WO2022057304A1 - 数据校正方法、装置、终端设备及存储介质 - Google Patents

数据校正方法、装置、终端设备及存储介质 Download PDF

Info

Publication number
WO2022057304A1
WO2022057304A1 PCT/CN2021/096088 CN2021096088W WO2022057304A1 WO 2022057304 A1 WO2022057304 A1 WO 2022057304A1 CN 2021096088 W CN2021096088 W CN 2021096088W WO 2022057304 A1 WO2022057304 A1 WO 2022057304A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
temperature
electromagnetic
preset
data
Prior art date
Application number
PCT/CN2021/096088
Other languages
English (en)
French (fr)
Inventor
何展翔
陈晓非
任恒鑫
韩鹏
Original Assignee
南方科技大学
南方海洋科学与工程广东省实验室(广州)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学, 南方海洋科学与工程广东省实验室(广州) filed Critical 南方科技大学
Publication of WO2022057304A1 publication Critical patent/WO2022057304A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/38Processing data, e.g. for analysis, for interpretation, for correction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present application belongs to the technical field of data processing, and in particular, relates to a data correction method, apparatus, terminal device and storage medium.
  • Submarine electromagnetic exploration is an important part of geophysical exploration.
  • the submarine electromagnetic signal is collected by the submarine electromagnetic acquisition station.
  • the submarine electromagnetic signal collected by the submarine electromagnetic acquisition station contains a lot of submarine noise, so the signal quality of the submarine electromagnetic signal collected by the submarine electromagnetic acquisition station is poor.
  • the submarine electromagnetic remote reference synchronization technology is used to collect the submarine electromagnetic signal.
  • a plurality of acquisition stations are used to collect seabed electromagnetic signals at the exploration and reference points, respectively, and the seabed electromagnetic signals collected at the reference point are used as reference signals to perform auxiliary denoising on the seabed electromagnetic signals collected at the exploration and measurement points.
  • the auxiliary denoising process requires that the acquisition data of the survey point and the reference point are completely synchronized, that is, the time synchronization of each acquisition station is required.
  • GPS time synchronization can be used frequently in a short period of time, which can ensure that the time of the collection station meets the requirements of remote reference synchronization.
  • the submarine magnetotelluric cannot use GPS to synchronize the time, only the crystal oscillator clock can be set inside the acquisition station.
  • Now atomic clocks have been developed as the clock of the acquisition station. Because the atomic clock of the crystal oscillator clock also has errors accumulated, after collecting data on the seabed for a long time, the clock accumulates. The error is very large and cannot meet the synchronization requirements of the magnetotelluric remote reference processing. Moreover, the error of the atomic clock is also affected by temperature. Different temperature clocks have different errors, so it is difficult to synchronize the data of the submarine magnetotelluric acquisition station. It can be seen that the current submarine electromagnetic remote reference synchronization technology cannot be implemented because the time between the acquisition station and the reference station cannot reach the synchronization accuracy.
  • the embodiments of the present application provide a data correction method, an apparatus, a terminal device and a storage medium, which can solve the problem of low synchronization accuracy in the current submarine electromagnetic remote reference synchronization technology.
  • an embodiment of the present application provides a data correction method, including:
  • the submarine electromagnetic acquisition station determines the time period temperature corresponding to each time period of the electromagnetic time series data
  • the preset time correction template the time error corresponding to the temperature in each time period is determined, and the preset time correction template is used to represent the change of the time error of the clock on the submarine electromagnetic acquisition station according to the duration of different temperatures;
  • the electromagnetic time series data is corrected.
  • the electromagnetic time series data and temperature data collected by the submarine electromagnetic acquisition station are used to determine the time period temperature corresponding to each time period of the electromagnetic time series data, so that the data collected by the submarine electromagnetic acquisition station can be determined. Then, according to the preset time correction template, the time error corresponding to the temperature in each time period is determined, so that the adverse effect of temperature on the clock of the collection station can be characterized as a specific influence parameter value, so that the influence can be based on the effect.
  • the time sequence of the data collected by the collection station is corrected; finally, based on the time error corresponding to the temperature of each time period, the time sequence of the electromagnetic time series data is corrected, so that the clock time of each collection station can be corrected, ensuring more
  • the electromagnetic time series data of each acquisition station is synchronized to improve the synchronization accuracy of the submarine electromagnetic remote reference synchronization technology.
  • an embodiment of the present application provides a data correction device, including:
  • the first determination module is used for determining the time period temperature corresponding to the electromagnetic time series data in each time period according to the electromagnetic time series data and the temperature change curve collected by the submarine electromagnetic collection station;
  • the second determination module is used to determine the time error corresponding to the temperature in each time period according to a preset time correction template, and the preset time correction template is used to represent that the time error of the clock on the submarine electromagnetic acquisition station occurs according to the duration of different temperatures changes;
  • the correction module is used to correct the electromagnetic time series data based on the time error corresponding to the temperature in each time period.
  • an embodiment of the present application provides a terminal device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program
  • the data correction method according to any one of the above first aspects is implemented.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of the above-mentioned first aspects is implemented.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a terminal device, enables the terminal device to execute the data correction method described in any one of the first aspects above.
  • FIG. 1 is a schematic flowchart of a data correction method provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of step S101 in the data correction method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a data correction method provided by another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a data correction device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrases “if it is determined” or “if the [described condition or event] is detected” may be interpreted, depending on the context, to mean “once it is determined” or “in response to the determination” or “once the [described condition or event] is detected. ]” or “in response to detection of the [described condition or event]”.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the auxiliary denoising process requires that the acquisition data of the survey points and the acquisition data of the reference point are completely synchronized, that is, the time synchronization of each acquisition station is required.
  • GPS time synchronization can be used frequently in a short period of time, which can ensure that the time of the collection station meets the requirements of remote reference synchronization.
  • the submarine magnetotelluric cannot use GPS to synchronize the time, only the crystal oscillator clock can be set inside the acquisition station.
  • atomic clocks have been developed as the clock of the acquisition station. Because the atomic clock of the crystal oscillator clock also has errors accumulated, after collecting data on the seabed for a long time, the clock accumulates.
  • the error is very large and cannot meet the synchronization requirements of the magnetotelluric remote reference processing.
  • the error of the atomic clock is also affected by temperature. Different temperature clocks have different errors, so it is difficult to synchronize the data of the submarine magnetotelluric acquisition station. It can be seen that the current submarine electromagnetic remote reference synchronization technology cannot be implemented because the time between the acquisition station and the reference station cannot reach the synchronization accuracy.
  • the embodiment of the present application proposes a method for data correction, which determines the temperature of the time period corresponding to the electromagnetic time series data in each time period through the electromagnetic time series data and temperature data collected by the submarine electromagnetic acquisition station, so that the seabed can be determined.
  • the temperature change of the electromagnetic acquisition station during the data acquisition process then, according to the preset time correction template, the time error corresponding to the temperature in each time period is determined, so that the adverse effect of temperature on the clock of the acquisition station can be characterized as a specific influence parameter value,
  • the time series of the electromagnetic time series data can be corrected, so that the clock of each collection station can be corrected.
