WO2022056775A1 - 甲醇制烯烃水洗水深度净化装置及方法 - Google Patents

甲醇制烯烃水洗水深度净化装置及方法 Download PDF

Info

Publication number
WO2022056775A1
WO2022056775A1 PCT/CN2020/115845 CN2020115845W WO2022056775A1 WO 2022056775 A1 WO2022056775 A1 WO 2022056775A1 CN 2020115845 W CN2020115845 W CN 2020115845W WO 2022056775 A1 WO2022056775 A1 WO 2022056775A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
valve
water
washing water
oil
Prior art date
Application number
PCT/CN2020/115845
Other languages
English (en)
French (fr)
Inventor
陈建琦
汪华林
吕文杰
雷霆
陈亮
王天翔
薛晓彬
刘冰
崔馨
桑伟迟
王劲松
封金兰
马红鹏
袁威
胡斌
纪玉杰
Original Assignee
华东理工大学
上海华畅环保设备发展有限公司
陕西延长石油延安能源化工有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东理工大学, 上海华畅环保设备发展有限公司, 陕西延长石油延安能源化工有限责任公司 filed Critical 华东理工大学
Priority to US18/026,770 priority Critical patent/US20230339785A1/en
Priority to PCT/CN2020/115845 priority patent/WO2022056775A1/zh
Publication of WO2022056775A1 publication Critical patent/WO2022056775A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/006Water distributors either inside a treatment tank or directing the water to several treatment tanks; Water treatment plants incorporating these distributors, with or without chemical or biological tanks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present disclosure belongs to the field of comprehensive treatment of environmental pollution, and relates to a deep purification device for methanol-to-olefin washing water, a purification method using the purification device, and a comprehensive recovery of waste liquid, waste gas and waste heat in the purified washing water generated during regeneration of the purification device.
  • MTO Methanol to Olefins
  • MTO Methanol to Olefins
  • the reaction is generally realized by a fluidized bed reactor, and the catalyst currently used is SAPO-34 molecular sieve.
  • SAPO-34 molecular sieve.
  • the high-temperature product gas in the reactor is passed through a three-stage cyclone to recover catalyst particles.
  • the product gas recovered by the catalyst is sent to the quench tower for cooling.
  • a small amount of catalyst fine powder with a particle size of less than 10 ⁇ m or less than 5 ⁇ m carried in the product gas is not separated, and most of it is left in the quenching water after being washed by the quenching tower, and a small amount goes to the washing tower.
  • Unreacted methanol, dimethyl ether and other organic oxygen-containing compounds and a small amount of reaction by-products such as aromatic hydrocarbons and alkanes enter the quenching tower and the water washing tower together with the reaction gas. Due to the high operating temperature of the quench tower and the short contact time between the product gas and the quench water, most of the organic oxygenates and hydrocarbons enter the wash water.
  • the washing water usually contains catalyst powder, organic oxygen-containing compounds such as methanol and dimethyl ether, and oil-like substances such as aromatic hydrocarbons and alkanes.
  • catalyst powder organic oxygen-containing compounds
  • oil-like substances such as aromatic hydrocarbons and alkanes.
  • the oil wax-like substances in the washing water are mainly heavy components such as aromatic hydrocarbons and alkanes.
  • the main forms are free oil, dispersed oil and emulsified oil.
  • the common methods for desolidification and degreasing of wastewater mainly include physical method, chemical method, physical-chemical method and biological method.
  • the physical methods mainly include gravity method, centrifugal separation method, precision filtration method, membrane separation method, etc.
  • Gravity method has poor separation accuracy and cannot remove emulsified oil in washing water; centrifugal separation method is suitable for the separation of fine oil droplets and sub-micron particles. The effect is poor; because the particle size of the MTO washing water is small and contains a small amount of oil wax, it is easy to enter the inside of the filter element pores of the precision filtration device, resulting in blockage of the pores, which is difficult to remove by online backwashing; the membrane separation method has excellent separation effect in recent years.
  • Chemical methods mainly include flocculation method, oxidation method, electrochemical method, etc.
  • the flocculation method has poor treatment effect on emulsified oil and fine particles, and the cost of treatment agents is high, and it is easy to produce secondary pollution; chemical oxidants such as ozone, Fenton reagent, etc. are used.
  • the organic matter in the wastewater can be degraded to improve the biodegradability, but the treatment cost is high.
  • Physical and chemical methods mainly include air flotation method, adsorption method, coagulation method, etc.; air flotation method needs to consume chemicals and occupies a large area; adsorption method has limited adsorption capacity of adsorbent, high cost, and difficult regeneration; coagulation method operation Simple, small footprint, but need to add coagulant, high cost.
  • the biochemical method has low cost, low investment and no secondary pollution, it occupies a large area, and the concentration of pollutants in the methanol-to-olefin wastewater is high and the organic matter is large, which will affect the normal operation of the biochemical tank.
  • Chinese patent application CN103951098A proposes to use ultrafiltration membrane to separate and purify washing water and quench water, and to recover catalyst and oil in combination with three-phase separator.
  • the application uses membrane separation technology to treat washing water, and the treatment of fine particles is relatively fine, but during the treatment of washing water with large flow and high oil content, it is easy to cause the pressure difference to rise, and the treatment efficiency is low;
  • the filter unit is a series of filter membranes. During backwashing, due to the high solid content and oil content of the concentrate, the series of filter membranes increases the pressure difference, which is not conducive to the stable and continuous operation of the large-flow treatment process.
  • Chinese patent applications CN102093153A and CN101352621A propose to use microcyclone technology to perform microcyclone separation of MTO quench water and washing water to remove catalyst particles entrained therein.
  • the microcyclone has the advantages of wide adaptability, low cost, easy maintenance, etc., but the separation efficiency of fine particles below 3 ⁇ m in the washing water is limited, and the washing water contains a large amount of oxygen-containing compounds and oil wax. Poor separation.
  • Chinese invention patent application CN104649446A discloses a liquid-solid separation method and device for MTO quench water and washing water. The method proposes to use three or more filters in parallel. Although it has a good separation effect on solid particles in water, it does not mention And whether it has the function of degreasing the washing water.
  • Chinese utility model patent CN205031975U discloses a MTO quench water and washing water purification treatment device.
  • the device adopts different forms of microporous filter elements for filtration, and realizes online cleaning and regeneration of filter elements by adding effective gas and chemical cleaning methods.
  • the backwashing process of this system is complicated and time-consuming, and at the same time, the equipment investment is large and the operating cost is high.
  • Chinese utility model patent CN204275622U discloses an MTO washing water filtration device, which is filtered through a filter element with an internal porous structure and a surface layer coated with a metal film, which can effectively improve the internal blockage of the filter element, and the filtration accuracy is high, but the maintenance of the device The cost is high and the cost is high, and the filter element needs to be chemically regenerated, which is prone to secondary pollution.
  • Chinese invention patent application CN108328761A discloses a method and a device for extending the continuous operation period of the MTO washing water process.
  • the ebullated bed separation technology is used to process the methanol to olefin washing water. It has a good separation effect, but the separation effect of the oil-wax organic matter in the washing water is general; and the oil components in the washing water are complex and different in shape. processing method, so it is difficult for a single device or technology to meet the requirements of advanced processing.
  • the present disclosure provides a novel methanol-to-olefin washing water deep purification device and method, thereby solving the problems existing in the prior art.
  • the purpose of the present invention is to provide a methanol-to-olefin washing water deep purification device, which has a long continuous operation period and excellent separation effect on catalyst particles and oil wax in the washing water.
  • Another object of the present invention is to provide a purification method using the above device.
  • the present disclosure provides a methanol-to-olefin washing water deep purification device, which includes:
  • the washing tower connected to the top outlet of the quench tower,
  • a buffer settling tank attached to the side wall of the ebullated bed separator near the top.
  • the fluidized bed separator includes multiple fluidized bed separators arranged in parallel, wherein the fluidized bed separator is provided with an inlet at the top, an outlet at the bottom, and a side wall near the top.
  • the cyclone deliquor tank, the bottom of the cyclone deliquor tank is connected to the pipeline G1, the bottom outlet of each fluidized bed separator is connected to a pipeline G3, the pipeline G3 is jointly connected to the pipeline G4, and the other end of the pipeline G4 is connected to the fiber polymer.
  • Each of the pipelines G3 is connected with a nitrogen/steam pipeline and a washing water pipeline.
  • each inlet is provided with an inlet valve
  • each outlet is provided with an outlet valve
  • each drain port is provided with a drain valve
  • each exhaust port is provided with an exhaust valve
  • a nitrogen/steam inlet valve is arranged at the connection between the nitrogen/steam pipeline and each pipeline G3
  • a backwash valve is arranged at the connection between the washing water pipeline and each pipeline G3.
  • the fluidized bed separator includes a fluidized bed separator shell, the top of the fluidized bed separator housing is provided with an inlet, the bottom is provided with an outlet, and the position near the top of the side wall is provided with a blowdown
  • the top side is provided with an exhaust port;
  • the inside of the fluidized bed separator shell is sequentially provided with a cyclone three-phase separator, a feed distributor, a particle bed, and a partition plate from top to bottom; the inside of the outlet
  • An anti-vortex device is provided, the inlet of the cyclone three-phase separator is connected to the inlet, the side surface of the cyclone three-phase separator is connected to the sewage outlet, and the upper surface of the partition plate is provided with fluid distribution. device.
  • the fiber coalescer includes a plurality of fiber coalescers arranged in parallel, the left end of the fiber coalescer is provided with an inlet, and the top and bottom of the right end of the fiber coalescer are respectively provided There are an oil phase outlet and a water phase outlet, the other end of the pipeline G4 is respectively connected to the inlet through a pipeline G5, and each oil phase outlet is connected to the pipeline G1 through a pipeline G6.
  • the fiber coalescer includes a fiber coalescer housing, the left end of the fiber coalescer housing is provided with an inlet, and the top and bottom of the right end of the fiber coalescer housing are respectively An oil phase outlet and a water phase outlet are provided, and the fiber coalescer shell is sequentially provided with an inlet rectifying distributor, an oil droplet coarse-grained coalescing module, a modified corrugated reinforced sedimentation module, and a nano-modified depth from left to right. Separate modules.
  • the device further includes an industrial computer, wherein the inlet valve, outlet valve, blowdown valve, exhaust valve, nitrogen/steam inlet valve, and backwash valve are all solenoid valves, and all pass through
  • the wire is electrically connected to the industrial computer;
  • a differential pressure sensor is also installed on the particle bed, and the differential pressure sensor is electrically connected to the industrial computer through the wire.
  • the present disclosure provides a method for deep purification of methanol-to-olefin washing water using the above device, the method comprising the following steps:
  • Step 1 Start the power supply, and set the filter pressure drop value and regeneration operation time of the fluidized bed separator on the industrial computer;
  • Step 2 Open the inlet valve and outlet valve, the device runs normally, the washing water is drawn out from the bottom of the washing tower through the centrifugal pump, enters the ebullating bed separator through the top inlet of the ebullating bed separator, and is sent to the particle bed through the feed distributor. After the particle bed is separated, the washing water is sent to the fiber coalescer from the bottom outlet after passing through the anti-vortex device.
  • the rectification distributor enters the oil droplet coarse-grained coalescence module, the modified corrugated enhanced sedimentation module and the nano-modified deep separation module in turn, so that the remaining fine emulsified oil droplets in the washing water at the outlet of the fluidized bed pass through the adhesion,
  • the oil droplets gradually move to the upper oil layer, the water droplets sink rapidly, and the clear water of the washing water is discharged from the water phase outlet and sent to the bottom reboiler of the propylene rectification column of the olefin separation device as a heat source for washing water.
  • Part of the waste heat is recovered, and after heat exchange, it is returned to the washing tower through the water washing water air cooler and the cooler, and the dirty oil is exported from the oil phase to the buffer settling tank to achieve oil-water separation.
  • Step 3 When the differential pressure sensor reaches the set filter pressure drop value, start the regeneration operation. At this time, close the inlet valve and outlet valve, open the blowdown valve, exhaust valve, backwash valve, nitrogen/steam inlet valve, and wash with water.
  • the water enters the fluidized bed separator from the outlet, and at the same time is mixed with nitrogen, and passes through the particle bed from bottom to top, so that the particle bed is in a boiling state, releasing the catalyst fine powder and oil-wax organic matter between the separation media, and cleaning and regenerating the media.
  • the separation medium and pollutants pass through the top cyclone three-phase separator, so that the medium particles are washed in the cyclone field, the medium regeneration is strengthened, and the medium particles are recovered at the same time. vent discharge; and
  • Step 4 When the set regeneration operation time is reached, close the blowdown valve, exhaust valve, backwash valve, nitrogen/steam inlet valve, open the inlet valve and outlet valve, and the device continues to operate normally, and so on.
  • the catalyst particle content of the methanol-to-olefin washing water is 100-500 mg/L
  • the average particle diameter of the solid catalyst particles is 0.5-5 ⁇ m
  • the oil content is 200-1000 mg/L.
  • the present invention combines particle bed filtration and fiber coalescence, which makes up for the problem of insufficient separation efficiency of the oil in the washing water by the original fluidized bed separator, and effectively prevents the catalyst particles in the washing water from affecting the fiber coalescer. contamination issues.
  • the comprehensive treatment of waste liquid and waste gas generated in the regeneration of the purification device and the waste heat recovery of the purified washing water is realized, so as to realize near zero emission of pollutants, near zero waste to landfill, and effective utilization of heat.
  • the present invention utilizes the effects of the particle bed separation medium in the fluidized bed separator to screen, intercept, and adsorb the particles and oil wax in the water, so that the solid content and oil content in the water gradually decrease with the depth of the filter layer;
  • the hydrophilic and hydrophobic fibers in the knotter realize physical demulsification and achieve the purpose of deep oil-water separation.
  • this method has simple equipment, low investment, low energy consumption, easy regeneration of the separation medium, and long continuous operation period.
  • the maintenance cost is low, and it can have excellent separation effect on catalyst particles and oil wax in the washing water.
  • the separation process is simple, which solves the problem that the separation equipment in the existing process is easy to block, requires frequent cleaning, and has a short equipment operation cycle. Incomplete removal of solid particles.
  • the present invention utilizes the fluidized bed method to regenerate the separation medium, and at the same time strengthens the medium regeneration effect through the cyclone shearing action of the top three-phase separator; utilizes the hydrophilic and hydrophobic fibers in the fiber coalescer to achieve water-oil separation and discharge, suitable for Purification of high oil content washing water from methanol to olefins.
