WO2022057124A1 - Appareil de réaction de boues à double dérivation de flux boues-eau - Google Patents

Appareil de réaction de boues à double dérivation de flux boues-eau Download PDF

Info

Publication number
WO2022057124A1
WO2022057124A1 PCT/CN2020/136862 CN2020136862W WO2022057124A1 WO 2022057124 A1 WO2022057124 A1 WO 2022057124A1 CN 2020136862 W CN2020136862 W CN 2020136862W WO 2022057124 A1 WO2022057124 A1 WO 2022057124A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
sludge
water
denitrification
contact oxidation
Prior art date
Application number
PCT/CN2020/136862
Other languages
English (en)
Chinese (zh)
Inventor
赵焱
高新磊
庞维海
尹大强
谭奇峰
孙铎
陆斌
谢丽
Original Assignee
广东粤海水务股份有限公司
同济大学
哈尔滨工业大学水资源国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东粤海水务股份有限公司, 同济大学, 哈尔滨工业大学水资源国家工程研究中心有限公司 filed Critical 广东粤海水务股份有限公司
Publication of WO2022057124A1 publication Critical patent/WO2022057124A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Definitions

  • the invention relates to the technical field of sewage treatment, and more particularly, to a mud-water-split double-sludge reaction device and a reaction method.
  • denitrifying bacteria compete with phosphorus accumulating bacteria and nitrifying bacteria for carbon source in the biochemical process, especially in the case of insufficient carbon source, so that the nitrogen and phosphorus content in the effluent after the sewage cannot reach the national discharge at the same time. standard.
  • Chinese patent 201810422079.5-a device and method for improving A2NSBR dual-sludge denitrification, denitrification and phosphorus removal process based on DEAMOX technology Chinese patent 201610125677.7- an AAONAO continuous-flow dual-sludge denitrification deep denitrification and phosphorus removal device based on online control and process, and Chinese patent 201610617883.X-a six-tank integrated double-sludge denitrification and phosphorus removal system and process published continuous-flow double-sludge system, or the tank body is complicated to divide, often need to set up an intermediate water tank or adjustment tank , the control is cumbersome, and the operation process requires an automatic control system.
  • Chinese Patent 201920274263.X - A dual-sludge sewage treatment system uses membranes to separate different types of sludge. Although the separation of different sludges can be effectively achieved, due to the high energy consumption of membrane pollution control and the complex pipeline system, the investment and operating costs are also higher.
  • the purpose of the present invention is to overcome the deficiencies in the prior art, and to provide a mud-water split dual-sludge reaction device and a reaction method, which can fully utilize the original carbon source of sewage for denitrification and denitrification, and can effectively save the system carbon source consumption.
  • the technical scheme adopted in the present invention is:
  • a sludge-water split dual-sludge reaction device including a sludge adsorption zone, a sedimentation zone, a contact oxidation zone, a denitrification zone, and a water outlet zone.
  • the bottom of the sedimentation zone is provided with a sludge overrun pipe that communicates with the denitrification zone, the top of the sedimentation zone is communicated with the contact oxidation zone, the top of the contact oxidation zone is communicated with the denitrification zone, and the denitrification zone is communicated with the effluent zone,
  • the bottom of the water outlet area is communicated with the sludge adsorption area, and the water outlet area is connected with a water outlet pipe.
  • the raw water enters the sludge adsorption zone through the water inlet pipe, and in the sludge adsorption zone, the sludge from the outlet zone is fully mixed with the raw water, and some dissolved and most granular carbon sources in the raw water are obtained.
  • the invention makes full use of the original carbon source in the sewage, effectively saving the carbon source consumption of the system; and nitrification and denitrification operate independently, and the working processes do not interfere with each other.
  • the water inlet pipe is arranged at the upper part of the sludge adsorption zone, a first submersible agitator is arranged inside the sludge adsorption zone, and a water passage hole communicated with the sedimentation zone is arranged on the side of the sludge adsorption zone.
  • the sludge overrunning pipe is inclined to pass through the contact oxidation zone, one end of the sludge overrunning pipe is communicated with the sedimentation zone, and the other end is communicated with the denitrification zone.
  • a liquid level regulating weir is arranged at the communication between the sedimentation zone and the contact oxidation zone, and the height of the water passage hole is between the height of one end of the sludge overrunning pipe and the height of the liquid level regulating weir.
  • the bottom of the settling zone is provided with a first settling platform
  • the first settling platform is provided with a first inclined surface inclined from the water hole to the direction of one end of the sludge overtaking pipe, and the first settling platform and the sludge overrun.
  • a first mud tank is arranged between one end of the pipe.
  • the contact oxidation zone is filled with contact oxidation fillers, and a plurality of groups of aeration heads are evenly distributed at the bottom of the contact oxidation zone.
  • the inside of the contact oxidation zone is provided with a water inlet baffle plate and a water outlet baffle plate, the water inlet baffle plate is arranged on the side of the sedimentation zone and the communication part of the contact oxidation zone, and the water outlet baffle plate is arranged in the contact oxidation zone, On the side of the connection of the denitrification zone.
  • a second submersible agitator is provided inside the denitrification zone.
  • the water outlet area is provided with a second sedimentation platform inclinedly arranged, and a second mud tank is arranged beside the second sedimentation platform, and the sludge sinks and slides down from the second sedimentation platform into the second mud tank.
