WO2022058406A1 - Processus de préparation de particules d'agent gonflant enrobées - Google Patents

Processus de préparation de particules d'agent gonflant enrobées Download PDF

Info

Publication number
WO2022058406A1
WO2022058406A1 PCT/EP2021/075444 EP2021075444W WO2022058406A1 WO 2022058406 A1 WO2022058406 A1 WO 2022058406A1 EP 2021075444 W EP2021075444 W EP 2021075444W WO 2022058406 A1 WO2022058406 A1 WO 2022058406A1
Authority
WO
WIPO (PCT)
Prior art keywords
bulking agent
coated
sugar
particles
amorphous
Prior art date
Application number
PCT/EP2021/075444
Other languages
English (en)
Inventor
Benjamin Robert C. ALEXANDRE
Abdelfattah Bensouissi
Nicholas David Hedges
John Turner Mitchell
Nick VAES
Simon David Wantling
Original Assignee
Unilever Ip Holdings B.V.
Conopco, Inc., D/B/A Unilever
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Ip Holdings B.V., Conopco, Inc., D/B/A Unilever filed Critical Unilever Ip Holdings B.V.
Publication of WO2022058406A1 publication Critical patent/WO2022058406A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/42Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds containing plants or parts thereof, e.g. fruits, seeds, extracts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G9/00Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor
    • A23G9/32Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds
    • A23G9/34Frozen sweets, e.g. ice confectionery, ice-cream; Mixtures therefor characterised by the composition containing organic or inorganic compounds characterised by carbohydrates used, e.g. polysaccharides

