WO2023171857A1 - Glycogen operon expression cassette comprising maltose promoter - Google Patents

Glycogen operon expression cassette comprising maltose promoter Download PDF

Info

Publication number
WO2023171857A1
WO2023171857A1 PCT/KR2022/009867 KR2022009867W WO2023171857A1 WO 2023171857 A1 WO2023171857 A1 WO 2023171857A1 KR 2022009867 W KR2022009867 W KR 2022009867W WO 2023171857 A1 WO2023171857 A1 WO 2023171857A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycogen
promoter
expression cassette
host cell
operon
Prior art date
Application number
PCT/KR2022/009867
Other languages
French (fr)
Korean (ko)
Inventor
박종태
유현아
김민수
Original Assignee
㈜카보엑스퍼트
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜카보엑스퍼트, 충남대학교산학협력단 filed Critical ㈜카보엑스퍼트
Publication of WO2023171857A1 publication Critical patent/WO2023171857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds

Definitions

  • It relates to a glycogen operon expression cassette containing a maltose promoter.
  • Glycogen is a homopolysaccharide composed of glucose, like starch, a storage polysaccharide in plants. Glycogen has a polymer structure in which D-glucose is bound by ⁇ -1,4 glycosidic bonds, and has a highly entangled network structure with one side chain residue by ⁇ -1,6 glycosidic bonds per 8 to 10 glucose residues. has.
  • Glycogen is known as a storage polysaccharide in animals. In animals, it is known to exist in a granular state (glycogen granules) in most cells, especially in liver and muscle. Muscle glycogen is the energy source for muscle contraction, and liver glycogen is used to maintain blood sugar during fasting. Therefore, these differences in properties lead to differences in the function of glycogen. Muscle glycogen has a molecular weight of 1 to 2 million. Liver glycogen has a molecular weight of about 5 to 6 million, and sometimes has a molecular weight of up to 20 million.
  • Glycogen is a storage polysaccharide in animals, and is also known to have the effect of improving liver function.
  • glycogen extracted from squid and scallops exhibits strong antitumor activity (Takata, Y. et al., J. Mar, Biotech ., 6:208-213, 1998). This glycogen has utility as a new material for functional foods, and development is underway to apply it.
  • nucleic acids encoding for example, structural genes in prokaryotic systems.
  • the host is transformed using a vector containing the nucleic acid sequence of the structural gene of interest operably linked to a promoter, which is the nucleic acid sequence that allows the structural gene to be transcribed.
  • a promoter which is the nucleic acid sequence that allows the structural gene to be transcribed.
  • the present inventors have completed a prokaryotic system capable of mass producing glycogen for use in various industries as described above.
  • One aspect is to provide an expression cassette comprising a glycogen operon in which the promoter of the glycogen operon is replaced with a maltose promoter or a maltose promoter is inserted.
  • Another aspect is to provide a prokaryotic host cell transformed with the expression cassette.
  • Another aspect is to provide a method of producing glycogen by culturing the prokaryotic host cell.
  • One aspect provides an expression cassette comprising a glycogen operon in which the promoter of the glycogen operon is replaced with a maltose promoter or a maltose promoter is inserted.
  • glycogen operon refers to a group of genes encoding enzymes involved in synthesizing glycogen, and includes structural genes and promoters.
  • the glycogen operon may be derived from Escherichia coli ( E. coli ).
  • the glycogen operon may be composed of the glgBX and glgCAP operons. Therefore, the promoter of the glycogen operon may be the glgBX or glgCAP promoter.
  • the maltose promoter may be the malPQ promoter.
  • the maltose promoter may include the base sequence of SEQ ID NO: 1. Specifically, a base having homology or identity of at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more with SEQ ID NO: 1 It may include a sequence. In addition, if it is a nucleotide sequence that has such homology or identity and exhibits a function corresponding to the maltose promoter, it is obvious that the maltose promoter having a nucleotide sequence in which some sequences are deleted, modified, substituted, or added is also included within the scope of the present application.
  • promoter refers to a nucleic acid sequence that controls the expression of a transcription unit.
  • 'Promoter region' refers to a regulatory region that can bind RNA polymerase within the cell and initiate transcription of the downstream (3' direction) coding region.
  • protein binding regions responsible for binding RNA polymerase will be found, such as the putative -35th region and the Pribnow box (-10th region).
  • the promoter region may include a transcription initiation site and binding sites for regulatory proteins.
  • a gene selected from the group consisting of glgB, glgX, glgC, glgA, glgP, and combinations thereof may be removed from the glycogen operon.
  • the term "removal" of a gene encompasses mutating, substituting, or deleting some or all of the bases of the gene, or introducing some bases to prevent the gene from being expressed, or preventing it from exhibiting enzymatic activity even if expressed. As a concept, it includes anything that blocks the biosynthetic pathway in which the enzyme of that gene is involved.
  • the glgB gene encodes glycogen branching enzyme (synonym B3432).
  • the glgB gene (nucleotide positions: 3,571,525 to 3,569,339; GenBank accession number NC_000913.2; gi: 49175990) is located between the glgX and asd genes on the chromosome of E. coli K-12.
  • the base sequence of the glgB gene can be presented as SEQ ID NO: 4.
  • the glgX gene encodes glycogen phosphorylase-limit dextrin ⁇ -1,6-glucohydrolase (synonym B3431, GlyX).
  • the glgX gene (nucleotide positions: 3,569,342 to 3,567,369; GenBank accession number NC_000913.2; gi: 49175990) is located between the glgC and glgB genes on the chromosome of E. coli K-12.
  • the base sequence of the glgX gene can be presented as SEQ ID NO: 5.
  • the glgC gene encodes glucose-1-phosphate adenylyltransferase (synonym B3430).
  • the glgC gene (gi: 16131304; nucleotides complementary to nucleotides 3566056 to 3567351 under GenBank accession number NC_000913.2) is located between the glgA and glgX genes on the chromosome of E. coli K-12.
  • the base sequence of the glgC gene can be presented as SEQ ID NO: 6.
  • the glgA gene encodes a subunit of glycogen synthase (synonym B3429).
  • the glgA gene (nucleotide positions: 3,566,056 to 3,564,623; GenBank accession number NC_000913.2; gi: 49175990) is located between the glgP and glgC genes on the chromosome of E. coli K-12.
  • the base sequence of the glgA gene can be presented as SEQ ID NO: 7.
  • the glgP gene encodes glycogen phosphorylase/glycogen-maltotetraosephosphorylase (synonym B3428, GlgY).
  • the glgP gene (nucleotide positions: 3,564,604 to 3,562,157; GenBank accession number NC_000913.2; gi: 49175990) is located between the yzgL and glgA genes on the chromosome of E. coli K-12.
  • the base sequence of the glgP gene can be presented as SEQ ID NO: 8.
  • the glgBX promoter may be replaced with a maltose promoter.
  • a maltose promoter may be inserted upstream of the glgCAP operon.
  • malPQ a maltose promoter, may be inserted upstream of the glgCAP operon, or may be inserted between the glgBX operon and the glgCAP operon.
  • a gene encoding a glycogen branching enzyme may be further inserted.
  • the gene encoding the glycogen branching enzyme may be inserted downstream of the maltose promoter or upstream of the glgX gene.
  • the gene encoding the glycogen branching enzyme may be derived from Vibrio vulnificus .
  • genes encoding the maltose promoter, glgB, glgX, glgC, glgA, glgP, and glycogen branching enzymes may be operably linked. Additionally, the genes may each be heterogeneous.
  • operably linked refers to a functional linkage between a nucleic acid expression control sequence and a nucleic acid sequence encoding a desired protein or RNA to perform a general function.
  • a promoter and a nucleic acid sequence encoding a protein or RNA can be operably linked to affect expression of the encoding nucleic acid sequence.
  • nucleic acids operably linked to each other may be linked directly, i.e., without additional elements or nucleic acid sequences in between, or indirectly with spacer sequences or other sequences therebetween.
  • Operational linkage with a recombinant vector can be made using genetic recombination techniques well known in the art, and site-specific DNA cutting and ligation can be done using enzymes generally known in the art.
  • xenologous is foreign to a given host cell, i.e., "exogenous,” such as not found in nature; or refers to a compound that is naturally found in a given host cell, e.g., “endogenous,” but is “not naturally occurring,” e.g., in the context of a heterologous construct using a heterologous nucleic acid.
  • Heterologous nucleotide sequences such as those found endogenously, may also be produced non-naturally in cells, e.g., in quantities larger than expected or greater than those found naturally.
  • a heterologous nucleotide sequence, or a nucleic acid comprising a heterologous nucleotide sequence encodes a protein identical to that found endogenously, although it may possibly differ in sequence from the endogenous nucleotide sequence.
  • a heterologous nucleotide sequence is one that is not found in nature in the same relationship to a host cell (i.e., “not naturally associated”). Any recombinant or artificial nucleotide sequence is understood to be heterologous.
  • heterologous polynucleotides or nucleic acid molecules include nucleotide sequences that are not naturally associated with a promoter, for example, to obtain a hybrid promoter, or are operably linked to a coding sequence as described herein. As a result, hybrid or chimeric polynucleotides can be obtained.
  • expression cassette may be a gene construct unit containing essential regulatory elements operably linked to the introduced gene so that it is expressed when present in the cells of an individual.
  • the expression cassette may be, for example, in the form of an expression vector, but is not limited thereto, and may include any minimal genetic construct capable of expressing the target gene to be introduced.
  • the expression cassette can be prepared and purified using standard recombinant DNA techniques.
  • the type of the expression cassette is not particularly limited as long as it functions to express the desired gene and produce the desired protein in various host cells of prokaryotic and eukaryotic cells.
  • the expression cassette may include a promoter, an initiation codon, a gene encoding the target protein, or a termination codon, and in addition, DNA encoding a signal peptide, an enhancer sequence, and untranslated regions on the 5' and 3' sides of the target gene. , selection marker region, or replicable unit, etc. may be appropriately included.
  • the expression cassette includes a mono-cistronic vector containing a polynucleotide encoding one protein, and a polycistronic vector containing polynucleotides encoding two or more recombinant proteins. It can be done, but is not limited to this.
  • the term “vector” refers to a DNA preparation containing the base sequence of a polynucleotide encoding the target protein operably linked to a suitable control sequence to enable expression of the target protein in a suitable host.
  • the regulatory sequences may include a promoter capable of initiating transcription, an optional operator sequence to regulate such transcription, a sequence encoding a suitable mRNA ribosome binding site, and sequences that regulate the termination of transcription and translation.
  • the vector After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can be integrated into the genome itself.
  • the vector used in one embodiment is not particularly limited as long as it can be expressed in a host cell, and any vector known in the art can be used.
  • Examples of commonly used vectors include plasmids, cosmids, viruses, and bacteriophages in a natural or recombinant state.
  • pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors
  • pBR, pUC, and pBluescriptII series can be used as plasmid vectors.
  • pGEM-based pTZ-based, pCL-based, pET-based, etc.
  • pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors can be used, but are not limited thereto.
  • the usable vector is not particularly limited, and known expression vectors can be used. Additionally, a gene or polynucleotide encoding a target protein can be inserted into a chromosome using a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome may be accomplished by any method known in the art, for example, homologous recombination, but is not limited thereto. A selection marker may be additionally included to confirm whether the chromosome has been inserted.
  • a selection marker is used to select cells transformed with a vector, i.e., to confirm the insertion of the target polynucleotide, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or expression of surface proteins. Markers that give may be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or show other expression traits, so transformed cells can be selected.
  • Another aspect provides a prokaryotic host cell transformed with the expression cassette.
  • the term “transformation” refers to introducing a vector or expression cassette containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed within the host cell. do. As long as the transformed polynucleotide can be expressed in the host cell, it can include both of these, regardless of whether it is inserted into the chromosome of the host cell or located outside the chromosome. Additionally, the polynucleotide includes DNA and/or RNA encoding the polypeptide of interest. The polynucleotide can be introduced in any form as long as it can be introduced and expressed into a host cell.
  • the polynucleotide can be introduced into the host cell in the form of an expression cassette, which is a genetic structure containing all elements necessary for self-expression.
  • the expression cassette may typically include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal that are operably linked to the polynucleotide.
  • the expression cassette may be in the form of an expression vector capable of self-replication.
  • the polynucleotide may be introduced into the host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
  • the term “prokaryotic host cell” refers to any bacterial host, and in particular it refers to a bacterial host cell. In principle, there are no restrictions on the choice of bacterial host cell.
  • the bacterial host cell may advantageously be a true bacterium (Gram positive or Gram negative) or a native bacterium as long as it allows genetic manipulation for insertion of the gene of interest for site-specific integration.
  • Bacterial host cells can be cultured on a manufacturing scale, and the host cells have the property of being able to be cultured at high cell densities.
  • Examples of bacterial host cells that have been found to be suitable for recombinant industrial protein production include Escherichia coli , Bacillus subtilis , Pseudomonas fluorescens , as well as variants thereof and Lactococcus lactis . It is a strain.
  • the prokaryotic host cell may be Escherichia coli.
  • the terms “host,” “host cell,” and “recombinant host cell” are used interchangeably and are used to refer to a prokaryotic cell into which one or more vectors or expression cassettes of one embodiment are introduced. These terms not only refer to specific target cells, but also refer to the progeny or potential descendants of these cells. Such progeny may not actually be identical to the parent cell since certain modifications may occur in the progeny due to mutations or environmental influences, but such cases are also included within the scope of the term used herein.
  • the host cell may be capable of mass producing glycogen and protein.
  • the present inventors confirmed that the host cell mass-produces glycogen and protein by replacing the promoter of the glycogen operon with a maltose promoter or inserting a maltose promoter.
  • the recombinant host with increased glycogen and protein production ability has an increase of about 1% or more, specifically about 1% or more, about 2.5% or more, or about 5% compared to the glycogen and protein production ability of the parent strain or unmodified microorganism before mutation.
  • the recombinant strain with increased production capacity has a glycogen and protein production capacity of about 1.01 times or more, about 1.02 times or more, about 1.03 times or more, about 1.05 times or more, or about 1.06 times more than the parent strain or unmodified microorganism before mutation.
  • non-modified microorganism does not exclude hosts that contain mutations that may occur naturally in microorganisms, and are either wild-type hosts or natural hosts themselves, or are characterized by genetic mutations caused by natural or artificial factors. It may refer to the host before being changed.
  • the host may be a strain.
  • the unmodified microorganism may refer to a strain in which the genes encoding the maltose promoter and/or glycogen branching enzyme described herein are not introduced or are introduced.
  • non-transformed microorganism refers to “pre-transformed host”, “pre-transformed strain”, “pre-transformed microorganism”, “non-mutated host”, “non-mutated strain”, “non-mutated microorganism”, “non-transformed host”, “ It can be used interchangeably with “unmodified strain” or “reference microorganism.”
  • the produced glycogen may have a distribution ratio of side chains having a degree of polymerization (DP) of 5 or less of at least 30% of the total produced glycogen content.
  • the distribution ratio of side chains with a degree of polymerization of 5 or less may be 30 to 60%, 30 to 55%, 30 to 50%, 30 to 45%, or 30 to 40% of the total glycogen content produced.
  • water solubility may increase.
  • Another aspect includes culturing the prokaryotic host cells in a medium; and recovering glycogen from cultured prokaryotic host cells or medium.
  • the term “culture” refers to growing the prokaryotic host cell under appropriately controlled environmental conditions.
  • the culture process can be carried out according to appropriate media and culture conditions known in the art. This culture process can be easily adjusted and used by a person skilled in the art depending on the strain selected. Specifically, the culture may be batch, continuous, and/or fed-batch, but is not limited thereto.
  • the term "medium” refers to a material that is mainly mixed with nutrients necessary for cultivating prokaryotic host cells, and supplies nutrients and growth factors, including water, which are essential for survival and development.
  • the medium and other culture conditions used for cultivating the prokaryotic host cells may be any medium used for cultivating ordinary microorganisms without particular limitation, but the prokaryotic host cells must be supplied with an appropriate carbon source, nitrogen source, personnel, and inorganic substances. It can be cultured under aerobic conditions in a typical medium containing compounds, amino acids, and/or vitamins, while controlling temperature, pH, etc.
  • the carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, etc.; Sugar alcohols such as mannitol, sorbitol, etc., organic acids such as pyruvic acid, lactic acid, citric acid, etc.; Amino acids such as glutamic acid, methionine, lysine, etc. may be included. Additionally, natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice bran, cassava, bagasse and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e. converted to reducing sugars). Carbohydrates such as molasses) can be used, and various other carbon sources in an appropriate amount can be used without limitation. These carbon sources may be used alone or in combination of two or more types, but are not limited thereto.
  • the nitrogen source includes inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Organic nitrogen sources such as amino acids such as glutamic acid, methionine, and glutamine, peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its decomposition products, defatted soybean cake or its decomposition products, etc. can be used These nitrogen sources may be used individually or in combination of two or more types, but are not limited thereto.
  • inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate
  • Organic nitrogen sources such as amino acids such as glutamic acid, methionine, and glutamine, peptone, NZ-amine, meat extract, yeast
  • the agent may include monopotassium phosphate, dipotassium phosphate, or a corresponding sodium-containing salt.
  • Inorganic compounds may include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, and calcium carbonate, and may also include amino acids, vitamins, and/or appropriate precursors. These components or precursors can be added to the medium batchwise or continuously. However, it is not limited to this.
  • compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. can be added to the medium in an appropriate manner to adjust the pH of the medium. Additionally, during culturing, foam generation can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester.
  • an antifoaming agent such as fatty acid polyglycol ester.
  • oxygen or oxygen-containing gas can be injected into the medium, or to maintain the anaerobic and microaerobic state, nitrogen, hydrogen, or carbon dioxide gas can be injected without gas injection, and is limited thereto. That is not the case.
  • the culture temperature can be maintained at 20 to 45°C, specifically 25 to 40°C, and culture can be performed for about 10 to 160 hours, but is not limited thereto.
  • Glycogen and/or protein produced by the culture may be secreted into the medium or remain within the cell.
  • the glycogen production method includes preparing the prokaryotic host cells, preparing a medium for culturing the prokaryotic host cells, or a combination thereof (regardless of the order), for example, before the culturing step. , may be additionally included.
  • the recovery may be performed by a method of cultivating the prokaryotic host cells, for example, batch, continuous or fed-batch.
  • the desired glycogen and/or protein may be collected using a suitable method known in the art. For example, centrifugation, filtration, crystallization, treatment with protein precipitants (salting out), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity.
  • chromatographies such as chromatography, HPLC, or a combination of these methods can be used, and the desired glycogen and/or protein can be recovered from the medium or prokaryotic host cells using a suitable method known in the art.
  • the production method may additionally include a purification step.
  • the purification can be performed using a suitable method known in the art.
  • the recovery step and the purification step may be performed continuously or discontinuously regardless of the order, or may be performed simultaneously or integrated into one step. , but is not limited to this.
  • highly soluble glycogen can be mass-produced and utilized in various industries.
  • Figure 1 is a schematic diagram of the modified glycogen operon.
  • Figure 2 is a graph showing the growth rate and glycogen synthesis rate according to culture of the existing parent strain E. coli K-12.
  • Figure 3 is a graph showing the growth rate according to culture of recombinant strain CMHX1.
  • Figure 4 is a graph showing the growth rate according to culture of the recombinant strain CMHX2.
  • Figure 5 is a graph showing the growth rate according to culture of the general strain E. coli MC1061.
  • Figure 6 is a graph showing the growth rate according to culture of the recombinant strain CMHX2.
  • Figure 7 is a graph showing the side chain distribution ratio by degree of polymerization of existing polysaccharides Amylopectin (AP) and Cobiosa, polysaccharides produced by the existing parent strain E. coli K-12, and polysaccharides produced by recombinant strains CMHX1 and CMHX2.
  • AP Amylopectin
  • Cobiosa polysaccharides produced by the existing parent strain E. coli K-12
  • CMHX1 and CMHX2 polysaccharides produced by recombinant strains
  • a recombinant strain with increased expression of glycogen with high water solubility characteristics was produced as follows.
  • the glycogen promoter and glgB gene of Escherichia coli K-12 strain were removed, and the malPQ promoter from E. coli K-12 and Vibrio vulnificus glycogen branching enzyme were removed.
  • VvGBE VvGBE expression gene was inserted.
  • the linear gene to be inserted is a kanamycin cassette containing the malPQ promoter, VvGBE, FRT flanking region (FLP recognition target), and homology, amplified by polymerase chain reaction (PCR) from pKD 13 plasmid, and cloned into the p6xHis_119 vector using an infusion cloning kit. It was recombinant and amplified using PCR.
  • the CMHX1 strain is a mutant strain in which the promoters of the glgB and glgBX operons in the glgBXCAP operon, as shown in Figure 1, are replaced with the malPQ promoter, and in the case of CMHX2, the promoter of the glgCAP operon is additionally replaced with the malPQ promoter, as shown in Figure 1. am.
  • the nucleotide sequence of the malPQ promoter is shown in SEQ ID NO: 1
  • the nucleotide sequence of VvGBE is shown in SEQ ID NO: 2
  • the nucleotide sequence of the kanamycin resistance gene is shown in SEQ ID NO: 3
  • the nucleotide sequence of glgB is shown in SEQ ID NO: 4.
  • high-concentration cells were cultured using maltodextrin carbon source suitable for promoter activity replaced with R2-restricted medium and supplying carbon source by exponential feeding method at optimal specific growth rate.
  • 50ml of culture medium was harvested and mixed with 50mM sodium acetate buffer solution, pH 4.0.
  • DNA and proteins were inactivated through ultra sonicator and heat treatment steps, and glycogen was precipitated using an acetate-ethanol precipitation method using over 95% ethanol and completely dried. Afterwards, glycogen was completely dissolved in distilled water at a concentration of 10 mg/ml.
  • the total sugar was measured using the phenol sulfuric method by measuring the absorbance at 470 nm with a microplate reader device. Then, the same amount of culture medium was harvested, the bacteria were separated, washed with NaCl, and dry cell weight (DCW) was measured. Glycogen production was measured using DCW compared to glycogen quantitative analysis.
  • the CMHX1 mutant showed cell lysis due to acetate overflow due to cell growth and glycogen accumulation.
  • the final CMHX2 mutant had an improved acetate excess phenomenon and grew stably up to OD 211, which was higher than the OD 600nm value of 171 for the CMHX1 mutant.
  • it grew to an intracellular glycogen accumulation rate of more than 50% and a cell mass (dry cell weight: DCW) of more than 55 g/L. This indicates a glycogen accumulation rate that is approximately 68% higher than that of the CMHX1 mutant, and an accumulation rate that is more than 40 times that of the parent strain, E.coli K-12.
  • Example 1 To confirm whether the recombinant strain prepared in Example 1 can be used as a protein expression strain, an experiment was performed as follows.
  • the CMHX2 strain which showed excellent results in terms of growth and glycogen accumulation, was transformed using a p6xHis 119 expression vector containing a gene expressing a specific protein using heat treatment.
  • Colonies were selected using solid plate medium containing antibiotics.
  • the culture was cultured to an O.D. of 600 nm of 56 under the established culture conditions, and then the culture medium and bacteria were separated using centrifugation. After dissolving the isolated bacteria in a buffer solution, the cells were disrupted using an ultra sonicator to extract the target protein.
  • the enzyme was purified through step-by-step heat treatment. After purification, the protein was quantitatively analyzed using the bradford assay, and the protein activity was calculated according to the absorbance after reacting with amylopectin as a standard using lugol solution.
  • the side chain distribution of glycogen produced by the recombinant strain prepared in Example 1 was analyzed as follows.
  • reaction was performed at 40°C for 72 hours in 50mM sodium acetate buffer at pH 4.0 to a final concentration of 2mg/ml using isoamylase enzyme (1 unit/ml), which cuts the side chain of glycogen.
  • isoamylase enzyme (1 unit/ml)
  • Cobiosa glycogen derived from mussel
  • amylopectin was dissolved and reacted in DMSO solution.
  • the supernatant was separated by centrifugation through a heat treatment process to inactivate the enzyme, filtered through a 0.2 ⁇ m membrane, and analyzed using a high performance anion-exchange chromatography (HPAEC) device.
  • HPAEC high performance anion-exchange chromatography
  • Carbopac PA-1 (250x4 mm, Dionex, Sunnyvale, CA, USA) was used as the stationary phase column, and the column was equilibrated with 150mM NaOH buffer solution, and a buffer solution with a concentration of 150mM NaOH and 600mM sodium acetate was added at 1 ml/min. The sample was analyzed while flowing.
  • the excess glycogen produced was dissolved in distilled water at a concentration of 10 mg/ml for 3 hours at room temperature. After reaction using 5% phenol solution and 95% sulfuric acid, the total sugar was measured using the phenol sulfuric method by measuring the absorbance at 470 nm with a microplate reader device.
  • the glycogen of the parent strain E. coli K-12
  • Glycogen produced from the final mutant, CMHX2 showed a water solubility that was 68% higher than that of the parent strain, and a value that was more than 40,000 times higher than that of AP.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a glycogen operon expression cassette comprising a maltose promoter. According to a method for producing an expression cassette, a transformed prokaryotic host cell, and glycogen, according to one aspect, highly-soluble glycogen can be mass-produced and thus can be used in various industrial groups.

