WO2022056663A1 - 一种增强现实的飞行模拟系统 - Google Patents

一种增强现实的飞行模拟系统 Download PDF

Info

Publication number
WO2022056663A1
WO2022056663A1 PCT/CN2020/115266 CN2020115266W WO2022056663A1 WO 2022056663 A1 WO2022056663 A1 WO 2022056663A1 CN 2020115266 W CN2020115266 W CN 2020115266W WO 2022056663 A1 WO2022056663 A1 WO 2022056663A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
simulation
flight
airframe
terrain
Prior art date
Application number
PCT/CN2020/115266
Other languages
English (en)
French (fr)
Inventor
邵立
Original Assignee
南京智导智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京智导智能科技有限公司 filed Critical 南京智导智能科技有限公司
Priority to PCT/CN2020/115266 priority Critical patent/WO2022056663A1/zh
Publication of WO2022056663A1 publication Critical patent/WO2022056663A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/16Ambient or aircraft conditions simulated or indicated by instrument or alarm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to the technical field of flight simulation, in particular to an augmented reality flight simulation system.
  • An augmented reality flight simulation system is a system that enhances the simulation process on the basis of the original simulation; an existing augmented reality flight simulation system The system does not have a body emergency landing module, which cannot prevent the crash caused by failure in the simulation process in time. Secondly, after the simulation simulation is over, there is no simulation problem broadcasting module, which cannot remind users of problems in the simulation process. , we propose an augmented reality flight simulation system.
  • the main purpose of the present invention is to provide an augmented reality flight simulation system, which can effectively solve the problems in the background technology.
  • the present invention adopts the technical scheme.
  • An augmented reality flight simulation system comprising a flight simulation system, the flight simulation system comprising a flight acquisition module, a body self-checking module and a simulation interaction module, the flight acquisition module comprising a drone collection terrain module and a collection terrain storage module and terrain conversion sending module, the airframe self-checking module includes airframe comprehensive detection module, airframe problem feedback module and airframe emergency landing module, and the simulation interaction module includes simulation loop module, flight data aggregation module and simulation problem broadcasting module.
  • the flight simulation system and the flight acquisition module are interconnected, the flight simulation system and the body self-checking module are interconnected, and the flight simulation system and the simulation interaction module are interconnected, so
  • the flight acquisition module, the airframe self-checking module and the simulation interaction module are all signal connections.
  • the flight acquisition module and the UAV acquisition terrain module are interconnected, the flight acquisition module and the acquisition terrain storage module are interconnected, and the flight acquisition module and the terrain conversion sending module are interconnected.
  • the UAV collecting terrain module, collecting terrain storage module and terrain conversion sending module are all signal connections.
  • the following technical effects can be achieved: facilitating signal transmission among the terrain acquisition module, the acquisition terrain storage module and the terrain conversion sending module by the drone.
  • the airframe self-checking module and the airframe comprehensive inspection module are connected to each other, the airframe self-checking module and the airframe problem feedback module are connected to each other, and the airframe self-checking module and the airframe emergency landing module are connected to each other.
  • the airframe comprehensive detection module, airframe problem feedback module and airframe emergency landing module are all signal connections.
  • the following technical effects can be achieved: facilitating the signal transmission between the airframe comprehensive detection module, the airframe problem feedback module and the airframe emergency landing module.
  • the simulation interaction module and the simulation loop module are interconnected, the simulation interaction module and the flight data aggregation module are interconnected, and the simulation interaction module and the simulation problem reporting module are interconnected,
  • the simulation loop module, the flight data aggregation module and the simulation problem reporting module are all signal connections.
  • the following technical effects can be achieved: facilitating signal transmission between the simulation loop module, the flight data aggregation module and the simulation problem reporting module.
  • the present invention has the following beneficial effects: when using the augmented reality flight simulation system, the user conducts a conductive connection between the flight simulation system and the flight acquisition module, so that the drone collects the terrain module for Collect terrain, transmit the collected information to the acquisition terrain storage module, the acquisition terrain storage module sends the information graphics summary to the terrain conversion sending module, the terrain conversion sending module sends the graphics conversion to the body self-inspection module, and the body self-inspection module conducts the body.
  • a conductive connection is made between the airframe self-inspection module and the airframe comprehensive inspection module.
  • the airframe comprehensive inspection module detects and transmits the problem to the airframe problem feedback module.
  • the airframe problem feedback module feeds back the information to the airframe emergency landing module.