Definitions

  • the present invention relates to novel coated bulking agent particles for reduction of calories in fat-based food products comprising sugar.
  • An alternative solution for reducing the calorie content of fat-based food products comprising sugar includes the use of a modified bulking agent as a substitute for the sugar.
  • US 5,342,636 discloses a modified bulking agent and a process for its preparation.
  • the modified bulking agent contains a cellulosic bulking agent and an additive of sugar, protein or a combination thereof.
  • the modified bulking agent has an amount of additive of from about 5% to about 50% by weight of the modified bulking agent final product; more than a total of 50 wt% of the additive results in a modified bulking agent having an excess of additive not bound to the fiber.
  • the modified bulking agent has a reduced binding capacity such that the bulking agent absorbs from about 50% to about 75% of its weight in oil, implying that the bulking agent itself is not fully coated and/or the additive itself binds oil.
  • the reduced oil binding capacity of the modified bulking agent enables the modified bulking agent to be used in milk chocolate with a reduction in calories of 25%.
  • US 5,342,636 is silent with regard to the Casson viscosity and Casson yield of the milk chocolate containing the modified buking agent.
  • WO 2017/093390 A1 discloses amorphous porous particles for reducing sugar in foods.
  • the amorphous porous particles contain a sugar, a bulking agent (e.g. skimmed milk powder) and surfactant (e.g. casein) having a closed porosity of 20 to 60 %.
  • the porous particles are present in an amorphous form in order to obtain similar sweetness and sensory qualities of the particles in comparison to crystalline granulated sugar.
  • the use of such amorphous porous particles has been suggested to result in a potential reduction of sugar in fat-based food products on a mass basis of 10 to 35 %.
  • WO 2017/093390 A1 is silent with regard to the Casson viscosity and Casson yield of these amorphous porous particles in fat-based confection compositions.
  • the particles enable significant calorie reduction of the fat-based food products whilst retaining the rheological properties, such as Casson viscosity and Casson yield, of the food product. It would be a significant additional advantage that the particle also retains organoleptic properties similar to those of sugar in food products, it would be of particular advantage that the particle does not impart a dry mouth feel when the fat-based food products are consumed. In addition, it would be of significant advantage that the particle reduced both the calorie content of a fat-based food product and the fat or oil content of a fat-based food product.
  • Such a particle would have the same or similar physical characteristics as crystalline sugar such as oil binding capacity and hygroscopicity. Such a particle would be of particular importance when used as a substitute for sugar in coating compositions for frozen confection products, as the process-ability, resultant uniformity of coating, desired pick-up weight and organoleptic properties of the final coated product of these compositions would be retained.
  • the present invention relates to a coated bulking agent particle comprising: from 30 to 98 wt % sugar; from 0.05 to 12 wt % surface active agent; and from 0 to 70 wt % bulking agent; wherein 50 to 100 wt% of the sugar is in crystalline form. Furthermore, the invention relates to an agglomerated coated bulking agent particle; a process of preparing the particles and a fat-based confection composition comprising the coated bulking agent particles.
  • the novel coated bulking agent particles when used as a substitute for sugar in fat-based food products, result in an up to 70 wt% reduction of sugar of the fat-based food product in comparison to fat-based food products comprising sugar. Additionally, the coated bulking agent particles, when used as a substitute for granulated sugar in fat-based food products, retain the rheological and organoleptic properties of fat-based food products comprising granulated sugar.
  • the present invention relates to a coated bulking agent particle comprising: from 30 to 98 wt % sugar; from 0.05 to 12 wt % surface active agent; and from 0 to 70 wt % bulking agent; wherein 50 to 100 wt% of the sugar is in crystalline form.
  • Coated bulking agent particle means a particle comprising a bulking agent core and a layer comprising sugar and surface active agent.
  • the layer comprising sugar and surface active agent may also be known as a sugar and surface active agent coating composition.
  • Coated means that the layer comprising sugar and surface active agent are present on at least the surface of the bulking agent.
  • the bulking agent may be substantially or fully coated with a layer comprising sugar and surface active agent.
  • Preferably the bulking agent is fully coated with a layer comprising sugar and surface active agent.
  • the bulking agent particles When present in a fat-based confection composition the bulking agent particles may be substantially coated, fully coated, or both substantially and fully coated with a layer comprising sugar and surface active agent.
  • the layer comprising sugar and surface active agent are present on at least the surface of the bulking agent and from 50 to 100 wt% of the sugar is in crystalline form. In a preferred embodiment, from 80 to 100 wt% of the sugar is in crystalline form.
  • 95 wt% to 100 wt% of the sugar on the surface of the coated bulking agent particle is present in crystalline form.
  • 98 wt% to 100 wt% of the sugar on the surface of the coated bulking agent particle is present in crystalline form.
  • Surface active agent is selected from the group consisting of proteins, lecithins, and mixtures thereof.
  • Protein means water soluble protein and is selected from the group consisting of: whey protein, sodium caseinate, potassium caseinate, calcium caseinate, soluble vegetable proteins, protein hydrolysates, albumins and mixtures thereof.
  • Soluble vegetable proteins may be for example: soy protein, pea protein and rice protein.
  • Protein hydrolysates may be for example: hydrolyzed whey protein such as HYGEL from Kerry Foods Ltd; or hydrolyzed caseinates.
  • Albumins may be for example: bovine serum and egg albumin.
  • Surface active agent is present in an amount from 0.005 wt% to 20 wt%; from 0.01 wt% to 20 wt%; from 0.05 wt% to 12 wt%; from 0.05 wt% to 10 wt%; from 0.05 wt% to 8 wt%; from 0.10 wt% to 5 wt%; from 0.10 wt% to 2 wt% based on the weight of the sugar present in the coated bulking agent particle.
  • Surface active agent is present in an amount from 0.05 wt% to 20.00 wt%; from 0.05 wt% to 12.00 wt%; from 0.05 wt% to 10.00 wt%; from 0.10 wt% to 6.00 wt%; from 0.10 wt% to 4.00 wt%; from 0.15 wt% to 2.00 wt% based on the weight of coated bulking agent particle.
  • the coated bulking agent particle comprises from 10 wt% to 98 wt%; from 18 wt% to 98 wt%; from 20 wt% to 98 wt%; from 24 wt% to 98; from 26 wt% to 98 wt%; from 28 wt% to 98 wt% sugar, from 20.00 wt% to 97.50 wt% sugar; from 31.00 wt% to 97.00 wt% sugar; from 35.00 wt% to 91.00 wt% sugar; from 35.00 wt% to 85.00 wt% sugar; from 51.00 wt% to 95.00 wt% sugar.
  • the bulking agent is insoluble cellulosic fibre derived from plant-based material such as coffee beans, dried tea leaves, cocoa, cocoa-shell, cereals, pseudocereals, fruit, vegetable, nuts, seeds and is present in particulate form.
  • Insoluble cellulosic fibre is selected from the group consisting of oat fibre; bran fibre; wheat fibre; rice fibre; bamboo fibre; maize/corn fibre; corn-cob fibre; coconut fibre; potato fibre; sugar beet fibre; sugar cane fibre; wheat bran; maize/corn bran; rice bran; pea fibre; vegetable powders; tomato powder; beetroot powder; ground cinnamon; spent coffee grounds; milled tea particles; debittered cocoa (e.g.
  • the bulking agent may also be an insoluble protein obtainable from, for example: wheat, zein, pea, rice, soya, fava, milk, potato, lupin or lentil.
  • the bulking agent is an insoluble protein selected from the group consisting of: wheat, zein, pea, rice, soya, fava, milk, potato, lupin, lentil and mixtures thereof.
  • the bulking agent may also be an insoluble mineral, for example: calcium carbonate or calcium phosphate.
  • the bulking agent is an insoluble mineral selected from the group consisting of: calcium carbonate, calcium phosphate and mixtures thereof.
  • any one of the foregoing bulking agents can be in micronized form, meaning the bulking agent is subjected to a particle size reduction technique to achieve a particle size of less than 100microns (i.e. a D90 of less than 100microns, wherein D90 is the volume diameter where 90% of the volume distribution of the particles is below this value) before being used in the present invention.
  • a particle size reduction technique that is known in the art may be used in accordance with the present invention, such as milling, micronization, grinding, extrusion, high pressure homogenization, abrasion, fractionation, or pulverizing.
