WO2022056918A1 - 导光结构、光源模组和显示模组 - Google Patents

导光结构、光源模组和显示模组 Download PDF

Info

Publication number
WO2022056918A1
WO2022056918A1 PCT/CN2020/116548 CN2020116548W WO2022056918A1 WO 2022056918 A1 WO2022056918 A1 WO 2022056918A1 CN 2020116548 W CN2020116548 W CN 2020116548W WO 2022056918 A1 WO2022056918 A1 WO 2022056918A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
light
guide body
cavity
cavities
Prior art date
Application number
PCT/CN2020/116548
Other languages
English (en)
French (fr)
Inventor
赵健
赵超越
陈秀云
孙凌宇
梁菲
侯婷琇
钟鹏
杜景军
肖永康
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080002044.1A priority Critical patent/CN114829997B/zh
Priority to PCT/CN2020/116548 priority patent/WO2022056918A1/zh
Priority to US17/417,387 priority patent/US11774662B2/en
Publication of WO2022056918A1 publication Critical patent/WO2022056918A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of display technology, and in particular, relate to a light guide structure, a light source module, and a display module.
  • liquid crystal display devices such as LCD TVs, notebook computers, tablet computers, and smart phones are widely used in social production and people's daily life.
  • the liquid crystal display device itself does not emit light, but the light source module inside the liquid crystal display device emits light.
  • the light source module generally adopts an edge-type light source.
  • the edge-type light source has poor uniformity, obvious light beams on the display screen, and significant lighting and shadow problems, resulting in poor display effect of the display device.
  • An embodiment of the present disclosure provides a light guide structure, comprising: a light guide body and at least one light guide cavity disposed in the light guide body; the light guide body includes a light incident surface and a light exit surface arranged oppositely, each Each of the light guide cavities includes a first end close to the light incident surface of the light guide body and a second end away from the light incident surface of the light guide body, and the light guide cavity extends from the first end to second end.
  • the light guide cavity includes a first dielectric layer, and the refractive index of the first dielectric layer is smaller than the refractive index of the light guide body.
  • the first dielectric layer is a strip-shaped opening hollowed out on the light guide body.
  • the distance between the second end of the light guide cavity and the light incident surface of the light guide body is 1 mm to 3 mm, and the second end of the light guide cavity and the light guide The distance between the light emitting surfaces of the light body is 0.5 mm to 3 mm.
  • the first dielectric layer is a light guide material filled on the light guide body.
  • the light guide cavity extends from the light incident surface of the light guide body to the light exit surface of the light guide body.
  • the light guide cavity includes a plurality of light guide cavities, the plurality of light guide cavities are divided into a plurality of groups of light guide cavities, each group of light guide cavities includes a central plane located in the light guide body; the Each group of light guide cavities includes n first light guide cavities on one side of the central plane, and n second light guide cavities on the other side, where n is a natural number greater than or equal to 1;
  • the distance from the first end of the first light guide cavity to the corresponding central plane is smaller than the distance from the second end of the first light guide cavity to the corresponding central plane;
  • the distance from the corresponding central plane is smaller than the distance from the second end of the second light guide cavity to the corresponding central plane;
  • the central plane is a virtual plane in the light guide body that is perpendicular to the light incident surface.
  • the i-th first light-guiding cavity and the i-th second light-guiding cavity are mirror images, and i is greater than or equal to 1 and a natural number less than or equal to n.
  • the first light guide cavity includes a first portion close to the light incident surface of the light guide body and a second portion away from the light incident surface of the light guide body, along a direction perpendicular to the light guide body.
  • the plane of the light-emitting surface of the light body, and the cross-sectional shapes of the first part and the second part include any of the following:
  • the cross-sectional shape of the first part is a curved strip
  • the cross-sectional shape of the second part is a curved strip
  • the cross-sectional shape of the first part is a curved line, and the cross-sectional shape of the second part is a broken line;
  • the cross-sectional shape of the first part is a curved strip, and the cross-sectional shape of the second part is a straight strip;
  • the cross-sectional shape of the first part is a broken line, and the cross-sectional shape of the second part is a curved line;
  • the cross-sectional shape of the first part is a linear strip
  • the cross-sectional shape of the second part is a curved strip
  • the first portion is curved toward the center plane of the light guide cavity, and the second portion is bent away from the light guide The center plane direction of the cavity is curved.
  • the width of the first portion is 0.2 mm to 1.5 mm
  • the depth of the first portion is 1 mm to 2 mm
  • the radius of curvature of the first portion is 2 mm to 4.5 mm.
  • the plane of the light exit surface or the light entrance surface of the light guide body is at the junction of the first part and the light entrance surface of the light guide body, between the first part and the light entrance surface of the light guide body The included angle is 40° to 60°;
  • the width of the second portion is 0.2 mm to 1.5 mm, the depth of the second portion is 1 mm to 2 mm, and the radius of curvature of the second portion is 3.5 mm to 4.5 mm, along the direction perpendicular to the light guide.
  • the plane of the light-emitting surface or the light-incident surface of the main body, at the junction of the second part and the first part, the angle between the second part and the light-incident surface of the light guide body is 40° to 60° .
  • the distance between two adjacent first light guide cavities is 0.2 mm to 1 mm.
  • the first light guide cavity includes a fifth part disposed between the light incident surface and the light exit surface of the light guide body, and the fifth parts are all directed away from the light guide cavity.
  • the center plane is bent in the direction.
  • the width of each of the fifth portions is 0.3 mm to 1.5 mm
  • the depth of each of the fifth portions is the same as the depth of the light guide structure
  • the depth of each of the fifth portions is the same as that of the light guide structure.
  • the radius of curvature is 2 mm to 5 mm, along the plane perpendicular to the light exit surface or the light entrance surface of the light guide body, at the junction of the fifth part and the light entrance surface of the light guide body, the first The included angle between the five parts and the light incident surface of the light guide body is 40° to 60°.
  • the distance between two adjacent fifth parts is 0.2 mm to 1 mm.
  • At least one light-guiding cavity in the plurality of light-guiding cavities includes a plurality of sub-light-guiding cavities, and the plurality of sub-light-guiding cavities are disposed at the second end of the light-guiding cavity;
  • the sub-light guide cavity includes a first end close to the light incident surface of the light guide body and a second end away from the light incident surface of the light guide body, and the second end of the sub light guide cavity includes a a second center plane in the light guide body, the second center plane being a virtual plane in the light guide body that is perpendicular to the light incident surface;
  • the distance between the first end of the sub-light guiding cavity and the second central plane is smaller than the distance between the second end of the sub-light guiding cavity and the second central plane;
  • the plurality of light-guiding cavities and sub-light-guiding cavities form a tree-like structure.
  • the light guide structure further includes a first plane connected to the light exit surface and the light entrance surface respectively, a second plane connected to the light exit surface and the light entrance surface respectively, and a second plane connected to the light exit surface and the light entrance surface respectively.
  • the connected first side and the second side connected with the light-emitting surface and the light-incident surface respectively, the first side and the second side are arranged opposite to each other, the first plane is arranged opposite to the second plane, the first side, The second side surface, the first plane and the second plane are all provided with reflective sheets.
  • An embodiment of the present disclosure further provides a light source module, comprising: the light guide structure as described in any one of the foregoing, and further comprising at least one light emitting diode, the light emitting surface of the light emitting diode is disposed toward the light incident surface of the light guide body .
  • Embodiments of the present disclosure further provide a display module, including: the aforementioned light source module and a display panel.
  • the display module is a reflective liquid crystal display module or a transparent liquid crystal display module.
  • FIG. 1 is a schematic cross-sectional structural diagram of a light guide structure along a plane perpendicular to a light exit surface according to an embodiment of the disclosure
  • FIG. 2 is a schematic cross-sectional structural diagram of the light guide structure shown in FIG. 1 along a plane parallel to the light exit surface;
  • FIG. 3 is a schematic cross-sectional structure diagram of a group of light guide cavities in FIG. 1;
  • FIG. 4 is a schematic cross-sectional structural diagram of another light guide structure according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a light transmission path of the light guide structure shown in FIG. 1;
  • FIG. 6 is a schematic diagram of a light simulation effect of the light guide structure shown in FIG. 1;
  • FIG. 7 is a schematic diagram showing the comparison effect of the uniformity of the light-emitting surface of the light-guiding body shown in FIG. 1 without a light-guiding cavity and having a light-guiding cavity;
  • FIG. 8 is a schematic cross-sectional structural diagram of another light guide structure according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a light transmission path of the light guide structure shown in FIG. 8;
  • FIG. 10 is a schematic diagram of a light simulation effect of the light guide structure shown in FIG. 8;
  • FIG. 11 is a schematic cross-sectional structural diagram of still another light guide structure and an adjacent light emitting diode according to an embodiment of the disclosure.
  • FIG. 12 is a schematic cross-sectional structural diagram of still another light guide structure and an adjacent light emitting diode according to an embodiment of the disclosure
  • FIG. 13 is a schematic cross-sectional structural diagram of still another light guide structure and an adjacent light emitting diode according to an embodiment of the disclosure
  • FIG. 14 is a schematic cross-sectional structure diagram of a light source module according to an embodiment of the disclosure.
  • 15 is a schematic cross-sectional structure diagram of a display module according to an embodiment of the disclosure.
  • Embodiments of the present disclosure provide a light guide structure.
  • the light guide structure includes a light guide body and at least one light guide cavity disposed in the light guide body; the light guide body includes a light incident surface and a light exit surface arranged oppositely, and each light guide cavity includes a light guide cavity close to the light guide body.
  • the first end of the light incident surface of the light body and the second end away from the light incident surface of the light guide body, and the light guide cavity extends from the first end to the second end.
  • the light guide structure of the embodiment of the present disclosure can obtain a highly uniform surface light source under the condition of ultra-short light mixing distance.
  • the number of light guide cavities in each light guide structure in the embodiment of the present disclosure may be set according to the size of the actual light guide structure and the interval between the light guide cavities, and the number of light guide cavities in each light guide structure may be 1 or more.
  • the light guide cavity includes a first dielectric layer, and the refractive index of the first dielectric layer is smaller than the refractive index of the light guide body.
  • FIG. 1 is a schematic cross-sectional structure diagram of a light guide structure along a plane perpendicular to the light exit surface according to an embodiment of the disclosure
  • FIG. 2 is a cross-sectional structure schematic diagram of the light guide structure shown in FIG. 1 along a plane parallel to the light exit surface.
  • the light guide structure 10 includes a light guide body and at least one light guide cavity disposed in the light guide body.
  • the light guide body includes a light exit surface 11 and a light entrance surface 12 arranged opposite to each other, and a light exit surface 11 and a light exit surface 12 arranged opposite to each other.
  • the light guide structure may also include a first side surface 13 connected to the light exit surface 11 and the light entrance surface 12 respectively, and a second side surface 14 connected to the light exit surface 11 and the light entrance surface 12 respectively, wherein the first side surface 13 It is arranged opposite to the second side surface 14 .
  • the light-emitting surface 11 , the light-incident surface 12 , the first side surface 13 , and the second side surface 14 can be either flat or curved, which can be set according to specific requirements.
  • FIG. 1 is a plane example.
  • the light-emitting surface 11 and the light-incident surface 12 may be arranged to be parallel to each other, or may be arranged to be non-parallel, so as to meet the usage requirements under different light source environments.
  • the light exit surface 11 and the light entrance surface 12 may be subjected to atomization, patterning, or texture processing, etc., to increase the light extraction efficiency and the uniformity of the emitted light from the light guide structure 10 .
  • the light guide cavity 30 may include a plurality of light guide cavities 30 , and the plurality of light guide cavities 30 may be divided into multiple groups of light guide cavities 30 .
  • FIG. 3 is a schematic structural diagram of a group of light guide cavities according to an exemplary embodiment of the present disclosure. As shown in FIG. 1 and FIG. 3 , each group of light guide cavities 30 includes a central plane O located in the light guide body; each group of light guide cavities 30 includes n first light guide cavities located on one side of the central plane O 31, and n second light guide cavities 32 on the other side, where n is a natural number greater than or equal to 1.
  • the central plane O is a virtual plane in the light guide body that is perpendicular to the light incident surface 12 .
  • At least two light guide cavities 30 in each group of light guide cavities 30 are arranged along the extending direction of the light incident surface 12
  • the virtual central plane O is perpendicular to the light incident surface 12 and is located between the at least two light guide cavities 30 .
  • the extending direction of the light incident surface 12 of the light guide body is the horizontal direction in FIG. 1 .