  • FIG. 1 is a schematic structural diagram of a methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of the ebullated bed separation and fiber coalescence system in the methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a processing flow of a washing water purification device for discharging waste water to a sewage treatment plant according to a preferred embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an ebullated bed separator in a methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a fiber coalescer in a methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • FIG. 6 is a circuit connection diagram of the fluidized bed separator and the industrial computer in the methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • Oil trap 3-2. Air flotation tank, 3-3. Biochemical unit, 3-4. Aerated biological filter, 3-5. Sand filter unit;
  • Fluidized bed separator shell 4-2. Particle bed, 4-3. Separation plate, 4-4. Fluid distributor, 4-5. Feed distributor, 4-6. Anti-vortex 4-7. Cyclone three-phase separator;
  • Fiber coalescer shell 5-2. Inlet, 5-3. Inlet rectifier distributor, 5-4. Oil droplet coarse-grained coalescing module, 5-5. Modified corrugated reinforced sedimentation module, 5-6. Nano-modified deep separation module, 5-7. Water phase outlet, 5-8. Oil phase outlet.
  • the inventor of the present application has developed the ebullated bed separation technology by studying the movement of fine particles on the microscopic scale, the regulation of arrangement structure, the law of particle aggregation and the regulation of the capture mechanism of particles to the microdispersed phase, using the collision, adsorption and separation of separation media
  • the high-precision interception of the microchannel formed by the medium can effectively remove the fine particles and some oily organic substances in the washing water, and the microchannel separation is different from the membrane separation.
  • To avoid the blockage of pollutants; and to develop the fiber coalescence technology by studying the liquid-liquid-solid interface coalescence kinetics, the regulation of fiber pore flow structure, and the demulsification and oil removal mechanism of the hydrophilic/hydrophobic fiber combination reinforced structure.
  • the deep demulsification of the knot module can effectively remove the remaining nano-micron oil organic matter in the washing water, and the fiber coalescer can allow the penetration of trace suspended solids; the combined process of the two separation technologies of ebullated bed separation and fiber coalescence is expected to It effectively solves the problem of deep degreasing and desolidification of the existing methanol to olefin wastewater.
  • a methanol-to-olefin water washing deep purification device which includes a quenching tower, the top outlet of the quenching tower is connected to the water washing tower, and the bottom of the water washing tower is connected to the top of the ebullated bed separation system through a centrifugal pump, and the ebullated bed
  • the bottom of the separation system is connected to the fiber coalescing system, and the position of the side wall of the fluidized bed separation system near the top is also connected to the buffer sedimentation tank.
  • the fluidized bed separation system includes multiple fluidized bed separators arranged in parallel, the top of the fluidized bed separator is provided with an inlet, the bottom of the fluidized bed separator is provided with an outlet, and the position of the sidewall of the fluidized bed separator near the top is provided with a
  • the sewage outlet and the exhaust port, the bottom of the washing tower is connected to each inlet through a centrifugal pump, each sewage outlet is connected to the pipeline G1 and then connected to the buffer settling tank, and each exhaust port is connected to the pipeline G2 and then connected to a swirl deliquoring tank.
  • the bottom of the cyclone deliquor tank is also connected with pipeline G1, the bottom outlet of each fluidized bed separator is connected with pipeline G3, pipeline G3 is jointly connected with pipeline G4, and the other end of pipeline G4 is connected with the fiber coalescing system. All are connected with nitrogen/steam piping and washing water piping.
  • each inlet is provided with an inlet valve
  • each outlet is provided with an outlet valve
  • each blowdown port is provided with a blowdown valve
  • each blowout port is provided with a blowdown valve
  • nitrogen/steam A nitrogen/steam inlet valve is arranged at the connection between the pipeline and each pipeline G3
  • a backwash valve is arranged at the connection between the washing water pipeline and each pipeline G3.
  • the ebullated bed separator includes a ebullated bed separator shell, an inlet is provided at the top of the ebullated bed separator shell, an outlet is provided at the bottom of the ebullated bed separator shell, and a side wall of the ebullated bed separator shell near the top is provided with an outlet.
  • a sewage outlet at the position, an exhaust port is arranged on one side of the top of the fluidized bed separator shell, and a cyclone three-phase separator, feed distributor, particle bed,
  • the partition plate is provided with an anti-vortex device inside the outlet, the inlet of the cyclone three-phase separator is connected to the inlet, the side surface of the cyclone three-phase separator is connected to the sewage outlet, and the upper surface of the partition plate is provided with a fluid distributor.
  • the fiber coalescing system includes a plurality of fiber coalescers arranged in parallel, the left end of the fiber coalescer is provided with an inlet, the top and bottom of the right end of the fiber coalescer are respectively provided with an oil phase outlet and a water phase outlet, and the other end of the pipeline G4 passes through
  • the pipelines G5 are respectively connected to the inlets, and each oil phase outlet is connected to the pipeline G1 through the pipeline G6.
  • the fiber coalescer includes a fiber coalescer housing, the left end of the fiber coalescer housing is provided with an inlet, and the top and bottom of the right end of the fiber coalescer housing are respectively provided with an oil phase outlet and a water phase outlet, From left to right, the shell of the fiber coalescer is provided with an inlet rectifying distributor, a coarse-grained oil droplet coalescing module, a modified corrugated reinforced sedimentation module, and a nano-modified deep separation module.
  • the device further includes an industrial computer, wherein the inlet valve, outlet valve, blowdown valve, exhaust valve, nitrogen/steam inlet valve, and backwash valve are all solenoid valves, and the inlet valve, outlet valve, blowdown valve, and blowdown valve are all solenoid valves.
  • the valve, exhaust valve, nitrogen/steam inlet valve, and backwash valve are all electrically connected to the industrial computer through wires, and a differential pressure sensor is also installed on the particle bed, which is electrically connected to the industrial computer through wires.
  • a method for deep purification of methanol-to-olefin water washing water comprising the following steps:
  • Step 1 Start the power supply, and set the filter pressure drop value and regeneration operation time of the fluidized bed separator on the industrial computer;
  • Step 2 Open the inlet valve and outlet valve, the device runs normally, the washing water is drawn out from the bottom of the washing tower through the centrifugal pump, enters the ebullating bed separator through the top inlet of the ebullating bed separator, and is sent to the particle bed through the feed distributor. After the particle bed is separated, the washing water is sent to the fiber coalescer from the bottom outlet after passing through the anti-vortex device.
  • the rectification distributor enters into the oil droplet coarse-grained coalescence module, the modified corrugated enhanced sedimentation module and the nano-modified deep separation module in turn, so that the remaining fine emulsified oil droplets in the washing water at the outlet of the fluidized bed pass through the adhesion and collision on the hydrophilic and hydrophobic fibers.
  • the oil droplets gradually move to the upper oil layer, the water droplets sink rapidly, and the washing water clear liquid is discharged from the water phase outlet and sent to the bottom reboiler of the propylene rectification tower of the olefin separation device as a heat source for washing water.
  • Step 3 When the differential pressure sensor reaches the set filter pressure drop value, start the regeneration operation. At this time, close the inlet valve and outlet valve, open the blowdown valve, exhaust valve, backwash valve, nitrogen/steam inlet valve, and wash with water.
  • the water enters the fluidized bed separator from the outlet, and at the same time is mixed with nitrogen, and passes through the particle bed from bottom to top, so that the particle bed is in a boiling state, releasing the catalyst fine powder and oil-wax organic matter between the separation media, and cleaning and regenerating the media.
  • the separation medium and pollutants pass through the top cyclone three-phase separator, so that the medium particles are washed in the cyclone field, the medium regeneration is strengthened, and the medium particles are recovered at the same time. exhaust outlet;
  • Step 4 When the set regeneration operation time is reached, close the blowdown valve, exhaust valve, backwash valve, nitrogen/steam inlet valve, open the inlet valve and outlet valve, and the device continues to operate normally, and so on.
  • the catalyst particle content of the methanol-to-olefin washing water is 100-500 mg/L
  • the average particle diameter of the solid catalyst particles is 0.5-5 ⁇ m
  • the oil content is 200-1000 mg/L.
  • FIG. 1 is a schematic structural diagram of a methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • the device includes a quenching tower 1-1, the top outlet of the quenching tower 1-1 is connected to a water washing tower 1-2, and the bottom of the water washing tower 1-2 is connected to the top of the fluidized bed separator 1-3 through a centrifugal pump, boiling
  • the bottom of the bed separator 1-3 is connected to the fiber coalescer 1-4, the position of the side wall of the fluidized bed separator 1-3 near the top is also connected to the buffer sedimentation tank 1-5, and the bottom of the buffer sedimentation tank 1-5 is connected to the pressure through a centrifugal pump.
  • Filter 1-11 wherein the product gas enters from the inlet of the quenching tower 1-1, and the quenched water is discharged from the outlet of the quenching tower 1-1 through a centrifugal pump; the waste heat generated by the fiber coalescer 1-4 is recovered and returned to the washing tower 1-2 ; The top product of the water washing tower 1-2 goes to olefin separation; the top product of the buffer settling tank 1-5 and the fiber coalescer 1-4 is sent to remove the dirty oil for refining; the catalyst obtained by the filter press 1-11 is recovered.
  • FIG. 2 is a schematic structural diagram of the ebullated bed separation and fiber coalescence system in the methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • the ebullated bed separation system includes multiple (m units in total, m greater than or equal to 2) ebullated bed separators 1-3 arranged in parallel, and the top of the ebullated bed separators 1-3 is provided with an inlet, The bottom of 1-3 is provided with an outlet, and the position near the top of the side wall of the fluidized bed separator 1-3 is provided with a sewage outlet and an exhaust outlet.
  • the bottom of the washing tower is connected to each inlet through a centrifugal pump, and each sewage outlet is connected to the pipeline.
  • each exhaust port is connected to pipeline G2 and then connected to cyclone dehydration tanks 1-6.
  • the bottom of cyclone dehydration tanks 1-6 is also connected to pipeline G1.
  • Each fluidized bed separator The bottom outlet of 1-3 is connected with pipeline G3, pipeline G3 is connected with pipeline G4, the other end of pipeline G4 is connected with fiber coalescing system, and each pipeline G3 is connected with nitrogen/steam pipeline 1-7 and washing water pipeline 1- 8; wherein, each inlet is provided with an inlet valve 2-1, each outlet is provided with an outlet valve 2-2, each sewage outlet is provided with a sewage valve 2-3, and each exhaust port is provided with There are exhaust valves 2-4, nitrogen/steam inlet valves 2-5 are provided at the connections between nitrogen/steam pipes 1-7 and each pipe G3, and the connections between washing water pipes 1-8 and each pipe G3 are provided. There are backwash valves 2-6;
  • the fiber coalescing system includes a plurality of (n in total, n greater than or equal to 2) fiber coalescers 1-4 arranged in parallel, the left end of the fiber coalescers 1-4 is provided with an inlet, and the top and bottom of the right end of the fiber coalescer are respectively The oil phase outlet and the water phase outlet are provided, the other end of the pipeline G4 is respectively connected to the inlet through the pipeline G5, and each oil phase outlet is connected to the pipeline G1 through the pipeline G6;
  • the washing water stock solution enters through the inlet valve 2-1, the nitrogen/steam enters through the nitrogen/steam inlet valve 2-5, the washing water enters through the backwash valve 2-6, and the mixed waste gas at the top of the swirl deliquoring tank 1-6 goes out.
  • Torch, washing water and clear liquid at the bottom of fiber coalescers 1-4 are returned to the tower, and the catalyst slurry at the bottom of buffer sedimentation tanks 1-5 is pressure filtered, and the oily organic matter on the side wall is refined.
  • FIG. 3 is a schematic diagram of a processing flow of a washing water purification device for discharging waste water to a sewage treatment plant according to a preferred embodiment of the present disclosure. As shown in Figure 3, the average flow of wastewater discharged from the washing water purification device to the sewage treatment plant is 3t/h.
  • the wastewater from the washing water purification device is first sent to the grease trap 3-1, and the suspended solids, oil and water in the wastewater are used to The suspended solids and oil in the wastewater are initially separated with different specific gravity; the wastewater treated by the oil separator 3-1 is sent to the air flotation tank 3-2, and the suspended solid flocs and small oil droplets in the wastewater are further flocculated and grown, and mixed with The bubbles released by the dissolved air and water combine to form large flocs that rise to the water surface under the action of buoyancy and rising water, thereby further separating oil and solids in the wastewater; Microbial degradation removes COD (chemical oxygen demand), ammonia nitrogen and grease, etc.
  • COD chemical oxygen demand
  • ammonia nitrogen and grease etc.
  • the fluidized bed separator includes a fluidized bed separator shell 4-1, the top of the fluidized bed separator housing 4-1 is provided with an inlet 1, the bottom is provided with an outlet 2, and a side wall near the top is provided with a The sewage outlet 3, the top side is provided with an exhaust port 4, and the interior is sequentially provided with a cyclone three-phase separator 4-7, a feed distributor 4-5, a particle bed 4-2, and a partition plate 4 from top to bottom.
  • FIG. 5 is a schematic structural diagram of a fiber coalescer in a methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • the fiber coalescer includes a fiber coalescer housing 5-1, the left end of the fiber coalescer housing 5-1 is provided with an inlet 5-2, and the top and bottom of the right end are respectively provided with an oil phase outlet 5 -8 and the water phase outlet 5-7, the fiber coalescer shell 5-1 is sequentially provided with an inlet rectifying distributor 5-3, an oil droplet coarse-grained coalescing module 5-4, and a modified corrugated reinforcement from left to right.
  • FIG. 6 is a circuit connection diagram of the fluidized bed separator and the industrial computer in the methanol-to-olefin water washing deep purification device according to a preferred embodiment of the present disclosure.
  • the inlet valve 2-1, outlet valve 2-2, blowdown valve 2-3, exhaust valve 2-4, nitrogen/steam inlet valve 2-5, and backwash valve 2-6 are all solenoid valves , and are all electrically connected to the industrial computer 1-9 through wires
  • a differential pressure sensor 1-10 is also installed on the particle bed, and the differential pressure sensor 1-10 is electrically connected to the industrial computer 1-9 through wires.
  • the working principle of the methanol-to-olefin washing water deep purification device of the present invention is as follows:
  • the inlet valve 2-1 and the outlet valve 2-2 are opened, the blowdown valve 2-3, the exhaust valve 2-4, the nitrogen/steam inlet valve 2-5 and the backwash valve 2-6 are closed, and the water is washed with water.
  • the centrifugal pump is pumped out from the bottom of the washing tower 1-2, enters the ebullated bed separator 1-3 from the top inlet 1 of the ebullated bed separator 1-3, passes through the particle bed from top to bottom, and filters the methanol-to-olefin washing water.
  • the bottom outlet 2 discharges the material
  • the preliminary purified washing water is sent to multiple parallel fiber coalescers 1-4 for secondary deep purification, through the fiber coalescer 1-4 4