  • a combination of particle size reduction techniques may also be used.
  • the bulking agent may thus have a particle size D90 of less than 100 microns, less than 90 microns, less than 80 microns, less than 70 microns, less than 60 microns, less than 50 microns, less than 40 microns, less than 30 microns, less than 20 microns, or less than 10 microns.
  • This can be measured using a Mastersizer system (Malvern). Any known milling method may be used in accordance with the present invention. For example, ball-milling, wet-ball milling, or micro-milling in an impact mill.
  • Micronization may be used to provide very fine particles (e.g. less than 100 microns). Micronization methods are known in the industry. Micronization usually involves milling at high speed (e.g. at least 3000 rpm) using a high performance mill, such as a cell mill or jet mill.
  • a cell mill is a highly efficient mechanical mill with multiple rotors mounted on a vertical shaft.
  • Product quality is optimised by control of mill speed through a frequency inverter, which also limits the starting current.
  • a jet mill typically comprises a spiral jet which uses compressed gas to produce superfine materials by autogenous comminution. Feed material is inspirated by a small proportion of the compressed gas through a venturi into the grinding chamber where numerous angles nozzles accelerate the material into particle-particle impact. There are no moving parts in the mill and no mechanical forces are applied to the grinding process. Variation in gas pressure and residence time is possible.
  • the particle size reduction technique may also include size classification and/or separation steps (e.g. sieving or sifting).
  • size classification and/or separation steps e.g. sieving or sifting.
  • a TTC/TTD Air Classifier® or Mikro® Acucut Air classifier model sold by Hosokawa Micron Powder Systems may be used.
  • the particle size reduction technique may be cryogenic.
  • the bulking agent is selected from micronized cocoa-shell, micronized wheat bran, micronized corn bran, micronized wheat fibre, micronized maize/corn fibre, exhausted cocoa powder, micronized exhausted cocoa powder, micronized cocoa fibre, micronized tea.
  • the bulking agent has been treated to remove flavour, aroma or both flavour and aroma.
  • the bulking agent has reduced flavour, reduced aroma or both reduced flavour and reduced aroma compared to an untreated bulking agent.
  • the bulking agent is without aroma, without flavour or without both aroma and flavour.
  • the bulking agent is centrifuged to obtain a pellet that comprises the bulking agent and water. Consequently, the bulking agent has a reduced water binding capacity in comparison to the bulking agent in dry form prior to centrifugation.
  • the water binding capacity of the bulking agent is preferably less than 4g per g of dry bulking agent.
  • the coated bulking agent particle comprises from 1.50 wt% to 70.00 wt%; from 1.50 wt% to 68.00 wt%; from 1.50 wt% to 66.00 wt%; from 1.50 wt% to 64.00 wt%; from 1.50 wt% to 62.00 wt%; from 1.95 wt% to 70.00 wt%; from 1.50 wt% to 60.00 wt%; from 3.00 wt% to 49.00 wt%; from 9.00 wt% to 45.00 wt%; from 15.00 wt% to 45.00 wt% bulking agent.
  • the present invention relates to a coated bulking agent particle comprising: from 10.00 wt% to 98.00 wt % sugar; from 0.05 wt% to 20.00 wt % surface active agent; and from 1.95 wt% to 70.00 wt % bulking agent; wherein 50 to 100 wt% of the sugar is in crystalline form.
  • the present invention relates to a coated bulking agent particle comprising: from 20.00 wt% to 97.50 wt % sugar; from 0.05 wt% to 20.00 wt % surface active agent; and from 2.45 wt% to 60.00 wt % bulking agent; wherein 50 to 100 wt% of the sugar is in crystalline form.
  • the present invention relates to a coated bulking agent particle comprising: from 31.00 wt% to 97.00 wt % sugar; from 0.05 wt% to 20.00 wt % surface active agent; and from 3.00 wt% to 49.00 wt % bulking agent; wherein 50 to 100 wt% of the sugar is in crystalline form.
  • the present invention relates to a coated bulking agent particle comprising: from 35.00 wt% to 91.00 wt % sugar; from 0.05 wt% to 20.00 wt % surface active agent; and from 9.00 wt% to 45.00 wt % bulking agent; wherein 50 to 100 wt% of the sugar is in crystalline form.
  • the present invention relates to a coated bulking agent particle comprising: from 35.00 wt% to 85.00 wt % sugar; from 0.05 wt% to 20.00 wt % surface active agent; and from
  • the present invention relates to a coated bulking agent particle comprising: from 51.00 wt% to 95.00 wt % sugar; from 0.05 wt% to 20.00 wt % surface active agent; and from
  • the coated bulking agent particle comprises from 1 wt% to 70 wt% bulking agent and from 30 wt% to 99 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 2000:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 1 wt% to 68 wt% bulking agent and from 32 wt% to 99 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 2000:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 1 wt% to 66 wt% bulking agent and from 34 wt% to 99 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 2000:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 1 wt% to 64 wt% bulking agent and from 36 wt% to 99 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 2000:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 1 wt% to 62 wt% bulking agent and from 38 wt% to 99 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 2000:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 1 wt% to 60 wt% bulking agent and from 40 wt% to 99 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 2000:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 1 wt% to 70 wt% bulking agent and from 30 wt% to 99 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 100:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 1 wt% to 70 wt% bulking agent and from 30 wt% to 99 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 100:1 to 16:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 2 wt% to 49 wt% bulking agent and from 51 wt% to 98 wt% of a coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 2000:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 2 wt% to 49 wt% bulking agent and from 51 wt% to 98 wt% coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 100:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 2 wt% to 49 wt% bulking agent and from 51 wt% to 98 wt% coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 100:1 to 16:1 and 50 to
  • the coated bulking agent particle comprises from 3 wt% to 44 wt% bulking agent and from 56 wt% to 97 wt% coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 2000:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 3 wt% to 44 wt% bulking agent and from 56 wt% to 97 wt% coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 100:1 to 4:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coated bulking agent particle comprises from 3 wt% to 44 wt% bulking agent and from 56 wt% to 97 wt% coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent is from 100:1 to 16:1 and 50 wt% to 100 wt% of the sugar is in crystalline form.
  • the coating composition does not comprise an oil, fat or mixture thereof that does not originate from the bulking agent.
  • the coated bulking agent does not comprise an oil, fat or mixture thereof that does not originate from the bulking agent.
  • the coating composition is a homogenous composition.
  • the coating composition is physically bound to the bulking agent and the coated bulking agent particles themselves survive shear forces applied through, for example, ball milling. Shear forces, such as those applied by ball milling, may separate coated bulking agent particles that are in an agglomerated form.
  • One coated bulking agent particle is one particle, i.e.: a coated bulking agent particle comprises a bulking agent substantially at the core surrounded by a coating composition that is physically bound to the bulking agent.
  • sugar crystal crystalline sugar, granulated crystalline sugar and sugar in crystalline form are interchangeable and mean a solid sugar material whose constituents (i.e. sugar molecules) are arranged in a highly ordered microscopic structure, forming a crystal lattice.
  • constituents i.e. sugar molecules
  • macroscopic single crystals are usually identifiable by their geometrical shape, consisting of flat faces with specific, characteristic orientations.
  • An amorphous solid, or non-crystalline solid is a solid that lacks the long-range order that is characteristic of a crystal.
  • a glass is an amorphous solid that exhibits a glass transition. Glasses are commonly found in spray dried sugar based materials, carbohydrate materials and mixture thereof.
  • the bulking agent in hydrated form has a particle size volume mean diameter D(4,3) of from 10 to 50 ⁇ m; from 10 to 40 ⁇ m; from 15 to 35 ⁇ m; from 17 to 31 ⁇ m.
