WO2022058661A1 - Procédé de fabrication d'une âme composite pour un conducteur électrique - Google Patents
Procédé de fabrication d'une âme composite pour un conducteur électrique Download PDFInfo
- Publication number
- WO2022058661A1 WO2022058661A1 PCT/FR2020/051629 FR2020051629W WO2022058661A1 WO 2022058661 A1 WO2022058661 A1 WO 2022058661A1 FR 2020051629 W FR2020051629 W FR 2020051629W WO 2022058661 A1 WO2022058661 A1 WO 2022058661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fibers
- core
- carbon fibers
- glass fibers
- glass
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000004020 conductor Substances 0.000 title claims abstract description 10
- 239000003365 glass fiber Substances 0.000 claims abstract description 44
- 229920005989 resin Polymers 0.000 claims abstract description 21
- 239000011347 resin Substances 0.000 claims abstract description 21
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 38
- 239000004917 carbon fiber Substances 0.000 claims description 38
- 239000000835 fiber Substances 0.000 claims description 30
- 238000005470 impregnation Methods 0.000 claims description 18
- 238000010411 cooking Methods 0.000 claims description 7
- 239000011152 fibreglass Substances 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 230000009477 glass transition Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/02—Stranding-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/08—Several wires or the like stranded in the form of a rope
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/08—Several wires or the like stranded in the form of a rope
- H01B5/10—Several wires or the like stranded in the form of a rope stranded around a space, insulating material, or dissimilar conducting material
Definitions
- TITLE Process for manufacturing a composite core for an electrical conductor
- the technical field of the invention is that of electrical conductors, more particularly those having a core made of composite materials.
- the present invention relates to a method of manufacturing said composite core and the cable obtained with said core.
- these cables comprise a central stranded steel core on which is wrapped one or more stranded aluminum conductors.
- These type of cables have been used for decades without much change.
- this type of cable is prone to excessive sag in certain climates and under certain operating conditions.
- the various standards such as the ASTM standard (American Society for Testing Material) or the European standard define the size of the electric cables according to the current load. These cables of different sizes can carry between 100A (ampere) and more than 3200A, i.e. an operating range of between 40°C and 230°C and preferably between 75°C and 180°C.
- the composite material core must also be able to withstand a stress of more than 2100MPa.
- the process according to the invention makes it possible to obtain a core having both a yield of carbon fibers greater than 90%, better performance in aging, less cracking and greater torsional rigidity.
- the method of manufacturing a composite core for an electrical conductor according to the invention is characterized in that it comprises the following steps putting the carbon fibers under a tension Te and putting the glass fibers under a tension Tv, such that Tv/Tc is between 1/2 and 1 /10, impregnation of carbon fibers and resin glass fibers, curing of the impregnated fibers.
- the difference in tension between the carbon fibers and the glass fibers makes it possible to optimize the tension of the fibers of each material and thus to obtain a cable with optimal characteristics. It is possible, for example, to have an average tension of the glass fibers before impregnation of 100 to 300 centinewtons (cN) and preferentially of 150 to 250 cN with a tension of the carbon fibers before impregnation of 200 to 600 centinewtons (cN) and preferentially from 300 to 500 cN.
- the method comprises a step of placing the carbon fibers around the fiberglass core and the glass fibers around the carbon fibers before cooking all the fibers. Cooking all the fibers and the resin at the same time makes it possible to improve the yield which is then close to the theoretical yield of 90% to 100% instead of 70% to 90% for a conventional process.
- the method comprises: a first step of placing the carbon fibers around the fiberglass core constituting an assembly and, a second step of placing the glass fibers of the outer layer around the previous assembly and curing the glass fibers with the assembly.
- the impregnation of the glass fibers and the carbon fibers is carried out in two different tanks. This makes it possible to independently control the additional tension levels introduced into the fibers during resin impregnation.
- some of the resin that soaks into the fibers returns to the bin after the fibers have been wrung out to remove excess resin.