  • the time is corrected to ensure the synchronization of the electromagnetic time series data of multiple acquisition stations, and to improve the synchronization accuracy of the submarine electromagnetic remote reference synchronization technology.
  • FIG. 1 shows a schematic flowchart of a data correction method provided by an embodiment of the present application.
  • the execution subject of the data correction method provided by this application is a terminal device, and the terminal device includes but is not limited to mobile terminals such as smart phones, notebook computers, tablet computers, supercomputers, and personal digital assistants, and may also include terminal devices such as desktop computers and servers.
  • the processing method of the submarine electromagnetic signal shown in FIG. 1 includes S101 to S103, which are described in detail as follows.
  • the terminal device obtains electromagnetic time series data and temperature data in advance.
  • the electromagnetic time series data is the submarine electromagnetic signal actually detected by the submarine electromagnetic acquisition station, and the submarine electromagnetic detection signal includes the submarine electromagnetic signal and the submarine noise signal.
  • the submarine electromagnetic signal is the electromagnetic signal of the seabed earth, and its main signal sources include the ionosphere, magnetic storm and geomagnetic pulsation;
  • the submarine noise signal is the noise generated by the marine environment or human activities, for example, the electromagnetic noise generated by the ocean current cutting the earth's magnetic field, Electromagnetic signals generated by ship activities and electromagnetic signals generated by electrical equipment on ships.
  • the temperature data is the ambient temperature data of the environment where the submarine electromagnetic acquisition station is located, and the ambient temperature data is the temperature time series data of the temperature changing with time, which includes the ambient temperature data of the submarine electromagnetic acquisition station on the deck, and the bottom of the submarine electromagnetic acquisition station.
  • the ambient temperature data in the process of diving to the target position on the seabed, the ambient temperature data when the seabed electromagnetic collection station is at the target position on the seabed, and the ambient temperature data during the recovery from the seabed collection and collection station to the deck.
  • the submarine electromagnetic acquisition station is a device that dives to the seabed to detect submarine electromagnetic detection signals.
  • the structure of the device includes but is not limited to electromagnetic data recorders, electric field sensors, magnetic field sensors, beacons, clocks, releasers, azimuth and CTD recorders , thermometer, float, mooring and frame.
  • the clock is an atomic clock
  • the electromagnetic data recorder is used to record electromagnetic time series data
  • the thermometer is used to record the temperature of the environment where the submarine electromagnetic acquisition station is located.
  • the terminal equipment can be communicated with the submarine electromagnetic acquisition station, so as to obtain the electromagnetic time series data and temperature data collected by the submarine electromagnetic acquisition station in real time; the terminal equipment can also be communicated with the server, and the server and the submarine electromagnetic acquisition station. , so as to upload the submarine electromagnetic time series data and temperature data collected by the submarine electromagnetic acquisition station to the server, and the terminal device downloads the electromagnetic time series data and temperature data from the server.
  • the temperature in the time period is a numerical value that represents the constant temperature of the electromagnetic time series data in this time period. It is understandable that the temperature is regarded as a constant temperature within the preset error range, such as temperature T ⁇ 0.1°C. It should be noted that the submarine electromagnetic acquisition station has a long residence time on the deck, the diving process, the seabed and the recovery process. The temperature of the environment where it is located has a constant temperature, and there must be temperature changes.
  • the terminal device determines the time period temperature corresponding to each time period of the electromagnetic time series data according to the electromagnetic time series data and the temperature data.
  • the electromagnetic time series data and the temperature data are both time series data, the electromagnetic time series data and the temperature data are time-aligned, so as to obtain the time-corresponding relationship between the electromagnetic time series data and the temperature data, and based on the time period of constant temperature. , and determine the electromagnetic time series data corresponding to the time period, so as to obtain the time period temperature of the electromagnetic time series data in the time period.
  • S102 Determine the time error corresponding to the temperature in each time period according to a preset time correction template, where the preset time correction template is used to represent the change of the time error of the clock on the submarine electromagnetic acquisition station according to the duration of different temperatures.
  • the time error is the offset of the time offset that occurs when the clock of the submarine electromagnetic acquisition station lasts for different durations at different temperatures.
  • the terminal device pre-stores a pre-built preset time correction template.
  • the preset time correction template is used to characterize the correspondence between temperature, temperature duration and time error, specifically to characterize the time error of the clock on the submarine electromagnetic acquisition station changing with the duration of different temperatures. It can be understood that the time offset of the clock of the submarine electromagnetic acquisition station is different at different temperatures, and with the increase of time, the time error caused by the time offset will also increase.
  • the offset of the time offset is 0.1 microseconds every 1 hour.
  • the time offset of the clock of the electromagnetic acquisition station is 4.8 microseconds, so the time error curve of 2 hours at 5°C is characterized by the preset time correction template.
  • the time error change curve with a temperature of 5°C in the time period is queried, and according to the time length of the time period, the time error corresponding to the time length in the time error change curve is queried.
  • the method further includes: determining a collection process corresponding to the electromagnetic time series data; and acquiring a preset time correction template corresponding to the collection process.
  • the acquisition process is the process corresponding to different environments of the submarine electromagnetic acquisition station, for example, the preparation process corresponding to the deck environment, the diving process environment corresponding to the diving process, the recovery process corresponding to the recovery process environment, and the detection process corresponding to the submarine environment.
  • time sequence correction is performed on the electromagnetic time sequence data obtained by the corresponding acquisition process, thereby further improving the stability of the data results.
  • the terminal device performs time series correction on the electromagnetic time series data based on the time error corresponding to the temperature in each time period. Specifically, based on the time error corresponding to the temperature in each time segment, the terminal device corrects the time length of the time segment corresponding to the temperature in the time segment, and adds the time lengths of all the corrected time segments to obtain the total time length. The length of time as the time series of electromagnetic time series data. Based on this, timing correction is performed on both the acquisition point and the submarine electromagnetic acquisition station at the reference point.
  • the throwing time of the submarine electromagnetic acquisition station at the acquisition point and the reference point is the same, that is to say, the starting time of the electromagnetic time series data and temperature data collected by the submarine electromagnetic acquisition station is the same, so when the subsequent time is corrected,
  • the clock time of the collection station at the collection point and the reference point is synchronized, which ensures the synchronization of the electromagnetic time series data of multiple collection stations and improves the stability of the submarine electromagnetic remote reference synchronization technology.
  • FIG. 2 shows a schematic flowchart of step S101 in the data correction method provided by an embodiment of the present application.
  • step S101 in the method for processing a submarine electromagnetic signal provided by this embodiment specifically includes steps S201 to S202. Details are as follows:
  • the constant temperature means that when the temperature is within the preset error range, for example, 5 ⁇ 0.5°C, it means that the constant temperature is 5°C.
  • the duration of the time period corresponding to each constant temperature is different, that is, the duration of the time period corresponding to the temperature of each time period is different.
  • the electromagnetic time series data and temperature data are collected by the submarine electromagnetic acquisition station, the electromagnetic time series data and temperature data are collected in the same temperature environment, that is to say, the time series of the electromagnetic time series data and the temperature data are collected. Are the same. However, in one embodiment, in order to ensure that the time sequences of the electromagnetic time series data and the temperature data are exactly the same, the start times of the electromagnetic time series data and the temperature data may be aligned.
