WO2022055051A1 - Continuous circulation-type industrial rapid ice-making system for small-sized ice - Google Patents

Continuous circulation-type industrial rapid ice-making system for small-sized ice Download PDF

Info

Publication number
WO2022055051A1
WO2022055051A1 PCT/KR2021/001178 KR2021001178W WO2022055051A1 WO 2022055051 A1 WO2022055051 A1 WO 2022055051A1 KR 2021001178 W KR2021001178 W KR 2021001178W WO 2022055051 A1 WO2022055051 A1 WO 2022055051A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ice
water
tank
main frame
Prior art date
Application number
PCT/KR2021/001178
Other languages
French (fr)
Korean (ko)
Inventor
임종호
Original Assignee
(주)제이엘피엔지니어링
주식회사 인포벨리코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이엘피엔지니어링, 주식회사 인포벨리코리아 filed Critical (주)제이엘피엔지니어링
Publication of WO2022055051A1 publication Critical patent/WO2022055051A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/10Producing ice by using rotating or otherwise moving moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/06Multiple ice moulds or trays therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Definitions

  • the present invention relates to a small industrial ice rapid manufacturing system, and more particularly, a water tank is divided into multiple stages, a plurality of heat exchangers and a dual refrigerator are installed to cool and supply water for ice manufacturing, and a refrigerant for ice manufacturing is provided.
  • a small industrial ice rapid manufacturing system of a continuous circulation method in which the refrigerant is maintained at a constant temperature by secondary cooling and supplied to a divided water tank, respectively, to produce homogeneous ice.
  • ice In general, ice is used for various purposes in various industries such as aquatic products and poultry processing and freshness maintenance, food processing, and chemical plants. and prevent corruption.
  • ice is widely used in various industrial fields.
  • a large amount of ice is produced by an industrial ice maker, ice is crushed by an industrial ice breaker, and temporarily stored in an industrial high-capacity storage storage, ice storage, for secondary supply to each supplier in need of ice.
  • Such an industrial ice maker injects sterilized water into a large rectangular ice cube in a certain amount and immerses the large ice cube in a cooling solution at 9°C to freeze the water in the ice cube.
  • the water starts to freeze from the edge, and when it freezes to a certain extent, it is taken out, washed, and then crushed with an ice breaker before packing.
  • ice making method air freezing method, contact freezing method, immersion freezing method, liquefied gas freezing method, low temperature osmotic pressure dehydration freezing method, etc. have been disclosed.
  • Korean Patent Laid-Open Publication No. 10-2003-0039535 discloses an apparatus for manufacturing an ice container.
  • the apparatus for manufacturing an ice container is an apparatus for manufacturing an ice container as shown in FIG. 1, comprising: a body frame 10 having a plurality of rolling wheels 12 installed as a bottom surface thereof; a moving frame 20 that installs a raw material tank 22 and a circulation tank 24 as an upper portion of the body frame 10 and is fixed by moving cylinders 25 installed on both sides as a lower portion thereof and reciprocates;
  • the guide rods 32 formed on both sides of the lower portion of the moving frame 20 are guided by the guide rods 26 formed on the moving frame 20, and a plurality of spiral shafts each having upper molds 34 formed at the lower end thereof.
  • the upper mold part 30 composed of a fixed frame 38 to which 35 is fastened and elevated by an elevating cylinder 36 installed as an intermediate moving frame 20 between the raw material tank 22 and the circulation tank 24 .
  • a cooling tank that is connected to the raw material tank 22 and the supply pipe on one side in the middle of the body frame 10 and is provided with a drain passage 42 and a drain hole 44 on the upper surface so that a plurality of lower molds 45 are detachable.
  • the conventional ice container manufacturing apparatus has a problem in that mass production is impossible because the ice manufacturing speed is relatively slow.
  • the continuous circulation type industrial small ice rapid manufacturing system 100 includes a main frame F1, a subframe F2, a transport sprocket SP, and a transport tray chain ( 110), an ethanol water tank 120, a hot air fan 130, a discharge chute 140, a water metering dispenser 150, a circulation pump P, a heat exchanger 160, an air knife ( 170), and a water storage tank (ST1) and an ethanol storage tank (ST2).
  • the main frame F1 is formed in a rectangular shape. At this time, the main frame F1 lowers the ice mold M constantly filled with water from the water dispenser 150 into the ethanol tank 120 , and the ice mold M cooled in the ethanol tank 120 .
