WO2022055056A1 - Recombinant microorganism for producing s-methylmethionine, and method for preparing s-methylmethionine using same - Google Patents

Recombinant microorganism for producing s-methylmethionine, and method for preparing s-methylmethionine using same Download PDF

Info

Publication number
WO2022055056A1
WO2022055056A1 PCT/KR2021/002981 KR2021002981W WO2022055056A1 WO 2022055056 A1 WO2022055056 A1 WO 2022055056A1 KR 2021002981 W KR2021002981 W KR 2021002981W WO 2022055056 A1 WO2022055056 A1 WO 2022055056A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylmethionine
mmt
gene
recombinant microorganism
seq
Prior art date
Application number
PCT/KR2021/002981
Other languages
French (fr)
Korean (ko)
Inventor
오민규
이준민
박부수
박민호
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2022055056A1 publication Critical patent/WO2022055056A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0028Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y105/00Oxidoreductases acting on the CH-NH group of donors (1.5)
    • C12Y105/01Oxidoreductases acting on the CH-NH group of donors (1.5) with NAD+ or NADP+ as acceptor (1.5.1)
    • C12Y105/0102Methylenetetrahydrofolate reductase [NAD(P)H] (1.5.1.20)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • C12Y201/01012Methionine S-methyltransferase (2.1.1.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01046Homoserine O-succinyltransferase (2.3.1.46)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01006Methionine adenosyltransferase (2.5.1.6), i.e. adenosylmethionine synthetase

Definitions

  • a gene encoding methionine S-methylmethionine transferase is overexpressed in a microorganism having glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway process, S It relates to a recombinant microorganism having the ability to produce -methylmethionine (S-Methylmethionine, SMM) and a method for producing SMM using the recombinant microorganism.
  • SMM S-Methylmethionine
  • the present inventors were intensively researching on the production method of SMM through microbial fermentation, methionine S-methyl in microorganisms having glycolysis and S-adenosylmethionine (S-Adenosylmethionine, SAM) biosynthetic pathway process
  • S-Adenosylmethionine, SAM S-adenosylmethionine
  • SMM S-methylmethionine
  • Another object of the present invention is to provide a method for producing S-methylmethionine using the recombinant microorganism.
  • the present invention encodes methionine S-methylmethionine transferase (MMT) in a microorganism having a glycolysis process and a S-adenosylmethionine (S-adenosylmethionine, SAM) biosynthetic pathway process
  • MMT methionine S-methylmethionine transferase
  • SAM S-adenosylmethionine
  • the present invention also comprises the steps of (a) culturing a recombinant microorganism having the S-methylmethionine (SMM) producing ability to produce S-methylmethionine; and (b) obtaining the produced S-methylmethionine; provides a method for producing S-methylmethionine comprising.
  • SMM S-methylmethionine
  • S-methylmethionine can be produced in excellent yield through microbial biosynthesis, unlike conventional plant extraction or chemical synthesis, and it is expected that it can be used as a core technology for S-methylmethionine production.
  • FIG. 1 shows a pathway for biosynthesis of SMM by introducing an MMT gene in Escherichia coli having a glycolysis process and a SAM biosynthetic pathway process according to the present invention.
  • Figure 2 shows the results of measuring the SMM production of the recombinant microorganism (E. coli) according to Example 1 of the present invention
  • dJ ⁇ metJ
  • dJMP ⁇ metJ
  • ⁇ mmuP ⁇ mmuM
  • aK pZA (metK)
  • aKF pZA(metK, metF)
  • cM pCDFDuet(A.MMT)
  • sA * : pZS(metA * fbr
  • cBM pCDFDuet(B.MMT)
  • csfM pCDFDuet(Sf.MMT)
  • Figure 3 shows the results of measuring the SMM production for each MMT gene origin of the recombinant microorganism (E. coli) according to Example 1 of the present invention ( Arabidopsis thaliana (dJMP + aKcMsA * ), Barley (dJMP + aKcBMsA * ), Sunflower (dJMP+aKcsfMsA * )).
  • Figure 4 shows the results of measuring the SMM production of the recombinant microorganism (Saccharomyces cerevisiae) according to Example 2 of the present invention (Y1: BY4742 + pSH47 (MMT::URA). Y2: K6-1 + p425(MMT::Leu))
  • Figure 5 shows the results of measuring the SMM production of the recombinant microorganism (Bacillus subtilis) according to Example 3 of the present invention (BS + M (wtBacillus + pBE-S (MMT), BS + MK (wtBacillus + pBE) -S(metK, MMT))
  • Example 6 shows the results of measuring the SMM production of the recombinant microorganism (Streptomyces Venezuela) according to Example 4 of the present invention.
  • a recombinant microorganism capable of producing S-methylmethionine in excellent yield through microbial biosynthesis was prepared, and the prepared recombinant microorganism exhibits excellent S-methylmethionine yield and productivity.
  • the present invention is a glycolysis process and S-adenosylmethionine (S-adenosylmethionine, SAM) in a microorganism having a biosynthetic pathway process, methionine S-methylmethionine transferase (methionine S-methylmethionine transferase, MMT) encoding
  • SAM S-adenosylmethionine
  • MMT methionine S-methylmethionine transferase
  • the gene is overexpressed, and relates to a recombinant microorganism having S-methylmethionine (SMM) producing ability (FIG. 1).
  • Escherichia coli or Saccharomyces cerevisiae as a microorganism having the above glycolysis process and S-adenosylmethionine (SAM) biosynthetic pathway process was used, In order to receive a methyl group from SAM and generate S-methylmethionine from methionine, a gene encoding methionine S-methylmethionine transferase (MMT) was introduced and overexpressed.
  • SAM S-adenosylmethionine
  • the S-methylmethionine may be S-methyl-L-methionine (S-Methyl-L-methionine).
  • the gene encoding the MMT may be represented by any one of SEQ ID NOs: 1 to 3, but is not limited thereto.
  • the genes of SEQ ID NOs: 1 to 3 may be derived from Arabidopsis thaliana, barley, and sunflower, respectively.
  • the MMT-encoding gene may be any if the amino acid sequence corresponding to the MMT-encoding gene has at least 60% sequence homology with the amino acid sequence of SEQ ID NO: 47, which is the amino acid sequence corresponding to SEQ ID NO: 1.
  • the gene encoding the MMT is grape (scientific name: Vitis vinifera), coyote tobacco (scientific name: Nicotiana attenuata), mulberry (scientific name: Arabidopsis lyrata), corn (scientific name: Zea mays), tulip (scientific name: Anthurium amnicola) may be derived from, and their amino acid sequences may be those represented by SEQ ID NOs: 50 to 54, respectively.
  • the gene metJ (methionine repressor), which encodes a repressor of a methionine biosynthesis pathway present in wild-type E. coli, was further deleted.
  • a transport of S-methylmethionine (mmuP) gene and a homocysteine S-methyltransferase (mmuM) gene which is a gene for synthesizing methionine from SMM, are additionally added. deleted it
  • metK S-adenosylmethionine synthetase
  • SAM S-adenosylmethionine synthetase
  • methionine a precursor of SMM
  • metF gene encoding 5,10-methylenetetrahydrofolate reductase, which helps in production, was further overexpressed.
  • the metA gene encoding homoserine O-succinyltransferase involved in methionine biosynthesis was mutated.
  • the mutant gene of metA may be one in which cytosine, which is the 190th base, is substituted with guanine in the nucleotide sequence of the metA gene, and is represented by SEQ ID NO: 4.
  • the microorganism can be used without limitation as long as it has a glycolytic process and a S-adenosylmethionine (SAM) biosynthetic pathway process, for example, Escherichia coli ), yeast, Bacillus subtilis, or actinomycetes, wherein the yeast is Saccharomyces cerevisiae , the Bacillus subtilis is Bacillus subtilis , and the actinomycetes are Streptomyces venezuelae ( Streptomyces venezuelae ).
  • SAM S-adenosylmethionine
  • the present invention comprises the steps of (a) culturing the recombinant microorganism to produce S-methylmethionine; And (b) obtaining the produced S-methylmethionine; relates to a method for producing S-methylmethionine comprising a.
  • the method of culturing the recombinant microorganism may be performed using a method widely known in the art.
  • the culture is not particularly limited as long as SMM can be produced from the recombinant microorganism, but may be continuously cultured in a batch process or injection batch or repeated fed batch process.
  • the medium used for culture may contain a carbon source, a nitrogen source, amino acids, vitamins, etc., and must meet the requirements of a specific strain in an appropriate manner while controlling temperature, pH, etc.
  • the carbon source that can be used is sucrose, lactose, maltose, trehalose, turanose, cellobiose, raffinose, melechtose, malotriose, acarbose, stachyose, glucose, amylose, cellulose, fructose, anose, or It may be one or more selected from the group consisting of galactose.
  • nitrogen source examples include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, and glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation products, defatted soybean cake or its degradation products, etc. can These nitrogen sources may be used alone or in combination.
  • the medium may contain monopotassium phosphate, dipotassium phosphate and the corresponding sodium-containing salt as phosphorus.
  • the phosphorus that may be used includes potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt.
  • potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt As the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, and the like may be used.
  • essential growth substances such as amino acids and vitamins can be used.
  • precursors suitable for the culture medium may be used.
  • the above-mentioned raw materials may be added in a batch, fed-batch or continuous manner by an appropriate method to the culture during the culturing process, but is not particularly limited thereto.
  • MG1655 K-12 strain was used as E. coli
  • S. cerevisiae K6-1 was used as yeast.
  • Frozen stocks of E. coli and S. cerevisiae were prepared by adding 30% (v/v) glycerol to exponentially grow the cells.
  • E. coli cells were cultured using two different media.
  • LB (Luria-Bertani) medium was used for E. coli cell growth.
  • M9 medium was used as a minimal medium, and the composition of M9 is as follows: Na 2 HPO 4 7H 2 O (6g) , KH 2 PO 4 (3g), NaCl (0.5g), NH 4 Cl (1g), 1M MgSO 4 2mL, 1M CaCl 2 10uL and 50g/L glucose (40mL) in 1L bottle.
  • YPD medium and SD medium were used for yeast culture.
  • a minimal medium, SD medium was prepared using yeast nitrogenous base w/o amino acids (6.7 g), H 2 O (865 mL), AA-Mix 10x concentrate (10 mL) without L-leucine.
  • E. coli cultures were grown with each required antibiotic (kanamycin, chloramphenicol, spectinomycin (25 mg/mL)).
  • Agar plates were prepared with 20 g/L agar.
  • E. coli DH5a was used for all plasmid cloning and propagation. All plasmids used were constructed using Gibson Asembly (New England BioLab.). The genes used were derived from E. coli MG1655 K-12 (metF, metH, metA) and Arabidopsis thaliana (MMT), Sunflower (MMT) and Barley (MMT). All MMT genes were integrated into the pCDFDuet vector. For yeast (K6-1), a pESC vector with a bidirectional promoter was used. Successful genomic integration of overexpression was confirmed by diagnostic PCR from Bionics.
  • E. coli cells were cultured at 37 °C while shaking at 30 °C.
  • the antibiotic required for recombinant microorganisms for 1 day was inoculated into 5 mL LB.
  • each was transferred to 5 mL of M9 medium (minimum medium) for acclimatization in the medium required for antibiotics.
  • M9 medium minimum medium
  • the seeds were scaled up in 25 mL M9 medium to an initial OD (0.125) in unbaffled flasks for culture.
  • E. coli was cultured to a maximum OD (4.2) for 48 h.
  • S. cerevisiae K6 (Sake yeast kyokai No.6) cells were cultured at 30° C. while shaking at 30 rpm.
  • Yeast cells (S. cerevisiae K6-1 with pESC vector (MMT, SAM2)) were first inoculated into 5 mL YPD without additional amino acids for 36 hours, and then transferred to 5 mL SD medium (minimum medium) to adapt to the medium. Next, the seeds were scaled up in 25 mL SD medium, to an initial OD (0.125) in baffled flasks for cultivation.
  • Yeast (S. cerevisiae K6-1) carrying a pESC vector (MMT, SAM2) was cultured at a maximum OD (5.0) for 72 hours.
  • S-methylmethionine and L-methionine were determined by high performance liquid chromatography using UV spectroscopy. Two mobile phases were used for the analysis (1: Sodium phosphate di-basic 8.51 g with 3 mL phosphoric acid in 3 L DW, 2: Acetonitrile (45), Methanol (45), DW (10) in 3 L bottle). In addition, Agilent's amino acid analysis column was used for all samples, and OPA reagent (Sigma-Aldrich) was used for amino acid derivatization.
  • Escherichia as a microorganism having glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway process coli K-12 MG1655) was used, and the names of strains or plasmids according to genetic manipulation, etc. are shown in Table 1 below.
  • SAM S-adenosylmethionine
  • strains or plasmids Description source strains dJ Escherichia coli K-12 MG1655 ⁇ metJ this study dJMP Escherichia coli K-12 MG1655 ⁇ metJ, ⁇ mmuM, ⁇ mmuP this study Plasmids pRedET ⁇ phage red ⁇ , ⁇ , ⁇ -producing vector, pBAD_promoter; ori101 Tetr Gene Bridges 707-FLP Flp recombinase-producing vectors; Psc101 ori cI1578 Tetr Gene Bridges pKD4 FRT-flanked resistance cassette-involved vector; oriR ⁇ Kmr Datsenko KA and Wanner BL, 2000 aK pZA (metK) this study aKF pZA (metK, metF) this study cM pCDFDuet (MMT) this study cBM pCDFDuet (Barley MMT) this study csfM p
  • a lambda red recombination method was used to remove the metJ gene of K-12 MG1655.
  • an enzyme expression vector for preventing degradation of the linear gene introduced into the cell and increasing the efficiency of homologous recombination was introduced into the wild type E. coli K-12 MG1655 strain prepared as competent cells.
  • a pRedET vector having a BAD promoter and resistant to tetracycline was used in the present invention, and transformation was confirmed.
  • a linear gene for homologous recombination was prepared.
  • a pKD4 vector having an FRT-kanamycin-FRT cassette was used as a template. Homologous 50 base pairs on both sides of the metJ gene of wild type E.
  • coli K-12 MG1655 the site at which homologous recombination occurs, and 20 base pairs for polymerization of the FRT-kanamycin-FRT cassette of pKD4 used as a template, a total of 70 base pairs was prepared as a primer, and a linear gene for removing the metJ gene was prepared using polymerase chain reaction. Kanamycin is used as a selection marker to confirm successful homologous recombination, and the FRT region serves to remove a selection marker for removal of other genes after the target gene is removed.
  • the MG1655+pRedET strain confirmed to be transformed with the pRedET vector was cultured at 30°C.
  • the pRedET vector is a temperature-sensitive vector and loses its activity when it is over 37°C, so it was cultured at 30°C.
  • the expression of pRedET's red lambda recombinase was induced with 10% arabinose (L-arabinose).
  • the cells were transformed into competent cells for electroporation and then the prepared linear gene. After 1 hour incubation at 37° C. in LB medium, it was spread on LB solid medium to which 12.5 mg/ml of kanamycin was added and cultured for 12 hours.
  • a lambda red recombination method was used.
  • an enzyme expression vector for preventing degradation of the linear gene introduced into the cell and increasing the efficiency of homologous recombination was introduced into the dJ strain prepared as competent cells.
  • a pRedET vector having a BAD promoter and resistant to tetracycline was used in the present invention, and transformation was confirmed.
  • a linear gene for homologous recombination was prepared.
  • a pKD4 vector having an FRT-kanamycin-FRT cassette was used as a template. Homologous 50 base pairs on both sides of the metJ gene of wild type E.
  • coli K-12 MG1655 the site where homologous recombination occurs, and 20 base pairs for polymerization of the FRT-kanamycin-FRT cassette of pKD4 used as a template, a total of 70 A base pair was prepared as a primer, and a linear gene for removing the metJ gene was prepared using polymerase chain reaction. Kanamycin is used as a selection marker to confirm successful homologous recombination, and the FRT region serves to remove a selection marker for removal of other genes after the target gene is removed.
  • the dJ+pRedET strain confirmed to be transformed with the pRedET vector was cultured at 30°C.
  • the pRedET vector is a temperature-sensitive vector and loses its activity when it exceeds 37°C, so it was incubated at 30°C.
  • the expression of pRedET red lambda recombinase was induced with 10% arabinose (L-arabinose).
  • the cells were transformed into competent cells for electroporation, and then the prepared linear gene was transformed.
  • 1 hour incubation at 37° C. in LB medium it was spread on LB solid medium to which 12.5 mg/ml of kanamycin was added and cultured for 12 hours.
  • All vectors used for gene overexpression according to the present invention were prepared through gibson assembly.
  • the primers used to overexpress the metK gene, which produces a lot of S-adenosylmethionine, are shown in Table 2 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly.
  • a pZA (metK) vector was constructed in this way.
  • the primers used to overexpress the MMT gene, a gene that makes S-methylmethionine, are shown in Table 2 below. After cloning using the corresponding primer, re-cloning was performed according to the gibson primer, and each fragment was combined through gibson assembly. In this way, a pCDFDuet (MMT) vector was constructed.
  • the primers used to overexpress the mutant gene (SEQ ID NO: 4) of metA which is a gene for synthesizing O-succinyl homoserine in the methionine biosynthesis pathway in E. coli, are shown in Table 2 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. In this way, a pZS(metA*) vector was constructed.
  • the primers used to overexpress metK, a gene that generates SAM, which transfers a methyl group to methionine during SMM generation, and metF, a gene that enhances the activity of the tetrahydrofolate cycle in E. coli, are shown in Table 2 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. A pZA (metK, metF) vector was constructed in this way.
  • Recombinant E. coli according to the present invention was prepared through transformation using the vectors prepared as above. Transformation was performed according to a method generally known in the art. Briefly, the strain to be transformed was cultured in a 5mL falcon tube, and after 24 hours, cell down was performed using a centrifuge, washed twice, and glycerol After releasing the cells with a 10% solution, the prepared vectors were added thereto, and then electricity of 1950V was applied.
  • Saccharomyces cerevisiae (BY4742, Sake koykai No.6) was used as a microorganism having glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway process, and according to genetic manipulation, etc.
  • SAM S-adenosylmethionine
  • Table 3 The strain or plasmid names are shown in Table 3 below.
  • all vectors used for gene overexpression according to the present invention were prepared through gibson assembly.
  • the primers used to express the gene making S-methylmethionine are shown in Table 4 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. In this way, p425 (MMT) and pSH47 (MMT) were prepared. Thereafter, a recombinant yeast in which the MMT gene was overexpressed was prepared through the same method as the MMT gene overexpression method described in Example 1.
  • Bacillus subtilis ATCC6633 was used as a microorganism having glycolysis process and S-adenosylmethionine (SAM) biosynthetic pathway process, and the names of strains or plasmids according to genetic manipulation, etc. are shown in Table 5 below.
  • SAM S-adenosylmethionine
  • Table 5 all vectors used for gene overexpression according to the present invention were prepared through gibson assembly.
  • Primers used to overexpress the metK gene are shown in Table 6 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. In this way, a pBE-S (metK) vector was constructed.
  • the primers used to overexpress the MMT gene are shown in Table 6 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. In this way, a pBE
  • strains and plasmids Description source strains BS wild type Bacillus subtilis this study Plasmid pBE-S(M) pBE-S (MMT) this study pBE-S(K,M) pBE-S (metK, MMT) this study
  • Streptomyces as a microorganism with glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway process venezuelae ATCC 15439) was used, and the names of strains or plasmids according to genetic manipulation, etc. are shown in Table 7 below.
  • all vectors used for gene overexpression according to the present invention were prepared through gibson assembly. Primers used to overexpress the MMT gene are shown in Table 8 below.
  • MMT gene fragment was created using the corresponding primer, and backbone vector fragments cut with XbaI and NdeI were combined through gibson assembly. A pSET(M) vector was constructed in this way.
  • Recombinant E. coli according to Example 1 of the present invention was cultured in M9 (minimal media) medium supplemented with 10 g/L glucose for 24 hours, and SMM production was measured using HPLC.
  • Agilent's Amino Acid Analysis column was used for the column, and A: Sodium phosphate diabasic, Phosphoric acid, DW / B: DW, Acetonitrile, and Methanol were used as mobile phases for HPLC.
  • Figure 2 shows the results of measuring the SMM production of the recombinant microorganism (E. coli) according to Example 1 of the present invention
  • J ⁇ metJ, dJMP: ⁇ metJ, ⁇ mmuP, ⁇ mmuM
  • sA * :pZS(metA * fbr) cBM:pCDFDuet(B.MMT)
  • csfM:pCDFDuet(Sf.MMT) shows the results of measuring the SMM production of the recombinant microorganism (E. coli) according to Example 1 of the present invention
  • SMM when recombinant E. coli according to the present invention is used, SMM can be produced in excellent yield without adding methionine, a precursor of SMM (0.063 g/L and 0.063 g/L and 0.07 g/L production) was confirmed.
  • Figure 3 shows the results of measuring the SMM production for each MMT gene origin of the recombinant microorganism (E. coli) according to Example 1 of the present invention ( Arabidopsis thaliana (dJMP + aKcMsA * ), Barley (dJMP + aKcBMsA * ), Sunflower (dJMP+aKcsfMsA * )).
  • the culture conditions and the method of measuring the amount of SMM production are the same as those described in Evaluation Example 1 above.
  • the recombinant yeast according to Example 2 of the present invention was cultured for 24 hours in SD (minimal media) medium supplemented with 10 g/L glucose and 0.5 g/L methionine, and SMM production was measured using HPLC.
  • SD minimal media
  • Agilent's Amino Acid Analysis column was used for the column, and A: Sodium phosphate diabasic, Phosphoric acid, DW / B: DW, Acetonitrile, and Methanol were used as mobile phases for HPLC.
  • Example 4 shows the results of measuring the SMM production of the recombinant microorganism (Saccharomyces cerevisiae) according to Example 2 of the present invention (Y1: BY4742 + pSH47 (MMT::URA). Y2: K6-1 + p425(MMT::Leu))
  • Recombinant Bacillus subtilis according to Example 3 of the present invention was cultured for 24 hours in LB (rich media) medium supplemented with 10 g/L glucose and 0.5 g/L methionine, and SMM production was measured using HPLC.
  • Agilent's Amino Acid Analysis column was used for the column, and A: Sodium phosphate diabasic, Phosphoric acid, DW / B: DW, Acetonitrile, and Methanol were used as mobile phases for HPLC.
  • Figure 5 shows the results of measuring the SMM production of the recombinant microorganism (Bacillus subtilis) according to Example 3 of the present invention (BS + M (wtBacillus + pBE-S (MMT), BS + MK (wtBacillus + pBE) -S(metK, MMT))
  • Recombinant actinomycetes according to Example 4 of the present invention were cultured for 96 hours in GYM medium supplemented with 0.5 g/L methionine, and SMM production was measured using HPLC.
  • Agilent's Amino Acid Analysis column was used for the column, and A: Sodium phosphate diabasic, Phosphoric acid, DW / B: DW, Acetonitrile, and Methanol were used as mobile phases for HPLC.
  • Example 6 shows the results of measuring the SMM production of the recombinant microorganism (Streptomyces Venezuela) according to Example 4 of the present invention.
  • the multiple sequence alignment was performed through the ClustalX program, and as a result, unlike the amino acid sequence (SEQ ID NOs: 55 and 56) corresponding to the MMT gene possessed by orchids (Apostasia shenzhenica) and stink bug (Lygus hesperus), grapes (Vitis vinifera) , Coyote tobacco (Nicotiana attenuata), Arabidopsis lyrata, corn (Zea mays), the amino acid sequence corresponding to the MMT gene (SEQ ID NOs: 50 to 54) derived from tulips (Anthurium amnicola) Arabidopsis thaliana ), it was confirmed that the amino acid sequence (SEQ ID NO: 47) corresponding to the MMT gene (SEQ ID NO: 1) and the similarity and identity (similarity) and identity (identity) are at least 60%, and the MMT gene derived from them is also It was confirmed that the same can be applied to the invention.
  • S-methylmethionine can be produced in excellent yield through microbial biosynthesis, unlike conventional plant extraction or chemical synthesis, and thus can be usefully used in various fields requiring S-methylmethionine production.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a recombinant microorganism having the ability to produce S-methylmethionine (SMM) by overexpressing a gene that encodes methionine S-methylmethionine transferase (MMT) in a microorganism having glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway processes, and a method for producing SMM using the recombinant microorganism. According to the present invention, S-methylmethionine can be produced with excellent yield through microbial biosynthesis, unlike conventional plant extraction or chemical synthesis, and this is expected to be usable as a core technology for S-methylmethionine production.