  • the terminal device time-aligns the start time of the electromagnetic time series data and the start time of the temperature data, and determines the time period of the electromagnetic time series data when the temperature is constant based on the time-aligned electromagnetic time series data and the temperature data.
  • the time point when the submarine electromagnetic acquisition station is thrown into the sea is taken as the starting point, that is, the starting time of the electromagnetic time series data and the starting time of the temperature data. It can be understood that the start time of the submarine electromagnetic acquisition station entering each environment is recorded.
  • the submarine electromagnetic acquisition station when the submarine electromagnetic acquisition station is thrown, record a time point; when the submarine electromagnetic acquisition station reaches the target position on the bottom of the sea, record another time point; when the submarine electromagnetic acquisition station starts to rise and recover, record another time point; A point in time is also recorded when the collection station leaves the water. It should be noted that since the submarine electromagnetic acquisition station is submerged, on the seabed and in the recovery process for a long time (for example, it can stay on the seabed for half a year), the error at each time point can be ignored.
  • the terminal device takes the temperature when the temperature is constant as the temperature in the time period corresponding to the electromagnetic time series data.
  • determining the time error corresponding to the temperature in each time period includes: determining a time error variation curve corresponding to the temperature in the time period in the preset time correction template ; Determine the time error corresponding to each time length in the time error change curve according to the time length of the time segment where the temperature of each time segment is located, and obtain the time error corresponding to the temperature in multiple time segments.
  • the time error variation curve is used to represent the duration of the time error of the clock with the temperature. increasing curve.
  • the terminal device determines the time error corresponding to each time length in the time error variation curve according to the time length of the time segment where the temperature of each time segment is located, and obtains the time errors corresponding to the temperatures in multiple time segments. It can be understood that, for different collection processes, the preset time correction template corresponding to the collection process can be called to determine the time error change curve corresponding to the temperature in the time period, and the time error of the temperature in the corresponding time period can be obtained based on the time error change curve.
  • FIG. 3 shows a schematic flowchart of a data correction method provided by another embodiment of the present application.
  • the method for processing a submarine electromagnetic signal provided by this embodiment further includes steps S301 to S302 before step S102 . Details are as follows:
  • the temperature environment may be a constant temperature room environment.
  • the terminal equipment simulates that the submarine electromagnetic acquisition station is placed in a temperature environment with multiple preset temperatures for a preset period of time. Specifically, the terminal equipment controls the temperature regulator of the constant temperature chamber where the submarine electromagnetic acquisition station is located, so as to adjust the temperature of the constant temperature chamber to the preset temperature , when the temperature of the constant temperature chamber reaches the preset temperature, record the initial time point of the clock on the submarine electromagnetic acquisition station, and record the end time point of the clock after the preset time period. In theory, the time difference between the initial time point and the end time point should be equal to the preset duration.
  • the time difference between the initial time point and the end time point should not be equal to the preset duration. Therefore, the difference between the time difference between the initial time point and the end time point and the preset duration is used as the time error.
  • the simulated submarine electromagnetic acquisition station is placed in a temperature environment with multiple preset temperatures for a preset period of time, and the time error after the submarine electromagnetic acquisition station is placed at each preset temperature for a preset period of time is obtained, It includes: simulating the submarine electromagnetic acquisition station placed in the temperature environment of each preset temperature, when the submarine electromagnetic acquisition station is at the preset temperature, acquiring the current first GPS time and the first time point corresponding to the clock of the submarine electromagnetic acquisition station; After the preset time period, the current second GPS time and the second time point corresponding to the clock of the submarine electromagnetic acquisition station are obtained again; according to the first GPS time, the second GPS time, the first time point corresponding to each preset temperature and the second time point, the time error of the submarine electromagnetic acquisition station after being placed at each preset temperature for a preset period of time is calculated.
  • a preset time error template for processes such as deck-launching-subsea-recovery is constructed.
  • the time of the collection station on the deck is about 48 hours, and the temperature is from 5 to 45 °C; the launching and recovery time does not exceed 1 hour, and the temperature is 3-45 °C; the seabed collection time can be up to 30 days, and the temperature is 3-45 °C. 4°C; therefore, clock drift testing for three working procedures, namely deck, launching/recovery and subsea acquisition procedures, is required.
  • assisted GPS timing needs to be used, and the first GPS time and the second GPS time are obtained through the auxiliary global positioning system A-GPS, that is, with "base station + Remote ephemeris data + GPRS transmission + GPS" method timing.
  • the terminal device draws a preset time correction template of the clock of the collection station with multiple preset temperatures, preset durations and time errors.
  • a preset time correction template suitable for the acquisition station is constructed for each acquisition station.
  • the collection stations that need to construct the preset time correction template are placed in the same constant temperature chamber for time drift test.
  • FIG. 4 shows a structural block diagram of the data correction apparatus provided by the embodiment of the present application. For convenience of description, only the part related to the embodiment of the present application is shown.
  • the device includes:
  • the first determination module 401 is configured to determine the time period temperature corresponding to the electromagnetic time series data in each time period according to the electromagnetic time series data and the temperature change curve collected by the submarine electromagnetic collection station;
  • the second determination module 402 is configured to determine the time error corresponding to the temperature in each time period according to a preset time correction template, and the preset time correction template is used to indicate that the time error of the clock on the submarine electromagnetic acquisition station varies according to the duration of different temperatures changes that have occurred;
  • the correction module 403 is configured to correct the electromagnetic time series data based on the time error corresponding to the temperature in each time period.
  • the data correction device provided in the embodiment of the present application can determine the temperature of the time period corresponding to each time period of the electromagnetic time series data through the electromagnetic time series data and temperature data collected by the first determination module 401 of the submarine electromagnetic acquisition station, so as to determine the submarine electromagnetic time period.
  • the second determination module 402 determines the time error corresponding to the temperature in each time period according to the preset time correction template, so that the adverse effect of the temperature on the clock of the collection station can be characterized as a specific Influence parameter value, so as to be able to perform time series correction on the data collected by the collection station based on the influence parameter value; finally, the correction module 403 corrects the time series of the electromagnetic time series data based on the time error corresponding to the temperature in each time period, so as to be able to The clock time of each acquisition station is corrected to ensure the synchronization of the electromagnetic time series data of multiple acquisition stations, and to improve the synchronization accuracy of the submarine electromagnetic remote reference synchronization technology.
  • the first determination module 401 is further configured to:
  • Time alignment is performed between the start time of the electromagnetic time series data and the start time of the temperature data
  • the time-aligned electromagnetic time series data and temperature data determine the time period of the electromagnetic time series data when the temperature is constant
  • the temperature when the temperature is constant is taken as the temperature in the time period corresponding to the time period of the electromagnetic time series data.
  • the second determining module 402 is further configured to:
  • the time error corresponding to each time length in the time error change curve is determined, and the time errors corresponding to the temperatures in multiple time periods are obtained.
  • the data correction device further includes:
  • the third determination module is used to determine the acquisition process corresponding to the electromagnetic time series data
  • the acquisition module is used to acquire the preset time correction template corresponding to the acquisition process.
