storage tank 30R is replenished with the treatment liquid, the operation of the impurity removing unit 20R is restarted from step S1.
 このように、第4実施形態においても、不純物除去ユニット20Rの不純物除去効率の低下度合に応じて、供給工程と排液工程とが選択的に実行される。 As described above, also in the fourth embodiment, the supply step and the drainage step are selectively executed according to the degree of decrease in the impurity removal efficiency of the impurity removal unit 20R.
 ただし、最初の不純物除去工程の実行前では、感温性ゲルフィルタ31Rの不純物除去効率は低下しておらず充分に高い。そのため、最初の不純物除去工程の際に不純物量測定ユニット110によって測定される不純物量は、基準不純物量よりも低い。したがって、不純物除去ユニット20Rの動作において、供給工程(ステップS5)が少なくとも一回実行された後に、二回目以降の動作において排液工程(ステップS8)が実行される。 However, before the execution of the first impurity removing step, the impurity removing efficiency of the temperature-sensitive gel filter 31R has not decreased and is sufficiently high. Therefore, the amount of impurities measured by the impurity amount measuring unit 110 in the first impurity removing step is lower than the reference impurity amount. Therefore, in the operation of the impurity removing unit 20R, the supply step (step S5) is executed at least once, and then the drainage step (step S8) is executed in the second and subsequent operations.
 第4実施形態によれば、第1実施形態と同様の効果を奏する。 According to the fourth embodiment, the same effect as that of the first embodiment is obtained.
 また、新処理液中に不純物量は、処理ユニット2で使用された汚染処理液と比較して非常に少ない。しかしながら、感温性ゲルフィルタ31Rを含む不純物除去ユニット20を用いて不純物量を新処理液中から一層低減すれば、清浄度が一層高い処理液を処理ユニット2に供給できる。 In addition, the amount of impurities in the new treatment liquid is very small compared to the contamination treatment liquid used in the treatment unit 2. However, if the amount of impurities is further reduced from the new treatment liquid by using the impurity removal unit 20 including the temperature sensitive gel filter 31R, the treatment liquid having higher cleanliness can be supplied to the treatment unit 2.
 ステップS6のゲル加熱停止工程の後に、感温性ゲルフィルタ31Rを冷却する方法として、第4実施形態では、循環冷却工程が用いられる。しかしながら、感温性ゲルフィルタ31Rを冷却するために、処理液を循環させることなく、循環ポンプ112を停止させた状態で感温性ゲルフィルタ31Rが常温にまで自然冷却させてもよい。感温性ゲルフィルタ31Rの温度低下を促進するために、図示しない冷却ユニット(クーラ)を貯留タンク30Rに設け、冷却ユニットを用いて貯留タンク30Rを冷却することで感温性ゲルフィルタ31Rを強制的に冷却してもよい。 In the fourth embodiment, a circulation cooling step is used as a method for cooling the temperature-sensitive gel filter 31R after the gel heating stop step in step S6. However, in order to cool the temperature-sensitive gel filter 31R, the temperature-sensitive gel filter 31R may be naturally cooled to room temperature with the circulation pump 112 stopped without circulating the treatment liquid. In order to accelerate the temperature drop of the temperature-sensitive gel filter 31R, a cooling unit (cooler) (not shown) is provided in the storage tank 30R, and the storage tank 30R is cooled by using the cooling unit to force the temperature-sensitive gel filter 31R. May be cooled.
 また、排液バルブ70を閉じ、第1分岐バルブ120および第2分岐バルブ121を開くことで、冷却された処理液を貯留タンク30Rに注入し、感温性ゲルフィルタ31Rを浸漬および冷却してもよい(浸漬洗浄工程)。これにより、感温性ゲルフィルタ31Rから処理液中に不純物が放出される。その後、排液バルブ70を開くことで、貯留タンク30Rから不純物とともに処理液を排液できる。 Further, by closing the drain valve 70 and opening the first branch valve 120 and the second branch valve 121, the cooled treatment liquid is injected into the storage tank 30R, and the temperature-sensitive gel filter 31R is immersed and cooled. It may be good (immersion cleaning step). As a result, impurities are released from the temperature-sensitive gel filter 31R into the treatment liquid. After that, by opening the drain valve 70, the treated liquid can be drained from the storage tank 30R together with impurities.
 このように、処理液の循環を行うことなく感温性ゲルフィルタ31Rから不純物を放出させれば循環流路の汚染を回避しつつ、感温性ゲルフィルタ31Rの不純物効率を回復できる。なお、貯留タンク30Rへの処理液の注入は複数回行われてもよい。すなわち、浸漬による感温性ゲルフィルタ31Rの洗浄は複数回行われてもよい。 In this way, if impurities are released from the temperature-sensitive gel filter 31R without circulating the treatment liquid, the impurity efficiency of the temperature-sensitive gel filter 31R can be recovered while avoiding contamination of the circulation flow path. The treatment liquid may be injected into the storage tank 30R a plurality of times. That is, the temperature-sensitive gel filter 31R may be washed a plurality of times by immersion.
 <その他の実施形態>
 この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described above, and can be implemented in still other embodiments.