Description

S-메틸메티오닌 생산용 재조합 미생물 및 이를 이용한 S-메틸메티오닌의 제조방법Recombinant microorganism for production of S-methylmethionine and method for producing S-methylmethionine using the same
본 발명은 해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물에서 메티오닌 S-메틸메티오닌 트랜스퍼라제(methionine S-methylmethionine transferase, MMT)를 코딩하는 유전자가 과발현되어, S-메틸메티오닌(S-Methylmethionine, SMM) 생성능을 갖는 재조합 미생물 및 상기 재조합 미생물을 이용한 SMM 제조방법에 관한 것이다.In the present invention, a gene encoding methionine S-methylmethionine transferase (MMT) is overexpressed in a microorganism having glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway process, S It relates to a recombinant microorganism having the ability to produce -methylmethionine (S-Methylmethionine, SMM) and a method for producing SMM using the recombinant microorganism.
발효 조건 최적화와 미생물 대사회로 조작은 미생물 발효를 통한 특정 대사산물 생산성 향상을 위해 주로 수행되며, 그 중에서도 대사공학적인 관점에서 미생물의 대사 경로와 역할을 이해하고 목표하는 대사산물의 향상을 위하여 유전자를 과발현시키고, 미생물 게놈 상의 특정 유전자를 제거하는 방법은 대사공학 분야에서 가장 근본적인 접근이라 할 수 있다. 또한, 목적산물의 생산능을 향상시키기 위해 생산에 직접적 또는 간접적 으로 관련된 유전자를 플라스미드를 기반으로 클로닝하여 과발현시켜 목적산물로의 대사회로를 활성화시키는 연구가 진행되어 왔다.Optimization of fermentation conditions and manipulation of microbial metabolic circuits are mainly performed to improve the productivity of specific metabolites through microbial fermentation. The method of overexpressing and removing a specific gene on the microbial genome is the most fundamental approach in the field of metabolic engineering. In addition, in order to improve the production capacity of the target product, studies have been conducted to activate the metabolic circuit to the target product by cloning and overexpressing genes directly or indirectly related to production based on a plasmid.
한편, S-메틸메티오닌(S-Methylmethionine, SMM)는 비타민 U로 알려진 물질로서, 양배추, 브로콜리, 당근, 김 등에 풍부하게 존재하며, 항염증작용, 혈중 지질의 개선 효과, 항우울 효과, 세포막 손상억제기능 등 다양한 생리학적 기능을 갖는 것으로 알려지면서, SMM에 대한 관심이 증가하고 있다.On the other hand, S-Methylmethionine (SMM), a substance known as vitamin U, is abundantly present in cabbage, broccoli, carrots, seaweed, etc. As it is known to have various physiological functions, such as an inhibitory function, interest in SMM is increasing.
그러나 현재 생산되고 있는 SMM은 양배추, 당근 등 SMM이 다량 함유된 식물로부터 추출하거나 화학적 합성을 통해 만들어지고 있을 뿐, 미생물 발효를 통한 SMM의 생산에 대해서는 보고된 바 없다.However, the currently produced SMM is only extracted from plants containing a large amount of SMM such as cabbage and carrot or made through chemical synthesis, and there is no report on the production of SMM through microbial fermentation.
전술한 기술적 배경하에서, 본 발명자들은 미생물 발효를 통한 SMM의 생산 방법에 대하여 예의 연구하던 중, 해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물에서 메티오닌 S-메틸메티오닌 트랜스퍼라제(methionine S-methylmethionine transferase, MMT)를 코딩하는 유전자를 도입 및 과발현시킬 경우, 높은 수율로 SMM을 생성시킬 수 있음을 확인하고 본 발명을 완성하였다.Under the above-mentioned technical background, the present inventors were intensively researching on the production method of SMM through microbial fermentation, methionine S-methyl in microorganisms having glycolysis and S-adenosylmethionine (S-Adenosylmethionine, SAM) biosynthetic pathway process When introducing and overexpressing a gene encoding methionine S-methylmethionine transferase (MMT), it was confirmed that SMM could be produced in high yield, and the present invention was completed.
본 발명의 목적은 S-메틸메티오닌(S-Methylmethionine, SMM) 생성능을 갖도록 대사공학적으로 설계된 재조합 미생물을 제공하는 것이다.It is an object of the present invention to provide a recombinant microorganism designed to be metabolically engineered to have S-methylmethionine (SMM) producing ability.
본 발명의 다른 목적은 상기 재조합 미생물을 이용한 S-메틸메티오닌의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing S-methylmethionine using the recombinant microorganism.
본 발명은 상기 과제를 해결하기 위하여, 해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물에서 메티오닌 S-메틸메티오닌 트랜스퍼라제(methionine S-methylmethionine transferase, MMT)를 코딩하는 유전자가 과발현되어, S-메틸메티오닌(S-Methylmethionine, SMM) 생성능을 갖는 재조합 미생물을 제공한다.In order to solve the above problems, the present invention encodes methionine S-methylmethionine transferase (MMT) in a microorganism having a glycolysis process and a S-adenosylmethionine (S-adenosylmethionine, SAM) biosynthetic pathway process A gene is overexpressed to provide a recombinant microorganism having the ability to produce S-methylmethionine (SMM).
본 발명은 또한, (a) 상기 S-메틸메티오닌(S-Methylmethionine, SMM) 생성능을 갖는 재조합 미생물을 배양하여 S-메틸메티오닌을 생성시키는 단계; 및 (b) 상기 생성된 S-메틸메티오닌을 수득하는 단계;를 포함하는 S-메틸메티오닌의 제조방법을 제공한다.The present invention also comprises the steps of (a) culturing a recombinant microorganism having the S-methylmethionine (SMM) producing ability to produce S-methylmethionine; and (b) obtaining the produced S-methylmethionine; provides a method for producing S-methylmethionine comprising.
본 발명에 따르면, 종래 식물 추출 또는 화학적 합성법과 달리 미생물 생합성을 통해 S-메틸메티오닌을 우수한 수율로 생성할 수 있는바, S-메틸메티오닌 생산의 핵심 기술로 이용될 수 있을 것으로 기대된다.According to the present invention, S-methylmethionine can be produced in excellent yield through microbial biosynthesis, unlike conventional plant extraction or chemical synthesis, and it is expected that it can be used as a core technology for S-methylmethionine production.
도 1은 본 발명에 따라 해당 과정 및 SAM 생합성 경로 과정을 갖는 대장균에서 MMT 유전자를 도입하여 SMM을 생합성하는 경로를 나타낸 것이다.1 shows a pathway for biosynthesis of SMM by introducing an MMT gene in Escherichia coli having a glycolysis process and a SAM biosynthetic pathway process according to the present invention.
도 2는 본 발명의 실시예 1에 따른 재조합 미생물(대장균)의 SMM 생산량을 측정한 결과를 나타낸 것이다(dJ: △metJ, dJMP: △metJ, △mmuP, △mmuM, aK: pZA(metK), aKF: pZA(metK, metF), cM: pCDFDuet(A.MMT), sA *: pZS(metA *fbr), cBM: pCDFDuet(B.MMT), csfM: pCDFDuet(Sf.MMT)).Figure 2 shows the results of measuring the SMM production of the recombinant microorganism (E. coli) according to Example 1 of the present invention (dJ: ΔmetJ, dJMP: ΔmetJ, ΔmmuP, ΔmmuM, aK: pZA (metK), aKF: pZA(metK, metF), cM: pCDFDuet(A.MMT), sA * : pZS(metA * fbr), cBM: pCDFDuet(B.MMT), csfM: pCDFDuet(Sf.MMT)).
도 3은 본 발명의 실시예 1에 따른 재조합 미생물(대장균)의, 다양한 MMT 유전자 유래별 SMM 생산량을 측정한 결과를 나타낸 것이다( Arabidopsis thaliana(dJMP+aKcMsA *), Barley(dJMP+aKcBMsA *), Sunflower(dJMP+aKcsfMsA *)).Figure 3 shows the results of measuring the SMM production for each MMT gene origin of the recombinant microorganism (E. coli) according to Example 1 of the present invention ( Arabidopsis thaliana (dJMP + aKcMsA * ), Barley (dJMP + aKcBMsA * ), Sunflower (dJMP+aKcsfMsA * )).
도 4는 본 발명의 실시예 2에 따른 재조합 미생물(사카로마이세스 세레비지에)의 SMM 생산량을 측정한 결과를 나타낸 것이다(Y1: BY4742 + pSH47(MMT ::URA).Y2 : K6-1 + p425(MMT :: Leu))Figure 4 shows the results of measuring the SMM production of the recombinant microorganism (Saccharomyces cerevisiae) according to Example 2 of the present invention (Y1: BY4742 + pSH47 (MMT::URA). Y2: K6-1 + p425(MMT::Leu))
도 5는 본 발명의 실시예 3에 따른 재조합 미생물(바실러스 서브틸리스)의 SMM 생산량을 측정한 결과를 나타낸 것이다(BS+M(wtBacillus + pBE-S(MMT), BS+MK(wtBacillus + pBE-S(metK, MMT))Figure 5 shows the results of measuring the SMM production of the recombinant microorganism (Bacillus subtilis) according to Example 3 of the present invention (BS + M (wtBacillus + pBE-S (MMT), BS + MK (wtBacillus + pBE) -S(metK, MMT))
도 6은 본 발명의 실시예 4에 따른 재조합 미생물(스트렙토마이세스 베네수엘라)의 SMM 생산량을 측정한 결과를 나타낸 것이다.6 shows the results of measuring the SMM production of the recombinant microorganism (Streptomyces Venezuela) according to Example 4 of the present invention.
도 7a 내지 도 7d는 다양한 유래의 MMT 유전자 서열에 대한 다중서열정렬(multiple sequence alignment)을 진행한 결과를 나타낸 것이다.7a to 7d show the results of multiple sequence alignment for MMT gene sequences of various origins.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is those well known and commonly used in the art.
본 발명에서는 종래 식물 추출 또는 화학적 합성법과 달리 미생물 생합성을 통해 S-메틸메티오닌을 우수한 수율로 생성할 수 있는 재조합 미생물을 제조하였으며, 상기 제조된 재조합 미생물은 우수한 S-메틸메티오닌 수율 및 생산성을 나타낸다.In the present invention, unlike conventional plant extraction or chemical synthesis, a recombinant microorganism capable of producing S-methylmethionine in excellent yield through microbial biosynthesis was prepared, and the prepared recombinant microorganism exhibits excellent S-methylmethionine yield and productivity.
따라서, 본 발명은 일 관점에서, 해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물에서 메티오닌 S-메틸메티오닌 트랜스퍼라제(methionine S-methylmethionine transferase, MMT)를 코딩하는 유전자가 과발현되어, S-메틸메티오닌(S-Methylmethionine, SMM) 생성능을 갖는 재조합 미생물에 관한 것이다(도 1).Therefore, in one aspect, the present invention is a glycolysis process and S-adenosylmethionine (S-adenosylmethionine, SAM) in a microorganism having a biosynthetic pathway process, methionine S-methylmethionine transferase (methionine S-methylmethionine transferase, MMT) encoding The gene is overexpressed, and relates to a recombinant microorganism having S-methylmethionine (SMM) producing ability (FIG. 1).
본 발명의 일 양태에서는 상기 해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물로 대장균( Escherichia coli) 또는 사카로마이세스 세레비지에( Saccharomyces cerevisiae)를 사용하였으며, SAM으로부터 메틸기를 전달받아 메티오닌으로부터 S-메틸메티오닌을 생성하도록 하기 위하여, 메티오닌 S-메틸메티오닌 트랜스퍼라제(methionine S-methylmethionine transferase, MMT)를 코딩하는 유전자를 도입 및 과발현시켰다.In one aspect of the present invention, Escherichia coli or Saccharomyces cerevisiae as a microorganism having the above glycolysis process and S-adenosylmethionine (SAM) biosynthetic pathway process was used, In order to receive a methyl group from SAM and generate S-methylmethionine from methionine, a gene encoding methionine S-methylmethionine transferase (MMT) was introduced and overexpressed.
본 발명에 따르면, 상기 S-메틸메티오닌은 S-메틸-L-메티오닌(S-Methyl-L-methionine)일 수 있다.According to the present invention, the S-methylmethionine may be S-methyl-L-methionine (S-Methyl-L-methionine).
이때, 상기 MMT를 코딩하는 유전자는 서열번호 1 내지 서열번호 3 중 어느 하나로 표시될 수 있으나, 이에 한정되지는 않는다. 이때, 상기 서열번호 1 내지 서열번호 3의 유전자는 각각 애기장대(Arabidopsis thaliana), 보리(Barley), 해바라기(Sunflower)로부터 유래된 것일 수 있다.In this case, the gene encoding the MMT may be represented by any one of SEQ ID NOs: 1 to 3, but is not limited thereto. In this case, the genes of SEQ ID NOs: 1 to 3 may be derived from Arabidopsis thaliana, barley, and sunflower, respectively.
또한, 상기 MMT를 코딩하는 유전자는, 상기 MMT를 코딩하는 유전자에 대응하는 아미노산 서열이 서열번호 1에 대응하는 아미노산 서열인 서열번호 47의 아미노산 서열과 60% 이상의 서열상동성을 갖는 것이면 모두 가능할 수 있으며, 예를 들어 상기 MMT를 코딩하는 유전자는 포도(학명: Vitis vinifera), 코요테 담배(학명: Nicotiana attenuata), 묏장대(학명: Arabidopsis lyrata), 옥수수(학명: Zea mays), 튤립(학명: Anthurium amnicola)으로부터 유래된 것일 수 있으며, 이들의 아미노산 서열은 각각 서열번호 50 내지 54로 표시되는 것일 수 있다.In addition, the MMT-encoding gene may be any if the amino acid sequence corresponding to the MMT-encoding gene has at least 60% sequence homology with the amino acid sequence of SEQ ID NO: 47, which is the amino acid sequence corresponding to SEQ ID NO: 1. There, for example, the gene encoding the MMT is grape (scientific name: Vitis vinifera), coyote tobacco (scientific name: Nicotiana attenuata), mulberry (scientific name: Arabidopsis lyrata), corn (scientific name: Zea mays), tulip (scientific name: Anthurium amnicola) may be derived from, and their amino acid sequences may be those represented by SEQ ID NOs: 50 to 54, respectively.