  • the internal hydrophilic and hydrophobic fibers physically break the water phase after the ebullated bed purification to realize oil-water separation, and the washing water clear liquid is discharged from the water phase outlet 5-7 at the bottom of the fiber coalescer and sent to the bottom of the propylene rectification tower of the olefin separation unit.
  • the reboiler is used as a heat source to recover part of the waste heat of the washing water. After heat exchange, it is returned to the washing tower through the washing water air cooler and the cooler.
  • the upper oil phase of the buffer sedimentation tanks 1-5 is sent to the sewage oil refining system for recycling, and the lower catalyst slurry is sent to The filter press unit performs filter press treatment to achieve catalyst recovery, so as to achieve near-zero landfill of waste.
  • the waste water containing trace oil and solids produced by the filter press unit is discharged to the sewage treatment plant to remove the organic matter and suspended solids in the waste water.
  • the water up to the standard is discharged to the environment or reused, and the mixed waste gas is discharged from the exhaust port 4, and the water in it is removed by the swirl deliquor tank 1-6 and sent to the torch unit. Gas organic matter to achieve near-zero emissions of pollutants.
  • the fiber coalescer runs continuously, and the slop oil is also sent to the buffer settling tank 1-5 through the top oil phase outlet 5-8.
  • the working principle of the fluidized bed separator of the present invention is as follows:
  • the washing water is drawn out from the bottom of the washing tower 1-2 by the centrifugal pump, enters the ebullated bed separator 1-3 from the top inlet 1 of the ebullated bed separator 1-3, and is sent to the particle bed through the feed distributor 4-5.
  • the washing water passes through the fluid distributor 4-4 on the partition plate 4-3, and is sent to the fiber coalescer 1-4 from the bottom outlet after passing through the anti-vortex device 4-6 ;
  • the washing water enters the fluidized bed separators 1-3 from outlet 2, and nitrogen is mixed in at the same time, and passes through the particle bed from bottom to top to make the bed boil, releasing the catalyst fine powder and oil between the separation media.
  • Waxy organic matter cleans and regenerates the medium, contains the separation medium and pollutants through the top cyclone three-phase separator 4-7, washes the medium particles in the cyclone field, strengthens the medium regeneration, and at the same time recovers the medium particles, and the pollutants follow the liquid
  • the phase is discharged from the sewage outlet 3 on the side of the equipment, and the nitrogen is discharged from the exhaust port 4 on the top.
  • the fluidized bed separator of the present invention is equipped with an industrial computer, and the pressure difference value (filtering pressure drop) is set on the industrial computer.
  • the filtering pressure drop reaches the set value, it can be automatically switched to the regeneration state, and the separation medium can be cleaned and regenerated;
  • the industrial computer can make the fluidized bed separator perform washing water filtration and effective regeneration of the separation medium under the condition of unmanned control.
  • the industrial computer adopts Siemens S7-300 industrial computer, and its control interface is shown in Figure 6. The function is to control the inlet valve 2-1, outlet valve 2-2, blowdown valve 2-3, exhaust valve 2-4, nitrogen/steam inlet valve 2-5, backwash valve 2- 6 switches to switch different states to achieve the purpose of automatic control.
  • the logic performs the on-off operation of the six main valves to achieve the purpose of switching the fluidized bed filtration operating state and the backwashing state online.
  • the inlet valve 2-1 and the outlet valve 2-2 are open; when the filter pressure drop reaches the set value, the equipment switches to the backwash operation, specifically the inlet valve 2-1 And the outlet valve 2-2 is closed in sequence, then the blowdown valve 2-3 and the exhaust valve 2-4 are opened at the same time, the backwash valve 2-6 and the nitrogen/steam inlet valve 2-5 are opened at the same time, and the washing water enters from the outlet 2.
  • Nitrogen is mixed into the fluidized bed separator at the same time, and passes through the particle bed layer from bottom to top to carry out the regeneration operation of the equipment separation medium; when the regeneration operation time reaches the set value, the backwash valve 2-6 and the nitrogen/steam inlet valve 2- 5 are closed at the same time, the sewage valve 2-3 and the exhaust valve 2-4 are closed at the same time, and then the outlet valve 2-2 and the inlet valve 2-1 are opened in sequence, and the normal filtration operation of the fluidized bed separator is carried out.
  • the filter pressure drop of the present invention After reaching the set value of 0.3MPa, the equipment switches to backwash operation.
  • the cyclone three-phase separators 4-7 at the top of the ebullated bed separator provide cyclone shearing action during the regeneration of the ebullated bed separator to enhance the regeneration effect of the separation medium and at the same time realize the recovery of medium particles; the separation medium inside the ebullated bed separator
  • the use of anthracite, carbon ball and other filter media for degreasing and solids removal has good adsorption and retention effects on catalyst particles, free oil and dispersed oil in the washing water.
  • the working principle of the fiber coalescer of the present invention is as follows:
  • the washing water enters the fiber coalescer through the fiber coalescer inlet 5-2, and then enters the oil droplet coarse-grained coalescing module 5-4 and the corrugated strengthening sedimentation module 5 in turn through the inlet rectifying distributor 5-3.
  • -5 and nano-modified deep separation module 5-6 make the remaining fine emulsified oil droplets in the washing water at the outlet of the fluidized bed go through the process of adhesion, collision, growth and separation on the hydrophilic and hydrophobic fibers, and the oil droplets gradually move to the upper oil layer,
  • the water droplets sink quickly, and the clear liquid of the washing water is discharged from the water phase outlet 5-7 and returned to the washing water circulation heat exchange system.
  • the fiber coalescer shell 5-1 of the fiber coalescer of the present invention is a horizontal circular tank or a horizontal cuboid tank, the water phase outlet 5-7 is continuously discharged, and the oil phase outlet 5-8 is intermittently discharged Or small flow and continuous discharge;
  • the oil droplet coarse-grained coalescence module is composed of a packed bed composed of lipophilic solid substances on the surface, and fine oil droplets in water will adhere to the surface of the packed bed and gradually accumulate into large The oil droplets can be separated to accelerate the separation;
  • the modified corrugated reinforced sedimentation module adopts the corrugated baffle with lipophilic surface, the oil droplets gather at the peak of the baffle and rise to the oil layer, and the water droplets gather in the baffle concave and coalesce and grow up.
  • Nano-modified deep separation modules 5-6 are the core units of the fiber coalescer, using organic polymer materials, mainly nylon, glass, Teflon or metal velvet coalescing modules, through the ⁇ form The preparation and combination are carried out to quickly and efficiently separate the emulsified oil in the washing water.
  • the content of suspended solids in the washing water is reduced to below 20 mg/L, and the oil content is reduced to below 150 mg/L.
  • the oil content drops below 30mg/L.
  • the device of the invention is used to deeply purify the washing water containing solid catalyst and oil wax, so as to achieve the purpose of effectively separating particulate matter and oil wax in the washing water , the test parameters and effects are as follows:
  • the methanol-to-olefin washing water is a liquid-solid two-phase mixture.
  • the water contains solid catalyst particles and oil.
  • the main components of the oil are high-concentration refractory aromatic hydrocarbons.
  • the average particle size is 2 ⁇ m, and the oil content is 200-1000 mg/L.
  • the heat loss of 1 ton of wastewater is about 270 MJ, and if the external drainage washing water is 160 t/h, the daily heat loss is 1,036,800 MJ, equivalent to 35.4 tons of standard coal per day. Therefore, the currently adopted measures are relatively poor in terms of safety, environmental protection and economy.
  • the washing water purification device is a series device of a fluidized bed separator and a fiber coalescer.
  • the fluidized bed separator has a diameter of 300mm and a height of 1500mm.
  • a cyclone three-phase separator is installed on the top.
  • the separation medium is anthracite particles with a particle size of 0.5-1mm.
  • Filter material the bed height is 1300mm
  • the processing capacity of a single filter is 1m 3 /h
  • the fiber coalescer is a horizontal container
  • the equipment inlet, water outlet and oil outlet are equipped with sight glasses
  • the oil phase outlet is intermittently drained. Or the oil is discharged continuously at a small flow rate, the water phase outlet is continuously discharged, and the bottom of the coalescing degreaser is equipped with a sewage outlet.
  • the methanol-to-olefin washing water containing catalyst and oil wax is pumped to the ebullated bed separator to remove catalyst particles, free oil and dispersed oil, and then enters the fiber coalescer to deeply remove the emulsified oil in the washing water; ebullated bed separation After the pressure difference rises to 0.3MPa, the backwashing operation is switched; the fluidized bed regeneration liquid is sent to the buffer settling tank to stand for oil-water separation, and the upper oil phase and the sewage oil outside the coalescer are sent to the sewage oil refining system.
  • the lower layer catalyst slurry is sent to the filter press unit for filter press treatment to realize the recovery of the catalyst, and the waste water generated by the filter press unit is sent to the sewage treatment plant.
  • the solid content of washing water is reduced from 100 to 500 mg/L to below 20 mg/L, and the oil content is reduced from 200 to 1000 mg/L to below 30 mg/L.
  • 1000 hours of continuous The initial separation effect can still be maintained after 50 backwashing and regeneration operations of the fluidized bed separator, and the separation efficiency exceeds 90%.
  • microcyclone separation, metal membrane, ceramic membrane and bag filtration have been gradually applied in the purification process of methanol to olefin wastewater.
  • the inventor of the present application through domestic field research, found that several methods all have certain deficiencies, resulting in the purification of methanol-to-olefin wastewater, which has always been a major problem that is difficult to solve in the MTO industry.
  • MTO devices more than 10 sets of MTO devices are used for microcyclone and metal membrane, and these two devices are generally operated in series.
  • the microcyclone is used as the primary separation, and the metal membrane is used for deep purification.
  • the separation accuracy of the microcyclone separator is low, and it only has a good separation effect on particles larger than 3 microns, and it is difficult to separate particles smaller than 3 microns. Due to the problem of membrane fouling in metal membrane microfiltration, the membrane flux will be reduced to below 20% of normal within one month of operation, making it difficult to operate normally. Ceramic membrane and bag filter are added in some MTO plant wastewater and technical transformation. Ceramic membranes are effective in filtering fine particles in methanol-to-olefin wastewater, but the equipment cost is high, the pressure across the membrane is high, and the problem of membrane channel blockage will gradually appear after more than one year of operation. Currently, there are 3 sets of MTO wastewater purification used. Due to the low separation accuracy and short life of the bag filter method, the treatment efficiency will be significantly reduced after one year of operation, and it needs to be solved by replacing the filter bag. Only one MTO factory uses it.
  • the ebullated bed separation technology is second only to ceramic membranes in separation efficiency.
  • the filtration channels are formed by the accumulation of loose filter material particles.
  • the filter material particle bed has a large porosity, and the filtered particles can be accommodated through the gaps between the filter materials, so its dirt holding capacity is large, and the backwash frequency is significantly lower than that of surface filtration methods such as metal membranes and ceramic membranes.
  • the pollutants retained in the pore channels can be easily released, and due to the addition of cyclone to strengthen the washing, the pollutants can be easily separated from the surface of the filter material, so the filter material can be regenerated.
  • the effect is better than the traditional depth filter device.
  • it is superior to its traditional anthracite, carbon balls, etc. whose filter materials are low in price, so its equipment investment and maintenance costs are very low.
  • Fluidized bed separation technology is superior to other technologies in terms of equipment investment, loading and unloading costs, operating costs, sewage discharge frequency, and separation energy consumption. Its separation efficiency is second only to that of ceramic membranes and is sufficient for the separation of fine catalyst particles in MTO water systems. But it occupies more space than other technologies.
  • the comprehensive evaluation shows that the fluidized bed separation technology has excellent performance in the purification of MTO wastewater, so it is more suitable for the industrial treatment of MTO wastewater.
  • Fiber coalescence technology has also been successfully applied in the treatment of highly emulsified oily wastewater on the platform of the 100-billion-ton gas field platform in the South China Sea. Its compact structure, strong impact resistance, and the elimination of the use of demulsifiers in the crude oil removal process have obvious technical and economic advantages. Specifically, the separation is rapid and efficient; the pressure drop and energy consumption are small (the pressure drop is less than 0.3MPa); the modular design can flexibly control the floor space according to the actual situation; The comparison of emulsion degreasing technology is shown in Table 2 below.
  • the invention creatively uses the particle bed filtration method and the fiber coalescence method in combination to efficiently separate the catalyst fine powder and oil in the methanol to olefin washing water, and makes up for the insufficient separation efficiency of the oil in the washing water by the original fluidized bed separator. At the same time, the pollution problem of the catalyst particles in the washing water to the inner parts of the fiber coalescer is effectively avoided, so as to achieve the purpose of deep purification.
  • the internal separation medium of the fluidized bed separator uses anthracite, carbon balls and other degreasing and solids removal filter materials to effectively intercept and adsorb catalyst fine powder, free oil and dispersed oil in the washing water; the emulsified oil in the subsequent washing water is passed through the The adhesion, collision, growth and separation process on the hydrophilic and hydrophobic fibers woven in the form of ⁇ in the fiber coalescer realizes physical demulsification, and then removes the emulsified oil in the washing water.
  • the invention can realize the deep removal of nano-micron particles and oil wax in the washing water, the recycling of water, the further refining of slop oil, the concentration and recovery of catalyst, and the harmlessness of regenerated waste gas by the industrial side-line pilot test and industrial operation of the present invention.
  • the concentration of suspended solids in the effluent is reduced to below 20mg/L, and the oil content is reduced to below 30mg/L, which can make the heat exchanger and air cooler of the washing water system.
  • the cleaning frequency is reduced by more than 80%, and the blockage of the washing tower and the stripping tower is effectively reduced.
  • the original 160t/h washing water discharge can be cancelled.
  • the washing water as the heat source of the propylene rectification tower bottom reboiler of the olefin separation unit, part of the waste heat recovery is calculated, and the washing water is discharged at 90 °C, and the waste heat is recovered and cooled to 65
  • the heat recovery per ton of wastewater is about 100 MJ
  • the external drainage washing water is 160 t/h, which saves 384,000 MJ of heat per day, equivalent to 13.1 tons of standard coal per day.
  • the oily and solid washing water is a high-concentration refractory organic wastewater. It was originally discharged to the sewage treatment plant at a flow rate of 160t/h, which increases the cost of sewage treatment.
  • the wastewater discharged to the sewage treatment plant is mainly produced by the filter press unit. Solid waste water, the average discharge is 3t/h.
  • the cost of water treatment per ton is 10 yuan, which can save 12.56 million yuan/year of sewage treatment costs for the original external drainage and washing water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Cyclones (AREA)