  • the data correction device further includes:
  • the simulation module is used for simulating that the submarine electromagnetic acquisition station is placed in a temperature environment with multiple preset temperatures for a preset period of time, and obtains the time error after the submarine electromagnetic acquisition station is placed at each preset temperature for a preset period of time;
  • the building block is used to construct a preset time correction template according to a plurality of preset temperatures, preset durations and time errors.
  • the simulation module is also used for:
  • the simulated submarine electromagnetic acquisition station is placed in the temperature environment of each preset temperature, and when the submarine electromagnetic acquisition station is at the preset temperature, the current first GPS time and the first time point corresponding to the clock of the submarine electromagnetic acquisition station are obtained;
  • the current second GPS time and the second time point corresponding to the clock of the submarine electromagnetic acquisition station are obtained again;
  • the time error of the submarine electromagnetic acquisition station after being placed at each preset temperature for a preset period of time is calculated.
  • the first GPS time and the second GPS time are acquired by using the Assisted Global Positioning System A-GPS.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 5 in this embodiment includes: at least one processor 50 (only one is shown in FIG. 5 ), a processor, a memory 51 , and a processor stored in the memory 51 and can be processed in the at least one processor
  • a computer program 52 running on the processor 50, the processor 50 implements the steps in any of the above method embodiments when the computer program 52 is executed.
  • the terminal device 5 may be a computing device such as a mobile phone, a desktop computer, a notebook, a handheld computer, and a cloud server.
  • the terminal device may include, but is not limited to, the processor 50 and the memory 51 .
  • FIG. 5 is only an example of the terminal device 5, and does not constitute a limitation on the terminal device 5. It may include more or less components than the one shown, or combine some components, or different components , for example, may also include input and output devices, network access devices, and the like.
  • the so-called processor 50 may be a central processing unit (Central Processing Unit, CPU), and the processor 50 may also be other general-purpose processors, digital signal processors (Digital Signal Processors) Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 51 may be an internal storage unit of the terminal device 5 in some embodiments, such as a hard disk or a memory of the terminal device 5 . In other embodiments, the memory 51 may also be an external storage device of the terminal device 5, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc. Further, the memory 51 may also include both an internal storage unit of the terminal device 5 and an external storage device.
  • the memory 51 is used to store an operating system, an application program, a boot loader (Boot Loader), data, and other programs, such as program codes of the computer program, and the like. The memory 51 can also be used to temporarily store data that has been output or will be output.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
  • the embodiments of the present application provide a computer program product, when the computer program product runs on a mobile terminal, the steps in the foregoing method embodiments can be implemented when the mobile terminal executes the computer program product.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the present application realizes all or part of the processes in the methods of the above embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium.
  • the computer program includes computer program code