  • Airframe emergency landing module For emergency landing, the user will perform the simulation interaction module, so that the simulation interaction module and the simulation loop module are connected, and the simulation loop module and the flight data aggregation module are connected, and the flight data aggregation module packs the simulation information and transmits it to the simulation.
  • Problem broadcast module the simulation problem broadcast module performs problem broadcast and feedback, reminding users to correct the problems in time, with strong practical effect and better use effect.
  • FIG. 1 is a schematic structural diagram of an augmented reality flight simulation system of the present invention.
  • Flight simulation system 2. Flight acquisition module; 3. Airframe self-checking module; 4. Simulation interaction module; 5. UAV acquisition terrain module; 6. Acquisition terrain storage module; 7. Terrain conversion sending module 8. Airframe comprehensive detection module; 9. Airframe problem feedback module; 10. Airframe emergency landing module; 11. Simulation loop module; 12. Flight data summary module; 13. Simulation problem broadcast module.
  • an augmented reality flight simulation system includes a flight simulation system 1, the flight simulation system 1 includes a flight acquisition module 2, an airframe self-checking module 3 and a simulation interaction module 4, and the flight acquisition module 2 includes an unmanned aerial vehicle
  • the simulation interaction module 4 includes the simulation loop module 11 , the flight data summary module 12 and the simulation problem broadcast module 13 .
  • the flight simulation system 1 and the flight acquisition module 2 are interconnected, the flight simulation system 1 and the airframe self-check module 3 are interconnected, the flight simulation system 1 and the simulation interaction module 4 are interconnected, and the flight acquisition module 2 is interconnected.
  • the airframe self-checking module 3 and the simulation interaction module 4 are all signal connections, which is beneficial to the connection of the flight acquisition module 2, the airframe self-checking module 3 and the simulation interaction module 4 and mutual signal transmission to achieve a better simulation effect.
  • the flight acquisition module 2 and the UAV acquisition terrain module 5 are interconnected, the flight acquisition module 2 and the acquisition terrain storage module 6 are interconnected, and the flight acquisition module 2 and the terrain conversion sending module 7 are interconnected,
  • the UAV's terrain acquisition module 5, acquisition terrain storage module 6 and terrain conversion and transmission module 7 are all signal connections, which are conducive to terrain acquisition and storage, and timely transmission.
  • the airframe self-inspection module 3 and the airframe comprehensive inspection module 8 are interconnected, the airframe self-inspection module 3 and airframe problem feedback module 9 are interconnected, and the airframe self-inspection module 3 and airframe emergency landing module 10 are interconnected ,
  • the airframe comprehensive detection module 8, the airframe problem feedback module 9 and the airframe emergency landing module 10 are all signal connections, which are beneficial to the inspection of the airframe and facilitate safe simulation.
  • the simulation interaction module 4 and the simulation loop module 11 are interconnected, the simulation interaction module 4 and the flight data aggregation module 12 are interconnected, the simulation interaction module 4 and the simulation problem broadcast module 13 are interconnected, and the simulation cycle module is interconnected.
  • the flight data aggregation module 12 and the simulation problem reporting module 13 are all signal connections, which are beneficial to real-time simulation operations and improve simulation effects.
  • the present invention is an augmented reality flight simulation system.
  • the user conducts a conductive connection between the flight simulation system 1 and the flight acquisition module 2, so that the unmanned aerial vehicle acquisition terrain module 5 performs terrain detection.
  • Collect transmit the collected information to the collection terrain storage module 6, the collection terrain storage module 6 sends the information graphics summary to the terrain conversion transmission module 7, the terrain conversion transmission module 7 sends the graphics conversion to the body self-inspection module 3, and the body self-inspection module 3.
  • the body conduct conductive connection between the body self-test module 3 and the body comprehensive detection module 8, the body comprehensive detection module 8 performs detection, and transmit the problem to the body problem feedback module 9, and the body problem feedback module 9 feeds back the information to
  • the airframe emergency landing module 10 the airframe emergency landing module 10 performs an emergency landing, improves the simulation safety, and prevents the phenomenon of falling.
  • the simulation loop module 11 is connected with the flight data aggregation module 12.
  • the flight data aggregation module 12 summarizes and packages the simulation information and transmits it to the simulation problem reporting module 13.
  • the simulation problem reporting module 13 performs problem broadcast and feedback to remind the user of the problems that occur. Timely correction, practical effect is strong.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种增强现实的飞行模拟系统,包括飞行模拟系统,所述飞行模拟系统包括飞行采集模块、机体自检模块与仿真交互模块,所述飞行采集模块包括无人机采集地形模块、采集地形储存模块与地形转换发送模块,所述机体自检模块包括机体全面检测模块、机体问题反馈模块与机体紧急降落模块,所述仿真交互模块包括仿真循环模块、飞行数据汇总模块与仿真问题播报模块。本发明所述的一种增强现实的飞行模拟系统,机体自检模块中机体紧急降落模块较为实用,防止模拟过程中出现故障导致坠机的现象发生,仿真问题播报模块较好的提醒使用者在模拟过程中出现的问题,便于警惕下次模拟过程中不出现同种问题。