  • the distance L1 from the first end of the first light guide cavity 31 to the corresponding center plane O is smaller than the distance L2 from the second end of the first light guide cavity 31 to the corresponding center plane O; the second The distance L1 ′ from the first end of the light guide cavity 32 to the corresponding central plane O is smaller than the distance L2 ′ from the second end of the second light guide cavity 32 to the corresponding central plane O.
  • the cross-sectional shape of the light guide cavity 30 includes any one or more of the following: curved strips, folded strips or other strip structures.
  • the cross-sectional shape of the light guide cavity 30 may include any one or more of the following: circle, ellipse, triangle, trapezoid, rectangle or other arbitrary shapes.
  • the i-th first light-guiding cavity 31 and the i-th second light-guiding cavity 32 are mirror images, wherein i is greater than or equal to 1 and a natural number less than or equal to n, where n is a natural number greater than or equal to 1.
  • the first light-guiding cavity is S-shaped
  • the second light-guiding cavity is inverse-S-shaped
  • the first light-guiding cavity is inverse-S-shaped
  • the second light-guiding cavity is S-shaped.
  • the i-th first light guide cavity 31 includes a first portion 301 close to the light incident surface 12 of the light guide body and a second portion away from the light incident surface 12 of the light guide body 302 , the shapes of the first parts 301 of different first light guide cavities 31 may be the same or different, and the shapes of the second parts 302 of different first light guide cavities 31 may be the same or different.
  • the cross-sectional shapes of the first part 301 and the second part 302 include any one of the following:
  • the cross-sectional shape of the first part 301 is a curved strip, and the cross-sectional shape of the second part 302 is a curved strip;
  • the cross-sectional shape of the first part 301 is a curved line, and the cross-sectional shape of the second part 302 is a broken line;
  • the cross-sectional shape of the first part 301 is a curved strip, and the cross-sectional shape of the second part 302 is a straight strip;
  • the cross-sectional shape of the first part 301 is a broken line, and the cross-sectional shape of the second part 302 is a curved line;
  • the cross-sectional shape of the first portion 301 is a straight line
  • the cross-sectional shape of the second portion 302 is a curved line.
  • the first portion 301 is curved toward the center plane O of the light guide cavity 30, and the second portion 302 is curved away from the light guide cavity 30.
  • the center plane O of the light guide cavity 30 is curved in the direction.
  • the width d1 of the first portion 301 is 0.2 mm to 1.5 mm
  • the depth of the first portion 301 is 1 mm to 2 mm
  • the radius of curvature of the first portion 301 is 2 mm to 4.5 mm.
  • the angle ⁇ between the first part 301 and the light-incident surface 12 may be about 40° to 60°. °.
  • the width refers to the characteristic dimension in the direction parallel to the light exit surface 11 of the light guide body
  • the depth refers to the characteristic dimension along the extending direction of the light exit surface 11 of the light guide body along the light incident surface 12 of the light guide body .
  • the extension direction of the light entrance surface 12 of the light guide body may be perpendicular to the light exit surface 11 of the light guide body. The direction of the light incident surface 12 .
  • the width d2 of the second portion 302 is 0.2 mm to 1.5 mm
  • the depth of the second portion 302 is 1 mm to 2 mm
  • the radius of curvature of the second portion 302 is 3.5 mm to 4.5 mm mm
  • the angle ⁇ between the second part 302 and the light entrance surface 12 can be about 40° to 60°.
  • the parameters of the first parts 301 of the first light guide cavities may be the same or different, and the parameters of the second parts 302 of the first light guide cavities may be the same, or different.
  • the depth h0 between the first end of the first light guide cavity 31 and the light incident surface 12 of the light guide body may be 0 mm to 0.05 mm.
  • the gap between the first end of the first light guide cavity 31 and the light incident surface 12 of the light guide body may be 0 mm.
  • the depth between the second end of the first light guide cavity 31 and the light incident surface 12 of the light guide body is h1
  • the second end of the first light guide cavity 31 and the light exit surface of the light guide body The depth between 11 is h2
  • the distance between the light incident surface 12 of the light guide body and the light exit surface 11 of the light guide body is h1+h2
  • the ratio of h1/(h1+h2) can be between 0.5 and 0.8.
  • the depth h1 between the second end of the first light guide cavity 31 and the light incident surface 12 of the light guide body may be 1 mm to 3 mm, and the second end of the first light guide cavity 31 and the light guide
  • the depth h2 between the light emitting surfaces 11 of the body may be 0.5 mm to 3 mm.
  • the distance L3 between two adjacent first light guide cavities 31 may be 0.2 mm to 1 mm .
  • the i-th second light guide cavity 32 includes a third portion 303 close to the light incident surface 12 of the light guide body and a fourth portion 303 away from the light incident surface 12 of the light guide body
  • the shapes of the parts 304 and the third parts 303 of different second light guide cavities 32 may be the same or different, and the shapes of the fourth parts 304 of different second light guide cavities 32 may be the same or different.
  • the cross-sectional shapes of the third portion 303 and the fourth portion 304 include any one of the following:
  • the cross-sectional shape of the third part 303 is a curved strip, and the cross-sectional shape of the fourth part 304 is a curved strip;
  • the cross-sectional shape of the third portion 303 is a curved line, and the cross-sectional shape of the fourth portion 304 is a polygonal line;
  • the cross-sectional shape of the third part 303 is a curved strip, and the cross-sectional shape of the fourth part 304 is a straight strip;
  • the cross-sectional shape of the third portion 303 is a broken line, and the cross-sectional shape of the fourth portion 304 is a curved line;
  • the cross-sectional shape of the third portion 303 is a straight line
  • the cross-sectional shape of the fourth portion 304 is a curved line.
  • the third portion 303 is curved toward the central plane O of the light guide cavity 30, and the fourth portion 304 is curved away from the light guide cavity
  • the central plane of 30 is curved in the O direction.
  • the width d3 of the third portion 303 is 0.2 mm to 1.5 mm, the depth of the third portion 303 is 1 mm to 2 mm, and the radius of curvature of the third portion 303 is 2 mm to 4.5 mm , along the plane perpendicular to the light-emitting surface 11 or the light-incident surface 12 of the light guide body, at the junction of the third part 303 and the light-incident surface 12, the angle ⁇ ' between the third part 303 and the light-incident surface 12 can be About 40° to 60°.
  • the width d4 of the fourth portion 304 is 0.2 mm to 1.5 mm
  • the depth of the fourth portion 304 is 1 mm to 2 mm
  • the radius of curvature of the fourth portion 304 is 3.5 mm to 4.5 mm mm, along the plane perpendicular to the light exit surface 11 or the light entrance surface 12 of the light guide body, at the junction of the fourth part 304 and the third part 303, the angle ⁇ ' between the fourth part 304 and the light entrance surface 12 It may be about 40° to 60°.
  • the parameters of the third parts 303 of the plurality of second light guide cavities 32 may be the same or different, and the parameters of the fourth parts 304 of the second light guide cavities 32 may be the same respectively, Or it can be different.
  • the depth h0' between the first end of the second light guide cavity 32 and the light incident surface 12 of the light guide body may be 0 mm to 0.05 mm.
  • the gap between the first end of the second light guide cavity 32 and the light incident surface 12 of the light guide body may be 0 mm.
  • the depth between the second end of the second light guide cavity 32 and the light incident surface 12 of the light guide body is h1 ′, and the second end of the second light guide cavity 32 and the light exit of the light guide body
  • the depth between the surfaces 11 is h2'
  • the distance between the light incident surface 12 of the light guide body and the light exit surface 11 of the light guide body is h1'+h2'
  • the ratio of h1'/(h1'+h2') can be between 0.5 and 0.8.
  • the depth h1 ′ between the second end of the second light guide cavity 32 and the light incident surface 12 of the light guide body may be 1 mm to 3 mm, and the second end of the second light guide cavity 32 and the light guide
  • the depth h2' between the light emitting surfaces 11 of the light body may be 0.5 mm to 3 mm.
  • the distance L3 ′ between two adjacent second light guide cavities 32 may be 0.2 mm to 1mm.
  • the light guide cavity 30 includes a first dielectric layer, and the refractive index of the first dielectric layer is smaller than the refractive index of the light guide body.
  • the first dielectric layer is a strip-shaped opening hollowed out on the light guide body.
  • the first medium in the first medium layer is air, and the first medium in the first medium layer is in direct contact with the light guide body.
  • the processing method of the light guide cavity 30 may be secondary machining, and the light guide body is cut by a secondary wire cutting method to cut out corresponding strip-shaped openings, which has high processing efficiency and low cost.
  • the first end surface and the second end surface of the light guide cavity 30 cannot be flush with the light incident surface 12 and the light exit surface 11 of the light guide body at the same time, so as to ensure the integrity of the light guide structure 10 .
  • the light guide cavity 30 is filled with a light guide material with a first refractive index, and the first refractive index is smaller than the refractive index of the light guide body.
  • the first medium in the first medium layer is a light guide material having a first refractive index, and the first medium in the first medium layer is in direct contact with the light guide body.
  • the material of the light guide body may be polycarbonate resin (PC) or polymethyl methacrylate (PMMA) or the like.
  • the light-guiding material of the first refractive index may be a light-guiding resin with a refractive index lower than that of PC or PMMA or other materials with low refractive index.
  • the processing method of the light guide cavity 30 may adopt a mold injection molding method, and the light guide cavity 30 is filled with materials such as light guide resin with a low refractive index.
  • the first end surface and the second end surface of the light guide cavity 30 may be flush with the light incident surface 12 and the light exit surface 11 of the light guide body at the same time.
  • the first side 13 , the second side 14 , the first plane 15 (not shown in FIG. 4 ) and the second plane 16 (not shown in FIG. 4 ) of the light guide structure 10 are provided with reflective sheets 60 , and the light emitted from the first side 13 , the second side 14 , the first plane 15 and the second plane 16 of the light guide structure 10 is reflected by the reflective sheets 60 back into the light guide structure 10 , to prevent light from leaking from the first side 13 , the second side 14 , the first plane 15 and the second plane 16 of the light guide structure 10 , and further improve the light guide efficiency.
  • FIG. 5 is a schematic diagram of a linear transmission path of a light guide cavity light 30 according to an exemplary embodiment of the disclosure, and the light guide cavity 30 in FIG. 5 is an enlarged view of the light guide cavity 30 in the area A in FIG. 1 .
  • the light guide cavity 30 is not provided in the light guide structure 10
  • the light emitted by the two adjacent light emitting diodes 20 enters the light guide structure 10 and propagates in a straight line, as shown by the dotted lines G0 and G0' in FIG. G0 forms a bright area in the A1 area between adjacent LEDs 20 , a dark area in the A2 area, and the A1 area and the A2 area are located in the middle area between the two LEDs 20 .
  • the light guide cavity 30 in the light guide structure 10 , after the light emitted by the two adjacent light emitting diodes 20 enters the light guide structure 10 , as shown by the solid lines G1 and G1 ′ in FIG. 5 , the light G1 enters the light guide structure 10 .
  • the reflected light G1 is deflected toward the middle area between the two light-emitting diodes 20, which increases the amount of light in the A2 area and reduces the A1 area.
  • FIG. 6 is a schematic diagram of the actual light simulation effect of the light guide cavity shown in FIG. 1
  • FIG. 7 is a schematic diagram of the comparison effect of the uniformity of the light exit surface of the light guide body shown in FIG. 1 without the light guide cavity 30 and with the light guide cavity 30 .
  • the simulation results show that under the condition of a single lamp, the optical uniformity of the light exit surface 11 of the light guide body including the light guide cavity 30 in FIG. 1 can reach more than 85%.
  • the light guide cavity 30 As shown in FIGS. 4 to 5 , by setting the light guide cavity 30 into an S-shaped structure, it is easy to selectively control the amount of incident light and the direction and direction of the outgoing light by adjusting the size, direction and angle of the S-shaped entrance and exit. Therefore, the light can be guided from the bright area to the dark area, and play a certain role in shielding and condensing the angle of the outgoing light, which greatly improves the brightness uniformity of the outgoing light, thereby optimizing the overall uniformity of the light-emitting surface. sex.
  • the surface of the light guide cavity 30 close to the light incident surface 12 of the light guide body and the surface of the light guide cavity 30 close to the light exit surface 11 of the light guide body are parallel to each other to further optimize the overall uniformity of the light exit surface.
  • the setting area may be a central area between adjacent light emitting diodes 20, or may be an area where a dark area is formed.
  • the cross-sectional shape of the light guide cavity 30 may include any one or more of the following: S-shape, N-shape, L-shape, Y-shape and Any other type of curve or polyline shape.
  • the first light guide cavity 31 includes a fifth portion 305 disposed between the light incident surface 12 of the light guide body and the light exit surface 11 of the light guide body.
  • the shape of the fifth portion 305 of the first light guide cavity 31 may be the same, or may be different.
  • each fifth portion 305 is curved away from the central plane O of the light guide cavity 30 .
  • each fifth portion 305 is 0.3 mm to 1.5 mm
  • the depth of each fifth portion 305 is the same as the depth h of the light guide structure 10
  • the radius of curvature of each fifth portion 305 2mm to 5mm, along the plane perpendicular to the light exit surface 11 or the light entrance surface 12 of the light guide body, at the junction of the fifth part 305 and the light entrance surface, the angle between the fifth part 305 and the light entrance surface 12 ⁇ may be about 40° to 60°.
  • the distance L5 between two adjacent fifth portions 305 may be 0.2 mm to 1 mm.
  • the distance L5 between two adjacent fifth parts 305 is in accordance with the distance between the light guide body and the light guide body.
  • the distance between the smooth surfaces 12 varies.
  • the distance L5 between two adjacent fifth parts 305 is smaller at the closer to the light incident surface 12 of the light guide body, and larger at the farther away from the light entrance surface 12 of the light guide body.
  • the second light guide cavity 32 includes a sixth portion 306 disposed between the light incident surface 12 of the light guide body and the light exit surface 11 of the light guide body.