Abstract

本公开涉及甲醇制烯烃水洗水深度净化装置及方法,提供了一种甲醇制烯烃水洗水深度净化装置,它包括:急冷塔(1-1),与急冷塔(1-1)顶部出口连接的水洗塔(1-2),其顶部与水洗塔(1-2)底部连接的沸腾床分离器(1-3),与沸腾床分离器(1-3)底部连接的纤维聚结器(1-4),以及与沸腾床分离器(1-3)侧壁靠近顶部的位置连接的缓冲沉降罐(1-5)。还提供了一种甲醇制烯烃水洗水深度净化方法。

Description

甲醇制烯烃水洗水深度净化装置及方法 技术领域
本公开属于环境污染综合治理领域,涉及一种甲醇制烯烃水洗水深度净化装置,和采用上述净化装置的净化方法,以及净化装置再生中产生的废液、废气及净化后水洗水中余热回收的综合处理方法。
背景技术
甲醇制烯烃,简称MTO(Methanol to Olefins),是指以甲醇作为原料,通过催化反应制备低碳烯烃的过程。该反应一般通过流化床反应器实现,现用的催化剂为SAPO-34分子筛。反应器中的高温产品气经三级旋风分离器回收催化剂颗粒。经催化剂回收的产品气再送往急冷塔进行降温。受旋风分离器精度的限制,产品气中携带的少量粒径小于10μm或小于5μm的催化剂细粉未被分离,经急冷塔洗涤大部分留在急冷水中,少量去往水洗塔,同时,还有未反应的甲醇、二甲醚等有机含氧化合物及少量芳烃和烷烃等反应副产物随反应气一同进入急冷塔和水洗塔。由于急冷塔操作温度较高,且产品气与急冷水接触时间短,因此大部分的有机含氧化合物及烃类物质进入水洗水中。
因此,通常水洗水中含有催化剂粉末和甲醇、二甲醚等有机含氧化合物与芳烃、烷烃等类油蜡状物质,为保证水系统正常运行,需要有效脱除水洗水中的催化剂和油蜡类物质。其中,水洗水中的油蜡状物质主要为芳烃和烷烃等重组分,根据油滴尺寸的大小,主要存在形式有游离油、分散油和乳化油。
目前常见的废水脱固除油方法主要有物理法、化学法、物理化学法和生物法。其中物理法主要有重力法、离心分离法、精密过滤法、膜分离法等,重力法分离精度差,且无法去除水洗水中的乳化油;离心分离法对于细小油滴和亚微米级的颗粒分离效果较差;由于MTO水洗水中颗粒粒径小,并含有少量油蜡,易进入精密过滤装置的滤芯孔道内部,造成孔道堵塞,难以通过在线反冲洗去除;膜分离法由于其分离效果优良近年来虽得到广泛应用,但由于MTO水洗水固含量和油含量较高,存在易堵塞、维护代价大及成本高等缺点。化学法主要有絮凝法、氧化法、电化学法等,絮凝法对乳化油及细小颗粒物的处理效果较差,且处理药剂成本高、易产生二次污染;用化学氧化剂如臭氧、Fenton试剂等可降解废水中 的有机物以提高可生化性,但处理成本较高;电絮凝法需消耗大量盐类辅助药剂且耗电量高,运行费用较高。物理化学法主要有气浮法、吸附法、混凝法等;气浮法需消耗药剂且占地面积较大;吸附法的吸附剂吸附容量有限,且成本高,再生困难;混凝法操作简单,占地面积小,但需添加混凝剂,成本高。生化法虽成本低,投资少,无二次污染,但占地面积大,且甲醇制烯烃废水中污染物浓度较高,有机物成分多,会影响生化池的正常运行。
中国专利申请CN103951098A提出对水洗水和急冷水利用超滤膜进行分离净化,并结合三相分离器回收催化剂及油。该申请利用了膜分离技术对水洗水进行处理,对微细颗粒物的处理较为精细,但在大流量的含油量很高的水洗水处理过程中极易引起压差升高,处理效率低;且其过滤单元为滤膜的串联,在反冲洗时由于浓液固含率及油含量很高,串联的滤膜加大了压差的递升,不利于大流量处理过程的稳定连续运行。
中国专利申请CN102093153A及CN101352621A提出利用微旋流技术对MTO急冷水和水洗水进行微旋流分离,以去除其中夹带的催化剂颗粒。微旋流分离器具有适应性广、造价低廉、易维护等优点,但对水洗水中3μm以下的微细颗粒物分离效率有限,加之水洗水中含有大量含氧化合物及油蜡,微旋流器对油分的分离效果不佳。
中国发明专利申请CN104649446A公开了一种MTO急冷水和水洗水液固分离方法和装置,该方法提出利用三个以上并联的过滤器,虽对水中的固体颗粒物有较好的分离效果,但未提及是否具备对水洗水进行除油处理的功能。
中国实用新型专利CN205031975U公开了一种MTO急冷水与水洗水净化处理装置,该装置采用不同形式的微孔过滤元件过滤,通过增加有效的气体和化学清洗方法,实现对过滤元件的在线清洗再生。但该系统反冲洗过程复杂、时间长,同时设备投资大,运行费用高。
中国实用新型专利CN204275622U公开了一种MTO水洗水过滤装置,通过内部多孔结构且表层涂有金属膜的过滤元件进行过滤,可有效改善过滤元件的内部堵塞问题,且过滤精度较高,但装置维护代价大及成本较高,且过滤元件需化学再生,易产生二次污染。
中国发明专利申请CN108328761A公开了MTO水洗水工艺连续运行周期延长的方法及装置,采用沸腾床分离技术处理甲醇制烯烃水洗水,该方法运行周期长, 成本及能耗低,对水洗水中的催化剂颗粒有较好的分离效果,但对水洗水中的油蜡状有机物分离效果一般;且水洗水中油类组分复杂,形态不同,游离油和分散油通过沸腾床可以分离,但是乳化油的分离需要深度处理方法,因此单一设备或技术很难达到深度处理要求。
综上,由于传统物理法因处理成本高或处理效果差,化学法因需消耗药剂造成二次污染、处理后水回用困难,物理化学法需消耗药剂且运行成本高,生化法处理速度慢且活性污泥适应性差,都难以满足甲醇制烯烃高浓含油含固废水处理的需求,因此亟需一种简单有效,解决现有方法分离效果不佳的处理工艺。
发明内容
本公开提供了一种新颖的甲醇制烯烃水洗水深度净化装置及方法,从而解决了现有技术中存在的问题。
本发明的目的是提供一种甲醇制烯烃水洗水深度净化装置,其连续运行周期长,对水洗水中的催化剂颗粒和油蜡具有优良的分离效果。
本发明的另一个目的是提供一种采用上述装置的净化方法。
一方面,本公开提供了一种甲醇制烯烃水洗水深度净化装置,它包括:
急冷塔,
与急冷塔顶部出口连接的水洗塔,
其顶部与水洗塔底部连接的沸腾床分离器,
与沸腾床分离器底部连接的纤维聚结器,以及
与沸腾床分离器侧壁靠近顶部的位置连接的缓冲沉降罐。
在一个优选的实施方式中,所述沸腾床分离器包括并联设置的多台沸腾床分离器,其中,所述沸腾床分离器顶部设置有进口,底部设置有出口,侧壁近顶部的位置设置有排污口和排气口;所述水洗塔底部通过离心泵分别连接在各个进口上,各个排污口共同连接到管道G1后连接所述缓冲沉降罐,各个排气口共同连接到管道G2后连接旋流脱液罐,所述旋流脱液罐底部连接所述管道G1,每个沸腾床分离器底部出口均连接有管道G3,管道G3共同连接管道G4,管道G4另一端连接所述纤维聚结器,每个所述管道G3上均连接有氮气/蒸汽管道以及水洗水管道。
在另一个优选的实施方式中,每个进口上均设置有进口阀,每个出口上均设置有出口阀,每个排污口上均设置有排污阀,每个排气口上均设置有排气阀,所述 氮气/蒸汽管道与每个管道G3的连接处均设置有氮气/蒸汽入口阀,所述水洗水管道与每个管道G3的连接处均设置有反洗阀。
在另一个优选的实施方式中,所述沸腾床分离器包括沸腾床分离器壳体,所述沸腾床分离器壳体顶部设置有进口,底部设置有出口,侧壁近顶部的位置设置有排污口,顶部一侧设置有排气口;所述沸腾床分离器壳体内部由上到下依次设置有旋流三相分离器、进料分配器、颗粒床、分隔板;所述出口内部设置有防涡器,所述旋流三相分离器的入口与所述进口连接,所述旋流三相分离器侧面与所述排污口连接,所述分隔板上表面设置有流体均布器。
在另一个优选的实施方式中,所述纤维聚结器包括并列设置的多个纤维聚结器,所述纤维聚结器左端设置有入口,所述纤维聚结器右端的顶部和底部分别设置有油相出口和水相出口,所述管道G4的另一端通过管道G5分别连接在所述入口上,每个油相出口均通过管道G6连接在所述管道G1上。
在另一个优选的实施方式中,所述纤维聚结器包括纤维聚结器壳体,所述纤维聚结器壳体左端设置有入口,所述纤维聚结器壳体右端的顶部和底部分别设置有油相出口和水相出口,所述纤维聚结器壳体从左到右依次设置有进口整流分布器、油滴粗粒化聚结模块、改性波纹强化沉降模块以及纳米改性深度分离模块。
在另一个优选的实施方式中,该装置还包括工控机,其中,所述进口阀、出口阀、排污阀、排气阀、氮气/蒸汽入口阀、反洗阀均为电磁阀,且均通过导线电连接至所述工控机;所述颗粒床上还安装有压差传感器,所述压差传感器通过导线电连接所述工控机。
另一方面,本公开提供了一种使用上述装置的甲醇制烯烃水洗水深度净化方法,该方法包括以下步骤:
步骤1:启动电源,在工控机上设定沸腾床分离器的过滤压降值以及再生操作时间;
步骤2:开启进口阀和出口阀,装置正常运行,水洗水通过离心泵从水洗塔底抽出,由沸腾床分离器顶部进口进入沸腾床分离器,经进料分配器送至颗粒床层,经颗粒床分离后,水洗水通过分隔板上的流体均布器,经防涡器后由底部出口送至纤维聚结器,水洗水由纤维聚结器入口进入纤维聚结器内,经进口整流分布器依次进入油滴粗粒化聚结模块、改性波纹强化沉降模块和纳米改性深度分离模块以使沸腾床出口水洗水中剩余的细小乳化油滴通过在亲疏水纤维上的粘附、碰撞、 长大、分离过程,油滴逐渐运动到上部油层,水滴快速下沉,水洗水清液由水相出口外排送至烯烃分离装置丙烯精馏塔底重沸器作为热源,进行水洗水的部分余热回收,换热后经水洗水空冷器和冷却器再换热返回水洗塔,污油由油相出口至缓冲沉降罐,实现油水分离,装置正常运行时,实时监测沸腾床分离器的压差传感器数值;
步骤3:待压差传感器到达设定的过滤压降值时,开始再生操作,此时,关闭进口阀和出口阀,开启排污阀、排气阀、反洗阀、氮气/蒸汽入口阀,水洗水改由出口进入沸腾床分离器内,同时混入氮气,由下向上穿过颗粒床层,使颗粒床层呈沸腾状,释放分离媒质间的催化剂细粉和油蜡状有机物,使媒质清洗再生,含分离媒质和污染物经顶部旋流三相分离器,使媒质颗粒在旋流场内洗涤,强化媒质再生,同时回收媒质颗粒,污染物随液相由设备侧面排污口排出,氮气由顶部排气口排出;以及
步骤4:待到达设定的再生操作时间时,关闭排污阀、排气阀、反洗阀、氮气/蒸汽入口阀,开启进口阀和出口阀,装置继续正常运行,如此循环。
在一个优选的实施方式中,在步骤1中,设定过滤压降值为0.1~0.4MPa,再生操作时间为20~60分钟;对水洗水中催化剂的分离精度D 85=0.1μm。
在另一个优选的实施方式中,所述甲醇制烯烃水洗水的催化剂颗粒含量为100~500mg/L,固体催化剂颗粒的平均粒径为0.5~5μm,油含量为200~1000mg/L。
有益效果:
1)本发明将颗粒床过滤与纤维聚结组合使用,弥补了原有沸腾床分离器对水洗水中的油类分离效率不足的问题,同时有效避免了水洗水中的催化剂颗粒对纤维聚结器内件的污染问题。同时实现了净化装置再生中产生的废液、废气及净化后水洗水中余热回收的综合处理,实现污染物近零排放、废弃物近零填埋、热量有效利用。
2)本发明利用沸腾床分离器中的颗粒床分离媒质对水中颗粒和油蜡的筛分、拦截、吸附等作用,使水中的固含量和油含量随滤层深度逐渐降低;后续利用纤维聚结器中的亲疏水纤维实现物理破乳,达到深度油水分离的目的,相比于膜过滤和精密过滤,该方法设备简单,投资少,能耗低,分离媒质易再生,连续运行周期长,维护费用低,可对水洗水中的催化剂颗粒和油蜡具有优良的分离效果, 分离流程简单,解决了现有工艺中存在的分离设备易堵塞、需频繁清洗、设备运行周期短且水中油蜡及固体颗粒物去除不彻底的缺陷。