  • a sludge return pump is arranged in the second mud tank, and the sludge return pump is communicated with the sludge adsorption zone through a sludge return pipe.
  • the present invention also provides a mud-water split double-sludge reaction method, comprising the following steps:
  • the raw water enters the sludge adsorption zone from the water inlet pipe.
  • the sludge from the outlet zone is fully mixed with the raw water, and part of the dissolved and most granular carbon sources in the raw water are absorbed or adsorbed by the sludge;
  • the raw water mixed with sludge flows into the sedimentation zone to obtain sludge and clean water, the sludge sinks and flows to the denitrification zone, and the clean water enters the contact oxidation zone from the sedimentation zone;
  • the ammonia nitrogen and organic nitrogen in the clean water are nitrified into nitrate nitrogen and then enter the denitrification zone; in the denitrification zone, the clean water and the sludge are mixed again, and the organic matter adsorbed in the sludge is used as a carbon source to carry out denitrification and denitrification;
  • the water after denitrification enters the water outlet area.
  • the sludge is precipitated and returned to the sludge adsorption area, and the effluent is discharged from the water outlet pipe.
  • the sludge-water split double-sludge reaction method of the present invention utilizes the carbon source absorbed by the sludge to carry out denitrification and denitrification, which can save the energy consumption of the carbon source.
  • sludge is denitrified and denitrified by using adsorbed carbon source, which can save carbon source consumption; better denitrification effect can be obtained without adding carbon source; the structure of adsorption, precipitation, nitrification and denitrification is compact , the districts are independent of each other and do not interfere with each other, with simple operation, low investment and operating costs, and good applicability.
  • Fig. 1 is the structural representation of the mud-water split double-sludge reaction device of the present invention
  • an embodiment of the sludge-water split dual-sludge reaction device of the present invention includes a sludge adsorption zone 2, a sedimentation zone 3, a contact oxidation zone 4, a denitrification zone 5, a water outlet zone 6, and a sludge adsorption zone 2
  • a water inlet pipe 1 is provided, the sludge adsorption zone 2 is communicated with the precipitation zone 3, the bottom of the precipitation zone 3 is provided with a sludge surpassing pipe 12 communicated with the denitrification zone 5, and the top of the precipitation zone 3 is communicated with the contact oxidation zone 4, and the contact oxidation zone 4.
  • the top is communicated with the denitrification zone 5, the denitrification zone 5 is communicated with the water outlet zone 6, the bottom of the outlet zone 6 is communicated with the sludge adsorption zone 2, and the outlet zone 6 is connected with a water outlet pipe 7.
  • the raw water enters the sludge adsorption zone 2 through the water inlet pipe 1.
  • the sludge from the water outlet zone 6 is fully mixed with the raw water, and the raw water is partially dissolved and most of the particulate carbon source.
  • the water inlet pipe 1 is arranged at the upper part of the sludge adsorption zone 2, the first submersible agitator 10 is provided inside the sludge adsorption zone 2, and the side of the sludge adsorption zone 2 is provided with a connection with the sedimentation zone 3.
  • the sludge from the water outlet area 6 and the raw water entering from the water inlet are fully stirred under the action of the first submersible agitator 10.
  • Part of the dissolved and most granular carbon sources in the raw water are absorbed or adsorbed by the sludge, and the muddy water is evenly mixed.
  • the mixture enters the precipitation zone 3 for precipitation to realize the separation of mud and water.
  • the first submersible agitator 10 can be arranged at the bottom of the sludge adsorption zone 2 or at the side of the sludge adsorption zone 2 .
  • the number and power of the first submersible agitator 10 The capacity is adjusted adaptively, and the position and quantity of the first submersible mixer 10 are set to obtain a homogeneous mud-water mixture.
  • the sludge overrun pipe 12 is inclined through the contact oxidation zone 4, one end of the sludge overrun pipe 12 is communicated with the sedimentation zone 3, and the other end is communicated with the denitrification zone 5.
  • the inclined arrangement of the sludge passage pipe is a preference made for the convenience of cleaning and for the convenience of the sludge sliding freely to the mud tank when it is stationary, and is not a limitation of the present invention.
  • the sludge sinks to the bottom of the sedimentation zone 3 in the sedimentation zone 3. Therefore, in this embodiment, the end of the sludge overrun pipe 12 that communicates with the sedimentation zone 3 is lower, and the end of the sludge overrun pipe 12 that communicates with the denitrification zone 5 is higher.
  • a power device such as a pressure pump or a negative pressure pump can be added to provide power for the conveyance of the sludge.
  • a gate valve 16 may be provided at the other end of the sludge passing pipe.
  • a liquid level regulating weir 15 is provided at the communication between the sedimentation zone 3 and the contact oxidation zone 4 , and the height of the water passage hole 11 is between the height of one end of the sludge overrunning pipe 12 and the height of the liquid level regulating weir 15 .
  • the height of the water passage hole 11 , the liquid level adjusting weir 15 and one end of the sludge overrunning pipe 12 is set, and the mud-water separation is realized by utilizing the characteristics of sludge sinking in the mud-water mixture, and the separated sludge is guided to the
  • the denitrification zone 5 guides the separated clean water to the contact oxidation zone 4, and nitrifies the ammonia nitrogen and organic nitrogen in the clean water into nitrate nitrogen.
  • a first sedimentation table 20 is arranged at the bottom of the sedimentation zone 3 in this embodiment.