  • the shape of the sixth portion 306 of the second light guide cavity 32 may be the same, or may be different.
  • each sixth portion 306 is curved away from the central plane O of the light-guiding cavity.
  • each sixth portion 306 is 0.3 mm to 1.5 mm
  • the depth of each sixth portion 306 is the same as the depth h of the light guide structure 10
  • the angle ⁇ ' may be approximately 40° to 60°.
  • the distance L6 between two adjacent sixth parts 306 may be 0.2 mm to 1 mm.
  • the distance L6 between two adjacent sixth parts 306 is in accordance with the distance between the light guide body and the light guide body.
  • the distance between the smooth surfaces 12 varies.
  • the distance L6 between two adjacent sixth parts 306 is smaller at the closer to the light incident surface 12 of the light guide body, and larger at the farther away from the light entrance surface 12 of the light guide body.
  • FIG. 9 is a schematic diagram of a light transmission path of the light guide structure 10 shown in FIG. 8 .
  • the light emitted by the two adjacent light emitting diodes 20 enters the light guide structure 10 and propagates in a straight line, as shown by the dotted line G2 in FIG.
  • the A3 area between adjacent LEDs 20 forms a bright area, and the A3 area is located in the middle area between the two LEDs 20 .
  • the light guide cavity 30 in the light guide structure 10 , after the light emitted from two adjacent light emitting diodes 20 enters the light guide structure 10 , as shown by the solid lines G3 , G4 , G5 , and G5 ′ in FIG. 9 , when the light rays G3 and G4 are incident on the surface of the light guide cavity 30, the light rays G3 and G4 are totally reflected by the surface of the light guide cavity 30, so that the reflected light rays G3 and G4 are directed away from the middle area between the two light-emitting diodes 20. The direction is deflected.
  • the light G5 is the light incident into the light guide cavity 30 when it is incident on the surface of the light guide cavity 30 and is refracted into the light guide body, and is formed by total reflection by the surface of the light guide cavity 30.
  • the light G5' is the incident light
  • the light entering the light guide cavity 30 is incident on the surface of the light guide cavity 30 and is reflected by the surface of the light guide cavity 30.
  • FIG. 9 by setting the light guide cavity 30, the light in the A3 area is reduced. Therefore, the formation of bright areas in the A3 area is avoided, or the brightness difference between the A3 area and other visible areas is reduced.
  • FIG. 10 is a schematic diagram of the actual light simulation effect of the light guide cavity 30 shown in FIG. 8 .
  • the simulation results show that under the condition of a single lamp, when the light guide cavity 30 of FIG. 8 is filled with a low refractive index light guide resin, the light guide
  • the optical uniformity of the light emitting surface 11 of the main body can reach more than 80%.
  • Fig. 8 to Fig. 10 by setting the light guide cavity into a curved strip structure and filling with low refractive index material, the light can be guided from the bright area to the dark area, and the light can be shielded to a certain extent and the outgoing light can be collected.
  • the effect of the angle greatly improves the brightness uniformity of the outgoing light.
  • the cross-sectional shapes of the plurality of light guide cavities 30 may be the same or different along a plane perpendicular to the light exit surface 11 or the light entrance surface 12 .
  • the cross-sectional shape of a part of the light guide cavity 30 may be an S-shape
  • the cross-sectional shape of a part of the light guide cavity 30 may be an L-shape.
  • the depths of the plurality of light guide cavities 30 may be equal to facilitate processing.
  • the plurality of light guide cavities 30 when the cross-sectional shapes of the plurality of light guide cavities 30 are all S-shaped along a plane perpendicular to the light exit surface 11 or the light entrance surface 12 , the plurality of light guide cavities The bending directions and curvatures of the curved lines 30 may be the same or may be different.
  • the first portions 301 of the 1st to jth first light guide cavities are curved toward the center plane of the light guide cavity, and the first to jth first light guide cavities
  • the second part 302 is bent in a direction away from the central plane of the light guide cavity, and the first parts 301 of the j+1th to nth first light guide cavities are bent in a direction towards the light incident surface 12 of the light guide body,
  • the second parts 302 of the j+1 th to n th first light guide cavities are curved in a direction away from the light incident surface 12 of the light guide body, and j is a natural number between 1 and n.
  • n is 3 and j is 2.
  • the first portions 301 of the 1st to jth second light guide cavities are curved toward the center plane of the light guide cavity, and the first to jth second light guide cavities
  • the second part 302 is bent in a direction away from the central plane of the light guide cavity, and the first parts 301 of the j+1th to nth second light guide cavities are bent in a direction towards the light incident surface 12 of the light guide body,
  • the second portions 302 of the j+1 th to n th second light guide cavities are bent in a direction away from the light incident surface 12 of the light guide body, and j is a natural number between 1 and n.
  • n is 3 and j is 2.
  • each light guide cavity 30 may vary at different distances from the light incident surface 12 of the light guide body.
  • the depths of at least two light guide cavities may be different.
  • At least one light guide cavity in the plurality of light guide cavities 30 includes a plurality of sub light guide cavities 50 , and the plurality of sub light guide cavities 50 are disposed at the second end of the light guide cavity 30 .
  • the sub-light guide cavity 50 includes a first end close to the light incident surface 12 of the light guide body and a second end away from the light incident surface 12 of the light guide body.
  • the second end of the sub light guide cavity 50 includes a The second central plane O', the second central plane O' is a virtual plane in the light guide body that is perpendicular to the light incident surface 12, the distance L6 between the first end of the sub-light guide cavity 50 and the second central plane O' is smaller than the distance L7 between the second end of the sub-light guide cavity 50 and the second central plane O'.
  • the plurality of light guide cavities 30 and the sub-light guide cavities 50 form a two-layer tree structure.
  • At least one sub-light-guiding cavity in the plurality of sub-light-guiding cavities 50 may include a plurality of second sub-light-guiding cavities, and the plurality of second sub-light-guiding cavities are disposed in the second sub-light-guiding cavity 50 . end.
  • the second sub-light guide cavity includes a first end close to the light incident surface 12 of the light guide body and a second end away from the light incident surface 12 of the light guide body.
  • the second end of the second sub light guide cavity includes a The third central plane in the body, the third central plane is a virtual plane in the light guide body that is perpendicular to the light incident surface 12, and the distance between the first end of the second sub-light-guiding cavity and the third central plane is smaller than that of the second sub-light guide cavity.
  • the distance between the second end of the light-guiding cavity and the third central plane, the plurality of light-guiding cavities 30 , the sub-light-guiding cavities 50 and the second sub-light-guiding cavities form a tree-like structure with three or more layers.
  • the tree-like structure is provided with at least two layers of structures from a direction close to the light incident surface 12 of the light guide body to a direction away from the light incident surface 12 of the light guide body, and away from the light incident surface 12 of the light guide body
  • the number of light guide cavities in the structural layer is greater than the number of light guide cavities in the structural layer close to the light incident surface 12 of the light guide body, and the width of the light guide cavities in the structural layer far from the light incident surface 12 of the light guide body is smaller than that near the light guide body.
  • the width of the light guide cavity in the structure layer of the light incident surface 12 of the light guide body is provided with at least two layers of structures from a direction close to the light incident surface 12 of the light guide body to a direction away from the light incident surface 12 of the light guide body, and away from the light incident surface 12 of the light guide body
  • the number of light guide cavities in the structural layer is greater than the number of light guide cavities in the structural layer close to the light incident surface 12 of the light guide body, and the width of the
  • the light guide structure of the embodiment of the present disclosure by arranging one or more light guide cavities 30 in the light guide structure 10 in the embodiment of the present disclosure, the light in the bright area can be guided to the dark area, and the light source of the surface light source is improved.
  • the uniformity improves the optical quality of the light source module and ensures the quality of the display screen.
  • the light source module according to the embodiment of the present disclosure can appropriately reduce the distance between the light emitting diodes 20 and the visible area of the display panel on the premise of reducing the risk of dark areas between adjacent light emitting diodes 20 , thereby reducing the light source
  • the frame of the module is conducive to realizing a narrow frame and improving product competitiveness.
  • the light guide structure of the embodiment of the present disclosure has the advantages of simple structure, convenient assembly, simple manufacturing process, low production cost, etc., and has a good application prospect.
  • Embodiments of the present disclosure also provide a light source module.
  • the light source module includes a light guide structure 10 and at least one light source disposed on a side close to the light incident surface 12 of the light guide body.
  • One group of light guide cavities 30 corresponds to one or more light sources.
  • a group of light guide cavities 30 are in one-to-one correspondence with one light source.
  • the light source module of the embodiment of the present disclosure can obtain a highly uniform surface light source by means of the light guide cavity 30 under the condition of ultra-short light mixing distance.
  • the light source may be a light emitting diode 20 .
  • FIG. 14 is a schematic structural diagram of a light source module according to an exemplary embodiment of the present disclosure.
  • the light source module may include a light guide structure 10 and at least one light emitting diode 20, wherein: the light guide structure 10 includes a light guide body and at least one light guide cavity 30 disposed in the light guide body;
  • the light-emitting diode 20 is disposed at one end of the light-incident surface 12 close to the light-guiding body, and each light-guiding cavity 30 includes a first end close to the light-incident surface 12 of the light-guiding body.
  • the light guide cavity 30 extends from the first end to the second end with the second end away from the light incident surface 12 of the light guide body.
  • each light emitting diode 20 may coincide with the center plane O of its corresponding group of light guide cavities 30 .
  • the light-emitting diode 20 has a light-emitting surface, the light-emitting surface of the light-emitting diode 20 is disposed toward the light-incident surface 12 of the light-guiding body, and the light emitted by the light-emitting diode 20 enters the light-guiding body through the light-incident surface 12 of the light-guiding body.
  • the light-emitting surface of the light emitting diode 20 and the light-incident surface of the light guide body are parallel to each other, and there may be a 0 mm gap therebetween.
  • the relative positional relationship between the light exit surface of the light emitting diode 20 and the light entrance surface of the light guide body may be set according to the actual situation of the product, which is not limited in this embodiment of the present disclosure.
  • At least one groove recessed on the light exit surface of the light guide body is provided on the light incident surface of the light guide body, and the light emitting diodes 20 adjacent to the groove are arranged in the groove .
  • At least one light emitting diode 20 can be accommodated in one recess.
  • the display module includes any one or more light source modules and a display panel 40 of the foregoing embodiments.
  • the light emitted by the light emitting diode 20 becomes a surface light source with high uniformity after being emitted through the light emitting surface 11 of the light guide body.
  • the side of the light guide body facing the display panel 40 is the light emitting surface, and the uniform light emitted from the light emitting surface 11 of the light guide body will enter the side of the display panel 40, and the display panel 40 has a corresponding light extraction structure on the side, and finally The side light is transformed into a surface light source that can be used for display by the display panel 40 .
  • a gap may exist between the display panel 40 and the light guide structure 10 , or there may be a 0 mm gap between the display panel 40 and the light guide structure 10 .
  • the display module may be a reflective liquid crystal display module.
  • the reflective display device can use the surrounding ambient light as an illumination source to display the picture.
  • the reflective display device Compared with the traditional transmissive display device, the reflective display device has the advantages of soft light, power saving, and better display effect outdoors. Therefore, more and more attention.
  • a uniform surface light source can be provided for a reflective display device to assist the display device in displaying, so that a better display effect can be obtained even in a weak ambient light or a dark room environment.
  • the display module may be a transparent liquid crystal display module.
  • Transparent display products are widely used in booths, home appliances and special consumer goods.
  • the display effect of transparent display products has a strong dependence on external light, so auxiliary light sources are indispensable.
  • the traditional backlight source is no longer applicable due to the blocking effect on the transparent display. Therefore, transparent display products usually use side-type auxiliary light sources.
  • One side of the display panel is the light incident side, and a light source module is arranged on the light incident side.
  • a uniform surface is provided for the transparent display product. light source.
  • the display module can be any other display module that requires a uniform surface light source.
  • the display module can include any one or more of: mobile phone, notebook computer, tablet computer, TV, digital photo frame, vehicle monitor, navigator, and any other product or component with display function. Since the display module includes any of the above light source modules, the same technical problem can be solved and the same technical effect can be achieved, which will not be described in detail here.
  • the display device may be a transparent display device.
  • the display device in the embodiment of the present disclosure is not limited to a transparent display device, and in practical applications, the display device may also be a common opaque display device.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a Removable connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a Removable connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