3)本发明利用沸腾床方法对分离媒质进行再生,同时通过顶部三相分离器的旋流剪切作用强化媒质再生效果;利用纤维聚结器中亲疏水纤维实现水油分离并外排,适用于甲醇制烯烃高含油量水洗水的净化。
附图说明
附图是用以提供对本公开的进一步理解的,它只是构成本说明书的一部分以进一步解释本公开,并不构成对本公开的限制。
图1是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置的结构示意图。
图2是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置中沸腾床分离和纤维聚结系统的结构示意图。
图3是根据本公开的一个优选实施方式的水洗水净化装置外排废水至污水处理场的处理流程示意图。
图4是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置中沸腾床分离器的结构示意图。
图5是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置中纤维聚结器的结构示意图。
图6是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置中沸腾床分离器与工控机电路连接图。
图中,各个附图标记表示如下:
1-1.急冷塔,1-2.水洗塔,1-3.沸腾床分离器,1-4.纤维聚结器,1-5.缓冲沉降罐,1-6.旋流脱液罐,1-7.氮气/蒸汽管道,1-8.水洗水管道,1-9.工控机,1-10.压差传感器1-11.压滤机;
1.进口,2.出口,3.排污口,4.排气口;
2-1.进口阀,2-2.出口阀,2-3.排污阀,2-4.排气阀,2-5.氮气/蒸汽入口阀,2-6.反洗阀;
3-1.隔油池,3-2.气浮池,3-3.生化单元,3-4.曝气生物滤池,3-5.砂滤单元;
4-1.沸腾床分离器壳体,4-2.颗粒床,4-3.分隔板,4-4.流体均布器,4-5.进料 分配器,4-6.防涡器,4-7.旋流三相分离器;
5-1.纤维聚结器壳体,5-2.入口,5-3.进口整流分布器,5-4.油滴粗粒化聚结模块,5-5.改性波纹强化沉降模块,5-6.纳米改性深度分离模块,5-7.水相出口,5-8.油相出口。
具体实施方式
本申请的发明人通过研究微细颗粒在微观尺度上的运动、排列结构调控、颗粒聚并规律以及调控颗粒对微分散相的捕获机理开发了沸腾床分离技术,利用分离媒质的碰撞、吸附及分离媒质形成的微通道的高精度截留作用,可有效去除水洗水中的微细颗粒物和部分油类有机物,且微通道分离不同于膜分离,微分离通道不固定、通道长,容污量大,可有效避免污染物的堵塞问题;并通过研究液-液-固界面聚结动力学、纤维孔道流动结构调控和亲/疏水纤维组合强化结构破乳除油机理开发了纤维聚结技术,利用高效破乳聚结模块的深度破乳作用,可有效去除水洗水中剩余的纳微米级油类有机物,且纤维聚结器可容许微量悬浮物穿透;沸腾床分离和纤维聚结两种分离技术的组合工艺有望有效解决现有甲醇制烯烃废水的深度除油脱固难题。
在本公开的第一方面,提供了一种甲醇制烯烃水洗水深度净化装置,它包括急冷塔,急冷塔顶部出口连接水洗塔,水洗塔底部通过离心泵连接沸腾床分离系统的顶部,沸腾床分离系统底部连接纤维聚结系统,沸腾床分离系统侧壁靠近顶部的位置还连接缓冲沉降罐。
在本公开中,沸腾床分离系统包括并联设置的多台沸腾床分离器,沸腾床分离器顶部设置有进口,沸腾床分离器底部设置有出口,沸腾床分离器侧壁近顶部的位置设置有排污口和排气口,水洗塔底部通过离心泵分别连接在各个进口上,各个排污口共同连接到管道G1后连接缓冲沉降罐,各个排气口共同连接到管道G2后连接有旋流脱液罐,旋流脱液罐底部还连接管道G1,每个沸腾床分离器底部出口均连接有管道G3,管道G3共同连接有管道G4,管道G4另一端连接纤维聚结系统,每个管道G3上均连接有氮气/蒸汽管道以及水洗水管道。
在本公开中,每个进口上均设置有进口阀,每个出口上均设置有出口阀,每个排污口上均设置有排污阀,每个排气口上均设置有排气阀,氮气/蒸汽管道与每个管道G3的连接处均设置有氮气/蒸汽入口阀,水洗水管道与每个管道G3的连 接处均设置有反洗阀。
在本公开中,沸腾床分离器包括沸腾床分离器壳体,沸腾床分离器壳体顶部设置有进口,沸腾床分离器壳体底部设置有出口,沸腾床分离器壳体侧壁近顶部的位置设置有排污口,沸腾床分离器壳体顶部一侧设置有排气口,沸腾床分离器壳体内部由上到下依次设置有旋流三相分离器、进料分配器、颗粒床、分隔板,出口内部设置有防涡器,旋流三相分离器的入口与进口连接,旋流三相分离器侧面与排污口连接,分隔板上表面设置有流体均布器。纤维聚结系统包括并列设置的多个纤维聚结器,纤维聚结器左端设置有入口,纤维聚结器右端的顶部和底部分别设置有油相出口和水相出口,管道G4的另一端通过管道G5分别连接在入口上,每个油相出口均通过管道G6连接在管道G1上。
在本公开中,纤维聚结器包括纤维聚结器壳体,纤维聚结器壳体左端设置有入口,纤维聚结器壳体右端的顶部和底部分别设置有油相出口和水相出口,纤维聚结器壳体由左到右依次设置有进口整流分布器、油滴粗粒化聚结模块、改性波纹强化沉降模块以及纳米改性深度分离模块。
在本公开中,所述装置还包括工控机,其中,进口阀、出口阀、排污阀、排气阀、氮气/蒸汽入口阀、反洗阀均为电磁阀,且进口阀、出口阀、排污阀、排气阀、氮气/蒸汽入口阀、反洗阀均通过导线电连接工控机,颗粒床上还安装有压差传感器,压差传感器通过导线电连接所述工控机。
在本公开的第二方面,提供了一种甲醇制烯烃水洗水深度净化方法,该方法采用上述甲醇制烯烃水洗水深度净化装置,包括以下步骤:
步骤1:启动电源,在工控机上设定沸腾床分离器的过滤压降值以及再生操作时间;
步骤2:开启进口阀和出口阀,装置正常运行,水洗水通过离心泵从水洗塔底抽出,由沸腾床分离器顶部进口进入沸腾床分离器,经进料分配器送至颗粒床层,经颗粒床分离后,水洗水通过分隔板上的流体均布器,经防涡器后由底部出口送至纤维聚结器,水洗水由纤维聚结器入口进入纤维聚结器内,经进口整流分布器依次进入油滴粗粒化聚结模块、改性波纹强化沉降模块和纳米改性深度分离模块使沸腾床出口水洗水中剩余的细小乳化油滴通过在亲疏水纤维上的粘附、碰撞、长大、分离过程,油滴逐渐运动到上部油层,水滴快速下沉,水洗水清液由水相出口外排送至烯烃分离装置丙烯精馏塔底重沸器作为热源,进行水洗水的部 分余热回收,换热后经水洗水空冷器和冷却器再换热返回水洗塔,污油由油相出口至缓冲沉降罐,实现油水分离的目的,装置正常运行时,实时监测沸腾床分离器的压差传感器的数值;
步骤3:待压差传感器到达设定的过滤压降值时,开始再生操作,此时,关闭进口阀和出口阀,开启排污阀、排气阀、反洗阀、氮气/蒸汽入口阀,水洗水改由出口进入沸腾床分离器内,同时混入氮气,由下向上穿过颗粒床层,使颗粒床层呈沸腾状,释放分离媒质间的催化剂细粉和油蜡状有机物,使媒质清洗再生,含分离媒质和污染物经顶部旋流三相分离器,使媒质颗粒在旋流场内洗涤,强化媒质再生,同时回收媒质颗粒,污染物随液相由设备侧面排污口排出,氮气由顶部排气口排出;
步骤4:待到达设定的再生操作时间时,关闭排污阀、排气阀、反洗阀、氮气/蒸汽入口阀,开启进口阀和出口阀,装置继续正常运行,如此循环。
在本公开中,在步骤1中,设定过滤压降值为0.1~0.4MPa,优选0.3MPa,再生操作时间为20~60分钟,优选40分钟;对水洗水中催化剂的分离精度D 85=0.1μm。
在本公开中,甲醇制烯烃水洗水的催化剂颗粒含量为100~500mg/L,固体催化剂颗粒的平均粒径为0.5~5μm,油含量为200~1000mg/L。
以下参看附图。
图1是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置的结构示意图。如图1所示,该装置包括急冷塔1-1,急冷塔1-1顶部出口连接水洗塔1-2,水洗塔1-2底部通过离心泵连接沸腾床分离器1-3的顶部,沸腾床分离器1-3底部连接纤维聚结器1-4,沸腾床分离器1-3侧壁靠近顶部的位置还连接缓冲沉降罐1-5,缓冲沉降罐1-5底部通过离心泵连接压滤机1-11,其中,产品气由急冷塔1-1进口进入,急冷水由急冷塔1-1出口经离心泵排出;纤维聚结器1-4产生的余热回收返回水洗塔1-2;水洗塔1-2顶部产物去烯烃分离;缓冲沉降罐1-5和纤维聚结器1-4顶部产物送去污油回炼;压滤机1-11得到的催化剂回收。
图2是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置中沸腾床分离和纤维聚结系统的结构示意图。如图2所示,沸腾床分离系统包括并联设置的多台(共m台,m大于等于2)沸腾床分离器1-3,沸腾床分离器1-3 顶部设置有进口,沸腾床分离器1-3底部设置有出口,沸腾床分离器1-3侧壁近顶部的位置设置有排污口和排气口,水洗塔底部通过离心泵分别连接在各个进口上,各个排污口共同连接到管道G1后连接缓冲沉降罐1-5,各个排气口共同连接到管道G2后连接旋流脱液罐1-6,旋流脱液罐1-6底部还连接管道G1,每个沸腾床分离器1-3底部出口均连接有管道G3,管道G3共同连接有管道G4,管道G4另一端连接纤维聚结系统,每个管道G3上均连接有氮气/蒸汽管道1-7以及水洗水管道1-8;其中,每个进口上均设置有进口阀2-1,每个出口上均设置有出口阀2-2,每个排污口上均设置有排污阀2-3,每个排气口上均设置有排气阀2-4,氮气/蒸汽管道1-7与每个管道G3的连接处均设置有氮气/蒸汽入口阀2-5,水洗水管道1-8与每个管道G3的连接处均设置有反洗阀2-6;
纤维聚结系统包括并列设置的多台(共n台,n大于等于2)纤维聚结器1-4,纤维聚结器1-4左端设置有入口,纤维聚结器右端的顶部和底部分别设置有油相出口和水相出口,管道G4的另一端通过管道G5分别连接在入口上,每个油相出口均通过管道G6连接在管道G1上;
其中,水洗水原液经进口阀2-1进入,氮气/蒸汽经氮气/蒸汽入口阀2-5进入,水洗水经反洗阀2-6进入,旋流脱液罐1-6顶部混合废气去火炬,纤维聚结器1-4底部水洗水清液返塔,缓冲沉降罐1-5底部催化剂浆液去压滤,侧壁油状有机物回炼。
图3是根据本公开的一个优选实施方式的水洗水净化装置外排废水至污水处理场的处理流程示意图。如图3所示,水洗水净化装置外排至污水处理场的废水平均流量为3t/h,水洗水净化装置废水先送至隔油池3-1,利用废水中悬浮物、油和水的比重不同初步分离废水中的悬浮物和油脂;经隔油池3-1处理后的废水送至气浮池3-2,废水中的悬浮物絮体和细小油滴等进一步絮凝长大,并与溶气水释放的气泡相结合,在浮力和上升水流的作用下,形成大的絮团上升至水面,从而使废水中油固进一步分离;气浮处理后的废水送至生化单元3-3,利用微生物降解作用去除废水中的COD(化学需氧量)、氨氮和油脂等;随后送至曝气生物滤池3-4,利用滤池中滤料表面生物膜的氧化降解作用及滤料截留作用,进一步去除废水中的COD、氨氮、油脂和悬浮物等;最后送至砂滤单元3-5,深度去除废水中的悬浮物后外排水或回用,隔油池3-1、气浮池3-2、生化单元3-3、曝气生物滤池3-4和砂滤单元3-5底部油泥排出。