  • the bulking agent in hydrated form has a particle size surface area mean diameter D(3,2) of from 2 to 30 ⁇ m; from 2 to 20 ⁇ m; from 3 to 15 ⁇ m; from 5 to 12 ⁇ m.
  • the coated bulking agent in crystalline form has a particle size volume mean diameter D(4,3) of from 10 to 60 ⁇ m; 10 to 40 ⁇ m; from 10 to 31 ⁇ m; from 12 to 30 ⁇ m.
  • the coated bulking agent in crystalline form has a particle size surface area mean diameter D(3,2) of from 2 to 40 ⁇ m; 2 to 20 ⁇ m; from 3 to 15 ⁇ m; from 5 to 12 ⁇ m.
  • additional particles that are not coated bulking agent particles contribute to the average size calculated.
  • additional particles include milk protein, crystalline sugar and cocoa.
  • volume weighted mean diameter (D(4,3)] (also known as De Brouckere Mean Diameter) is the mean diameter size corresponding to spheres with the same volume.
  • Sauter mean diameter [known as SMD, d 32 or D(3, 2)] is the mean diameter size of spheres with the corresponding surface area. Calculation of the volume weighted mean diameter and Sauter mean diameter are provided in: [A Guidebook to Particle Size Analysis: Horiba Scientific],
  • the coated bulking agent particle comprises a bulking agent selected from the group consisting of spent coffee grounds; milled tea particles; debittered cocoa and mixtures thereof; a sucrose and hydrolyzed whey protein.
  • Agglomerated coated bulking agent particles means a plurality of coated bulking agent particles associated to form one particle; wherein the individual coated bulking agent particles may be separated by, for example: shear forces.
  • shear forces may be generated by for example: grinding, blending, overhead mixing, such as Silverson mixing (for example Silverson LC5 mixer with a 20 mm screen) roller milling; ball milling; or a gentle conching process.
  • Such methods are used during preparation of a fat-based confection composition, such as addition of the coated bulking agent particle to a prepared fat-based confection composition followed by mixing; or during the preparation of the fat-based confection composition itself.
  • Agglomerated coated bulking agent particles may be formed during spray drying of the coated bulking agent particles.
  • Agglomerated coated bulking agent particles obtained directly from the spay drying apparatus are in a form selected form the group consisting of: amorphous form, crystalline form and mixtures thereof.
  • Such agglomerated coated bulking agent particles are from about 100 to about 500 ⁇ m in length; from about 150 to about 450 ⁇ m in length; from about 200 to about 400 ⁇ m in length. Wherein the length is measured as an estimate of the longest linear dimension observable by SEM images.
  • the coated bulking agent particles may also be measured by the same method and have a size of the largest visible coated bulking agent particle of from about 15 to about 80 ⁇ m in length; from about 20 to about 75 ⁇ m in length.
  • Such agglomerated coated bulking agent particles comprising coated bulking agent particles; wherein the agglomerated particle and coated bulking agent particle have a ratio of length estimated from SEM images of from 1 :1 to 10:1 ; from 2:1 to 8:1.
  • amorphous coated bulking agent particles In order for the coated bulking agent particles to form a crystalline form, amorphous coated bulking agent particles must have a crystallisation temperature above that of the glass transition temperature and below that of the sugar melting temperature.
  • the onset crystallisation temperatures are from between 45 °C and 140 °C, from between 65 °C and 140 °C, from between 70 °C and 130 °C; from between 80 °C and 129 °C.
  • Coated bulking agent particles in individual or agglomerated form, may be added to any fat-based food product to replace granulated sugar.
  • the fat-based food product must be substantially anhydrous.
  • substantially anhydrous means that the composition comprises no more than 5 wt% water, preferably no more than 3 wt% water and more preferably no more than 1 wt% water.
  • the fat-based food product is a fat-based confection composition.
  • a fat-based confection composition may also be known as an oil-based confection composition.
  • the fat-based confection composition comprises one or more particles selected from the group consisting of: coated bulking agent particles, agglomerated coated bulking agent particles, and mixtures thereof.
  • Exemplary fat-based confection compositions include: ambient chocolate, chocolate flavour coating; frozen confection coating compositions, fat-based sauces and inclusions.
  • the fat-based confection composition is a frozen confection coating composition.
  • Frozen confection coating composition means a composition that, when in liquid form and applied to the surface of a frozen confection, solidifies on or shortly after contact with the frozen confection.
  • Frozen confection coating composition means a fat-based edible material for use to form a coating layer on the surface of a frozen confection.
  • Such coating compositions include chocolate or chocolate analogues (also known as couverture or compound chocolate).
  • Exemplary coating composition formulations are provided in WO 2010/072481 A1; ‘Ice Cream’ 5 th Ed., Marshall and Arbuckle, 1996, Chapman & Hall, New York. N.Y., page 300; and ‘Ice Cream’ 7 th Ed., Goff and Hartel, 2013 Springer, New York, N. Y., pages 274-283.
  • Frozen confection means a sweet-tasting fabricated foodstuff intended for consumption in the frozen state (i.e. under conditions wherein the temperature of the foodstuff is less than 0 0 C).
  • the frozen confection is selected from the group consisting of water ice, milk-ice, ice cream, frozen yoghurt, frozen custard, sorbet, gelato and mixtures thereof.
  • Ice cream may be selected from the group consisting of dairy ice cream, non-dairy ice cream and mixtures thereof.
  • the frozen confection comprises ice cream, frozen yoghurt or mixtures thereof.
  • the frozen confection may be prepared, for example, according to methods provided in the ‘The Science of Ice Cream’, C.
  • Frozen confection products comprise one or more frozen confections.
  • Frozen confection products may comprise one or more frozen confections and one or more additional components such as inclusions, one or more frozen confection sauces or mixtures thereof or one or more coatings.
  • Inclusions include for example, fruit pieces, chocolate pieces, confectionary, nuts and bakery goods (wafer, biscuit and cake pieces), as described in ‘The Science of Ice Cream’, C. Clarke, RSC 2004, page 54-59. Additional components may be selected from the group consisting of inclusions, one or more frozen confection sauces and mixtures thereof.
  • the frozen confection sauce composition wherein at least part of the frozen confection sauce composition is positioned on top of the one or more frozen confections, may further comprise a dry coating, such as inclusions, as described in the ‘The Science of Ice Cream’, C. Clarke, RSC 2004, page 98.
  • chocolate or chocolate- 1 ike compositions include chocolate or chocolate analogues (also known as Cosmetic or compound chocolate).
  • Coated bulking agent particles prepared by the process of steps a. to d., and optionally e., that are present in frozen confection products are called frozen confection coated bulking agent particles.
  • the term ‘frozen confection coated bulking agent particles’ is solely used to define the use of the coated bulking agent particles prepared by the process of steps a. to d., and optionally e., and are identical in all physical characteristics and forms to coated bulking agent particles prepared for alternative applications.
  • composition means dark, chocolate, milk chocolate, white chocolate, flavoured chocolate.
  • Compound chocolate is made from a combination of cocoa solids, non- cocoa butter vegetable fats and sweeteners.
  • the coated bulking agent particles in individual or agglomerated form, may be used independently or together with other dry ingredients as, for example, a dry sugar coating for bakery or sweet products.
  • the invention further relates to a process for the preparation of a coated bulking agent particle comprising the steps of: a. Mixing sugar, surface active agent, bulking agent and water; b. Spray drying the mix of step a. to obtain a product comprising amorphous coated bulking agent particles; c. Adding water to the product of step b.; and, d. Heating the product of step c.
  • the coated bulking agent particle comprises from 2 wt% to 70 wt% bulking agent and from 30 wt% to 98 wt% coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent in the composition is from 2000:1 to 4:1 and from 50 wt% to 100 wt% of the sugar is in crystalline form; wherein the bulking agent is coated with the coating composition.
  • step c. and step d. are carried out simultaneously. Consequently, step c. comprises adding water to the amorphous product of step b. and heating.
  • the coated bulking agent particle prepared by the process of steps a. to d. is a frozen confection coated bulking agent particle.