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like.
  • the computer-readable medium may include at least: any entity or device capable of carrying the computer program code to the photographing device/terminal device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunication signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.
  • the disclosed apparatus/network device and method may be implemented in other manners.
  • the apparatus/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Electric Clocks (AREA)

Abstract

本申请适用于数据处理技术领域,提供了数据校正方法、装置、终端设备及存储介质,方法包括:根据海底电磁采集站采集到的电磁时序数据和温度数据,确定电磁时序数据在每个时间段对应的时间段温度;根据预设时间校正模板,确定每个时间段温度对应的时间误差,预设时间校正模板用于表征海底电磁采集站上时钟的时间误差由于不同温度的持续时长而发生的变化情况;基于每个时间段温度对应的时间误差,对电磁时序数据进行校正。从而能够对每个采集站的时钟时间进行校正,保证各采集站的电磁时序数据同步精度,提高海底电磁远参考同步技术的应用效果。

Description

数据校正方法、装置、终端设备及存储介质
本申请要求于2020年9月16日在中国专利局提交的、申请号202010975258.9为的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于数据处理技术领域,尤其涉及数据校正方法、装置、终端设备及存储介质。
背景技术
海底电磁勘探是地球物理勘探的重要部分。目前通过海底电磁采集站采集海底电磁信号,但是由于海底环境复杂,海底电磁采集站采集到海底电磁信号中包含大量海底噪声,所以海底电磁采集站采集到的海底电磁信号的信号质量较差。
在相关技术中,为了提高海底电磁信号的信号质量,采用海底电磁远参考同步技术采集海底电磁信号。具体地,通过多个采集站分别在勘探测点和参考点采集海底电磁信号,将参考点采集到的海底电磁信号作为参考信号,对勘探测点采集到的海底电磁信号进行辅助去噪。但是辅助去噪过程要求勘探测点的采集数据与参考点的采集数据完全同步,即要求每个采集站的时间同步。在陆地上采集电磁信号时采用GPS对时,可以在很短时间频繁对时,能够确保采集站的时间满足远参考同步要求。而海底大地电磁无法采用GPS同步对时,只能在采集站内部设置晶振时钟,现在已经发展原子钟作为采集站的时钟,由于的晶振时钟原子钟也有误差积累,在海底长时间采集数据后,时钟积累误差很大,不能达到大地电磁远参考处理同步要求。而且原子钟的误差还受温度影响,不同的温度时钟误差不一样,所以海底大地电磁采集站数据的同步很难。可见,当前的海底电磁远参考同步技术由于采集站与参考站之间的时间不能达到同步精度而无法实施。
技术问题
本申请实施例提供了数据校正方法、装置、终端设备及存储介质,可以解决当前海底电磁远参考同步技术存在同步精度低的问题。
技术解决方案
第一方面,本申请实施例提供了一种数据校正方法,包括:
根据海底电磁采集站采集到的电磁时序数据和温度数据,确定电磁时序数据在每个时间段对应的时间段温度;
根据预设时间校正模板,确定每个时间段温度对应的时间误差,预设时间校正模板用于表征海底电磁采集站上时钟的时间误差根据不同温度的持续时长而发生的变化情况;
基于每个时间段温度对应的时间误差,对电磁时序数据进行校正。
本申请实施例提供的数据校正方法,通过海底电磁采集站采集到的电磁时序数据和温度数据,确定电磁时序数据在每个时间段对应的时间段温度,从而能够确定海底电磁采集站在采集数据过程中的温度变化;然后根据预设时间校正模板,确定每个时间段温度对应的时间误差,从而能够将温度对采集站时钟的不利影响表征为具体的影响参数数值,以便于能够基于该影响参数数值的对采集站采集到的数据进行时序校正;最后基于每个时间段温度对应的时间误差,对电磁时序数据的时序进行校正,从而能够对每个采集站的时钟时间进行校正,保证多个采集站的电磁时序数据同步,提高海底电磁远参考同步技术的同步精度。
第二方面,本申请实施例提供了一种数据校正装置,包括:
第一确定模块,用于根据海底电磁采集站采集到的电磁时序数据和温度变化曲线,确定电磁时序数据在每个时间段对应的时间段温度;
第二确定模块,用于根据预设时间校正模板,确定每个时间段温度对应的时间误差,预设时间校正模板用于表征海底电磁采集站上时钟的时间误差根据不同温度的持续时长而发生的变化情况;
校正模块,用于基于每个时间段温度对应的时间误差,对电磁时序数据进行校正。
第三方面,本申请实施例提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第一方面中任一项所述的数据校正方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面中任一项所述的数据校正方法。
第五方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第一方面中任一项所述的数据校正方法。
可以理解的是,上述第二方面至第五方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的数据校正方法的流程性示意图;
图2是本申请一实施例提供的数据校正方法中步骤S101的流程性示意图;
图3是本申请另一实施例提供的数据校正方法的流程性示意图;
图4是本申请实施例提供的数据校正装置的结构示意图;
图5是本申请实施例提供的终端设备的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如背景技术相关记载,辅助去噪过程要求勘探测点的采集数据与参考点的采集数据完全同步,即要求每个采集站的时间同步。在陆地上采集电磁信号时采用GPS对时,可以在很短时间频繁对时,能够确保采集站的时间满足远参考同步要求。而海底大地电磁无法采用GPS同步对时,只能在采集站内部设置晶振时钟,现在已经发展原子钟作为采集站的时钟,由于的晶振时钟原子钟也有误差积累,在海底长时间采集数据后,时钟积累误差很大,不能达到大地电磁远参考处理同步要求。而且原子钟的误差还受温度影响,不同的温度时钟误差不一样,所以海底大地电磁采集站数据的同步很难。可见,当前的海底电磁远参考同步技术由于采集站与参考站之间的时间不能达到同步精度而无法实施。
有鉴于此,本申请实施例提出一种数据校正的方法,通过海底电磁采集站采集到的电磁时序数据和温度数据,确定电磁时序数据在每个时间段对应的时间段温度,从而能够确定海底电磁采集站在采集数据过程中的温度变化;然后根据预设时间校正模板,确定每个时间段温度对应的时间误差,从而能够将温度对采集站时钟的不利影响表征为具体的影响参数数值,以便于能够基于该影响参数数值的对采集站采集到的数据进行时序校正;最后基于每个时间段温度对应的时间误差,对电磁时序数据的时序进行校正,从而能够对每个采集站的时钟时间进行校正,保证多个采集站的电磁时序数据同步,提高海底电磁远参考同步技术的同步精度。
图1示出了本申请一实施例提供的一种数据校正方法的示意性流程图。本申请提供的数据校正方法的执行主体为终端设备,终端设备包括但不限于智能手机、笔记本电脑、平板电脑、超级计算机、个人数字助理等移动终端,也可以包括台式电脑、服务器等终端设备。如图1所示的海底电磁信号的处理方法包括S101至S103,详述如下。
S101,根据海底电磁采集站采集到的电磁时序数据和温度数据,确定电磁时序数据在每个时间段对应的时间段温度。
在本实施例中,终端设备预先获取电磁时序数据和温度数据。电磁时序数据为海底电磁采集站在海底实际探测得到的海底电磁信号,该海底电磁探测信号中包含海底电磁信号和海底噪声信号。其中,海底电磁信号为海底大地的电磁信号,其主要信号来源包括电离层、磁暴和地磁脉动;海底噪声信号为海洋环境或人文活动产生的噪声,例如,海底洋流切割地球磁场产生的电磁噪声,舰艇活动产生的电磁信号,船舰上的用电设备产生的电磁信号。温度数据为海底电磁采集站所处环境的环境温度数据,该环境温度数据为温度随时间变化而变化的温度时序数据,其包括海底电磁采集站在甲板上的环境温度数据、海底电磁采集站在下潜至海底目标位置过程中的环境温度数据、海底电磁采集站在海底目标位置时的环境温度数据,以及海底采集采集站回收至甲板过程中的环境温度数据。