一种导光结构(10)、光源模组和显示模组,其中,导光结构(10)包括导光本体和设置在导光本体内的至少一个导光腔(30);导光本体包括相对设置的入光面(12)和出光面(11);每个导光腔(30)包括靠近导光本体的入光面(12)的第一端与远离导光本体的入光面(12)的第二端,导光腔(30)从第一端延伸到第二端。

Description

导光结构、光源模组和显示模组 技术领域
本公开实施例涉及但不限于显示技术领域,尤其涉及一种导光结构、光源模组和显示模组。
背景技术
当前,液晶电视、笔记本电脑、平板电脑、智能手机等液晶显示装置广泛应用于社会生产和人们的日常生活中。液晶显示装置本身不发光,而是由其内部的光源模组发光。
光源模组一般采用侧入式光源的方式,但是,实际使用中,侧入式光源的均一性较差,显示画面光束明显,灯影问题显著,导致显示装置的显示效果不佳。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种导光结构,包括:导光本体和设置在所述导光本体内的至少一个导光腔;所述导光本体包括相对设置的入光面和出光面,每个所述导光腔包括靠近所述导光本体的入光面的第一端与远离所述导光本体的入光面的第二端,所述导光腔从所述第一端延伸到第二端。
在示例性实施例中,所述导光腔内包括第一介质层,所述第一介质层的折射率小于所述导光本体的折射率。
在示例性实施例中,所述第一介质层为在所述导光本体上镂空的条状开口。
在示例性实施例中,所述导光腔的第二端与所述导光本体的入光面之间的距离为1毫米至3毫米,所述导光腔的第二端与所述导光本体的出光面之 间的距离为0.5毫米至3毫米。
在示例性实施例中,所述第一介质层为在所述导光本体上填充的导光材料。
在示例性实施例中,所述导光腔从所述导光本体的入光面延伸至所述导光本体的出光面。
在示例性实施例中,所述导光腔包括多个,所述多个导光腔分为多组导光腔,每一组导光腔包括一个位于导光本体中的中心平面;所述每一组导光腔包括位于所述中心平面一侧的n个第一导光腔,和另一侧的n个第二导光腔,n为大于或等于1的自然数;
所述第一导光腔的第一端到相应的中心平面的距离小于所述第一导光腔的第二端到相应的中心平面的距离;所述第二导光腔的第一端到相应的中心平面的距离小于所述第二导光腔的第二端到相应的中心平面的距离;
所述中心平面为所述导光本体内垂直于所述入光面的虚拟平面。
在示例性实施例中,相对于所述每一组导光腔的中心平面,第i个所述第一导光腔与第i个所述第二导光腔镜像设置,i为大于或等于1且小于或等于n的自然数。
在示例性实施例中,所述第一导光腔包括靠近所述导光本体的入光面的第一部分和远离所述导光本体的入光面的第二部分,沿垂直于所述导光本体的出光面的平面,所述第一部分和第二部分的截面形状包括以下任意一种:
所述第一部分的截面形状为曲线条状,所述第二部分的截面形状为曲线条状;
所述第一部分的截面形状为曲线条状,所述第二部分的截面形状为折线条状;
所述第一部分的截面形状为曲线条状,所述第二部分的截面形状为直线条状;
所述第一部分的截面形状为折线条状,所述第二部分的截面形状为曲线条状;
所述第一部分的截面形状为直线条状,所述第二部分的截面形状为曲线条状。
在示例性实施例中,沿垂直于所述导光本体的出光面的平面,所述第一部分向朝着所述导光腔的中心平面方向弯曲,所述第二部分向远离所述导光腔的中心平面方向弯曲。
在示例性实施例中,所述第一部分的宽度为0.2毫米至1.5毫米,所述第一部分的深度为1毫米至2毫米,所述第一部分的曲率半径为2毫米至4.5毫米,沿垂直于所述导光本体的出光面或入光面的平面,在所述第一部分与所述导光本体的入光面的交界处,所述第一部分与所述导光本体的入光面之间的夹角为40°至60°;
所述第二部分的宽度为0.2毫米至1.5毫米,所述第二部分的深度为1毫米至2毫米,所述第二部分的曲率半径为3.5毫米至4.5毫米,沿垂直于所述导光本体的出光面或入光面的平面,在所述第二部分与第一部分的交界处,所述第二部分与所述导光本体的入光面之间的夹角为40°至60°。
在示例性实施例中,在一组所述导光腔中,相邻两个所述第一导光腔之间的距离为0.2毫米至1毫米。
在示例性实施例中,所述第一导光腔包括设置在所述导光本体的入光面和出光面之间的第五部分,所述第五部分均向远离所述导光腔的中心平面方向弯曲。
在示例性实施例中,每个所述第五部分的宽度为0.3毫米至1.5毫米,每个所述第五部分的深度与所述导光结构的深度相同,每个所述第五部分的曲率半径为2毫米至5毫米,沿垂直于所述导光本体的出光面或入光面的平面,在所述第五部分与所述导光本体的入光面的交界处,所述第五部分与所述导光本体的入光面之间的夹角为40°至60°。
在示例性实施例中,在一组所述导光腔中,沿着所述导光本体的入光面的延伸方向,相邻两个所述第五部分之间的距离为0.2毫米至1毫米。
在示例性实施例中,所述多个导光腔中的至少一个导光腔包括多个子导光腔,所述多个子导光腔设置在所述导光腔的第二端;
所述子导光腔包括靠近所述导光本体的入光面的第一端和远离所述导光本体的入光面的第二端,所述子导光腔的第二端包括一个位于所述导光本体中的第二中心平面,所述第二中心平面为所述导光本体内垂直于所述入光面的虚拟平面;
所述子导光腔的第一端与所述第二中心平面之间的距离小于所述子导光腔的第二端与所述第二中心平面之间的距离;
所述多个导光腔和子导光腔形成树状结构。
在示例性实施例中,所述导光结构还包括与出光面和入光面分别连接的第一平面、与出光面和入光面分别连接的第二平面、与出光面和入光面分别连接的第一侧面以及与出光面和入光面分别连接的第二侧面,所述第一侧面与第二侧面相对设置,所述第一平面与第二平面相对设置,所述第一侧面、第二侧面、第一平面和第二平面均设置有反射片。
本公开实施例还提供了一种光源模组,包括:如前任一所述的导光结构,还包括至少一个发光二极管,所述发光二极管的出光面朝向所述导光本体的入光面设置。
本公开实施例还提供了一种显示模组,包括:如前所述的光源模组和显示面板。
在示例性实施例中,所述显示模组为反射式液晶显示模组或透明液晶显示模组。
在阅读并理解了附图概述和本公开的实施方式后,可以明白其他方面。
附图说明
图1为本公开实施例一种导光结构沿垂直于出光面的平面的剖面结构示意图;
图2为图1所示导光结构沿平行于出光面的平面的剖面结构示意图;
图3为图1中一组导光腔的剖面结构示意图;
图4为本公开实施例另一种导光结构的剖面结构示意图;
图5为图1所示导光结构的光线传输路径示意图;
图6为图1所示导光结构的光线仿真效果示意图;
图7为图1所示导光本体无导光腔和有导光腔时的出光面均一性对比效果示意图;
图8为本公开实施例另一种导光结构的剖面结构示意图;
图9为图8所示导光结构的光线传输路径示意图;
图10为图8所示导光结构的光线仿真效果示意图;
图11为本公开实施例又一种导光结构和邻近的发光二极管的剖面结构示意图;
图12为本公开实施例又一种导光结构和邻近的发光二极管的剖面结构示意图;
图13为本公开实施例又一种导光结构和邻近的发光二极管的剖面结构示意图;
图14为本公开实施例一种光源模组的剖面结构示意图;
图15为本公开实施例一种显示模组的剖面结构示意图。
具体实施方式
下面结合附图和对本公开实施例的具体实施方式作进一步详细描述。以下用于说明本公开实施例,但不用来限制本公开实施例的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开实施例提供了一种导光结构。在示例性实施方式中,导光结构包括导光本体和设置在导光本体内的至少一个导光腔;导光本体包括相对设置的入光面和出光面,每个导光腔包括靠近导光本体的入光面的第一端与远离导光本体的入光面的第二端,导光腔从第一端延伸到第二端。本公开实施例的导光结构可以在超短混光距离条件下获得高均一性面光源。
本公开实施例每个导光结构中的导光腔的数量,可以根据实际导光结构的大小和导光腔之间的间隔进行设置,每个导光结构中的导光腔的数量可以为1个或多个。
在示例性实施方式中,导光腔内包括第一介质层,第一介质层的折射率小于导光本体的折射率。
图1为本公开实施例一种导光结构沿垂直于出光面的平面的剖面结构示意图;图2为图1所示导光结构沿平行于出光面的平面的剖面结构示意图。如图1和图2所示,导光结构10包含导光本体和设置在导光本体内的至少一个导光腔,导光本体包括相对设置的出光面11和入光面12,以及与出光面11和入光面12分别连接的第一表面15,与出光面11和入光面12分别连接的第二表面16,其中第一表面15和第二表面16相对设置;进一步的,如图1所示,导光结构还可以包括分别连接于出光面11和入光面12的第一侧面13,以及分别连接于出光面11和入光面12的第二侧面14,其中第一侧面13和第二侧面14相对设置。出光面11、入光面12、第一侧面13、第二侧面14均既可以为平面也可以为曲面,根据具体需求进行设定,附图1以平面示例。在示例性实施方式中,出光面11和入光面12可以设置成相互平行,或者可以设置成非平行,以适应不同光源环境下的使用需求。
在示例性实施方式中,出光面11和入光面12可以经过雾化处理、图案化处理或纹理化处理等,以增加导光结构10的出光效率和出射光线的均匀性。
在示例性实施方式中,导光腔30可以包括多个,多个导光腔30可分为多组导光腔30,图3为本公开示例性实施例一组导光腔的结构示意图,如图1和图3所示,每一组导光腔30包括一个位于导光本体中的中心平面O;每一组导光腔30包括位于中心平面O一侧的n个第一导光腔31,和另一侧的n个第二导光腔32,n为大于或等于1的自然数。
本实施例中,中心平面O为导光本体内垂直于入光面12的虚拟平面。每组导光腔30中的至少两个导光腔30沿入光面12的延伸方向设置,该虚拟 的中心平面O垂直于入光面12,并且位于该至少两个导光腔30之间。导光本体的入光面12的延伸方向即为图1中的水平方向。
在示例性实施方式中,第一导光腔31的第一端到相应的中心平面O的距离L1小于该第一导光腔31的第二端到相应的中心平面O的距离L2;第二导光腔32的第一端到相应的中心平面O的距离L1’小于该第二导光腔32的第二端到相应的中心平面O的距离L2’。
在示例性实施方式中,沿垂直于出光面11或入光面12的平面,导光腔30的截面形状包括如下任意一种或多种:曲线条状、折线条状或其他条状结构。
在示例性实施方式中,沿平行于出光面11或入光面12的平面,导光腔30的截面形状可以包括如下任意一种或多种:圆形、椭圆形、三角形、梯形、矩形或其他任意形状。
在示例性实施方式中,相对于每一组导光腔30的中心平面O,第i个第一导光腔31与第i个第二导光腔32镜像设置,其中,i为大于或等于1且小于或等于n的自然数,n为大于或等于1的自然数。例如,第一导光腔为S形,第二导光腔为反S形,或者,第一导光腔为反S形,第二导光腔为S形。
在示例性实施方式中,如图3所示,第i个第一导光腔31包括靠近导光本体的入光面12的第一部分301和远离导光本体的入光面12的第二部分302,不同第一导光腔31的第一部分301的形状可以相同,或者也可以不同,不同第一导光腔31的第二部分302的形状可以相同,或者也可以不同。
在示例性实施方式中,沿垂直于导光本体的出光面11或入光面12的平面,第一部分301和第二部分302的截面形状包括以下任意一种:
第一部分301的截面形状为曲线条状,第二部分302的截面形状为曲线条状;
第一部分301的截面形状为曲线条状,第二部分302的截面形状为折线条状;
第一部分301的截面形状为曲线条状,第二部分302的截面形状为直线条状;
第一部分301的截面形状为折线条状,第二部分302的截面形状为曲线条状;
第一部分301的截面形状为直线条状,第二部分302的截面形状为曲线条状。
在示例性实施方式中,沿垂直于导光本体的出光面11或入光面12的平面,第一部分301向朝着该导光腔30的中心平面O方向弯曲,第二部分302向远离该导光腔30的中心平面O方向弯曲。
在示例性实施方式中,如图3所示,第一部分301的宽度d1为0.2mm至1.5mm,第一部分301的深度为1mm至2mm,第一部分301的曲率半径为2mm至4.5mm,沿垂直于导光本体的出光面11或入光面12的平面,在第一部分301与入光面12的交界处,第一部分301与入光面12之间的夹角β可以约为40°至60°。本公开实施例中,宽度是指平行于导光本体的出光面11的方向的特征尺寸,深度是指沿着导光本体的入光面12向导光本体的出光面11的延伸方向的特征尺寸。示例性的,当导光本体的入光面12与导光本体的出光面11平行时,导光本体的入光面12向导光本体的出光面11的延伸方向可以为垂直于导光本体的入光面12的方向。
在示例性实施方式中,如图3所示,第二部分302的宽度d2为0.2mm至1.5mm,第二部分302的深度为1mm至2mm,第二部分302的曲率半径为3.5mm至4.5mm,沿垂直于导光本体的出光面11或入光面12的平面,在第二部分302与第一部分301的交界处,第二部分302与入光面12之间的夹角α可以约为40°至60°。
本实施例中,多个第一导光腔的第一部分301的各个参数可以分别相同,或者也可以不同,多个第一导光腔的第二部分302的各个参数可以分别相同,或者也可以不同。
在示例性实施方式中,第一导光腔31的第一端与导光本体的入光面12之间的深度h0可以为0mm至0.05mm。示例性的,第一导光腔31的第一端 与导光本体的入光面12之间可以为0mm间隙,此时,进入导光结构10的光线通过导光腔的作用,全部传递至导光本体的出光面11,而不会从导光本体的侧面泄露。
在示例性实施方式中,第一导光腔31的第二端与导光本体的入光面12之间的深度为h1,第一导光腔31的第二端与导光本体的出光面11之间的深度为h2,导光本体的入光面12与导光本体的出光面11之间的距离为h1+h2,h1/(h1+h2)的比值可以在0.5至0.8之间。
在示例性实施方式中,第一导光腔31的第二端与导光本体的入光面12之间的深度h1可以为1mm至3mm,第一导光腔31的第二端与导光本体的出光面11之间的深度h2可以为0.5mm至3mm。
在示例性实施方式中,在一组导光腔中,沿着导光本体的入光面12的延伸方向,相邻两个第一导光腔31之间的距离L3可以为0.2mm至1mm。
在示例性实施方式中,如图3所示,第i个第二导光腔32包括靠近导光本体的入光面12的第三部分303和远离导光本体的入光面12的第四部分304,不同第二导光腔32的第三部分303的形状可以相同,或者也可以不同,不同第二导光腔32的第四部分304的形状可以相同,或者也可以不同。
在示例性实施方式中,沿垂直于出光面11或入光面12的平面,第三部分303和第四部分304的截面形状包括以下任意一种:
第三部分303的截面形状为曲线条状,第四部分304的截面形状为曲线条状;
第三部分303的截面形状为曲线条状,第四部分304的截面形状为折线条状;
第三部分303的截面形状为曲线条状,第四部分304的截面形状为直线条状;
第三部分303的截面形状为折线条状,第四部分304的截面形状为曲线条状;
第三部分303的截面形状为直线条状,第四部分304的截面形状为曲线条状。
在示例性实施方式中,沿垂直于出光面11或入光面12的平面,第三部分303向朝着该导光腔30的中心平面O方向弯曲,第四部分304向远离该导光腔30的中心平面O方向弯曲。
在示例性实施方式中,如图3所示,第三部分303的宽度d3为0.2mm至1.5mm,第三部分303的深度为1mm至2mm,第三部分303的曲率半径为2mm至4.5mm,沿垂直于导光本体的出光面11或入光面12的平面,在第三部分303与入光面12的交界处,第三部分303与入光面12之间的夹角β’可以约为40°至60°。
在示例性实施方式中,如图3所示,第四部分304的宽度d4为0.2mm至1.5mm,第四部分304的深度为1mm至2mm,第四部分304的曲率半径为3.5mm至4.5mm,沿垂直于导光本体的出光面11或入光面12的平面,在第四部分304与第三部分303的交界处,第四部分304与入光面12之间的夹角α’可以约为40°至60°。
本实施例中,多个第二导光腔32的第三部分303的各个参数可以分别相同,或者也可以不同,多个第二导光腔32的第四部分304的各个参数可以分别相同,或者也可以不同。
在示例性实施方式中,第二导光腔32的第一端与导光本体的入光面12之间的深度h0’可以为0mm至0.05mm。示例性的,第二导光腔32的第一端与导光本体的入光面12之间可以为0mm间隙。
在示例性实施方式中,第二导光腔32的第二端与导光本体的入光面12之间的深度为h1’,第二导光腔32的第二端与导光本体的出光面11之间的深度为h2’,导光本体的入光面12与导光本体的出光面11之间的距离为h1’+h2’,h1’/(h1’+h2’)的比值可以在0.5至0.8之间。
在示例性实施方式中,第二导光腔32的第二端与导光本体的入光面12之间的深度h1’可以为1mm至3mm,第二导光腔32的第二端与导光本体的出光面11之间的深度h2’可以为0.5mm至3mm。
在示例性实施方式中,在一组导光腔中,沿着导光本体的入光面12的延伸方向,相邻两个第二导光腔32之间的距离L3’可以为0.2mm至1mm。
在示例性实施方式中,导光腔30内包括第一介质层,第一介质层的折射率小于导光本体的折射率。
在示例性实施方式中,第一介质层为在导光本体上镂空的条状开口。
本实施例中,第一介质层内的第一介质为空气,且第一介质层内的第一介质与导光本体直接接触。导光腔30的加工方式可以采用二次机加工,对导光本体采用二次线切割的方式,切割出相应的条状开口,加工效率高、成本低。
本实施例中,导光腔30的第一端面和第二端面不能同时与导光本体的入光面12、出光面11平齐,以保证导光结构10的完整性。
在示例性实施方式中,导光腔30内填充有第一折射率的导光材料,第一折射率小于导光本体的折射率。此时,第一介质层内的第一介质为具有第一折射率的导光材料,且第一介质层内的第一介质与导光本体直接接触。
在示例性实施方式中,导光本体的材质可以为聚碳酸酯树脂(PC)或聚甲基丙烯酸甲酯(PMMA)等。第一折射率的导光材料可以为折射率小于PC或PMMA的导光树脂或其他低折射率的材料。
本实施例中,导光腔30的加工方式可采用模具注塑成型的方式,在导光腔30内填充折射率较低的导光树脂等材料。本实施例中,导光腔30的第一端面和第二端面可以同时与导光本体的入光面12、出光面11平齐。
在示例性实施方式中,如图4所示,导光结构10的第一侧面13、第二侧面14、第一平面15(图4中未示出)和第二平面16(图4中未示出)上均设置有反射片60,从导光结构10的第一侧面13、第二侧面14、第一平面15和第二平面16出射的光线被反射片60反射回导光结构10中,避免光线从导光结构10的第一侧面13、第二侧面14、第一平面15和第二平面16泄露,进一步提升导光效率。
图5为本公开示例性实施例一种导光腔光30线传输路径的示意图,图5中的导光腔30为图1中A区域的导光腔30的放大图。在导光结构10中未设置导光腔30时,相邻两个发光二极管20出射的光线进入导光结构10后按照直线传播,如图5中虚线G0和G0’所示,直线传播的光线G0在相邻发光二极管20之间的A1区域形成亮区,A2区域形成暗区,A1区域和A2区域位于两个发光二极管20之间的中部区域。本公开实施例通过在导光结构10中设置导光腔30,相邻两个发光二极管20出射的光线进入导光结构10后,如图5中实线G1和G1’所示,光线G1入射到导光腔30的表面时,被导光腔30的表面全反射,使得反射后的光线G1向着两个发光二极管20之间的中部区域偏转,增加了A2区域的光线量,减少了A1区域的光线量,从而避免了在A2区域形成暗区,并避免了在A1区域形成亮区,或者减小了A1区域、A2区域与其它可视区的亮度差。光线G1’进入导光腔30后,在导光腔30的表面先进行折射,折射后的光线G1’被导光腔30的表面全反射,向着远离A1区域的方向偏转,从而进一步减少了A1区域的光线量。图6为图1所示的导光腔实际的光线仿真效果示意图,图7为图1所示导光本体无导光腔30和有导光腔30时的出光面均一性对比效果示意图。仿真结果表明,在单颗灯条件下,图1的包含导光腔30的导光本体的出光面11光学均一性可达85%以上。
如图4至图5所示,通过将导光腔30设置成S形结构,可以很容易通过调整S型入口和出口的大小、方向和角度从而选择性的控制入射光量以及出射光的方向和角度,从而可以将光线由亮区导光至暗区,并起到一定的遮蔽性和收拢出射光线的角度的作用,大幅度提升了出射光线的亮度均一性,进而可以优化出光面整体的均一性。
在示例性实施方式中,导光腔30靠近导光本体的入光面12的表面与导光腔30靠近导光本体的出光面11的表面相互平行,以进一步优化出光面整体的均一性。
在示例性实施方式中,通过对导光腔30的表面的几何参数进行设计,可以使得被导光腔30的表面全反射的光线向设定区域偏转,从而增加进入A2区域的光线量,减少进入A1区域的光线量,即增加A2区域的亮度,减小 A1区域的亮度。在示例性实施方式中,设定区域可以是位于相邻发光二极管20之间的中部区域,也可以是形成有暗区的区域。
在示例性实施方式中,沿垂直于出光面11或入光面12的平面,导光腔30的截面形状可以包括如下任意一种或多种:S形、N形、L形、Y形以及其他任意类型的曲线或折线条状。
在另一种示例性实施方式中,如图8所示,第一导光腔31包括设置在导光本体的入光面12和导光本体的出光面11之间的第五部分305,不同第一导光腔31的第五部分305的形状可以相同,或者也可以不同。示例性的,每个第五部分305向远离该导光腔30的中心平面O方向弯曲。
在示例性实施方式中,每个第五部分305的宽度d5为0.3mm至1.5mm,每个第五部分305的深度与导光结构10的深度h相同,每个第五部分305的曲率半径为2mm至5mm,沿垂直于导光本体的出光面11或入光面12的平面,在第五部分305与入光面的交界处,第五部分305与入光面12之间的夹角γ可以约为40°至60°。
在示例性实施方式中,在一组导光腔30中,沿着导光本体的入光面12的延伸方向,相邻两个第五部分305之间的距离L5可以为0.2mm至1mm。
在示例性实施方式中,在一组导光腔30中,沿着导光本体的入光面12的延伸方向,相邻两个第五部分305之间的距离L5按照与导光本体的入光面12之间的距离变化。在示例性实施方式中,相邻两个第五部分305之间的距离L5在越靠近导光本体的入光面12处越小,越远离导光本体的入光面12处越大。