  • the coated bulking agent particle prepared by the process of steps a. to d. is a frozen confection coated bulking agent particle and is present in frozen confection products.
  • the coated bulking agent particle prepared by the process of steps a. to d. is a frozen confection coated bulking agent particle and is present in frozen confection fat-based compositions, preferably frozen confection fat-based coating compositions.
  • Adding water to the product comprising amorphous coated bulking agent particles of step b. means that the amorphous coated bulking agent particles product of step c. comprises a greater amount of water than the amorphous product of step b. It was furthermore surprisingly found that the amorphous coated bulking agent particles product of step c had a lower Tg than the product comprising amorphous coated bulking agent particles of step b.
  • the process of adding water to the amorphous product of step b. may, for example, comprise subjecting the product of step b. to an atmosphere comprising water.
  • An example of subjecting the product of step b. to an atmosphere comprising water is storing the product of step b. in an atmosphere comprising a relative humidity of 5 to 60%.
  • Relative humidity means the ratio of the partial pressure of water vapor in the atmosphere to the equilibrium vapor pressure of water at a given temperature, measured using a hygrometer. Relative humidity (RH) values are expressed as percentages and are dependent on the temperature and pressure of the system being measured. Relative humidity (RH) is measured at room temperature and standard pressure, i.e.: 25 °C, and 1 atmosphere, unless otherwise stated.
  • subjecting is intended to be synonymous with terms including: treating; keeping; exposing; holding; and, incubating.
  • the relative humidity (RH) of the atmosphere comprising water is from 1 % to 60 %, preferably from 3 % to 50 %, more preferably from 5 % to 30 %, more preferably from 10 % to 25 %.
  • the product of step c. comprises an amorphous coated bulking agent particles comprising water.
  • the product of step c. comprising amorphous coated bulking agent particles comprising from 0.5 wt% to 5.0 wt% water, preferably from 1.0 wt% to 3.5 wt% water, more preferably from 1.5 wt% to 3.0 wt% water.
  • the water activity (Aw) of the bulking agent is from 0.01 to 0.20
  • Water activity (Aw) means the partial pressure of water in the amorphous coated bulking agent particles divided by the standard state partial pressure of pure water at the same temperature. It is measured at 1 atmosphere unless stated otherwise.
  • the duration of step c. is from 2 minutes to 48 hours, preferably 5 minutes to 36 hours, more preferably 10 minutes to 24 hours, most preferably 15 minutes to 15 hours.
  • the temperature of step d. is greater than the temperature of the Tg of the amorphous coated bulking agent particle product of step b.
  • the temperature of step d. is from 30 °C to 100 °C, more preferably from 60 °C to 90 °C, more preferably from 70 °C to 80 °C.
  • the temperature of step d. is at least 5°C greater, or at least 10°C greater, or at least 15°C greater, or at least 20°C greater, or at least 30°C greater than the Tg of the amorphous coated bulking agent particles of the product of step b.
  • the temperature of step d. is at least 5°C lower, or at least 10°C lower, or at least 15°C lower, or at least 20°C lower than the melting temperature of the amorphous coated bulking agent particles of the product of step b.
  • the duration of step d. is from 2 minutes to 48 hours, preferably 5 minutes to 36 hours, more preferably 10 minutes to 24 hours, most preferably 15 minutes to 15 hours.
  • the duration of the combined step is from 2 minutes to 48 hours, preferably 5 minutes to 36 hours, more preferably 10 minutes to 24 hours, most preferably 15 minutes to 15 hours.
  • the product of step d. comprises amorphous coated bulking agent particles comprising water prepared according to the process for the preparation of a coated bulking agent particle comprising the steps of: a. Mixing sugar, surface active agent, bulking agent and water; b. Spray drying the mix of step a. to obtain a product comprising amorphous coated bulking agent particles; c. Adding water to the product of step b.; and, d. Heating the product of step c.
  • the coated bulking agent particle comprises from 2 wt% to 70 wt% bulking agent and from 30 wt% to 98 wt% coating composition comprising sugar and surface active agent; wherein the ratio of sugar to surface active agent in the composition is from 2000:1 to 4:1 and from 50 wt% to 100 wt% of the sugar is in crystalline form; wherein the bulking agent is coated with the coating composition.
  • Mixing the bulking agent and water may also be called ‘pre-wetting’.
  • Pre-wetted means the bulking agent has been contacted with water and comprises an amount of water greater than its dried state in order to form a slurry of the bulking agent and water.
  • a pre-wetted method includes preparing a slurry of the bulking agent with water and milling the wetted bulking agent.
  • a process for the preparation of a coated bulking agent particle wherein the temperature of the water of step a. is at least 30°C or at least 40°C or least 50°C or at least 60°C, preferably from 60 °C to around 100 °C
  • a process for the preparation of a coated bulking agent particle further comprising a step of grinding or mixing the fat-based confection composition comprising the product of step d.
  • a process for the preparation of a coated bulking agent particle comprising an optional step e, wherein the coated bulking agent particle of step d. is further dried. This can be done at a temperature of from 50 °C to 100 °C; from 50 °C to 90 °C; from 60 °C to 85 °C; from 70 °C to 80 °C, preferably under a vacuum.
  • a process for the preparation of a coated bulking agent particle wherein the inlet temperature of the chamber of the spray dryer of step b. is from 80 °C to 200 °C; from 100 °C to 180 °C; from 120 °C to 160 °C.
  • a process for the preparation of a coated bulking agent particle wherein the outlet temperature of the chamber of the spray dryer of step b. is from 50 °C to 120 °C; from 60 °C to 100 °C.
  • the invention also covers an amorphous coated bulking agent particle prepared with a process comprising the steps as mentioned above i.e.: a. Mixing sugar, surface active agent, bulking agent and water, b. Spray drying the mix of step a. to obtain an amorphous product, c. Adding water to the amorphous product of step b.
  • Step b Water is added to the amorphous product of step b. to obtain an amorphous product comprising from 1.0 to 5.0 wt% water.
  • Fig 1 Agglomerated sucrose and protein (0.6 wt% based on sucrose) particles according to Example 1a in amorphous form. Individual particle size of largest coated bulking agent particle is estimated at about 50 ⁇ m; largest linear length of agglomerated particle size is estimated at 280 ⁇ m.
  • Fig 2 Agglomerated sucrose and protein (0.6 wt% based on sucrose) particles according to Example 1b in amorphous form. Individual particle size of largest coated bulking agent particle is estimated at about 30 ⁇ m; largest linear length of agglomerated particle size is estimated at 145 ⁇ m.
  • Fig 3 Agglomerated coated cocoa particles (protein is 0.6 wt% based on sucrose) according to Example 5 in amorphous form. Individual particle size of largest coated cocoa particle is estimated at about 75 ⁇ m; largest linear length of agglomerated particle size is estimated at 170 ⁇ m.
  • Fig 4 Agglomerated coated cocoa particles (protein is 0.68 wt% based on sucrose) according to Example 6 in amorphous form. Individual particle size of largest coated cocoa particle is estimated at about 20 ⁇ m; largest linear length of agglomerated particle size is estimated at 100 ⁇ m.
  • Fig 5 Agglomerated coated cocoa particles (protein is 1.08 wt% based on sucrose) according to Example 7 in amorphous form. Individual particle size of largest coated cocoa particle is estimated at about 33 ⁇ m; largest linear length of agglomerated particle size is estimated at 110 ⁇ m.
  • Fig 6 Agglomerated coated tea particles (protein is 0.68 wt% based on sucrose) according to Example 8 in amorphous form. Individual particle size of largest coated tea particle is estimated at about 55 ⁇ m; largest linear length of agglomerated particle size is estimated at 380 ⁇ m.
  • Fig 7 Polarised light image of the particles of Example 18 [sugar (80 wt%); protein (20 wt%)] after crystallisation of the particles.
  • the particles are crystalline as can be seen by the white images on the image.
  • Fig 8 Polarised light image of the particles of Example 19 [sugar (70 wt%); protein (30 wt%)] after crystallisation of the particles.
  • the particles are amorphous as can be seen by the lack of white particles on the image.
  • Fig 9 TGA Sorption Analysis of Examples 33 to 36.
  • the effect of the addition of water by increasing the relative humidity of the environment to 40% can be observed.
