WO2022057159A1 - 植入式医疗器械的连接机构及其制作方法 - Google Patents

植入式医疗器械的连接机构及其制作方法 Download PDF

Info

Publication number
WO2022057159A1
WO2022057159A1 PCT/CN2020/141949 CN2020141949W WO2022057159A1 WO 2022057159 A1 WO2022057159 A1 WO 2022057159A1 CN 2020141949 W CN2020141949 W CN 2020141949W WO 2022057159 A1 WO2022057159 A1 WO 2022057159A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
shielding
connection
connection mechanism
sealing
Prior art date
Application number
PCT/CN2020/141949
Other languages
English (en)
French (fr)
Inventor
彭军锋
Original Assignee
北京品驰医疗设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京品驰医疗设备有限公司 filed Critical 北京品驰医疗设备有限公司
Publication of WO2022057159A1 publication Critical patent/WO2022057159A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators

Definitions

  • the invention relates to the field of implantable medical devices, in particular to a connecting mechanism of an MRI-compatible implantable medical device and a manufacturing method thereof.
  • Magnetic Resonance Imaging MRI
  • Magnetic Resonance Imaging has significant advantages: magnetic resonance imaging is clearer, has high resolution of soft tissue, and No ionizing radiation damage to the human body. Therefore, magnetic resonance imaging technology is widely used in clinical diagnosis of modern medicine. It is estimated that at least 60 million cases worldwide are now examined using MRI technology every year.
  • a high-intensity uniform static magnetic field B0 a gradient magnetic field that can be adjusted to any direction
  • a radio frequency (RF) magnetic field for exciting nuclear magnetic resonance.
  • the strength of the static magnetic field B0 is usually 1.5T and 3.0T.
  • MRI will not cause direct harm to the human body
  • an implantable medical device such as: pacemaker, defibrillator, vagus nerve stimulator, spinal cord stimulator, brain Deep electrical stimulators, etc.
  • IMD implantable medical device
  • the three magnetic fields that need to be used during MRI work will bring great hidden dangers to the life, health and safety of patients.
  • One of the most important hidden dangers is the induced heating of implantable medical devices in the radio frequency (RF) magnetic field, especially for those with elongated conductive structures that may partially contact tissue Medical devices (typically deep brain stimulators with extension leads and leads, pacemakers with leads).
  • RF radio frequency
  • MRI scans of patients with these implantable medical devices may experience severe temperature rises where the elongated conductive structures come into contact with the tissue, which can cause serious harm to the patient.
  • most patients with implanted IMDs require MRI examinations during the life cycle of the device, and the safety hazards caused by induction of radio frequency magnetic fields have led to these patients being refused examinations. Therefore, it is of great significance to develop the MRI-compatible function of implantable medical devices, and since the induced heating effect of the radio frequency magnetic field is mainly reflected in the slender conductive structures such as electrodes, the development of an implantable medical device that does not cause the induced heating effect of the radio frequency magnetic field in the MRI environment is of great significance.
  • the electrodes that cause serious temperature rise have high market value and application value.
  • a conductive shielding layer is provided on the outer surface of the lead wire of the MRI-compatible implantable medical device.
  • the existence of the conductive shielding layer prevents the wire from causing serious temperature rise in the MRI environment due to the induced heating effect of the radio frequency magnetic field.
  • the existing implantable medical devices often adopt a split structure, that is, the lead is divided into an extension lead connected to the controller and a contact connected to the stimulation electrode.
  • the lead wire is connected to the lead wire during the operation.
  • Typical implantable medical devices such as deep brain stimulator (DBS for short).
  • the conductive shielding layer covering the outer surface of the extension wire and the conductive shielding layer covering the outer surface of the electrode wire cannot be directly electrically connected, and the ability of the conductive shielding layer to suppress the RF heating effect is greatly dependent on
  • a complete and reliable electrical connection must be formed between the conductive shielding layers of each part, so that the conductive shielding layer can effectively suppress the RF heating effect.
  • Cikonation CN108808313A discloses an MRI-compatible implantable medical device and its connection method and connection mechanism, which proposes a device that can simultaneously connect the shielding layers of the implantable medical device and can realize the sealing of the connection joints connection mechanism.
  • the entire contents of Patent Publication CN108808313A are incorporated herein by this application for various reasons.
  • the purpose of the present invention is to overcome or at least alleviate the above-mentioned deficiencies of the prior art, and to provide a connecting mechanism of an implantable medical device with a simple structure and a simple manufacturing process and a manufacturing method thereof.
  • connection mechanism for an implantable medical device, wherein the connection mechanism is tubular and includes:
  • a sealing sleeve used for being sleeved on the outer periphery of the connecting part of the first connecting piece and the second connecting piece of the implantable medical device;
  • a connecting sleeve is sleeved on the shielding sleeve. In the axial direction of the connecting mechanism, the outermost two ends of the connecting sleeve are located outside the two ends of the shielding sleeve.
  • the connecting sleeve Partly in the area where the sealing sleeve is located.
  • connection sleeve includes a first connection sleeve and a second connection sleeve separated in the axial direction
  • the first connecting sleeve is arranged at the axial first end of the shielding sleeve, and in the axial direction, the first connecting sleeve is partially located in the area where the sealing sleeve is located, and partially exceeds the area where the sealing sleeve is located. the axial first end of the shield sleeve,
  • the second connecting sleeve is disposed at the second axial end of the shielding sleeve, and in the axial direction, the second connecting sleeve is partially located in the area where the sealing sleeve is located, and partially exceeds the area where the sealing sleeve is located. the axial second end of the shield sleeve.
  • the first connecting sleeve and the second connecting sleeve are fixedly connected to the shielding sleeve.
  • the shielding sleeve has an axial first end and an axial second end, the axial second end having a larger diameter than the axial first end.
  • connection sleeve further comprises a first connection sleeve, a second connection sleeve and a third connection sleeve separated in the axial direction,
  • the first connecting sleeve is arranged at the axial first end of the shielding sleeve, and in the axial direction, the first connecting sleeve is partially located in the area where the sealing sleeve is located, and partially exceeds the area where the sealing sleeve is located. the axial first end of the shield sleeve,
  • the second connecting sleeve is disposed at the second axial end of the shielding sleeve, and in the axial direction, the second connecting sleeve is partially located in the area where the sealing sleeve is located, and partially exceeds the area where the sealing sleeve is located. the axial second end of the shield sleeve,
  • the third connection sleeve is located between the first connection sleeve and the second connection sleeve in the axial direction and is close to the region where the first connection sleeve is located.
  • the third connecting sleeve is movable relative to the shielding sleeve in the axial direction.
  • the connecting sleeve is an integral structure, and both ends of the connecting sleeve in the axial direction extend beyond the shielding sleeve axially outward.
  • the connecting sleeve wraps the shielding sleeve on both radial sides of the shielding sleeve.
  • the thickness of the portion of the connecting sleeve radially inward of the shielding sleeve is not greater than 0.3 mm.
  • the outer periphery of the shielding sleeve is not covered by the connecting sleeve.
  • the connecting sleeve has one or more fastening locations for securing the constricting element so that a constraining force towards the radially inward direction is applied.
  • the fastening portion in the axial direction, is located in the region where the shielding sleeve is located.
  • a region of the shielding sleeve overlapping with the sealing sleeve and a region of the shielding sleeve extending beyond the sealing sleeve are each At least one of the fastening locations covers.
  • each of the fastening parts includes two limit rings protruding in the radial direction, the two limit rings are spaced apart in the axial direction, the two limit rings The ring is used to limit the position of the condensing member on both sides in the axial direction.
  • the shielding sleeve is formed by braiding.
  • connection mechanism is the connection mechanism according to the present invention, and the method includes:
  • the sealing sleeve when assembling the connecting sleeve located at one end of the shielding sleeve, the sealing sleeve is sleeved on the first tooling core rod,
  • the sealing sleeve When assembling the connecting sleeve located at the other end of the shielding sleeve, the sealing sleeve is sleeved on the second tooling core rod.