海底电磁采集站为下潜到海底探测海底电磁探测信号的设备,该设备的结构组成包括但不限于电磁数据记录仪、电场传感器、磁场传感器、信标、时钟、释放器、方位与CTD记录仪、温度计、浮球、锚系和框架。其中为了提高数据稳定性,时钟为原子钟,电磁数据记录仪用于记录电磁时序数据,温度计用于记录海底电磁采集站所处环境的温度。可以理解的是,终端设备可以与海底电磁采集站通信连接,从而获取海底电磁采集站实时采集到的电磁时序数据和温度数据;终端设备也可以与服务器通信连接,服务器与海底电磁采集站通信连接,以将海底电磁采集站采集到的海底电磁时序数据和温度数据上传至服务器,终端设备再从服务器下载该电磁时序数据和温度数据。
时间段温度为一个数值,表示电磁时序数据在该时间段内的恒定温度,可以理解的是,温度在预设误差范围均视为恒定温度,例如温度T±0.1℃。需要说明的是,海底电磁采集站在甲板、下潜过程、海底和回收过程中的停留时间很长,其所处环境的温度存在恒定温度,也必然存在温度变化。
终端设备根据上述电磁时序数据和温度数据,确定电磁时序数据在每个时间段对应的时间段温度。示例性地,由于电磁时序数据和温度数据均为时序数据,所以对电磁时序数据与温度数据进行时间对齐,从而得到电磁时序数据与温度数据在时间上的对应关系,并基于温度恒定的时间段,确定该时间段对应的电磁时序数据,从而得到电磁时序数据在该时间段内的时间段温度。
S102,根据预设时间校正模板,确定每个时间段温度对应的时间误差,预设时间校正模板用于表征海底电磁采集站上时钟的时间误差根据不同温度的持续时长而发生的变化情况。
在本实施例中,时间误差为海底电磁采集站的时钟在不同温度持续不同时长而发生的时间偏移的偏移量。终端设备预先存储有预先构建的预设时间校正模板。预设时间校正模板用于表征温度、温度持续时长和时间误差之间的对应关系,具体为表征海底电磁采集站上时钟的时间误差随不同温度的持续时长而变化的情况。可以理解的是,海底电磁采集站的时钟在不同温度下发生时间偏移的偏移程度不同,而随着时间增加,时间偏移造成的时间误差也会增大。
示例性地,海底电磁采集站的时钟在环境温度为5℃时,每经过1小时发生时间偏移的偏移量为0.1微秒,则当海底电磁采集站在5℃下放置2天时,海底电磁采集站的时钟的时间偏移量就是4.8微秒,因此通过预设时间校正模板表征5℃下、2小时的时间误差变化曲线。在实际应用过程中,基于该预设时间校正模板,查询时间段温度为5℃的时间误差变化曲线,并根据时间段的时长,查询时间误差变化曲线中该时长对应的时间误差。
进一步地,由于海底电磁采集站所处环境包括甲板环境、下潜及回收过程的环境和海底环境,而海底电磁采集站在每个环境的放置时长范围不同,每个环境的温度变化范围也不同,所以分别构建三种环境下的预设时间校正模板。再进一步地,根据预设时间校正模板,确定每个时间段温度对应的时间误差之前,还包括:确定电磁时序数据对应的采集工序;获取采集工序对应的预设时间校正模板。采集工序为海底电磁采集站在不同环境所对应的工序,例如,甲板环境对应的准备工序,下潜过程环境对应下潜工序,回收过程环境对应的回收工序和海底环境对应的探测工序。根据每个采集工序对应的预设时间校正模板对对应采集工序得到电磁时序数据进行时序校正,从而进一步提高数据结果的稳定性。
S103,基于每个时间段温度对应的时间误差,对电磁时序数据进行校正。
在本实施例中,终端设备基于每个时间段温度对应的时间误差,对电磁时序数据进行时序校正。具体地,终端设备基于每个时间段温度对应的时间误差,校正时间段温度对应的时间段的时间长度,将校正后的所有时间段的时间长度进行相加,得到总时间长度,将该总时间长度作为电磁时序数据的时序。基于此,通过对采集点和参考点的海底电磁采集站均进行时序校正。可以理解的是,采集点和参考点的海底电磁采集站的投掷时间相同,也就是说,海底电磁采集站采集电磁时序数据和温度数据的起始时间是相同的,所以当后续时间校正后,对采集点和参考点的采集站的时钟时间是同步的,保证多个采集站的电磁时序数据同步,提高海底电磁远参考同步技术的稳定性。
请参阅图2,图2示出了本申请一实施例提供的数据校正方法中步骤S101的示意性流程图。相比于图1实施例,本实施例提供的海底电磁信号的处理方法中的步骤S101具体包括步骤S201至S202。详述如下:
S201,根据电磁时序数据和温度数据,确定电磁时序数据在温度恒定时的时间段。
在本实施例中,温度恒定指温度在预设误差范围内时,例如5±0.5℃,则表示恒定温度为5℃。可以理解的是,每个恒定温度对应的时间段的时长不同,也就是说,每个时间段温度对应的时间段的时长不同。需要说明的是,由于电磁时序数据和温度数据均由海底电磁采集站采集,所以电磁时序数据和温度数据均是在同一个温度环境下采集得到,也就是说,电磁时序数据和温度数据的时序是相同的。但是在一实施例中,可以为了确保电磁时序数据和温度数据的时序完全相同,对电磁时序数据和温度数据的起始时间进行对准。
终端设备对电磁时序数据的起始时间与温度数据的起始时间进行时间对准,基于时间对准后的电磁时序数据和温度数据,确定电磁时序数据在温度恒定时的时间段。将海底电磁采集站投掷到海里时的时间点作为起点,即电磁时序数据的起始时间与温度数据的起始时间。可以理解的是,对于海底电磁采集站在进入到每个环境的起始时间均进行记录。例如,当投掷海底电磁采集站时记录一个时间点;当海底电磁采集站到达海底目标位置时,再记录一个时间点;当海底电磁采集站开始上升回收时,又记录一个时间点;当海底电磁采集站离开水面时,还记录一个时间点。需要说明的是,由于海底电磁采集站在下潜、在海底以及在回收过程的时间很长(例如在海底可以停留半年),所以每个时间点的误差可以忽略不计。
S202,将温度恒定时的温度作为电磁时序数据在时间段对应的时间段温度。
在本实施例中,终端设备将温度恒定时的温度作为电磁时序数据在该时间段对应的时间段温度。
在图1所示实施例的基础上,根据预设时间校正模板,确定每个所述时间段温度对应的时间误差,包括:确定预设时间校正模板中与时间段温度对应的时间误差变化曲线;根据每个时间段温度所在时间段的时长,确定时间误差变化曲线中与每个时长对应的时间误差,得到多个时间段温度对应的时间误差。
在本实施例中,由于时钟在不同温度下的时间偏移程度不同,所以需要设定不同温度下对应的时间误差变化曲线,该时间误差变化曲线用于表示时钟的时间误差随温度的持续时长增加而变化的曲线。终端设备根据每个时间段温度所在时间段的时长,确定时间误差变化曲线中与每个时长对应的时间误差,得到多个时间段温度对应的时间误差。可以理解的是,对于不同的采集工序,可以调用采集工序对应的预设时间校正模板确定时间段温度对应的时间误差变化曲线,在基于该时间误差变化曲线得到对应时间段温度的时间误差。
请参阅图3,图3示出了本申请另一实施例提供的数据校正方法的示意性流程图。相比于图1实施例,本实施例提供的海底电磁信号的处理方法在步骤S102之前还包括步骤S301至S302。详述如下:
S301,模拟海底电磁采集站在多个预设温度的温度环境中放置预设时长,获取海底电磁采集站分别在每个预设温度放置预设时长后的时间误差。
在本实施例中,温度环境可以为恒温室环境。终端设备模拟海底电磁采集站在多个预设温度的温度环境中放置预设时长,具体地,终端设备控制海底电磁采集站所在恒温室的温度调节器,以将恒温室温度调节至预设温度,当恒温室温度达到预设温度时,记录海底电磁采集站上时钟的初始时间点,在预设时长后,记录时钟的结束时间点。理论情况下,初始时间点与结束时间点的时间差应当等于预设时长,由于时钟因温度而发生时间偏移,所以实际情况下,初始时间点与结束时间点的时间差应当不等于预设时长,所以将初始时间点与结束时间点的时间差与预设时长的差值作为时间误差。
在一种可能实现的方式中,模拟海底电磁采集站在多个预设温度的温度环境中放置预设时长,获取海底电磁采集站分别在每个预设温度放置预设时长后的时间误差,包括:模拟海底电磁采集站放置于每个预设温度的温度环境,当海底电磁采集站在预设温度时,获取当前的第一GPS时间和海底电磁采集站的时钟对应的第一时间点;在预设时长后,再次获取当前的第二GPS时间和海底电磁采集站的时钟对应的第二时间点;根据每个预设温度对应的第一GPS时间、第二GPS时间、第一时间点和第二时间点,计算得到海底电磁采集站在每个预设温度放置预设时长后的时间误差。
在本实施例中,将所有海底电磁采集站进行辅助GPS对时,得到第一GPS时间,终端设备将恒温室的温度调至预设温度;在GPS时间为T 0GPS时切断辅助GPS,采集站的时钟开始计时,其中时钟的起始时间为T 0CLOCK,则T 0GPS=T 0CLOCK。在预设时长T G后,读取采集站的时钟的时间点T GCLOCK,同时连接辅助GPS进行对时,得到GPS时间T GGPS。因此,可以计算时钟的时间长度和GPS时间长度分别为:ΔT CLOCK=T GCLOCK- T 0CLOCK,ΔT GPS=T GGPS- T 0GPS;起点时间是相同的,即T 0GPS=T 0CLOCK,所以T G时间后采集站时钟的时间误差为:ER T(N,M)=ΔT GPS-ΔT CLOCK,式中ERT为时间误差,N为时间,M为温度点。
可选地,构建甲板-下水-海底-回收等过程的预设时间误差模板。在实际情况下,采集站在甲板上的时间大致48小时,温度从5至45℃;下水和回收不超过时间1小时,温度3-45℃;海底采集时间最大可达30天,温度3-4℃;因此,需要进行三个工作程序的时钟漂移测试,即甲板、下水/回收和海底采集工序的时钟飘移测试。