Description

말토오스 프로모터를 포함하는 글리코겐 오페론 발현 카세트Glycogen operon expression cassette containing maltose promoter
말토오스 프로모터를 포함하는 글리코겐 오페론 발현 카세트에 관한 것이다.It relates to a glycogen operon expression cassette containing a maltose promoter.
글리코겐은 식물의 저장다당인 전분과 같이 글루코오스로 구성되는 호모폴리사카라이드이다. 글리코겐은 D-글루코오즈가 α-1,4 글리코시드 결합으로 결합된 폴리머 구조를 가지고, 8~10개의 글루코스 잔기 당 1개의 α-1,6 글리코시드 결합에 의한 측쇄잔기를 가지는 고도로 얽힌 망상구조를 가지고 있다.Glycogen is a homopolysaccharide composed of glucose, like starch, a storage polysaccharide in plants. Glycogen has a polymer structure in which D-glucose is bound by α-1,4 glycosidic bonds, and has a highly entangled network structure with one side chain residue by α-1,6 glycosidic bonds per 8 to 10 glucose residues. has.
글리코겐은 동물의 저장다당으로 알려져 있다. 동물에서는 거의 대부분의 세포에서 과립상태(글리코겐 과립)로 존재하고, 특히 간 및 근육에 많이 존재한다고 열려져 있다. 근 글리코겐은 근수축의 에너지원이며, 간의 글리코겐은 공복시 혈당유지를 위하여 사용된다. 따라서, 이러한 성질의 차이에 의하여 글리코겐의 기능의 차이를 가져온다. 근 글리코겐은 100만~200만의 분자량을 가진다. 간 글리코겐은 500만~600만 정도의 분자량을 가지며, 때때로 분자량이 2000만에 달하는 것도 있다.Glycogen is known as a storage polysaccharide in animals. In animals, it is known to exist in a granular state (glycogen granules) in most cells, especially in liver and muscle. Muscle glycogen is the energy source for muscle contraction, and liver glycogen is used to maintain blood sugar during fasting. Therefore, these differences in properties lead to differences in the function of glycogen. Muscle glycogen has a molecular weight of 1 to 2 million. Liver glycogen has a molecular weight of about 5 to 6 million, and sometimes has a molecular weight of up to 20 million.
글리코겐은 동물의 저장다당인 한편, 간기능을 향상시키는 작용을 나타낸다고도 알려져 있다. 또한 오징어 및 가리비에서 추출된 글리코겐은 강한 항종양활성을 나타낸다는 보고가 있다(Takata, Y. et al., J. Mar, Biotech., 6:208-213, 1998). 이러한 글리코겐은 기능성 식품의 새로운 소재로서 유용성을 가지고 이를 응용하기 위한 개발이 진행되고 있다. 또한, JP-A-62-178 505 및 JP-A-63-290 809에 기술된 대로 완화제 및 수화제로서, US 5.093.109 및 JP-A-2003-335651에 기술된 노화 방지제로서, WO99/47120에 기술된 대로 안과 용액에서 습윤제 및 윤활제로서 화장품 업계에서 사용되는 것으로도 알려져 있다.Glycogen is a storage polysaccharide in animals, and is also known to have the effect of improving liver function. There are also reports that glycogen extracted from squid and scallops exhibits strong antitumor activity (Takata, Y. et al., J. Mar, Biotech ., 6:208-213, 1998). This glycogen has utility as a new material for functional foods, and development is underway to apply it. Also as an emollient and hydrating agent as described in JP-A-62-178 505 and JP-A-63-290 809, as an anti-aging agent as described in US 5.093.109 and JP-A-2003-335651, in WO99/47120 It is also known for use in the cosmetic industry as a wetting agent and lubricant in ophthalmic solutions, as described in .
한편, 원핵체계에서 예를 들면 구조 유전자를 암호화하는 핵산을 이종 발현하기 위해 다양한 시스템이 설명되었다. 이러한 목적으로 숙주는 구조 유전자가 전사될 수 있도록 하는 핵산 서열인 프로모터에 작동 가능 하게 연결되어 있는 관심 구조유전자의 핵산 서열을 포함하는 벡터를 사용하여 형질 전환된다. 적절한 방법으로 유도함으로써 상기 프로모터는 활성화되어 구조 유전자가 전사되도록 한다. Meanwhile, various systems have been described for heterologous expression of nucleic acids encoding, for example, structural genes in prokaryotic systems. For this purpose, the host is transformed using a vector containing the nucleic acid sequence of the structural gene of interest operably linked to a promoter, which is the nucleic acid sequence that allows the structural gene to be transcribed. By inducing by an appropriate method, the promoter is activated and causes the structural gene to be transcribed.
본 발명자들은 상기와 같이 다양한 산업에 사용되는 글리코겐을 대량 생산할 수 있는 원핵체계에서의 시스템을 완성하였다.The present inventors have completed a prokaryotic system capable of mass producing glycogen for use in various industries as described above.
일 양상은 글리코겐 오페론의 프로모터가 말토오스 프로모터로 교체되거나 말토오스 프로모터가 삽입된 글리코겐 오페론을 포함하는 발현 카세트를 제공하는 것이다.One aspect is to provide an expression cassette comprising a glycogen operon in which the promoter of the glycogen operon is replaced with a maltose promoter or a maltose promoter is inserted.
다른 양상은 상기 발현 카세트로 형질 전환된 원핵 숙주세포를 제공하는 것이다.Another aspect is to provide a prokaryotic host cell transformed with the expression cassette.
또 다른 양상은 상기 원핵 숙주세포를 배양하여 글리코겐을 생산하는 방법을 제공하는 것이다.Another aspect is to provide a method of producing glycogen by culturing the prokaryotic host cell.
일 양상은 글리코겐 오페론의 프로모터가 말토오스 프로모터로 교체되거나 말토오스 프로모터가 삽입된 글리코겐 오페론을 포함하는 발현 카세트를 제공한다.One aspect provides an expression cassette comprising a glycogen operon in which the promoter of the glycogen operon is replaced with a maltose promoter or a maltose promoter is inserted.
본 명세서에서 용어 "글리코겐 오페론(glycogen operon; glg operon)"은 글리코겐을 합성하는데 관여하는 효소를 코딩하고 있는 유전자군으로, 구조 유전자(Structure gene) 및 프로모터(Promoter)를 포함한다. As used herein, the term “glycogen operon (glg operon)” refers to a group of genes encoding enzymes involved in synthesizing glycogen, and includes structural genes and promoters.
일 구체예에 있어서, 상기 글리코겐 오페론은 대장균(Escherichia coli, E. coli)으로부터 유래된 것일 수 있다.In one embodiment, the glycogen operon may be derived from Escherichia coli ( E. coli ).
상기 글리코겐 오페론은 glgBXglgCAP 오페론으로 구성된 것일 수 있다. 따라서, 상기 글리코겐 오페론의 프로모터는 glgBX 또는 glgCAP 프로모터인 것일 수 있다.The glycogen operon may be composed of the glgBX and glgCAP operons. Therefore, the promoter of the glycogen operon may be the glgBX or glgCAP promoter.
일 구체예에 있어서, 상기 말토오스 프로모터는 malPQ 프로모터인 것일 수 있다.In one embodiment, the maltose promoter may be the malPQ promoter.
일 구체예에 있어서, 상기 말토오스 프로모터는 말토오스 프로모터는 서열번호 1의 염기서열을 포함하는 것일 수 있다. 구체적으로, 상기 서열번호 1과 적어도 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성(homology) 또는 동일성(identity)을 가지는 염기서열을 포함하는 것일 수 있다. 또한, 이러한 상동성 또는 동일성을 가지며 상기 말토오스 프로모터에 상응하는 기능을 나타내는 염기서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가된 염기서열을 갖는 말토오스 프로모터도 본 출원의 범위 내에 포함됨은 자명하다.In one embodiment, the maltose promoter may include the base sequence of SEQ ID NO: 1. Specifically, a base having homology or identity of at least 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or more with SEQ ID NO: 1 It may include a sequence. In addition, if it is a nucleotide sequence that has such homology or identity and exhibits a function corresponding to the maltose promoter, it is obvious that the maltose promoter having a nucleotide sequence in which some sequences are deleted, modified, substituted, or added is also included within the scope of the present application.
본 명세서에서 용어 "프로모터"는 전사단위의 발현을 제어하는 핵산 서열을 지칭한다. '프로모터 영역 (promoter region)'은 세포 내에서 RNA 중합효소를 결합시키고 다운스트림 (3'방향) 암호화 부위의 전사를 개시할 수 있는 조절 영역을 의미한다. 프로모터 영역 내에서는 추정 -35번째 구역 및 프리브노 구역 (Pribnow box, -10번째 구역)과 같은 RNA 중합효소의 결합을 담당하는 단백질 결합 영역 (공통서열)이 발견될 것이다. 또한, 프로모터 영역은 전사 개시부위 및 조절 단백질을 위한 결합부위를 포함할 수 있다.As used herein, the term “promoter” refers to a nucleic acid sequence that controls the expression of a transcription unit. 'Promoter region' refers to a regulatory region that can bind RNA polymerase within the cell and initiate transcription of the downstream (3' direction) coding region. Within the promoter region, protein binding regions (consensus sequences) responsible for binding RNA polymerase will be found, such as the putative -35th region and the Pribnow box (-10th region). Additionally, the promoter region may include a transcription initiation site and binding sites for regulatory proteins.
일 구체예에 있어서, 상기 글리코겐 오페론에서 glgB, glgX, glgC, glgA, glgP 및 이들의 조합으로 이루어진 군으로부터 선택된 유전자가 제거된 것일 수 있다.In one embodiment, a gene selected from the group consisting of glgB, glgX, glgC, glgA, glgP, and combinations thereof may be removed from the glycogen operon.
본 명세서에서 용어 유전자의 "제거"란 해당 유전자의 일부 또는 전체 염기를 변이, 치환 또는 삭제시키거나, 일부 염기를 도입시켜 해당 유전자가 발현되지 않도록 하거나, 발현되더라도 효소 활성을 나타내지 못하도록 하는 것을 포괄하는 개념으로, 해당 유전자의 효소가 관여하는 생합성 경로를 차단하는 모든 것을 포함한다.As used herein, the term "removal" of a gene encompasses mutating, substituting, or deleting some or all of the bases of the gene, or introducing some bases to prevent the gene from being expressed, or preventing it from exhibiting enzymatic activity even if expressed. As a concept, it includes anything that blocks the biosynthetic pathway in which the enzyme of that gene is involved.
상기 glgB 유전자는 글리코겐 분지 효소 (동의어 B3432)를 암호화한다. glgB 유전자 (뉴클레오티드 위치: 3,571,525 내지 3,569,339; GenBank 승인 번호 NC_000913.2; gi: 49175990)는 E.coli K-12의 염색체 상의 glgXasd 유전자 사이에 위치한다. glgB 유전자의 염기서열은 서열번호 4로 제시될 수 있다.The glgB gene encodes glycogen branching enzyme (synonym B3432). The glgB gene (nucleotide positions: 3,571,525 to 3,569,339; GenBank accession number NC_000913.2; gi: 49175990) is located between the glgX and asd genes on the chromosome of E. coli K-12. The base sequence of the glgB gene can be presented as SEQ ID NO: 4.
상기 glgX 유전자는 글리코겐 포스포릴라제-한계 덱스트린 (limit dextrin) α-1,6-글루코하이드롤라제 (동의어 B3431, GlyX)를 암호화한다. glgX 유전자 (뉴클레오티드 위치: 3,569,342 내지 3,567,369; GenBank 승인 번호 NC_000913.2; gi: 49175990)는 E.coli K-12의 염색체 상의 glgCglgB 유전자 사이에 위치한다. glgX 유전자의 염기서열은 서열번호 5로 제시될 수 있다.The glgX gene encodes glycogen phosphorylase-limit dextrin α-1,6-glucohydrolase (synonym B3431, GlyX). The glgX gene (nucleotide positions: 3,569,342 to 3,567,369; GenBank accession number NC_000913.2; gi: 49175990) is located between the glgC and glgB genes on the chromosome of E. coli K-12. The base sequence of the glgX gene can be presented as SEQ ID NO: 5.
상기 glgC 유전자는 글루코스-1-포스페이트 아데닐릴트랜스퍼라제 (동의어 B3430)를 암호화한다. glgC 유전자 (gi: 16131304; GenBank 승인 번호 NC_000913.2 하의 뉴클레오티드 3566056 내지 3567351에 상보적인 뉴클레오 티드)는 E.coli K-12의 염색체 상의 glgAglgX 유전자 사이에 위치한다. glgC 유전자의 염기서열은 서열번호 6으로 제시될 수 있다.The glgC gene encodes glucose-1-phosphate adenylyltransferase (synonym B3430). The glgC gene (gi: 16131304; nucleotides complementary to nucleotides 3566056 to 3567351 under GenBank accession number NC_000913.2) is located between the glgA and glgX genes on the chromosome of E. coli K-12. The base sequence of the glgC gene can be presented as SEQ ID NO: 6.
상기 glgA 유전자는 글리코겐 신타제 (동의어 B3429)의 아단위를 암호화한다. glgA 유전자 (뉴클레오티드 위치: 3,566,056 내지 3,564,623; GenBank 승인 번호NC_000913.2; gi: 49175990)는 E.coli K-12의 염색체 상의 glgPglgC 유전자 사이에 위치한다. glgA 유전자의 염기서열은 서열번호 7으로 제시될 수 있다.The glgA gene encodes a subunit of glycogen synthase (synonym B3429). The glgA gene (nucleotide positions: 3,566,056 to 3,564,623; GenBank accession number NC_000913.2; gi: 49175990) is located between the glgP and glgC genes on the chromosome of E. coli K-12. The base sequence of the glgA gene can be presented as SEQ ID NO: 7.
상기 glgP 유전자는 글리코겐 포스포릴라제/글리코겐-말토테트라오스포스포릴라제 (동의어 B3428, GlgY)를 암호화 한다. glgP 유전자 (뉴클레오티드 위치: 3,564,604 내지 3,562,157; GenBank 승인 번호 NC_000913.2; gi: 49175990)는 E.coli K-12의 염색체 상의 yzgLglgA 유전자 사이에 위치한다. glgP 유전자의 염기서열은 서열번호 8으로 제시될 수 있다.The glgP gene encodes glycogen phosphorylase/glycogen-maltotetraosephosphorylase (synonym B3428, GlgY). The glgP gene (nucleotide positions: 3,564,604 to 3,562,157; GenBank accession number NC_000913.2; gi: 49175990) is located between the yzgL and glgA genes on the chromosome of E. coli K-12. The base sequence of the glgP gene can be presented as SEQ ID NO: 8.
일 구체예에 있어서, 상기 glgBX 프로모터가 말토오스 프로모터로 교체된 것일 수 있다.In one embodiment, the glgBX promoter may be replaced with a maltose promoter.