  • a pair of guide rollers (R) are provided at the front and rear ends to raise the .
  • sub-frame F2 is separately installed on one side of the main frame F1.
  • the transfer sprocket SP is installed at the front and rear ends of the main frame F1, rotated by the driving motor M, and reverses the ice mold M moving along the upper part of the main frame F1 to lower it. It is transferred and reversed when moving from the lower part to the upper part again.
  • the transfer tray chain 110 is continuously rotated along the main frame F1 by the transfer sprocket SP, and a plurality of ice molds M are installed.
  • the ice mold M has excellent thermal conductivity and is made of a metal material such as aluminum that is not damaged at low temperatures, has a rectangular tray shape, and both ends are fixed to the transfer tray chain 110 .
  • the ethanol tank 120 is installed on the upper end of the main frame F1 , and the ice mold M that stores ethanol as a refrigerant therein and moves along the transfer tray chain 110 is immersed therein.
  • the ethanol tank 120 is provided with a plurality of discharge control valves (V1) and a plurality of supply control valves (V2) on the bottom surface, the ethanol is collected from the discharge control valve (V1), the supply control valve (V2)
  • a plurality of grooves 121 bent downward so as not to interfere with the ice mold M are formed, and a discharge control valve V1 and a supply control valve V2 are installed in the grooves 121, and each discharge control valve (V1) is connected to the circulation pump (P) through the discharge line (L1), each supply control valve (V2) is connected to the heat exchanger 160 through the supply line (L2).
  • the ethanol tank 120 controls the uniform amount and flow of the ethanol tank 120 through the discharge control valve (V1) and the supply control valve (V2) to smooth the flow of ethanol as a whole, In order to minimize the heat loss of ethanol at 60° C., it is preferable to make it in the form of a box with urethane rigid foam.
  • the hot air blower 130 is immersed in the ethanol water tank 120 to apply hot air to the ice mold M that has been completely frozen, the primary hot air heater 131 installed at the bottom of the ethanol water tank 120 in the main frame F1. ) and a secondary hot air heater 133 installed at the rear end of the primary hot air heater 131 to apply hot air to the ice mold M.
  • the primary and secondary hot air heaters 131 and 133 have a structure that generates heat through a hot wire to discharge hot air to a blower fan, and the secondary hot air heater 133 has a higher temperature than the primary hot air heater 131 . It can also release the hot air of
  • the discharge chute 140 is installed at the lower end of the main frame F1 and is dropped from the ice mold M by the hot air generated by the primary and secondary hot air heaters 131 and 133 of the hot air fan 130 . emits At this time, it is preferable that the discharge chute 140 is formed in the form of a hopper open on one side so that the small ice falls and is discharged while sliding.
  • the water dispenser 150 includes a bracket body 151 , a water injection cylinder module 153 , a pressure module 155 , an elevation module 157 , and a sliding module 159 .
  • the bracket body 151 is installed above the movement path of the ice mold M at the rear upper end of the main bracket F1. At this time, the bracket body 151 is installed so as to slide back and forth along the guide rail G in the main frame F1 to adjust the position.
  • the same number of water injection cylinders 153a as the number of grooves of the ice mold M are arranged and installed on the upper part of the bracket body 151, and the water injection cylinder module 153 is filled inside by the pressure applied from the top.
  • the water is injected into the ice mold (M) through the injection tube (T).
  • the pressurization module 155 is installed to move up and down by the vertical rod 156 at the upper portion of the water injection cylinder module 153 to pressurize the water injection cylinder module 153 to thereby pressurize the water injection cylinder module 153 of the water injection cylinder module 153 .
  • (153a) is pressurized to discharge the water inside.
  • the pressurization module 155 has an auxiliary water storage tank (ST3) that receives and stores water from the water storage tank (ST1) to fill water into each water injection cylinder (153a) of the water injection cylinder module 153 on the upper part.
  • the elevating module 157 is a pneumatic, hydraulic cylinder that is vertically connected and installed on the upper surface of the pressurizing module 155 to elevate the pressurizing module 155 .
  • the sliding module 159 is installed horizontally on the top of the ice mold M inside the bracket body 151 , and each injection tube T connected to the water injection cylinder 153a is fixed to the ice mold M. It slides back and forth as it moves, and water is injected into the ice mold (M). At this time, the sliding module 159 slides back and forth along the electric ball screw (B).