图4是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置中沸腾床分离器的结构示意图。如图4所示,沸腾床分离器包括沸腾床分离器壳体4-1,沸腾床分离器壳体4-1顶部设置有进口1,底部设置有出口2,侧壁近顶部的位置设置有排污口3,顶部一侧设置有排气口4,内部由上到下依次设置有旋流三相分离器4-7、进料分配器4-5、颗粒床4-2、分隔板4-3,出口2内部设置有防涡器4-6,旋流三相分离器4-7的入口与进口1连接,旋流三相分离器4-7侧面与排污口3连接,分隔板4-3上表面设置有流体均布器4-4。
图5是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置中纤维聚结器的结构示意图。如图5所示,纤维聚结器包括纤维聚结器壳体5-1,纤维聚结器壳体5-1左端设置有入口5-2,右端的顶部和底部分别设置有油相出口5-8和水相出口5-7,纤维聚结器壳体5-1由左到右依次设置有进口整流分布器5-3、油滴粗粒化聚结模块5-4、改性波纹强化沉降模块5-5以及纳米改性深度分离模块5-6。
图6是根据本公开的一个优选实施方式的甲醇制烯烃水洗水深度净化装置中沸腾床分离器与工控机电路连接图。如图6所示,进口阀2-1、出口阀2-2、排污阀2-3、排气阀2-4、氮气/蒸汽入口阀2-5、反洗阀2-6均为电磁阀,且均通过导线电连接工控机1-9,颗粒床上还安装有压差传感器1-10,压差传感器1-10通过导线电连接所述工控机1-9。
本发明的甲醇制烯烃水洗水深度净化装置的工作原理如下:
设备正常运行时,进口阀2-1、出口阀2-2开启,排污阀2-3、排气阀2-4、氮气/蒸汽入口阀2-5以及反洗阀2-6关闭,水洗水通过离心泵从水洗塔1-2底抽出,由沸腾床分离器1-3顶部进口1进入沸腾床分离器1-3,由上而下穿过颗粒床层,对甲醇制烯烃水洗水进行过滤,脱除水中的颗粒物、游离油和分散油,底部出口2出料,初步净化后的水洗水送至多台并联的纤维聚结器1-4进行二次深度净化,通过纤维聚结器1-4内部的亲疏水纤维对沸腾床净化后水相进行物理破乳,实现油水分离,水洗水清液由纤维聚结器底部水相出口5-7外排送至烯烃分离装置丙烯精馏塔底重沸器作为热源,进行水洗水的部分余热回收,换热后经水洗水空冷器和冷却器再换热返回水洗塔,污油由纤维聚结器1-4顶部油相出口5-8外排;沸腾床分离器1-3连续运行至压差上升到0.3MPa时,多台沸腾床分离器轮流 切换至反冲洗操作,反冲洗时,关闭对应沸腾床分离器1-3的进口阀2-1和出口阀2-2,打开排污阀2-3、排气阀2-4、打开氮气/蒸汽入口阀2-5和反洗阀2-6,通入水洗水原液和氮气使分离器中颗粒床变为沸腾状,释放颗粒床中拦截和吸附的污染物,实现分离媒质的再生。再生出的污染物浆液由排污口3排出,送至缓冲沉降罐1-5进行油水沉降分离,缓冲沉降罐1-5上层油相送至污油回炼系统进行回收利用,下层催化剂浆液送至压滤单元做压滤处理,实现催化剂的回收,以实现废弃物的近零填埋,压滤单元产生的含微量油、固的废水排往污水处理场,去除废水中的有机物和悬浮物后,达标水外排至环境中或回用,混合废气由排气口4排出,经旋流脱液罐1-6脱除其中的水分去往火炬单元,燃烧沸腾床再生过程中携持出的气体有机物,以实现污染物的近零排放。纤维聚结器连续运行,污油经顶部油相出口5-8同样送至缓冲沉降罐1-5,进行沉降后与沸腾床再生污油送至污油回炼系统。
本发明的沸腾床分离器的工作原理如下:
正常运行时,水洗水通过离心泵从水洗塔1-2底抽出,由沸腾床分离器1-3顶部进口1进入沸腾床分离器1-3,经进料分配器4-5送至颗粒床层,经颗粒床4-2分离后,水洗水通过分隔板4-3上的流体均布器4-4,经防涡器4-6后由底部出口送至纤维聚结器1-4;设备切换至反冲洗操作后,关闭进口阀2-1和出口阀2-2,打开排污阀2-3、排气阀2-4、打开氮气/蒸汽入口阀2-5和反洗阀2-6后,水洗水改由出口2进入沸腾床分离器1-3内,同时混入氮气,由下向上穿过颗粒床层,使床层呈沸腾状,释放分离媒质间的催化剂细粉和油蜡状有机物,使媒质清洗再生,含分离媒质和污染物经顶部旋流三相分离器4-7,使媒质颗粒在旋流场内洗涤,强化媒质再生,同时回收媒质颗粒,污染物随液相由设备侧面排污口3排出,氮气由顶部排气口4排出。
本发明的沸腾床分离器配套工控机,在工控机上设定压差值(过滤压降),在过滤压降达到设定值时,可自动切换至再生状态,进行分离媒质的清洗再生;通过工控机可以使沸腾床分离器在无人控制的情况下进行水洗水过滤和分离媒质的有效再生,该工控机采用西门子S7-300工控机,其控制界面如图6所示,工控机的主要功能是通过控制每台沸腾床分离器的进口阀2-1、出口阀2-2、排污阀2-3、排气阀2-4、氮气/蒸汽入口阀2-5、反洗阀2-6的开关来切换不同的状态达到自动化控制的目的。具体为监控各个阀门的开关状态与监测沸腾床分离器内部过滤压 差的实时数据,并根据压差实时数据与已设定压差上限值的之间的反馈关系,并通过系统预设的逻辑进行六个主阀门的开关操作,达到在线切换沸腾床过滤运行状态与反冲洗状态的目的。其中,沸腾床分离器正常过滤运行时,进口阀2-1和出口阀2-2为打开状态;在过滤压降达到设定值时,设备切换至反冲洗操作,具体为进口阀2-1和出口阀2-2依次关闭,随后排污阀2-3、排气阀2-4同时打开,反洗阀2-6、氮气/蒸汽入口阀2-5同时打开,水洗水改由出口2进入沸腾床分离器内,同时混入氮气,由下向上穿过颗粒床层,进行设备分离媒质的再生操作;再生操作时间达到设定值时,反洗阀2-6、氮气/蒸汽入口阀2-5同时关闭,排污阀2-3、排气阀2-4同时关闭,随后出口阀2-2和进口阀2-1依次打开,进行沸腾床分离器的正常过滤运行操作,本发明过滤压降达到设定值0.3MPa后,设备切换至反冲洗操作。
沸腾床分离器顶部的旋流三相分离器4-7在沸腾床分离器再生时提供的旋流剪切作用增强分离媒质的再生效果,同时实现媒质颗粒的回收;沸腾床分离器内部分离媒质采用无烟煤、碳球等具除油除固滤料,对水洗水中的催化剂颗粒、游离油和分散油具有较好的吸附、截留效果。
本发明的纤维聚结器的工作原理如下:
正常运行时,水洗水由纤维聚结器入口5-2进入纤维聚结器内,经进口整流分布器5-3依次进入油滴粗粒化聚结模块5-4、性波纹强化沉降模块5-5和纳米改性深度分离模块5-6使沸腾床出口水洗水中剩余的细小乳化油滴通过在亲疏水纤维上的粘附、碰撞、长大、分离过程,油滴逐渐运动到上部油层,水滴快速下沉,水洗水清液由水相出口5-7外排返至水洗水循环换热系统,污油由相出口5-8至缓冲沉降罐,实现油水分离的目的。
本发明的纤维聚结器的纤维聚结器壳体5-1是卧式圆形罐或卧式长方体罐的,其水相出口5-7连续外排,油相出口5-8间歇外排或小流量连续外排;油滴粗粒化聚结模块由表面亲油的固体物质构成的填充床层组成,水中细小的油滴会粘附在填充床层表面上,并逐步积累变成大油滴而得以加速分离;改性波纹强化沉降模块采用表面亲油的波纹折流板,油滴汇集在折流板波峰顶点并上升到油层,水滴汇聚在折流板凹处而聚结长大快速下沉;纳米改性深度分离模块5-6作为纤维聚结器的核心单元,采用有机高分子材料,主要为尼龙、玻璃、特氟龙或者金属的丝绒组成的聚结模块,通过Ω形式进行编制组合,对水洗水中的乳化油进行 快速高效分离。
采用本发明的方法,在经过的沸腾床分离后,水洗水中的固体悬浮物含量降至20mg/L以下,油含量降至150mg/L以下,在经过纤维聚结器深度净化后,水洗水中的油含量降至30mg/L以下。
实施例
下面结合具体的实施例进一步阐述本发明。但是,应该明白,这些实施例仅用于说明本发明而不构成对本发明范围的限制。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另有说明,所有的百分比和份数按重量计。
实施例1:
在一个180万吨/年甲醇制烯烃工艺过程中,采用本发明的装置,用以对含有固体催化剂和油蜡的水洗水进行深度净化,达到对水洗水中的颗粒物和油蜡进行有效分离的目的,试验参数以及效果如下:
1.物料性质及处理方式
甲醇制烯烃水洗水为液固两相混合物,水中含有固体催化剂颗粒和油,油类的主要成分为高浓度难降解芳烃类有机物;操作温度为90℃,废催化剂含量为100~500mg/L,平均粒径为2μm,油含量为200~1000mg/L。
在研究的180万吨/年甲醇制烯烃工艺过程中,目前采取的主要措施是以160t/h流量连续外排水洗水并补充新鲜水来平衡水洗水中固含量和油含量,且连续注入二甲苯以缓解催化剂和油类有机物的沉积堵塞。此类措施虽可以缓解甲醇制烯烃水系统堵塞,但耗水量大,经济性差,并增加下游污水汽提塔和污水处理场负荷,且外排废水热量难以利用。按照90℃水洗水外排,冷却至常温25℃时,1吨废水损失热量约270兆焦耳,以外排水洗水160t/h计算,每天损失热量1036800兆焦耳,折合标煤35.4吨/天。因此,目前采取的措施安全、环保、经济性均较差。
2.水洗水净化装置
水洗水净化装置为沸腾床分离器和纤维聚结器的串联装置,沸腾床分离器直径为300mm,高度为1500mm,顶部安装旋流三相分离器,分离媒质为粒径 0.5~1mm的无烟煤颗粒滤料,床层高度为1300mm,单台过滤器处理量为1m 3/h,纤维聚结器为卧式容器,设备进、水出口、油出口皆设有视镜,油相出口间歇排油或小流量连续排油,水相出口连续外排,聚结除油器底部均设有排污口。
3.实施过程
如图2所示。含催化剂和油蜡的甲醇制烯烃水洗水由离心泵送至沸腾床分离器脱除催化剂颗粒、游离油和分散油,继而进入纤维聚结器,深度脱除水洗水中的乳化油;沸腾床分离器连续运行至压差升高至0.3MPa后,切换反冲洗操作;沸腾床再生液送至缓冲沉降罐静置油水分离,上层油相与聚结器外排污油送至污油回炼系统,下层催化剂浆液送至压滤单元做压滤处理,实现催化剂的回收,压滤单元产生的废水去往污水处理场。
4.结果分析
通过沸腾床分离和纤维聚结组合净化工艺,水洗水固含量由100~500mg/L降至20mg/L以下,油含量由200~1000mg/L降至30mg/L以下,测试期间经过1000小时连续运行及沸腾床分离器50次反冲洗再生操作后仍能保持初始分离效果,分离效率超过90%。
5.技术效果
近年来,微旋流分离、金属膜、陶瓷膜、袋式过滤逐渐应用于甲醇制烯烃废水的净化流程中。本申请的发明人通过国内实地调研,发现几种方法均存在一定的不足,从而导致甲醇制烯烃废水净化一直是MTO行业中难以解决的重大问题。其中微旋流器、金属膜应用超过10套MTO装置,并且这两种设备一般串联操作,微旋流器作为初级分离,金属膜进行深度净化。微旋流分离器分离精度较低,仅对大于3微米颗粒有较好的分离效果,对于小于3微米的颗粒很难分离。金属膜微滤因为膜污染的问题,在运行1个月内膜通量就会降低至正常的20%以下,难以正常运行。陶瓷膜、袋式过滤在部分MTO厂废水及技术改造中增设。陶瓷膜过滤甲醇制烯烃废水中细颗粒物效果较好,但设备成本高,过膜压力高,并且膜通道堵塞的问题也会在运行超过1年后逐渐显现,目前有3套MTO废水净化采用。袋式过滤法由于分离精度低、寿命短,处理效率会在运行一年后显著降低并 需要通过更换滤袋解决,只有1家MTO工厂使用。