일 구체예에 있어서, 상기 glgCAP 오페론의 업스트림(upstream)에 말토오스 프로모터가 삽입된 것일 수 있다. 구체적으로, 말토오스 프로모터인 malPQglgCAP 오페론의 업스트림에 삽입된 것일 수 있고, glgBX 오페론과 glgCAP 오페론의 사이에 삽입된 것일 수 있다.In one embodiment, a maltose promoter may be inserted upstream of the glgCAP operon. Specifically, malPQ , a maltose promoter, may be inserted upstream of the glgCAP operon, or may be inserted between the glgBX operon and the glgCAP operon.
일 구체예에 있어서, 글리코겐 분지 효소(glycogen branching enzyme)를 코딩하는 유전자가 더 삽입된 것일 수 있다. 상기 글리코겐 분지 효소를 코딩하는 유전자는 상기 말토오스 프로모터의 다운스트림(downstream)에 삽입된 것일 수 있고, glgX 유전자의 업스트림에 삽입된 것일 수 있다.In one embodiment, a gene encoding a glycogen branching enzyme may be further inserted. The gene encoding the glycogen branching enzyme may be inserted downstream of the maltose promoter or upstream of the glgX gene.
일 구체예에 있어서, 상기 글리코겐 분지 효소를 코딩하는 유전자는 비브리오 불니피쿠스(Vibrio vulnificus)로부터 유래된 것일 수 있다.In one embodiment, the gene encoding the glycogen branching enzyme may be derived from Vibrio vulnificus .
상기 언급된 모든 유전자, 예를 들면, 말토오스 프로모터, glgB, glgX, glgC, glgA, glgP 및 글리코겐 분지 효소를 코딩하는 유전자는 작동 가능하게 연결된 것일 수 있다. 또한, 상기 유전자는 각각 이종인 것일 수 있다.All of the genes mentioned above, such as genes encoding the maltose promoter, glgB, glgX, glgC, glgA, glgP, and glycogen branching enzymes, may be operably linked. Additionally, the genes may each be heterogeneous.
본 명세서에서 용어 "작동 가능하게 연결된"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩하는 핵산 서열의 발현에 영향을 미칠 수 있다. 구체적으로, 서로 작동 가능하게 연결된 이러한 핵산은 바로, 즉 사이에 추가 요소 또는 핵산 서열없이 연결될 수 있거나, 또는 그 사이에 스페이서 서열 또는 다른 서열로 간접적으로 연결될 수 있다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.As used herein, the term “operably linked” refers to a functional linkage between a nucleic acid expression control sequence and a nucleic acid sequence encoding a desired protein or RNA to perform a general function. For example, a promoter and a nucleic acid sequence encoding a protein or RNA can be operably linked to affect expression of the encoding nucleic acid sequence. Specifically, such nucleic acids operably linked to each other may be linked directly, i.e., without additional elements or nucleic acid sequences in between, or indirectly with spacer sequences or other sequences therebetween. Operational linkage with a recombinant vector can be made using genetic recombination techniques well known in the art, and site-specific DNA cutting and ligation can be done using enzymes generally known in the art.
유전자, 뉴클레오티드 또는 아미노산 서열 또는 단백질과 관련하여 본 명세서에서 사용되는 용어 "이종"은 주어진 숙주 세포에 대해 외래, 즉 자연에서 발견되지 않는 것과 같이 "외인성"이거나; 또는 주어진 숙주 세포에서 자연적으로 발견되는, 예를 들어 "내인성"이지만, 예를 들어 이종성 핵산을 사용하는 이종성 작제물의 맥락에서 "자연적 발생이 아닌" 화합물을 지칭한다. 내인성으로 발견되는 것과 같은 이종성 뉴클레오티드 서열은 또한 세포에서 비 천연적으로, 예를 들어 예상보다 크거나 자연적으로 발견된 것보다 큰 양으로 생성될 수 있다. 이종성 뉴클레오티드 서열, 또는 이종성 뉴클레오티드 서열을 포함하는 핵산은 내인성 뉴클레오티드 서열과 서열이 아마도 다를 수 있지만 내인성으로 발견되는 것과 동일한 단백질을 코딩한다. 구체적으로, 이종성 뉴클레오티드 서열은 자연에서 숙주 세포와 동일한 관계로 발견되지 않는 것이다 (즉, "자연적으로 연관되지 않음"). 임의의 재조합 또는 인공 뉴클레오티드 서열은 이종성인 것으로 이해된다. 이종성 폴리뉴클레오티드 또는 핵산 분자의 예는 예를 들어 하이브리드 프로모터를 얻기 위해 프로모터와 자연적으로 연관되지 않거나, 본 명세서에 기재된 바와 같이 코딩 서열에 작동 가능하게 연결된 뉴클레오티드 서열을 포함한다. 그 결과 하이브리드 또는 키메라 폴리뉴클레오티드가 얻어질 수 있다. As used herein with reference to a gene, nucleotide or amino acid sequence or protein, the term "xenologous" is foreign to a given host cell, i.e., "exogenous," such as not found in nature; or refers to a compound that is naturally found in a given host cell, e.g., “endogenous,” but is “not naturally occurring,” e.g., in the context of a heterologous construct using a heterologous nucleic acid. Heterologous nucleotide sequences, such as those found endogenously, may also be produced non-naturally in cells, e.g., in quantities larger than expected or greater than those found naturally. A heterologous nucleotide sequence, or a nucleic acid comprising a heterologous nucleotide sequence, encodes a protein identical to that found endogenously, although it may possibly differ in sequence from the endogenous nucleotide sequence. Specifically, a heterologous nucleotide sequence is one that is not found in nature in the same relationship to a host cell (i.e., “not naturally associated”). Any recombinant or artificial nucleotide sequence is understood to be heterologous. Examples of heterologous polynucleotides or nucleic acid molecules include nucleotide sequences that are not naturally associated with a promoter, for example, to obtain a hybrid promoter, or are operably linked to a coding sequence as described herein. As a result, hybrid or chimeric polynucleotides can be obtained.
본 명세서에서 용어 "발현카세트"는 개체의 세포 내에 존재하는 경우 도입된 유전자가 발현되도록 상기 유전자에 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물 단위체일 수 있다. 상기 발현카세트는 예를 들어 발현벡터의 형태일 수 있으나, 이에 제한되지 않으며, 도입되는 목적 유전자가 발현되도록 기능을 할 수 있는 최소 단위의 유전자 작제물은 모두 포함될 수 있다.As used herein, the term “expression cassette” may be a gene construct unit containing essential regulatory elements operably linked to the introduced gene so that it is expressed when present in the cells of an individual. The expression cassette may be, for example, in the form of an expression vector, but is not limited thereto, and may include any minimal genetic construct capable of expressing the target gene to be introduced.
상기 발현카세트는 표준적인 재조합 DNA 기술을 이용하여 제조 및 정제될 수 있다. 상기 발현카세트의 종류는 원핵세포 및 진핵세포의 각종 숙주 세포에서 원하는 유전자를 발현하고, 원하는 단백질을 생산하는 기능을 하는 한 특별히 한정되지 않는다. 발현카세트는 프로모터, 개시코돈, 목적 단백질을 코드하는 유전자, 또는 종결코돈을 포함할 수 있고, 그 외에 시그널 펩타이드를 코드하는 DNA, 인핸서 서열, 목적 유전자의 5'측 및 3'측의 비 번역 영역, 선택마커 영역, 또는 복제가능단위 등을 적절하게 포함할 수도 있다. 아울러, 상기 발현카세트는 하나의 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 모노시스트론(mono-cistronic) 벡터, 둘 이상의 재조합 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 폴리시스트론(poly-cistronic) 벡터를 포함할 수 있으나, 이에 제한되지 않는다.The expression cassette can be prepared and purified using standard recombinant DNA techniques. The type of the expression cassette is not particularly limited as long as it functions to express the desired gene and produce the desired protein in various host cells of prokaryotic and eukaryotic cells. The expression cassette may include a promoter, an initiation codon, a gene encoding the target protein, or a termination codon, and in addition, DNA encoding a signal peptide, an enhancer sequence, and untranslated regions on the 5' and 3' sides of the target gene. , selection marker region, or replicable unit, etc. may be appropriately included. In addition, the expression cassette includes a mono-cistronic vector containing a polynucleotide encoding one protein, and a polycistronic vector containing polynucleotides encoding two or more recombinant proteins. It can be done, but is not limited to this.
본 명세서에서 용어 "벡터"는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다.As used herein, the term “vector” refers to a DNA preparation containing the base sequence of a polynucleotide encoding the target protein operably linked to a suitable control sequence to enable expression of the target protein in a suitable host. The regulatory sequences may include a promoter capable of initiating transcription, an optional operator sequence to regulate such transcription, a sequence encoding a suitable mRNA ribosome binding site, and sequences that regulate the termination of transcription and translation. After transformation into a suitable host cell, the vector can replicate or function independently of the host genome and can be integrated into the genome itself.
일 구체예에 있어서 사용되는 벡터는 숙주세포 내에서 발현 가능한 것이면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코 스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있으나, 이에 제한되지 않는다.The vector used in one embodiment is not particularly limited as long as it can be expressed in a host cell, and any vector known in the art can be used. Examples of commonly used vectors include plasmids, cosmids, viruses, and bacteriophages in a natural or recombinant state. For example, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, and Charon21A can be used as phage vectors or cosmid vectors, and pBR, pUC, and pBluescriptII series can be used as plasmid vectors. , pGEM-based, pTZ-based, pCL-based, pET-based, etc. can be used. Specifically, pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC vectors can be used, but are not limited thereto.
상기 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 또한, 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 단백질을 코딩하는 유전자 또는 폴리뉴클레오티드를 삽입시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다. 상기 염색체 삽입 여부를 확인하기 위한 선별 마커 (selection marker)를 추가로 포함할 수 있다. 선별 마커는 벡터로 형질전환된 세포를 선별, 즉 목적 폴리뉴클 레오티드의 삽입 여부를 확인하기 위한 것으로, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들이 사용될 수 있다. 선택제(selective agent)가 처리된 환경에서는 선별 마커를 발현하는 세포만 생존하거나 다른 표현 형질을 나타내므로, 형질전환된 세포를 선별할 수 있다.The usable vector is not particularly limited, and known expression vectors can be used. Additionally, a gene or polynucleotide encoding a target protein can be inserted into a chromosome using a vector for intracellular chromosome insertion. Insertion of the polynucleotide into the chromosome may be accomplished by any method known in the art, for example, homologous recombination, but is not limited thereto. A selection marker may be additionally included to confirm whether the chromosome has been inserted. A selection marker is used to select cells transformed with a vector, i.e., to confirm the insertion of the target polynucleotide, and selectable phenotypes such as drug resistance, auxotrophy, resistance to cytotoxic agents, or expression of surface proteins. Markers that give may be used. In an environment treated with a selective agent, only cells expressing the selection marker survive or show other expression traits, so transformed cells can be selected.
다른 양상은 상기 발현 카세트로 형질 전환된 원핵 숙주세포를 제공한다.Another aspect provides a prokaryotic host cell transformed with the expression cassette.
본 명세서에서 용어 "형질전환"은 표적 폴리펩티드를 코딩하는 폴리뉴클레오티드를 포함하는 벡터 또는 발현 카세트를 숙주세포 혹은 미생물 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 폴리펩티드가 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴 리뉴클레오티드는 목적 폴리펩티드를 코딩하는 DNA 및/또는 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로도 도입될 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주 세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 제한되지 않는다.As used herein, the term “transformation” refers to introducing a vector or expression cassette containing a polynucleotide encoding a target polypeptide into a host cell or microorganism so that the polypeptide encoded by the polynucleotide can be expressed within the host cell. do. As long as the transformed polynucleotide can be expressed in the host cell, it can include both of these, regardless of whether it is inserted into the chromosome of the host cell or located outside the chromosome. Additionally, the polynucleotide includes DNA and/or RNA encoding the polypeptide of interest. The polynucleotide can be introduced in any form as long as it can be introduced and expressed into a host cell. For example, the polynucleotide can be introduced into the host cell in the form of an expression cassette, which is a genetic structure containing all elements necessary for self-expression. The expression cassette may typically include a promoter, a transcription termination signal, a ribosome binding site, and a translation termination signal that are operably linked to the polynucleotide. The expression cassette may be in the form of an expression vector capable of self-replication. Additionally, the polynucleotide may be introduced into the host cell in its own form and operably linked to a sequence required for expression in the host cell, but is not limited thereto.