  • the graph also shows the earlier onset of crystallisation for the exhausted cocoa powder in comparison to the micronized cocoa shells at the same temperature and relative humidity.
  • Spent coffee grounds [Douwe Egberts Pure Gold, medium roast] were collected and wet milled using a VWR ball mill operating at full power for 90 minutes to achieve to a particle size of 20 ⁇ m, as determined by a Mastersizer measurement [Mastersizer 2000; Malvern Panalytical], The material was then wet sieved through a 25 ⁇ m stainless steel sieve with running water to obtain a fraction between 32 and 20 ⁇ m as determined by a Mastersizer measurement. The material was then mixed with boiling water and centrifuged on an Sorvall® RC3C centrifuge [ThermoFisher Scientific] at 5000rpm for 15 minutes at 4°C. The process was repeated until the material was substantially free of flavor and aroma. The resultant pellet comprised spent coffee grinds (16.7 wt%, dry weight) and the remainder was water.
  • Cocoa particles [Cargill (10-12% fat FTNG k)] were washed with hot water (70°C) through a 20 ⁇ m stainless steel sieve [Endcotts], Washing was continued until a clear filtrate was obtained. The cocoa particles were then transferred to a 25 ⁇ m sieve sitting over a 20 ⁇ m sieve and the material was washed again. The cocoa particles were then mixed with boiling water, cooled and centrifuged on an RC3C centrifuge [ThermoFisher Scientific] at 5000rpm for 15 minutes at 4°C. The centrifugation process was repeated until the cocoa particles were substantially free of aroma. The resultant pellet comprised cocoa [7.3 wt%, dry weight] and the remainder was water.
  • Pea protein [Puris Pea 870; Cargill] was mixed with boiling water, cooled and centrifuged corresponding to Ex 3-7. The centrifugation process was repeated until the supernant was clear. The resultant pellet comprised insoluble pea protein and the supernant comprised soluble pea protein. The insoluble protein was dispersed in water, sugar and whey protein and homogenized at 400 bar.
  • Sucrose (280g), whey protein (2.8g) and wet bulking agent [359g (dry weight 60 g)] were slurried in water (920 ml). The slurry was heated and retained at 65°C, and spray dried on a Buchi Mini B290 mini-spray dryer. The spray dryer conditions were as follows:
  • Example 2 The same procedure as Example 2 was followed for Examples 1a, 3-8 using the compositions provided in Table 1.
  • Example 1b the spray drying conditions were:
  • Example 8 the spray drying conditions were:
  • Example 2 The same procedure as Example 2 was followed using the compositions provided in Table 1.
  • the spray drying conditions were:
  • Example 2 The same procedure as Example 2 was followed using the compositions provided in Table 1.
  • the spray drying conditions were:
  • Example 2 The same procedure as Example 2 was followed using the compositions provided in Table 2 The spray drying conditions were:
  • Example 2 The same procedure as Example 2 was followed using the compositions provided in Table 1.
  • the spray drying conditions were:
  • the amorphous, agglomerated coated bulking agent particles were collected from the sample chamber of the spray dryer and dried under vacuum at 80°C for 72 hours to obtain agglomerated coated bulking agent particles in crystalline form.
  • the amorphous, agglomerated coated bulking agent particles were collected from the sample chamber of the spray dryer and dried under vacuum at 80°C for 72 hours to obtain agglomerated coated bulking agent particles in crystalline form.
  • amorphous, agglomerated coated bulking agent particles were collected from the sample chamber of the spray dryer and dried under vacuum at 80°C for 2 days to obtain agglomerated coated bulking agent particles in crystalline form. Examples 5-7:
  • the amorphous, agglomerated coated bulking agent particles were collected from the spray dryer and heated at 80°C for 2 days to obtain agglomerated coated bulking agent particles in crystalline form.
  • the amorphous, agglomerated coated bulking agent particles were collected from the spray dryer and subsequently analysed.
  • Example 9a and 18 The amorphous, agglomerated coated bulking agent particles were collected from the spray dryer and heated at 80°C overnight to obtain agglomerated coated bulking agent particles in crystalline form (Examples 9a and 18); Example 19 particles did not crystallise, the particles obtained after drying were amorphous.
  • the amorphous, agglomerated coated bulking agent particles were collected from the spray dryer and heated at 80°C overnight to obtain agglomerated coated bulking agent particles in crystalline form.
  • the crystalline, agglomerated coated bulking agent particles were collected from the spray dryer and subsequently analysed.
  • the amorphous, agglomerated coated bulking agent particles were collected from the spray dryer and subsequently analysed.
  • the amorphous, agglomerated coated bulking agent particles were collected from the sample chamber of the spray dryer. The initial particles were in the amorphous form. DSC analysis was then conducted on the amorphous materials. All examples:
  • Individual coated bulking agent particles are obtainable from their agglomerated form through a low shear method of grinding, such as ball milling.
  • a fat-based confection composition was prepared in 1.0-1.5 kg batches as follows: First, the emulsifier was added to the cocoa butter at 45°C to obtain an emulsifier and cocoa butter mix. Coated bulking agent particles according to Example 2 (39.1g) were added to (40.9 g) of melted emulsifier and cocoa butter mix using a Waring blender. The dry ingredients (sucrose and cocoa) were blended together and added to the cocoa butter and emulsifier mix comprising the coated bulking agent particles and shear was applied until the mixture began to flow easily. The composition was then transferred into a Weiner chocolate ball mill and milled at 40°C on 60 % speed setting until the particles were below 25 ⁇ m.
  • the slurry was milled and the particle size was measured at regular intervals using a Draper external digital micrometer. Once the particle size had been reduced to less than 25 ⁇ m milling, the fat-based confection composition was then removed and transferred into a chocolate mould and stored at - 25°C.
  • Fat-Based confection compositions comprising coated bulking agent particles of examples 9b, 9c and 9d Pick-Up Weights:
  • the coated bulking agent particles dispersed in chocolate or coconut oil were heated to 40°C. Aliguots of the dispersion were added to a medium chain triglyceride (MCT; DANISCO) as the dispersant. Samples of particles were added to the dispersant chamber until the reguired sample obscuration was achieved. An average of 3 replicates were analyzed [Mastersizer 2000; Malvern Pananlytica] to give the final particle size, calculated using the Mastersizer software. Values of D[4,3] and D[3,2] were included in the standard output. The particle size was calculated using Franhoffer approximations.
  • MCT medium chain triglyceride
  • Water insoluble cellulose fibre particles or insoluble protein particles, both in their hydrated forms, were measured using the same method as provided for the spray dried coated bulking agent particles; however, water was used as the dispersant. Samples of particles were added to the dispersant chamber until the reguired sample obscuration was achieved. An average of 3 replicates were analyzed [Mastersizer 2000; Malvern Pananlytica] to give the final particle size, calculated using the Mastersizer software. Values of D[4,3] and D[3,2] were included in the standard output. The particle size was calculated using Franhoffer approximations. Mastersizer calculations of particle sizes are based on Mie light scattering theory which assumes spherical particles.
  • the method was a step method:
  • Step 1 is a pre-shear to condition the material at a shear rate of 5 s -1
  • Step 2 is shear rate ramp from 2 to 50 s -1 over 3 mins
  • Step 3 constant shear rate at 50 s -1 for 1 min
  • Step 4 is shear rate ramp from 50 to 2 s -1 over 3 mins
  • step 4 Only step 4 is analysed to extract the Casson parameters. Data analysed is from 50 s’ 1 to 5 s -1 . Square root of stress is plotted on the y-axis and square root of shear rate is plotted on the x-axis. The square of the slope gives the Casson viscosity and the square of the intercept gives the Casson yield.
  • DSC Differential Scanning Calorimetry
  • DSC Differential scanning calorimetric
  • SEM images were obtained using the following methodology. A portion of the sample was sprinkled onto a large specimen stub on which was mounted a sticky carbon disc. The stub was gently tapped to remove any loose particle. The sample was rotary sputter coated with 20 nm of gold/palladium. Imaging was carried out in the SEM (JEOL JSM-6060) operated at either 5 or 10kV to eliminate any charging effects and the specimen stage tilted to 45°. Images were captured at appropriate magnifications to best demonstrate particle structure.
  • Table 2 Particles comprising Sucrose and Protein.