  • the method further includes applying an adhesive between at least a partial area of the connecting sleeve in the axial direction and the shielding sleeve.
  • the thickness of the adhesive in the radial direction of the connecting mechanism is not greater than 0.3 mm.
  • connection mechanism is a connection mechanism according to the present invention, and the method includes:
  • the sealing sleeve and the connecting sleeve are integrally formed on the inner peripheral side and the outer peripheral side of the shielding sleeve.
  • the integrally forming the sealing sleeve and the connecting sleeve on the inner peripheral side and the outer peripheral side of the shielding sleeve includes:
  • the shielding sleeve is fixed to a molding die, and the molding die is filled with raw materials for making the sealing sleeve and the connecting sleeve.
  • connection mechanism of the implantable medical device according to the present invention is simple in structure, convenient in use and low in manufacturing cost.
  • FIG. 1 is a schematic diagram of a connection mechanism according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view in axial section of FIG. 1 .
  • FIG. 3 is a schematic diagram of a cross-section of the second region in FIG. 2 .
  • FIG. 4 is a schematic diagram of a cross-section of the third region in FIG. 2 .
  • FIG. 5 is a schematic diagram of a cross-section of the fourth region in FIG. 2 .
  • FIG. 6 is a schematic view of a cross-section of a second or sixth region of a connection mechanism according to a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a connection mechanism according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic view in axial section of FIG. 7 .
  • FIG. 9 is a schematic diagram of a connection mechanism according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic view in axial section of FIG. 9 .
  • sealing sleeve 20 shielding sleeve; 30 connecting sleeve; 31 first connecting sleeve; 32 second connecting sleeve; 33 third connecting sleeve; 30j fastening part; 30a limit ring.
  • the implantable medical device may be a cardiac pacemaker, a defibrillator, a deep brain stimulator, a spinal cord stimulator, a vagus nerve stimulator, a gastrointestinal stimulator, or other similar implantable medical devices.
  • the device is an MRI compatible implantable medical device.
  • the following description mainly takes the deep brain stimulator as an example, and the description is also applicable to other implantable medical devices.
  • the MRI-compatible implantable medical device includes a separate extension lead and electrode lead, and both the extension lead and the electrode lead have conductive shielding layers.
  • the connecting mechanism according to the present invention is tubular and has an axial direction and a radial direction, and the connecting mechanism includes a sealing sleeve, a shielding sleeve and a connecting sleeve.
  • the shielding sleeve is sleeved outside the sealing sleeve
  • the connecting sleeve is disposed depending on the shielding sleeve and is mainly sleeved outside the shielding sleeve.
  • the sealing sleeve includes a connecting cavity for installing a first connecting piece inserted from one end of the connecting mechanism and a second connecting piece inserted from the other end of the connecting mechanism.
  • one end of the sealing sleeve is used for sealingly connected to the outer peripheral surface of the first connector, and the other end of the sealing sleeve is used for sealingly connected to the first connector.
  • the outer peripheral surface of the two connecting pieces is used for sealingly connected to the first connector.
  • the first connecting member is an extension wire
  • the second connecting member is an electrode wire
  • first connection piece and/or the second connection piece are also simply referred to as wires.
  • the shielding sleeve connects the first connecting member, such as the extension wire, and the second connecting member, such as the conductive shielding layer covered by the outer surface of the electrode wire into one body, so that the shielding layer is resistant to the RF-induced thermal temperature rise at the stimulation contact. Play a good inhibitory effect.
  • the sealing sleeve seals the electrical connection joint between the extension wire and the electrode wire.
  • the connecting sleeve acts as a fastening for the sealing sleeve and the shielding sleeve, in particular at the ends of the sealing sleeve and the shielding sleeve.
  • the sealing sleeve is made of a biocompatible material, and preferably, the biocompatible material is a biocompatible polymer material.
  • the biocompatible polymer material is one or more of paralen, polyurethane, silicone rubber and the like. It can be understood that if the material of the sealing sleeve is not biocompatible, other protective materials having biocompatibility can be provided outside the sealing sleeve.
  • the inner shape of the sealing sleeve is determined by the shape of the first connecting piece, such as the extension wire, and the second connecting piece, such as the connecting plug of the electrode wire, so as to realize the coating of the connecting plug.
  • the shielding sleeve covers the outer surface of the sealing sleeve and is made of conductive material.
  • the shielding sleeve itself is made of a biocompatible conductive material.
  • the biocompatible conductive material is one or more of a biocompatible metal material, a biocompatible carbon-based material, and a biocompatible conductive polymer.
  • the metal material with biocompatibility is one or more of platinum, platinum alloy, iridium, iridium alloy, titanium, titanium alloy, stainless steel, nickel-titanium alloy and cobalt-based alloy. It can be understood that if the conductive material of the shielding sleeve is not biocompatible, other protective materials with biocompatibility need to be provided outside the shielding. In order to easily produce large deformation during the operation, the shielding sleeve can be designed to include but not limited to the structure of mesh, spiral, cage or cylindrical film.
  • the connecting sleeve covers at least two ends of the sealing sleeve and the shielding sleeve, and extends beyond the ends of the sealing sleeve and the shielding sleeve on both sides in the axial direction.
  • At least a partial region of the connecting sleeve in the axial direction can extend further radially to the inner circumference of the shielding sleeve, ie the shielding sleeve can be embedded at least partially in the connecting sleeve.
  • a constricting member may be further provided outside the connecting sleeve to increase the tightening force between the connecting mechanism and the inner wire (ie, the first connecting member and the second connecting member).
  • the sealing sleeve, the shielding sleeve and the connecting sleeve can be fabricated separately and assembled together. It is also possible for the sealing sleeve and the connecting sleeve to be integrally connected to the shielding sleeve by, for example, an injection molding or gluing process.
  • connection mechanism of the implantable medical device and the manufacturing method thereof provided by the present invention will be further described in detail below with reference to FIG. 1 to FIG. 10 .
  • connection mechanism according to the present invention
  • connection mechanism includes a sealing sleeve 10 , a shielding sleeve 20 and a connecting sleeve 30 .
  • the sealing sleeve 10 has a first end for passing a first connecting member (not shown, such as an electrode wire), and a second connecting member (not shown, such as an extension wire) passing through ) through the second end.
  • a first connecting member not shown, such as an electrode wire
  • a second connecting member not shown, such as an extension wire
  • the sealing sleeve 10 is in the shape of a tube with a large diameter at one end and a small diameter at the other end, the first end being the end with the smaller diameter, and the second end being the end with the larger diameter.
  • connection point of the first connecting piece and the second connecting piece is located inside the sealing sleeve 10 .
  • the inner cavity of the sealing sleeve 10 includes a small cavity area and a large cavity area and is in the shape of a stepped cylinder. second end.
  • the large cavity area is the main accommodating area and occupies a larger axial dimension.
  • the connecting part of the first connector and the second connecting part is accommodated in the large cavity area.
  • the inner diameter of the large cavity area is approximately equal to the outer diameter of the connecting part, and the smaller The inner diameter of the cavity region is approximately equal to the outer diameter of the first connector.
  • the outer circumference of the sealing sleeve 10 in the small cavity region and the part close to the first end is a cylindrical part with a first outer diameter
  • the outer circumference of the sealing sleeve 10 in the large cavity region and the part close to the second end has a second outer diameter
  • the cylindrical portion of the sealing sleeve 10 is a tapered variable diameter portion at the outer circumference of the small cavity area and the part close to the large cavity area.
  • the shielding sleeve 20 is tightly sleeved on the outer periphery of the sealing sleeve 10 .
  • the shielding sleeve 20 protrudes beyond the sealing sleeve 10 at both axial ends, and the portion of the shielding sleeve 20 that extends beyond the sealing sleeve 10 at both axial ends can be in contact with the conductive shielding layers located on the outer circumferences of the first connecting piece and the second connecting piece. touch.