Description

一种增强现实的飞行模拟系统 技术领域
本发明涉及飞行模拟技术领域,特别涉及一种增强现实的飞行模拟系统。
背景技术
随着科学技术的发展,模拟的技术也越来越好,一种增强现实的飞行模拟系统是一种在原有的模拟基础上进行加强模拟过程的系统;现有的一种增强现实的飞行模拟系统没有机体紧急降落模块,不能及时防止模拟过程中出现故障导致坠机的现象发生,其次,在仿真模拟结束后,没有仿真问题播报模块,不能提醒使用者在模拟过程中出现的问题,为此,我们提出一种增强现实的飞行模拟系统。
技术问题
本发明的主要目的在于提供一种增强现实的飞行模拟系统,可以有效解决背景技术中的问题。
技术解决方案
为实现上述目的,本发明采取的技术方案。
一种增强现实的飞行模拟系统,包括飞行模拟系统,所述飞行模拟系统包括飞行采集模块、机体自检模块与仿真交互模块,所述飞行采集模块包括无人机采集地形模块、采集地形储存模块与地形转换发送模块,所述机体自检模块包括机体全面检测模块、机体问题反馈模块与机体紧急降落模块,所述仿真交互模块包括仿真循环模块、飞行数据汇总模块与仿真问题播报模块。
优选的,所述飞行模拟系统和飞行采集模块之间为互相连接,所述飞行模拟系统与机体自检模块之间为互相连接,所述飞行模拟系统与仿真交互模块之间为互相连接,所述飞行采集模块、机体自检模块与仿真交互模块之间均为信号连接。
通过采用上述技术方案,可达到如下技术效果:有利于飞行模拟系统和飞行采集模块与机体自检模块的连接使用。
优选的,所述飞行采集模块和无人机采集地形模块之间为互相连接,所述飞行采集模块与采集地形储存模块之间为互相连接,所述飞行采集模块与地形转换发送模块之间为互相连接,所述无人机采集地形模块、采集地形储存模块与地形转换发送模块之间均为信号连接。
通过采用上述技术方案,可达到如下技术效果:便于无人机采集地形模块、采集地形储存模块与地形转换发送模块之间的信号传输。
优选的,所述机体自检模块和机体全面检测模块之间为互相连接,所述机体自检模块与机体问题反馈模块之间为互相连接,所述机体自检模块与机体紧急降落模块之间为互相连接,所述机体全面检测模块、机体问题反馈模块与机体紧急降落模块之间均为信号连接。
通过采用上述技术方案,可达到如下技术效果:便于机体全面检测模块、机体问题反馈模块与机体紧急降落模块之间的信号传输。
优选的,所述仿真交互模块和仿真循环模块之间为互相连接,所述仿真交互模块与飞行数据汇总模块之间为互相连接,所述仿真交互模块与仿真问题播报模块之间为互相连接,所述仿真循环模块、飞行数据汇总模块与仿真问题播报模块之间均为信号连接。
通过采用上述技术方案,可达到如下技术效果:便于仿真循环模块、飞行数据汇总模块与仿真问题播报模块之间的信号传输。
有益效果
与现有技术相比,本发明具有如下有益效果:该增强现实的飞行模拟系统,在使用时,使用者将飞行模拟系统与飞行采集模块之间进行导电连接,使得无人机采集地形模块进行地形的采集,将采集信息传输至采集地形储存模块,采集地形储存模块将信息图形汇总发送至地形转换发送模块, 地形转换发送模块将图形转换发送至机体自检模块,机体自检模块对机体进行检测,机体自检模块与机体全面检测模块之间进行导电连接,机体全面检测模块进行检测,将问题传输至机体问题反馈模块, 机体问题反馈模块将信息反馈至机体紧急降落模块, 机体紧急降落模块进行紧急降落,使用者将进行仿真交互模块,使得仿真交互模块与仿真循环模块之间进行连接,仿真循环模块与飞行数据汇总模块之间进行连接,飞行数据汇总模块将模拟信息汇总打包传输至仿真问题播报模块, 仿真问题播报模块进行问题播报与反馈,提醒使用者出现的问题及时进行改正,实用性效果较强,使用的效果较好。