  • Cocoa butter from Barry Callebaut Cocoa powder from Cargill 10-12% fat FTNG k
  • Tables 3 and 4 illustrate that substitution of 30% of the granulated sugar of a fat-based confection composition comprising crystalline coated bulking agent particles result in a comparable Casson viscosity (1.1 PaS compared to 1.6 PaS) and Casson yield (0.4 Pa compared to 0.6 Pa) of the resultant fat-based confection composition in comparison to the same fat-based composition comprising sucrose only.
  • the comparable Casson Viscosity and Casson Yield values demonstrates that a fat-based confection composition comprising crystalline coated bulking agent particles would be suitable, for example, for use as a fat-based coating composition for frozen confections.
  • Tables 3 and 4 also illustrate that substitution of 30% of the granulated sugar of a fat- based confection composition comprising a coffee bulking agent results in a significantly higher Casson viscosity (3.2 PaS compared to 1.6 PaS) and Casson yield (1.0 Pa compared to 0.6 Pa) when added to a fat-based confection composition.
  • the significantly increased Casson viscosity and Casson yield values demonstrates that a fat-based confection composition comprising spent coffee grounds as a bulking agent would not be suitable for use as a fat-based coating composition for frozen confection. It’s likely that such an increase in Casson Viscosity and Casson Yield would result in difficulties with processing such as coating frozen confections. Thickness and uniformity of the coating would also be adversely affected.
  • Table 5 Tables 3, 4 and 5 illustrate that substitution of 35 wt% of the granulated sugar of a fat- based confection composition comprising crystalline coated bulking agent particles result in a reduced pick-up weight when used as a coating composition for a frozen confection.
  • Casson Viscosity 1.3 or 1.04 PaS compared to 1.6 PaS
  • Casson Yield 0.0 and 0.08 Pa compared to 0.6 Pa
  • the reduced Casson Viscosity and Casson Yield values demonstrate that a fat-based confection coating composition comprising crystalline coated bulking agent particles would be suitable, for example, for use as a fat-based confection coating composition for frozen confections.
  • the fat-based confection coating composition comprising crystalline coated bulking agent particles of the invention reduced in calories through the substitution of the sucrose with crystalline coating bulking agent particles
  • the advantageous physical properties of the coated bulking agent particles of the invention i.e.; Examples 9b and 9c, enables a reduced pick-up weight of the coating composition on the frozen confection to be achieved.
  • This allows a further reduction in calories by enabling the reduction of the amount of fat-based confection coating composition required to fully coat frozen confections to the same quality as a fat-based confection coating composition comprising sucrose only.
  • Tables 3, 4 and 5 also illustrate that the fat-based confection composition comprising crystalline coated bulking agent particles of Examples of 9b and 9c have greatly reduced Casson Viscosity and Casson Yield values in comparison to amorphous coated bulking agent particles in the same fat-based confection coating composition.
  • the Casson Viscosity and Casson Yield values of Example 9d illustrate that such compositions greatly increase the pick-up weight when used as a fat-based confection coating composition, resulting in an increase in calories per product and a lower quality of coating as the thickness and uniformity of the coating would be adversely affected by a Casson Viscosity of 2.2 Pa.
  • Sucrose (280g), whey protein (2.8g) and wet bulking agent [micronized cocoa shell (dry weight 180 g)] were slurried in water (920 ml). The slurry was heated and retained at 65°C, and spray dried on a Buchi Mini B290 mini-spray dryer.
  • the spray dryer conditions were as follows:
  • Amorphous coated bulking agent particles were collected from the sample chamber of the spray dryer and dried by heating at 80°C for 24 hours to obtain coated bulking agent particles in crystalline form.
  • Example 20 was followed using the amounts of components provided in Table 6; however, the amorphous coated bulking agent particles were dried by heating at 90°C for 24 hours to obtain coated bulking agent particles in crystalline form.
  • Example 20 was followed using the amounts of components provided in Table 6; however, the amorphous coated bulking agent particles were collected from the sample chamber of the spray dryer and dried at 80°C at 25% to 30% relative humidity for 30 mins to 1 hour to obtain coated bulking agent particles in crystalline form.
  • step c. Adding water to the amorphous coated bulking agent particles (step c.) and simultaneously heating step (step d.) enables a significantly faster process of crystallising the amorphous particles.
  • Examples 20 and 21 were heated for 24 hours to obtain crystalline particles, in comparison, the amorphous particles of Examples 22 and 23 were prepared as crystalline particles within 30 minutes to 1 hour.
  • Examples 24-28 Preparation of amorphous coated bulking agent particles with increased water content.
  • Sucrose (200g), whey protein (2.8g) and wet bulking agent (dry weight 200 g) were slurried in water (920 ml). The slurry was heated and retained at 65°C, and spray dried on a Buchi Mini B290 mini-spray dryer to obtain amorphous coated bulking agent particles.
  • the spray dryer conditions were as follows:
  • the amorphous coated bulking agent particles were collected from the sample chamber of the spray dryer and allowed to stand for 20 hours in an atmosphere of 30%, 40% or 50% relative humidity at 25 °C and 1 atmosphere. Amorphous coated bulking agent particles comprising additional water were obtained. The moisture content of the amorphous coated bulking agent particles comprising additional water was measured. The Method for Measurement of Glass transition was used to measure the Tg of the samples.
  • Table 7 Preparation of Amorphous Coated Bulking Agent Particles with Increased Water Content.
  • the amorphous coated bulking agent particles comprising additional water were dried by heating at 80°C for 30 mins to 1 hour to obtain coated bulking agent particles in crystalline form.
  • Sucrose (60wt%), whey protein (0.6wt%) and wet bulking agent (dry weight 39.4wt%)] were slurried in water (920 ml). The dry substance of the slurry was 20wt%. The slurry was heated and retained at 65°C, and spray dried on a Buchi Mini B290 mini-spray dryer to obtain amorphous coated bulking agent particles.
  • the spray dryer conditions were as follows:
  • the slurry was heated and retained at 65°C, and spray dried on a Buchi Mini B290 mini-spray dryer to obtain amorphous coated bulking agent particles.
  • the amorphous coated bulking agent particles were collected from the sample chamber of the spray dryer and placed in a Thermal Gravimetric Analysis (TGA) Sorption analyzer.
  • TGA Thermal Gravimetric Analysis
  • This is a device designed to analyze powders under defined conditions of temperature and relative humidity (connected to controlled humidity generator). During the analysis, information about the variation of sample weight and heat flow is collected and from this the start of crystallization can be identified.
  • the temperature TGA Sorption analyzer was set to 40°C.
  • the relative humidity within the device is provided in the table below.
  • the sample was then analysed by DSC to check whether crystallization had occurred.
  • Sucrose (60wt%), whey protein (0.6wt%) and wet bulking agent (dry weight 39.4wt%)] were slurried in water (920 ml). The dry substance of the slurry was 20wt%. The slurry was heated and retained at 65°C, and spray dried on a Buchi Mini B290 mini-spray dryer to obtain amorphous coated bulking agent particles.
  • the spray dryer conditions were as follows:
  • the slurry was heated and retained at 65°C, and spray dried on a Buchi Mini B290 mini-spray dryer to obtain amorphous coated bulking agent particles.
  • the spray dryer conditions were as follows:
  • the amorphous coated bulking agent particles were collected from the sample chamber of the spray dryer and placed in a climate chamber at 80°C at 30% relative humidity or in a non-humidified oven at 80°C with less than 2% relative humidity. Samples were taken at 30minutes, 60minutes and 90minutes (for the samples placed in the climated chamber) and at 90,180, 360 minutes (for non-humidified samples placed in the oven) and quickly cooled with liquid nitrogen. The DSC was then measured of each sample to check whether the sample had crystallised according to the following method:
  • step c. Adding water to the amorphous coated bulking agent particles (step c.) and simultaneously heating step (step d.) enables a significantly faster process of crystallisation. Crystallisation occurred more easily and faster for the sample comprising the exhausted cocoa powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Confectionery (AREA)