  • the shielding sleeve 20 preferably has a mesh-like structure with some flexibility. In the axial direction, the shielding sleeve which is in contact with the sealing sleeve 10 has a correspondingly determined shape depending on the shape of the sealing sleeve 10 .
  • the shielding sleeve 20 is at its first and second axial ends, preferably the diameter of the first axial end of the shielding sleeve 20 is smaller than the diameter of the second axial end of the shielding sleeve 20 .
  • the direction in the axial direction from the second end of the sealing sleeve 10 or the shielding sleeve 20 to the first end thereof is referred to as the first direction D1
  • the opposite direction is referred to as the second direction D2.
  • connection sleeve 30 comprises two axially separated parts, a first connection sleeve 31 and a second connection sleeve 32, independent of each other.
  • the first connecting sleeve 31 is disposed at the small end of the shielding sleeve 20 , and in the axial direction, the first connecting sleeve 31 extends from the area where the sealing sleeve 10 is located along the first direction D1 to beyond the shielding sleeve 20 .
  • the second connecting sleeve 32 is disposed at the large end of the shielding sleeve 20 , and in the axial direction, the second connecting sleeve 32 extends from the area where the sealing sleeve 10 is located along the second direction D2 to beyond the shielding sleeve 20 .
  • Both the first connection sleeve 31 and the second connection sleeve 32 are tightly sleeved on the shielding sleeve 20.
  • the diameter (including the inner diameter and the outer diameter) of the first connection sleeve 31 is smaller than that of the second connection sleeve The diameter of the barrel 32.
  • the connecting sleeve 30 extends from the area where the sealing sleeve 10 is located to the end beyond the shielding sleeve 20, which on the one hand enables the connecting sleeve 30 to press the sealing sleeve 10 tightly against the outer surface of the connector inside the connecting mechanism , to improve the sealing effect of the connection mechanism; on the other hand, it ensures that the shielding sleeve 20 is in close contact with the conductive shielding layer on the outer surface of the connector;
  • connection mechanism of the present embodiment can be divided into 7 regions which are connected in sequence, and different structures of the 7 regions are described with reference to FIG. 2 to FIG. 5 .
  • the first region I has only the first connecting sleeve 31 .
  • the second region II is the first connecting sleeve 31 and the shielding sleeve 20 in order from the outside to the inside in the radial direction.
  • the inner diameter of the shielding sleeve 20 is approximately equal to the outer diameter of the first connecting piece, or the inner diameter of the shielding sleeve 20 is slightly smaller than the outer diameter of the first connecting piece so that the shielding sleeve 20 and the first connecting piece form an interference fit Cooperate.
  • the third region III includes the first connecting sleeve 31 , the shielding sleeve 20 and the sealing sleeve 10 in order from the outside to the inside in the radial direction.
  • the fourth region IV is the shielding sleeve 20 and the sealing sleeve 10 in order from the outside to the inside in the radial direction.
  • the inner diameter of the sealing sleeve 10 is slightly smaller than the outer diameters of the first connecting piece and the second connecting piece at the corresponding positions, so that the sealing sleeve 10 and the first connecting piece and the second connecting piece form an interference fit, so as to prevent the The first connector and the second connector (especially at the connection part) form a seal to prevent the body fluid from entering the wire connection part after the medical device is implanted into the body, causing short circuit of the wire and damage to the human body and products.
  • the sealing sleeve 10 can also form a clearance fit with the first connecting piece and the second connecting piece.
  • Embodiment and the fifth embodiment so as to realize the sealing and conductive shielding of the first connecting piece and the second connecting piece by the connecting mechanism.
  • the fifth region V is similar to the third region III, and includes the second connecting sleeve 32 , the shielding sleeve 20 and the sealing sleeve 10 in order from the outside to the inside in the radial direction.
  • the sixth region VI is similar to the second region II, and includes the second connecting sleeve 32 and the shielding sleeve 20 in order from the outside to the inside in the radial direction.
  • the seventh region VII is similar to the first region I, having only the second connecting sleeve 32 in the radial direction.
  • FIG. 4 preferentially shows that the shielding sleeve 20 is in close contact with the connecting sleeve 30 (the first connecting sleeve 31 is shown in the figure, and the second connecting sleeve 32 is also shown) and cannot be connected with the connecting sleeve.
  • the barrel 30 is distinguished because the connecting sleeve 30 will be tightly connected to the shielding sleeve 20 by, for example, gluing or injection molding or gluing process, which will be more easily understood in the following description of the method of making the connecting mechanism.
  • the above arrangement of the connecting sleeve 30 makes the conductive shielding sleeve 20 partially exposed on the outer peripheral side.
  • the connecting mechanism has a certain flexibility in the axial middle part, so that the fatigue resistance and elastic deformation ability are good;
  • the mesh of the shielding sleeve 20 is conducive to the adhesion of the biological tissue to the connecting mechanism during growth, thereby preventing the medical device from being displaced due to various factors for a long time after being implanted into the living body, or fracture or connection failure caused by excessive pulling.
  • the connecting sleeve 30 tightly wraps the shielding sleeve 20 and the sealing sleeve 10 at two axial ends, which can strengthen the connection strength between the connecting mechanism and the inner wire.
  • a second embodiment of the connecting mechanism according to the present invention is introduced, which is a modification of the first embodiment, and the same or similar reference numerals are attached to the same or similar components as those of the first embodiment, and the reference numerals are omitted. Detailed description of these parts.
  • the connecting sleeve 30 extends to the inner peripheral side of the shielding sleeve 20 in the radial direction for a region where the shielding sleeve 20 and the connecting sleeve 30 overlap in the axial direction.
  • the shielding sleeve 20 is covered by the connecting sleeve 30 on both the radially inner side and the radially outer side, and the shielding sleeve 20 is embedded in the connecting sleeve 30 .
  • connection mechanism is usually because the connecting sleeve 30 is formed on the shielding sleeve 20 by a process such as injection molding or gluing, which is simple in manufacturing process and firm in connection. It will be easier to understand in the following description of the method of making the connection mechanism.
  • the thickness d of the portion of the connecting sleeve 30 on the radially inner side of the shielding sleeve 20 is not greater than 0.3 mm for the region where the shielding sleeve 20 is completely covered by the connecting sleeve 30 .
  • the third embodiment is a modification of the first embodiment.
  • the connecting sleeve 30 is presented as an integral part, the connecting sleeve 30 extends from the small end to the large end of the shielding sleeve 20, and the connecting sleeve 30 is in the first direction D1 and the second direction D2 Both are beyond the shielding sleeve 20, and the shielding sleeve 20 is not exposed on the outer peripheral side.
  • connection mechanism in this way is simple in structure and easy to manufacture.
  • FIGS. 7 and 8 a fourth embodiment of the connecting mechanism according to the present invention is introduced, which is a modification of the first embodiment, and the same or similar reference numerals are attached to the same or similar components as those of the first embodiment, The detailed description of these components is omitted.
  • connection sleeve 30 has a fastening portion 30j, specifically, the first connection sleeve 31 and the second connection sleeve 32 each have a fastening portion 30j, and in the axial direction, the fastening portion 30j is located at The region of the shielding sleeve 20 beyond the sealing sleeve 10 .
  • the above fastening parts 30j are provided in the second area II and the sixth area VI of the connection mechanism.
  • Each fastening site 30j includes two axially spaced apart limit rings 30a.
  • the stop ring 30a is a radial projection on the outer peripheral wall of the connecting sleeve 30 . Between the two limiting rings 30a of each fastening part 30j is used for disposing a constraining member, and the constraining ring 30a can limit the axial limiting of the constraining member.
  • the binding member is, for example, a tie line. After the connecting mechanism and the wire are assembled, the binding member is tightened to exert a binding force on the connecting mechanism at the fastening part 30j, so as to increase the tightness of the connection between the connecting mechanism and the wire, and ensure that the shielding layer of the wire is connected to the wire.
  • the limit ring 30 a located on the outer side (away from the sealing sleeve 10 ) of the two limit rings 30 a of each fastening site 30 j is axially flush with the end of the shield sleeve 20 .