 たとえば、図11に示すように、貯留タンク30の内部空間33は、第1収容部33aと第2収容部33bとが感温性ゲルフィルタ31を挟んで横方向(水平方向)に互いに対向するように感温性ゲルフィルタ31によって仕切られていてもよい。この場合、貯留タンク30に接続される各配管(循環配管32、排液配管21等)は、貯留タンク30の第1収容部33aおよび第2収容部33bのいずれに接続されているかに関わらず、貯留タンク30の下端部に接続されていることが好ましい。そうであれば処理液の液面と、配管の端部との位置関係を考慮することなく、処理液を循環配管32に循環させることができる。むろん、この構成は、第1実施形態~第3実施形態に係る貯留タンク30だけでなく、図9に示す第4実施形態に係る貯留タンク30Rにも適用可能である。 For example, as shown in FIG. 11, in the internal space 33 of the storage tank 30, the first accommodating portion 33a and the second accommodating portion 33b face each other in the lateral direction (horizontal direction) with the temperature-sensitive gel filter 31 interposed therebetween. As described above, the temperature-sensitive gel filter 31 may be used for partitioning. In this case, each pipe (circulation pipe 32, drainage pipe 21, etc.) connected to the storage tank 30 is connected to either the first storage portion 33a or the second storage portion 33b of the storage tank 30 regardless of whether the pipe is connected to the storage tank 30. , It is preferable that the storage tank 30 is connected to the lower end portion. If this is the case, the treatment liquid can be circulated in the circulation pipe 32 without considering the positional relationship between the liquid level of the treatment liquid and the end of the pipe. Of course, this configuration can be applied not only to the storage tank 30 according to the first to third embodiments but also to the storage tank 30R according to the fourth embodiment shown in FIG.
 また、図1、図5および図7に二点鎖線で示すように、供給タンク24に新処理液を供給できるように構成されていてもよい。詳しくは、処理液供給装置3,3P,3Qが、新液タンク150から新処理液が送出される新液配管151と、新液配管151に介装された新液ポンプ152と、新液ポンプ152よりも下流側で新液配管151に介装された新液バルブ153とを含んでいてもよい。 Further, as shown by the alternate long and short dash line in FIGS. 1, 5 and 7, the supply tank 24 may be configured to be able to supply the new treatment liquid. Specifically, the treatment liquid supply devices 3, 3P, 3Q have a new liquid pipe 151 in which the new treatment liquid is sent from the new liquid tank 150, a new liquid pump 152 interposed in the new liquid pipe 151, and a new liquid pump. It may include a new liquid valve 153 interposed in the new liquid pipe 151 on the downstream side of 152.
 また、各実施形態を組み合わせることが可能である。たとえば、図12に示すように、第1実施形態と第4実施形態とが組み合わせられていてもよい。すなわち、汚染処理液が帰還配管22から不純物除去ユニット20に供給され、不純物除去ユニット20から不純物除去ユニット20Rに清浄処理液が供給される。そして、不純物除去ユニット20Rによってさらに清浄化された処理液が処理ユニット2に供給される。第4実施形態において、不純物除去ユニット20Rを複数設けることも可能である。 It is also possible to combine each embodiment. For example, as shown in FIG. 12, the first embodiment and the fourth embodiment may be combined. That is, the contamination treatment liquid is supplied from the feedback pipe 22 to the impurity removal unit 20, and the purification treatment liquid is supplied from the impurity removal unit 20 to the impurity removal unit 20R. Then, the treatment liquid further purified by the impurity removal unit 20R is supplied to the treatment unit 2. In the fourth embodiment, it is also possible to provide a plurality of impurity removing units 20R.
 また、第1実施形態に係る処理液供給装置3(図1を参照)、第2実施形態に係る処理液供給装置3P(図5を参照)、第3実施形態に係る処理液供給装置3Q(図7を参照)においても、第4実施形態と同様に、不純物除去ユニット20が、処理液を冷却するクーラ(冷却ユニット)を有していてもよい。この場合、クーラによって冷却された処理液を介して、感温性ゲルフィルタ31が冷却される。 Further, the treatment liquid supply device 3 according to the first embodiment (see FIG. 1), the treatment liquid supply device 3P according to the second embodiment (see FIG. 5), and the treatment liquid supply device 3Q according to the third embodiment (see FIG. 5). Also in FIG. 7), the impurity removing unit 20 may have a cooler (cooling unit) for cooling the treatment liquid, as in the fourth embodiment. In this case, the temperature-sensitive gel filter 31 is cooled via the treatment liquid cooled by the cooler.
 また、上述の各実施形態では、感温性ゲルフィルタ31の加熱は、循環流路内の処理液を介して行われる。しかしながら、貯留タンク30内にヒータを設けて貯留タンク30内の処理液を加熱し、その処理液を介して感温性ゲルフィルタ31を加熱してもよい。あるいは、感温性ゲルフィルタ31を直接加熱してもよい。 Further, in each of the above-described embodiments, the heating of the temperature-sensitive gel filter 31 is performed via the treatment liquid in the circulation flow path. However, a heater may be provided in the storage tank 30 to heat the treatment liquid in the storage tank 30, and the temperature-sensitive gel filter 31 may be heated via the treatment liquid. Alternatively, the temperature sensitive gel filter 31 may be directly heated.
 また、上述の各実施形態では、感温性ゲル50がLCST型感温性ゲルである例について説明した。上述の実施形態とは異なり、感温性ゲル50は、UCST型感温性ゲルであってもよい。 Further, in each of the above-described embodiments, an example in which the temperature-sensitive gel 50 is an LCST type temperature-sensitive gel has been described. Unlike the above-described embodiment, the temperature-sensitive gel 50 may be a UCST type temperature-sensitive gel.
 UCST型感温性ゲルの転移温度(UCST)は、常温よりも高く、たとえば、30℃以上で50℃以下である。つまり、UCST型感温性ゲルは、常温において疎水性である。そのため、処理液を加熱することなく、処理液を感温性ゲルフィルタ31に通過させることによって、処理液から不純物を除去できる。処理液の温度を常温に維持することによって、感温性ゲルフィルタ31の温度が調節される(温度調節工程)。 The transition temperature (UCST) of the UCST type thermosensitive gel is higher than normal temperature, for example, 30 ° C. or higher and 50 ° C. or lower. That is, the UCST type temperature sensitive gel is hydrophobic at room temperature. Therefore, impurities can be removed from the treatment liquid by passing the treatment liquid through the temperature-sensitive gel filter 31 without heating the treatment liquid. By maintaining the temperature of the treatment liquid at room temperature, the temperature of the temperature-sensitive gel filter 31 is adjusted (temperature adjustment step).