附图说明
图1为本发明一种增强现实的飞行模拟系统的结构示意图。
图中:1、飞行模拟系统;2、飞行采集模块;3、机体自检模块;4、仿真交互模块;5、无人机采集地形模块;6、采集地形储存模块;7、地形转换发送模块;8、机体全面检测模块;9、机体问题反馈模块;10、机体紧急降落模块;11、仿真循环模块;12、飞行数据汇总模块;13、仿真问题播报模块。
本发明的最佳实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
如图1所示,一种增强现实的飞行模拟系统,包括飞行模拟系统1,飞行模拟系统1包括飞行采集模块2、机体自检模块3与仿真交互模块4,飞行采集模块2包括无人机采集地形模块5、采集地形储存模块6与地形转换发送模块7,机体自检模块3包括机体全面检测模块8、机体问题反馈模块9与机体紧急降落模块10,仿真交互模块4包括仿真循环模块11、飞行数据汇总模块12与仿真问题播报模块13。
飞行模拟系统1和飞行采集模块2之间为互相连接,飞行模拟系统1与机体自检模块3之间为互相连接,飞行模拟系统1与仿真交互模块4之间为互相连接,飞行采集模块2、机体自检模块3与仿真交互模块4之间均为信号连接,有利于飞行采集模块2、机体自检模块3与仿真交互模块4的连接并相互信号传输达到较好模拟效果。
飞行采集模块2和无人机采集地形模块5之间为互相连接,飞行采集模块2与采集地形储存模块6之间为互相连接,飞行采集模块2与地形转换发送模块7之间为互相连接,无人机采集地形模块5、采集地形储存模块6与地形转换发送模块7之间均为信号连接,有利于地形的采集与储存,并及时进行传输。
机体自检模块3和机体全面检测模块8之间为互相连接,机体自检模块3与机体问题反馈模块9之间为互相连接,机体自检模块3与机体紧急降落模块10之间为互相连接,机体全面检测模块8、机体问题反馈模块9与机体紧急降落模块10之间均为信号连接,有利于机体的检测,便于安全模拟。
仿真交互模块4和仿真循环模块11之间为互相连接,仿真交互模块4与飞行数据汇总模块12之间为互相连接,仿真交互模块4与仿真问题播报模块13之间为互相连接,仿真循环模块11、飞行数据汇总模块12与仿真问题播报模块13之间均为信号连接,有利于实时仿真操作,提高模拟效果。
需要说明的是,本发明为一种增强现实的飞行模拟系统,在使用时,使用者将飞行模拟系统1与飞行采集模块2之间进行导电连接,使得无人机采集地形模块5进行地形的采集,将采集信息传输至采集地形储存模块6,采集地形储存模块6将信息图形汇总发送至地形转换发送模块7, 地形转换发送模块7将图形转换发送至机体自检模块3,机体自检模块3对机体进行检测,机体自检模块3与机体全面检测模块8之间进行导电连接,机体全面检测模块8进行检测,将问题传输至机体问题反馈模块9, 机体问题反馈模块9将信息反馈至机体紧急降落模块10, 机体紧急降落模块10进行紧急降落,提高模拟安全度,防止坠落的现象发生,使用者将进行仿真交互模块4,使得仿真交互模块4与仿真循环模块11之间进行连接,仿真循环模块11与飞行数据汇总模块12之间进行连接,飞行数据汇总模块12将模拟信息汇总打包传输至仿真问题播报模块13, 仿真问题播报模块13进行问题播报与反馈,提醒使用者出现的问题及时进行改正,实用性效果较强。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

