WO2022057181A1 - 一种聚烯烃材料及其制备方法和应用 - Google Patents

一种聚烯烃材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022057181A1
WO2022057181A1 PCT/CN2021/072997 CN2021072997W WO2022057181A1 WO 2022057181 A1 WO2022057181 A1 WO 2022057181A1 CN 2021072997 W CN2021072997 W CN 2021072997W WO 2022057181 A1 WO2022057181 A1 WO 2022057181A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
polyolefin material
material according
fibers
mixture
Prior art date
Application number
PCT/CN2021/072997
Other languages
English (en)
French (fr)
Inventor
陆湛泉
黄险波
叶南飚
程文建
程书文
关安南
谢湘
杨霄云
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022057181A1 publication Critical patent/WO2022057181A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention belongs to the field of polymer materials, and in particular relates to a polyolefin material and a preparation method and application thereof.
  • Polyolefin materials are the most widely used in real life due to their abundant raw materials, low price, easy processing and molding, and excellent comprehensive performance.
  • the reinforcement method of conventional polyolefin mainly uses glass fiber as the reinforcement medium, and uses the high strength and high rigidity of glass fiber to improve the strength and heat resistance of the product.
  • the glass fiber reinforced polyolefin after adding glass fiber has defects such as high density, poor wave transmission performance (high dielectric constant and dielectric loss), and poor toughness, which cannot meet the requirements of weight or wave transmission performance. Use in high places.
  • a method of adding low-dielectric glass fibers or quartz fibers has been studied. Although this method can achieve better wave-transmitting properties, it also has the defects of high density and high cost.
  • the primary purpose of the present invention is to provide a polyolefin material, which has the advantages of high heat resistance, high strength, low density and high wave transmittance.
  • Another object of the present invention is to provide a method for preparing the above-mentioned polyolefin material.
  • a polyolefin material by weight, comprising the following components:
  • the polyolefin resin is selected from one or a mixture of polypropylene, polyethylene and polybutene.
  • the compatibilizer is a graft polymer of a polar monomer and a polyolefin, wherein the polar monomer is selected from one or more mixtures of maleic anhydride, acrylic acid, and acrylate derivatives,
  • the polyolefin is selected from one or a mixture of polypropylene and polyethylene.
  • the reinforcing fibers are selected from one or a mixture of glass fibers, quartz fibers, and basalt fibers, preferably glass fibers, and the average diameter of the glass fibers is 5-20 ⁇ m.
  • the hollow mullite microspheres of the invention contain air, have strong wave-transmitting ability, low density, light weight, higher hardness than glass, and stronger pressure resistance.
  • the particle size D50 of the hollow mullite microspheres is 10-50 microns, preferably 15-30 microns, the density is 0.2-0.9 g/cm 3 , preferably 0.3-0.5 g/cm 3 , and the pressure is 5000PSI- 50000PSI, preferably 10000-30000PSI; if the bearing pressure is too poor, it will be easily broken during the extrusion process.
  • the bearing pressure in the present invention refers to the compressive strength of the hollow mullite microspheres, which is tested by the water isostatic pressure detection method. get.
  • the mass ratio of the reinforcing fibers to the hollow mullite microspheres is 1:5-5:1, preferably 1:2-2:1.
  • the present invention also provides a method for preparing the above-mentioned polyolefin material, comprising the following steps:
  • the polyolefin resin and compatibilizer are mixed and added to the main feeding system of the extruder.
  • the reinforcing fibers and hollow mullite microspheres are added to the side feeding system. All components are mixed and extruded by the extruder.
  • the polyolefin material is obtained by pelleting.
  • the present invention also provides the application of the above-mentioned polyolefin material in the fields of household appliances, automobiles or communications.
  • the present invention has the following beneficial effects:
  • the two synergistically synergize not only can significantly reduce the density of the material, improve the wave-transmitting performance of the material, but also improve the strength and heat resistance of the material , so that the density of the prepared polyolefin material is less than 1.0g/cm 3 , even less than 0.9g/cm 3 , the dielectric constant is less than 2.6;
  • the advantages of high strength, low density and high wave transmission are not only can significantly reduce the density of the material, improve the wave-transmitting performance of the material, but also improve the strength and heat resistance of the material , so that the density of the prepared polyolefin material is less than 1.0g/cm 3 , even less than 0.9g/cm 3 , the dielectric constant is less than 2.6;
  • Polypropylene resin PP SP179;
  • Polyethylene resin HDPE 5000S;
  • Glass fiber 1 with an average diameter of 10 ⁇ m
  • Glass fiber 2 with an average diameter of 22 ⁇ m
  • Hollow mullite microspheres 1 particle size 30 microns, density 0.3g/cm 3 , pressure 15000PSI;
  • Hollow mullite microspheres 2 particle size 15 microns, density 0.6 g/cm 3 , pressure 25000 PSI;
  • Heat distortion temperature ISO75-2 test, test condition 1.82MPa.
  • Embodiment 1-7 and comparative example 1-3 are identical to Embodiment 1-7 and comparative example 1-3:
  • Comparative Example 1 it can be seen from Comparative Example 1 that only the reinforcing fibers are added, although the strength of the material is significantly improved, but its density is high and the wave transmission performance is poor.
  • Comparative Example 3 only hollow mullite microspheres were added, although the density decreased and the wave-transmitting performance was significantly improved, but its strength was poor.
  • Comparative Example 2 when the ratio of reinforcing fibers and hollow mullite microspheres is not within the preferred range, it is difficult for the material to have the characteristics of high heat resistance, high strength, low density and high wave transmittance.
  • the present invention adds reinforcing fibers and hollow mullite microspheres to the polyolefin material, and the two have a synergistic effect, which can not only significantly reduce the density of the material, improve the wave transmission performance of the material, but also improve the material
  • the strength and heat resistance of the material make the material have the advantages of high heat resistance, high strength, low density and high wave transmission.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种聚烯烃材料及其制备方法和应用,包括组分:聚烯烃树脂15-95份;增强纤维5-60份;相容剂0.5-10份;中空莫来石微球5-60份。本发明通过在聚烯烃材料中添加增强纤维和中空莫来石微球,二者协同增效,不仅可以显著降低材料的密度,提高材料的透波性能,同时能提高材料的强度和耐热性,使制备得到的聚烯烃材料兼具高耐热、高强度、低密度和高透波的优点。