또한, 본 발명에서는 SMM 생성능 향상을 위해, wild type의 대장균에 존재하는 메티오닌 생합성 경로의 억제인자를 코딩하는 metJ(methionine repressor) 유전자를 추가로 결실시켰다.In addition, in the present invention, in order to improve the ability to produce SMM, the gene metJ (methionine repressor), which encodes a repressor of a methionine biosynthesis pathway present in wild-type E. coli, was further deleted.
또한, 본 발명에서는 SMM 생성능 향상을 위해, SMM을 uptake 하도록 하는 유전자인 mmuP(transport of S-methylmethionine) 유전자 및 SMM으로부터 메티오닌을 합성하는 역할을 하는 유전자인 mmuM(Homocysteine S-methyltransferase) 유전자를 추가로 결실시켰다.In addition, in the present invention, in order to improve the ability to produce SMM, a transport of S-methylmethionine (mmuP) gene and a homocysteine S-methyltransferase (mmuM) gene, which is a gene for synthesizing methionine from SMM, are additionally added. deleted it
또한, 본 발명에서는 SMM 생성능 향상을 위해, SMM 생성 시 메티오닌에 메틸기를 전달하는 SAM을 생성하는 유전자인 S-아데노실메티오닌 합성효소를 코딩하는 metK(S-adenosylmethionine synthetase) 유전자, SMM의 전구체인 메티오닌 생성에 도움을 주는 5,10-메틸렌테트라하이드로폴레이트 리덕타제(5,10-methylenetetrahydrofolate reductase)를 코딩하는 metF 유전자를 추가로 과발현시켰다.In addition, in the present invention, in order to improve the ability to produce SMM, metK (S-adenosylmethionine synthetase) gene encoding S-adenosylmethionine synthetase, a gene that generates SAM that transfers a methyl group to methionine during SMM generation, and methionine, a precursor of SMM The metF gene encoding 5,10-methylenetetrahydrofolate reductase, which helps in production, was further overexpressed.
또한, 본 발명에서는 SMM 생성능 향상을 위해, 메티오닌 생합성에 관여하는 호모세린 O-숙시닐트랜스퍼라아제(Homoserine O-succinyltransferase)를 코딩하는 metA 유전자를 변이시켰다. 이때, 상기 metA의 변이 유전자는 상기 metA 유전자의 염기서열에서, 190번째 염기인 시토신이 구아닌으로 치환된 것으로서, 서열번호 4로 표시되는 것일 수 있다.In addition, in the present invention, in order to improve the ability to produce SMM, the metA gene encoding homoserine O-succinyltransferase involved in methionine biosynthesis was mutated. In this case, the mutant gene of metA may be one in which cytosine, which is the 190th base, is substituted with guanine in the nucleotide sequence of the metA gene, and is represented by SEQ ID NO: 4.
또한, 상기 미생물은 해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물이라면 제한없이 사용할 수 있으며, 예를 들어 대장균( Escherichia coli), 효모, 고초균, 또는 방선균일 수 있으며, 이때, 상기 효모는 사카로마이세스 세레비지에( Saccharomyces cerevisiae), 상기 고초균은 바실러스 서브틸리스( Bacillus subtilis), 상기 방선균은 스트렙토미세스 베네주엘라에( Streptomyces venezuelae)일 수 있다.In addition, the microorganism can be used without limitation as long as it has a glycolytic process and a S-adenosylmethionine (SAM) biosynthetic pathway process, for example, Escherichia coli ), yeast, Bacillus subtilis, or actinomycetes, wherein the yeast is Saccharomyces cerevisiae , the Bacillus subtilis is Bacillus subtilis , and the actinomycetes are Streptomyces venezuelae ( Streptomyces venezuelae ).
본 발명은 다른 관점에서, (a) 상기 재조합 미생물을 배양하여 S-메틸메티오닌을 생성시키는 단계; 및 (b) 상기 생성된 S-메틸메티오닌을 수득하는 단계;를 포함하는 S-메틸메티오닌의 제조방법에 관한 것이다.In another aspect, the present invention comprises the steps of (a) culturing the recombinant microorganism to produce S-methylmethionine; And (b) obtaining the produced S-methylmethionine; relates to a method for producing S-methylmethionine comprising a.
이때, 상기 재조합 미생물을 배양하는 방법은 당업계에서 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 상기 재조합 미생물로부터 SMM을 생산할 수 있는 한 특별히 이에 제한되지 않으나, 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다.In this case, the method of culturing the recombinant microorganism may be performed using a method widely known in the art. Specifically, the culture is not particularly limited as long as SMM can be produced from the recombinant microorganism, but may be continuously cultured in a batch process or injection batch or repeated fed batch process.
배양에 사용되는 배지는 탄소원, 질소원, 아미노산, 비타민 등을 함유할 수 있으며, 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. The medium used for culture may contain a carbon source, a nitrogen source, amino acids, vitamins, etc., and must meet the requirements of a specific strain in an appropriate manner while controlling temperature, pH, etc.
이때, 사용될 수 있는 탄소원은 수크로스, 락토스, 말토스, 트레할로스, 투라노스, 셀로비오스, 라피노스, 멜레치토스, 말로트리오스, 아카보스, 스타키오스, 글루코스, 아밀로스, 셀룰로스, 프럭토스, 아노스, 또는 갈락토스로 이루어진 군에서 선택되는 1종 이상일 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산 암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산 망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.In this case, the carbon source that can be used is sucrose, lactose, maltose, trehalose, turanose, cellobiose, raffinose, melechtose, malotriose, acarbose, stachyose, glucose, amylose, cellulose, fructose, anose, or It may be one or more selected from the group consisting of galactose. Examples of the nitrogen source that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, and glutamine, and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation products, defatted soybean cake or its degradation products, etc. can These nitrogen sources may be used alone or in combination. The medium may contain monopotassium phosphate, dipotassium phosphate and the corresponding sodium-containing salt as phosphorus. The phosphorus that may be used includes potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt. In addition, as the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, and the like may be used. Finally, in addition to the above substances, essential growth substances such as amino acids and vitamins can be used.
또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다.In addition, precursors suitable for the culture medium may be used. The above-mentioned raw materials may be added in a batch, fed-batch or continuous manner by an appropriate method to the culture during the culturing process, but is not particularly limited thereto.
[실시예][Example]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as being limited by these examples. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
실험 방법experimental method
균주, 배지 및 배양Strain, Medium and Culture
본 발명에서는 대장균으로 MG1655 K-12 균주, 효모로는 S. cerevisiae K6-1을 사용하였다. 세포를 기하 급수적으로 성장시키기 위해 30%(v/v) 글리세롤을 첨가하여 E.coli 및 S.cerevisiae의 냉동 스톡을 제조하였다. 대장균의 경우 두 가지 다른 배지를 사용하여 세포를 배양하였다. 대장균 세포 성장에는 LB (Luria-Bertani) 배지를 사용하였다. 최소 배지로 M9 배지를 사용하였으며, M9의 조성은 다음과 같다: Na 2HPO 4 ·7H 2O(6g), KH 2PO 4(3g), NaCl(0.5g), NH 4Cl(1g), 1M MgSO 4 2mL, 1M CaCl 2 10uL 및 50g/L glucose(40mL) in 1L bottle. 효모 배양은 YPD 배지 및 SD 배지를 사용하였다. 최소 배지인 SD 배지는 L-루신 없이, 효모 질소 염기 w/o 아미노산 (6.7g), H 2O (865mL), AA-Mix 10x 농축물 (10mL)을 사용하여 제조하였다. 대장균 배양물은 각각의 필요한 항생제(카나마이신, 클로람페니콜, 스펙티노마이신 (25mg/mL))로 성장시켰다. 한천 플레이트는 20g / L 한천으로 제조하였다.In the present invention, MG1655 K-12 strain was used as E. coli, and S. cerevisiae K6-1 was used as yeast. Frozen stocks of E. coli and S. cerevisiae were prepared by adding 30% (v/v) glycerol to exponentially grow the cells. In the case of E. coli, cells were cultured using two different media. LB (Luria-Bertani) medium was used for E. coli cell growth. M9 medium was used as a minimal medium, and the composition of M9 is as follows: Na 2 HPO 4 7H 2 O (6g) , KH 2 PO 4 (3g), NaCl (0.5g), NH 4 Cl (1g), 1M MgSO 4 2mL, 1M CaCl 2 10uL and 50g/L glucose (40mL) in 1L bottle. YPD medium and SD medium were used for yeast culture. A minimal medium, SD medium, was prepared using yeast nitrogenous base w/o amino acids (6.7 g), H 2 O (865 mL), AA-Mix 10x concentrate (10 mL) without L-leucine. E. coli cultures were grown with each required antibiotic (kanamycin, chloramphenicol, spectinomycin (25 mg/mL)). Agar plates were prepared with 20 g/L agar.
플라스미드 및 균주 구성Plasmid and strain construction
E. coli DH5a를 모든 플라스미드 클로닝 및 증식에 사용 하였다. 사용 된 모든 플라스미드는 Gibson Asembly (New England BioLab.)를 사용하여 구축되었다. 사용된 유전자는 E. coli MG1655 K-12 (metF, metH, metA) 및 Arabidopsis thaliana (MMT), Sunflower (MMT), Barley (MMT)에서 유래되었다. MMT 유전자는 모두 pCDFDuet 벡터에 통합되었다. 효모 (K6-1)의 경우 양방향 프로모터가 있는 pESC 벡터를 사용하였다. 과발현의 성공적인 게놈 통합은 Bionics 사의 진단 PCR에 의해 확인하였다.E. coli DH5a was used for all plasmid cloning and propagation. All plasmids used were constructed using Gibson Asembly (New England BioLab.). The genes used were derived from E. coli MG1655 K-12 (metF, metH, metA) and Arabidopsis thaliana (MMT), Sunflower (MMT) and Barley (MMT). All MMT genes were integrated into the pCDFDuet vector. For yeast (K6-1), a pESC vector with a bidirectional promoter was used. Successful genomic integration of overexpression was confirmed by diagnostic PCR from Bionics.
배양 및 분석Incubation and analysis
대장균 세포를 30 ℃에서 진탕시키면서 37 ℃에서 배양하였다. 먼저, 원추형 튜브에서, 재조합 미생물에 1일 동안 필요한 항생제를 5mL LB에 접종하였다. 그리고 나서, 24시간 동안 각각 항생제가 필요한 배지에서 적응시키기 위해 M9 배지 (최소 배지) 5mL로 옮겼다. 다음으로, 배양을 위해 배플링되지 않은 플라스크에서 초기 OD (0.125)로, 25mL M9 배지에서 종자를 스케일업 하였다. 대장균을 48시간 동안 최대 OD (4.2)로 배양하였다.E. coli cells were cultured at 37 °C while shaking at 30 °C. First, in a conical tube, the antibiotic required for recombinant microorganisms for 1 day was inoculated into 5 mL LB. Then, for 24 hours, each was transferred to 5 mL of M9 medium (minimum medium) for acclimatization in the medium required for antibiotics. Next, the seeds were scaled up in 25 mL M9 medium to an initial OD (0.125) in unbaffled flasks for culture. E. coli was cultured to a maximum OD (4.2) for 48 h.
S. cerevisiae K6(Sake yeast kyokai No.6) 세포를 30rpm에서 진탕하면서 30 ℃에서 배양하였다. 효모 세포 (pESC 벡터 (MMT, SAM2)를 갖는 S.cerevisiae K6-1)를 36시간 동안 추가 아미노산없이 5mL YPD에 먼저 접종한 후, 그 배지에 적응시키기 위해 SD 배지 (최소 배지) 5mL로 옮겼다. 다음으로, 배양을 위해 배플링된 플라스크에서 초기 OD (0.125)로, 25mL SD 배지에서 종자를 스케일업 하였다. pESC 벡터 (MMT, SAM2)를 갖는 효모 (S. cerevisiae K6-1)를 72시간 동안 최대 OD (5.0)로 배양하였다.S. cerevisiae K6 (Sake yeast kyokai No.6) cells were cultured at 30° C. while shaking at 30 rpm. Yeast cells (S. cerevisiae K6-1 with pESC vector (MMT, SAM2)) were first inoculated into 5 mL YPD without additional amino acids for 36 hours, and then transferred to 5 mL SD medium (minimum medium) to adapt to the medium. Next, the seeds were scaled up in 25 mL SD medium, to an initial OD (0.125) in baffled flasks for cultivation. Yeast (S. cerevisiae K6-1) carrying a pESC vector (MMT, SAM2) was cultured at a maximum OD (5.0) for 72 hours.
S- 메틸메티오닌 및 L-메티오닌은 UV 분광 분석법을 사용한 고성능 액체 크로마토그래피를 통해 측정하였다. 분석에는 2가지 이동상이 사용되었다(1: Sodium phosphate di-basic 8.51g with 3mL phosphoric acid in 3L DW, 2: Acetonitrile(45), Methanol(45), DW(10) in 3L bottle). 또한, Agilent의 아미노산 분석 컬럼을 모든 샘플에 사용하였으며, 아미노산 유도체화에 OPA 시약 (Sigma-Aldrich)을 사용하였다.S-methylmethionine and L-methionine were determined by high performance liquid chromatography using UV spectroscopy. Two mobile phases were used for the analysis (1: Sodium phosphate di-basic 8.51 g with 3 mL phosphoric acid in 3 L DW, 2: Acetonitrile (45), Methanol (45), DW (10) in 3 L bottle). In addition, Agilent's amino acid analysis column was used for all samples, and OPA reagent (Sigma-Aldrich) was used for amino acid derivatization.
실시예 1. 재조합 대장균 제조Example 1. Preparation of recombinant E. coli
해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물로 대장균( Escherichia coli K-12 MG1655)을 사용하였으며, 유전자 조작 등에 따른 균주 또는 플라스미드 명은 하기 표 1에 나타내었다. Escherichia as a microorganism having glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway process coli K-12 MG1655) was used, and the names of strains or plasmids according to genetic manipulation, etc. are shown in Table 1 below.