  • the connecting sleeve 30 is made of transparent or translucent material. Therefore, when assembling the wire and the connection mechanism, the limit ring 30a located on the outer side also plays the role of reference positioning. Alternatively, a reference mark can also be set on the wire, which is partially inside the outer limit ring 30a to ensure that the shielding layer on the wire can contact the shielding sleeve 20 .
  • FIGS. 9 and 10 a fifth embodiment of the connecting mechanism according to the present invention is introduced, which is a modification of the fourth embodiment, and the same or similar reference numerals are attached to the same or similar components as those of the fourth embodiment, The detailed description of these components is omitted.
  • connection mechanism has four fastening parts 30j, of which two fastening parts 30j are the same as the fourth embodiment, located in the second area II and the sixth area VI of the connection mechanism, respectively, and the other two fastening parts 30j are respectively Located in the third area III and fifth area V of the connection mechanism. That is, two additional fastening parts 30j are provided on the connecting sleeve 30 corresponding to the regions where the two ends of the sealing sleeve 10 are located in the axial direction.
  • each fastening site 30j preferably includes two axially spaced apart limit rings 30a. Between the two limiting rings 30a of each fastening part 30j is used for disposing a constraining member, and the constraining ring 30a can limit the axial limiting of the constraining member. After the connection mechanism and the wire are assembled, the tightening member is tightened to exert a binding force on the connection mechanism at the fastening portion 30j, so as to increase the tightness of the connection between the connection mechanism and the wire.
  • the connecting mechanism (or the sealing sleeve 10 ) has a structure with one large end and one small end
  • the shielding sleeve 20 between the two fastening parts 30j of the small end is partially exposed without being covered by the connecting sleeve 30 . That is, at the small end of the connection mechanism, in addition to the first connection sleeve 31 similar to that of the fourth embodiment, a third connection sleeve 33 spaced apart from the first connection sleeve 31 in the axial direction is provided. The shielding sleeve 20 is exposed between the first connecting sleeve 31 and the third connecting sleeve 33 .
  • the third connecting sleeve 33 is not fixed to the shielding sleeve 20 , that is, the third connecting sleeve 33 can have a certain space for movement relative to the shielding sleeve 20 in the axial direction.
  • the above-mentioned setting of the third connection sleeve 33 takes into account that the diameter of the shielding sleeve 20 is small at the small end of the connection mechanism, especially for the shielding sleeve 20 formed by braiding, the braided wire at the small end is tighter, In addition, the small end is easy to bend during use, so the small end is required to have good fatigue resistance.
  • the separation of the third connecting sleeve 33 from the first connecting sleeve 31 and the fact that the third connecting sleeve 33 is not adhered to the shielding sleeve 20 can improve the fatigue resistance of the connecting mechanism in this area.
  • the arrangement of the two fastening parts 30j located at the big end of the connecting mechanism can also refer to the arrangement of the small end.
  • the axial region of the connecting mechanism where the fastening portion 30j is located is a clearance fit between the connecting member accommodated in the connecting mechanism and the connecting mechanism and the internal connecting member are assembled in place. Afterwards, the tight and firm connection between the connecting mechanism and the connecting piece is achieved by tying the constricting piece.
  • this connection method is smoother and simpler to assemble, and can reduce the difficulty of implanting the medical device into the living body and reduce the adverse reactions of the implanted person.
  • the manufacturing method of the connecting mechanism according to the present invention will be introduced, mainly introducing two manufacturing methods, one is a split-assembled manufacturing method, and the other is an integrally-molded manufacturing method.
  • the manufacturing method adopts a separate assembly type, that is, the sealing sleeve 10 , the shielding sleeve 20 and the connecting sleeve 30 are respectively manufactured and then assembled together.
  • the sealing sleeve 10 , the shielding sleeve 20 and the connecting sleeve 30 are respectively fabricated.
  • the shielding sleeve 20 For the fabrication of the shielding sleeve 20, for example, a braiding process is used, and a multi-spindle catheter braiding machine is used for braiding.
  • the number of braiding spindles is preferred but not limited to 8, 12, 16, 24, 32, 48, 56 or 64 spindles.
  • the braid density at the varying diameters is uniformly transitioned.
  • the material used for weaving is a material with good electrical conductivity.
  • the material for making the sealing sleeve 10 and the connecting sleeve 30 is preferably an insulating material with good elastic deformation ability, such as silicone rubber or polyurethane.
  • the following describes the manufacturing method of the sealing sleeve 10 and the connecting sleeve 30 by taking the two-component solid silicone rubber as the raw material as an example.
  • the shielding sleeve 20 and the connecting sleeve 30 are prepared, the three are assembled together, including:
  • One end, preferably the large end, of the sealing sleeve 10 is sleeved on the first tooling mandrel for positioning.
  • the outer diameter of the first tooling mandrel is substantially equal to the inner diameter of one end of the sealing sleeve 10 .
  • the shielding sleeve 20 is sleeved onto the sealing sleeve 10 , so that both ends of the shielding sleeve 20 protrude from the sealing sleeve 10 .
  • an adhesive is applied between the second connection sleeve 32 and the shielding sleeve 20 , and the thickness of the adhesive layer formed by the adhesive on the inner peripheral side of the shielding sleeve 20 is not more than 0.3 mm.
  • the first tooling mandrel is taken out to obtain a semi-finished product formed by the sealing sleeve 10 , the shielding sleeve 20 and the second connecting sleeve 32 .
  • the first connecting sleeve 31 is sleeved outside the other end of the shielding sleeve 20 , the first connecting sleeve 31 partially extends to the area where the sealing sleeve 10 is located, and partially extends beyond the other end of the shielding sleeve 20 .
  • an adhesive is applied between the first connection sleeve 31 and the shielding sleeve 20 , and the thickness of the adhesive layer formed by the adhesive on the inner peripheral side of the shielding sleeve 20 is not more than 0.3 mm.
  • the second tooling core rod is taken out to obtain a finished connecting mechanism.
  • the use of the adhesive ensures the tight connection between the connecting sleeve 30 and the shielding sleeve 20; the thickness of the adhesive layer is not greater than 0.3 mm, which enables the connecting mechanism to ensure reliable conductive shielding during MRI scanning.
  • the manufacturing method adopts an integral molding method, that is, after the shielding sleeve 20 is prepared, the sealing sleeve 10 and the connecting sleeve 30 are formed on the shielding sleeve 20 at one time.
  • the shield sleeve 20 is fabricated.
  • a braiding process a multi-spindle catheter braiding machine is used for braiding.
  • the number of braiding spindles is preferred but not limited to 8, 12, 16, 24, 32, 48, 56 or 64 spindles.
  • the braid density at the varying diameters is uniformly transitioned.
  • the material used for weaving is a material with good electrical conductivity.
  • sealing sleeve 10 and the connecting sleeve 30 are formed.
  • the shielding sleeve 20 is fixed to the forming mold, and the mold cavity is filled with raw materials for making the sealing sleeve 10 and the connecting sleeve 30 .
  • the raw material is preferably an insulating material with good elastic deformation ability, more preferably silicone rubber or polyurethane with good fluidity during processing. After the raw material is solidified and formed, the connecting mechanism according to the present invention is obtained.
  • the molding process of the sealing sleeve 10 and the connecting sleeve 30 can be adjusted according to different raw materials, for example, a process of high temperature vulcanization or injection molding, or a low temperature glue injection process can be used.
  • the connecting mechanism according to the present invention has a simple structure, is convenient to manufacture and uses.
  • the connecting mechanism according to the present invention can adopt a split-type manufacturing method, each component is manufactured separately, and finally is assembled and formed, which is not limited by materials and processing equipment, and is suitable for various types of materials and has a wide range of applications.
  • the connecting mechanism according to the present invention can adopt an integrated manufacturing method, omitting assembly steps, and the implementation method is suitable for various types of easy-to-shape materials.
  • the limiting ring 30a may not be a protruding portion connecting the peripheral wall of the sleeve 30, but a concave annular groove portion.
  • the limiting ring 30a can also be omitted, or only one limiting ring 30a is provided on the axial outer side of each fastening part 30j.
  • a mark such as a marking line may be provided on the surface of the connecting sleeve 30.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种植入式医疗器械的连接机构及其制作方法,连接机构呈管状且包括:密封套筒(10),用于套设在植入式医疗器械的第一连接件和第二连接件的连接部位的外周;屏蔽套筒(20),套设于密封套筒(10),且在轴向上的两端超出密封套筒(10);和连接套筒(30),套设于屏蔽套筒(20),在连接机构的轴向上,连接套筒(30)的最外侧的两端位于屏蔽套筒(20)的两端的外侧,连接套筒(30)部分地位于密封套筒(10)所在的区域。植入式医疗器械的连接机构结构简单、使用方便且制作成本低。