- This excess resin has chemically reacted with the water contained in the surrounding humidity which modifies its properties, the water hydrolyzes the anhydrides present in the thermosetting matrices of pultrusion into carboxylic acids which leads to a drop in the glass transition temperature Tg and softening of the matrix making it more ductile after the composite has been fired.
- this excess resin returns to the glass fiber impregnation tank, the carbon fiber impregnation tank remains confined by limiting the gas exchange surface with the surrounding air.
- the fibers are put under tension before and during the impregnation.
- the tension of the carbon fibers which is much greater than that of the glass fibers is obtained by placing the spools of thread on unwinders where the rotation of the spool is held by a spring system generating a torque on the axis of rotation. of the coil, in order to give a given tension to the fiber.
- the additional tension induced by guiding the carbon fibers to the entrance of the impregnation tank is ensured in a homogeneous manner between the fibers to achieve the tension objective of 200 to 600 centinewtons (cN) and preferentially from 300 to 500cN.
- the glass fibers are unrolled without constraint on the reels, the tension induced by the guiding of the glass fibers up to the entrance of the impregnation tank is ensured in a homogeneous manner between the fibers to achieve the objective of tension of 100 to 300 centinewtons (cN) and preferably 150 to 250 cN.
- cN centinewtons
- the fibers are also put under tension after the impregnation.
- the fibers are dewatered after impregnation, this dewatering is done by passing the fibers through dewatering tools which increase the tension of the fibers at the outlet.
- the firing is carried out in three successive phases at increasing temperatures, which makes it possible to properly bake the core made of composite materials.
- This cooking can be done in a pultrusion die.
- the core comprises at least one fiberglass.
- This core can comprise one or more glass fibers, each glass fiber comprising n filaments, such that n > 20.
- the fibers are continuous.
- the continuous fibers allow a better homogeneity of the composite materials obtained in pultrusion.
- the object of the invention also relates to a composite core for an electrical conductor characterized in that it is obtained by the method with at least one of the preceding characteristics.
- Another object of the invention is an electric cable comprising a plurality of conductive strands of trapezoidal aluminum which are helically wound around a composite core obtained by the process with at least one of the preceding characteristics.
- FIG. 1 is a schematic view of the production line of the core according to the invention.
- the production line 1 comprises a first support 2 for the carbon fibers 21 and a second support 3 for the glass fibers 31 .
- the first support 2 is equipped with coils of carbon fibers 20 each arranged on an unwinder comprising a spring, or an adjustable return means, retaining the axis of rotation of the unwinder and allowing tension to be applied to the carbon fibers 21 .
- the second support 3 comprises coils of glass fibers 31 arranged flat and unrolling naturally. It is understood here that the tension applied to the carbon fibers 21 is greater than that of the glass fibers 31 and that it can be adjusted.
- the production line 1 also includes two impregnation tanks 4 and 5.
- the first tank 4 includes resin and is intended to receive the carbon fibers 21.
- the second container 5 includes the resin and is intended to receive the glass fibers 31 .
- a first wiping tool 9 is placed downstream of the impregnation tanks 4 and 5, the excess resin returning to the second tank 5. This tool 9 will position the glass fibers 32 of the core between carbon fibers 21 .
- Several wiping tools can be provided.
- a second wiping tool 90 arranged after the wiping tool 9 allows the wiping of the fibers 31, 32 and 21 before they are cured, the excess resin returning to the second tank 5. It is possible to have several wringing tools.
- a die 6 is located downstream of the wiping tool 9, it is in the form of a tunnel and it comprises at least two successive parts: a first part 60 making it possible to initiate the polymerization of the matrix in the fibers 21, 31 at a first temperature, a second part 61 allowing the composite coming out of the first part to be cured at a second temperature preferably higher than the first and, optionally a third part 62 making it possible to finalize the cooking of the composite coming out of the second part at a third temperature adapted to guarantee a curing rate of the composite > 70% and preferably between 80 and 100%
- a puller 7 for example with caterpillars or trays, which advances the finished product from upstream to downstream.