Strains or plasmidsstrains or plasmids DescriptionDescription sourcesource
Strainsstrains
dJdJ Escherichia coli K-12 MG1655 △metJEscherichia coli K-12 MG1655 △metJ This studythis study
dJMPdJMP Escherichia coli K-12 MG1655 △metJ, △mmuM, △mmuPEscherichia coli K-12 MG1655 △metJ, △mmuM, △mmuP This studythis study
PlasmidsPlasmids
pRedETpRedET λphage red γ,β,α-producing vector, pBAD_promoter; ori101 Tetrλphage red γ,β,α-producing vector, pBAD_promoter; ori101 Tetr Gene BridgesGene Bridges
707-FLP707-FLP Flp recombinase-producing vector; Psc101 ori cI1578 Tetr
Flp recombinase-producing vectors; Psc101 ori cI1578 Tetr
Gene BridgesGene Bridges
pKD4pKD4 FRT-flanked resistance cassette-involved vector; oriR
γKmr
FRT-flanked resistance cassette-involved vector; oriR
γKmr
Datsenko KA and Wanner BL, 2000Datsenko KA and Wanner BL, 2000
aK aK pZA(metK)pZA (metK) This studythis study
aKFaKF pZA(metK, metF)pZA (metK, metF) This studythis study
cMcM pCDFDuet(MMT)pCDFDuet (MMT) This studythis study
cBMcBM pCDFDuet(Barley MMT)pCDFDuet (Barley MMT) This studythis study
csfMcsfM pCDFDuet(Sunflower MMT)pCDFDuet (Sunflower MMT) This studythis study
sA*sA* pZS(metA*)pZS(metA*) This studythis study
sA*HsA*H pZS(metA*, metH)pZS(metA*, metH) This studythis study
metJ 결실metJ deletion
wild type E. coli K-12 MG1655의 metJ 유전자를 제거하기 위해 람다 레드(Lambda red) 재조합 방법을 사용했다. 우선 세포 내부로 유입된 선형 유전자의 분해를 방지하고 상동 재조합(homologous recombination)의 효율을 높이기 위한 효소의 발현 벡터를 컴피턴트 세포로 준비된 wild type E. coli K-12 MG1655 균주에 도입시켰다. BAD 프로모터를 가지고 테트라사이클린 저항성이 있는 pRedET 벡터를 본 발명에 사용하였고, 형질전환을 확인하였다. 다음으로 상동 재조합을 위한 선형 유전자를 제작하였다. FRT-kanamycin-FRT cassette을 가지는 pKD4 벡터를 주형으로 사용하였다. 상동 재조합이 발생하는 위치인 wild type E.coli K-12 MG1655의 metJ 유전자 양옆의 homologous한 50개의 염기쌍과 주형으로 쓰는 pKD4의 FRT-kanamycin-FRT cassette을 중합하기 위한 20개의 염기쌍, 총 70개의 염기쌍을 프라이머로 제작하였고 중합효소 연쇄 반응(Polymerase Chain Reaction)을 이용하여 metJ 유전자를 제거하기 위한 선형 유전자를 제작하였다. 카나마이신은 상동재조합이 성공적으로 이루어졌는지 확인하기 위한 selection marker로 활용이 되고, FRT 부위는 목표 유전자가 제거된 후 다른 유전자의 제거를 위해 selection marker를 제거해 주는 역할을 한다. 다음 단계로 pRedET 벡터가 형질전환 된 것이 확인된 MG1655+pRedET 균주를 30℃에서 배양하였다. pRedET 벡터는 온도에 민감한 벡터로써 37℃ 이상이 되면 그 활성을 잃기 때문에 30℃에서 배양하였다. 또한 배양 1시간 후 OD600이 0.3 정도 되었을 때 10%의 아라비노즈(L-arabinose)로 pRedET의 레드 람다 재조합 효소 발현 유도를 시켜주었다. 1시간 더 배양시켜 OD600이 0.6정도가 되었을 때 전기천공법을 위한 컴피턴트 세포로 만든 후 제작한 선형유전자를 형질전환 하였다. LB 배지에 37℃에서 1시간 배양 후 카나마이신이 12.5 ㎎/㎖ 첨가된 LB 고체배지에 스프레딩하고 12시간 배양시켰다. 상동재조합의 성공 여부를 확인하기 위해 2가지의 프라이머를 제작하였다. metJ 유전자 양옆의 상동한 20-24개의 염기쌍을 del metJ conf F 와 del metJ conf R로(표 2) 명칭하였다. 이 2가지 프라이머를 사용하여 콜로니 PCR 을 수행하였을 때 PCR 생산물의 길이를 통해 상동 재조합의 여부를 확인하였다.wild type E. coli To remove the metJ gene of K-12 MG1655, a lambda red recombination method was used. First, an enzyme expression vector for preventing degradation of the linear gene introduced into the cell and increasing the efficiency of homologous recombination was introduced into the wild type E. coli K-12 MG1655 strain prepared as competent cells. A pRedET vector having a BAD promoter and resistant to tetracycline was used in the present invention, and transformation was confirmed. Next, a linear gene for homologous recombination was prepared. A pKD4 vector having an FRT-kanamycin-FRT cassette was used as a template. Homologous 50 base pairs on both sides of the metJ gene of wild type E. coli K-12 MG1655, the site at which homologous recombination occurs, and 20 base pairs for polymerization of the FRT-kanamycin-FRT cassette of pKD4 used as a template, a total of 70 base pairs was prepared as a primer, and a linear gene for removing the metJ gene was prepared using polymerase chain reaction. Kanamycin is used as a selection marker to confirm successful homologous recombination, and the FRT region serves to remove a selection marker for removal of other genes after the target gene is removed. In the next step, the MG1655+pRedET strain confirmed to be transformed with the pRedET vector was cultured at 30°C. The pRedET vector is a temperature-sensitive vector and loses its activity when it is over 37°C, so it was cultured at 30°C. In addition, when the OD600 reached about 0.3 after 1 hour of incubation, the expression of pRedET's red lambda recombinase was induced with 10% arabinose (L-arabinose). After culturing for an additional hour, when the OD600 reached about 0.6, the cells were transformed into competent cells for electroporation and then the prepared linear gene. After 1 hour incubation at 37° C. in LB medium, it was spread on LB solid medium to which 12.5 mg/ml of kanamycin was added and cultured for 12 hours. To check the success of homologous recombination, two primers were prepared. Homologous 20-24 base pairs on both sides of the metJ gene were designated as del metJ conf F and del metJ conf R (Table 2). When colony PCR was performed using these two primers, the presence of homologous recombination was confirmed through the length of the PCR product.
mmuM, mmuP 결실mmuM, mmuP deletion
dJ 균주의 mmuM, mmuP 유전자를 제거하기 위해 람다 레드(Lambda red) 재조합 방법을 사용했다. 우선 세포 내부로 유입된 선형 유전자의 분해를 방지하고 상동재조합(homologous recombination)의 효율을 높이기 위한 효소의 발현 벡터를 컴피턴트 세포로 준비된 dJ 균주에 도입시켰다. BAD 프로모터를 가지고 테트라사이클린 저항성이 있는 pRedET 벡터를 본 발명에 사용하였고, 형질전환을 확인하였다. 다음으로 상동재조합을 위한 선형 유전자를 제작하였다. FRT-kanamycin-FRT cassette을 가지는 pKD4 벡터를 주형으로 사용하였다. 상동재조합이 발생하는 위치인 wild type E.coli K-12 MG1655의 metJ 유전자 양 옆의 homologous한 50개의 염기쌍과 주형으로 쓰는 pKD4의 FRT-kanamycin-FRT cassette을 중합하기 위한 20개의 염기쌍, 총 70개의 염기쌍을 프라이머로 제작하였고 중합효소 연쇄 반응(Polymerase Chain Reaction)을 이용하여 metJ 유전자를 제거하기 위한 선형 유전자를 제작하였다. 카나마이신은 상동재조합이 성공적으로 이루어졌는지 확인하기 위한 selection marker로 활용이 되고, FRT 부위는 목표 유전자가 제거된 후 다른 유전자의 제거를 위해 selection marker를 제거해 주는 역할을 한다. 다음 단계로 pRedET 벡터가 형질전환 된 것이 확인된 dJ+pRedET 균주를 30℃에서 배양하였다. pRedET 벡터는 온도에 민감한 벡터로써 37℃ 이상이 되면 그 활성을 잃기 때문에 30℃에서 배양하였다. 또한 배양 1시간 후 OD600이 0.3 정도 되었을 때 10%의 아라비노즈(L-arabinose)로 pRedET의 레드 람다 재조합 효소 발현 유도를 시켜주었다. 1시간 더 배양시켜 OD600이 0.6정도가 되었을 때 전기천공법을 위한 컴피턴트 세포로 만든 후 제작한 선형유전자를 형질전환 하였다. LB 배지에 37℃에서 1시간 배양 후 카나마이신이 12.5 ㎎/㎖ 첨가된 LB 고체배지에 스프레딩하고 12시간 배양시켰다. 상동재조합의 성공 여부를 확인하기 위해 2가지의 프라이머를 제작하였다. metJ 유전자 양옆의 상동한 20-24개의 염기쌍을 del mmuMP conf F 와 del mmuMP conf R로(표 2) 명칭하였다. 이 2가지 프라이머를 사용하여 콜로니 PCR 을 수행하였을 때 PCR 생산물의 길이를 통해 상동재조합의 여부를 확인하였다.In order to remove the mmuM and mmuP genes of the dJ strain, a lambda red recombination method was used. First, an enzyme expression vector for preventing degradation of the linear gene introduced into the cell and increasing the efficiency of homologous recombination was introduced into the dJ strain prepared as competent cells. A pRedET vector having a BAD promoter and resistant to tetracycline was used in the present invention, and transformation was confirmed. Next, a linear gene for homologous recombination was prepared. A pKD4 vector having an FRT-kanamycin-FRT cassette was used as a template. Homologous 50 base pairs on both sides of the metJ gene of wild type E. coli K-12 MG1655, the site where homologous recombination occurs, and 20 base pairs for polymerization of the FRT-kanamycin-FRT cassette of pKD4 used as a template, a total of 70 A base pair was prepared as a primer, and a linear gene for removing the metJ gene was prepared using polymerase chain reaction. Kanamycin is used as a selection marker to confirm successful homologous recombination, and the FRT region serves to remove a selection marker for removal of other genes after the target gene is removed. In the next step, the dJ+pRedET strain confirmed to be transformed with the pRedET vector was cultured at 30°C. The pRedET vector is a temperature-sensitive vector and loses its activity when it exceeds 37°C, so it was incubated at 30°C. In addition, when the OD600 reached about 0.3 after 1 hour of incubation, the expression of pRedET red lambda recombinase was induced with 10% arabinose (L-arabinose). After culturing for an additional hour, when the OD600 reached about 0.6, the cells were transformed into competent cells for electroporation, and then the prepared linear gene was transformed. After 1 hour incubation at 37° C. in LB medium, it was spread on LB solid medium to which 12.5 mg/ml of kanamycin was added and cultured for 12 hours. To confirm the success of homologous recombination, two primers were prepared. Homologous 20-24 base pairs on both sides of the metJ gene were named del mmuMP conf F and del mmuMP conf R (Table 2). When colony PCR was performed using these two primers, the presence of homologous recombination was confirmed through the length of the PCR product.
유전자 과발현gene overexpression
본 발명에 따른 유전자 과발현에 사용된 모든 vector들은 gibson assembly를 통해 제조하였다. S-adenosylmethionine을 많이 만들어주는 metK 유전자를 과발현하기 위해 사용한 프라이머는 아래의 표 2에 나타내었다. 이렇게 해당 프라이머를 사용하여 cloning을 해주고 그 후 gibson primer에 맞게 재 클로닝을 해준 후 각각의 fragment들을 gibson assembly를 통해 합쳐 주었다. 이와 같은 방법으로 pZA(metK) 벡터를 제작하였다.All vectors used for gene overexpression according to the present invention were prepared through gibson assembly. The primers used to overexpress the metK gene, which produces a lot of S-adenosylmethionine, are shown in Table 2 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. A pZA (metK) vector was constructed in this way.
S-methylmethionine을 만들어주도록 해주는 유전자인 MMT 유전자를 과발현 하기 위해 사용한 프라이머는 아래의 표 2에 나타내었다. 이렇게 해당 프라이머를 사용하여 cloning을 해주고 그 후 gibson primer에 맞게 재 클로닝을 해준 후 각각의 fragment들을 gibson assembly를 통해 합쳐 주었다. 이와 같은 방법으로 pCDFDuet(MMT) 벡터를 제작하였다.The primers used to overexpress the MMT gene, a gene that makes S-methylmethionine, are shown in Table 2 below. After cloning using the corresponding primer, re-cloning was performed according to the gibson primer, and each fragment was combined through gibson assembly. In this way, a pCDFDuet (MMT) vector was constructed.
E.coli 내에 methionine biosynthesis pathway에서 O-succinyl homoserine을 합성하는 유전자인 metA의 변이 유전자(서열번호 4)를 과발현하기 위해 사용한 프라이머는 아래의 표 2에 나타내었다. 이렇게 해당 프라이머를 사용하여 cloning을 해주고 그 후 gibson primer에 맞게 재 클로닝을 해준 후 각각의 fragment들을 gibson assembly를 통해 합쳐 주었다. 이와 같은 방법으로 pZS(metA*) 벡터를 제작하였다.The primers used to overexpress the mutant gene (SEQ ID NO: 4) of metA, which is a gene for synthesizing O-succinyl homoserine in the methionine biosynthesis pathway in E. coli, are shown in Table 2 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. In this way, a pZS(metA*) vector was constructed.
SMM 생성 시 메티오닌에 메틸기를 전달하는 SAM을 생성하는 유전자 metK와, E.coli 내에 tetrahydrofolate cycle의 활성을 높여주는 유전자인 metF를 과발현 하기 위해 사용한 프라이머는 아래의 표 2에 나타내었다. 이렇게 해당 프라이머를 사용하여 cloning을 해주고 그 후 gibson primer에 맞게 재 클로닝을 해준 후 각각의 fragment들을 gibson assembly를 통해 합쳐 주었다. 이와 같은 방법으로 pZA(metK, metF) 벡터를 제작하였다.The primers used to overexpress metK, a gene that generates SAM, which transfers a methyl group to methionine during SMM generation, and metF, a gene that enhances the activity of the tetrahydrofolate cycle in E. coli, are shown in Table 2 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. A pZA (metK, metF) vector was constructed in this way.