  • the circulation pump (P) is installed in the sub-frame (F2), receives the ethanol heated in the ethanol tank 120 through the discharge line (L1) is supplied to the heat exchanger 160 and discharged to the heat exchanger (160) The cooled ethanol is circulated to the ethanol bath 120 through the supply line L2.
  • the heat exchanger 160 is installed in the sub-frame F2, cools the ethanol circulated through the circulation pump P, and supplies it to the ethanol tank 120.
  • the air knife 170 is installed on the main frame F1 and sprays high-pressure air supplied from a compressor (not shown) to the ice mold M discharged from the ethanol tank 120 to remove ethanol.
  • the air knife 170 is preferably installed so as to have an inclination on the discharge side of the ethanol water tank 120 so that ethanol falling by the high-pressure air from the ice mold M can fall into the ethanol water tank 120 .
  • the water storage tank ST1 is installed on the upper end of the sub-frame F2 to supply water to the fixed water dispenser 150 .
  • the ethanol storage tank ST2 is separately installed in the vicinity of the sub-frame F2 to supplement the ethanol into the ethanol tank 120 through the circulation pump P.
  • the ice mold is heated with a hot air blower to drop the ice, and then the ice mold whose temperature has risen is put into the ethanol tank, which causes dew condensation on the ice mold.
  • the ethanol is diluted and the refrigeration performance is deteriorated.
  • Patent Document 001 Republic of Korea Patent Publication No. 10-2003-0039535
  • Patent Document 002 Republic of Korea Patent Publication No. 10-2116881
  • the present invention divides the water tank into multiple stages, installs a plurality of heat exchangers and a dual refrigerator to cool and supply water for ice production, and supply refrigerant for ice production in primary and secondary stages.
  • An object of the present invention is to provide a small industrial ice rapid manufacturing system of a continuous circulation method that cools and supplies each of the divided water tanks to maintain the refrigerant at a constant temperature to produce homogeneous ice.
  • the present invention provides a continuous method to prevent dew condensation from occurring in the ice mold by heating the ice mold with a hot air blower to drop ice and then cooling the ice mold whose temperature has risen to prevent the ethanol from being diluted and the refrigeration performance from being deteriorated.
  • Another object of the present invention is to provide a small-scale industrial ice rapid manufacturing system of a circulation type.
  • Another aspect of the present invention is to provide an industrial small ice rapid manufacturing system of a continuous circulation method that can increase energy efficiency by relatively increasing refrigeration efficiency by preventing exposure to outside air by installing an insulating cover on the upper surface of the refrigerant tank. There is a purpose.
  • Another object of the present invention is to provide a small industrial ice rapid manufacturing system of a continuous circulation method that purifies tap water or groundwater with a water purifier and then stores it in a water storage tank to produce edible ice in an area with poor water quality. there is.
  • a main frame formed in a rectangular shape; a sub frame installed on one side of the main frame; a transfer sprocket installed at the front and rear ends of the main frame and rotated by a driving motor; a transfer tray chain continuously rotated along the main frame by the transfer sprocket and provided with a plurality of ice molds; a refrigerant tank installed at the upper end of the main frame, the first refrigerant as a refrigerant is stored therein, the ice mold moving along the transfer tray chain is immersed, and the refrigerant tank is divided into multiple stages and provided with a plurality of refrigerant storage spaces; a hot air blower installed at the lower end of the main frame to apply hot air to the ice mold immersed in the refrigerant tank to complete freezing; a discharge chute installed at the lower end of the main frame to discharge small ice falling from the ice mold by the hot air of the hot air blower; a water dispenser installed at an upper end of the main frame to fill the ice mold with water
  • the continuous circulation type industrial small rapid ice production system includes: an air knife installed on the main frame to remove the first refrigerant by spraying air into the ice mold discharged from the refrigerant tank; a water storage tank installed on the sub-frame and supplying water to the water dispenser; a water purifier installed on the sub-frame to purify water supplied to the water storage tank; a water circulation pump installed in the sub-frame to circulate water in the water storage tank; Installed in the sub-frame, water circulated through the water circulation pump is connected to any one of the plurality of dual refrigerators to cool the third refrigerant while circulating, and then heat exchange with water to cool the water to 5° C.