  • a first mud tank 21 is provided between the first settling table 20 and one end of the sludge surpassing pipe 12 on the first inclined plane whose direction is inclined.
  • the mud-water separation is realized by utilizing the sedimentation characteristics of the sludge in the mud-water mixture, and the sedimented sludge is collected and accumulated in the first mud tank 21 under the guidance of the first slope of the first sedimentation table 20, The collected sludge is then guided to the denitrification zone 5 through the sludge overrun pipe 12, so that a more thorough sludge-water separation effect can be obtained, and the transfer efficiency of the sludge can also be improved.
  • the contact oxidation zone 4 the ammonia nitrogen and organic nitrogen in the clean water are nitrified into nitrate nitrogen by the method of contact oxidation.
  • the contact oxidation zone 4 is filled with contact oxidation fillers 18 , and a plurality of groups of aeration heads 17 or aeration pipes are evenly distributed at the bottom of the contact oxidation zone 4 .
  • the contact oxidizing packing 18 adopts commercially available packing, and the contact oxidizing packing 18 is stacked or arranged neatly in the contact oxidizing zone 4, the clean water passes through the gap contacting the oxidizing packing 18, and the aeration head 17 or the aeration pipe is filled with oxygen into the clear water at the same time.
  • Ammonia nitrogen and organic nitrogen in clean water are nitrified into nitrate nitrogen.
  • a water inlet baffle 8 and a water outlet baffle 9 are arranged inside the contact oxidation zone 4, and the water inlet baffle 8 is arranged in the precipitation zone 3 and the contact oxidation zone 4 communicates with each other.
  • the outlet partition 9 is arranged on the side where the contact oxidation zone 4 and the denitrification zone 5 are connected; The effluent from the contact oxidizing zone 4 plays a guiding role.
  • the water is fed from the upper part of the contact oxidation zone 4, and the water is discharged from the upper part of the other side of the contact oxidation zone 4, which prolongs the contact time between the clear water and the contact oxidizing filler 18 and oxygen, and improves the nitrification efficiency and nitrification. Rate.
  • an arc-shaped diversion structure can be provided at the communication place between the precipitation zone 3 and the contact oxidation zone 4, and at the communication place between the contact oxidation zone 4 and the denitrification zone 5, so as to better guide the flow of the fluid.
  • a second submersible agitator 13 is provided inside the denitrification zone 5.
  • the clean water treated by contact oxidation and nitrification is mixed again with the sludge from the sludge overrun pipe 12 in the denitrification zone 5, and the sludge uses the organic matter adsorbed in the sludge adsorption zone 2 as a carbon source to perform denitrification and denitrification without additional carbon. source, which can save carbon source consumption.
  • the second submersible agitator 13 can be arranged at the bottom of the denitrification zone 5 or at the side of the denitrification zone 5 .
  • the number and power of the second submersible agitator 13 can be adapted according to the capacity of the denitrification zone 5
  • the position and quantity of the second submersible agitator 13 are set based on the sufficient mixing of sludge and clean water.
  • the bottom is provided with a second sedimentation table 22 arranged obliquely, and a second mud tank 23 is provided on the side of the second sedimentation table 22.
  • the sludge sinks and slides down from the second sedimentation table 22 to the second mud tank 23.
  • the second mud tank 23 is provided with a sludge return pump 14 , and the sludge return pump 14 and the sludge adsorption zone 2 communicate with each other through a sludge return pipe 19 .
  • the mud-water separation is realized by utilizing the characteristics of sludge sinking in the mud-water mixture, and the settled sludge is collected and accumulated in the second mud tank 23 under the guidance of the slope of the second sedimentation table 22, and the collected sludge
  • the sludge is then returned to the sludge adsorption zone 2 through the sludge return pump 14 and the sludge return pipe 19, so that a more thorough mud-water separation effect can be obtained, and the transfer efficiency of the sludge can also be improved.
  • This embodiment is an application embodiment of the mud-water-splitting dual-sludge reaction device of Embodiment 1, which includes the following steps:
  • the raw water enters the sludge adsorption zone 2 from the water inlet pipe 1.
  • the sludge from the water outlet zone 6 is fully mixed with the raw water, and part of the dissolved and most granular carbon sources in the raw water are absorbed by the sludge or adsorption;
  • the raw water mixed with sludge flows into the sedimentation zone 3 for precipitation to obtain sludge and clean water, the sludge sinks and flows to the denitrification zone 5, and the clean water enters the contact oxidation zone 4 from the sedimentation zone;
  • the ammonia nitrogen and organic nitrogen in the clean water are nitrified into nitrate nitrogen and then enter the denitrification zone 5; in the denitrification zone 5, the clean water and the sludge are mixed again, and the organic matter adsorbed in the sludge is used as carbon. source for denitrification and denitrification;
  • the water after denitrification enters the water outlet area 6 .
  • the sludge is precipitated and returned to the sludge adsorption area 2 , and the effluent is discharged from the water outlet pipe 7 .
  • the treated water volume is 5 tons/day
  • the COD concentration of the raw water is 110 ⁇ 20 mg/L
  • the ammonia nitrogen concentration is 12 ⁇ 3 mg/day.
  • the total nitrogen concentration is 20 ⁇ 4mg/L
  • the total phosphorus concentration is 5mg/L
  • the water temperature is 24°C
  • the average concentration of ammonia nitrogen in the effluent is 0.3mg/L
  • the average concentration of total nitrogen in the effluent is 7.5mg/L. L.
  • the total nitrogen removal rate is increased by 21% to 32% without increasing the carbon source.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