위와 같이 제작된 벡터들을 이용하여 형질 전환(Transformation)을 통해 본 발명에 따른 재조합 대장균을 제조하였다. 형질 전환은 당업계에 일반적으로 알려진 방법에 따라 수행하였으며, 간략히, 형질 전환 대상 균주를 5mL falcon tube에 배양을 하고 24시간 후 원심분리기를 이용하여 cell down을 수행한 후, 2번 세척하고, glycerol 10%의 용액으로 세포를 풀어준 뒤, 제작된 벡터들을 넣어준 후 1950V의 전기를 가해주는 방식으로 수행하였다. Recombinant E. coli according to the present invention was prepared through transformation using the vectors prepared as above. Transformation was performed according to a method generally known in the art. Briefly, the strain to be transformed was cultured in a 5mL falcon tube, and after 24 hours, cell down was performed using a centrifuge, washed twice, and glycerol After releasing the cells with a 10% solution, the prepared vectors were added thereto, and then electricity of 1950V was applied.
Primer namePrimer name Sequence(5’-3’)Sequence(5'-3') SourceSource 서열번호SEQ ID NO:
metK cut primer FmetK cut primer F TTACATATAATTAGAGGAAGAAAAAATGGCAAAACACCTTTTTACGTCTTACATATAATTAGAGGAAGAAAAAATGGCAAAACACCTTTTTACGTC This studythis study 서열번호 5SEQ ID NO: 5
metK cut primer RmetK cut primer R TTACTTCAGACCGGCAGCATTTACTTCAGACCGGCAGCAT This studythis study 서열번호 6SEQ ID NO: 6
pZA_metK_fwdpZA_metK_fwd TCTGAAGTAAATATCGAATTCCTGCAGCTCTGAAGTAAATATCGAATTCCTGCAGC This studythis study 서열번호 7SEQ ID NO: 7
pZA_metK_revpZA_metK_rev TTATATGTAACAAGCTTATCGATACCGTCTTATATGTAACAAGCTTATCGATACCGTC This studythis study 서열번호 8SEQ ID NO: 8
metK gib FmetK gib F GATAAGCTTGTTACATATAATTAGAGGAAGAAAAAATGGCGATAAGCTTGTTACATATAATTAGAGGAAGAAAAAATGGC This studythis study 서열번호 9SEQ ID NO: 9
metK gib RmetK gib R AATTCGATATTTACTTCAGACCGGCAGCAATTCGATATTTACTTCAGACCGGCAGC This studythis study 서열번호 10SEQ ID NO: 10
MMT FMMT F ATGGCTGACCTGTCTAGCGTATGGCTGACCTGTCTAGCGT This studythis study 서열번호 11SEQ ID NO: 11
MMT RMMT R TTAGTTAGCCAGAACGCTTTTTAGTTAGCCAGAACGCTTT This studythis study 서열번호 12SEQ ID NO: 12
pCDFDuet_MMT_FpCDFDuet_MMT_F TTCTAACTGAGGGCCCGTCGACTAGCTTTTCTAACTGAGGGCCCGTCGACTAGCTT This studythis study 서열번호 13SEQ ID NO: 13
pCDFDuet_MMT_RpCDFDuet_MMT_R CAGCGGCCATGGGTGTAGCTCCTCCTTATTTGTTGCAGCGGCCATGGGTGTAGCTCCTCCTTATTTGTTG This studythis study 서열번호 14SEQ ID NO: 14
MMT gib FMMT gib F AGCTACACCCATGGCCGCTGCGGCGGGTAGCTACACCCATGGCCGCTGCGGCGGGT This studythis study 서열번호 15SEQ ID NO: 15
MMT gib RMMT gib R CGACGGGCCCTCAGTTAGAACCGTTAACTTTAGCGCCACCACCCCGACGGGCCCTCAGTTAGAACCGTTAACTTTAGCGCCACCACCC This studythis study 서열번호 16SEQ ID NO: 16
metF cut primer FmetF cut primer F ATGAGCTTTTTTCACGCCAGATGAGCTTTTTTCACGCCAG This studythis study 서열번호 17SEQ ID NO: 17
metF cut primer RmetF cut primer R TTATAAACCAGGTCGAACCCTTATAAACCAGGTCGAACCC This studythis study 서열번호 18SEQ ID NO: 18
pZA_metK_metF_gib FpZA_metK_metF_gib F TGGTTTATAAATATCGAATTCCTGCAGCCTGGTTTATAAATATCGAATTCCTGCAGCC This studythis study 서열번호 19SEQ ID NO: 19
pZA_metK_metF_gib RpZA_metK_metF_gib R AAAAGCTCATTTACTTCAGACCGGCAGCAAAAGCTCATTTACTTCAGACCGGCAGC This studythis study 서열번호 20SEQ ID NO: 20
metF gib FmetF gib F TCTGAAGTAAATGAGCTTTTTTCACGCCTCTGAAGTAAATGAGCTTTTTTCACGCC This studythis study 서열번호 21SEQ ID NO: 21
metF gib RmetF gib R AATTCGATATTTATAAACCAGGTCGAACCAATTCGATATTTATAAACCAGGTCGAACC This studythis study 서열번호 22SEQ ID NO: 22
del metJ conf Fdel metJ conf F ATTTATTGACGAAGAGGATTAAGTATCTCATTTATTGACGAAGAGGATTAAGTATCTC This studythis study 서열번호 23SEQ ID NO: 23
del metJ conf Rdel metJ conf R AGCAAAAAAGAGCGGCGCGGAGTGGAATCGAGCAAAAAAGAGCGGCGCGGAGTGGAATCG This studythis study 서열번호 24SEQ ID NO: 24
del mmuMP conf Fdel mmuMP conf F AACCTTCTTTGGATGTTTAGATGTCCAAACCTTCTTTGGATGTTTAGATGTCCA This studythis study 서열번호 25SEQ ID NO: 25
del mmuMP conf Rdel mmuMP conf R GGGTTTATCGGGTCTACATCGTTCATTGGGGTTTATCGGGTCTACATCGTTCATTG This studythis study 서열번호 26SEQ ID NO: 26
실시예 2. 재조합 효모 제조Example 2. Recombinant Yeast Preparation
해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물로 사카로마이세스 세레비지에( Saccharomyces cerevisiae)(BY4742, Sake koykai No.6)를 사용하였으며, 유전자 조작 등에 따른 균주 또는 플라스미드 명은 하기 표 3에 나타내었다. 또한, 본 발명에 따른 유전자 과발현에 사용된 모든 vector들은 gibson assembly를 통해 제조하였다. S-methylmethionine을 만들어주는 유전자를 발현하기 위해 사용한 프라이머는 아래의 표 4에 나타내었다. 이렇게 해당 프라이머를 사용하여 cloning을 해주고 그 후 gibson primer에 맞게 재 클로닝을 해준 후 각각의 fragment들을 gibson assembly를 통해 합쳐 주었다. 이와 같은 방법으로 p425(MMT), pSH47(MMT)를 제작하였다. 이후, 상기 실시예 1에서 설명한 MMT 유전자 과발현 방법과 동일한 방법을 통해 MMT 유전자가 과발현된 재조합 효모를 제조하였다. Saccharomyces cerevisiae (BY4742, Sake koykai No.6) was used as a microorganism having glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway process, and according to genetic manipulation, etc. The strain or plasmid names are shown in Table 3 below. In addition, all vectors used for gene overexpression according to the present invention were prepared through gibson assembly. The primers used to express the gene making S-methylmethionine are shown in Table 4 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. In this way, p425 (MMT) and pSH47 (MMT) were prepared. Thereafter, a recombinant yeast in which the MMT gene was overexpressed was prepared through the same method as the MMT gene overexpression method described in Example 1.
Strains and plasmidsstrains and plasmids DescriptionDescription sourcesource
Strainsstrains
BY4742BY4742 Saccharomyces cerevisiae △His, △Leu, △Lys, △UraSaccharomyces cerevisiae △His, △Leu, △Lys, △Ura This studythis study
K6-1K6-1 Saccharomyces cerevisiae sake K6 △LeuSaccharomyces cerevisiae sake K6 △Leu This studythis study
PlasmidPlasmid
pSH47pSH47 pSH47(MMT)pSH47 (MMT) This studythis study
p425p425 p425(MMT)p425 (MMT) This studythis study
Primer namePrimer name Sequence(5’-3’)Sequence(5'-3') SourceSource 서열번호SEQ ID NO:
MMT rbs FMMT rbs F GAGAATTTTATAAGGAGTCTTTATCATGGCTGACCTGTCTAGCGTGAGAATTTTATAAGGAGTCTTTATCATGGCTGACCTGTCTAGCGT This studythis study 서열번호27SEQ ID NO:27
MMT rbs RMMT rbs R TTAGTTAGCCAGAACGCTTTTGAACTGCTTAGTTAGCAGAACGCTTTTGAACTGC This studythis study 서열번호28SEQ ID NO:28
p425 MMT gib Fp425 MMT gib F GCTGCAGGAATTCGATATCAGAGAATTTTATAAGGAGTCTTTATCATGGCTGCAGGAATTCGATATCAGAGAATTTTATAAGGAGTCTTTATCATG This studythis study 서열번호29SEQ ID NO:29
p425 MMT gib Rp425 MMT gib R CGAGGTCGACGGTATCGATATTAGTTAGCCAGAACGCTTTTGCGAGGTCGACGGTATCGATATTAGTTAGCCAGAACGCTTTTG This studythis study 서열번호30SEQ ID NO:30
psh47_fwdpsh47_fwd GGCTAACTAATCATATGTCACCATAAATATCAAATAATTATAGGGCTAACTAATCATATGTCACCATAAATATCAAATAATTATAG This studythis study 서열번호31SEQ ID NO:31
psh47_revpsh47_rev TTGATAATGAGAAAGGATTTCAACATCGACTTGATAATGAGAAAGGATTTCAACATCGAC This studythis study 서열번호32SEQ ID NO:32
mmt with promoter_fwdmmt with promoter_fwd AAATCCTTTCTCATTATCAATACTGCCATTTCAAGAAATCCTTTCTCATTATCAATACTGCCATTTCAAG This studythis study 서열번호33SEQ ID NO:33
mmt with promoter_revmmt with promoter_rev TGACATATGATTAGTTAGCCAGAACGCTTTTGTGACATATGATTAGTTAGCCAGAACGCTTTTG This studythis study 서열번호34SEQ ID NO:34
실시예 3. 재조합 고초균 제조Example 3. Preparation of recombinant Bacillus subtilis
해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물로 고초균( Bacillus subtilis ATCC6633)를 사용하였으며, 유전자 조작 등에 따른 균주 또는 플라스미드 명은 하기 표 5에 나타내었다. 또한, 본 발명에 따른 유전자 과발현에 사용된 모든 vector들은 gibson assembly를 통해 제조하였다. metK 유전자를 과발현하기 위해 사용한 프라이머는 아래의 표 6에 나타내었다. 이렇게 해당 프라이머를 사용하여 cloning을 해주고 그 후 gibson primer에 맞게 재 클로닝을 해준 후 각각의 fragment들을 gibson assembly를 통해 합쳐 주었다. 이와 같은 방법으로 pBE-S(metK) 벡터를 제작하였다. MMT 유전자를 과발현 하기위해 사용한 프라이머는 아래의 표 6에 나타내었다. 이렇게 해당 프라이머를 사용하여 cloning을 해주고 그 후 gibson primer에 맞게 재 클로닝을 해준 후 각각의 fragment들을 gibson assembly를 통해 합쳐 주었다. 이와 같은 방법으로 pBE-S(MMT, metK) 벡터를 제작하였다. Bacillus subtilis ATCC6633 was used as a microorganism having glycolysis process and S-adenosylmethionine (SAM) biosynthetic pathway process, and the names of strains or plasmids according to genetic manipulation, etc. are shown in Table 5 below. In addition, all vectors used for gene overexpression according to the present invention were prepared through gibson assembly. Primers used to overexpress the metK gene are shown in Table 6 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. In this way, a pBE-S (metK) vector was constructed. The primers used to overexpress the MMT gene are shown in Table 6 below. After cloning using the corresponding primer, re-cloning was performed to match the gibson primer, and each fragment was combined through gibson assembly. In this way, a pBE-S (MMT, metK) vector was constructed.
이후, 상기 실시예 1에서 설명한 MMT 유전자 과발현, metK 유전자 과발현 방법과 동일한 방법을 통해 MMT 유전자 및 metK 유전자가 과발현된 재조합 고초균을 제조하였다.Thereafter, a recombinant Bacillus subtilis in which the MMT gene and the metK gene were overexpressed was prepared through the same method as the MMT gene overexpression and metK gene overexpression methods described in Example 1.
Strains and plasmidsstrains and plasmids DescriptionDescription sourcesource
Strainsstrains
BSBS wild type Bacillus subtiliswild type Bacillus subtilis This studythis study
PlasmidPlasmid
pBE-S(M)pBE-S(M) pBE-S(MMT)pBE-S (MMT) This studythis study
pBE-S(K,M)pBE-S(K,M) pBE-S(metK, MMT)pBE-S (metK, MMT) This studythis study
Primer namePrimer name Sequence(5’-3’)Sequence(5'-3') SourceSource 서열번호SEQ ID NO:
pBE-S_fwdpBE-S_fwd ggctaactaagggatccgaattcaagcttgtcggctaactaagggatccgaattcaagcttgtc This studythis study 서열번호35SEQ ID NO:35
pBE-S_revpBE-S_rev ttatatgtaatcgagggtaccgagctccttatatgtaatcgagggtaccgagctcc This studythis study 서열번호36SEQ ID NO:36
pBE-S metK gib_fwdpBE-S metK gib_fwd gtaccctcgattacatataattagaggaagaaaaaatggcgtaccctcgattacatataattagaggaagaaaaaatggc This studythis study 서열번호37SEQ ID NO:37
pBE-S metK gib_revpBE-S metK gib_rev ttatttgttgttacttcagaccggcagcttatttgttgttacttcagaccggcagc This studythis study 서열번호38SEQ ID NO: 38
pBE-S MMT gib_fwdpBE-S MMT gib_fwd tctgaagtaacaacaaataaggaggagctactctgaagtaacaacaaataaggaggagctac This studythis study 서열번호39SEQ ID NO:39
pBE-S MMT gib_revpBE-S MMT gib_rev ttcggatcccttagttagccagaacgcttttgttcggatcccttagttagccagaacgcttttg This studythis study 서열번호40SEQ ID NO:40
pBE-S (MMT in) gib_fwdpBE-S (MMT in) gib_fwd ggctaactaagggatccgaattcaagcttgtcggctaactaagggatccgaattcaagcttgtc This studythis study 서열번호41SEQ ID NO: 41
pBE-S (MMT in) gib_revpBE-S (MMT in) gib_rev ttatttgttgtcgagggtaccgagctccttatttgttgtcgagggtaccgagctcc This studythis study 서열번호42SEQ ID NO:42
MMT gene cut to in pBE-S_fwdMMT gene cut to in pBE-S_fwd gtaccctcgacaacaaataaggaggagctacgtaccctcgacaacaaataaggaggagctac This studythis study 서열번호43SEQ ID NO:43
MMT gene cut to in pBE-S_revMMT gene cut to in pBE-S_rev ttcggatcccttagttagccagaacgcttttgttcggatcccttagttagccagaacgcttttg This studythis study 서열번호44SEQ ID NO:44
실시예 4. 재조합 방선균 제조 Example 4. Preparation of Recombinant Actinomycetes
해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물로 방선균( Streptomyces venezuelae ATCC 15439)을 사용하였으며, 유전자 조작 등에 따른 균주 또는 플라스미드 명은 하기 표 7에 나타내었다. 또한, 본 발명에 따른 유전자 과발현에 사용된 모든 vector들은 gibson assembly를 통해 제조하였다. MMT 유전자를 과발현하기 위해 사용한 프라이머는 아래의 표 8에 나타내었다. 해당 프라이머를 사용하여 MMT gene fragment를 만들고 XbaI과 NdeI으로 자른 backbone vector fragment들을 gibson assembly를 통해 합쳐 주었다. 이와 같은 방법으로 pSET(M) 벡터를 제작하였다. Streptomyces as a microorganism with glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway process venezuelae ATCC 15439) was used, and the names of strains or plasmids according to genetic manipulation, etc. are shown in Table 7 below. In addition, all vectors used for gene overexpression according to the present invention were prepared through gibson assembly. Primers used to overexpress the MMT gene are shown in Table 8 below. MMT gene fragment was created using the corresponding primer, and backbone vector fragments cut with XbaI and NdeI were combined through gibson assembly. A pSET(M) vector was constructed in this way.