 そのため、感温性ゲル50がUCST型感温性ゲルである場合には、不純物除去ユニット20の動作例は、図13に示すように、図3に示す動作例とは多少異なる。 Therefore, when the temperature-sensitive gel 50 is a UCST type temperature-sensitive gel, the operation example of the impurity removing unit 20 is slightly different from the operation example shown in FIG. 3, as shown in FIG.
 具体的には、コントローラ4が、ゲル加熱開始工程(ステップS1)が省略され、まず、ゲル温度が転移温度よりも低いか否かを監視する(ステップS10:第1ゲル温度監視工程)。ゲル温度が感温性ゲル50の転移温度(UCST)以上の温度である場合には(ステップS10:NO)、ステップS10に戻る。 Specifically, the controller 4 omits the gel heating start step (step S1), and first monitors whether the gel temperature is lower than the transition temperature (step S10: first gel temperature monitoring step). If the gel temperature is equal to or higher than the transition temperature (UCST) of the temperature-sensitive gel 50 (step S10: NO), the process returns to step S10.
 ゲル温度が感温性ゲル50の転移温度よりも低い温度である場合には(ステップS10:YES)、コントローラ4は、ゲル温度が転移温度以上の温度に達したときから所定の不純物除去時間が経過したか否かを監視する(ステップS3:経過時間監視工程)。 When the gel temperature is lower than the transition temperature of the temperature-sensitive gel 50 (step S10: YES), the controller 4 determines the predetermined impurity removal time from the time when the gel temperature reaches a temperature equal to or higher than the transition temperature. It monitors whether or not it has passed (step S3: elapsed time monitoring step).
 コントローラ4は、不純物除去時間が経過していない場合(ステップS3:NO)、ステップS3に戻る。不純物除去時間が経過すると(ステップS3:YES)、不純物量測定ユニット42が検出する不純物量が、基準不純物量よりも低いか否かを判定する(ステップS4:不純物量判定工程)。 The controller 4 returns to step S3 when the impurity removal time has not elapsed (step S3: NO). When the impurity removal time elapses (step S3: YES), it is determined whether or not the impurity amount detected by the impurity amount measuring unit 42 is lower than the reference impurity amount (step S4: impurity amount determination step).
 不純物除去時間経過後に、不純物量測定ユニット42によって測定される不純物量が基準不純物量よりも低い場合には(ステップS4:YES)、供給工程(ステップS5)が実行される。 If the amount of impurities measured by the impurity amount measuring unit 42 is lower than the reference impurity amount after the impurity removal time has elapsed (step S4: YES), the supply step (step S5) is executed.
 一方、不純物除去時間経過後においても、不純物量測定ユニット42によって測定される不純物量が基準不純物量以上である場合には(ステップS4:NO)、循環ヒータ45が作動され、感温性ゲルフィルタ31の加熱が開始される(ステップS11:ゲル加熱開始工程)。 On the other hand, if the amount of impurities measured by the impurity amount measuring unit 42 is equal to or greater than the reference impurity amount even after the impurity removal time has elapsed (step S4: NO), the circulation heater 45 is operated and the temperature-sensitive gel filter is operated. The heating of 31 is started (step S11: gel heating start step).
 その後、コントローラ4は、感温性ゲルフィルタ31の温度が、転移温度以上の温度であるか否かを監視する(ステップS12:第2ゲル温度監視工程)。貯留タンク30内の感温性ゲルフィルタ31が感温性ゲル50の転移温度よりも低い場合には(ステップS12:NO)、ステップS12に戻る。 After that, the controller 4 monitors whether or not the temperature of the temperature-sensitive gel filter 31 is equal to or higher than the transition temperature (step S12: second gel temperature monitoring step). If the temperature-sensitive gel filter 31 in the storage tank 30 is lower than the transition temperature of the temperature-sensitive gel 50 (step S12: NO), the process returns to step S12.
 一方、貯留タンク30内の感温性ゲルフィルタ31が感温性ゲル50の転移温度以上の温度に加熱されると(ステップS12:YES)、排液工程(ステップS8)が実行される。 On the other hand, when the temperature-sensitive gel filter 31 in the storage tank 30 is heated to a temperature equal to or higher than the transition temperature of the temperature-sensitive gel 50 (step S12: YES), the drainage step (step S8) is executed.
 このように、感温性ゲル50がUCST型感温性ゲルである場合においても、供給工程と排液工程とが選択的に実行される。詳しくは、不純物量が基準不純物量よりも少ない場合には、供給ユニット19に処理液を送出される。そして、不純物量が基準不純物量以上である場合には、感温性ゲル50が親水性となる温度(転移温度以上の温度)に感温性ゲルフィルタ31の温度を調節した後、排液配管21に処理液が送出される。 As described above, even when the temperature-sensitive gel 50 is a UCST type temperature-sensitive gel, the supply step and the drainage step are selectively executed. Specifically, when the amount of impurities is smaller than the amount of reference impurities, the processing liquid is sent to the supply unit 19. When the amount of impurities is equal to or more than the reference amount of impurities, the temperature of the temperature-sensitive gel filter 31 is adjusted to a temperature at which the temperature-sensitive gel 50 becomes hydrophilic (a temperature equal to or higher than the transition temperature), and then the drainage pipe is used. The processing liquid is sent to 21.