沸腾床分离技术相比于已应用的几种技术,其分离效率仅次于陶瓷膜,但由于其采用的原理为深层过滤,其过滤孔道是由松散的滤料颗粒堆积而成的,其孔道可变,从原理上就避免了金属膜或陶瓷膜污染堵塞的问题。滤料颗粒床有着较大的空隙率,并且通过滤料间的空隙容纳滤除的颗粒物,因此其容污量大,反洗频率也显著低于金属膜、陶瓷膜这种表层过滤方法。同时,由于其孔道可变,被滞留在孔道内的污染物可以很容易地释放出来,并由于加入了旋流强化洗涤,使污染物可以很容易地从滤料表面脱离,因此其滤料再生效果优于传统深层过滤装置。此外,优于其滤料为价格低廉的传统无烟煤、碳球等,因此其设备投资及维护费用很低。
几种甲醇制烯烃废水处理技术在工业应用中的比较(按处理能力200m 3/h)如下表1所示。沸腾床分离技术在设备投资、装卸费、运行成本、污水排放频率、分离能耗等方面均优于其他几种技术。其分离效率仅次于陶瓷膜,对于MTO水体系中细小催化剂颗粒的分离是足够的。但比其他技术占有更大的空间。综合评价表明,沸腾床分离技术在MTO废水净化方面具有优异的性能,因此其更适合于MTO废水的工业化处理。
表1 不同MTO废水净化技术的比较
Figure PCTCN2020115845-appb-000001
纤维聚结技术在南海千亿吨级气田平台高乳化含油废水的处理中也取得成功应用,其结构紧凑、抗冲击性能强、取消原除油工艺中破乳剂的使用,技术、经济优势明显。具体为分离迅速效率;压降低、能耗小(压降小于0.3MPa);模块化设计可使占地空间根据实际灵活控制;寿命长、操作维护费用低纤维聚结除 油技术与原药剂破乳除油技术对比如下表2所示。
表2 纤维聚结与药剂破乳除油技术的比较
Figure PCTCN2020115845-appb-000002
本发明创造性地将颗粒床过滤方法与纤维聚结方法组合使用来对甲醇制烯烃水洗水中催化剂细粉和油分进行高效分离,弥补了原有沸腾床分离器对水洗水中的油类分离效率不足的问题,同时有效避免了水洗水中的催化剂颗粒对纤维聚结器内件的污染问题,从而实现深度净化的目的。特别地,沸腾床分离器内部分离媒质采用无烟煤、碳球等除油除固滤料,对水洗水中的催化剂细粉、游离油和分散油进行有效截留、吸附;后续水洗水中的乳化油通过在纤维聚结器中的以Ω形式编制的亲疏水纤维上的粘附、碰撞、长大、分离过程,实现物理破乳,进而脱除水洗水中的乳化油。本发明的工业侧线小试和工业投用可实现水洗水中纳微米级颗粒物和油蜡的深度脱除、水的循环利用以及进一步的污油回炼、催化剂的浓缩回收、再生废气的无害化处理和水洗水的部分余热回收,实现甲醇制烯烃水洗水的综合治理,出水悬浮物浓度降至20mg/L以下,油含量降低至30mg/L以下,可使水洗水系统换热器、空冷器清洗频次减少80%以上,并有效减少水洗塔、汽提塔的堵塞。且可取消原来的160t/h的水洗水外排,根据水洗水作为烯烃分离单元的丙烯精馏塔底重沸器热源进行部分余热回收计算,按照90℃水洗水外排,余热回收冷却至65℃时,吨废水回收热量约100兆焦耳,以外排水洗水160t/h计算,每天节约热量384000兆焦耳,折合标煤13.1吨/天。而且,含油含固水洗水属高浓度难降解有机废水,原以160t/h流量外排至污水处理场,增加污水处理费用,现排至污水处理场废水主要为压滤单元产生的含微量油固的废水,平均外排量为3t/h。按吨水处理成本为10元,可节约原外排水洗水的污水处理费用1256万元/年。
上述所列的实施例仅仅是本公开的较佳实施例,并非用来限定本公开的实施 范围。即凡依据本申请专利范围的内容所作的等效变化和修饰,都应为本公开的技术范畴。
在本公开提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本公开的上述讲授内容之后,本领域技术人员可以对本公开作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种甲醇制烯烃水洗水深度净化装置,其特征在于,它包括:
    急冷塔(1-1),
    与急冷塔(1-1)顶部出口连接的水洗塔(1-2),
    其顶部与水洗塔(1-2)底部连接的沸腾床分离器(1-3),
    与沸腾床分离器(1-3)底部连接的纤维聚结器(1-4),以及
    与沸腾床分离器(1-3)侧壁靠近顶部的位置连接的缓冲沉降罐(1-5)。
  2. 如权利要求1所述的装置,其特征在于,所述沸腾床分离器(1-3)包括并联设置的多台沸腾床分离器,其中,所述沸腾床分离器(1-3)顶部设置有进口(1),底部设置有出口(2),侧壁近顶部的位置设置有排污口(3)和排气口(4);所述水洗塔(1-2)底部通过离心泵分别连接在各个进口(1)上,各个排污口(3)共同连接到管道G1后连接所述缓冲沉降罐(1-5),各个排气口(4)共同连接到管道G2后连接旋流脱液罐(1-6),所述旋流脱液罐(1-6)底部连接所述管道G1,每个沸腾床分离器底部出口(2)均连接有管道G3,管道G3共同连接管道G4,管道G4另一端连接所述纤维聚结器(1-4),每个所述管道G3上均连接有氮气/蒸汽管道(1-7)以及水洗水管道(1-8)。
  3. 如权利要求2所述的装置,其特征在于,每个进口(1)上均设置有进口阀(2-1),每个出口(2)上均设置有出口阀(2-2),每个排污口(3)上均设置有排污阀(2-3),每个排气口(4)上均设置有排气阀(2-4),所述氮气/蒸汽管道(1-7)与每个管道G3的连接处均设置有氮气/蒸汽入口阀(2-5),所述水洗水管道(1-8)与每个管道G3的连接处均设置有反洗阀(2-6)。
  4. 如权利要求3所述的装置,其特征在于,所述沸腾床分离器(1-3)包括沸腾床分离器壳体(4-1),所述沸腾床分离器壳体(4-1)顶部设置有进口(1),底部设置有出口(2),侧壁近顶部的位置设置有排污口(3),顶部一侧设置有排气口(4);所述沸腾床分离器壳体(4-1)内部由上到下依次设置有旋流三相分离器(4-7)、进料分配器(4-5)、颗粒床(4-2)、分隔板(4-3);所述出口(2)内部设置有防涡器(4-6),所述旋流三相分离器(4-7)的入口与所述进口(1)连接,所述旋流三相分离器(4-7)侧面与所述排污口(3)连接,所述分隔板(4-3)上表面设置有流体均布器(4-4)。
  5. 如权利要求2所述的装置,其特征在于,所述纤维聚结器(1-4)包括并列设置的多个纤维聚结器,所述纤维聚结器(1-4)左端设置有入口(5-2),所述纤维聚结器(1-4)右端的顶部和底部分别设置有油相出口(5-8)和水相出口(5-7),所述管道G4的另一端通过管道G5分别连接在所述入口(5-2)上,每个油相出口(5-8)均通过管道G6连接在所述管道G1上。
  6. 如权利要求1所述的装置,其特征在于,所述纤维聚结器(1-4)包括纤维聚结器壳体(5-1),所述纤维聚结器壳体(5-1)左端设置有入口(5-2),所述纤维聚结器壳体(5-1)右端的顶部和底部分别设置有油相出口(5-8)和水相出口(5-7),所述纤维聚结器壳体(5-1)从左到右依次设置有进口整流分布器(5-3)、油滴粗粒化聚结模块(5-4)、改性波纹强化沉降模块(5-5)以及纳米改性深度分离模块(5-6)。
  7. 如权利要求4所述的装置,其特征在于,该装置还包括工控机(1-9),其中,所述进口阀(2-1)、出口阀(2-2)、排污阀(2-3)、排气阀(2-4)、氮气/蒸汽入口阀(2-5)、反洗阀(2-6)均为电磁阀,且均通过导线电连接至所述工控机(1-9);所述颗粒床(4-2)上还安装有压差传感器(1-10),所述压差传感器(1-10)通过导线电连接所述工控机(1-9)。
  8. 一种使用权利要求1-7中任一项所述的装置的甲醇制烯烃水洗水深度净化方法,其特征在于,该方法包括以下步骤:
    步骤1:启动电源,在工控机(1-9)上设定沸腾床分离器(1-3)的过滤压降值以及再生操作时间;
    步骤2:开启进口阀(2-1)和出口阀(2-2),装置正常运行,水洗水通过离心泵从水洗塔(1-2)底抽出,由沸腾床分离器(1-3)顶部进口(1)进入沸腾床分离器(1-3),经进料分配器(4-5)送至颗粒床(4-2)层,经颗粒床(4-2)分离后,水洗水通过分隔板(4-3)上的流体均布器(4-4),经防涡器(4-6)后由底部出口(2)送至纤维聚结器(1-4),水洗水由纤维聚结器(1-4)入口(5-2)进入纤维聚结器(1-4)内,经进口整流分布器(5-3)依次进入油滴粗粒化聚结模块(5-4)、改性波纹强化沉降模块(5-5)和纳米改性深度分离模块(5-6)以使沸腾床出口水洗水中剩余的细小乳化油滴通过在亲疏水纤维上的粘附、碰撞、长大、分离过程,油滴逐渐运动到上部油层,水滴快速下沉,水洗水清液由水相出口(5-7)外排送至烯烃分离装置丙烯精馏塔底重沸器作为热源,进行水洗水的 部分余热回收,换热后经水洗水空冷器和冷却器再换热返回水洗塔(1-2),污油由油相出口(5-8)至缓冲沉降罐(1-5),实现油水分离,装置正常运行时,实时监测沸腾床分离器(1-3)的压差传感器(1-10)数值;
    步骤3:待压差传感器(1-10)到达设定的过滤压降值时,开始再生操作,此时,关闭进口阀(2-1)和出口阀(2-2),开启排污阀(2-3)、排气阀(2-4)、反洗阀(2-6)、氮气/蒸汽入口阀(2-5),水洗水改由出口(2)进入沸腾床分离器(1-3)内,同时混入氮气,由下向上穿过颗粒床(4-2)层,使颗粒床(4-2)层呈沸腾状,释放分离媒质间的催化剂细粉和油蜡状有机物,使媒质清洗再生,含分离媒质和污染物经顶部旋流三相分离器(4-7),使媒质颗粒在旋流场内洗涤,强化媒质再生,同时回收媒质颗粒,污染物随液相由设备侧面排污口(3)排出,氮气由顶部排气口(4)排出;以及
    步骤4:待到达设定的再生操作时间时,关闭排污阀(2-3)、排气阀(2-4)、反洗阀(2-6)、氮气/蒸汽入口阀(2-5),开启进口阀(2-1)和出口阀(2-2),装置继续正常运行,如此循环。
  9. 如权利要求8所述的方法,其特征在于,在步骤1中,设定过滤压降值为0.1~0.3MPa,再生操作时间为20~60分钟;对水洗水中催化剂的分离精度D 85=0.1μm。
  10. 如权利要求8所述的方法,其特征在于,所述甲醇制烯烃水洗水的催化剂颗粒含量为100~500mg/L,固体催化剂颗粒的平均粒径为0.5~5μm,油含量为200~1000mg/L。
PCT/CN2020/115845 2020-09-17 2020-09-17 甲醇制烯烃水洗水深度净化装置及方法 WO2022056775A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/026,770 US20230339785A1 (en) 2020-09-17 2020-09-17 Deep purification device and method for methanol-to-olefin washing water
PCT/CN2020/115845 WO2022056775A1 (zh) 2020-09-17 2020-09-17 甲醇制烯烃水洗水深度净化装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115845 WO2022056775A1 (zh) 2020-09-17 2020-09-17 甲醇制烯烃水洗水深度净化装置及方法