  • a water cooling heat exchanger for storing the cooled water in the water storage tank; and a refrigerant storage tank installed in the vicinity of the sub-frame to replenish the first refrigerant in each refrigerant storage space of the refrigerant water tank through each of the circulation pumps.
  • side and bottom surfaces are manufactured in a box shape with urethane rigid foam, and an insulating cover is installed on the upper surface.
  • each of the dual refrigerators includes a low-temperature stage for cooling the second refrigerant to a relatively low pressure and high temperature; It consists of a high-temperature stage that cools the second refrigerant at a relatively high pressure and low temperature.
  • the plurality of cooling heat exchangers are connected to the low-temperature end of the dual refrigerator and heat-exchange the first refrigerant supplied through the refrigerant circulation pump with the second refrigerant, and a primary cooling heat exchanger for primary cooling to -35°C; It is connected to the high-temperature end of the dual refrigerator and the primary cooling heat exchanger, and is configured as a secondary heat exchanger for heat-exchanging the first refrigerant cooled primarily through the primary cooling heat exchanger with the second refrigerant for secondary cooling to -60°C.
  • the air-cooled refrigerator partitions a space within the heat insulation protective wall so that the cooling air and the outside do not flow out, and is installed in the partitioned space.
  • the first refrigerant is brine or ethane
  • the second refrigerant is a methane-based refrigerant or a non-azeotropic mixed refrigerant in which ethane and methane are mixed
  • the third refrigerant is brine, methane, ethane, Any one selected from propane, inorganic compounds, azeotropic refrigerants, and non-azeotropic refrigerants.
  • the water tank is divided into multiple stages, a plurality of heat exchangers and a dual refrigerator are installed to cool and supply water for ice production, and to produce ice.
  • a plurality of heat exchangers and a dual refrigerator are installed to cool and supply water for ice production, and to produce ice.
  • edible ice can be manufactured in an area with poor water quality by purifying tap water or groundwater with a water purifier and then storing it in a water storage tank.
  • FIG. 1 is a view for explaining a conventional tunnel-type freezing method of a multi-layer structure for rapid freezing of foods.
  • FIGS. 2 to 8 are diagrams illustrating the configuration of a conventional continuous circulation type industrial small-sized rapid ice production system.
  • FIG. 9 is a perspective view showing the configuration of a small industrial ice rapid manufacturing system of a continuous circulation method according to an embodiment of the present invention.
  • FIG. 10 is a front view of FIG. 9 ;
  • FIG. 11 is a perspective view illustrating a configuration of a refrigerant tank in a continuous circulation type industrial small rapid ice production system according to an embodiment of the present invention.
  • FIG. 12 is a perspective view showing the configuration of a cooling system in a continuous circulation type industrial small ice rapid manufacturing system according to an embodiment of the present invention.
  • FIG. 13 is a left side view of FIG. 12 .
  • FIG. 14 is a partial front view illustrating the configuration of an air-cooled refrigerator in a continuous circulation type industrial small ice rapid manufacturing system according to an embodiment of the present invention.
  • FIG. 15 is a right side view of FIG. 14 ;
  • FIG. 9 is a perspective view showing the configuration of an industrial small rapid ice production system of a continuous circulation method according to an embodiment of the present invention
  • FIG. 10 is a front view of FIG. 9
  • FIG. 11 is a continuous circulation according to an embodiment of the present invention
  • 12 is a perspective view showing the configuration of a refrigerant tank in a small-scale industrial ice rapid manufacturing system according to the present invention
  • FIG. 13 is a left side view of FIG. 12
  • FIG. 14 is a partial front view showing the configuration of an air-cooled refrigerator in a continuous circulation type industrial small ice rapid manufacturing system according to an embodiment of the present invention
  • FIG. 15 is a right side view of FIG. .
  • a continuous circulation type industrial small rapid ice production system 100 ′ includes a main frame F1 , a sub frame F2 , and a transfer sprocket SP ), the transfer tray chain 110 , the refrigerant water tank 120 ′, the hot air fan 130 , the discharge chute 140 , the water fixed discharge unit 150 , the refrigerant circulation pump P1 and the cooling A heat exchanger 160', a binary refrigerator A1, an air-cooled refrigerator A2, an air knife 170, a water storage tank ST1, a water purifier B, and a water circulation pump P2 , a water cooling heat exchanger 180 and a refrigerant storage tank ST2.