본 명세서에서 용어 "원핵 숙주세포"는 임의의 박테리아 숙주를 지칭하고, 특히 이는 박테리아 숙주 세포를 지칭한다. 원칙적으로, 박테리아 숙주 세포의 선택에 대한 제한은 없다. 박테리아 숙주 세포는 유리하게는 부위-특이적 통합을 위해 관심 있는 유전자의 삽입을 위한 유전자 조작을 허용하는 한 진정 세균 (그람 양성 또는 그람 음성) 또는 원시 세균일 수 있다. 박테리아 숙주 세포는 제조 규모로 배양이 가능하며, 숙주 세포는 높은 세포 밀도로 배양할 수 있는 특성을 갖는다. 재조합 산업 단백질 생산에 적합한 것으로 밝혀진 박테리아 숙주 세포의 예는 대장균 (Escherichia coli), 바실러스 서브틸리스 (Bacillus subtilis), 슈도모나스 플루오레센스 (Pseudomonas fluorescens)뿐만 아니라 이의 변형체 및 락토코커스 락티스 (Lactococcus lactis) 균주이다. 일 구체예에 있어서, 상기 원핵 숙주세포는 대장균일 수 있다.As used herein, the term “prokaryotic host cell” refers to any bacterial host, and in particular it refers to a bacterial host cell. In principle, there are no restrictions on the choice of bacterial host cell. The bacterial host cell may advantageously be a true bacterium (Gram positive or Gram negative) or a native bacterium as long as it allows genetic manipulation for insertion of the gene of interest for site-specific integration. Bacterial host cells can be cultured on a manufacturing scale, and the host cells have the property of being able to be cultured at high cell densities. Examples of bacterial host cells that have been found to be suitable for recombinant industrial protein production include Escherichia coli , Bacillus subtilis , Pseudomonas fluorescens , as well as variants thereof and Lactococcus lactis . It is a strain. In one embodiment, the prokaryotic host cell may be Escherichia coli.
본 명세서에서 용어 "숙주", "숙주 세포" 및 "재조합 숙주 세포"는 서로 대체하여 사용할 수 있으며 일 구체예의 하나 이상의 벡터 또는 발현 카세트가 도입되는 원핵 세포를 지칭하기 위해 사용된다. 이러한 용어는 특정 대상 세포를 의미할 뿐 아니라, 이러한 세포의 자손(progeny) 또는 잠재적 자손을 일컫는다. 돌연변이나 환경적인 영향으로 후대에서 어떠한 변형이 일어날 수 있기 때문에 이러한 자손은 실제로 모세포와 동일하지 않을 수도 있지만, 본 명세서에서 사용되는 용어의 범위에는 이러한 경우도 포함된다.As used herein, the terms “host,” “host cell,” and “recombinant host cell” are used interchangeably and are used to refer to a prokaryotic cell into which one or more vectors or expression cassettes of one embodiment are introduced. These terms not only refer to specific target cells, but also refer to the progeny or potential descendants of these cells. Such progeny may not actually be identical to the parent cell since certain modifications may occur in the progeny due to mutations or environmental influences, but such cases are also included within the scope of the term used herein.
일 구체예에 있어서, 상기 숙주세포는 글리코겐 및 단백질을 대량 생산할 수 있는 것일 수 있다. 본 발명자들은 상기 글리코겐 오페론의 프로모터를 말토오스 프로모터로 교체하거나 말토오스 프로모터를 삽입함으로써, 상기 숙주세포가 글리코겐 및 단백질을 대량 생산하는 것을 확인하였다.In one embodiment, the host cell may be capable of mass producing glycogen and protein. The present inventors confirmed that the host cell mass-produces glycogen and protein by replacing the promoter of the glycogen operon with a maltose promoter or inserting a maltose promoter.
일 예로, 상기 글리코겐 및 단백질 생산능이 증가된 재조합 숙주는 변이 전 모균주 또는 비변형 미생물의 글리코겐 및 단백질 생산능에 비하여 약 1% 이상, 구체적으로는 약 1% 이상, 약 2.5% 이상, 약 5% 이상, 약 6% 이상, 약 7% 이상, 약 8% 이상, 약 9% 이상, 약 10% 이상, 약 11% 이상, 약 11.5% 이상, 약 12% 이상, 약 12.5% 이상, 약 13% 이상, 약 13.5% 이상, 약 14% 이상, 약 14.5% 이상, 약 15% 이상, 약 15.5% 이상, 약 16% 이상, 약 16.5% 이상, 약 17% 이상, 약 17.5% 이상, 약 18% 이상, 약 18.5% 이상, 약 19% 이상, 약 19.5% 이상, 약 20% 이상, 약 20.5% 이상, 약 21% 이상, 약 21.5% 이상, 약 22% 이상, 약 22.5% 이상, 약 23% 이상, 약 23.5% 이상, 약 24% 이상, 약 24.5% 이상, 약 25% 이상, 약 26% 이상, 약 27% 이상, 약 27.5% 이상, 약 30% 이상, 약 35% 이상, 약 40% 이상, 약 45% 이상, 약 50% 이상, 약 55% 이상 또는 약 60% 이상(상한값은 특별한 제한은 없으며, 예컨대, 약 200% 이하, 약 150% 이하 또는 약 100% 이하일 수 있음) 증가된 것일 수 있으나, 변이 전 모균주 또는 비변형 미생물의 생산능에 비해 +값의 증가량을 갖는 한, 이에 제한되지 않는다. 다른 예에서, 상기 생산능이 증가된 재조합 균주는 변이 전 모균주 또는 비변형 미생물에 비하여, 글리코겐 및 단백질 생산능이 약 1.01배 이상, 약 1.02배 이상, 약 1.03배 이상, 약 1.05배 이상, 약 1.06배 이상, 약 1.07배 이상, 약 1.08배 이상, 약 1.09배 이상, 약 1.10배 이상, 약 1.11배 이상, 약 1.12배 이상, 약 1.13배 이상, 약 1.14배 이상, 약 1.15배 이상, 약 1.16 배 이상, 약 1.17배 이상, 약 1.18배 이상, 약 1.19배 이상, 약 1.20배 이상, 약 1.5배 이상, 약 2.0배 이상, 약 2.5배 이상, 약 3.0배 이상, 약 4.0배 이상, 약 5.0배 이상, 약 10배 이상, 약 15배 이상, 약 20배 이상, 약 25배 이상, 약 30배 이상, 약 35배 이상, 약 40배 이상, 약 45배 이상, 약 50배 이상, 약 55배 이상 또는 약 60배 이상 (상한값은 특별한 제한은 없으며, 예컨대, 약 100배 이하 또는 약 80배 이하일 수 있음) 증가된 것일 수 있으나, 이에 제한되지 않는다. 상기 용어 "약(about)"은 ±0.5, ±0.4, ±0.3, ± 0.2, ±0.1 등을 모두 포함하는 범위로, 약 이란 용어 뒤에 나오는 수치와 동등하거나 유사한 범위의 수치를 모두 포함하나, 이에 제한되지 않는다. 또한, 본 명세서에서 숫자 앞에 "약"이 쓰여져 있지 않더라도, "약"이 쓰여져 있는 것과 동일하다.As an example, the recombinant host with increased glycogen and protein production ability has an increase of about 1% or more, specifically about 1% or more, about 2.5% or more, or about 5% compared to the glycogen and protein production ability of the parent strain or unmodified microorganism before mutation. or more, about 6% or more, about 7% or more, about 8% or more, about 9% or more, about 10% or more, about 11% or more, about 11.5% or more, about 12% or more, about 12.5% or more, about 13% or more, about 13.5% or more, about 14% or more, about 14.5% or more, about 15% or more, about 15.5% or more, about 16% or more, about 16.5% or more, about 17% or more, about 17.5% or more, about 18% or more, about 18.5% or more, about 19% or more, about 19.5% or more, about 20% or more, about 20.5% or more, about 21% or more, about 21.5% or more, about 22% or more, about 22.5% or more, about 23% or more, about 23.5% or more, about 24% or more, about 24.5% or more, about 25% or more, about 26% or more, about 27% or more, about 27.5% or more, about 30% or more, about 35% or more, about 40% or more or more, about 45% or more, about 50% or more, about 55% or more, or about 60% or more (the upper limit is not particularly limited and may be, for example, about 200% or less, about 150% or less, or about 100% or less). However, it is not limited thereto as long as it has a positive increase compared to the production capacity of the parent strain or unmodified microorganism before mutation. In another example, the recombinant strain with increased production capacity has a glycogen and protein production capacity of about 1.01 times or more, about 1.02 times or more, about 1.03 times or more, about 1.05 times or more, or about 1.06 times more than the parent strain or unmodified microorganism before mutation. times or more, approximately 1.07 times or more, approximately 1.08 times or more, approximately 1.09 times or more, approximately 1.10 times or more, approximately 1.11 times or more, approximately 1.12 times or more, approximately 1.13 times or more, approximately 1.14 times or more, approximately 1.15 times or more, approximately 1.16 times or more Two times or more, about 1.17 times more, about 1.18 times more, about 1.19 times more, about 1.20 times more, about 1.5 times more, about 2.0 times more, about 2.5 times more, about 3.0 times more, about 4.0 times more, about 5.0 times more more times, about 10 times more, about 15 times more, about 20 times more, about 25 times more, about 30 times more, about 35 times more, about 40 times more, about 45 times more, about 50 times more, about 55 times more It may be increased by more than two times or more than about 60 times (the upper limit is not particularly limited, for example, it may be about 100 times or less or about 80 times or less), but is not limited thereto. The term "about" is a range that includes ±0.5, ±0.4, ±0.3, ±0.2, ±0.1, etc., and includes all values in a range that are equivalent or similar to the value that follows the term "about." Not limited. In addition, even if “about” is not written in front of the number in this specification, it is the same as “about” written in front of the number.
본 명세서에서 용어 "비변형 미생물"은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 숙주를 제외하는 것이 아니며, 야생형 숙주 또는 천연형 숙주 자체이거나, 자연적 또는 인위적 요인에 의한 유전적 변이로 형 질이 변화되기 전 숙주를 의미할 수 있다. 상기 숙주는 균주일 수 있다. 예를 들어, 상기 비변형 미생물은 본 명세서에 기재된 말토오스 프로모터 및/또는 글리코겐 분지 효소를 코딩하는 유전자가 도입되지 않거나 도입되기 전의 균주를 의미할 수 있다. 상기 "비변형 미생물"은 "변형 전 숙주", "변형 전 균주", "변형 전 미생물", "비변이 숙주", "비변이 균주", "비변이 미생물", "비변형 숙주", "비변형 균주" 또는 "기준 미생물"과 혼용될 수 있다.As used herein, the term “non-modified microorganism” does not exclude hosts that contain mutations that may occur naturally in microorganisms, and are either wild-type hosts or natural hosts themselves, or are characterized by genetic mutations caused by natural or artificial factors. It may refer to the host before being changed. The host may be a strain. For example, the unmodified microorganism may refer to a strain in which the genes encoding the maltose promoter and/or glycogen branching enzyme described herein are not introduced or are introduced. The “non-transformed microorganism” refers to “pre-transformed host”, “pre-transformed strain”, “pre-transformed microorganism”, “non-mutated host”, “non-mutated strain”, “non-mutated microorganism”, “non-transformed host”, “ It can be used interchangeably with “unmodified strain” or “reference microorganism.”
일 구체예에 있어서, 상기 생산된 글리코겐은 중합도(degree of polymerization, DP)가 5 이하인 곁사슬 분포 비율이 전체 생산된 글리코겐 함량에 대하여 적어도 30 %인 것일 수 있다. 구체적으로, 중합도가 5 이하인 곁사슬 분포 비율이 전체 생산된 글리코겐 함량에 대하여 30 내지 60 %, 30 내지 55 %, 30 내지 50 %, 30 내지 45 % 또는 30 내지 40 %일 수 있다. 상기 중합도가 5 이하인 곁사슬 분포 비율이 높아짐에 따라 수용해도(Water solubility)가 높아지는 것일 수 있다.In one embodiment, the produced glycogen may have a distribution ratio of side chains having a degree of polymerization (DP) of 5 or less of at least 30% of the total produced glycogen content. Specifically, the distribution ratio of side chains with a degree of polymerization of 5 or less may be 30 to 60%, 30 to 55%, 30 to 50%, 30 to 45%, or 30 to 40% of the total glycogen content produced. As the distribution ratio of side chains with a degree of polymerization of 5 or less increases, water solubility may increase.
또 다른 양상은 상기 원핵 숙주세포를 배지에서 배양하는 단계; 및 배양된 원핵 숙주세포 또는 배지로부터 글리코겐을 회수하는 단계를 포함하는 글리코겐 생산방법을 제공한다.Another aspect includes culturing the prokaryotic host cells in a medium; and recovering glycogen from cultured prokaryotic host cells or medium.
본 명세서에서 용어 "배양"은 상기 원핵 숙주세포를 적당히 조절된 환경 조건에서 생육 시키는 것을 의미한다. 배양과정은 당업계에 알려진 적당한 배지와 배양조건에 따라 이루어질 수 있다. 이러한 배양 과정은 선택되는 균주에 따라 당업자가 용이하게 조정하여 사용할 수 있다. 구체적으로 상기 배양은 회분식, 연속식 및/또는 유가식일 수 있으나, 이에 제한되는 것은 아니다.As used herein, the term “culture” refers to growing the prokaryotic host cell under appropriately controlled environmental conditions. The culture process can be carried out according to appropriate media and culture conditions known in the art. This culture process can be easily adjusted and used by a person skilled in the art depending on the strain selected. Specifically, the culture may be batch, continuous, and/or fed-batch, but is not limited thereto.