L'invention concerne un dispositif et un procédé de réaction de boues à double dérivation de flux boues-eau, comprenant une zone d'aspiration de boues (2), une zone de sédimentation (3), une zone d'oxydation par contact (4), une zone de dénitrification (5) et une zone de sortie d'eau (6) ; la zone d'aspiration de boues (2) est munie d'un tuyau d'entrée d'eau (1) ; la zone d'aspiration de boues (2) est en communication avec la zone de sédimentation (3) ; le fond de la zone de sédimentation (2) est pourvu d'un tuyau de déversement de boues (12) en communication avec la zone de dénitrification (5), et la partie supérieure de la zone de sédimentation (3) est en communication avec la zone d'oxydation par contact (4) ; la partie supérieure de la zone d'oxydation par contact (4) est en communication avec la zone de dénitrification (5) ; la zone de dénitrification (5) est en communication avec la zone de sortie d'eau (6) ; le fond de la zone de sortie d'eau (6) est en communication avec la zone d'aspiration des boues (2) et la zone de sortie d'eau (6) est reliée à un tuyau de sortie d'eau (7). Dans le procédé, les boues et l'eau sont séparées deux fois, et les boues activées obtenues à partir de la première séparation boues/eau sont utilisées comme source de carbone pour la zone de dénitrification, ce qui réduit efficacement la consommation de carbone du système ; sans l'apport d'une source de carbone, un meilleur effet de dénitrification peut être obtenu ; en outre, les structures d'aspiration, de précipitation, de nitrification et de dénitrification sont compactes, les zones sont indépendantes les unes des autres et n'interfèrent pas les unes avec les autres, et l'invention est simple à mettre en œuvre et présente de faibles coûts d'investissement et de fonctionnement.
PCT/CN2020/136862 2020-09-17 2020-12-16 Appareil de réaction de boues à double dérivation de flux boues-eau WO2022057124A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010983420.1A CN112125401B (zh) 2020-09-17 2020-09-17 一种泥水分流双污泥反应装置及反应方法
CN202010983420.1 2020-09-17