  • the main frame (F1), the sub frame (F2), the transfer sprocket (SP), the transfer tray chain 110, the hot air fan 130, the discharge chute 140, the air knife 170 and the water storage tank (ST1) ) and the refrigerant storage tank (ST2) have the same configuration as the conventional continuous circulation type industrial small ice rapid manufacturing system 100 shown in FIGS. 2 to 8 , and a duplicate description thereof will be omitted.
  • the refrigerant tank 120 ′ is installed at the upper end of the main frame F1 as shown in FIG. 11 , and is divided into multiple stages in the longitudinal direction so that a plurality of refrigerant storage spaces S are provided, so that each refrigerant storage space
  • the first refrigerant is stored in the portion S and the ice mold M moved along the transfer tray chain 110 is immersed.
  • the first refrigerant is preferably brine or ethanol-based so that it is harmless to the human body when it comes into contact with ice or food. .
  • the refrigerant tank 120' is manufactured in the form of a box with the side and bottom surfaces of the urethane rigid foam in order to minimize the heat loss of the first refrigerant at -60°C, and an insulating cover (C) is installed on the upper surface.
  • the refrigerant circulation pump (P1) is installed in the sub-frame (F2) as shown in Figs. 12 and 13, each refrigerant storage space (S) of the refrigerant water tank (120') and the cooling heat exchanger (160') ) installed between the first refrigerants and stored in each refrigerant storage space (S) of the refrigerant tank 120' to the cooling heat exchanger 160', respectively, to exchange heat with the second refrigerant of the cooling heat exchanger 160'.
  • the cooled first refrigerant is circulated to each refrigerant storage space S of the refrigerant tank 120'.
  • cooling heat exchanger 160 ′ is installed on the sub frame F2 as shown in FIGS. 12 and 13 , and the first refrigerant circulated through the circulation pump P and the second of the dual refrigerator A1 .
  • the first refrigerant is cooled to -60°C by exchanging the refrigerant and supplied to the refrigerant tank 120'.
  • each cooling heat exchanger 160 ′ is connected to the low-temperature stage L of the dual refrigerator A1 to be described below and heat-exchanges the first refrigerant supplied through the refrigerant circulation pump P1 with the second refrigerant.
  • the primary cooling heat exchanger 161 for primary cooling to -35° C. is connected to the high temperature end (H) and the primary cooling heat exchanger of the dual refrigerator (A1) for primary cooling through the primary cooling heat exchanger 161 It is composed of a secondary heat exchanger 163 for secondary cooling to -60 °C by heat-exchanging the first refrigerant with the second refrigerant.
  • the primary cooling heat exchanger 161 and the secondary cooling heat exchanger 163 form a pair and two pairs are installed, and when three binary refrigerators A1 are provided, 1
  • the primary cooling heat exchanger 161 and the secondary cooling heat exchanger 163 form a pair, and three pairs are installed.
  • the binary refrigerator A1 is installed outside the factory as shown in FIGS. 12 and 13 , and the same number as the number of refrigerant storage spaces S of the refrigerant tank 120 ′ is provided so that the first refrigerant is The second refrigerant is circulated to each of the cooling heat exchangers 160' to be cooled by heat exchange with the second refrigerant in the cooling heat exchanger 160'.
  • each of the dual refrigerators (A1) has a low temperature stage (L) for cooling the second refrigerant to a relatively low pressure and high temperature, and a high temperature stage (H) for cooling the second refrigerant to a relatively high pressure and low temperature is composed of
  • the second refrigerant a methane-based refrigerant or a non-azeotropic mixed refrigerant of ethane and methane is applied, and R23 is preferably applied to the low-temperature stage (L) and R404 is applied to the high-temperature stage (H).
  • the air-cooled refrigerator A2 is installed on the main frame F1 as shown in FIGS. 14 and 15 , is connected to any one of the plurality of dual refrigerators A1, and is cooled while circulating the third refrigerant. Then, the air is cooled by heat exchange with the air, and the cooled air is discharged to the ice mold M with the transfer tray chain 110 supplied to the fixed water dispenser 150 to cool the ice mold M. At this time, in the air-cooled refrigerator (A2), a space is formed by the insulating protective wall (W) so that the cooling air and the outside do not flow out, and is installed in the space.