본 명세서에서 용어 "배지"는 상기 원핵 숙주세포를 배양하기 위해 필요로 하는 영양물질을 주성분으로 혼합한 물질을 의미하며, 생존 및 발육에 불가결한 물을 비롯하여 영양물질 및 발육인자 등을 공급한다. 구체적으로, 상기 원핵 숙주세포의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용할 수 있으나, 상기 원핵 숙주세포를 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.As used herein, the term "medium" refers to a material that is mainly mixed with nutrients necessary for cultivating prokaryotic host cells, and supplies nutrients and growth factors, including water, which are essential for survival and development. Specifically, the medium and other culture conditions used for cultivating the prokaryotic host cells may be any medium used for cultivating ordinary microorganisms without particular limitation, but the prokaryotic host cells must be supplied with an appropriate carbon source, nitrogen source, personnel, and inorganic substances. It can be cultured under aerobic conditions in a typical medium containing compounds, amino acids, and/or vitamins, while controlling temperature, pH, etc.
상기 탄소원으로는 글루코오스, 사카로오스, 락토오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.The carbon source includes carbohydrates such as glucose, saccharose, lactose, fructose, sucrose, maltose, etc.; Sugar alcohols such as mannitol, sorbitol, etc., organic acids such as pyruvic acid, lactic acid, citric acid, etc.; Amino acids such as glutamic acid, methionine, lysine, etc. may be included. Additionally, natural organic nutrient sources such as starch hydrolyzate, molasses, blackstrap molasses, rice bran, cassava, bagasse and corn steep liquor can be used, specifically glucose and sterilized pre-treated molasses (i.e. converted to reducing sugars). Carbohydrates such as molasses) can be used, and various other carbon sources in an appropriate amount can be used without limitation. These carbon sources may be used alone or in combination of two or more types, but are not limited thereto.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.The nitrogen source includes inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Organic nitrogen sources such as amino acids such as glutamic acid, methionine, and glutamine, peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its decomposition products, defatted soybean cake or its decomposition products, etc. can be used These nitrogen sources may be used individually or in combination of two or more types, but are not limited thereto.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기 화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 이들 구성성분 또는 전구체는 배지에 회분식 또는 연속식으로 첨가될 수 있다. 그러나, 이에 한정되는 것은 아니다.The agent may include monopotassium phosphate, dipotassium phosphate, or a corresponding sodium-containing salt. Inorganic compounds may include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, and calcium carbonate, and may also include amino acids, vitamins, and/or appropriate precursors. These components or precursors can be added to the medium batchwise or continuously. However, it is not limited to this.
또한, 상기 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배지에 적절한 방식으로 첨가하여, 배지의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배지의 호기 상태를 유지하기 위하여, 배지 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으며, 이에 한정되는 것은 아니다.Additionally, during the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid, sulfuric acid, etc. can be added to the medium in an appropriate manner to adjust the pH of the medium. Additionally, during culturing, foam generation can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester. In addition, to maintain the aerobic state of the medium, oxygen or oxygen-containing gas can be injected into the medium, or to maintain the anaerobic and microaerobic state, nitrogen, hydrogen, or carbon dioxide gas can be injected without gas injection, and is limited thereto. That is not the case.
상기 배양에서 배양온도는 20 내지 45℃, 구체적으로는 25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간 동안 배양할 수 있으나, 이에 한정되는 것은 아니다.In the above culture, the culture temperature can be maintained at 20 to 45°C, specifically 25 to 40°C, and culture can be performed for about 10 to 160 hours, but is not limited thereto.
상기 배양에 의하여 생산된 글리코겐 및/또는 단백질은 배지 중으로 분비되거나 세포 내에 잔류할 수 있다.Glycogen and/or protein produced by the culture may be secreted into the medium or remain within the cell.
상기 글리코겐 생산방법은, 상기 원핵 숙주세포를 준비하는 단계, 상기 원핵 숙주세포를 배양하기 위한 배지를 준비하는 단계, 또는 이들의 조합(순서에 무관)을, 예를 들어, 상기 배양하는 단계 이전에, 추가로 포함할 수 있다.The glycogen production method includes preparing the prokaryotic host cells, preparing a medium for culturing the prokaryotic host cells, or a combination thereof (regardless of the order), for example, before the culturing step. , may be additionally included.
상기 배양에 따른 배지(배양이 수행된 배지) 또는 상기 원핵 숙주세포로부터 글리코겐 및/또는 단백질을 회수하는 단계에서, 상기 회수는 상기 원핵 숙주세포의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 목적하는 글리코겐 및/또는 단백질을 수집(collect)하는 것일 수 있다. 예를 들어, 원심 분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 또는 이들의 방법을 조합하여 사용될 수 있으며, 당해 분야에 공지된 적합한 방법을 이용하여 배지 또는 원핵 숙주세포로부터 목적하는 글리코겐 및/또는 단백질을 회수할 수 있다.In the step of recovering glycogen and/or protein from the culture medium (medium in which the culture was performed) or the prokaryotic host cells, the recovery may be performed by a method of cultivating the prokaryotic host cells, for example, batch, continuous or fed-batch. Depending on the culture method, etc., the desired glycogen and/or protein may be collected using a suitable method known in the art. For example, centrifugation, filtration, crystallization, treatment with protein precipitants (salting out), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity. Various chromatographies such as chromatography, HPLC, or a combination of these methods can be used, and the desired glycogen and/or protein can be recovered from the medium or prokaryotic host cells using a suitable method known in the art.
또한, 상기 생산방법은 추가적으로 정제 단계를 포함할 수 있다. 상기 정제는 당해 기술분야에 공지된 적합한 방법을 이용하여 수행할 수 있다. 일 예에서, 상기 생산방법이 회수 단계와 정제 단계를 모두 포함하는 경우, 상기 회수 단계와 정제 단계는 순서에 상관없이 연속적 또는 비연속적으로 수행되거나, 동시에 또는 하나의 단계로 통합되어 수행될 수 있으나, 이에 제한되는 것은 아니다.Additionally, the production method may additionally include a purification step. The purification can be performed using a suitable method known in the art. In one example, when the production method includes both a recovery step and a purification step, the recovery step and the purification step may be performed continuously or discontinuously regardless of the order, or may be performed simultaneously or integrated into one step. , but is not limited to this.
일 양상에 따른 발현 카세트, 형질 전환된 원핵 숙주세포 및 글리코겐 생산방법에 의하면, 고수용성의 글리코겐을 대량 생산할 수 있어 다양한 산업 군에 활용될 수 있다.According to the expression cassette, transformed prokaryotic host cell, and glycogen production method according to one aspect, highly soluble glycogen can be mass-produced and utilized in various industries.
도 1은 변형시킨 글리코겐 오페론을 도식화한 그림이다.Figure 1 is a schematic diagram of the modified glycogen operon.
도 2는 기존 모 균주 E.coli K-12의 배양에 따른 생장률 및 글리코겐 합성율을 나타낸 그래프이다.Figure 2 is a graph showing the growth rate and glycogen synthesis rate according to culture of the existing parent strain E. coli K-12.
도 3은 재조합 균주 CMHX1의 배양에 따른 생장률을 나타낸 그래프이다. Figure 3 is a graph showing the growth rate according to culture of recombinant strain CMHX1.
도 4는 재조합 균주 CMHX2의 배양에 따른 생장률을 나타낸 그래프이다.Figure 4 is a graph showing the growth rate according to culture of the recombinant strain CMHX2.
도 5는 일반 균주 E.coli MC1061의 배양에 따른 생장률을 나타낸 그래프이다.Figure 5 is a graph showing the growth rate according to culture of the general strain E. coli MC1061.
도 6은 재조합 균주 CMHX2의 배양에 따른 생장률을 나타낸 그래프이다.Figure 6 is a graph showing the growth rate according to culture of the recombinant strain CMHX2.
도 7은 기존 다당체인 Amylopectin(AP) 및 Cobiosa, 기존 모 균주 E.coli K-12가 생산한 다당체 및 재조합 균주 CMHX1 및 CMHX2가 생산한 다당체의 중합도 별 곁사슬 분포 비율을 나타낸 그래프이다. Figure 7 is a graph showing the side chain distribution ratio by degree of polymerization of existing polysaccharides Amylopectin (AP) and Cobiosa, polysaccharides produced by the existing parent strain E. coli K-12, and polysaccharides produced by recombinant strains CMHX1 and CMHX2.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.
실시예 1. 재조합 균주 제작Example 1. Preparation of recombinant strain
고수용성 특성을 갖는 글리코겐의 발현량을 증대시킨 재조합 균주를 다음과 같이 제작하였다. A recombinant strain with increased expression of glycogen with high water solubility characteristics was produced as follows.
구체적으로, 도 1에 나타낸 바와 같이 Escherichia coli K-12균주의 글리코겐 프로모터 및 glgB 유전자를 제거시키고 E.coli K-12 유래의 malPQ 프로모터 및 비브리오 불니피쿠스(vibrio vulnificus) 글리코겐 분지 효소(glycogen branching enzyme, VvGBE) 발현 유전자를 삽입시켰다. 삽입할 선형의 유전자는 malPQ promoter와 VvGBE, FRT 측면부위 (FLP 인식 표적) 및 상동성을 포함하는 kanamycin cassette를 pKD 13 plasmid로부터 중합효소 연쇄반응(PCR)에 의해 증폭하여 p6xHis_119 벡터에 infusion cloning kit로 재조합하여 PCR을 이용해 증폭하여 사용하였다. 유전자의 제거와 삽입은 one step knock-out 원리에 의해 진행되었다. 타겟 유전자의 삽입은 PKD 46 plasmid를 균주내에 형질전환하여 λ-red-recombinase 효소의 발현을 유도하여 전기천공 기계 (electroporation machine)를 사용하였다. 구축된 돌연변이체는 항생제를 함유하는 플레이트에 의해 선택되었다. FLP영역은 pCP20 plasmid에 의해 제거되었다. 유전자가 삽입되는 타겟 부위는 글리코겐 형성에 직접적으로 관여하는 glg operon(glgBXCAP)이다. 이 operon은 glgBX, glgCAP 두개의 operon으로 구성되어있다. CMHX1 균주는 도1 에서 보여지는 그림에서 glgBXCAP operon중 glgBglgBX operon 의 promoter가 malPQ promoter로 교체된 돌연변이 균주이고, CMHX2의 경우 도1에서 보여지듯이 glgCAP operon의 promoter까지 추가적으로 malPQ promoter로 교체한 돌연변이 균주이다. malPQ promoter의 염기서열은 서열번호 1에 나타내었고, VvGBE의 염기서열은 서열번호 2에 나타내었으며, kanamycin 저항성 유전자의 염기서열은 서열번호 3에 나타내었고, glgB의 염기서열은 서열번호 4에 나타내었으며, glgX의 염기서열은 서열번호 5에 나타내었고, glgC의 염기서열은 서열번호 6에 나타내었으며, glgA의 염기서열은 서열번호 7에 나타내었고, glgP의 염기서열은 서열번호 8에 나타내었다.Specifically, as shown in Figure 1, the glycogen promoter and glgB gene of Escherichia coli K-12 strain were removed, and the malPQ promoter from E. coli K-12 and Vibrio vulnificus glycogen branching enzyme were removed. , VvGBE) expression gene was inserted. The linear gene to be inserted is a kanamycin cassette containing the malPQ promoter, VvGBE, FRT flanking region (FLP recognition target), and homology, amplified by polymerase chain reaction (PCR) from pKD 13 plasmid, and cloned into the p6xHis_119 vector using an infusion cloning kit. It was recombinant and amplified using PCR. Removal and insertion of genes were carried out according to the one step knock-out principle. To insert the target gene, an electroporation machine was used by transforming the PKD 46 plasmid into the strain to induce expression of the λ-red-recombinase enzyme. Constructed mutants were selected by plates containing antibiotics. The FLP region was removed by pCP20 plasmid. The target site where the gene is inserted is the glg operon ( glgBXCAP ), which is directly involved in glycogen formation. This operon consists of two operons, glgBX and glgCAP . The CMHX1 strain is a mutant strain in which the promoters of the glgB and glgBX operons in the glgBXCAP operon, as shown in Figure 1, are replaced with the malPQ promoter, and in the case of CMHX2, the promoter of the glgCAP operon is additionally replaced with the malPQ promoter, as shown in Figure 1. am. The nucleotide sequence of the malPQ promoter is shown in SEQ ID NO: 1, the nucleotide sequence of VvGBE is shown in SEQ ID NO: 2, the nucleotide sequence of the kanamycin resistance gene is shown in SEQ ID NO: 3, and the nucleotide sequence of glgB is shown in SEQ ID NO: 4. , the base sequence of glg
실험예 1. 글리코겐 생산량 분석Experimental Example 1. Glycogen production analysis