Description

植入式医疗器械的连接机构及其制作方法 技术领域
本发明涉及植入式医疗器械领域,尤其涉及一种MRI相容的植入式医疗器械的连接机构及其制作方法。
背景技术
磁共振成像技术(Magnetic Resonance Imaging,MRI)与其他成像技术(如X射线、CT等)相比,有着比较显著的优势:磁共振成像更为清晰,对软组织有很高的分辨力,而且对人体无电离辐射损伤。所以,磁共振成像技术被广泛地应用于现代医学的临床诊断之中。据估计,如今全球每年至少有6000万病例利用核磁共振成像技术进行检查。
MRI工作时会有三个磁场发挥作用。一个高强度的均匀静磁场B0,一个可调整为任意方向的梯度磁场,以及用于激发核磁共振的射频(RF)磁场。其中静磁场B0的强度常见的为1.5T和3.0T,静磁场B0与梯度磁场协同工作以提供磁共振信号的空间位置信息;而射频磁场是一个大功率、高频率的时变磁场,其频率为Larmor频率,即f=γB0,其中γ=42.5MHz/T。所以,在常见的静磁场B0为1.5T或3.0T的MRI中,射频磁场的频率分别约为64MHz及128MHz。
虽然MRI不会对人体有直接的伤害,但是如果患者体内安装有植入式医疗器械(Implantable Medical Device,IMD),例如:心脏起搏器、除颤器、迷走神经刺激器、脊髓刺激器、脑深部电刺激器等,那么,MRI工作时所需要使用的三个磁场便会给患者的生命健康安全带来很大的隐患。其中最重要的一个隐患是植入式医疗器械在射频(Radio Frequency,RF)磁场中的感应发热,特别是对于那些带有细长导电结构,并且这种细长导电结构会部分与组织接触的医疗器械(典型的例如脑深部电刺激器带有延长导线和电极导线,心脏起搏器带有电极线)。体内装有这些植入式医疗器械的患者在进行MRI扫描的时候,在细长导电结构与组织接触的部位可能会出现严重的温升,这样的温升会对患者造成严重的伤害。然而,大部分植入IMD的患者在器械寿命周期内需要进行MRI检查,而射频磁场感应发生带来的安全隐患导致这部分病人被拒绝进行检查。所以,开发植入式医疗器械的MRI兼容功能意义显著,而由于射频磁场的感应发热效应主要体现 在细长导电结构如电极上,所以开发能够在MRI环境下不会由于射频磁场的感应发热效应而导致严重温升的电极具有很高的市场价值和应用价值。
为了克服上述问题,现有技术在MRI相容的植入式医疗器械的导线外表面设置导电屏蔽层。导电屏蔽层的存在使导线在MRI环境下不会由于射频磁场的感应发热效应而导致严重温升。
然而,出于手术方便、保证可靠性等各方面的原因,现有的植入式医疗器械常采用分体式结构,即,将导线分为与控制器连接的延长导线以及与刺激电极触点连接的电极导线,在手术过程中才会将该延长导线与电极导线连接在一起。典型的植入式医疗器械例如脑深部电刺激器(简称DBS)。
由于采用分体式的结构,覆盖于延长导线外表面的导电屏蔽层与覆盖于电极导线外表面的导电屏蔽层之间无法直接实现电连接,而导电屏蔽层对RF致热效应的抑制能力极大地依赖于屏蔽层的完整性,也就是说,各个部分的导电屏蔽层之间必须形成完整、可靠的电连接,才能使导电屏蔽层有效地发挥对RF致热效应的抑制作用。
中国专利公开CN108808313A公开了一种MRI相容的植入式医疗器械及其连接方法和连接机构,其提出一种可以同时将植入式医疗器械的屏蔽层连接、且能实现连接接头的密封性的连接机构。出于各种原因,本申请将专利公开CN108808313A中的全部内容引入本申请。
然而,上述专利公开仍然存在着制作工艺复杂的缺点。
发明内容
本发明的目的在于克服或至少减轻上述现有技术存在的不足,提供一种结构简单、制作工艺简单的植入式医疗器械的连接机构及其制作方法。
根据本发明的第一方面,提供一种植入式医疗器械的连接机构,其中,所述连接机构呈管状且包括:
密封套筒,用于套设在植入式医疗器械的第一连接件和第二连接件的连接部位的外周;
屏蔽套筒,套设于所述密封套筒,且在轴向上的两端超出所述密封套筒;和
连接套筒,套设于所述屏蔽套筒,在所述连接机构的轴向上,所述连接套筒的最外侧的两端位于所述屏蔽套筒的两端的外侧,所述连接套筒部分地位于所述密封套筒所在的区域。
在至少一个实施方式中,所述连接套筒包括在所述轴向上分离的第一连接套筒和第二连接套筒,
所述第一连接套筒设置于所述屏蔽套筒的轴向第一端,在所述轴向上,所述第一连接套筒部分地位于所述密封套筒所在的区域,部分地超出所述屏蔽套筒的所述轴向第一端,
所述第二连接套筒设置于所述屏蔽套筒的轴向第二端,在所述轴向上,所述第二连接套筒部分地位于所述密封套筒所在的区域,部分地超出所述屏蔽套筒的所述轴向第二端。
在至少一个实施方式中,所述第一连接套筒和所述第二连接套筒与所述屏蔽套筒固定连接。
在至少一个实施方式中,所述屏蔽套筒具有轴向第一端和轴向第二端,所述轴向第二端的直径大于所述轴向第一端的直径。
在至少一个实施方式中,所述连接套筒还包括在所述轴向上分离的第一连接套筒、第二连接套筒和第三连接套筒,
所述第一连接套筒设置于所述屏蔽套筒的轴向第一端,在所述轴向上,所述第一连接套筒部分地位于所述密封套筒所在的区域,部分地超出所述屏蔽套筒的所述轴向第一端,
所述第二连接套筒设置于所述屏蔽套筒的轴向第二端,在所述轴向上,所述第二连接套筒部分地位于所述密封套筒所在的区域,部分地超出所述屏蔽套筒的所述轴向第二端,
所述第三连接套筒在所述轴向上位于所述第一连接套筒和所述第二连接套筒之间且靠近所述第一连接套筒所在的区域。
在至少一个实施方式中,所述第三连接套筒能在所述轴向上相对于所述屏蔽套筒活动。
在至少一个实施方式中,所述连接套筒为一体结构,所述连接套筒在所述轴向上的两端均向轴向外侧超出所述屏蔽套筒。
在至少一个实施方式中,在所述轴向上的至少部分区域,所述连接套筒在所述屏蔽套筒的径向两侧将所述屏蔽套筒包裹。
在至少一个实施方式中,所述连接套筒在所述屏蔽套筒的径向内侧的部分的厚度不大于0.3mm。
在至少一个实施方式中,在所述轴向上的部分区域,所述屏蔽套筒的外周不被所述连接套筒覆盖。
在至少一个实施方式中,所述连接套筒具有一个或多个紧固部位,所述紧固部位用于固定收束件从而被施加朝向径向内侧的束缚力。
在至少一个实施方式中,在所述轴向上,所述紧固部位位于所述屏蔽套筒所在的区域。
在至少一个实施方式中,在所述轴向上,所述屏蔽套筒的与所述密封套筒重合的区域、以及所述屏蔽套筒的超出所述密封套筒的部分所在的区域各被至少一个所述紧固部位覆盖。
在至少一个实施方式中,每个所述紧固部位包括在径向上凸出的两个限位环,所述两个限位环在所述轴向上分隔开,所述两个限位环用于在轴向两侧对所述收束件限位。
在至少一个实施方式中,所述屏蔽套筒通过编织形成。
根据本发明的第二方面,提供一种植入式医疗器械的连接机构的制作方法,其中,所述连接机构是根据本发明所述的连接机构,所述方法包括:
分别准备所述密封套筒、所述屏蔽套筒和所述连接套筒;
将所述密封套筒、所述屏蔽套筒和所述连接套筒套装在一起。
在至少一个实施方式中,在装配位于所述屏蔽套筒的一端的所述连接套筒时,将所述密封套筒套设在第一工装芯杆,
在装配位于所述屏蔽套筒的另一端的所述连接套筒时,将所述密封套筒套设在第二工装芯杆。
在至少一个实施方式中,所述方法还包括:在所述连接套筒的轴向上的至少部分区域和所述屏蔽套筒之间涂抹粘接剂。
在至少一个实施方式中,所述粘接剂在所述连接机构的径向上的厚度不大于0.3mm。
根据本发明的第三方面,提供一种植入式医疗器械的连接机构的制作方法,其特征在于,所述连接机构是根据本发明的连接机构,所述方法包括:
准备所述屏蔽套筒;
在所述屏蔽套筒的内周侧和外周侧一体成型地制作所述密封套筒和所述连接套筒。
在至少一个实施方式中,所述在所述屏蔽套筒的内周侧和外周侧一体成型地制作所述密封套筒和所述连接套筒包括:
将所述屏蔽套筒固定于成型模具,向所述成型模具中填充用于制作所述密封套筒和 所述连接套筒的原材料。
根据本发明的植入式医疗器械的连接机构结构简单、使用方便且制作成本低。
附图说明
图1是根据本发明的第一实施方式的连接机构的示意图。
图2是图1的沿轴向剖开的示意图。
图3是图2中的第二区域的横截面的示意图。
图4是图2中的第三区域的横截面的示意图。
图5是图2中的第四区域的横截面的示意图。
图6是根据本发明的第二实施方式的连接机构的第二区域或第六区域的横截面的示意图。
图7是根据本发明的第四实施方式的连接机构的示意图。
图8是图7的沿轴向剖开的示意图。
图9是根据本发明的第五实施方式的连接机构的示意图。
图10是图9的沿轴向剖开的示意图。
附图标记说明:
10密封套筒;20屏蔽套筒;30连接套筒;31第一连接套筒;32第二连接套筒;33第三连接套筒;30j紧固部位;30a限位环。
具体实施方式
下面参照附图描述本发明的示例性实施方式。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本发明,而不用于穷举本发明的所有可行的方式,也不用于限制本发明的范围。
根据本发明的植入式医疗器械可以为心脏起搏器、除颤器、脑深部电刺激器、脊髓刺激器、迷走神经刺激器、肠胃刺激器或者其他类似的植入式医疗器械。优选地,所述器械是MRI相容的植入式医疗器械。