  • W insulating protective wall
  • the water purifier B is installed in the sub-frame F2 to purify the water supplied to the water storage tank ST1.
  • the water circulation pump (P2) is installed in the sub-frame (F2) circulates the water in the water storage tank (ST1).
  • the water cooling heat exchanger 180 is installed in the sub-frame F2 and connected to any one of the plurality of dual refrigerators A1 for water circulated through the water circulation pump P2, and the third refrigerant After cooling while circulating, heat exchange with water to cool the water to 5° C., and store the cooled water in the water storage tank ST1.
  • the third refrigerant any one selected from brine, methane-based, ethane-based, propane, inorganic compound, azeotropic refrigerant, and non-azeotropic refrigerant is preferably applied.
  • the transfer sprocket SP is rotated to transfer the transfer tray chain 110 , the ice mold M rotates together, and at the same time, the water dispenser 150 fills the ice mold M with a fixed amount of water. . At this time, the water dispenser 150 is filled with water while moving forward and backward according to the movement of the ice mold M.
  • water discharged from the fixed water dispenser 150 is purified and stored in the water storage tank ST1 by the water purifier B, and then is circulated to the water cooling heat exchanger 180 through the water circulation pump P2. It is cooled to 5° C. and stored in a water storage tank ST1.
  • the ice mold M filled with water is advanced along the transport tray chain 110 and is lowered by the guide roller R located at the rear of the main frame F1, and the ice mold M is immersed in the refrigerant tank 120. do.
  • the ice mold M is immersed in the coolant tank 120 and moved at a speed of about 2M per minute, the water is changed into ice crystals while in contact with the first refrigerant at -60°C for 4 to 5 minutes.
  • the ice mold M is advanced from the refrigerant tank 120 along the transport tray chain 110, is raised by the guide roller R located in front of the main frame F1, and then is located in front of the main frame F1. It is transferred to the transfer sprocket SP located at the rear of the main frame F1 through the lower end of the main frame F1 in an inverted state along the transfer sprocket SP (the state in which the ice stands vertically to allow free fall). .
  • the ice mold M from which the ice has been removed is cooled by cold air while passing through the space where the air-cooled refrigerator A2 is installed, and then inverted again at the transfer sprocket SP located at the rear of the main frame F1, and then water In the fixed quantity dispenser 150 , the ice mold M is filled with a quantity of water and the above process is repeated.
  • each refrigerant storage space (S) of the refrigerant tank 120 is heat-exchanged with the second refrigerant in the primary cooling heat exchanger 161 through the refrigerant circulation pump (P1) to -35 °C 1
  • the first refrigerant cooled to -35°C again in the secondary heat exchanger 163 is heat-exchanged with the second refrigerant to be secondarily cooled to -60°C and then supplied to the refrigerant storage space (S). maintain a constant temperature.
  • the low-pressure stage L of each dual refrigerator A1 cools the second refrigerant heated by heat exchange with the first refrigerant to a relatively low pressure and high temperature
  • the high-pressure stage H is the second refrigerant.
  • the second refrigerant heated by heat exchange with the first refrigerant is cooled to a relatively high pressure and low temperature.
  • a tray (not shown) for holding frozen food (meat, fish, processed food, etc.) in place of the ice mold M is installed in the transfer tray chain 110 and frozen You can also freeze food.
  • the present invention can be applied not only to small ice, but also to freezing of frozen food.
  • transfer tray chain 120′ refrigerant tank
  • A1 Binary chiller
  • A2 Air-cooled chiller

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The present invention relates to an industrial rapid ice-making system for small-sized ice and, specifically, to a continuous circulation-type industrial rapid ice-making system for small-sized ice, wherein a water tank is divided into multiple stages, and a plurality of heat exchangers and two-stage cascade refrigerators are installed to cool and supply water for ice-making, and primarily and secondarily cool a refrigerant for ice-making and supply same to the respective divided water tank stages so as to maintain the refrigerant at a constant temperature, whereby homogeneous ice is made.