 なお、上述した実施形態は例示的なものであり、種々の変更が可能である。たとえば、処理液の循環を好適に行うために、配管に介装されるポンプの位置や個数を適宜変更することが可能である。また、排液を好適に行うために、貯留タンクに接続される排液配管の個数や接続位置を適宜変更することが可能である。また、貯留タンクに直接接続され、新液を貯留タンクへと供給する新液供給ユニットや、貯留タンクに直接接続され洗浄液を貯留タンクへと供給する洗浄液供給ユニットをさらに設ける等の変更が可能である。 The above-mentioned embodiment is an example, and various changes can be made. For example, it is possible to appropriately change the position and number of pumps interposed in the pipe in order to circulate the treatment liquid appropriately. Further, it is possible to appropriately change the number and connection positions of the drainage pipes connected to the storage tank in order to drain the liquid appropriately. In addition, it is possible to make changes such as installing a new liquid supply unit that is directly connected to the storage tank and supplies new liquid to the storage tank, and a cleaning liquid supply unit that is directly connected to the storage tank and supplies cleaning liquid to the storage tank. be.
 発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used for clarifying the technical contents of the present invention, and the present invention should be construed as being limited to these specific examples. Rather, the scope of the invention is limited only by the appended claims.
 この出願は、2020年9月16日に日本国特許庁に提出された特願2020-155583号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2020-155583 submitted to the Japan Patent Office on September 16, 2020, and the entire disclosure of this application shall be incorporated herein by reference.
1    :基板処理装置
1P   :基板処理装置
1Q   :基板処理装置
1R   :基板処理装置
2    :処理ユニット
3    :処理液供給装置
3P   :処理液供給装置
3Q   :処理液供給装置
3R   :処理液供給装置
19   :供給ユニット(供給流路)
20   :不純物除去ユニット
20A  :第1不純物除去ユニット
20B  :第2不純物除去ユニット
20R  :不純物除去ユニット
21   :排液配管(排液流路)
21A  :第1排液配管(排液流路)
21B  :第2排液配管(排液流路)
22   :帰還配管(帰還流路)
22A  :第1帰還配管(帰還流路)
22B  :第2帰還配管(帰還流路)
23   :上流供給配管(供給流路)
23A  :第1上流供給配管(供給流路)
23B  :第2上流供給配管(供給流路)
24   :供給タンク(供給流路)
25   :下流供給配管(供給流路)
30   :貯留タンク
30A  :第1貯留タンク
30B  :第2貯留タンク
30R  :貯留タンク
31   :感温性ゲルフィルタ
31A  :第1感温性ゲルフィルタ
31B  :第2感温性ゲルフィルタ
31R  :感温性ゲルフィルタ
32   :循環配管(循環流路)
32A  :第1循環配管(循環流路)
32B  :第2循環配管(循環流路)
33   :内部空間
33a  :第1収容部
33b  :第2収容部
42   :不純物量測定ユニット
42A  :第1不純物量測定ユニット
42B  :第2不純物量測定ユニット
45   :循環ヒータ(加熱ユニット)
45A  :第1循環ヒータ(加熱ユニット)
45B  :第2循環ヒータ(加熱ユニット)
50   :感温性ゲル
50A  :第1感温性ゲル
50B  :第2感温性ゲル
51   :フィルタ部材
100  :上流循環配管(循環流路)
101  :循環タンク(循環流路)
102  :下流循環配管(循環流路)
110  :不純物量測定ユニット
114  :循環ヒータ(加熱ユニット)
130  :供給配管(供給流路)
140  :新液配管(新液流路)
W    :基板
1: Substrate processing device 1P: Substrate processing device 1Q: Substrate processing device 1R: Substrate processing device 2: Processing unit 3: Treatment liquid supply device 3P: Treatment liquid supply device 3Q: Treatment liquid supply device 3R: Treatment liquid supply device 19: Supply unit (supply flow path)
20: Impurity removal unit 20A: First impurity removal unit 20B: Second impurity removal unit 20R: Impurity removal unit 21: Drainage pipe (drainage flow path)
21A: First drainage pipe (drainage flow path)
21B: Second drainage pipe (drainage flow path)
22: Return piping (return flow path)
22A: First feedback pipe (return flow path)
22B: Second feedback pipe (return flow path)
23: Upstream supply piping (supply flow path)
23A: First upstream supply pipe (supply flow path)
23B: Second upstream supply pipe (supply flow path)
24: Supply tank (supply flow path)
25: Downstream supply piping (supply flow path)
30: Storage tank 30A: 1st storage tank 30B: 2nd storage tank 30R: Storage tank 31: Temperature sensitive gel filter 31A: 1st temperature sensitive gel filter 31B: 2nd temperature sensitive gel filter 31R: Temperature sensitive Gel filter 32: Circulation pipe (circulation flow path)
32A: First circulation pipe (circulation flow path)
32B: Second circulation pipe (circulation flow path)
33: Internal space 33a: 1st accommodating unit 33b: 2nd accommodating unit 42: Impurity amount measuring unit 42A: 1st impurity amount measuring unit 42B: 2nd impurity amount measuring unit 45: Circulation heater (heating unit)
45A: First circulation heater (heating unit)
45B: Second circulation heater (heating unit)
50: Temperature sensitive gel 50A: First temperature sensitive gel 50B: Second temperature sensitive gel 51: Filter member 100: Upstream circulation pipe (circulation flow path)
101: Circulation tank (circulation flow path)
102: Downstream circulation pipe (circulation flow path)
110: Impurity amount measurement unit 114: Circulation heater (heating unit)
130: Supply piping (supply flow path)
140: New liquid piping (new liquid flow path)
W: Substrate

Claims (20)

  1.  基板に処理液を供給して前記基板を処理する処理ユニットに処理液を供給する処理液供給装置であって、
     処理液中の不純物を除去する不純物除去ユニットと、
     前記不純物除去ユニットから処理液を排液する排液流路と、
     前記不純物除去ユニットから前記処理ユニットに向けて処理液を送る供給流路とを備え、
     前記不純物除去ユニットが、
     処理液を貯留する貯留タンクと、
     前記貯留タンクに収容されている感温性ゲルフィルタであって、転移温度を境界として、親水性および疎水性のうちの一方から他方に変化する感温性ゲルを有する感温性ゲルフィルタと、
     前記貯留タンクから処理液を引き込み、前記貯留タンク内に処理液を戻すことで処理液を循環させる循環流路であって、前記循環する処理液を前記感温性ゲルフィルタに通過させる循環流路と、
     前記転移温度以上の温度に前記感温性ゲルフィルタを加熱する加熱ユニットとを含む、処理液供給装置。
    A processing liquid supply device that supplies a processing liquid to a substrate and supplies the processing liquid to a processing unit that processes the substrate.