在另一种示例性实施方式中,如图8所示,第二导光腔32包括设置在导光本体的入光面12和导光本体的出光面11之间的第六部分306,不同第二导光腔32的第六部分306的形状可以相同,或者也可以不同。示例性的,每个第六部分306向远离该导光腔的中心平面O方向弯曲。
在示例性实施方式中,每个第六部分306的宽度d6为0.3mm至1.5mm,每个第六部分306的深度与导光结构10的深度h相同,每个第六部分306的曲率半径为2mm至5mm,沿垂直于导光本体的出光面11或入光面12的 平面,在第六部分306与入光面12的交界处,第六部分306与入光面12之间的夹角γ’可以约为40°至60°。
在示例性实施方式中,在一组导光腔30中,沿着导光本体的入光面12的延伸方向,相邻两个第六部分306之间的距离L6可以为0.2mm至1mm。
在示例性实施方式中,在一组导光腔30中,沿着导光本体的入光面12的延伸方向,相邻两个第六部分306之间的距离L6按照与导光本体的入光面12之间的距离变化。在示例性实施方式中,相邻两个第六部分306之间的距离L6在越靠近导光本体的入光面12处越小,越远离导光本体的入光面12处越大。
图9为图8所示的导光结构10的光线传输路径示意图。在导光结构10中未设置导光腔30时,相邻两个发光二极管20出射的光线进入导光结构10后按照直线传播,如图9中虚线G2所示,直线传播的光线G2在相邻发光二极管20之间的A3区域形成亮区,A3区域位于两个发光二极管20之间的中部区域。本公开实施例通过在导光结构10中设置导光腔30,相邻两个发光二极管20出射的光线进入导光结构10后,如图9中实线G3、G4、G5、G5’所示,光线G3和G4入射到导光腔30的表面时,光线G3和G4被导光腔30的表面全反射,使得反射后的光线G3和G4向着远离两个发光二极管20之间的中部区域的方向偏转,光线G5为入射到导光腔30内的光线在入射到导光腔30的表面时折射进入导光本体内,被导光腔30的表面全反射形成的光线,光线G5’为入射到导光腔30内的光线在入射到导光腔30的表面,被导光腔30的表面反射形成的光线,从图9可以看出,通过设置导光腔30,减少了A3区域的光线量,从而避免了在A3区域形成亮区,或者减小了A3区域与其它可视区的亮度差。图10为图8所示的导光腔30实际的光线仿真效果示意图,仿真结果表明,在单颗灯条件下,图8的导光腔30在填充低折射率的导光树脂时,导光本体的出光面11光学均一性可达80%以上。如图8至图10所示,通过将导光腔设置成曲线长条结构并填充低折射率材料,可以将光线由亮区导光至暗区,并起到一定的遮蔽性和收拢出射光线的角度的作用,大幅度提升了出射光线的亮度均一性。
在又一种示例性实施方式中,如图11所示,沿垂直于出光面11或入光面12的平面,多个导光腔30的截面形状可以相同,或可以不同。例如,可以一部分导光腔30的截面形状为S形,一部分导光腔30的截面形状为L形。
在示例性实施方式中,在垂直于导光本体的出光面11或入光面12的方向,多个导光腔30的深度可以相等,以便于加工。
在又一种示例性实施方式中,如图12所示,沿垂直于出光面11或入光面12的平面,多个导光腔30的截面形状均为S形时,多个导光腔30的曲线条的弯曲方向以及曲率可以相同,或者也可以不同。
在示例性实施方式中,第1个至第j个第一导光腔的第一部分301向朝着该导光腔的中心平面的方向弯曲,第1个至第j个第一导光腔的第二部分302向远离该导光腔的中心平面的方向弯曲,第j+1个至第n个第一导光腔的第一部分301向朝着导光本体的入光面12的方向弯曲,第j+1个至第n个第一导光腔的第二部分302向远离导光本体的入光面12的方向弯曲,j为1至n之间的自然数。示例性的,n为3,j为2。
在示例性实施方式中,第1个至第j个第二导光腔的第一部分301向朝着该导光腔的中心平面的方向弯曲,第1个至第j个第二导光腔的第二部分302向远离该导光腔的中心平面的方向弯曲,第j+1个至第n个第二导光腔的第一部分301向朝着导光本体的入光面12的方向弯曲,第j+1个至第n个第二导光腔的第二部分302向远离导光本体的入光面12的方向弯曲,j为1至n之间的自然数。示例性的,n为3,j为2。
在示例性实施方式中,每个导光腔30在距离导光本体的入光面12不同距离处的宽度可以变化。
在示例性实施方式中,如图12所示,同一组导光腔30中,至少两个导光腔的深度可以不同。
在示例性实施方式中,如图13所示,多个导光腔30中的至少一个导光腔包括多个子导光腔50,多个子导光腔50设置在导光腔30的第二端。子导光腔50包括靠近导光本体的入光面12的第一端和远离导光本体的入光面12的第二端,子导光腔50的第二端包括一个位于导光本体中的第二中心平面 O’,第二中心平面O’为导光本体内垂直于入光面12的虚拟平面,子导光腔50的第一端与第二中心平面O’之间的距离L6小于子导光腔50的第二端与第二中心平面O’之间的距离L7。在本示例中,多个导光腔30和子导光腔50形成两层树状结构。
在示例性实施方式中,多个子导光腔50中的至少一个子导光腔可以包括多个第二子导光腔,多个第二子导光腔设置在子导光腔50的第二端。第二子导光腔包括靠近导光本体的入光面12的第一端和远离导光本体的入光面12的第二端,第二子导光腔的第二端包括一个位于导光本体中的第三中心平面,第三中心平面为导光本体内垂直于入光面12的虚拟平面,第二子导光腔的第一端与第三中心平面之间的距离小于第二子导光腔的第二端与第三中心平面之间的距离,多个导光腔30、子导光腔50和第二子导光腔形成三层或更多层的树状结构。
在示例性实施方式中,树状结构从靠近导光本体的入光面12的方向到远离导光本体的入光面12的方向设置至少两层结构,且远离导光本体的入光面12的结构层中的导光腔数量大于靠近导光本体的入光面12的结构层中的导光腔数量,远离导光本体的入光面12的结构层中的导光腔的宽度小于靠近导光本体的入光面12的结构层中的导光腔的宽度。
通过本公开实施例的导光结构可以看出,本公开实施例通过在导光结构10中设置一个或多个导光腔30,可以将亮区的光线导至暗区,提升了面光源的均一性,提升了光源模组的光学品质,保证了显示画面的品质。本公开实施例光源模组可以在保证减小相邻发光二极管20之间出现暗区风险的前提下,可以适当减小发光二极管20与显示面板可视区之间的间距,从而可以减小光源模组的边框,有利于实现窄边框,提高产品竞争力。
本公开实施例导光结构具有结构简单、装配便捷、制作工艺简单、生产成本低等优点,具有良好的应用前景。
本公开实施例还提供了一种光源模组。在示例性实施方式中,光源模组包括导光结构10和设置在靠近导光本体的入光面12的一侧的至少一个光源。 一组导光腔30对应一个或多个光源。示例性的,一组导光腔30与一个光源一一对应。
本公开实施例的光源模组可以在超短混光距离条件下借助导光腔30获得高均一性面光源。
在示例性实施方式中,该光源可以为发光二极管20。
图14为本公开示例性实施例一种光源模组的结构示意图。如图14所示,光源模组可以包括导光结构10和至少一个发光二极管20,其中:导光结构10包括导光本体和设置在导光本体内的至少一个导光腔30;导光本体包括相对设置的入光面12和出光面11,发光二极管20设置在靠近导光本体的入光面12的一端,每个导光腔30包括靠近导光本体的入光面12的第一端与远离导光本体的入光面12的第二端,导光腔30从第一端延伸到第二端。
在示例性实施方式中,每个发光二极管20的中心平面可以和与其对应的一组导光腔30的中心平面O相重合。
在示例性实施方式中,发光二极管20具有出光面,发光二极管20的出光面朝向导光本体的入光面12设置,发光二极管20出射的光线由导光本体的入光面12进入导光本体。
在示例性实施方式中,发光二极管20的出光面与导光本体的入光面相互平行,两者之间可以为0mm间隙。在一些可能的实现方式中,可以根据产品的实际情况设置发光二极管20的出光面与导光本体的入光面之间的相对位置关系,本公开实施例在此不做限定。
在示例性实施方式中,如图12所示,导光本体的入光面上设置有至少一个向导光本体的出光面凹陷的凹槽,与该凹槽邻近的发光二极管20设置在凹槽内。
在示例性实施方式中,一个凹槽内可以容纳至少一个发光二极管20。
本公开实施例还提供了一种显示模组,如图15所示,显示模组包括前述实施例的任意一种或多种光源模组和显示面板40。在示例性实施方式中,发光二极管20发出的光线,经导光本体的出光面11射出后变成高均匀性的面 光源。导光本体朝向显示面板40的一面为出光面,从导光本体的出光面11出射的均匀光线会进入显示面板40的侧面,显示面板40在该侧面具有相应的取光结构,并最终将该侧面光线转变为可用于显示面板40显示的面光源。
在示例性实施例中,显示面板40和导光结构10之间可以存在间隙,或者显示面板40和导光结构10之间可以为0mm间隙。
在示例性实施例中,该显示模组可以为反射式液晶显示模组。
反射式显示装置能够利用周围的环境光作为照明源以显示画面,与传统的透射式显示装置相比,反射式显示装置具有光线柔和、省电、在户外具有更好的显示效果等优点,因此越来越受到关注。通过本公开实施例的导光结构,可以为反射式显示装置提供均匀的面光源以辅助显示装置进行显示,从而在环境光较弱或暗室环境下也获得较好的显示效果。
在示例性实施例中,该显示模组可以为透明液晶显示模组。
透明显示产品广泛应用于展台、家电及特殊消费品方向。透明显示产品的显示效果对于外界光线的依赖性较强,因此,辅助光源必不可少。传统的背光源由于对透明显示有遮挡效果,不再适用。因此,透明显示产品通常采用侧入式辅助光源,显示面板的一侧为入光侧,在入光侧设置光源模组,通过本公开实施例的导光结构,为透明显示产品提供均匀的面光源。
在示例性实施例中,该显示模组可以为其他任意的需要均匀面光源的显示模组。
显示模组可以包括任意一种或多种:手机、笔记本电脑、平板电脑、电视机、数码相框、车载显示器和导航仪等任何具有显示功能的产品或部件。该显示模组由于包括上述任意一种光源模组,因而可以解决同样的技术问题,并取得相同的技术效果,在此不再详述。
在一种示例性实施例中,该显示装置可以为透明显示装置。
应当理解,本公开实施例的显示装置并不仅仅局限于透明显示装置,在实际应用中,该显示装置也可以是普通的不透明显示装置。
在本公开实施例的描述中,需要理解的是,术语“中部”、“上”、“下”、“前”、 “后”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开实施例的限制。
在本公开实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开实施例中的具体含义。
虽然本公开实施例所揭露的实施方式如上,但所述的内容仅为便于理解本公开实施例而采用的实施方式,并非用以限定本公开实施例。任何本公开实施例所属领域内的技术人员,在不脱离本公开实施例所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开实施例的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (20)