Abstract

La présente invention concerne de nouvelles particules d'agent gonflant enrobées destinées à réduire les calories dans des produits alimentaires à base de graisse comprenant du sucre. L'invention concerne une particule d'agent gonflant enrobée comprenant de 2 % en poids à 70 % en poids d'agent gonflant et de 30 % en poids à 98 % en poids d'une composition d'enrobage comprenant du sucre et un agent tensioactif ; le rapport du sucre à l'agent tensioactif de la composition étant de 2 000:1 à 4:1 et de 50 % en poids à 100 % en poids du sucre dans sa forme cristalline ; l'agent gonflant étant revêtu de la composition d'enrobage ; une particule d'agent gonflant enrobée agglomérée ; un processus de préparation des particules et une composition de confiserie à base de graisse comprenant les particules d'agent gonflant enrobées.
PCT/EP2021/075444 2020-09-17 2021-09-16 Processus de préparation de particules d'agent gonflant enrobées WO2022058406A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20196768.4 2020-09-17
EP20196768 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022058406A1 true WO2022058406A1 (fr) 2022-03-24

Family

ID=72561572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/075444 WO2022058406A1 (fr) 2020-09-17 2021-09-16 Processus de préparation de particules d'agent gonflant enrobées

Country Status (1)

Country Link
WO (1) WO2022058406A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342636A (en) 1992-05-05 1994-08-30 Bakshi Amarjit S Process for modifying a fibrous bulking agent
WO2010072481A1 (fr) 2008-12-23 2010-07-01 Unilever Plc Composition de revêtement pour confections congelées
WO2011141150A1 (fr) * 2010-05-10 2011-11-17 Cargill, Incorporated Compositions de poudre de cacao
WO2012095121A1 (fr) * 2011-01-12 2012-07-19 Cargill, Incorporated Compositions à base de poudre de cacao
WO2017093302A1 (fr) * 2015-11-30 2017-06-08 Nestec S.A. Succédané de sucre en vrac
WO2017093390A1 (fr) 2015-12-02 2017-06-08 Abu Dhabi Polymers Company Limited (Borouge) L.L.C. Polyéthylène haute densité
WO2018100059A1 (fr) * 2016-11-30 2018-06-07 Nestec Sa Procédé de production de particules poreuses amorphes pour réduire le sucre dans un aliment
WO2018224539A1 (fr) * 2017-06-07 2018-12-13 Nestec S.A. Particules poreuses pour réduire le sucre dans un aliment
WO2019152703A1 (fr) * 2018-01-31 2019-08-08 The Hershey Company Particule enrobée pour produit comestible
WO2020115303A1 (fr) * 2018-12-06 2020-06-11 Societe Des Produits Nestle S.A. Particules amorphes pour réduire le sucre dans un aliment
WO2020182687A1 (fr) * 2019-03-08 2020-09-17 Unilever Plc Nouvelles particules d'agent gonflant enrobées

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342636A (en) 1992-05-05 1994-08-30 Bakshi Amarjit S Process for modifying a fibrous bulking agent
WO2010072481A1 (fr) 2008-12-23 2010-07-01 Unilever Plc Composition de revêtement pour confections congelées
WO2011141150A1 (fr) * 2010-05-10 2011-11-17 Cargill, Incorporated Compositions de poudre de cacao
WO2012095121A1 (fr) * 2011-01-12 2012-07-19 Cargill, Incorporated Compositions à base de poudre de cacao
WO2017093302A1 (fr) * 2015-11-30 2017-06-08 Nestec S.A. Succédané de sucre en vrac
WO2017093390A1 (fr) 2015-12-02 2017-06-08 Abu Dhabi Polymers Company Limited (Borouge) L.L.C. Polyéthylène haute densité
WO2018100059A1 (fr) * 2016-11-30 2018-06-07 Nestec Sa Procédé de production de particules poreuses amorphes pour réduire le sucre dans un aliment
WO2018224539A1 (fr) * 2017-06-07 2018-12-13 Nestec S.A. Particules poreuses pour réduire le sucre dans un aliment
WO2019152703A1 (fr) * 2018-01-31 2019-08-08 The Hershey Company Particule enrobée pour produit comestible
WO2020115303A1 (fr) * 2018-12-06 2020-06-11 Societe Des Produits Nestle S.A. Particules amorphes pour réduire le sucre dans un aliment
WO2020182687A1 (fr) * 2019-03-08 2020-09-17 Unilever Plc Nouvelles particules d'agent gonflant enrobées

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. CLARKE: "The Science of Ice Cream", 2004, pages: 98 - 59
MARSHALLARBUCKLE: "Ice Cream", 1996, CHAPMAN & HALL, pages: 300

Similar Documents

Publication Publication Date Title
US20220142198A1 (en) Novel coated bulking agent particles
JP6983157B2 (ja) かさ高い糖代替物
JP7264828B2 (ja) 食品中の糖を低減するための多孔質粒子
JP5133698B2 (ja) チョコレート製品及び材料並びに新規な水中油型懸濁物の製造方法
JP6448631B2 (ja) 非晶質に固化された生体高分子からなる球状粒子、その製法及びその使用
US11957146B2 (en) Amorphous particles for reducing sugar in food
WO2018224546A1 (fr) Produit de confiserie
PL170518B1 (pl) Czekoladopodobny wyrób niskotluszczowy i sposób wytwarzania czekoladopodobnegowyrobu niskotluszczowego PL
WO2018100059A1 (fr) Procédé de production de particules poreuses amorphes pour réduire le sucre dans un aliment
WO2018224534A1 (fr) Composition d'enrobage de confiserie glacée et son procédé de fabrication
US20230329276A1 (en) Novel coated bulking agent particles
US8790737B2 (en) Chocolate with agglomerate structure and the method for preparing thereof
US20230329307A1 (en) Novel coated bulking agent particles
WO2022058406A1 (fr) Processus de préparation de particules d'agent gonflant enrobées
WO2022058415A1 (fr) Nouvelles particules d'agent gonflant enrobées
CN111789180B (zh) 一种抗起霜巧克力及其制作方法
WO2021180696A1 (fr) Nouvelles particules d'agent gonflant enrobées
WO2021013855A1 (fr) Procédé de préparation de particules cristallines
KR20240052948A (ko) 저당 밀크 초콜릿 과자 및 그를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21778034

Country of ref document: EP

Kind code of ref document: A1