- a wheel 8 finally receives the finished product after cooling.
- the carbon fibers 21 and the glass fibers 31 are unwound from their respective support 2 and 3 at different tensions.
- the carbon fibers 21 are stretched two to ten times more than the glass fibers 31 before impregnation. All the fibers 21 and 31 advance continuously throughout the manufacturing process.
- the carbon fibers 21 are soaked in the first tray 4 containing the resin while the glass fibers 31 pass into the second tray 5.
- a few glass fibers 32 are directed towards the carbon fibers 21 and meet in the first wringing tool 9.
- the carbon fibers 21 surround the glass fibers 32 before passing into the first wringing tool 9 .
- the rest of the glass fibers 31 is then placed around the carbon fibers 31 to form the outer layer of the composite core.
- the assembly is then introduced into the die 6 on one side of the tunnel to be cooked.
- the fibers will then be cooked, as the progress of the fibers in the different parts 60, 61 and optionally part 62 of the die 6 until the core is completely cooked.
- the core cools in the air until it is wound on the wheel 8, the distance between the outlet of the die and the wheel must be sufficient to allow a sufficient drop in temperature of the composite core lower than the glass transition temperature of the composite and preferably 30% lower than the glass transition temperature. This distance being relatively large, the fiber puller 7 can be installed between the die 6 and the wheel 8.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Le procédé de fabrication d'une âme composite pour un conducteur électrique selon l'invention, ladite âme comprenant de la résine, des fibres de carbone (21) et des fibres de verre (31), les fibres de carbones (21) étant disposés entre une couche externe et un cœur en fibres de verre (32), est caractérisé en ce qu'il comprend les étapes suivantes : - mise une sous tension Tc des fibres de carbone (21) et une tension Tv des fibres de verre (31), telle que Tv/Tc est compris entre 1/2 et 1/10, 10 - imprégnation des fibres de carbone (21) et des fibres de verre (31, 32) de résine, - cuisson des fibres imprégnées.
Description
DESCRIPTION
TITRE : Procédé de fabrication d’une âme composite pour un conducteur électrique
DOMAINE TECHNIQUE DE L’INVENTION
[0001] Le domaine technique de l’invention est celui des conducteurs électriques, plus particulièrement ceux ayant une âme en matériaux composite.
[0002] La présente invention concerne un procédé de fabrication de ladite âme composite ainsi que le câble obtenu avec ladite âme.
ARRIÈRE-PLAN TECHNOLOGIQUE DE L’INVENTION
[0003] La demande de câbles pour le transport et la distribution électrique augmente avec la demande de plus en plus forte d’électricité. Le besoin de puissance augmentant, de nouveaux câbles électriques doivent être posés. D’autre part, pour augmenter la capacité, les câbles électriques existants doivent être remplacés par des câbles de plus grande capacité.
[0004] Habituellement, ces câbles comprennent une âme centrale en acier toronné sur laquelle est enveloppée un ou plusieurs conducteurs en aluminium toronné. Ce type de câbles ont été utilisés pendant des décennies sans beaucoup de changements. Parmi d’autres inconvénients, ce type de câbles est susceptible de s’affaisser de façon excessive sous certains climats et sous certaines conditions de fonctionnement.
[0005] Des solutions ont été proposées pour répondre à ces défauts, comme par exemple le brevet EP 1 506 085, intégré par référence, qui propose de réaliser une âme composite comprenant des fibres de carbone continues en longueur formant une couche interne et une couche isolante non conductrice comprenant des fibres de verre et entourant la couche interne. Cependant les performances mécaniques de l’âme en matériaux composite décrites dans ledit brevet restent faible avec des contraintes à rupture en traction inférieure à 1700MPa.