Description

一种聚烯烃材料及其制备方法和应用 技术领域
本发明属于高分子材料领域,具体涉及一种聚烯烃材料及其制备方法和应用。
背景技术
聚烯烃材料由于原料丰富、价格低廉、容易加工成型、综合性能优良等特点,在现实生活中应用最为广泛。
目前,常规聚烯烃的增强方法主要是使用玻纤作为增强介质,利用玻纤的高强度高刚性提高产品强度和耐热性能。但是采用这种方法,加入玻纤后的玻纤增强聚烯烃存在密度高,透波性能(介电常数和介电损耗大)差,韧性不好等缺陷,无法在对重量或者透波性能要求高的场合使用。为改善聚烯烃材料的透波性能,有研究采用加入低介电玻纤或者石英纤维的方法,该方法虽然能做到较好的透波性能,但是同样存在密度大,成本高等缺陷。
因此,研究一种兼具高耐热、高强度、低密度和高透波的聚烯烃材料具有较好的市场前景。
发明内容
为了克服上述现有技术存在的不足,本发明的首要目的在于提供一种聚烯烃材料,该材料兼具高耐热、高强度、低密度和高透波的优点。
本发明的另一目的在于提供上述聚烯烃材料的制备方法。
本发明是通过以下技术方案实现的:
一种聚烯烃材料,按重量份计,包括以下组份:
Figure PCTCN2021072997-appb-000001
优选的,所述聚烯烃树脂选自聚丙烯、聚乙烯、聚丁烯中的一种或几种的混合。
优选的,所述相容剂为极性单体与聚烯烃的接枝聚合物,其中极性单体选自马来酸酐、丙烯酸、丙烯酸酯类衍生物中的一种或几种的混合物,聚烯烃选自聚丙烯、聚乙烯中的一种或两种的混合。
优选的,所述增强纤维选自玻璃纤维、石英纤维、玄武岩纤维中的一种或几种的混合,优选玻璃纤维,所述玻璃纤维的平均直径为5-20μm。
本发明所述中空莫来石微球内含空气,透波能力强,密度低,轻量化,硬度比玻璃大,耐压性更强。优选的,所述中空莫来石微球的粒径D50为10-50微米,优选15-30微米,密度为0.2-0.9g/cm 3,优选0.3-0.5g/cm 3,承压5000PSI-50000PSI,优选10000-30000PSI;如果承压太差,在挤出过程中容易碎掉,本发明所述的承压是指中空莫来石微球的抗压强度,采用水等静压检测法测试得到。优选的,所述增强纤维与中空莫来石微球的质量比为1:5-5:1,优选为1:2-2:1。
本发明还提供了上述聚烯烃材料的制备方法,包括如下步骤:
按配比,将聚烯烃树脂和相容剂混合,加入挤出机的主喂料系统,同时将增强纤维和中空莫来石微球加入侧喂系统,所有组分通过挤出机混合挤出造粒即得聚烯烃材料。
本发明还提供了上述聚烯烃材料在家用电器、汽车或通讯领域中的应用。
与现有技术相比,本发明具有如下有益效果:
本发明通过在聚烯烃材料中添加增强纤维和中空莫来石微球,二者协同增效,不仅可以显著降低材料的密度,提高材料的透波性能,同时能提高材料的强度和耐热性,使制备得到的聚烯烃材料密度小于1.0g/cm 3,甚至低于0.9g/cm 3,介电常数小于2.6;介电损耗小于0.005,热变形温度大于100度,兼具高耐热、高强度、低密度和高透波的优点。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所用的原料均来源于市购,现对实施例及对比例所用的原材料做如下说明,但不限于这些材料:
聚丙烯树脂:PP SP179;
聚乙烯树脂:HDPE 5000S;
相容剂:PP-g-MAH、HDPE-g-MAH;
增强纤维:
玻璃纤维1,平均直径为10μm;
玻璃纤维2,平均直径为22μm;
玄武岩纤维、石英纤维,市购;
中空莫来石微球1:粒径30微米,密度0.3g/cm 3,承压15000PSI;
中空莫来石微球2:粒径15微米,密度0.6g/cm 3,承压25000PSI;
相关性能的测试标准或方法如下:
密度:按照ISO1183标准测试;
介电常数和介电损耗:按照GB12636测试频率:10GHz;
弯曲强度:按照ISO178测试;
热变形温度:ISO75-2测试,测试条件1.82MPa。
实施例1-7与对比例1-3:
按表1配比,将聚烯烃树脂和相容剂混合,加入挤出机的主喂料系统,同时将增强纤维和中空莫来石微球加入侧喂系统,所有组分通过挤出机混合挤出造粒即得聚烯烃材料。测试结果如表1所示。
表1 实施例和对比例中各组分配比(重量份)
Figure PCTCN2021072997-appb-000002
续表1:
Figure PCTCN2021072997-appb-000003
由对比例1看出,只添加增强纤维,虽然材料的强度显著提高,但其密度较大,透波性能较差。对比例3中,只添加中空莫来石微球,虽然其密度下降和透波性能显著提高,但其强度较差。对比例2中,当增强纤维和中空莫来石微球的配比不在优选范围内时,材料也难以兼具高耐热、高强度、低密度和高透波的特点。由此看出,本发明通过聚烯烃材料中添加增强纤维和中空莫来石微球,二者具有协同增效作用,不仅可以显著降低材料的密度,提高材料的透波性能,同时能提高材料的强度和耐热性,使材料兼具高耐热、高强度、低密度和高透波的优点。