Publications (1)

Publication Number Publication Date
WO2022057124A1 true WO2022057124A1 (fr) 2022-03-24

Family

ID=73841923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136862 WO2022057124A1 (fr) 2020-09-17 2020-12-16 Appareil de réaction de boues à double dérivation de flux boues-eau

Country Status (2)

Country Link
CN (1) CN112125401B (fr)
WO (1) WO2022057124A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353201A (zh) * 2022-07-25 2022-11-18 上海交通大学 一种基于好氧颗粒污泥处理技术的市政污水处理系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236470A1 (fr) * 2021-05-08 2022-11-17 Nanjing University Système d'épuration des eaux usées

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786774A (zh) * 2010-03-29 2010-07-28 重庆大学 同步脱氮除磷和污泥减量的污水生物处理装置及方法
CN102531174A (zh) * 2012-03-02 2012-07-04 北京工业大学 强化污水厂污泥减量及低碳耗脱氮的处理装置和方法
US20150376043A1 (en) * 2014-06-30 2015-12-31 D.C. Water & Sewer Authority Method and apparatus for wastewater treatment using external selection
CN106116059A (zh) * 2016-08-19 2016-11-16 天津美能科技有限公司 同步脱氮除磷和污泥减量的污水生物处理装置及方法
US9656897B2 (en) * 2015-01-09 2017-05-23 John H. Reid Dual return activated sludge process in a flow-equalized wastewater treatment system
CN108483654A (zh) * 2018-06-01 2018-09-04 王金龙 一种双模式污水氮磷处理系统与方法
CN209989143U (zh) * 2019-04-11 2020-01-24 华北水利水电大学 一种反硝化除磷耦合振动缺氧mbr装置
CN111453944A (zh) * 2020-05-25 2020-07-28 中国市政工程华北设计研究总院有限公司 碳分离耦合主流厌氧氨氧化生物脱氮处理城市污水的装置及其运行方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3534244A1 (de) * 1985-09-26 1987-04-02 Schumacher Sche Fab Verwalt Verfahren zur biologischen reinigung organisch verschmutzter abwaesser
CN105084637B (zh) * 2014-05-07 2017-07-07 中国石化扬子石油化工有限公司 一种折流反硝化除磷及cod降解集成装置
CN108046518B (zh) * 2017-12-12 2023-10-10 广州市蕴泰电力成套设备有限公司 一种低碳源污水的强化脱氮除磷的装置和方法
CN108689491B (zh) * 2018-06-01 2021-07-16 青岛锦龙弘业环保有限公司 一种可调节氮磷去除能力的污水处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786774A (zh) * 2010-03-29 2010-07-28 重庆大学 同步脱氮除磷和污泥减量的污水生物处理装置及方法
CN102531174A (zh) * 2012-03-02 2012-07-04 北京工业大学 强化污水厂污泥减量及低碳耗脱氮的处理装置和方法
US20150376043A1 (en) * 2014-06-30 2015-12-31 D.C. Water & Sewer Authority Method and apparatus for wastewater treatment using external selection
US9656897B2 (en) * 2015-01-09 2017-05-23 John H. Reid Dual return activated sludge process in a flow-equalized wastewater treatment system
CN106116059A (zh) * 2016-08-19 2016-11-16 天津美能科技有限公司 同步脱氮除磷和污泥减量的污水生物处理装置及方法
CN108483654A (zh) * 2018-06-01 2018-09-04 王金龙 一种双模式污水氮磷处理系统与方法
CN209989143U (zh) * 2019-04-11 2020-01-24 华北水利水电大学 一种反硝化除磷耦合振动缺氧mbr装置
CN111453944A (zh) * 2020-05-25 2020-07-28 中国市政工程华北设计研究总院有限公司 碳分离耦合主流厌氧氨氧化生物脱氮处理城市污水的装置及其运行方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115353201A (zh) * 2022-07-25 2022-11-18 上海交通大学 一种基于好氧颗粒污泥处理技术的市政污水处理系统
CN115353201B (zh) * 2022-07-25 2024-04-26 上海交通大学 一种基于好氧颗粒污泥处理技术的市政污水处理系统