[0006] Il a également été proposé d’introduire un cœur en fibres de verre dans la couche interne en carbone dans le brevet EP 2 118 909 et un procédé de fabrication a été décrit. Cependant l’âme obtenue ne permet pas d’arriver à un rendement supérieur à 90% de la fibre de carbone. On entend par rendement du composite, le
ratio entre la performance théorique du composite en traction, calculée par rapport aux valeurs données par les fournisseurs des lots de fibres utilisées pour la fabrication pondérée par le taux volumique de fibre dans le composite et la valeur réelle obtenue en test laboratoire sur le composite fabriqué.
[0007] De plus, les différentes normes, comme la norme ASTM (American Society for Testing Material) ou la norme européenne définissent la taille des câbles électriques en fonction de la charge du courant. Ces câbles de différentes tailles peuvent transporter entre 100A (ampère) et plus de 3200A, soit une plage de fonctionnement comprise entre 40°C et 230°C et préférentiellement entre 75°C et 180°C. L’âme en matériaux composite doit également pouvoir résister une contrainte de plus de 2100MPa.
RÉSUMÉ DE L’INVENTION
[0008] Le procédé selon l’invention permet d’obtenir une âme présentant à la fois un rendement des fibres de carbone supérieures à 90%, de meilleures performances en vieillissement, moins de fissuration et une plus grande rigidité en torsion
[0009] Le procédé de fabrication d’une âme composite pour un conducteur électrique selon l’invention, ladite âme comprenant de la résine, des fibres de carbone et des fibres de verre, les fibres de carbone étant disposées entre une couche externe et un cœur en fibres de verre, est caractérisé en ce qu’il comprend les étapes suivantes mise sous une tension Te des fibres de carbone et mise sous une tension Tv des fibres de verre, telle que Tv/Tc est compris entre 1/2 et 1/10, imprégnation des fibres de carbone et des fibres de verre de résine, cuisson des fibres imprégnées.
[0010] Les fibres de verre ayant une résistance à la traction inférieure à celle des fibres de carbone, la différence de tension entre les fibres de carbone et les fibres de verre permet d’optimiser la tension des fibres de chaque matériau et ainsi d’obtenir un câble avec des caractéristiques optimales. On pourra, par exemple, avoir une tension moyenne des fibres de verre avant imprégnation de 100 à 300 centinewtons (cN) et préférentiellement de 150 à 250 cN avec une tension des fibres de carbone avant imprégnation de 200 à 600 centinewtons (cN) et préférentiellement de 300 à 500 cN.
[0011] Selon un premier mode de réalisation, le procédé comprend une étape de mise en place des fibres de carbone autour du cœur en fibre de verre et des fibres de verre autour des fibres de carbone avant la cuisson de toutes les fibres. Le fait de cuire toutes les fibres et la résine en même temps permet d’améliorer le rendement qui est alors proche du rendement théorique de 90% à 100% au lieu de 70% à 90% pour un procédé classique.
[0012] Selon un second mode de réalisation, le procédé comprend : une première étape de mise en place des fibres de carbone autour du cœur en fibre de verre constituant un ensemble et, une deuxième étape de mise en place des fibres de verre de la couche externe autour de l’ensemble précédent et cuisson des fibres de verre avec l’ensemble.
[0013] Il est ainsi possible de bien maîtriser la position des fibres de verre par rapport aux fibres de carbone.
[0014] Avantageusement, l’imprégnation des fibres de verre et des fibres de carbone est faite dans deux bacs différents. Cela permet de maîtriser indépendamment les niveaux de tension supplémentaires introduits dans les fibres lors de l’imprégnation par la résine. Habituellement une partie de la résine qui imprègne les fibres retourne dans le bac après que les fibres aient été essorées pour retirer l’excès de résine. Cet excès de résine a chimiquement réagi avec l’eau contenue dans l’humidité environnante ce qui modifie ses propriétés, l'eau hydrolyse les anhydrides présents dans les matrices thermodurcissables de pultrusion en acides carboxyliques qui entraine une baisse de la température de transition vitreuse Tg et un assouplissement de la matrice la rendant plus ductile après la cuisson du composite. Ici, cet excès de résine retourne dans le bac d’imprégnation des fibres de verre, le bac d’imprégnation des fibres de carbone reste lui confiné en limitant la surface d’échange gazeux avec l’air environnant.