  1. 一种增强现实的飞行模拟系统,包括飞行模拟系统(1),其特征在于:所述飞行模拟系统(1)包括飞行采集模块(2)、机体自检模块(3)与仿真交互模块(4),所述飞行采集模块(2)包括无人机采集地形模块(5)、采集地形储存模块(6)与地形转换发送模块(7),所述机体自检模块(3)包括机体全面检测模块(8)、机体问题反馈模块(9)与机体紧急降落模块(10),所述仿真交互模块(4)包括仿真循环模块(11)、飞行数据汇总模块(12)与仿真问题播报模块(13)。
  2. 根据权利要求1所述的一种增强现实的飞行模拟系统,其特征在于:所述飞行模拟系统(1)和飞行采集模块(2)之间为互相连接,所述飞行模拟系统(1)与机体自检模块(3)之间为互相连接,所述飞行模拟系统(1)与仿真交互模块(4)之间为互相连接,所述飞行采集模块(2)、机体自检模块(3)与仿真交互模块(4)之间均为信号连接。
  3. 根据权利要求1所述的一种增强现实的飞行模拟系统,其特征在于:所述飞行采集模块(2)和无人机采集地形模块(5)之间为互相连接,所述飞行采集模块(2)与采集地形储存模块(6)之间为互相连接,所述飞行采集模块(2)与地形转换发送模块(7)之间为互相连接,所述无人机采集地形模块(5)、采集地形储存模块(6)与地形转换发送模块(7)之间均为信号连接。
  4. 根据权利要求1所述的一种增强现实的飞行模拟系统,其特征在于:所述机体自检模块(3)和机体全面检测模块(8)之间为互相连接,所述机体自检模块(3)与机体问题反馈模块(9)之间为互相连接,所述机体自检模块(3)与机体紧急降落模块(10)之间为互相连接,所述机体全面检测模块(8)、机体问题反馈模块(9)与机体紧急降落模块(10)之间均为信号连接。
  5. 根据权利要求1所述的一种增强现实的飞行模拟系统,其特征在于:所述仿真交互模块(4)和仿真循环模块(11)之间为互相连接,所述仿真交互模块(4)与飞行数据汇总模块(12)之间为互相连接,所述仿真交互模块(4)与仿真问题播报模块(13)之间为互相连接,所述仿真循环模块(11)、飞行数据汇总模块(12)与仿真问题播报模块(13)之间均为信号连接。
PCT/CN2020/115266 2020-09-15 2020-09-15 一种增强现实的飞行模拟系统 WO2022056663A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115266 WO2022056663A1 (zh) 2020-09-15 2020-09-15 一种增强现实的飞行模拟系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115266 WO2022056663A1 (zh) 2020-09-15 2020-09-15 一种增强现实的飞行模拟系统