可选地,由于在室内进行温度时钟漂移测试时,室内不能直接用GPS,需要采用辅助GPS定时,通过辅助全球定位系统A-GPS获取第一GPS时间和第二GPS时间,即以"基站+ 远端星历数据 + GPRS传输 + GPS "的方式定时。
S302,根据多个预设温度、预设时长和时间误差,构建预设时间校正模板。
在本实施例中,终端设备多个预设温度、预设时长和时间误差,绘制采集站时钟的预设时间校正模板。可选地,以时间为横轴,绘制时钟随时间变化的误差曲线:ER T(N time)=ΔT GPS-ΔT CLOCK;以温度为横轴,绘制时钟随温度变化的误差曲线:ER T(M temp)=ΔT GPS-ΔT CLOCK;以温度为横轴,以时间为纵轴,绘制每台采集站时钟误差分布图:ER T(N time,M temp)=ΔT GPS-ΔT CLOCK
可以理解的是,由于每个海底电磁采集站的时钟存在差异,所以针对每个采集站均构建适用于该采集站的预设时间校正模板。优选地,将需要构建预设时间校正模板的采集站均放置于同一个恒温室进行时间飘移测试。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上文实施例所述的数据校正方法,图4示出了本申请实施例提供的数据校正装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图4,该装置包括:
第一确定模块401,用于根据海底电磁采集站采集到的电磁时序数据和温度变化曲线,确定电磁时序数据在每个时间段对应的时间段温度;
第二确定模块402,用于根据预设时间校正模板,确定每个时间段温度对应的时间误差,预设时间校正模板用于表征海底电磁采集站上时钟的时间误差根据不同温度的持续时长而发生的变化情况;
校正模块403,用于基于每个时间段温度对应的时间误差,对电磁时序数据进行校正。
本申请实施例提供的数据校正装置,通过第一确定模块401海底电磁采集站采集到的电磁时序数据和温度数据,确定电磁时序数据在每个时间段对应的时间段温度,从而能够确定海底电磁采集站在采集数据过程中的温度变化;然后第二确定模块402根据预设时间校正模板,确定每个时间段温度对应的时间误差,从而能够将温度对采集站时钟的不利影响表征为具体的影响参数数值,以便于能够基于该影响参数数值的对采集站采集到的数据进行时序校正;最后校正模块403基于每个时间段温度对应的时间误差,对电磁时序数据的时序进行校正,从而能够对每个采集站的时钟时间进行校正,保证多个采集站的电磁时序数据同步,提高海底电磁远参考同步技术的同步精度。
作为本申请一实施例,第一确定模块401还用于:
对电磁时序数据的起始时间与温度数据的起始时间进行时间对准;
根据时间对准后的电磁时序数据和温度数据,确定电磁时序数据在温度恒定时的时间段;
将温度恒定时的温度作为电磁时序数据在时间段对应的时间段温度。
作为本申请一实施例,第二确定模块402还用于:
确定预设时间校正模板中与时间段温度对应的时间误差变化曲线;
根据每个时间段温度所在时间段的时长,确定时间误差变化曲线中与每个时长对应的时间误差,得到多个时间段温度对应的时间误差。
作为本申请一实施例,数据校正装置还包括:
第三确定模块,用于确定电磁时序数据对应的采集工序;
获取模块,用于获取采集工序对应的预设时间校正模板。
作为本申请一实施例,数据校正装置还包括:
模拟模块,用于模拟海底电磁采集站在多个预设温度的温度环境中放置预设时长,获取海底电磁采集站分别在每个预设温度放置预设时长后的时间误差;
构建模块,用于根据多个预设温度、预设时长和时间误差,构建预设时间校正模板。
作为本申请一实施例,模拟模块还用于:
模拟海底电磁采集站放置于每个预设温度的温度环境,当海底电磁采集站在预设温度时,获取当前的第一GPS时间和海底电磁采集站的时钟对应的第一时间点;
在预设时长后,再次获取当前的第二GPS时间和海底电磁采集站的时钟对应的第二时间点;
根据每个预设温度对应的第一GPS时间、第二GPS时间、第一时间点和第二时间点,计算得到海底电磁采集站在每个预设温度放置预设时长后的时间误差。
作为本申请一实施例,通过辅助全球定位系统A-GPS获取第一GPS时间和第二GPS时间。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图5为本申请一实施例提供的终端设备的结构示意图。如图5所示,该实施例的终端设备5包括:至少一个处理器50(图5中仅示出一个)处理器、存储器51以及存储在所述存储器51中并可在所述至少一个处理器50上运行的计算机程序52,所述处理器50执行所述计算机程序52时实现上述任意方法实施例中的步骤。
所述终端设备5可以是手机、桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该终端设备可包括但不仅限于处理器50、存储器51。本领域技术人员可以理解,图5仅仅是终端设备5的举例,并不构成对终端设备5的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器50可以是中央处理单元(Central Processing Unit,CPU),该处理器50还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器51在一些实施例中可以是所述终端设备5的内部存储单元,例如终端设备5的硬盘或内存。所述存储器51在另一些实施例中也可以是所述终端设备5的外部存储设备,例如所述终端设备5上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器51还可以既包括所述终端设备5的内部存储单元也包括外部存储设备。所述存储器51用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器51还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种数据校正方法,其特征在于,包括:
    根据海底电磁采集站采集到的电磁时序数据和温度数据,确定所述电磁时序数据在每个时间段对应的时间段温度;
    根据预设时间校正模板,确定每个所述时间段温度对应的时间误差,所述预设时间校正模板用于表征所述海底电磁采集站上时钟的时间误差根据不同温度的持续时长而发生的变化情况;
    基于每个所述时间段温度对应的时间误差,对所述电磁时序数据进行校正。
  2. 如权利要求1所述的数据校正方法,其特征在于,所述根据海底电磁采集站采集到的电磁时序数据和温度数据,确定所述电磁时序数据在每个时间段对应的时间段温度,包括:
    根据电磁时序数据和所述温度数据,确定所述电磁时序数据在温度恒定时的时间段;
    将所述温度恒定时的温度作为所述电磁时序数据在所述时间段对应的时间段温度。
  3. 如权利要求1所述的数据校正方法,其特征在于,所述根据预设时间校正模板,确定每个所述时间段温度对应的时间误差,包括:
    确定所述预设时间校正模板中与所述时间段温度对应的时间误差变化曲线;
    根据每个所述时间段温度所在时间段的时长,确定所述时间误差变化曲线中与每个所述时长对应的时间误差,得到多个所述时间段温度对应的时间误差。
  4. 如权利要求1至3任一项所述的数据校正方法,其特征在于,所述根据预设时间校正模板,确定每个所述时间段温度对应的时间误差之前,还包括:
    确定所述电磁时序数据对应的采集工序;
    获取所述采集工序对应的所述预设时间校正模板。
  5. 如权利要求1至3任一项所述的数据校正方法,其特征在于,所述根据预设时间校正模板,确定每个所述时间段温度对应的时间误差之前,还包括:
    获取所述海底电磁采集站分别在每个预设温度的温度环境中放置预设时长后的时间误差;
    根据多个所述预设温度、所述预设时长和所述时间误差,构建所述预设时间校正模板。
  6. 如权利要求5所述的数据校正方法,其特征在于,所述获取所述海底电磁采集站分别在每个预设温度的温度环境中放置预设时长后的时间误差,包括:
    当所述海底电磁采集站在所述预设温度时,获取当前的第一GPS时间和所述海底电磁采集站的时钟对应的第一时间点;
    在所述预设时长后,再次获取当前的第二GPS时间和所述海底电磁采集站的时钟对应的第二时间点;
    根据每个所述预设温度对应的所述第一GPS时间、所述第二GPS时间、所述第一时间点和所述第二时间点,计算得到所述海底电磁采集站在每个所述预设温度放置所述预设时长后的时间误差。
  7. 如权利要求6所述的数据校正方法,其特征在于,通过辅助全球定位系统A-GPS获取所述第一GPS时间和所述第二GPS时间。
  8. 一种数据校正装置,其特征在于,包括:
    第一确定模块,用于根据海底电磁采集站采集到的电磁时序数据和温度变化曲线,确定所述电磁时序数据在每个时间段对应的时间段温度;
    第二确定模块,用于根据预设时间校正模板,确定每个所述时间段温度对应的时间误差,所述预设时间校正模板用于表征所述海底电磁采集站上时钟的时间误差根据不同温度的持续时长而发生的变化情况;
    校正模块,用于基于每个所述时间段温度对应的时间误差,对所述电磁时序数据进行校正。
  9. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的方法。