[0015] Avantageusement, les fibres sont mises sous tension avant et pendant l’imprégnation. La tension des fibres de carbone qui est beaucoup plus importante que celle des fibres de verre est obtenue en disposant les bobines de fil sur des dérouleurs où la rotation de la bobine est retenue par un système de ressort générant un couple sur l’axe de rotation de la bobine, afin de donner une tension donnée à la fibre. La
tension supplémentaire induite par le guidage des fibres de carbone jusqu’à l’entrée du bac d’imprégnation est assurée de manière homogène entre les fibres pour parvenir à l’objectif de tension de 200 à 600 centinewtons (cN) et préférentiellement de 300 à 500 cN. Les fibres de verre sont déroulées sans contrainte sur les bobines, la tension induite par le guidage des fibres de verre jusqu’à l’entrée du bac d’imprégnation est assurée de manière homogène entre les fibres pour parvenir à l’objectif de tension de 100 à 300 centinewtons (cN) et préférentiellement de 150 à 250 cN.
[0016] Avantageusement, les fibres sont également mises sous tension après l’imprégnation. Les fibres sont essorées après l’imprégnation, cet essorage se fait en passant les fibres dans des outillages d’essorage qui permettent d’augmenter la tension des fibres en sortie.
[0017] Avantageusement, la cuisson est réalisée en trois phases successives à des températures croissantes, ce qui permet de bien cuire l’âme en matériaux composite. Cette cuisson peut être faite dans une filière de pultrusion.
[0018] Avantageusement, le cœur comprend au moins une fibre de verre. Ce cœur peut comprendre une ou plusieurs fibres de verre, chaque fibre de verre comprenant n filaments, tel que n > 20.
[0019] Avantageusement, les fibres sont continues. Les fibres continues permettent une meilleure homogénéité des matériaux composite obtenu en pultrusion.
[0020] L’objet de l’invention concerne également une âme composite pour un conducteur électrique caractérisé en ce qu’il est obtenu par le procédé avec au moins une des caractéristiques précédentes.
[0021] Un autre objet de l’invention est un câble électrique comprenant une pluralité de brins conducteurs en aluminium de forme trapézoïdale qui sont enroulés hélicoïdalement autour d’une âme composite obtenue par le procédé avec au moins une des caractéristiques précédentes.
[0022] L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen de la figure qui l’accompagne.
BRÈVE DESCRIPTION DES FIGURES
[0023] La figure est présentée à titre indicatif et nullement limitative de l’invention.
[0024] [Fig. 1] est une vue schématique de la chaine de fabrication de l’âme selon l’invention.
DESCRIPTION DETAILLEE
[0025] Dans la suite de la description on appellera « amont » les éléments disposés en début de chaine dans le sens de progression des fibres et « aval » les éléments placés en fin de chaine.
[0026] La chaine de fabrication 1 comprend un premier support 2 pour les fibres de carbone 21 et un deuxième support 3 pour les fibres de verre 31 . Le premier support 2 est équipé de bobines de fibres de carbone 20 disposées chacune sur un dérouleur comprenant un ressort, ou un moyen de rappel réglable, retenant l’axe de rotation du dérouleur et permettant d’appliquer une tension sur les fibres de carbones 21 . Le deuxième support 3 comprend des bobines de fibres de verre 31 disposées à plat et se déroulant naturellement. On comprend ici que la tension appliquée aux fibres de carbone 21 est plus importante que celle des fibres de verre 31 et qu’elle peut être réglée.
[0027] La chaine de fabrication 1 comprend également deux bacs d’imprégnation 4 et 5. Le premier bac 4 comprend de la résine et est destiné à recevoir les fibres de carbone 21 . Le deuxième bac 5 comprend la résine et est destiné à recevoir les fibres de verre 31 .