이후, 상기 실시예 1에서 설명한 MMT 유전자 과발현 방법과 동일한 방법을 통해 MMT 유전자가 과발현된 재조합 방선균을 제조하였다.Thereafter, a recombinant actinomycete in which the MMT gene was overexpressed was prepared through the same method as the MMT gene overexpression method described in Example 1.
Strains and plasmidsstrains and plasmids DescriptionDescription sourcesource
Strainsstrains
SVSV wild type Streptomyces venezuelae ATCC 15439wild type Streptomyces venezuelae ATCC 15439 This studythis study
PlasmidPlasmid
pSET(M)pSET(M) pSET(MMT)pSET (MMT) This studythis study
Primer namePrimer name Sequence(5’-3’)Sequence(5'-3') SourceSource 서열번호SEQ ID NO:
MMT-over40bp-F MMT-over40bp-F CAGGAGAATACGACAGCG TGCAGGACTGGGGGAGTG CGCAATGGCTGACCTGTCTAGCCAGGAGAATACGACAGCG TGCAGGACTGGGGGAGTG CGCAATGGCTGACCTGTCTAGC This studythis study 서열번호45SEQ ID NO:45
MMT-over40bp-RMMT-over40bp-R CTATGACATGATTACGAATTCGATATCGCGCGCGGCCGCGTTAGTTAGCCAGAACGCTTTTGCTATGACATGATTACGAATTCGATATCGCGCGCGGCCGCGTTAGTTAGCCAGAACGCTTTTG This studythis study 서열번호46SEQ ID NO:46
평가예 1. 재조합 대장균의 SMM 생산량 측정Evaluation Example 1. Measurement of SMM production of recombinant E. coli
본 발명의 실시예 1에 따른 재조합 대장균을 10g/L의 glucose가 보충된 M9(minimal media) 배지에서 24시간 동안 배양하였으며, HPLC를 사용하여 SMM 생산량을 측정하였다. 칼럼은 Agilent사의 Amino Acid Analysis 칼럼을 사용하였고, HPLC의 이동상으로는 A: Sodium phosphate diabasic, Phosphoric acid, DW / B : DW, Acetonitrile, Methanol을 사용하였다. Recombinant E. coli according to Example 1 of the present invention was cultured in M9 (minimal media) medium supplemented with 10 g/L glucose for 24 hours, and SMM production was measured using HPLC. Agilent's Amino Acid Analysis column was used for the column, and A: Sodium phosphate diabasic, Phosphoric acid, DW / B: DW, Acetonitrile, and Methanol were used as mobile phases for HPLC.
도 2는 본 발명의 실시예 1에 따른 재조합 미생물(대장균)의 SMM 생산량을 측정한 결과를 나타낸 것이다(J : △metJ, dJMP : △metJ, △mmuP, △mmuM, aK : pZA(metK), aKF : pZA(metK, metF), cM : pCDFDuet(A.MMT), sA * : pZS(metA *fbr), cBM : pCDFDuet(B.MMT), csfM : pCDFDuet(Sf.MMT)). Figure 2 shows the results of measuring the SMM production of the recombinant microorganism (E. coli) according to Example 1 of the present invention (J: ΔmetJ, dJMP: ΔmetJ, ΔmmuP, ΔmmuM, aK: pZA (metK), aKF:pZA(metK, metF), cM:pCDFDuet(A.MMT), sA * :pZS(metA * fbr), cBM:pCDFDuet(B.MMT), csfM:pCDFDuet(Sf.MMT)).
도 2를 통해 본 발명에 따른 재조합 대장균을 이용할 경우, SMM의 전구체인 메티오닌을 넣어주지 않아도, SMM을 우수한 수율로 생산할 수 있다는 점(dJMP+aKcMsA*과 dJMP+aKFcMsA*에서 각각 0.063g/L 및 0.07g/L 생산)을 확인하였다.2, when recombinant E. coli according to the present invention is used, SMM can be produced in excellent yield without adding methionine, a precursor of SMM (0.063 g/L and 0.063 g/L and 0.07 g/L production) was confirmed.
평가예 2. 재조합 대장균의, 다양한 MMT 유전자 유래별 SMM 생산량 측정Evaluation Example 2. Measurement of SMM production by various MMT gene-derived recombinant E. coli
도 3은 본 발명의 실시예 1에 따른 재조합 미생물(대장균)의, 다양한 MMT 유전자 유래별 SMM 생산량을 측정한 결과를 나타낸 것이다( Arabidopsis thaliana(dJMP+aKcMsA *), Barley(dJMP+aKcBMsA *), Sunflower(dJMP+aKcsfMsA *)). 배양 조건 및 SMM 생산량 측정 방법은 상기 평가예 1에서 설명한 것과 동일하다.Figure 3 shows the results of measuring the SMM production for each MMT gene origin of the recombinant microorganism (E. coli) according to Example 1 of the present invention ( Arabidopsis thaliana (dJMP + aKcMsA * ), Barley (dJMP + aKcBMsA * ), Sunflower (dJMP+aKcsfMsA * )). The culture conditions and the method of measuring the amount of SMM production are the same as those described in Evaluation Example 1 above.
도 3을 통해 SMM의 전구체인 메티오닌을 넣어주지 않아도 애기장대(Arabidopsis thaliana), 보리(Barley), 및 해바라기(Sunflower)로부터 유래된 MMT 유전자가 도입 및 과발현될 경우 모두 SMM을 우수한 수율로 생산할 수 있다는 점(각각 0.07g/L, 0.039g/L 및 0.024g/L 생산)을 확인하였다.3 shows that even without adding methionine, a precursor of SMM, the MMT gene derived from Arabidopsis thaliana, barley, and sunflower is introduced and overexpressed, indicating that SMM can be produced in excellent yield. Points (0.07 g/L, 0.039 g/L and 0.024 g/L production, respectively) were identified.
평가예 3. 재조합 효모(사카로마이세스 세레비지에)의 SMM 생산량 측정Evaluation Example 3. SMM production measurement of recombinant yeast (Saccharomyces cerevisiae)
본 발명의 실시예 2에 따른 재조합 효모를 10g/L의 glucose 및 0.5g/L의 methionine을 첨가한 SD(minimal media) 배지에서 24시간 동안 배양하였으며, HPLC를 사용하여 SMM 생산량을 측정하였다. 칼럼은 Agilent사의 Amino Acid Analysis 칼럼을 사용하였고, HPLC의 이동상으로는 A: Sodium phosphate diabasic, Phosphoric acid, DW / B : DW, Acetonitrile, Methanol을 사용하였다. The recombinant yeast according to Example 2 of the present invention was cultured for 24 hours in SD (minimal media) medium supplemented with 10 g/L glucose and 0.5 g/L methionine, and SMM production was measured using HPLC. Agilent's Amino Acid Analysis column was used for the column, and A: Sodium phosphate diabasic, Phosphoric acid, DW / B: DW, Acetonitrile, and Methanol were used as mobile phases for HPLC.
도 4는 본 발명의 실시예 2에 따른 재조합 미생물(사카로마이세스 세레비지에)의 SMM 생산량을 측정한 결과를 나타낸 것이다(Y1: BY4742 + pSH47(MMT ::URA).Y2 : K6-1 + p425(MMT :: Leu))4 shows the results of measuring the SMM production of the recombinant microorganism (Saccharomyces cerevisiae) according to Example 2 of the present invention (Y1: BY4742 + pSH47 (MMT::URA). Y2: K6-1 + p425(MMT::Leu))
도 4를 통해, 본 발명에 따른 재조합 효모를 이용할 경우에도 SMM을 우수한 수율로 생산할 수 있다는 점(Y1 : 0.043g/L, Y2 : 0.105g/L 생산)을 확인하였다.4, it was confirmed that even when using the recombinant yeast according to the present invention, SMM can be produced in excellent yield (Y1: 0.043 g/L, Y2: 0.105 g/L production).
평가예 4. 재조합 고초균의 SMM 생산량 측정Evaluation Example 4. Measurement of SMM production of recombinant Bacillus subtilis
본 발명의 실시예 3에 따른 재조합 고초균을 10g/L의 glucose 및 0.5g/L의 methionine을 첨가한 LB(rich media) 배지에서 24시간 동안 배양하였으며, HPLC를 사용하여 SMM 생산량을 측정하였다. 칼럼은 Agilent사의 Amino Acid Analysis 칼럼을 사용하였고, HPLC의 이동상으로는 A: Sodium phosphate diabasic, Phosphoric acid, DW / B : DW, Acetonitrile, Methanol을 사용하였다. Recombinant Bacillus subtilis according to Example 3 of the present invention was cultured for 24 hours in LB (rich media) medium supplemented with 10 g/L glucose and 0.5 g/L methionine, and SMM production was measured using HPLC. Agilent's Amino Acid Analysis column was used for the column, and A: Sodium phosphate diabasic, Phosphoric acid, DW / B: DW, Acetonitrile, and Methanol were used as mobile phases for HPLC.
도 5는 본 발명의 실시예 3에 따른 재조합 미생물(바실러스 서브틸리스)의 SMM 생산량을 측정한 결과를 나타낸 것이다(BS+M(wtBacillus + pBE-S(MMT), BS+MK(wtBacillus + pBE-S(metK, MMT))Figure 5 shows the results of measuring the SMM production of the recombinant microorganism (Bacillus subtilis) according to Example 3 of the present invention (BS + M (wtBacillus + pBE-S (MMT), BS + MK (wtBacillus + pBE) -S(metK, MMT))
도 5를 통해, 본 발명에 따른 재조합 고초균을 이용할 경우에도 SMM을 우수한 수율로 생산할 수 있다는 점(BS+M(1.6mg/L), BS+MK(3.2mg/L))을 확인하였다.5, it was confirmed that even when using the recombinant Bacillus subtilis according to the present invention, SMM can be produced in excellent yield (BS+M (1.6 mg/L), BS+MK (3.2 mg/L)).
평가예 5. 재조합 방선균의 SMM 생산량 측정Evaluation Example 5. Measurement of SMM Production of Recombinant Actinomycetes
본 발명의 실시예 4에 따른 재조합 방선균을 0.5g/L의 methionine을 첨가한 GYM 배지에서 96시간 동안 배양하였으며, HPLC를 사용하여 SMM 생산량을 측정하였다. 칼럼은 Agilent사의 Amino Acid Analysis 칼럼을 사용하였고, HPLC의 이동상으로는 A: Sodium phosphate diabasic, Phosphoric acid, DW / B : DW, Acetonitrile, Methanol을 사용하였다. Recombinant actinomycetes according to Example 4 of the present invention were cultured for 96 hours in GYM medium supplemented with 0.5 g/L methionine, and SMM production was measured using HPLC. Agilent's Amino Acid Analysis column was used for the column, and A: Sodium phosphate diabasic, Phosphoric acid, DW / B: DW, Acetonitrile, and Methanol were used as mobile phases for HPLC.
도 6은 본 발명의 실시예 4에 따른 재조합 미생물(스트렙토마이세스 베네수엘라)의 SMM 생산량을 측정한 결과를 나타낸 것이다.6 shows the results of measuring the SMM production of the recombinant microorganism (Streptomyces Venezuela) according to Example 4 of the present invention.
도 6을 통해, 본 발명에 따른 재조합 방선균를 이용할 경우에도 SMM을 우수한 수율로 생산할 수 있다는 점(4.86mg/L 생산)을 확인하였다.6, it was confirmed that even when using the recombinant actinomycetes according to the present invention, SMM can be produced in an excellent yield (4.86 mg/L production).
평가예 6. 다중서열정렬(multiple sequence alignment)Evaluation Example 6. Multiple sequence alignment
다양한 유래(애기장대(Arabidopsis thaliana), 보리(Barley), 해바라기(Sunflower), 포도(Vitis vinifera), 코요테 담배(Nicotiana attenuata), 묏장대(Arabidopsis lyrata), 옥수수(Zea mays), 튤립(Anthurium amnicola), 난초(Apostasia shenzhenica), 노린재(Lygus hesperus))의 MMT 유전자 서열들을 이에 대응하는 아미노산 서열로(순서대로 각각 서열번호 47 내지 56으로 표시) 바꾸고, ClustalX의 양식에 맞는 FASTA 형식으로 바꿔준 후 ClustalX 프로그램을 사용하여 유사성(similarity)(%)과 동정성(identity)(%)을 측정하였으며, 그 결과를 하기 도 5에 나타내었다. Various origins (Arabidopsis thaliana, Barley, Sunflower, Vitis vinifera, Nicotiana attenuata), Arabidopsis lyrata, Corn (Zea mays), Tulip (Anthurium amnicola) ), orchid (Apostasia shenzhenica), stink bug (Lygus hesperus)) change the MMT gene sequences to the corresponding amino acid sequences (shown in SEQ ID NOs: 47 to 56, respectively in order), and change to the FASTA format suitable for the format of ClustalX Similarity (%) and identity (%) were measured using the ClustalX program, and the results are shown in FIG. 5 below.
상기 다중서열정렬은 ClustalX 프로그램을 통해 진행하였으며, 그 결과, 난초(Apostasia shenzhenica), 노린재(Lygus hesperus)가 보유한 MMT 유전자에 대응하는 아미노산 서열(서열번호 55 및 56)과 달리, 포도(Vitis vinifera), 코요테 담배(Nicotiana attenuata), 묏장대(Arabidopsis lyrata), 옥수수(Zea mays), 튤립(Anthurium amnicola))으로부터 유래한 MMT 유전자에 대응하는 아미노산 서열(서열번호 50 내지 54)은 애기장대(Arabidopsis thaliana)로부터 유래한 MMT 유전자(서열번호 1)에 대응하는 아미노산 서열(서열번호 47)과 유사성(similarity) 및 동정성(identity)이 60% 이상인 것으로 확인되었으며, 이를 통해 이들로부터 유래한 MMT 유전자 또한 본 발명에 동일하게 적용될 수 있음을 확인하였다.The multiple sequence alignment was performed through the ClustalX program, and as a result, unlike the amino acid sequence (SEQ ID NOs: 55 and 56) corresponding to the MMT gene possessed by orchids (Apostasia shenzhenica) and stink bug (Lygus hesperus), grapes (Vitis vinifera) , Coyote tobacco (Nicotiana attenuata), Arabidopsis lyrata, corn (Zea mays), the amino acid sequence corresponding to the MMT gene (SEQ ID NOs: 50 to 54) derived from tulips (Anthurium amnicola) Arabidopsis thaliana ), it was confirmed that the amino acid sequence (SEQ ID NO: 47) corresponding to the MMT gene (SEQ ID NO: 1) and the similarity and identity (similarity) and identity (identity) are at least 60%, and the MMT gene derived from them is also It was confirmed that the same can be applied to the invention.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시형태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, it is clear that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.
본 발명에 따르면, 종래 식물 추출 또는 화학적 합성법과 달리 미생물 생합성을 통해 S-메틸메티오닌을 우수한 수율로 생성할 수 있는바, S-메틸메티오닌 생산이 요구되는 다양한 분야에서 유용하게 사용될 수 있다.According to the present invention, S-methylmethionine can be produced in excellent yield through microbial biosynthesis, unlike conventional plant extraction or chemical synthesis, and thus can be usefully used in various fields requiring S-methylmethionine production.