    An impurity removal unit that removes impurities in the treatment liquid,
    A drainage flow path for draining the treatment liquid from the impurity removal unit,
    A supply flow path for sending a treatment liquid from the impurity removal unit to the treatment unit is provided.
    The impurity removal unit
    A storage tank that stores the treatment liquid and
    A temperature-sensitive gel filter housed in the storage tank, the temperature-sensitive gel filter having a temperature-sensitive gel that changes from one of hydrophilic and hydrophobic to the other with a transition temperature as a boundary.
    A circulation flow path for circulating the treatment liquid by drawing the treatment liquid from the storage tank and returning the treatment liquid to the storage tank, and allowing the circulating treatment liquid to pass through the temperature-sensitive gel filter. When,
    A treatment liquid supply device including a heating unit that heats the temperature-sensitive gel filter to a temperature equal to or higher than the transition temperature.
  2.  前記感温性ゲルフィルタは、前記感温性ゲルが疎水性であるときには、その内部を通過する処理液の不純物を捕獲し、前記感温性ゲルが親水性であるときには、その内部を通過する処理液に不純物を放出する、請求項1に記載の処理液供給装置。 The temperature-sensitive gel filter captures impurities in the treatment liquid that pass through the inside of the temperature-sensitive gel when it is hydrophobic, and passes through the inside of the temperature-sensitive gel when it is hydrophilic. The treatment liquid supply device according to claim 1, which releases impurities into the treatment liquid.
  3.  前記感温性ゲルは、前記感温性ゲルフィルタの温度が前記転移温度以上になることで親水性から疎水性に変化し、前記感温性ゲルフィルタの温度が前記転移温度よりも低くなることで疎水性から親水性に変化する、請求項1または2に記載の処理液供給装置。 The temperature-sensitive gel changes from hydrophilic to hydrophobic when the temperature of the temperature-sensitive gel filter becomes equal to or higher than the transition temperature, and the temperature of the temperature-sensitive gel filter becomes lower than the transition temperature. The treatment liquid supply device according to claim 1 or 2, wherein the treatment liquid changes from hydrophobic to hydrophilic.
  4.  前記不純物除去ユニットが、前記循環流路によって循環される処理液中の不純物量を測定する不純物量測定ユニットをさらに含み、
     前記感温性ゲルが疎水性である状態で前記不純物量測定ユニットによって測定される不純物量が基準不純物量よりも少ない場合には、前記処理液が前記供給流路に送り出され、前記感温性ゲルが疎水性である状態で前記不純物量測定ユニットによって測定される不純物量が前記基準不純物量以上である場合には、前記感温性ゲルを親水化した後に前記処理液が前記排液流路に送り出される、請求項1~3のいずれか一項に記載の処理液供給装置。
    The impurity removing unit further includes an impurity amount measuring unit for measuring the amount of impurities in the treatment liquid circulated by the circulation flow path.
    When the amount of impurities measured by the impurity amount measuring unit is smaller than the reference impurity amount in a state where the temperature-sensitive gel is hydrophobic, the treatment liquid is sent out to the supply flow path and the temperature-sensitive. When the amount of impurities measured by the impurity amount measuring unit is equal to or more than the reference impurity amount in a state where the gel is hydrophobic, the treatment liquid is used as the drainage flow path after hydrophilizing the temperature-sensitive gel. The processing liquid supply device according to any one of claims 1 to 3, which is sent to.
  5.  前記感温性ゲルフィルタが、前記処理液を通過させつつ前記感温性ゲルを保持するフィルタ部材をさらに含む、請求項1~4のいずれか一項に記載の処理液供給装置。 The treatment liquid supply device according to any one of claims 1 to 4, wherein the temperature-sensitive gel filter further includes a filter member that holds the temperature-sensitive gel while passing the treatment liquid.
  6.  前記貯留タンクの内部が、前記感温性ゲルフィルタによって、第1収容部および第2収容部に仕切られており、
     前記第1収容部は、前記感温性ゲルフィルタを挟んで前記第2収容部よりも処理液の循環方向の上流側に位置し、
     前記第1収容部には、前記排液流路が接続されており、
     前記第2収容部には、前記供給流路が接続されている、請求項1~5のいずれか一項に記載の処理液供給装置。
    The inside of the storage tank is divided into a first accommodating portion and a second accommodating portion by the temperature-sensitive gel filter.
    The first accommodating portion is located on the upstream side of the second accommodating portion in the circulation direction of the treatment liquid with the temperature-sensitive gel filter interposed therebetween.
    The drainage flow path is connected to the first accommodating portion.
    The treatment liquid supply device according to any one of claims 1 to 5, wherein the supply flow path is connected to the second accommodating portion.