以下主要以脑深部电刺激器为例进行说明,该说明也适用于其他植入式医疗器械。
优选地,根据本发明的MRI相容的植入式医疗器械包括分体的延长导线和电极导线,延长导线和电极导线均具有导电屏蔽层。
根据本发明的连接机构呈管状而具有轴向和径向,连接机构包括密封套筒、屏蔽套 筒和连接套筒。其中,屏蔽套筒套设于密封套筒外,连接套筒依靠屏蔽套筒而设置并主要套设于屏蔽套筒外。
密封套筒包括连接腔体,连接腔体用于安装从所述连接机构的一端插入的第一连接件与从连接机构的另一端插入的第二连接件。在第一连接件和第二连接件安装到连接机构的状态下,密封套筒的一端用于密封地连接到第一连接件的外周面,密封套筒的另一端用于密封地连接到第二连接件的外周面。
优选地,第一连接件是延长导线,第二连接件是电极导线。以下也将第一连接件和/或第二连接件简称为导线。
优选地,屏蔽套筒将第一连接件、如延长导线与第二连接件、如电极导线的外表面覆盖的导电屏蔽层连接成一体,使得屏蔽层对刺激触点处的RF致热温升起到良好的抑制效果。优选地,同时,密封套筒对延长导线与电极导线的电连接接头进行密封。
连接套筒尤其在密封套筒和屏蔽套筒的端部对密封套筒和屏蔽套筒起到了紧固作用。
密封套筒采用生物相容性材料制成,且优选地,具有生物相容性的材料为具有生物相容性的聚合物材料。优选地,具有生物相容性的聚合物材料为派拉纶、聚氨酯、硅橡胶等的一种或多种。可以理解,如果密封套筒的材料不具有生物相容性,可以在密封套筒外部设置具有生物相容性的其它保护材料。密封套筒的内部形态决定于第一连接件、如延长导线和第二连接件、如电极导线的连接插头的外形,以实现对该连接插头的包覆。
屏蔽套筒覆盖在密封套筒的外表面,采用导电材料制成。优选地,屏蔽套筒本身采用具有生物相容性的导电材料制成。优选地,具有生物相容性的导电材料为具有生物相容性的金属材料、具有生物相容性的碳基材料以及具有生物相容性的导电高分子聚合物中的一种或多种。优选地,具有生物相容性的金属材料为铂、铂合金、铱、铱合金、钛、钛合金、不锈钢、镍钛合金以及钴基合金中的一种或多种。可以理解,如果屏蔽套筒的导电材料不具有生物相容性,则需要在屏蔽外部设置具有生物相容性的其它保护材料。为了易于在手术过程中方便地产生较大的变形,的屏蔽套筒可设计为包括但不限于的网状、螺旋状、笼状或筒状薄膜等结构。
在轴向上,连接套筒至少覆盖密封套筒和屏蔽套筒的两个端部、且在轴向两侧超出密封套筒和屏蔽套筒的端部。
连接套筒在轴向上的至少部分区域可以在径向上进一步延伸到屏蔽套筒的内周侧,即屏蔽套筒可以至少部分地嵌设在连接套筒内。
连接套筒外可以进一步设置收束件以增加连接机构与内部导线(即第一连接件和第 二连接件)之间的紧固力。
密封套筒、屏蔽套筒和连接套筒可以是分体制作后装配在一起。也可以是通过例如注塑或注胶工艺将密封套筒和连接套筒一体成型地连接到屏蔽套筒。
下面将结合图1至图10,对本发明提供的植入式医疗器械的连接机构及其制作方法作进一步的详细说明。
(连接机构的第一实施方式)
参照图1至图6,介绍根据本发明的连接机构的第一实施方式。
参照图1和图2,连接机构包括密封套筒10、屏蔽套筒20和连接套筒30。
在本实施方式中,密封套筒10具有用于使第一连接件(图未示,例如电极导线)穿过的第一端,以及用于使第二连接件(图未示,例如延长导线)穿过的第二端。优选地,密封套筒10呈一端直径大、一端直径小的管状,第一端为直径小的一端、第二端为直径大的一端。
在安装状态下,第一连接件和第二连接件的连接部位位于密封套筒10的内部。
优选地,参照图2,密封套筒10的内腔包括小腔区和大腔区而呈阶梯筒状,小腔区靠近密封套筒10的第一端、大腔区靠近密封套筒20的第二端。大腔区为主要收容区而占据较大的轴向尺寸,第一连接件和第二连接件的连接部位被收容于大腔区,大腔区的内径与连接部位的外径大致相等,小腔区域的内径与第一连接件的外径大致相等。这使得密封套筒10能较好地适应两个连接件的外径,保证密封效果。
密封套筒10在小腔区域的外周、靠近第一端的部分为具有第一外径的柱形部,密封套筒10在大腔区域的外周、靠近第二端的部分为具有第二外径的柱形部,密封套筒10在小腔区域的外周、靠近大腔区域的部分为锥形的变径部。
屏蔽套筒20紧密地套设在密封套筒10的外周。屏蔽套筒20在轴向两端均超出密封套筒10,屏蔽套筒20在轴向两端超出密封套筒10的部分能与位于第一连接件和第二连接件外周的导电屏蔽层相接触。
屏蔽套筒20优选地具有网状的结构而具有一定的柔性。在轴向上,与密封套筒10贴合的屏蔽套筒依靠密封套筒10的外形而具有相应确定的外形。屏蔽套筒20在其轴向第一端和第二端、优选地,屏蔽套筒20的轴向第一端的直径小于屏蔽套筒20的轴向第二端的直径。
为描述方便,以下将沿轴向从密封套筒10或屏蔽套筒20的第二端指向其第一端的方向称为第一方向D1、相反的方向称为第二方向D2。
优选地,连接套筒30包括两个彼此独立的在轴向上分开的部分,第一连接套筒31和第二连接套筒32。
第一连接套筒31设置于屏蔽套筒20的小端,且在轴向上,第一连接套筒31从密封套筒10所在的区域沿第一方向D1延伸到超出屏蔽套筒20。第二连接套筒32设置于屏蔽套筒20的大端,且在轴向上,第二连接套筒32从密封套筒10所在的区域沿第二方向D2延伸到超出屏蔽套筒20。第一连接套筒31和第二连接套筒32均紧密地套设于屏蔽套筒20,在本实施方式中,第一连接套筒31的直径(包括内径和外径)小于第二连接套筒32的直径。
连接套筒30从密封套筒10所在的区域延伸到超出屏蔽套筒20的端部,这一方面使得连接套筒30能将密封套筒10紧密地压靠到连接机构内部的连接件外表面,提高连接机构的密封效果;另一方面保证屏蔽套筒20与连接件外表面的导电屏蔽层紧密接触;再一方面还在导电屏蔽层轴向外侧加强了密封效果。
在第二方向D2上,可以将本实施方式的连接机构分为7个依次相连的区域,参考图2至图5介绍这7个区域的不同结构。
第一区域I,仅具有第一连接套筒31。
第二区域II,参照图3,在径向上从外向内依次为第一连接套筒31和屏蔽套筒20。优选地,屏蔽套筒20的内径与第一连接件的外径大致相等,或屏蔽套筒20的内径略小于第一连接件的外径以使屏蔽套筒20和第一连接件形成过盈配合。
第三区域III,参照图4,在径向上从外向内依次为第一连接套筒31、屏蔽套筒20和密封套筒10。
第四区域IV,在径向上从外向内依次为屏蔽套筒20和密封套筒10。
优选地,密封套筒10的内径略小于相应位置的第一连接件和第二连接件的外径,以使密封套筒10和第一连接件和第二连接件形成过盈配合,从而对第一连接件和第二连接件(尤其是在连接部位)形成密封,防止医疗器械植入生物体后,体液进入导线连接部位而造成导线短路、对人体及产品造成损坏。
或者,密封套筒10也可以和第一连接件和第二连接件形成间隙配合,在这种情况下,需要在连接套筒30的外周增加例如系线形式的收束件(详见第四实施方式和第五实施方式),以实现连接机构对第一连接件和第二连接件的密封和导电屏蔽。
第五区域V与第三区域III类似,在径向上从外向内依次为第二连接套筒32、屏蔽套筒20和密封套筒10。
第六区域VI与第二区域II类似,在径向上从外向内依次为第二连接套筒32和屏蔽套筒20。
第七区域VII与第一区域I类似,在径向上仅具有第二连接套筒32。
值得说明的是,图4优先地示出了屏蔽套筒20紧贴连接套筒30(图中示出了第一连接套筒31,也可以是第二连接套筒32)而不能与连接套筒30区别开,这是因为连接套筒30将通过例如胶粘或注塑或注胶工艺与屏蔽套筒20紧密连接,在下文对连接机构制作方法的描述中,将更容易理解。
连接套筒30的上述设置方式,使得导电屏蔽套筒20在外周侧部分地裸露,一方面,使得连接机构在轴向中部具有一定的柔性、从而抗疲劳性能好、弹性变形能力好;另一方面,屏蔽套筒20的网孔有利于生物组织生长时与连接机构粘连,从而防止医疗器械植入生物体后长期受各种因素的影响而产生位移或因过度拉扯导致的断裂或连接失效。
而连接套筒30在两个轴向端部将屏蔽套筒20和密封套筒10紧密地包裹住,能加强连接机构与内部导线的连接强度。
(连接机构的第二实施方式)
参照图6介绍根据本发明的连接机构的第二实施方式,该实施方式是第一实施方式的变型,对于与第一实施方式相同或相似的部件标注相同或相似的附图标记,并省略对这些部件的详细说明。
优选地,对于在轴向上屏蔽套筒20与连接套筒30重合的区域,连接套筒30在径向上延伸到屏蔽套筒20的内周侧。或者说,在该轴向区域,屏蔽套筒20在径向内侧和径向外侧均被连接套筒30覆盖,屏蔽套筒20内嵌于连接套筒30。
这种结构通常是因为连接套筒30是通过例如注塑或注胶的工艺而形成于屏蔽套筒20的,该制作方式工艺简单、连接牢固。在下文对连接机构制作方法的描述中,将更容易理解。
优选地,对于屏蔽套筒20被连接套筒30完全包覆的区域,连接套筒30在屏蔽套筒20的径向内侧的部分的厚度d不大于0.3mm。这使得连接机构在MRI扫描中能保证可靠的导电屏蔽作用,也使得连接机构的制作装配工艺较简单。
(连接机构的第三实施方式)