Claims (15)

  1. 해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물에서 메티오닌 S-메틸메티오닌 트랜스퍼라제(methionine S-methylmethionine transferase, MMT)를 코딩하는 유전자가 과발현되어, S-메틸메티오닌(S-Methylmethionine, SMM) 생성능을 갖는 재조합 미생물.In microorganisms having glycolysis and S-adenosylmethionine (SAM) biosynthetic pathway processes, the gene encoding methionine S-methylmethionine transferase (MMT) is overexpressed, resulting in S-methylmethionine (S-Methylmethionine, SMM) Recombinant microorganism having the ability to produce.
  2. 제1항에 있어서,The method of claim 1,
    상기 S-메틸메티오닌은 S-메틸-L-메티오닌(S-Methyl-L-methionine)인 것을 특징으로 하는 재조합 미생물.The S-methylmethionine is a recombinant microorganism, characterized in that S-methyl-L-methionine (S-Methyl-L-methionine).
  3. 제1항에 있어서,The method of claim 1,
    상기 MMT를 코딩하는 유전자는 서열번호 1 내지 서열번호 3 중 어느 하나로 표시되는 것을 특징으로 하는 재조합 미생물.The gene encoding the MMT is a recombinant microorganism, characterized in that represented by any one of SEQ ID NO: 1 to SEQ ID NO: 3.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 MMT를 코딩하는 유전자는 애기장대(Arabidopsis thaliana), 보리(Barley), 해바라기(Sunflower)로부터 유래된 것을 특징으로 하는 재조합 미생물.The gene encoding the MMT is a recombinant microorganism, characterized in that derived from Arabidopsis thaliana, barley, sunflower.
  5. 제1항에 있어서,According to claim 1,
    상기 MMT를 코딩하는 유전자에 대응하는 아미노산 서열은 서열번호 1에 대응하는 아미노산 서열인 서열번호 47의 아미노산 서열과 60% 이상의 서열상동성을 갖는 것을 특징으로 하는 재조합 미생물.The amino acid sequence corresponding to the gene encoding the MMT is a recombinant microorganism, characterized in that it has at least 60% sequence homology with the amino acid sequence of SEQ ID NO: 47, which is the amino acid sequence corresponding to SEQ ID NO: 1.
  6. 제5항에 있어서, 상기 MMT를 코딩하는 유전자는 포도(Vitis vinifera), 코요테 담배(Nicotiana attenuata), 묏장대(Arabidopsis lyrata), 옥수수(Zea mays), 튤립(Anthurium amnicola)으로부터 유래된 것을 특징으로 하는 재조합 미생물.The method according to claim 5, wherein the gene encoding the MMT is derived from grapes (Vitis vinifera), coyote tobacco (Nicotiana attenuata), Arabidopsis lyrata, corn (Zea mays), and tulips (Anthurium amnicola). recombinant microorganisms.
  7. 제1항에 있어서,The method of claim 1,
    메티오닌 생합성 경로의 억제인자를 코딩하는 metJ(methionine repressor) 유전자가 추가로 결실되어 있는 것을 특징으로 하는 재조합 미생물.A recombinant microorganism, characterized in that the metJ (methionine repressor) gene encoding a repressor of the methionine biosynthesis pathway is further deleted.
  8. 제1항에 있어서,The method of claim 1,
    mmuP(transport of S-methylmethionine)유전자 및 mmuM(Homocysteine S-methyltransferase) 유전자가 추가로 결실되어 있는 것을 특징으로 하는 재조합 미생물.A recombinant microorganism, characterized in that the transport of S-methylmethionine (mmuP) gene and the homocysteine S-methyltransferase (mmuM) gene are further deleted.
  9. 제1항에 있어서,The method of claim 1,
    S-아데노실메티오닌 합성효소를 코딩하는 metK(S-adenosylmethionine synthetase) 유전자 및 5,10-메틸렌테트라하이드로폴레이트 리덕타제(5,10-methylenetetrahydrofolate reductase)를 코딩하는 metF 유전자가 추가로 과발현되어 있는 것을 특징으로 하는 재조합 미생물.S-adenosylmethionine synthetase (metK) gene encoding S-adenosylmethionine synthetase and metF gene encoding 5,10-methylenetetrahydrofolate reductase were additionally overexpressed Recombinant microorganisms characterized.
  10. 제1항에 있어서,According to claim 1,
    호모세린 O-숙시닐트랜스퍼라아제(Homoserine O-succinyltransferase)를 코딩하는 metA 유전자를 변이시킨 것을 특징으로 하는 재조합 미생물.A recombinant microorganism characterized in that the metA gene encoding homoserine O-succinyltransferase is mutated.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 metA의 변이 유전자는 상기 metA 유전자의 염기서열에서, 190번째 염기인 시토신이 구아닌으로 치환된 것을 특징으로 하는 재조합 미생물.The mutant gene of metA is a recombinant microorganism, characterized in that in the nucleotide sequence of the metA gene, cytosine, which is the 190th base, is substituted with guanine.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 metA의 변이 유전자는 서열번호 4로 표시되는 것을 특징으로 하는 재조합 미생물.The mutant gene of metA is a recombinant microorganism, characterized in that represented by SEQ ID NO: 4.
  13. 제1항에 있어서,According to claim 1,
    상기 해당 과정 및 S-아데노실메티오닌(S-adenosylmethionine, SAM) 생합성 경로 과정을 갖는 미생물은 대장균( Escherichia coli), 사카로마이세스 세레비지에( Saccharomyces cerevisiae), 바실러스 서브틸리스( Bacillus subtilis) 또는 스트렙토미세스 베네주엘라에( Streptomyces venezuelae)인 것을 특징으로 하는 재조합 미생물.Microorganisms having the glycolysis process and S-adenosylmethionine (SAM) biosynthetic pathway process are Escherichia coli ), Saccharomyces cerevisiae , Bacillus subtilis , or Streptomyces venezuelae Recombinant microorganism, characterized in that it is.
  14. (a) 제1항의 재조합 미생물을 배양하여 S-메틸메티오닌을 생성시키는 단계; 및(a) culturing the recombinant microorganism of claim 1 to produce S-methylmethionine; and
    (b) 상기 생성된 S-메틸메티오닌을 수득하는 단계;를 포함하는 S-메틸메티오닌의 제조방법(b) obtaining the produced S-methylmethionine; Method for producing S-methylmethionine comprising
  15. 제14항에 있어서,15. The method of claim 14,
    상기 (a) 단계의 배양은 수크로스, 락토스, 말토스, 트레할로스, 투라노스, 셀로비오스, 라피노스, 멜레치토스, 말로트리오스, 아카보스, 스타키오스, 글루코스, 아밀로스, 셀룰로스, 프럭토스, 아노스, 또는 갈락토스로 이루어진 군에서 선택되는 1종 이상을 탄소원으로 사용하는 것을 특징으로 하는 방법.The culture of step (a) is sucrose, lactose, maltose, trehalose, turanose, cellobiose, raffinose, melechtose, malotriose, acarbose, stachyose, glucose, amylose, cellulose, fructose, anose, Or at least one selected from the group consisting of galactose as a carbon source.
PCT/KR2021/002981 2020-09-11 2021-03-10 Recombinant microorganism for producing s-methylmethionine, and method for preparing s-methylmethionine using same WO2022055056A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200116803A KR102489243B1 (en) 2020-09-11 2020-09-11 Recombinant microorganism for producing S-methylmethionine, and method for preparing S-methylmethionine using the same
KR10-2020-0116803 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022055056A1 true WO2022055056A1 (en) 2022-03-17