  7.  前記供給流路が、前記不純物除去ユニットから送出される処理液が流れる上流供給流路と、前記上流供給流路を介して前記不純物除去ユニットから供給される処理液を貯留する供給タンクと、前記供給タンク内の処理液を前記処理ユニットに供給する下流供給流路とを含む、請求項1~6のいずれか一項に記載の処理液供給装置。 The supply flow path includes an upstream supply flow path through which the processing liquid sent from the impurity removal unit flows, a supply tank for storing the treatment liquid supplied from the impurity removal unit via the upstream supply flow path, and the above. The processing liquid supply device according to any one of claims 1 to 6, which includes a downstream supply flow path for supplying the processing liquid in the supply tank to the processing unit.
  8.  前記循環流路が、前記貯留タンクから処理液が送られる上流循環流路と、前記上流循環流路を介して前記貯留タンクから供給される処理液を貯留する循環タンクと、前記循環タンク内の処理液を前記貯留タンクに戻す下流循環流路とを含む、請求項1~7のいずれか一項に記載の処理液供給装置。 The circulation flow path includes an upstream circulation flow path in which the treatment liquid is sent from the storage tank, a circulation tank for storing the treatment liquid supplied from the storage tank via the upstream circulation flow path, and a circulation tank. The treatment liquid supply device according to any one of claims 1 to 7, further comprising a downstream circulation flow path for returning the treatment liquid to the storage tank.
  9.  前記処理ユニットで使用された汚染処理液を前記不純物除去ユニットに戻す帰還流路をさらに備える、請求項1~7のいずれか一項に記載の処理液供給装置。 The treatment liquid supply device according to any one of claims 1 to 7, further comprising a return flow path for returning the contamination treatment liquid used in the treatment unit to the impurity removal unit.
  10.  前記処理ユニットで使用されていない新たな処理液を前記不純物除去ユニットに供給する新液流路をさらに備える、請求項1~9のいずれか一項に記載の処理液供給装置。 The treatment liquid supply device according to any one of claims 1 to 9, further comprising a new liquid flow path for supplying a new treatment liquid not used in the treatment unit to the impurity removal unit.
  11.  前記不純物除去ユニットが、前記感温性ゲルフィルタを洗浄する洗浄液を前記貯留タンクに供給する洗浄液流路をさらに含む、請求項1~10のいずれか一項に記載の処理液供給装置。 The treatment liquid supply device according to any one of claims 1 to 10, further comprising a cleaning liquid flow path in which the impurity removing unit supplies a cleaning liquid for cleaning the temperature-sensitive gel filter to the storage tank.
  12.  前記不純物除去ユニットが、複数設けられており、
     各前記不純物除去ユニットが、処理液の送出先を前記供給流路および前記排液流路のいずれかに切り替えるように構成されている、請求項1~11のいずれか一項に記載の処理液供給装置。
    A plurality of the impurity removing units are provided, and the above-mentioned impurity removing unit is provided.
    The treatment liquid according to any one of claims 1 to 11, wherein each impurity removing unit is configured to switch the delivery destination of the treatment liquid to either the supply flow path or the drainage flow path. Supply device.
  13.  請求項1~12のいずれか一項に記載の処理液供給装置と、前記処理ユニットとを含む、基板処理装置。 A substrate processing apparatus including the processing liquid supply device according to any one of claims 1 to 12 and the processing unit.
  14.  処理液で基板を処理する処理ユニットに処理液を供給する処理液供給方法であって、
     処理液を貯留する貯留タンク内に収容されている感温性ゲルフィルタに含まれる感温性ゲルが疎水性である状態で前記感温性ゲルフィルタに処理液を通過させることによって、前記感温性ゲルフィルタに前記処理液中の不純物を捕獲させて前記処理液中から不純物を除去する不純物除去工程と、
     前記不純物除去工程の後、前記処理ユニットに処理液を供給する供給流路へ向けて前記貯留タンクから前記処理液を送り出す供給工程と、
     前記供給工程の後、前記感温性ゲルが親水性となっている状態で前記感温性ゲルフィルタに洗浄液を通過させることによって、前記感温性ゲルフィルタから前記洗浄液に不純物を放出させる不純物放出工程と、
     前記不純物放出工程の後、排液流路を介して、前記貯留タンクから前記処理液を排除する排液工程とを含む、処理液供給方法。
    It is a processing liquid supply method that supplies the processing liquid to the processing unit that processes the substrate with the processing liquid.
    The temperature-sensitive gel is passed through the temperature-sensitive gel filter in a state where the temperature-sensitive gel contained in the temperature-sensitive gel filter housed in the storage tank for storing the treatment liquid is hydrophobic. An impurity removal step in which an impurity gel filter captures impurities in the treatment liquid and removes impurities from the treatment liquid.
    After the impurity removal step, a supply step of feeding the treatment liquid from the storage tank toward a supply flow path for supplying the treatment liquid to the treatment unit, and a supply step.
    After the supply step, impurities are released from the temperature-sensitive gel filter into the cleaning liquid by passing the cleaning liquid through the temperature-sensitive gel filter in a state where the temperature-sensitive gel is hydrophilic. Process and
    A method for supplying a treatment liquid, which comprises a drainage step of removing the treatment liquid from the storage tank via a drainage flow path after the impurity discharge step.
  15.  前記感温性ゲルフィルタを転移温度以上の温度に加熱することによって、前記感温性ゲルを疎水性に変化させる疎水化工程と、
     前記感温性ゲルフィルタを前記転移温度よりも低い温度に冷却することによって、前記感温性ゲルを親水性に変化させる親水化工程とをさらに含む、請求項14に記載の処理液供給方法。
    A hydrophobizing step of changing the temperature-sensitive gel to hydrophobicity by heating the temperature-sensitive gel filter to a temperature equal to or higher than the transition temperature.