상기 실시예 1에서 제조된 재조합 균주의 글리코겐 생산량을 확인하였다.The glycogen production of the recombinant strain prepared in Example 1 was confirmed.
구체적으로, R2 제한 배지와 교체한 promoter 활성에 적합한 maltodextrin 탄소원을 이용하여 최적의 비증식 속도로 exponential feeding 법으로 탄소원을 공급하며 고농도 세포 배양하였다. 배양 과정중 50ml의 배양액을 수확하여 pH 4.0 인 50mM sodium acetate 완충액과 혼합하였다. 이후 ultra sonicator와 열처리 단계를 거치며 DNA와 단백질을 불활성화 시키고 95% 이상의 에탄올을 이용해 acetate-ethanol 침전법을 이용해 글리코겐을 침전시켜 완전히 건조시켜 생산하였다. 이후 글리코겐을 10 mg/ml의 농도로 증류수에 완전히 녹였다. 이후 5% phenol 용액과 95% 의 sulfuric acid를 이용하여 반응 후 microplate reader 기기로 470nm에서 흡광도를 측정해 총당을 측정하는 phenol sulfuric 방법을 이용하여 측정하였다. 그리고 동일한 양의 배양액을 수확하여 균을 분리하여 NaCl로 washing 해준뒤 dry cell weight(DCW)을 측정하여 글리코겐 정량분석 대비 DCW로 글리코겐 생산량을 측정하였다. Specifically, high-concentration cells were cultured using maltodextrin carbon source suitable for promoter activity replaced with R2-restricted medium and supplying carbon source by exponential feeding method at optimal specific growth rate. During the culture process, 50ml of culture medium was harvested and mixed with 50mM sodium acetate buffer solution, pH 4.0. Afterwards, DNA and proteins were inactivated through ultra sonicator and heat treatment steps, and glycogen was precipitated using an acetate-ethanol precipitation method using over 95% ethanol and completely dried. Afterwards, glycogen was completely dissolved in distilled water at a concentration of 10 mg/ml. After reaction using 5% phenol solution and 95% sulfuric acid, the total sugar was measured using the phenol sulfuric method by measuring the absorbance at 470 nm with a microplate reader device. Then, the same amount of culture medium was harvested, the bacteria were separated, washed with NaCl, and dry cell weight (DCW) was measured. Glycogen production was measured using DCW compared to glycogen quantitative analysis.
그 결과, 도 2 내지 4 및 표 1에 나타낸 바와 같이, CMHX1 돌연변이는 세포성장과 글리코겐 축적에 따른 아세테이트 초과(acetate overflow)로 인한 세포 용해(cell lysis) 현상이 나타났다. 반면, 최종 CMHX2 돌연변이는 아세테이트 초과 현상이 개선되어 CMHX1 돌연변이의 O.D 600nm 값 171 보다 향상된 211까지 안정적으로 성장하였다. 또한, 세포내 50%이상의 글리코겐 축적률 및 세포 질량(Dry Cell weight:DCW) 55 g/L 이상까지 성장하였다. 이는 CMHX1 돌연변이 보다 약 68% 이상 증가한 글리코겐 축적률을 나타내며, 모 균주인 E.coli K-12 보다 40배 이상의 축적률을 나타낸다.As a result, as shown in Figures 2 to 4 and Table 1, the CMHX1 mutant showed cell lysis due to acetate overflow due to cell growth and glycogen accumulation. On the other hand, the final CMHX2 mutant had an improved acetate excess phenomenon and grew stably up to OD 211, which was higher than the OD 600nm value of 171 for the CMHX1 mutant. In addition, it grew to an intracellular glycogen accumulation rate of more than 50% and a cell mass (dry cell weight: DCW) of more than 55 g/L. This indicates a glycogen accumulation rate that is approximately 68% higher than that of the CMHX1 mutant, and an accumulation rate that is more than 40 times that of the parent strain, E.coli K-12.
숙주host 샘플Sample 글리코겐(g)/DCW(g)*100(%)Glycogen (g)/DCW (g)*100 (%) 글리코겐(g/L)Glycogen (g/L) DCW(g/L)DCW(g/L)
E.coli K-12 E.coli K-12 Before N-limitBefore N-limit 1.12 ± 0.481.12 ± 0.48 0.48 ± 0.180.48 ± 0.18 43.21 ± 0.6143.21 ± 0.61
After N-limitAfterN-limit 1.4 ± 0.611.4 ± 0.61 0.56 ± 0.680.56 ± 0.68 39.75 ± 0.7339.75 ± 0.73
CMHX1CMHX1 Before N-limitBefore N-limit 35 ± 0.5135±0.51 17.07 ± 0.1317.07 ± 0.13 48.5 ± 1.1248.5 ± 1.12
After N-limitAfterN-limit 33 ± 0.2433 ± 0.24 15.02 ± 0.0515.02 ± 0.05 45.94 ± 0.3845.94 ± 0.38
CMHX2CMHX2 Before N-limitBefore N-limit 51 ± 0.1351 ± 0.13 27.89 ± 0.7327.89 ± 0.73 56.29 ± 0.5456.29 ± 0.54
After N-limitAfterN-limit 45 ± 0.1145±0.11 26.28 ± 0.2426.28 ± 0.24 58.33 ± 0.3858.33 ± 0.38
실험예 2. 단백질 생산량 분석Experimental Example 2. Protein production analysis
상기 실시예 1에서 제조된 재조합 균주가 단백질 발현 균주로써 이용가능한지 확인하기 위해 다음과 같이 실험을 수행하였다.To confirm whether the recombinant strain prepared in Example 1 can be used as a protein expression strain, an experiment was performed as follows.
구체적으로, 먼저 성장 및 글리코겐 축적 면에서 우수한 결과를 보였던 CMHX2 균주에 특정단백질이 발현되는 유전자가 들어있는 p6xHis 119발현 벡터를 열처리를 이용한 형질전환을 하였다. 항생제가 들어간 고체의 플레이트배지를 이용하여 colony를 선별하였다. 이후 구축된 배양조건에서 O.D 600nm 값 56까지 배양한 뒤 배양액과 균을 원심 분리를 이용하여 분리하였다. 분리된 균을 완충 용액에 풀어준 뒤 ultra sonicator를 이용하여 세포를 파쇄하여 타겟으로 하는 단백질을 추출하였다. 그리고 타겟 단백질이 열에 강한 성질을 이용하여 단계별 열처리를 하여 효소를 정제하였다. 정제 후 bradford assay를 통해 단백질을 정량분석하고 lugol solution을 이용하여 amylopectin을 standard로 반응 후 흡광도에 따라 단백질활성을 계산하였다. Specifically, first, the CMHX2 strain, which showed excellent results in terms of growth and glycogen accumulation, was transformed using a p6xHis 119 expression vector containing a gene expressing a specific protein using heat treatment. Colonies were selected using solid plate medium containing antibiotics. Afterwards, the culture was cultured to an O.D. of 600 nm of 56 under the established culture conditions, and then the culture medium and bacteria were separated using centrifugation. After dissolving the isolated bacteria in a buffer solution, the cells were disrupted using an ultra sonicator to extract the target protein. And, taking advantage of the heat-resistant nature of the target protein, the enzyme was purified through step-by-step heat treatment. After purification, the protein was quantitatively analyzed using the bradford assay, and the protein activity was calculated according to the absorbance after reacting with amylopectin as a standard using lugol solution.
그 결과, 도 5, 도 6 및 표 2에 나타낸 바와 같이, 기존 단백질 발현 균주에 비해 specific activity가 약 2배 차이가 나는 것을 확인하였고, 수율 또한 증가된 것을 확인하였다. 이러한 결과는 단백질 발현 균주로써도 기존의 균주보다 우수하다는 것을 나타낸다.As a result, as shown in Figures 5, 6, and Table 2, it was confirmed that the specific activity was approximately twice as different compared to the existing protein expression strain, and the yield was also confirmed to be increased. These results indicate that even as a protein expression strain, it is superior to existing strains.
숙주host 정제 단계purification steps 총 단백질 (mg)Total protein (mg) 총 활성 (units)Total activity (units) 고유 활성도 (units/mg)Specific activity (units/mg) 수율 (%)transference number (%)
MC1061MC1061 세포 추출물cell extract 1253.31253.3 1416.121416.12 1.131.13 100100
열처리heat treatment 112.12112.12 431.35431.35 3.853.85 30.4630.46
CMHX2CMHX2 세포 추출물cell extract 1782.461782.46 2491.362491.36 1.401.40 100100
열처리heat treatment 200.38200.38 1449.971449.97 7.247.24 58.258.2
실험예 3. 생산된 글리코겐의 곁사슬 분포도 분석Experimental Example 3. Analysis of side chain distribution of produced glycogen
상기 실시예 1에서 제조된 재조합 균주가 생산한 글리코겐의 곁사슬 분포도(side chain distribution)를 다음과 같이 분석하였다.The side chain distribution of glycogen produced by the recombinant strain prepared in Example 1 was analyzed as follows.
구체적으로, 글리코겐의 곁사슬을 잘라내는 isoamylase효소 (1unit/ml)를 이용하여 최종농도 2mg/ml에 맞추어 pH 4.0의 50mM sodium acetate buffer에 72시간 동안 40℃에서 반응을 진행하였다. mussel으로부터 유래한 글리코겐인 cobiosa 또한 동일하게 처리를 하였고 amylopectin은 DMSO용액에 녹여 반응하였다. 이후 효소를 불활성화시키는 열처리 과정을 거쳐 원심분리하여 상층액을 분리해내어 0.2μm 크기의 membrane으로 여과하여 high performance anion-exchange chromatography(HPAEC) 기기를 이용하여 분석을 진행하였다. 고정상 컬럼은 Carbopac PA-1 (250x4 mm, Dionex, Sunnyvale, CA, USA)를 사용하였고 컬럼을 150mM NaOH 완충용액으로 평형화하고, 150mM NaOH과 600mM sodium acetate의 농도를 가지는 완충용액을 1 ml/min으로 흘려주며 시료를 분석하였다. Specifically, the reaction was performed at 40°C for 72 hours in 50mM sodium acetate buffer at pH 4.0 to a final concentration of 2mg/ml using isoamylase enzyme (1 unit/ml), which cuts the side chain of glycogen. Cobiosa, glycogen derived from mussel, was also treated in the same way, and amylopectin was dissolved and reacted in DMSO solution. Afterwards, the supernatant was separated by centrifugation through a heat treatment process to inactivate the enzyme, filtered through a 0.2μm membrane, and analyzed using a high performance anion-exchange chromatography (HPAEC) device. Carbopac PA-1 (250x4 mm, Dionex, Sunnyvale, CA, USA) was used as the stationary phase column, and the column was equilibrated with 150mM NaOH buffer solution, and a buffer solution with a concentration of 150mM NaOH and 600mM sodium acetate was added at 1 ml/min. The sample was analyzed while flowing.
그 결과, 도 7 및 표 3에 나타낸 바와 같이 다른 다당체에 비해 중합도 5 이하의 짧은 길이의 가지구조를 가지는 것을 확인하였다. 이러한 결과는 상기 재조합 균주가 구조적으로 변화된 다당체를 생산할 수 있음을 나타낸다.As a result, as shown in Figure 7 and Table 3, it was confirmed that it had a short branched structure with a degree of polymerization of 5 or less compared to other polysaccharides. These results indicate that the recombinant strain can produce structurally changed polysaccharides.
샘플Sample DPn* DPn * 곁사슬 분포도(%)Side chain distribution (%)
중합도degree of polymerization
DP ≤ 5DP ≤ 5 5 < DP ≤ 125 < DP ≤ 12 13 ≤ DP13 ≤ DP
Amylopectin(AP)Amylopectin (AP) 14.9014.90 0.260.26 25.5125.51 72.1972.19
CobiosaCobiosa 8.268.26 18.5118.51 39.939.9 41.5941.59
E.coli K-12E.coli K-12 9.089.08 9.79.7 54.6654.66 41.5941.59
CMH1CMH1 7.317.31 19.2119.21 68.968.9 11.8611.86
CMHX1CMHX1 6.376.37 29.7829.78 62.8562.85 7.377.37
CMHX2CMHX2 6.216.21 31.4431.44 63.5663.56 55
* 수-평균 중합도: DPn = ∑(각 사슬의 피크 면적)/∑(각 사슬의 피크 면적/해당 사슬의 사슬 길이) * Number-average degree of polymerization: DPn = ∑ (peak area of each chain)/∑ (peak area of each chain/chain length of that chain)
실험예 4. 생산된 글리코겐의 수용해도 분석Experimental Example 4. Analysis of water solubility of produced glycogen
상기 실시예 1에서 제조된 재조합 균주가 생산한 글리코겐이 상기 실험예 3에서 나타낸 바와 같은 구조적 형태로 인한 수용성 변화를 확인하기 위해, 생산된 글리코겐의 수용해도(water solubility)를 다음과 같이 분석하였다.In order to confirm the change in water solubility of the glycogen produced by the recombinant strain prepared in Example 1 due to the structural form as shown in Experimental Example 3, the water solubility of the produced glycogen was analyzed as follows.
구체적으로, 생산된 과량의 글리코겐을 10 mg/ml의 농도로 증류수에 넣어 상온에서 3시간 동안 녹였다. 이후 5% phenol 용액과 95% 의 sulfuric acid를 이용하여 반응 후 microplate reader 기기로 470nm에서 흡광도를 측정해 총당을 측정하는 phenol sulfuric 방법을 이용하여 측정하였다. Specifically, the excess glycogen produced was dissolved in distilled water at a concentration of 10 mg/ml for 3 hours at room temperature. After reaction using 5% phenol solution and 95% sulfuric acid, the total sugar was measured using the phenol sulfuric method by measuring the absorbance at 470 nm with a microplate reader device.
그 결과, 표 4에 나타낸 바와 같이 모 균주인 E.coli K-12의 글리코겐은 전분에 존재하는 amylopectin(AP) 보다 200배 이상의 수용성을 나타내었다. 최종 돌연변이인 CMHX2로부터 생산된 글리코겐은 모 균주의 글리코겐 보다 68% 증가한 수용성을 보였으며, AP보다 40000배 이상 증가한 값을 나타냈다. 이러한 결과는 상기 재조합 균주가 생산한 글리코겐이 고수용성을 갖는 것을 나타내며, 이러한 특성을 바탕으로 다양한 산업 군에 활용될 수 있음을 나타낸다.As a result, as shown in Table 4, the glycogen of the parent strain, E. coli K-12, was more than 200 times more water-soluble than amylopectin (AP) present in starch. Glycogen produced from the final mutant, CMHX2, showed a water solubility that was 68% higher than that of the parent strain, and a value that was more than 40,000 times higher than that of AP. These results indicate that the glycogen produced by the recombinant strain has high water solubility and can be utilized in various industries based on these characteristics.
샘플Sample 수용해도(mg/ml)Water solubility (mg/ml)
Amylopectin(AP)Amylopectin (AP) 0.81 ± 0.120.81 ± 0.12
E.coli K-12E.coli K-12 220 ± 0.49220 ± 0.49
CMHX2CMHX2 343.85 ± 0.87343.85 ± 0.87