Claims (8)

  1. 一种聚烯烃材料,其特征在于,按重量份计,包括以下组份:
    Figure PCTCN2021072997-appb-100001
  2. 根据权利要求1所述的聚烯烃材料,其特征在于,其特征在于,所述聚烯烃树脂选自聚丙烯、聚乙烯、聚丁烯中的一种或几种的混合。
  3. 根据权利要求1所述的聚烯烃材料,其特征在于,所述相容剂为极性单体与聚烯烃的接枝聚合物,其中极性单体选自马来酸酐、丙烯酸、丙烯酸酯类衍生物中的一种或几种的混合物,所述聚烯烃选自聚丙烯、聚乙烯中的一种或两种的混合。
  4. 根据权利要求1所述的聚烯烃材料,其特征在于,所述增强纤维选自玻璃纤维、石英纤维、玄武岩纤维中的一种或几种的混合,优选玻璃纤维,所述玻璃纤维的平均直径为5-20μm。
  5. 根据权利要求1所述的聚烯烃材料,其特征在于,所述中空莫来石微球的粒径D50为10-50微米,优选15-30微米,密度为0.2-0.9g/cm 3,优选0.3-0.5g/cm 3,承压5000PSI-50000PSI,优选10000-30000PSI。
  6. 根据权利要求1所述的聚烯烃材料,其特征在于,所述增强纤维与中空莫来石微球的质量比为1:5-5:1,优选为1:2-2:1。
  7. 根据权利要求1-6任一项所述的聚烯烃材料的制备方法,其特征在于,包括如下步骤:
    按配比,将聚烯烃树脂和相容剂混合,加入挤出机的主喂料系统,同时将增强纤维和中空莫来石微球加入侧喂系统,所有组分通过挤出机混合挤出造粒即得聚烯烃材料。
  8. 根据权利要求1-6任一项所述的聚烯烃材料在家用电器、汽车或通讯领域中的应用。
PCT/CN2021/072997 2020-09-16 2021-01-21 一种聚烯烃材料及其制备方法和应用 WO2022057181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010970804.XA CN112194846B (zh) 2020-09-16 2020-09-16 一种聚烯烃材料及其制备方法和应用
CN202010970804.X 2020-09-16