    The treatment liquid supply method according to claim 14, further comprising a hydrophilization step of changing the temperature-sensitive gel to hydrophilicity by cooling the temperature-sensitive gel filter to a temperature lower than the transition temperature.
  16.  前記不純物除去工程が、前記貯留タンクから液体を引き込み前記貯留タンク内に液体を戻す循環流路によって処理液を循環させることによって、前記感温性ゲルフィルタに前記処理液を通過させる循環除去工程を含み、
     前記不純物放出工程が、前記循環流路によって前記洗浄液を循環させることによって、前記感温性ゲルフィルタに前記洗浄液を通過させる循環洗浄工程を含む、請求項14または15に記載の処理液供給方法。
    The impurity removing step is a circulation removing step in which the treatment liquid is passed through the temperature-sensitive gel filter by circulating the treatment liquid through a circulation flow path that draws the liquid from the storage tank and returns the liquid into the storage tank. Including,
    The treatment liquid supply method according to claim 14, wherein the impurity discharge step comprises a circulation cleaning step of passing the cleaning liquid through the temperature-sensitive gel filter by circulating the cleaning liquid through the circulation flow path.
  17.  前記処理ユニットで使用された汚染処理液を、帰還流路を介して前記貯留タンクに帰還させる帰還工程をさらに含み、
     前記循環除去工程が、前記感温性ゲルフィルタに前記汚染処理液中の不純物を捕獲させて前記汚染処理液から不純物を除去する工程を含み、
     前記循環洗浄工程が、前記感温性ゲルフィルタから前記汚染処理液に不純物を放出させる工程を含む、請求項16に記載の処理液供給方法。
    Further including a return step of returning the contaminated treatment liquid used in the treatment unit to the storage tank via the return flow path.
    The circulation removing step includes a step of causing the temperature-sensitive gel filter to capture impurities in the contaminated treatment liquid and removing impurities from the contaminated treatment liquid.
    The treatment liquid supply method according to claim 16, wherein the circulation cleaning step includes a step of releasing impurities from the temperature-sensitive gel filter into the contamination treatment liquid.
  18.  前記不純物放出工程が、前記貯留タンクに前記洗浄液を供給して前記感温性ゲルフィルタを前記洗浄液に浸漬させ、前記貯留タンク内の前記洗浄液を前記排液流路から排液して前記貯留タンク内に排液流を形成する浸漬洗浄工程を含む、請求項14または15に記載の処理液供給方法。 In the impurity discharge step, the cleaning liquid is supplied to the storage tank, the temperature-sensitive gel filter is immersed in the cleaning liquid, and the cleaning liquid in the storage tank is drained from the drainage flow path to the storage tank. The treatment liquid supply method according to claim 14 or 15, which comprises a dipping cleaning step of forming a drainage flow therein.
  19.  前記貯留タンクとして、第1貯留タンクおよび第2貯留タンクが設けられており、
     前記不純物放出工程が、前記第1貯留タンク内に収容されている第1感温性ゲルフィルタに含まれる第1感温性ゲルが親水性である状態で、前記第1感温性ゲルフィルタに洗浄液を通過させることによって、前記第1感温性ゲルフィルタから前記洗浄液に不純物を放出させる工程を含み、
     前記不純物除去工程が、前記不純物放出工程が実行されている間に、前記第2貯留タンク内に収容されている第2感温性ゲルフィルタに含まれる第2感温性ゲルが疎水性である状態で前記第2貯留タンク内の処理液を前記第2感温性ゲルフィルタに通過させることによって、前記感温性ゲルフィルタに前記処理液中の不純物を捕獲させて前記処理液中から不純物を除去する工程を含む、請求項14~18のいずれか一項に記載の処理液供給方法。
    As the storage tank, a first storage tank and a second storage tank are provided.
    The impurity release step is performed on the first temperature-sensitive gel filter in a state where the first temperature-sensitive gel contained in the first temperature-sensitive gel filter housed in the first storage tank is hydrophilic. It comprises a step of releasing impurities from the first temperature-sensitive gel filter into the cleaning liquid by passing the cleaning liquid through the cleaning liquid.
    The second temperature-sensitive gel contained in the second temperature-sensitive gel filter housed in the second storage tank is hydrophobic while the impurity removing step is executed. By passing the treatment liquid in the second storage tank through the second temperature-sensitive gel filter in this state, the temperature-sensitive gel filter captures impurities in the treatment liquid and removes impurities from the treatment liquid. The treatment liquid supply method according to any one of claims 14 to 18, which comprises a step of removing.
  20.  処理液で基板を処理する処理ユニットに処理液を供給する処理液供給方法であって、
     転移温度を境界として、親水性および疎水性のうちの一方から他方に変化する感温性ゲルを有する感温性ゲルフィルタを収容する貯留タンク内の処理液を循環させて、前記感温性ゲルフィルタに処理液を通過させる循環工程と、
     前記感温性ゲルが疎水性となる温度に前記感温性ゲルフィルタの温度を調節する温度調節工程と、
     前記感温性ゲルが疎水性となる温度に前記感温性ゲルフィルタの温度が調節されている状態で、前記感温性ゲルフィルタを通過する処理液の不純物量が所定の基準不純物量よりも少ないか否かを判定する不純物量判定工程とを含み、
     前記不純物量判定工程によって測定される不純物量が、前記基準不純物量よりも少ない場合には、前記処理ユニットに向けて処理液を送る供給流路に処理液を送出する供給工程が実行され、前記不純物量判定工程によって測定される不純物量が、前記基準不純物量以上である場合には、前記感温性ゲルが親水性となる温度に前記感温性ゲルフィルタの温度を調節した後、前記処理液を排液する排液流路に処理液を送出する排液工程が実行されるように、前記供給工程および前記排液工程が選択的に実行される、処理液供給方法。
    It is a processing liquid supply method that supplies the processing liquid to the processing unit that processes the substrate with the processing liquid.