Claims (17)

  1. 글리코겐 오페론의 프로모터가 말토오스 프로모터로 교체되거나 말토오스 프로모터가 삽입된 글리코겐 오페론을 포함하는 발현 카세트.An expression cassette containing the glycogen operon in which the promoter of the glycogen operon is replaced with a maltose promoter or a maltose promoter is inserted.
  2. 청구항 1에 있어서, 상기 글리코겐 오페론은 대장균(Escherichia coli, E. coli)으로부터 유래된 것인, 발현 카세트.The expression cassette according to claim 1, wherein the glycogen operon is derived from Escherichia coli ( E. coli ).
  3. 청구항 1에 있어서, 상기 말토오스 프로모터는 대장균(Escherichia coli, E. coli)으로부터 유래된 것인, 발현 카세트.The expression cassette according to claim 1, wherein the maltose promoter is derived from Escherichia coli ( E. coli ).
  4. 청구항 1에 있어서, 상기 글리코겐 오페론은 glgBXglgCAP 오페론으로 구성된 것인, 발현 카세트.The expression cassette according to claim 1, wherein the glycogen operon is composed of the glgBX and glgCAP operons.
  5. 청구항 1에 있어서, 상기 글리코겐 오페론의 프로모터는 glgB, glgBX 또는 glgCAP 프로모터인 것인, 발현 카세트.The expression cassette according to claim 1, wherein the promoter of the glycogen operon is a glgB , glgBX or glgCAP promoter.
  6. 청구항 1에 있어서, 상기 말토오스 프로모터는 malPQ 프로모터인 것인, 발현 카세트. The expression cassette of claim 1, wherein the maltose promoter is a malPQ promoter.
  7. 청구항 1에 있어서, 상기 말토오스 프로모터는 서열번호 1의 염기서열로 구성된 것인, 발현 카세트.The expression cassette according to claim 1, wherein the maltose promoter consists of the base sequence of SEQ ID NO: 1.
  8. 청구항 1에 있어서, glgB, glgX, glgC, glgA, glgP 및 이들의 조합으로 이루어진 군으로부터 선택된 유전자가 제거된 것인, 발현 카세트.The expression cassette according to claim 1, wherein a gene selected from the group consisting of glgB, glgX, glgC, glgA, glgP, and combinations thereof has been removed.
  9. 청구항 5에 있어서, 상기 glgB, glgBX 또는 glgCAP 프로모터가 malPQ 프로모터로 교체된 것인, 발현 카세트.The expression cassette of claim 5, wherein the glgB , glgBX or glgCAP promoter is replaced with the malPQ promoter.
  10. 청구항 4에 있어서, 상기 glgCAP 오페론의 업스트림(upstream)에 말토오스 프로모터가 삽입된 것인, 발현 카세트. The expression cassette according to claim 4, wherein a maltose promoter is inserted upstream of the glgCAP operon.
  11. 청구항 1에 있어서, 글리코겐 분지 효소(glycogen branching enzyme)를 코딩하는 유전자가 더 삽입된 것인, 발현 카세트.The expression cassette according to claim 1, wherein a gene encoding a glycogen branching enzyme is further inserted.
  12. 청구항 11에 있어서, 상기 글리코겐 분지 효소를 코딩하는 유전자는 비브리오 불니피쿠스(vibrio vulnificus)로부터 유래된 것인, 발현 카세트.The expression cassette of claim 11, wherein the gene encoding the glycogen branching enzyme is derived from Vibrio vulnificus .
  13. 청구항 1의 발현 카세트로 형질 전환된 원핵 숙주세포.A prokaryotic host cell transformed with the expression cassette of claim 1.
  14. 청구항 13에 있어서, 상기 원핵 숙주세포는 대장균인 것인, 원핵 숙주세포.The prokaryotic host cell according to claim 13, wherein the prokaryotic host cell is Escherichia coli.
  15. 청구항 13에 있어서, 상기 숙주세포는 글리코겐 및 단백질을 대량 생산할 수 있는 것인, 원핵 숙주세포.The prokaryotic host cell according to claim 13, wherein the host cell is capable of mass producing glycogen and protein.
  16. 청구항 15에 있어서, 상기 생산된 글리코겐은 중합도(degree of polymerization, DP)가 5 이하인 곁사슬 분포 비율이 전체 생산된 글리코겐 함량에 대하여 적어도 30 %인 것인, 원핵 숙주세포.The prokaryotic host cell of claim 15, wherein the produced glycogen has a distribution ratio of side chains having a degree of polymerization (DP) of 5 or less of at least 30% of the total produced glycogen content.
  17. 청구항 13의 원핵 숙주세포를 배지에서 배양하는 단계; 및 배양된 원핵 숙주세포 또는 배지로부터 글리코겐을 회수하는 단계를 포함하는 글리코겐 생산방법.Culturing the prokaryotic host cell of claim 13 in a medium; and recovering glycogen from cultured prokaryotic host cells or medium.
PCT/KR2022/009867 2022-03-11 2022-07-07 Glycogen operon expression cassette comprising maltose promoter WO2023171857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0030906 2022-03-11
KR1020220030906A KR20230133662A (en) 2022-03-11 2022-03-11 Glycogen operon expression cassette containing maltose promoter