[0028] Un premier outillage d’essorage 9 est placé en aval des bacs d’imprégnation 4 et 5, l’excès de résine retournant vers le deuxième bac 5. Cet outillage 9 va positionner les fibres de verre 32 de l’âme entre les fibres de carbone 21 . On peut prévoir plusieurs outillages d’essorage.
[0029] Un deuxième outillage d’essorage 90 disposé après l’outillage d’essorage 9 permet l’essorage des fibres 31 , 32 et 21 avant leur cuisson, l’excès de résine retournant vers le deuxième bac 5. Il est possible d’avoir plusieurs outillages d’essorage.
[0030] Une filière 6 se trouve en aval de l’outillage d’essorage 9, elle est sous la forme d’un tunnel et il comporte au moins deux parties successives: une première partie 60 permettant d’engager la polymérisation de la matrice dans les fibres 21 , 31 à une première température,
une deuxième partie 61 permettant de cuire les le composite sortant de la première partie à une deuxième température préférentiellement supérieure à la première et, optionnellement une troisième partie 62 permettant de finaliser la cuisson du composite sortant de la deuxième partie à une troisième température adaptée pour garantir un taux de cuisson du composite > 70% et préférentiellement entre 80 et 100%
[0031] Il y a ensuite une tireuse 7, par exemple à chenilles ou à plateaux, qui fait avancer le produit fini d’amont vers l’aval. Une roue 8 vient enfin recevoir le produit fini après refroidissement.
[0032] Nous allons maintenant décrire plus en détail le procédé de fabrication.
[0033] Les fibres de carbone 21 et les fibres de verre 31 sont déroulées de leur support respectif 2 et 3 à des tensions différentes. Les fibres de carbone 21 sont tendues deux à dix fois plus que les fibres de verre 31 en amont de l’imprégnation. L’ensemble des fibres 21 et 31 avance en continu pendant toute la fabrication.
[0034] Les fibres de carbone 21 sont trempées dans le premier bac 4 contenant la résine tandis que les fibres de verre 31 passent dans le deuxième bac 5.
[0035] Quelques fibres de verre 32 sont dirigées vers les fibres de carbone 21 et se rejoignent dans le premier outillage d’essorage 9. Les fibres de carbone 21 entourent les fibres de verre 32 avant de passer dans le premier outillage d’essorage 9.
[0036] Le reste des fibres de verre 31 est ensuite placé autour des fibres de carbone 31 pour constituer la couche externe de l’âme composite.
[0037] L’ensemble des fibres 21 et 31 sont ensuite essorées avant d’être cuites dans le deuxième outillage d’essorage 90 disposé en amont la filière 6. L’excès de résine est évacué vers le deuxième bac 5. Au début de la fabrication, la résine est identique dans les deux bacs 4 et 5, mais au fur et à mesure de la fabrication la résine du deuxième bac 5 va se modifier avec l’arrivée de l’excès de résine qui s’est humidifiée à l’air.
[0038] L’ensemble est ensuite introduit dans le la filière 6 d’un côté du tunnel pour être cuit. Les fibres vont alors être cuites, au fur et à mesure de l’avancement des
fibres dans les différentes parties 60, 61 et optionnellement la partie 62 de la filière 6 jusqu’à la cuisson complète de l’âme.
[0039] À la sortie de la filière 6, l’âme se refroidit à l’air jusqu’à être enroulée sur la roue 8, la distance entre la sortie de la filière et la roue doit être suffisante pour permettre une baisse suffisante de température de l’âme composite inférieure à la température de transition vitreuse du composite et préférentiellement 30% inférieur à la température de transition vitreuse . Cette distance étant relativement importante, la tireuse des fibres 7 peut être implantée entre la filière 6 et la roue 8.