Publications (1)

Publication Number Publication Date
WO2022057181A1 true WO2022057181A1 (zh) 2022-03-24

Family

ID=74015151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072997 WO2022057181A1 (zh) 2020-09-16 2021-01-21 一种聚烯烃材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112194846B (zh)
WO (1) WO2022057181A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194846B (zh) * 2020-09-16 2023-03-21 金发科技股份有限公司 一种聚烯烃材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071703A (ja) * 2015-10-07 2017-04-13 丸五ゴム工業株式会社 ゴム組成物、並びにそれからなる成形品及びその製造方法
CN111154188A (zh) * 2019-12-27 2020-05-15 会通新材料股份有限公司 一种高透波聚丙烯复合材料及其制备方法
CN112194846A (zh) * 2020-09-16 2021-01-08 金发科技股份有限公司 一种聚烯烃材料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105367897A (zh) * 2015-11-19 2016-03-02 金发科技股份有限公司 一种玻纤增强改性聚丙烯材料及其制备方法
CN108219288A (zh) * 2016-12-15 2018-06-29 上海杰事杰新材料(集团)股份有限公司 一种低介电损耗高耐候聚丙烯复合材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071703A (ja) * 2015-10-07 2017-04-13 丸五ゴム工業株式会社 ゴム組成物、並びにそれからなる成形品及びその製造方法
CN111154188A (zh) * 2019-12-27 2020-05-15 会通新材料股份有限公司 一种高透波聚丙烯复合材料及其制备方法
CN112194846A (zh) * 2020-09-16 2021-01-08 金发科技股份有限公司 一种聚烯烃材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VARGHESE ANISH MATHAI, SWATI SINGH, VENGATESAN MUTHUKUMARASWAMY RANGARAJ, VIKAS MITTAL: "Two dimensional mullite nanostructure: Synthesis and reinforcement effect on polypropylene maleic anhydride graft ethylene vinyl acetate matrix", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 136, no. 46, 12 July 2019 (2019-07-12), XP055911988, DOI: 10.1002/app.48233 *

Also Published As

Publication number Publication date
CN112194846B (zh) 2023-03-21
CN112194846A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2018180469A1 (ja) ポリオレフィン樹脂複合材及びその製造方法
CN102030960B (zh) 含杂化长支链结构的高熔体强度聚烯烃的制备方法
WO2022057182A1 (zh) 聚烯烃材料及其制备方法
WO2022110655A1 (zh) 导电聚丙烯组合物及其制备方法
CN110804135A (zh) 一种高熔体强度聚丙烯及其制备方法
CN113444269A (zh) 一种低翘曲良外观玻纤增强聚丙烯复合材料及其制备方法
CN102070831A (zh) 增韧聚丙烯复合材料及其制备方法
WO2022057181A1 (zh) 一种聚烯烃材料及其制备方法和应用
CN109535555A (zh) 一种碳纳米管改性的阻燃增强聚丙烯材料及其制备方法
WO2022127859A1 (zh) 一种增强聚丙烯材料及其制备方法和应用
CN106349976A (zh) 一种钢丝网增强聚乙烯热水管用粘接树脂及其制备方法
CN111978622A (zh) 一种含茶叶渣的聚烯烃复合材料及其制备方法
CN111073244B (zh) 一种聚碳酸酯组合物及其制备方法
CN111073553A (zh) 一种高强度高流动性的聚丙烯粘接树脂及其制备方法
CN112708209A (zh) 一种轻量化高强玻纤增强聚丙烯复合材料及其制备方法
CN107011560A (zh) 一种提高聚乙烯耐热性的功能母粒
CN110358197A (zh) 一种新型增强增韧的无规共聚聚丙烯管材及其制备方法
CN103450557B (zh) 一种聚丙烯pp纳米级增强改性颗粒的制备方法
WO2023103858A1 (zh) 一种高模量高耐热透明聚丙烯组合物及其制备方法
CN114350063A (zh) 一种纤维增强型pp-rct复合管及其制备方法
CN112143201B (zh) 一种聚丙撑碳酸酯复合材料及其制备方法
CN115703904A (zh) 一种高耐热聚乙烯管材组合物及其制备方法
CN111620981A (zh) 一种改性蒙脱土增强聚乙烯的复合材料及其在家具中的应用
WO2022001018A1 (zh) 抗浮纤剂和抗浮纤聚丙烯增强复合材料
CN109705463A (zh) 一种高分子聚丙烯薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21868021

Country of ref document: EP

Kind code of ref document: A1