Publications (1)

Publication Number Publication Date
WO2023171857A1 true WO2023171857A1 (en) 2023-09-14

Family

ID=87935489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009867 WO2023171857A1 (en) 2022-03-11 2022-07-07 Glycogen operon expression cassette comprising maltose promoter

Country Status (2)

Country Link
KR (1) KR20230133662A (en)
WO (1) WO2023171857A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753327B1 (en) * 2016-04-19 2017-07-03 연세대학교 산학협력단 Expression cassette including rrnA promoter from Vibrio natriegens for improving growth efficiency of Escherichia coli and recombinant Escherichia coli introduced with the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102251189B1 (en) 2019-09-18 2021-05-14 (주)카보엑스퍼트 Manufacturing method of polysaccharide and cosmetic composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101753327B1 (en) * 2016-04-19 2017-07-03 연세대학교 산학협력단 Expression cassette including rrnA promoter from Vibrio natriegens for improving growth efficiency of Escherichia coli and recombinant Escherichia coli introduced with the same

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE Nucleotide 26 July 2016 (2016-07-26), ANONYMOUS : "Fragments ofthe E. coli genes malT and malP (N-termini). malT - positive regulatory gene malP - maltodextrin phosphorylase ", XP093091673, retrieved from NCBI Database accession no. V00304.1 *
HAN AH-REUM, LEE YEON-JU, WANG TIANSHI, KIM JUNG-WAN: "Glycogen Metabolism in Vibrio vulnificus Affected by malP and malQ", HAN'GUG MI'SAENGMUL SAENGMYEONG GONG HAGHOEJI; KOREAN JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, HAN'GUG MI'SAENGMUL SAENGMYEONG GONG HAGHOE; KOREAN SOCIETY FOR MICROBIOLOGY AND BIOTECHNOLOGY, KR, vol. 46, no. 1, 28 March 2018 (2018-03-28), KR , pages 29 - 39, XP093091675, ISSN: 1598-642X, DOI: 10.4014/mbl.1801.01002 *
J.-T. PARK, J.-H. SHIM, P. L. TRAN, I.-H. HONG, H.-U. YONG, E. F. OKTAVINA, H. D. NGUYEN, J.-W. KIM, T. S. LEE, S.-H. PARK, W. BOO: "Role of Maltose Enzymes in Glycogen Synthesis by Escherichia coli", JOURNAL OF BACTERIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 193, no. 10, 15 May 2011 (2011-05-15), US , pages 2517 - 2526, XP055584163, ISSN: 0021-9193, DOI: 10.1128/JB.01238-10 *
KIM, M. ET AL.: "F-42: Metabolic Engineering and High Cell Density Culture of Escherichia coli to Enhance the Productivity and Improve Properties of Glycogen", 48TH ANNUAL MEETING & INTERNATIONAL SYMPOSIUM OF THE KOREAN SOCIETY FOR MICROBIOLOGY AND BIOTECHNOLOGY. 23-25 JUNE 2021. BEXCO, BUSAN, KOREA, THE KOREAN SOCIETY FOR MICROBIOLOGY AND BIOTECHNOLOGY, KOREA, 23 June 2021 (2021-06-23) - 25 June 2021 (2021-06-25), Korea, pages 351, XP009549714 *
KIM, M.-S. ET AL.: "Production and structural analyses of glycogens synthesized in Escherichia coli mutants", K-FOODS IN THE POST-COVID-19 ERA: HEALTH AND CONVENIENCE, P12-046, 7 July 2021 (2021-07-07) - 9 July 2021 (2021-07-09), pages 530 *
MONTERO MANUEL, ALMAGRO GOIZEDER, EYDALLIN GUSTAVO, VIALE ALEJANDROM, MUñOZ FRANCISCOJ, BAHAJI ABDELLATIF, LI JUN, RAHIMPOUR MEHD: "Escherichia coliglycogen genes are organized in a single glgBXCAP transcriptional unit possessing an alternative suboperonic promoter within glgC that directs glgAP expression", BIOCHEMICAL JOURNAL, PUBLISHED BY PORTLAND PRESS ON BEHALF OF THE BIOCHEMICAL SOCIETY., GB, vol. 433, no. 1, 1 January 2011 (2011-01-01), GB , pages 107 - 117, XP009549077, ISSN: 0264-6021, DOI: 10.1042/BJ20101186 *
RAIBAUD, O. ; MOCK, M. ; SCHWARTZ, M.: "A technique for integrating any DNA fragment into the chromosome of Escherichia coli", GENE, ELSEVIER AMSTERDAM, NL, vol. 29, no. 1-2, 1 July 1984 (1984-07-01), NL , pages 231 - 241, XP025682538, ISSN: 0378-1119, DOI: 10.1016/0378-1119(84)90183-5 *

Also Published As

Publication number Publication date
KR20230133662A (en) 2023-09-19

Similar Documents

Publication Publication Date Title
EP0332234B1 (en) Process for preparing l-tyrosine
TW201839140A (en) A composition for producing tagatose and methods for producing tagatose using the same
WO2009096690A2 (en) Improved promoter, and a production method for l-lysine using the same
US11124780B2 (en) Genetically engineered bacterium used for producing uridine with high-yield
CN114502735A (en) Microorganism having enhanced L-histidine-producing ability and method for producing histidine using the same
CN113151133B (en) Recombinant host bacterium for producing sialyllactose and construction method and application thereof
WO2023171857A1 (en) Glycogen operon expression cassette comprising maltose promoter
CN112538491B (en) YH66_08550 gene-based recombinant strain for producing L-isoleucine as well as construction method and application thereof
CN115927148A (en) Genetic engineering bacterium for efficiently producing lactoyl-N-neotetraose without lactose addition and application thereof
WO2022191357A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability, and method for producing l-lysine using same
CN112592924B (en) YH66_10325 gene-modified recombinant strain producing L-isoleucine as well as construction method and application thereof
CN115605602A (en) Method for producing heparosan and escherichia bacteria having heparosan production ability
CN115678817A (en) Recombinant microorganism, preparation method thereof and application thereof in threonine production
WO2017065457A1 (en) Microorganism having l-threonine producing ability, and method for producing l-threonine using same
CN116286575B (en) Method for efficiently expressing raw starch alpha-amylase by using bacillus subtilis
WO2022191358A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability, and method for producing l-lysine by using same
WO2023106543A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability and method for producing l-lysine by using same
WO2023063547A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability and method for producing l-lysine by using same
WO2022145586A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
KR102166288B1 (en) D-glutamate auxotrophic Escherichia coli and method of producing target product
WO2022146110A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
WO2023136421A1 (en) Mutant in escherichia having enhanced l-histidine productivity and method for producing l-histidine using same
WO2022145588A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same
WO2022145589A1 (en) Atp-prt variant with reduced histidine-caused feedback inhibition, and histidine-producing strain expressing same
WO2022145587A1 (en) Atp-prt variant with reduced feedback inhibition by histidine, and histidine-producing strain expressing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931104

Country of ref document: EP

Kind code of ref document: A1