Claims
[Revendication 1] Procédé de fabrication d’une âme composite pour un conducteur électrique, ladite âme comprenant de la résine, des fibres de carbone (21 ) et des fibres de verre (31 ), les fibres de carbones (21 ) étant disposés entre une couche externe et un cœur en fibres de verre (32), caractérisé en ce qu’il comprend les étapes suivantes :
- mise une sous tension Te des fibres de carbone (21 ) et une tension Tv des fibres de verre (31 ), telle que Tv/Tc est compris entre 1/2 et 1/10,
- imprégnation des fibres de carbone (21 ) et des fibres de verre (31 ) de résine,
- cuisson des fibres imprégnées.
[Revendication 2] Procédé selon la revendication précédente, caractérisé en ce qu’il comprend une étape de mise en place des fibres de carbone (21 ) autour du cœur en fibre de verre (32) et des fibres de verre (31 ) autour des fibres de carbone (21 ) avant la cuisson de toutes les fibres.
[Revendication 3] Procédé selon la revendication 1 , caractérisé en ce qu’il comprend :
- une première étape de mise en place des fibres de carbone (21 ) autour du cœur en fibre de verre (32) constituant un ensemble et,
- une deuxième étape de mise en place des fibres de verre (31 ) de la couche externe autour de l’ensemble précédent et cuisson des fibres de verre avec l’ensemble.
[Revendication 4] Procédé selon une des revendications précédentes caractérisé en ce que l’imprégnation des fibres de verre (31 , 32) et des fibres de carbone (21 ) est faite dans deux bacs différents (5, 4).
[Revendication 5] Procédé selon une des revendications précédentes caractérisé en ce que les fibres (21 , 31 ) sont mises sous tension avant et pendant l’imprégnation.
[Revendication 6] Procédé selon une des revendications précédentes caractérisé en ce que la cuisson est réalisée en trois phases successives à des températures croissantes.
[Revendication 7] Procédé selon une des revendications précédentes caractérisé en ce que le cœur comprend plusieurs fibres de verre (23).
9
[Revendication 8] Procédé selon une des revendications précédentes caractérisé en ce que les fibres (21 , 31 ) sont continues.
[Revendication 9] Âme composite pour un conducteur électrique caractérisé en ce qu’il est obtenu par le procédé selon une des revendications précédentes. [Revendication 10] Câble électrique comprenant une pluralité de brins conducteurs en aluminium de forme trapézoïdale qui sont enroulés hélicoïdalement autour d’une âme composite obtenue par le procédé selon une des revendications précédentes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2020/051629 WO2022058661A1 (fr) | 2020-09-18 | 2020-09-18 | Procédé de fabrication d'une âme composite pour un conducteur électrique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2020/051629 WO2022058661A1 (fr) | 2020-09-18 | 2020-09-18 | Procédé de fabrication d'une âme composite pour un conducteur électrique |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022058661A1 true WO2022058661A1 (fr) | 2022-03-24 |
Family
ID=74068284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2020/051629 WO2022058661A1 (fr) | 2020-09-18 | 2020-09-18 | Procédé de fabrication d'une âme composite pour un conducteur électrique |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022058661A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116936182A (zh) * | 2023-06-14 | 2023-10-24 | 郑州市乐美电线电缆有限公司 | 一种碳纤维复合芯电缆及制作方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1465501A (zh) * | 2002-07-04 | 2004-01-07 | 北京玻璃钢研究设计院 | 一种复合纤维拉绕杆及其制备方法 |
US20040131834A1 (en) * | 2002-04-23 | 2004-07-08 | Clement Hiel | Aluminum conductor composite core reinforced cable and method of manufacture |