第三实施方式是第一实施方式的变型。在该实施方式中,连接套筒30呈现为一个完整的部件,连接套筒30从屏蔽套筒20的小端延伸到大端,且连接套筒30在第一方向D1和第二方向D2上均超出屏蔽套筒20,屏蔽套筒20在外周侧不裸露。
这种方式的连接机构结构简单、便于制作。
(连接机构的第四实施方式)
参照图7和图8介绍根据本发明的连接机构的第四实施方式,该实施方式是第一实施方式的变型,对于与第一实施方式相同或相似的部件标注相同或相似的附图标记,并省略对这些部件的详细说明。
优选地,连接套筒30上具有紧固部位30j,具体地,第一连接套筒31和第二连接套筒32上各具有一个紧固部位30j,且在轴向上,紧固部位30j位于屏蔽套筒20的超出密封套筒10的区域。优选地,以上紧固部位30j设置在连接机构的第二区域II和第六区域VI。
每个紧固部位30j包括两个在轴向上分隔开的限位环30a。限位环30a是在连接套筒30的外周壁上的径向凸出部。每个紧固部位30j的两个限位环30a之间用于设置收束件,限位环30a能对收束件进行轴向限位。
收束件例如为系线,当连接机构与导线完成装配后,收紧收束件以在紧固部位30j对连接机构施加束缚力,增加连接机构与导线的连接紧密程度,确保导线屏蔽层与屏蔽套筒20的电连接和连接机构与导线之间的密封。这种连接方式尤其在连接机构与导线之间具有安装间隙时非常有效。
优选地,每个紧固部位30j的两个限位环30a中位于外侧(远离密封套筒10)的限位环30a在轴向上与屏蔽套筒20的端部齐平。优选地,连接套筒30由透明或半透明的材料制成。于是,在装配导线和连接机构时,位于外侧的限位环30a还起到了参考定位的作用,透过透明或半透明的连接套筒30观察导线上的屏蔽层,使导线上的屏蔽层(或者也可以在导线上设置参考标线)有部分地处于外侧限位环30a的内侧,以确保导线上的屏蔽层能与屏蔽套筒20接触。
(连接机构的第五实施方式)
参照图9和图10介绍根据本发明的连接机构的第五实施方式,该实施方式是第四实施方式的变型,对于与第四实施方式相同或相似的部件标注相同或相似的附图标记,并省略对这些部件的详细说明。
连接机构的两端分别具有一个或多个紧固部位。优选地,连接机构具有四个紧固部位30j,其中两个紧固部位30j与第四实施方式相同,分别位于连接机构的第二区域II和第六区域VI,另两个紧固部位30j分别位于连接机构的第三区域III和第五区域V。即,在轴向上对应密封套筒10的两个端部所在的区域的连接套筒30上增设两个紧固部位30j。
与第四实施方式相同的,每个紧固部位30j优选地包括两个在轴向上分隔开的限位环30a。每个紧固部位30j的两个限位环30a之间用于设置收束件,限位环30a能对收束件进行轴向限位。当连接机构与导线完成装配后,收紧收束件以在紧固部位30j对连接机构施加束缚力,增加连接机构与导线的连接紧密程度。
优选地,当连接机构(或者说密封套筒10)具有一端大一端小的结构时,小端的两个紧固部位30j之间的屏蔽套筒20部分地裸露而不被连接套筒30覆盖。即,在连接机构的小端,除设置与第四实施方式相似的第一连接套筒31外,设置与第一连接套筒31在轴向上分隔开的第三连接套筒33,第一连接套筒31和第三连接套筒33之间具有裸露的屏蔽套筒20。
优选地,第三连接套筒33与屏蔽套筒20不固定,即第三连接套筒33能够相对于屏蔽套筒20在轴向上有一定的活动空间。
上述第三连接套筒33的设置方式是考虑到在连接机构的小端,屏蔽套筒20的直径小,尤其是对于例如由编织形成的屏蔽套筒20,其在小端的编织线更紧密,再加上该小端在使用过程中容易弯曲,因此需要小端具有较好的抗疲劳性能。而第三连接套筒33与第一连接套筒31分离、且第三连接套筒33不与屏蔽套筒20粘连能够提高该区域连接机构的抗疲劳能力。
应当理解,位于连接机构大端的两个紧固部位30j的设置也可以参考小端的设置方式。然而,由于大端对抗疲劳性能的要求较低,考虑到制作成本和制作工艺,在本实施方式中,大端只设置一个独立的连接套筒段,即第二连接套筒32,两个紧固部位30j均设置于第二连接套筒32。
优选地,在第四实施方式和第五实施方式中,紧固部位30j所在的连接机构的轴向区域与容纳于连接机构内的连接件之间间隙配合,在连接机构与内部连接件装配到位后,通过系紧收束件来实现连接机构与连接件的紧密牢固地连接。这种连接方式相比于连接机构与连接件之间使用过盈配合的连接方式,装配更顺畅简便,且能降低医疗器械植入生物体过程的难度,减少被植入者的不良反应。
应当理解,上述五种实施方式及其部分方面或特征可以适当地组合。
接下来介绍根据本发明的连接机构的制作方法,主要介绍两种制作方法,一种是分体装配式的制作方法,另一种是一体成型式的制作方法。
(连接机构的第一制作方法)
该制作方式采用分体装配式,即分别制作密封套筒10、屏蔽套筒20和连接套筒30 后将它们装配在一起。
首先,分别制作密封套筒10、屏蔽套筒20和连接套筒30。
对于屏蔽套筒20的制作,例如使用编织工艺,使用多锭数导管编织机进行编织。编织锭数优先但不限于使用8锭、12锭、16锭、24锭、32锭、48锭、56锭或64锭。
对于直径变化的屏蔽套筒20,变径处编织密度均匀过渡。
编织所使用的材料为具有良好导电性能的材料。
对于密封套筒10和连接套筒30的制作,由于这两者均为具有弹性的管状体,具有类似的制作工艺。
密封套筒10和连接套筒30的制作材料优选为具有良好弹性形变能力的绝缘材料,例如为硅橡胶或聚氨酯。
以下以原材料选用双组分固态硅橡胶为例,介绍密封套筒10和连接套筒30的制作方法。
(a)将双组份固态硅橡胶进行混炼,然后将混炼完成的硅橡胶填入模压模具型腔中,装配模具芯杆;
(b)将模压模具放到硫化机中,对硅橡胶进行硫化成型;
(c)将硫化成型后的密封套筒10或连接套筒30从模具芯杆中取下,备用。
在准备好密封套筒10、屏蔽套筒20和连接套筒30后,将这三者装配在一起,包括:
(a)将密封套筒10的一端、优选为大端套设在第一工装芯杆定位,第一工装芯杆的外径与密封套筒10的一端的内径大致相等。之后将屏蔽套筒20套设到密封套筒10,使屏蔽套筒20的两个端部超出密封套筒10。
(b)将第二连接套筒32套设到屏蔽套筒20的一端外,第二连接套筒32部分地延伸到密封套筒10的一端所在的区域、部分地超出屏蔽套筒20的的一端。
装配到位后,向第二连接套筒32和屏蔽套筒20之间涂抹粘接剂,粘接剂在屏蔽套筒20的内周侧所形成的粘接层的厚度不大于0.3mm。
待粘接剂固化定型后,将第一工装芯杆取出,得到密封套筒10、屏蔽套筒20和第二连接套筒32所形成的半成品。
(c)将半成品的密封套筒10的另一端、优选为小端套设在第二工装芯杆定位,第二工装芯杆的外径与密封套筒10的另一端的内径大致相等。
将第一连接套筒31套设到屏蔽套筒20的另一端外,第一连接套筒31部分地延伸到密封套筒10所在的区域、部分地超出屏蔽套筒20的另一端。
装配到位后,向第一连接套筒31和屏蔽套筒20之间涂抹粘接剂,粘接剂在屏蔽套筒20的内周侧所形成的粘接层的厚度不大于0.3mm。
待粘接剂固化定型后,将第二工装芯杆取出,得到成品的连接机构。
应当理解,当密封套筒10的直径一致时,可以只使用一种规格的工装芯杆进行定位。
粘接剂的使用保证了连接套筒30和屏蔽套筒20的紧密连接;粘接层的厚度不大于0.3mm,这使得连接机构在MRI扫描中能保证可靠的导电屏蔽作用。
(连接机构的第二制作方法)
该制作方式采用一体成型的方法,即在准备好屏蔽套筒20后,在屏蔽套筒20上一次形成密封套筒10和连接套筒30。
首先,制作屏蔽套筒20。例如使用编织工艺,使用多锭数导管编织机进行编织。编织锭数优先但不限于使用8锭、12锭、16锭、24锭、32锭、48锭、56锭或64锭。对于直径变化的屏蔽套筒20,变径处编织密度均匀过渡。编织所使用的材料为具有良好导电性能的材料。
然后,成型密封套筒10和连接套筒30。包括:
将屏蔽套筒20固定于成型模具,向模具型腔中填充制作密封套筒10和连接套筒30的原材料。原材料优选为具有良好弹性形变能力的绝缘材料,更优选地为在加工成型时具有良好流动性的硅橡胶或聚氨酯。待原材料凝固成型后得到根据本发明的连接机构。
应当理解,密封套筒10和连接套筒30的成型工艺可以根据原材料的不同而调整,例如可以使用高温硫化或注塑,或者低温注胶的工艺。
本发明至少具有以下优点中的一个优点:
(i)根据本发明的连接机构,结构简单,制作方便且使用方法。
(ii)根据本发明的连接机构可以采用分体式的制作方法,各零部件单独制作,最后通过组装成型,不受材料、加工设备的限制,适用于多种类型的材料,适用范围广。
(iii)根据本发明的连接机构可以采用一体式的制作方法,省去了组装步骤,该实施方法适用于各类易成型材料。
当然,本发明不限于上述实施方式,本领域技术人员在本发明的教导下可以对本发明的上述实施方式做出各种变型,而不脱离本发明的范围。例如:
(i)限位环30a也可以不是连接套筒30周壁的凸出部,而是凹进的环形槽部。
(ii)在收束件的束紧力较大的情况下,也可以省去限位环30a,或者只在每个紧固部位30j的轴向外侧设置一个限位环30a。又或者,在省去限位环30a的情况下,为便于 指示收束件的安装位置,可以在连接套筒30的表面设置例如标线形式的标识。