Family

ID=80630309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002981 WO2022055056A1 (en) 2020-09-11 2021-03-10 Recombinant microorganism for producing s-methylmethionine, and method for preparing s-methylmethionine using same

Country Status (2)

Country Link
KR (1) KR102489243B1 (en)
WO (1) WO2022055056A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049157A2 (en) * 1999-02-22 2000-08-24 University Of Florida Compositions and methods for altering sulfur content in plants
KR101784633B1 (en) * 2016-10-28 2017-10-17 심진선 Extracting process of cabbage containing S-methyl methionine
KR20180093981A (en) * 2016-01-08 2018-08-22 에보니크 데구사 게엠베하 Method for producing L-methionine by fermentative production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049157A2 (en) * 1999-02-22 2000-08-24 University Of Florida Compositions and methods for altering sulfur content in plants
KR20180093981A (en) * 2016-01-08 2018-08-22 에보니크 데구사 게엠베하 Method for producing L-methionine by fermentative production
KR101784633B1 (en) * 2016-10-28 2017-10-17 심진선 Extracting process of cabbage containing S-methyl methionine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOCSIS MICHAEL G., RANOCHA PHILIPPE, GAGE DOUGLAS A., SIMON ERIC S., RHODES DAVID, PEEL GREGORY J., MELLEMA STEFAN, SAITO KAZUKI, : "Insertional Inactivation of the Methionine S -Methyltransferase Gene Eliminates the S -Methylmethionine Cycle and Increases the Methylation Ratio", PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, USA, vol. 131, no. 4, 1 April 2003 (2003-04-01), Rockville, Md, USA , pages 1808 - 1815, XP055782658, ISSN: 0032-0889, DOI: 10.1104/pp.102.018846 *
THANBICHLER MARTIN, NEUHIERL BERNHARD, BÖCK AUGUST: "S -Methylmethionine Metabolism in Escherichia coli", JOURNAL OF BACTERIOLOGY (PRINT), AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 181, no. 2, 15 January 1999 (1999-01-15), US , pages 662 - 665, XP055909981, ISSN: 0021-9193, DOI: 10.1128/JB.181.2.662-665.1999 *

Also Published As

Publication number Publication date
KR102489243B1 (en) 2023-01-16
KR20220034969A (en) 2022-03-21

Similar Documents

Publication Publication Date Title
WO2018182344A1 (en) Composition for tagatose production and method for tagatose production using same
WO2021162189A1 (en) Corynebacterium glutamicum mutant strain having improved l-glutamic acid production ability, and method for producing l-glutamic acid using same
WO2014208981A1 (en) Microorganism with enhanced l-lysine productivity and method for producing l-lysine by using same
WO2018182355A1 (en) Composition for producing tagatose and production method of tagatose using same
WO2023158029A1 (en) Novel atp synthase variant and method for producing l-aromatic amino acid using same
WO2014193052A1 (en) Corynebacterium including polynucleotide for coding psicose 3-epimerase enzyme and method for producing psicose by using same
WO2011052819A1 (en) Novel method for producing 3-hydroxypropionic acid from glycerol
WO2015174655A1 (en) Corynebacterium genus microorganism for producing l-lysine and method for producing l-lysine by using same
WO2015199406A1 (en) Escherichia sp. microorganism having l-tryptophan production capacity and method for producing l-tryptophan using same
CN111485008A (en) Biological preparation method of cis-5-hydroxy-L-hexahydropicolinic acid
WO2022055056A1 (en) Recombinant microorganism for producing s-methylmethionine, and method for preparing s-methylmethionine using same
WO2011149248A2 (en) Method for preparing 3-hydroxypropionic acid from glycerol in high yield
CN106884028B (en) Method for enzymatic synthesis of nicotinamide uracil dinucleotide
WO2017065529A1 (en) O-acetylhomoserine sulfhydrylase variant and method for producing l-methionine using same
WO2021201489A1 (en) Recombinant vector for transformation improving glutamine productivity, and strain employing same
WO2020184889A1 (en) Allulose-producing microorganism of genus staphylococcus and method for manufacturing allulose using same
CN111826372B (en) Engineering strain for producing butanol by using xylose and construction method and application thereof
WO2024144124A1 (en) Recombinant microorganisms for producing fucosyllactose and method of fucosyllactose production using same
WO2018117773A2 (en) Recombinant strain having modified sugar metabolic pathway and method for screening sugar isomerase using same
WO2022231056A1 (en) Corynebacterium glutamicum variant with improved l-lysine production ability, and method for producing l-lysine using same
WO2017164615A1 (en) Method for preparing 3'-amino-2',3'-dideoxyadenosine by using nucleoside phosphorylase derived from bacillus
WO2023171857A1 (en) Glycogen operon expression cassette comprising maltose promoter
CN115976058B (en) Toxin gene and application thereof in construction of recombinant and/or gene-edited engineering bacteria
CN114958890B (en) Method for constructing genetically engineered strain for biosynthesis of salicylic acid with stable inheritance and application of genetically engineered strain
WO2022231054A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability, and method for producing l-lysine using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866928

Country of ref document: EP

Kind code of ref document: A1