CN201237921Y (zh) * | 2008-08-07 | 2009-05-13 | 大庆石油新科庆联防腐有限公司 | 输电电缆用复合材料芯 |
EP2118909A2 (fr) | 2007-02-15 | 2009-11-18 | Advanced Technology Holdings LTD | Conducteur electrique et ame d'un conducteur electrique |
-
2020
- 2020-09-18 WO PCT/FR2020/051629 patent/WO2022058661A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040131834A1 (en) * | 2002-04-23 | 2004-07-08 | Clement Hiel | Aluminum conductor composite core reinforced cable and method of manufacture |
EP1506085A1 (fr) | 2002-04-23 | 2005-02-16 | Composite Technology Corporation | Cable renforce presentant une ame composite entouree d'un conducteur d'aluminium, et son procede de production |
CN1465501A (zh) * | 2002-07-04 | 2004-01-07 | 北京玻璃钢研究设计院 | 一种复合纤维拉绕杆及其制备方法 |
EP2118909A2 (fr) | 2007-02-15 | 2009-11-18 | Advanced Technology Holdings LTD | Conducteur electrique et ame d'un conducteur electrique |
CN201237921Y (zh) * | 2008-08-07 | 2009-05-13 | 大庆石油新科庆联防腐有限公司 | 输电电缆用复合材料芯 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116936182A (zh) * | 2023-06-14 | 2023-10-24 | 郑州市乐美电线电缆有限公司 | 一种碳纤维复合芯电缆及制作方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1816654B1 (fr) | Conducteur de transport électrique pour ligne aérienne | |
EP2394273B3 (fr) | Cable de transmission electrique a haute tension | |
EP1123820B1 (fr) | Pneumatique comportant des câbles circonférentiels pour ancrer la carcasse | |
EP1200671B1 (fr) | Cable d'acier multicouches pour carcasse de pneumatique | |
EP1928001A1 (fr) | Conducteur de transport électrique pour une ligne aérienne | |
FR2551876A1 (fr) | Instrument de mesure d'une vitesse de rotation et son procede de fabrication | |
EP0696750B1 (fr) | Procédé de fabrication d'un câble à fibres optiques renforcé; dispositif pour la mise en oeuvre de ce procédé et câble obtenu par ce procédé | |
WO2022058661A1 (fr) | Procédé de fabrication d'une âme composite pour un conducteur électrique | |
FR2559275A1 (fr) | Procede de fabrication d'une fibre optique a structure chiralique et dispositif mettant en oeuvre ce procede | |
CH620032A5 (fr) | ||
EP1017063A1 (fr) | Câble de transport d'energie et/ou de télécommunications structurellement reforcé | |
CA2864764A1 (fr) | Cable de transport electrique en particulier pour ligne aerienne | |
EP1926108B1 (fr) | Câble de contrôle électrique | |
CN102686529B (zh) | 光纤素线的制造方法以及制造装置 | |
EP2616231B1 (fr) | Procede de fabrication d'un ressort de suspension en materiau composite de mise en oeuvre simplifiee | |
CA2061588C (fr) | Corps allonge isole au moyen d'une enveloppe isolante | |
EP1986199B1 (fr) | Procédé de fabrication d'un conducteur électrique isolé de classe 5 | |
EP0311941A1 (fr) | Procédé de fabrication d'un cable à fibre optique et cable obtenu par ce procédé | |
EP0532415B1 (fr) | Corps isolant à haute rigidité diélectrique et procédé d'obtention d'un tel corps | |
WO2022064107A1 (fr) | Âme composite pour conducteur électrique résistant aux fissures | |
FR3076586A1 (fr) | Cordes composite a haute performance pour ressort | |
EP2091052A2 (fr) | Cable électrique facilement dégainable | |
FR3114535A1 (fr) | Structure de CORDE préimprégnée pour ressort COMPOSITE | |
FR2533744A1 (fr) | Conducteur neutre porteur pour faisceau de conducteurs electriques, procede de fabrication, et moyens de mise en oeuvre | |
CN217483466U (zh) | 一种绞合型碳纤维光纤复合导线检测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20829622 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: CONSTATATION DE LA PERTE D'UN DROIT CONFORMEMENT A LA REGLE 112(1) CBE (OEB FORM 1205 EN DATE DU 05/07/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20829622 Country of ref document: EP Kind code of ref document: A1 |