Description

연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템Industrial compact ice rapid manufacturing system with continuous circulation method
본 발명은 산업용 소형 얼음 급속 제조 시스템에 관한 것으로서, 상세하게는 수조를 다단으로 구획하고, 복수의 열교환기와 이원 냉동기를 설치하여 얼음 제조를 위한 물을 냉각시켜 공급하고, 얼음 제조를 위한 냉매를 1, 2차로 냉각시켜 구획된 수조에 각각 공급하여 냉매를 일정 온도로 유지시켜 균질한 얼음을 제조하도록 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템에 관한 것이다.The present invention relates to a small industrial ice rapid manufacturing system, and more particularly, a water tank is divided into multiple stages, a plurality of heat exchangers and a dual refrigerator are installed to cool and supply water for ice manufacturing, and a refrigerant for ice manufacturing is provided. , to a small industrial ice rapid manufacturing system of a continuous circulation method, in which the refrigerant is maintained at a constant temperature by secondary cooling and supplied to a divided water tank, respectively, to produce homogeneous ice.
일반적으로 얼음은 수산물, 가금류 가공 및 선도 유지, 식품 가공, 화학 공장 등 다양한 산업분야에서 다양한 목적으로 사용되고 있으며, 특히 수산물이나 가금류 등은 제품 출하시 포장 직전에 얼음을 공급하여 가공 및 선도를 유지할 수 있도록 하고 부패를 방지한다.In general, ice is used for various purposes in various industries such as aquatic products and poultry processing and freshness maintenance, food processing, and chemical plants. and prevent corruption.
이렇듯, 얼음은 다양한 산업분야에 많이 이용되고 있는데, 산업용 제빙기로 대량의 얼음을 생산하고, 산업용 쇄빙기로 쇄빙한 다음 이를 산업용 대용량 저장고인 저빙고에 일시 저장한 후 얼음이 필요한 각 공급처별로 2차 공급하게 된다.In this way, ice is widely used in various industrial fields. A large amount of ice is produced by an industrial ice maker, ice is crushed by an industrial ice breaker, and temporarily stored in an industrial high-capacity storage storage, ice storage, for secondary supply to each supplier in need of ice. will do
이러한 산업용 제빙기는 살균 처리된 물을 직사각의 커다란 아이스큐브에 일정한 용량씩 투입하고, 이 대형 아이스큐브를 9℃의 냉각용액에 담가 아이스큐브 속의 물을 얼린다.Such an industrial ice maker injects sterilized water into a large rectangular ice cube in a certain amount and immerses the large ice cube in a cooling solution at 9°C to freeze the water in the ice cube.
그러면, 대형 아이스큐브 안에는 물이 가장자리부터 얼기 시작하는데, 어느 정도 얼면 꺼낸 다음, 세척을 마친 뒤 쇄빙기로 쇄빙한 후 포장 작업을 수행한다.Then, inside the large ice cube, the water starts to freeze from the edge, and when it freezes to a certain extent, it is taken out, washed, and then crushed with an ice breaker before packing.
그러나, 이러한 대형의 산업용 제빙기와 사업용 쇄빙기를 설치해야만 하는 데, 고가의 장비를 필요로 하고, 설치 면적이 넓어 투자 비용이 증대되는 문제점이 있다.However, it is necessary to install such a large industrial ice maker and a commercial ice breaker, but there are problems in that expensive equipment is required and the investment cost is increased because the installation area is wide.
한편, 제빙 방법으로는 공기냉동법 접촉식냉동법(contaact freezing) 침지식냉동법, 액화가스냉동법, 저온삼투압 탈수냉동법 등이 개시되어 있다.On the other hand, as the ice making method, air freezing method, contact freezing method, immersion freezing method, liquefied gas freezing method, low temperature osmotic pressure dehydration freezing method, etc. have been disclosed.
이러한 제빙 방법중 일례로 대한민국 공개특허 공보 제10-2003-0039535호인 얼음용기의 제조장치가 개시되어 있다.As an example of such an ice making method, Korean Patent Laid-Open Publication No. 10-2003-0039535 discloses an apparatus for manufacturing an ice container.