Also Published As

Publication number Publication date
CN112125401B (zh) 2023-09-29
CN112125401A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2022121321A1 (fr) Procédé d'amélioration d'élimination d'azote et de phosphore par combinaison d'un processus de couplage de dénitrification anammox a/o étagé à court terme
CN106830324A (zh) 一种分段进水a2/o工艺强化生物脱氮除磷的装置与方法
CN106746175A (zh) 一种餐厨垃圾废水处理方法
CN105330108B (zh) 利用厌氧-接触氧化生物膜反应器处理生活污水方法及处理装置
CN105217786B (zh) 基于deamox强化改良分段进水a2/o工艺生物脱氮除磷的装置与方法
WO2010133177A1 (fr) Système de traitement d'eau résiduaire de lixiviat de décharge et procédé correspondant
CN104512963B (zh) 一种一体式多级同时硝化反硝化生物膜系统脱氮方法及装置
CN101723554A (zh) 一种化肥废水处理方法
CN106746174A (zh) 一种餐厨垃圾浆料厌氧发酵废水处理方法
CN103936229A (zh) 一种城市污水改良a2/o强化脱氮除磷处理装置及工艺
WO2022057124A1 (fr) Appareil de réaction de boues à double dérivation de flux boues-eau
WO2019169610A1 (fr) Procédé de valorisation et d'expansion d'un processus de traitement biologique d'eaux usées
CN106430845A (zh) 餐厨垃圾废水处理装置
CN214781015U (zh) 一种同心结构的一体化污水处理装置
CN106396282A (zh) 餐厨垃圾浆料厌氧发酵废水处理装置
CN106430575B (zh) 一种氧化沟分段进水工艺实现短程硝化反硝化脱氮的方法
WO2020211525A1 (fr) Réservoir de traitement d'eaux usées intégré utilisant un procédé à double efficacité biologique et un procédé à lit fluidisé
WO2015192367A1 (fr) Système de dénitrification des eaux usées bio-dopp et procédé de dénitrification des eaux usées
CN105254134A (zh) 生物脱氮组合装置
CN110342638A (zh) 基于双回流和梯度限氧的低碳氮比污水脱氮装置及其方法
CN107265791A (zh) 餐厨垃圾浆料发酵废水处理装置
CN107973406A (zh) 一种实现污水中有机物和氨氮分离的装置和方法
CN107337321A (zh) 餐厨垃圾厌氧消化废水处理装置
CN205170616U (zh) 生物脱氮组合装置
CN108996689B (zh) 一种固体碳源微曝气装置及其废水处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953979

Country of ref document: EP

Kind code of ref document: A1