PCT/CN2021/096088 2020-09-16 2021-05-26 数据校正方法、装置、终端设备及存储介质 WO2022057304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010975258.9 2020-09-16
CN202010975258.9A CN112198557B (zh) 2020-09-16 2020-09-16 数据校正方法、装置、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022057304A1 true WO2022057304A1 (zh) 2022-03-24

Family

ID=74015186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096088 WO2022057304A1 (zh) 2020-09-16 2021-05-26 数据校正方法、装置、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN112198557B (zh)
WO (1) WO2022057304A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112198557B (zh) * 2020-09-16 2022-10-11 南方科技大学 数据校正方法、装置、终端设备及存储介质
CN113391040B (zh) * 2021-07-12 2023-09-15 北京清环宜境技术有限公司 一种用于大气微站的数据人工智能自动校准方法
CN113922908B (zh) * 2021-09-30 2023-11-14 西安诺瓦星云科技股份有限公司 提升gps校时精度及其同步播放方法、存储介质及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110141850A1 (en) * 2009-12-15 2011-06-16 Pgs Onshore, Inc. Electromagnetic system for timing synchronization and location determination for seismic sensing systems having autonomous (NODAL) recording units
CN108037656A (zh) * 2017-11-13 2018-05-15 深圳还是威健康科技有限公司 实时时钟芯片校准方法、装置及终端设备
CN110058319A (zh) * 2019-01-16 2019-07-26 南方科技大学 一种大地电磁数据采集方法、装置及终端设备
CN110212863A (zh) * 2019-05-31 2019-09-06 Oppo广东移动通信有限公司 校准晶体振荡器的方法、装置、电子设备及存储介质
CN110596763A (zh) * 2019-08-23 2019-12-20 南方科技大学 一种大地电磁数据的三维采集方法、装置及终端设备
CN112198557A (zh) * 2020-09-16 2021-01-08 南方科技大学 数据校正方法、装置、终端设备及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101702033B (zh) * 2009-10-23 2011-11-09 重庆大学 电磁法探测的全球定位系统同步控制信号产生的方法
CN103091717B (zh) * 2013-01-09 2015-10-21 中国科学院电工研究所 一种收发自动同步变频的电磁勘探方法
CN104459802B (zh) * 2014-12-01 2017-01-11 中国地质大学(北京) 一种用于电法勘探系统中的发射装置
CN106909065B (zh) * 2017-04-19 2019-07-19 中国科学院地质与地球物理研究所 一种勘探仪器用的实时时钟钟差校正方法
CN107526111B (zh) * 2017-08-15 2019-03-19 中国科学院电子学研究所 针对半航空电磁系统的天电噪声提取与去除的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110141850A1 (en) * 2009-12-15 2011-06-16 Pgs Onshore, Inc. Electromagnetic system for timing synchronization and location determination for seismic sensing systems having autonomous (NODAL) recording units
CN108037656A (zh) * 2017-11-13 2018-05-15 深圳还是威健康科技有限公司 实时时钟芯片校准方法、装置及终端设备
CN110058319A (zh) * 2019-01-16 2019-07-26 南方科技大学 一种大地电磁数据采集方法、装置及终端设备
CN110212863A (zh) * 2019-05-31 2019-09-06 Oppo广东移动通信有限公司 校准晶体振荡器的方法、装置、电子设备及存储介质
CN110596763A (zh) * 2019-08-23 2019-12-20 南方科技大学 一种大地电磁数据的三维采集方法、装置及终端设备
CN112198557A (zh) * 2020-09-16 2021-01-08 南方科技大学 数据校正方法、装置、终端设备及存储介质

Also Published As

Publication number Publication date
CN112198557A (zh) 2021-01-08
CN112198557B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2022057304A1 (zh) 数据校正方法、装置、终端设备及存储介质
US7986263B2 (en) Method and apparatus for a global navigation satellite system receiver coupled to a host computer system
JP5663621B2 (ja) ナビゲーションビット境界決定装置、およびそのための方法
CA2990840C (en) Pps tagging of acoustic sample data
CN107272038B (zh) 一种高精度定位的方法及设备
CN110837091B (zh) 差分数据的处理方法和接收机的测试方法
CN106055025B (zh) 位置准确的移动事件和社交内容
CN113498625A (zh) 时钟同步方法和装置、芯片系统、无人机和终端
CN108415041A (zh) 移动装置的接收器及其改进方法
WO2019051841A1 (zh) 确定滤波器系数的方法及其装置、终端
CN117055323A (zh) 基于北斗/伽利略系统融合的星基精密授时方法及系统
JP5062613B2 (ja) 測位用データ生成装置、受信装置、プログラム、測位システム、及び測位方法
US20130304376A1 (en) Method and apparatus for position measuring of portable electronic device
TWI451115B (zh) 衛星定位方法、衛星虛擬距離計算裝置及其衛星虛擬距離計算方法
CN108663694B (zh) 基带芯片性能测试方法和装置
CA3027888C (en) Method and apparatus for reducing tropospheric effects in gnss positioning
CN112764455B (zh) 高光谱相机数据时间同步方法、系统、装置和存储介质
CN117014007B (zh) 钟差驾驭方法、装置及终端设备
WO2012005035A1 (ja) データ処理装置及びデータ処理方法及びプログラム
CN103954979A (zh) 一种gnss接收机内部噪声检测系统及方法
JP2016014528A (ja) 電子機器、位置推定方法及びプログラム
CN114815571B (zh) 一种星地时差的测量方法、系统、存储介质和电子设备
CN111983656B (zh) 一种gnss时统设备中对gnss时间进行最优估计的方法、装置及计算机介质
CN102651800A (zh) 具有图片拍摄功能的电子装置及方法
TWI681203B (zh) 用於對裝置進行定位之方法、定位裝置及非暫態電腦可讀取媒體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21868142

Country of ref document: EP

Kind code of ref document: A1