  1. 一种导光结构,包括:
    导光本体,所述导光本体包括相对设置的入光面和出光面;
    设置在所述导光本体内的至少一个导光腔;
    每个所述导光腔包括靠近所述导光本体的入光面的第一端与远离所述导光本体的入光面的第二端,所述导光腔从所述第一端延伸到第二端。
  2. 根据权利要求1所述的导光结构,其中,所述导光腔内包括第一介质层,所述第一介质层的折射率小于所述导光本体的折射率。
  3. 根据权利要求2所述的导光结构,其中,所述第一介质层为在所述导光本体上镂空的条状开口。
  4. 根据权利要求3所述的导光结构,其中,所述导光腔的第二端与所述导光本体的入光面之间的距离为1毫米至3毫米,所述导光腔的第二端与所述导光本体的出光面之间的距离为0.5毫米至3毫米。
  5. 根据权利要求2所述的导光结构,其中,所述第一介质层为在所述导光本体上填充的导光材料。
  6. 根据权利要求5所述的导光结构,其中,所述导光腔从所述导光本体的入光面延伸至所述导光本体的出光面。
  7. 根据权利要求1至6任一所述的导光结构,其中,所述导光腔包括多个,所述多个导光腔分为多组导光腔,每一组导光腔包括一个位于导光本体中的中心平面;所述每一组导光腔包括位于所述中心平面一侧的n个第一导光腔,和另一侧的n个第二导光腔,n为大于或等于1的自然数;
    所述第一导光腔的第一端到相应的中心平面的距离小于所述第一导光腔的第二端到相应的中心平面的距离;所述第二导光腔的第一端到相应的中心平面的距离小于所述第二导光腔的第二端到相应的中心平面的距离;
    所述中心平面为所述导光本体内垂直于所述入光面的虚拟平面。
  8. 根据权利要求7所述的导光结构,其中,相对于所述每一组导光腔的中心平面,第i个所述第一导光腔与第i个所述第二导光腔镜像设置,i为大于或等于1且小于或等于n的自然数。
  9. 根据权利要求7所述的导光结构,其中,所述第一导光腔包括靠近所述导光本体的入光面的第一部分和远离所述导光本体的入光面的第二部分,沿垂直于所述导光本体的出光面的平面,所述第一部分和第二部分的截面形状包括以下任意一种:
    所述第一部分的截面形状为曲线条状,所述第二部分的截面形状为曲线条状;
    所述第一部分的截面形状为曲线条状,所述第二部分的截面形状为折线条状;
    所述第一部分的截面形状为曲线条状,所述第二部分的截面形状为直线条状;
    所述第一部分的截面形状为折线条状,所述第二部分的截面形状为曲线条状;
    所述第一部分的截面形状为直线条状,所述第二部分的截面形状为曲线条状。
  10. 根据权利要求9所述的导光结构,其中,沿垂直于所述导光本体的出光面的平面,所述第一部分向朝着所述导光腔的中心平面方向弯曲,所述第二部分向远离所述导光腔的中心平面方向弯曲。
  11. 根据权利要求10所述的导光结构,其中,所述第一部分的宽度为0.2毫米至1.5毫米,所述第一部分的深度为1毫米至2毫米,所述第一部分的曲率半径为2毫米至4.5毫米,沿垂直于所述导光本体的出光面的平面,在所述第一部分与所述导光本体的入光面的交界处,所述第一部分与所述导光本体的入光面之间的夹角为40°至60°;
    所述第二部分的宽度为0.2毫米至1.5毫米,所述第二部分的深度为1毫米至2毫米,所述第二部分的曲率半径为3.5毫米至4.5毫米,沿垂直于所 述导光本体的出光面的平面,在所述第二部分与第一部分的交界处,所述第二部分与所述导光本体的入光面之间的夹角为40°至60°。
  12. 根据权利要求7所述的导光结构,其中,在一组所述导光腔中,相邻两个所述第一导光腔之间的距离为0.2毫米至1毫米。
  13. 根据权利要求7所述的导光结构,其中,所述第一导光腔包括设置在所述导光本体的入光面和出光面之间的第五部分,所述第五部分均向远离所述导光腔的中心平面方向弯曲。
  14. 根据权利要求13所述的导光结构,其中,每个所述第五部分的宽度为0.3毫米至1.5毫米,每个所述第五部分的深度与所述导光结构的深度相同,每个所述第五部分的曲率半径为2毫米至5毫米,沿垂直于所述导光本体的出光面的平面,在所述第五部分与所述导光本体的入光面的交界处,所述第五部分与所述导光本体的入光面之间的夹角为40°至60°。
  15. 根据权利要求13所述的导光结构,其中,在一组所述导光腔中,沿着所述导光本体的入光面的延伸方向,相邻两个所述第五部分之间的距离为0.2毫米至1毫米。
  16. 根据权利要求1至15任一项所述的导光结构,其中,所述多个导光腔中的至少一个导光腔包括多个子导光腔,所述多个子导光腔设置在所述导光腔的第二端;
    所述子导光腔包括靠近所述导光本体的入光面的第一端和远离所述导光本体的入光面的第二端,所述子导光腔的第二端包括一个位于所述导光本体中的第二中心平面,所述第二中心平面为所述导光本体内垂直于所述入光面的虚拟平面;
    所述子导光腔的第一端与所述第二中心平面之间的距离小于所述子导光腔的第二端与所述第二中心平面之间的距离;
    所述多个导光腔和子导光腔形成树状结构。
  17. 根据权利要求1至16任一项所述的导光结构,其中,所述导光结构 还包括与出光面和入光面分别连接的第一平面、与出光面和入光面分别连接的第二平面、与出光面和入光面分别连接的第一侧面以及与出光面和入光面分别连接的第二侧面,所述第一侧面与第二侧面相对设置,所述第一平面与第二平面相对设置,所述第一侧面、第二侧面、第一平面和第二平面均设置有反射片。
  18. 一种光源模组,包括:如权利要求1至17任一所述的导光结构,还包括至少一个发光二极管,所述发光二极管的出光面朝向所述导光本体的入光面设置。
  19. 一种显示模组,包括:如权利要求18所述的光源模组和显示面板。
  20. 根据权利要求19所述的显示模组,其中,所述显示模组为反射式液晶显示模组或透明液晶显示模组。
PCT/CN2020/116548 2020-09-21 2020-09-21 导光结构、光源模组和显示模组 WO2022056918A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080002044.1A CN114829997B (zh) 2020-09-21 2020-09-21 导光结构、光源模组和显示模组
PCT/CN2020/116548 WO2022056918A1 (zh) 2020-09-21 2020-09-21 导光结构、光源模组和显示模组
US17/417,387 US11774662B2 (en) 2020-09-21 2020-09-21 Light guiding structure, light source module and display module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116548 WO2022056918A1 (zh) 2020-09-21 2020-09-21 导光结构、光源模组和显示模组