Publications (1)

Publication Number Publication Date
WO2022056775A1 true WO2022056775A1 (zh) 2022-03-24

Family

ID=80777347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115845 WO2022056775A1 (zh) 2020-09-17 2020-09-17 甲醇制烯烃水洗水深度净化装置及方法

Country Status (2)

Country Link
US (1) US20230339785A1 (zh)
WO (1) WO2022056775A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818775A (zh) * 2022-12-26 2023-03-21 新乡市胜达过滤净化技术有限公司 一种气、液、固三相分离方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117797509B (zh) * 2024-02-29 2024-04-26 东营巨宝工贸有限公司 一种硫化促进剂cbs生产过程中环己胺的回收装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723790A (zh) * 2014-01-13 2014-04-16 上海米素环保科技有限公司 应用于烷基化装置的高效聚结分离设备
US20150368168A1 (en) * 2014-06-24 2015-12-24 Uop Llc Options to reduce fouling in mto downstream recovery
CN107382654A (zh) * 2017-09-01 2017-11-24 上海华畅环保设备发展有限公司 甲醇制烯烃急冷水沸腾床分离方法及装置
CN107720872A (zh) * 2017-10-31 2018-02-23 华东理工大学 一种甲醇制烯烃装置水洗水的净化装置及其净化方法
CN207628144U (zh) * 2017-12-12 2018-07-20 神华集团有限责任公司 含固烃类气体冷却净化装置
CN108328761A (zh) * 2017-08-29 2018-07-27 华东理工大学 Mto水洗水工艺连续运行周期延长的方法及装置
CN110015800A (zh) * 2019-04-23 2019-07-16 国家能源投资集团有限责任公司 甲醇制烯烃水系统及其处理方法
CN110980981A (zh) * 2019-11-05 2020-04-10 陕西延长石油延安能源化工有限责任公司 一种甲醇制烯烃水洗水深度净化装置及其净化方法
CN111170552A (zh) * 2018-11-13 2020-05-19 上海华畅环保设备发展有限公司 取消气浮的含油污水预处理方法和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723790A (zh) * 2014-01-13 2014-04-16 上海米素环保科技有限公司 应用于烷基化装置的高效聚结分离设备
US20150368168A1 (en) * 2014-06-24 2015-12-24 Uop Llc Options to reduce fouling in mto downstream recovery
CN108328761A (zh) * 2017-08-29 2018-07-27 华东理工大学 Mto水洗水工艺连续运行周期延长的方法及装置
CN107382654A (zh) * 2017-09-01 2017-11-24 上海华畅环保设备发展有限公司 甲醇制烯烃急冷水沸腾床分离方法及装置
CN107720872A (zh) * 2017-10-31 2018-02-23 华东理工大学 一种甲醇制烯烃装置水洗水的净化装置及其净化方法
CN207628144U (zh) * 2017-12-12 2018-07-20 神华集团有限责任公司 含固烃类气体冷却净化装置
CN111170552A (zh) * 2018-11-13 2020-05-19 上海华畅环保设备发展有限公司 取消气浮的含油污水预处理方法和装置
CN110015800A (zh) * 2019-04-23 2019-07-16 国家能源投资集团有限责任公司 甲醇制烯烃水系统及其处理方法
CN110980981A (zh) * 2019-11-05 2020-04-10 陕西延长石油延安能源化工有限责任公司 一种甲醇制烯烃水洗水深度净化装置及其净化方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115818775A (zh) * 2022-12-26 2023-03-21 新乡市胜达过滤净化技术有限公司 一种气、液、固三相分离方法
CN115818775B (zh) * 2022-12-26 2024-06-04 新乡市胜达过滤净化技术有限公司 一种气、液、固三相分离方法

Also Published As

Publication number Publication date
US20230339785A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
CN110980981A (zh) 一种甲醇制烯烃水洗水深度净化装置及其净化方法
CN108328761B (zh) Mto水洗水工艺连续运行周期延长的方法及装置
CN107382654A (zh) 甲醇制烯烃急冷水沸腾床分离方法及装置
WO2022056775A1 (zh) 甲醇制烯烃水洗水深度净化装置及方法
CN101732968B (zh) 催化裂化烟气洗涤脱硫工艺中微旋流脱固方法与装置
CN107720872B (zh) 一种甲醇制烯烃装置水洗水的净化装置及其净化方法
CA3005192A1 (en) Standardized oilfield water treatment device and process using physical method
CN112624407A (zh) 油田酸化压裂废水深度净化方法及装置
CN201240886Y (zh) 全自动含油污水处理装置
CN211664891U (zh) 一种甲醇制烯烃水洗水深度净化装置
CN202671253U (zh) 含油污水初步分离装置
CN207330792U (zh) 甲醇制烯烃急冷水沸腾床分离装置
CN115557631A (zh) 一种集旋流-气浮-介质聚结于一体的油水分离装置和方法
RU2821462C1 (ru) Способ глубокой очистки промывочной воды, используемой в процессе преобразования метанола в олефины
CN115838217A (zh) 一种一体化乳化型含油废水预处理装置和方法
RU2814431C1 (ru) Способ и устройство для продления непрерывного режима процесса промывки водой при преобразовании метанола в олефины
CN112811667B (zh) 一种序列式除油系统及方法
CN201240885Y (zh) 含油污水处理装置
US20230406728A1 (en) Method and apparatus for prolonging continuous operation period of methanol-to-olefins water washing process
CN212293036U (zh) 一种电脱盐废水除油处理系统
CN201704138U (zh) 铁路罐车机械清洗污水密闭处理装置
WO2022056776A1 (zh) 甲醇制烯烃急冷水沸腾床分离方法及装置
CN112624410A (zh) 油田采出水深度净化方法与装置
CN113277597A (zh) 含油废水异质结微通道分离方法及装置
CN104071910B (zh) Mto/mtp产品分离塔塔底液脱蜡除油方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023106493

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953633

Country of ref document: EP

Kind code of ref document: A1