Claims (21)

  1. 一种植入式医疗器械的连接机构,其特征在于,所述连接机构呈管状且包括:
    密封套筒(10),用于套设在植入式医疗器械的第一连接件和第二连接件的连接部位的外周;
    屏蔽套筒(20),套设于所述密封套筒(10),且在轴向上的两端超出所述密封套筒(10);和
    连接套筒(30),套设于所述屏蔽套筒(20),在所述连接机构的轴向上,所述连接套筒(30)的最外侧的两端位于所述屏蔽套筒(20)的两端的外侧,所述连接套筒(30)部分地位于所述密封套筒(10)所在的区域。
  2. 根据权利要求1所述的连接机构,其特征在于,所述连接套筒(30)包括在所述轴向上分离的第一连接套筒(31)和第二连接套筒(32),
    所述第一连接套筒(31)设置于所述屏蔽套筒(20)的轴向第一端,在所述轴向上,所述第一连接套筒(31)部分地位于所述密封套筒(10)所在的区域,部分地超出所述屏蔽套筒(20)的所述轴向第一端,
    所述第二连接套筒(32)设置于所述屏蔽套筒(20)的轴向第二端,在所述轴向上,所述第二连接套筒(32)部分地位于所述密封套筒(10)所在的区域,部分地超出所述屏蔽套筒(20)的所述轴向第二端。
  3. 根据权利要求2所述的连接机构,其特征在于,所述第一连接套筒(31)和所述第二连接套筒(32)与所述屏蔽套筒(20)固定连接。
  4. 根据权利要求1所述的连接机构,其特征在于,所述屏蔽套筒(20)具有轴向第一端和轴向第二端,所述轴向第二端的直径大于所述轴向第一端的直径。
  5. 根据权利要求4所述的连接机构,其特征在于,所述连接套筒(30)还包括在所述轴向上分离的第一连接套筒(31)、第二连接套筒(32)和第三连接套筒(33),
    所述第一连接套筒(31)设置于所述屏蔽套筒(20)的轴向第一端,在所述轴向上, 所述第一连接套筒(31)部分地位于所述密封套筒(10)所在的区域,部分地超出所述屏蔽套筒(20)的所述轴向第一端,
    所述第二连接套筒(32)设置于所述屏蔽套筒(20)的轴向第二端,在所述轴向上,所述第二连接套筒(32)部分地位于所述密封套筒(10)所在的区域,部分地超出所述屏蔽套筒(20)的所述轴向第二端,
    所述第三连接套筒(33)在所述轴向上位于所述第一连接套筒(31)和所述第二连接套筒(32)之间且靠近所述第一连接套筒(31)所在的区域。
  6. 根据权利要求5所述的连接机构,其特征在于,所述第三连接套筒(33)能在所述轴向上相对于所述屏蔽套筒(20)活动。
  7. 根据权利要求1所述的连接机构,其特征在于,所述连接套筒(30)为一体结构,所述连接套筒(30)在所述轴向上的两端均向轴向外侧超出所述屏蔽套筒(20)。
  8. 根据权利要求1至7中任一项所述的连接机构,其特征在于,在所述轴向上的至少部分区域,所述连接套筒(30)在所述屏蔽套筒(20)的径向两侧将所述屏蔽套筒(20)包裹。
  9. 根据权利要求8所述的连接机构,其特征在于,所述连接套筒(30)在所述屏蔽套筒(20)的径向内侧的部分的厚度不大于0.3mm。
  10. 根据权利要求1至7中任一项所述的连接机构,其特征在于,在所述轴向上的部分区域,所述屏蔽套筒(20)的外周不被所述连接套筒(30)覆盖。
  11. 根据权利要求1至7中任一项所述的连接机构,其特征在于,所述连接套筒(30)具有一个或多个紧固部位(30j),所述紧固部位(30j)用于固定收束件从而被施加朝向径向内侧的束缚力。
  12. 根据权利要求11所述的连接机构,其特征在于,在所述轴向上,所述紧固部位(30j)位于所述屏蔽套筒(20)所在的区域。
  13. 根据权利要求12所述的连接机构,其特征在于,在所述轴向上,所述屏蔽套筒(20)的与所述密封套筒(10)重合的区域、以及所述屏蔽套筒(20)的超出所述密封 套筒(10)的部分所在的区域各被至少一个所述紧固部位(30j)覆盖。
  14. 根据权利要求11所述的连接机构,其特征在于,每个所述紧固部位(30j)包括在径向上凸出的两个限位环(30a),所述两个限位环(30a)在所述轴向上分隔开,所述两个限位环(30a)用于在轴向两侧对所述收束件限位。
  15. 根据权利要求1至7中任一项所述的连接机构,其特征在于,所述屏蔽套筒(20)通过编织形成。
  16. 一种植入式医疗器械的连接机构的制作方法,其特征在于,所述连接机构是根据权利要求1至15中任一项所述的连接机构,所述方法包括:
    分别准备所述密封套筒(10)、所述屏蔽套筒(20)和所述连接套筒(30);
    将所述密封套筒(10)、所述屏蔽套筒(20)和所述连接套筒(30)套装在一起。
  17. 根据权利要求16所述的连接机构的制作方法,其特征在于,在装配位于所述屏蔽套筒(20)的一端的所述连接套筒(30)时,将所述密封套筒(10)套设在第一工装芯杆,
    在装配位于所述屏蔽套筒(20)的另一端的所述连接套筒(30)时,将所述密封套筒(10)套设在第二工装芯杆。
  18. 根据权利要求16所述的连接机构的制作方法,其特征在于,所述方法还包括:在所述连接套筒(30)的轴向上的至少部分区域和所述屏蔽套筒(20)之间涂抹粘接剂。
  19. 根据权利要求18所述的连接机构的制作方法,其特征在于,所述粘接剂在所述连接机构的径向上的厚度不大于0.3mm。
  20. 一种植入式医疗器械的连接机构的制作方法,其特征在于,所述连接机构是根据权利要求1至15中任一项所述的连接机构,所述方法包括:
    准备所述屏蔽套筒(20);
    在所述屏蔽套筒(20)的内周侧和外周侧一体成型地制作所述密封套筒(10)和所述连接套筒(30)。
  21. 根据权利要求20所述的连接机构的制作方法,其特征在于,所述在所述屏蔽套 筒(20)的内周侧和外周侧一体成型地制作所述密封套筒(10)和所述连接套筒(30)包括:
    将所述屏蔽套筒(20)固定于成型模具,向所述成型模具中填充用于制作所述密封套筒(10)和所述连接套筒(30)的原材料。
PCT/CN2020/141949 2020-09-17 2020-12-31 植入式医疗器械的连接机构及其制作方法 WO2022057159A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010979946.2A CN112190835B (zh) 2020-09-17 2020-09-17 植入式医疗器械的连接机构及其制作方法
CN202010979946.2 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022057159A1 true WO2022057159A1 (zh) 2022-03-24

Family

ID=74015371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141949 WO2022057159A1 (zh) 2020-09-17 2020-12-31 植入式医疗器械的连接机构及其制作方法

Country Status (2)

Country Link
CN (1) CN112190835B (zh)
WO (1) WO2022057159A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063957A2 (en) * 2002-01-29 2003-08-07 Medtronic, Inc. Method and apparatus for shielding wire for mri resistant electrode systems
US20100114276A1 (en) * 2008-10-30 2010-05-06 Pacesetter, Inc. Mri compatible implantable medical lead and method of making same
CN104606780A (zh) * 2015-01-19 2015-05-13 清华大学 一种mri相容的植入式医疗器械及其连接方法和连接机构
CN104606781A (zh) * 2015-01-19 2015-05-13 清华大学 一种mri相容的分体植入式医疗器械
CN107106852A (zh) * 2014-12-24 2017-08-29 美敦力公司 植入式医疗设备
EP2373377B1 (en) * 2008-12-02 2018-05-30 St. Jude Medical AB A medical implantable lead
CN108808313A (zh) * 2018-07-06 2018-11-13 清华大学 植入式医疗器械的连接机构、植入式医疗器械及连接方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437865B2 (en) * 2001-04-13 2013-05-07 Greatbatch Ltd. Shielded network for an active medical device implantable lead
CN2910251Y (zh) * 2006-03-10 2007-06-13 清华大学 用于植入式电刺激器的密封装置
US9031670B2 (en) * 2006-11-09 2015-05-12 Greatbatch Ltd. Electromagnetic shield for a passive electronic component in an active medical device implantable lead
US7822484B1 (en) * 2007-04-03 2010-10-26 Pacesetter, Inc. MRI-compatible implantable lead having high impedance electrodes
US8788061B2 (en) * 2009-04-30 2014-07-22 Medtronic, Inc. Termination of a shield within an implantable medical lead
US9044286B2 (en) * 2012-11-05 2015-06-02 DePuy Synthes Products, Inc. Enhanced surgical driver
US9402996B2 (en) * 2014-02-11 2016-08-02 Cardiac Pacemakers, Inc. RF shield for an implantable lead
US9649500B2 (en) * 2014-04-21 2017-05-16 Medtronic, Inc. Shield forming to facilitate tight radius at weld seam using progressive stamping
EP3171931B1 (en) * 2014-07-23 2021-11-10 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
US10155111B2 (en) * 2014-07-24 2018-12-18 Medtronic, Inc. Methods of shielding implantable medical leads and implantable medical lead extensions
CN204440942U (zh) * 2015-01-19 2015-07-01 北京市品驰医疗设备有限公司 一种mri相容的植入式电极导线以及医疗器械
CN106025646A (zh) * 2016-07-29 2016-10-12 乐普医学电子仪器股份有限公司 植入式心脏起搏器正、负极连接一体结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063957A2 (en) * 2002-01-29 2003-08-07 Medtronic, Inc. Method and apparatus for shielding wire for mri resistant electrode systems
US20100114276A1 (en) * 2008-10-30 2010-05-06 Pacesetter, Inc. Mri compatible implantable medical lead and method of making same
EP2373377B1 (en) * 2008-12-02 2018-05-30 St. Jude Medical AB A medical implantable lead
CN107106852A (zh) * 2014-12-24 2017-08-29 美敦力公司 植入式医疗设备
CN104606780A (zh) * 2015-01-19 2015-05-13 清华大学 一种mri相容的植入式医疗器械及其连接方法和连接机构
CN104606781A (zh) * 2015-01-19 2015-05-13 清华大学 一种mri相容的分体植入式医疗器械
CN108808313A (zh) * 2018-07-06 2018-11-13 清华大学 植入式医疗器械的连接机构、植入式医疗器械及连接方法

Also Published As

Publication number Publication date
CN112190835A (zh) 2021-01-08
CN112190835B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN108808313B (zh) 植入式医疗器械的连接机构、植入式医疗器械及连接方法
US9775983B2 (en) Methods for making and using improved leads for electrical stimulation systems
US10751525B2 (en) Devices, systems and methods to reduce coupling of a shield and a conductor within an implantable medical lead
US6643550B2 (en) Multi-polar connector
JP5568315B2 (ja) Rf/mri適合リード線
CN109011149B (zh) 植入式医疗器械的固定装置、加工方法和植入式医疗器械
JPH0567312B2 (zh)
US9295829B2 (en) Medical leads having forced strain relief loops
CN104606780B (zh) 一种mri相容的植入式医疗器械及其连接方法和连接机构
CN109157741A (zh) 具有分段电极的医疗引线
WO2014055737A1 (en) Mri compatible leads for a deep brain stimulation system
CN114392477A (zh) 一种生物电极
CN104606781A (zh) 一种mri相容的分体植入式医疗器械
WO2022057159A1 (zh) 植入式医疗器械的连接机构及其制作方法
JP2022514201A (ja) 可動導体を有する埋め込み可能な医療用リード線
US8728562B2 (en) Implantable leads with a unitary silicone component
JPH03502656A (ja) 植え込み可能な医用デバイスのための貫通コネクタ
US20120101558A1 (en) Implantable leads having coiled conductors to reduce rf-induced current
US8437864B2 (en) Medical electrical lead with embedded electrode sub-assembly
US20220273955A1 (en) Implantable medical leads and lead extensions having an encapsulation band
CN204440942U (zh) 一种mri相容的植入式电极导线以及医疗器械
CN114602060B (zh) 智能电极及其制作方法
US20150257702A1 (en) Insulation Tube for an Electric Line for Medical Use, and Method for Producing Such a Tube
US20120253445A1 (en) MRI compatible conductor system for catheter and stimulation leads
US9211406B2 (en) MRI compatible implantable lead

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954012

Country of ref document: EP

Kind code of ref document: A1