Publications (1)

Publication Number Publication Date
WO2022056918A1 true WO2022056918A1 (zh) 2022-03-24

Family

ID=80775816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116548 WO2022056918A1 (zh) 2020-09-21 2020-09-21 导光结构、光源模组和显示模组

Country Status (3)

Country Link
US (1) US11774662B2 (zh)
CN (1) CN114829997B (zh)
WO (1) WO2022056918A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967238A (zh) * 2022-07-26 2022-08-30 惠科股份有限公司 显示装置和背光模组及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761829A (zh) * 2010-01-18 2010-06-30 友达光电股份有限公司 背光模块及使用该背光模块的显示装置
US20140140095A1 (en) * 2011-07-06 2014-05-22 Sharp Kabushiki Kaisha Illumination device and display device
CN103901526A (zh) * 2012-12-28 2014-07-02 群创光电股份有限公司 导光板、背光模块及显示装置
CN109581750A (zh) * 2019-02-01 2019-04-05 京东方科技集团股份有限公司 一种背光模组及显示装置
CN210199347U (zh) * 2019-09-03 2020-03-27 扬昕科技(苏州)有限公司 导光板以及背光模块

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8729581B2 (en) * 2010-01-13 2014-05-20 Apple Inc. Light guide for LED source
TWI434392B (zh) * 2010-05-25 2014-04-11 Compal Communications Inc 具曲面光導陣列的發光二極體裝置
CN202629814U (zh) * 2012-05-31 2012-12-26 京东方科技集团股份有限公司 侧入式背光模组
US9846272B2 (en) * 2012-09-13 2017-12-19 Quarkstar Llc Illumination systems providing direct and indirect illumination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101761829A (zh) * 2010-01-18 2010-06-30 友达光电股份有限公司 背光模块及使用该背光模块的显示装置
US20140140095A1 (en) * 2011-07-06 2014-05-22 Sharp Kabushiki Kaisha Illumination device and display device
CN103901526A (zh) * 2012-12-28 2014-07-02 群创光电股份有限公司 导光板、背光模块及显示装置
CN109581750A (zh) * 2019-02-01 2019-04-05 京东方科技集团股份有限公司 一种背光模组及显示装置
CN210199347U (zh) * 2019-09-03 2020-03-27 扬昕科技(苏州)有限公司 导光板以及背光模块

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967238A (zh) * 2022-07-26 2022-08-30 惠科股份有限公司 显示装置和背光模组及其控制方法
CN114967238B (zh) * 2022-07-26 2023-01-03 惠科股份有限公司 显示装置和背光模组及其控制方法
US11774800B1 (en) 2022-07-26 2023-10-03 HKC Corporation Limited Display device, backlight module and control method

Also Published As

Publication number Publication date
CN114829997A (zh) 2022-07-29
US11774662B2 (en) 2023-10-03
CN114829997B (zh) 2023-12-12
US20220326428A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
CN101078795B (zh) 导光板及背光模组
JP5261035B2 (ja) バックライトユニットおよび液晶表示装置
TW201418628A (zh) 光源模組及其製作方法
US20110044056A1 (en) Light collector for an illumination optic
KR20070043648A (ko) 백라이트 구조
JP2006128072A (ja) 導光板及び面発光装置
US20130258708A1 (en) Backlight Module
US10775535B2 (en) Composite diffuser and ultra-thin direct type backlight module
CN105090826B (zh) 背光模组和显示装置
CN201218442Y (zh) 一种背光模块及包含该背光模块的液晶显示装置
WO2022056918A1 (zh) 导光结构、光源模组和显示模组
CN109407403B (zh) 背光模组及显示装置
US20210088711A1 (en) Wedge lightguide
CN101191851A (zh) 光学板
TW200928465A (en) Light guide plate and backlight module
US9010980B2 (en) Light guide plate and backlight module containing same
CN110428736B (zh) 一种显示装置
CN100492133C (zh) 具聚光效果的光源装置以及使用此光源装置的背光模块
US11215745B1 (en) Back light unit and display device
CN114019720B (zh) 背光模组与显示装置
CN212181074U (zh) 一种直下式背光模组及显示装置
CN211375267U (zh) 一种led反向组装的背光源及移动终端
TWI785631B (zh) 背光模組
WO2023138439A1 (zh) 背光模组和显示装置
US10795069B2 (en) Light guide plate used for a backlight module of an LCD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953776

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20953776

Country of ref document: EP

Kind code of ref document: A1