Publications (1)

Publication Number Publication Date
WO2022056663A1 true WO2022056663A1 (zh) 2022-03-24

Family

ID=80777595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115266 WO2022056663A1 (zh) 2020-09-15 2020-09-15 一种增强现实的飞行模拟系统

Country Status (1)

Country Link
WO (1) WO2022056663A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102373A2 (en) * 2008-01-23 2009-08-20 Sikorsky Aircraft Corporation Modules and methods for biasing power to a multi-engine power plant suitable for one engine inoperative flight procedure training
CN104462669A (zh) * 2014-11-24 2015-03-25 成都盛军电子设备有限公司 一种飞行仿真系统
US20160023755A1 (en) * 2014-05-05 2016-01-28 King Fahd University Of Petroleum And Minerals System and method for control of quadrotor air vehicles with tiltable rotors
CN210200056U (zh) * 2018-12-04 2020-03-27 天津航大中天科技发展有限公司 一种飞机操作模拟训练装置
CN111045439A (zh) * 2019-12-13 2020-04-21 西安航空职业技术学院 一种飞行器飞行控制系统
CN111459181A (zh) * 2020-04-02 2020-07-28 徐子卿 一种航空模型飞行器控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009102373A2 (en) * 2008-01-23 2009-08-20 Sikorsky Aircraft Corporation Modules and methods for biasing power to a multi-engine power plant suitable for one engine inoperative flight procedure training
US20160023755A1 (en) * 2014-05-05 2016-01-28 King Fahd University Of Petroleum And Minerals System and method for control of quadrotor air vehicles with tiltable rotors
CN104462669A (zh) * 2014-11-24 2015-03-25 成都盛军电子设备有限公司 一种飞行仿真系统
CN210200056U (zh) * 2018-12-04 2020-03-27 天津航大中天科技发展有限公司 一种飞机操作模拟训练装置
CN111045439A (zh) * 2019-12-13 2020-04-21 西安航空职业技术学院 一种飞行器飞行控制系统
CN111459181A (zh) * 2020-04-02 2020-07-28 徐子卿 一种航空模型飞行器控制系统

Similar Documents

Publication Publication Date Title
CN106302064B (zh) 电动汽车用双通道冗余can总线的数据传输优化方法及系统
CN103217974B (zh) 一种基于综合电子平台的航天器自主健康管理体系结构
CN106488191A (zh) 电动汽车远程安全监控方法
CN103332296A (zh) 无人机电源
WO2022056663A1 (zh) 一种增强现实的飞行模拟系统
CN106505267A (zh) 一种大型汽车燃料电池管理系统及方法
CN109413379B (zh) 一种基于北斗短报文的智能航空反恐监控方法和系统
CN102981473A (zh) 电力大件在途冲击振动无线实时监控系统
CN205179112U (zh) 水库水位检测系统的上位机和下位机通信系统
CN106813946A (zh) 一种水质检测的四轴无人机
CN203870749U (zh) 一种基于传感器的森林防火监控巡查系统
CN103220169B (zh) 一种航天器层状信息流传输系统
CN205388998U (zh) 镍氢电池管理系统
CN112162506A (zh) 一种列车仿真系统和平台
CN206292968U (zh) 一种基于物联网的车辆超速监测系统
CN206224186U (zh) 一种基于双处理器架构的飞行控制板
CN203069332U (zh) 水下航行器动密封漏液检测装置
CN115391251A (zh) 一种无人机智能飞控芯片架构
CN204790538U (zh) 一种用于冷链物流的监测系统
CN106379323A (zh) 一种车辆控制系统
CN206162752U (zh) 一种校车安全管理装置
CN106856436A (zh) 车载无线传输方法、设备及系统
CN206162702U (zh) 一种学校后勤服务管理系统
CN203101998U (zh) 一种汽车abs故障诊断系统
CN202310123U (zh) 车载gprs通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953524

Country of ref document: EP

Kind code of ref document: A1