    The temperature-sensitive gel is circulated in a storage tank containing a temperature-sensitive gel filter having a temperature-sensitive gel that changes from one of hydrophilic and hydrophobic to the other with the transition temperature as a boundary. A circulation process that allows the treatment liquid to pass through the filter, and
    A temperature control step of adjusting the temperature of the temperature-sensitive gel filter to a temperature at which the temperature-sensitive gel becomes hydrophobic, and
    In a state where the temperature of the temperature-sensitive gel filter is adjusted to a temperature at which the temperature-sensitive gel becomes hydrophobic, the amount of impurities in the treatment liquid passing through the temperature-sensitive gel filter is larger than the predetermined reference impurity amount. Including an impurity amount determination step for determining whether or not the amount is small,
    When the amount of impurities measured by the impurity amount determination step is smaller than the reference impurity amount, the supply step of sending the treatment liquid to the supply flow path for sending the treatment liquid toward the treatment unit is executed. When the amount of impurities measured by the impurity amount determination step is equal to or greater than the reference impurity amount, the temperature of the temperature-sensitive gel filter is adjusted to a temperature at which the temperature-sensitive gel becomes hydrophilic, and then the treatment is performed. A treatment liquid supply method in which the supply step and the drainage step are selectively executed so that the drainage step of delivering the treatment liquid to the drainage flow path for draining the liquid is executed.
PCT/JP2021/030354 2020-09-16 2021-08-19 Processing liquid supply device, substrate processing device, and processing liquid supply method WO2022059414A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020155583A JP2022049394A (en) 2020-09-16 2020-09-16 Process liquid supply device, substrate processing apparatus and process liquid supply method
JP2020-155583 2020-09-16

Publications (1)

Publication Number Publication Date
WO2022059414A1 true WO2022059414A1 (en) 2022-03-24

Family

ID=80777307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030354 WO2022059414A1 (en) 2020-09-16 2021-08-19 Processing liquid supply device, substrate processing device, and processing liquid supply method

Country Status (3)

Country Link
JP (1) JP2022049394A (en)
TW (1) TWI799976B (en)
WO (1) WO2022059414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115338181A (en) * 2022-07-26 2022-11-15 泸州龙芯微科技有限公司 Surface cleaning device behind chip scribing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059884A (en) * 2001-08-20 2003-02-28 Tokyo Electron Ltd Substrate treatment apparatus and substrate treatment method
JP2007039845A (en) * 2005-08-04 2007-02-15 Teijin Fibers Ltd Polyester fiber structure and method for producing the same
JP2007201330A (en) * 2006-01-30 2007-08-09 Dainippon Screen Mfg Co Ltd Substrate-treating device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW420829B (en) * 1997-05-22 2001-02-01 Tokyo Electron Ltd Treatment device and method, impurity removing apparatus
JP2005136374A (en) * 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd Semiconductor manufacturing apparatus and pattern formation method using the same
JP2008066351A (en) * 2006-09-05 2008-03-21 Dainippon Screen Mfg Co Ltd Substrate processing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059884A (en) * 2001-08-20 2003-02-28 Tokyo Electron Ltd Substrate treatment apparatus and substrate treatment method
JP2007039845A (en) * 2005-08-04 2007-02-15 Teijin Fibers Ltd Polyester fiber structure and method for producing the same
JP2007201330A (en) * 2006-01-30 2007-08-09 Dainippon Screen Mfg Co Ltd Substrate-treating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115338181A (en) * 2022-07-26 2022-11-15 泸州龙芯微科技有限公司 Surface cleaning device behind chip scribing

Also Published As

Publication number Publication date
TWI799976B (en) 2023-04-21
JP2022049394A (en) 2022-03-29
TW202228201A (en) 2022-07-16

Similar Documents

Publication Publication Date Title
US8652268B2 (en) Substrate treating method for treating substrates with treating liquids
KR101293809B1 (en) Substrate processing apparatus and substrate processing method
JP5173500B2 (en) Processing liquid supply apparatus and substrate processing apparatus including the same
US10211063B2 (en) Substrate processing apparatus and substrate processing method
US20070175387A1 (en) Substrate processing apparatus and substrate processing method
US6637445B2 (en) Substrate processing unit
JP5955766B2 (en) Substrate processing apparatus and substrate processing method
WO2022059414A1 (en) Processing liquid supply device, substrate processing device, and processing liquid supply method
JP2019161107A (en) Substrate cleaning device, and substrate cleaning method
JP7128099B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
US20080163900A1 (en) Ipa delivery system for drying
JP2006181426A (en) Apparatus and method for treatment of substrate
JP2000331979A (en) Device and method for treating substrate
KR101494969B1 (en) Cleaning fluid generation apparatus, cleaning fluid generation method, substrate cleaning apparatus and cleaning processing method
JP4351981B2 (en) Semiconductor substrate cleaning method and apparatus
JPH09162156A (en) Treating method and treating system
JP2007266210A (en) Apparatus and method for manufacturing semiconductor
JP2004179323A (en) Device and method for treating substrate
KR102653077B1 (en) Substrate processing device and substrate processing method
JP3891776B2 (en) Substrate processing equipment
WO2022202340A1 (en) Substrate treatment device and substrate treatment method
CN115116891A (en) Substrate processing apparatus and substrate processing method
JPH06310484A (en) Substrate pull-up and drying method from pure water
JP2004342747A (en) Substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869101

Country of ref document: EP

Kind code of ref document: A1