상기 얼음용기의 제조장치는 도 1에 도시된 바와 같이 얼음 용기를 제조하기 위한 장치에 있어서, 밑면으로 다수의 구름바퀴(12)가 설치된 본체 프레임(10)과; 상기 본체 프레임(10)의 상부로 원료탱크(22)와 순환탱크(24)를 설치하고 그 하부로 양측에 설치되는 이동실린더(25)로 고정되어 왕복되는 이동틀(20)과; 상기 이동틀(20)의 하부로 양측에 형성된 가이드봉(32)이 상기 이동틀(20)에 형성된 가이드대(26)에서 안내되어 지고 밑단에는 각각의 상부금형(34)이 형성된 다수의 나선축(35)이 체결되어 상기 원료탱크(22)와 순환탱크(24)의 중간 이동틀(20)로 설치된 승하강실린더(36)에 의해 승하강되는 고정틀(38)로 구성되는 상부금형부(30)와; 상기 본체 프레임(10)의 중간에는 일측으로 상기 원료탱크(22)와 공급관으로 연결되고 상면으로 배수로(42)와 배수공(44)이 형성되어 다수의 하부금형(45)이 착탈되도록 설치되는 냉각탱크(40)와; 상기 냉각탱크(40) 측으로 구동모터(52)에 의해 구동되는 다수의 이송롤러(54)와 이송벨트(56)가 설치된 이송콘베어부(50)와; 상기 본체프레임(10)의 하부로 상기 순환탱크(24)와 냉각탱크(40)를 연결하여 수용된 물을 순환하는 순환펌프(60)를 설치하고 그 일측으로 상기 냉각탱크(40)와 연결되어 냉매를 순환시키는 다수의 냉동기(70)로 구성된다.The apparatus for manufacturing an ice container is an apparatus for manufacturing an ice container as shown in FIG. 1, comprising: a body frame 10 having a plurality of rolling wheels 12 installed as a bottom surface thereof; a moving frame 20 that installs a raw material tank 22 and a circulation tank 24 as an upper portion of the body frame 10 and is fixed by moving cylinders 25 installed on both sides as a lower portion thereof and reciprocates; The guide rods 32 formed on both sides of the lower portion of the moving frame 20 are guided by the guide rods 26 formed on the moving frame 20, and a plurality of spiral shafts each having upper molds 34 formed at the lower end thereof. The upper mold part 30 composed of a fixed frame 38 to which 35 is fastened and elevated by an elevating cylinder 36 installed as an intermediate moving frame 20 between the raw material tank 22 and the circulation tank 24 . )Wow; A cooling tank that is connected to the raw material tank 22 and the supply pipe on one side in the middle of the body frame 10 and is provided with a drain passage 42 and a drain hole 44 on the upper surface so that a plurality of lower molds 45 are detachable. (40) and; a transfer conveyor unit 50 on which a plurality of transfer rollers 54 driven by a driving motor 52 and a transfer belt 56 are installed toward the cooling tank 40; A circulation pump 60 for circulating water received by connecting the circulation tank 24 and the cooling tank 40 to the lower part of the body frame 10 is installed, and one side thereof is connected to the cooling tank 40 to connect the refrigerant It is composed of a plurality of refrigerators 70 that circulate.
그러나, 이러한 종래의 얼음용기의 제조장치는 얼음 제조 속도가 상대적으로 늦어 대량 생산이 불가능한 문제점이 있다.However, the conventional ice container manufacturing apparatus has a problem in that mass production is impossible because the ice manufacturing speed is relatively slow.
이러한 문제점을 해결하기 위하여 본 출원인에 의해 대한민국 등록특허공보 제10-2116881호인 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템이 개발되어 등록되었다.In order to solve this problem, the present applicant has developed and registered the Korean Patent Publication No. 10-2116881, an industrial small ice rapid manufacturing system of a continuous circulation method.
도 2 내지 도 8에 도시된 바와 같이 상기 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템(100)은 메인 프레임(F1)과, 서브 프레임(F2)과, 이송 스프로켓(SP)과, 이송 트레이 체인(110)과, 에탄올 수조(120)와, 열풍기(130)와, 배출 슈트(140)와, 물 정량 토출기(150)와, 순환 펌프(P)와, 열교환기(160)와, 에어 나이프(170)와, 물 저장 탱크(ST1) 및 에탄올 저장 탱크(ST2)로 구성된다.As shown in FIGS. 2 to 8 , the continuous circulation type industrial small ice rapid manufacturing system 100 includes a main frame F1, a subframe F2, a transport sprocket SP, and a transport tray chain ( 110), an ethanol water tank 120, a hot air fan 130, a discharge chute 140, a water metering dispenser 150, a circulation pump P, a heat exchanger 160, an air knife ( 170), and a water storage tank (ST1) and an ethanol storage tank (ST2).
먼저, 메인 프레임(F1)은 장방형으로 형성된다. 이때, 메인 프레임(F1)은 물 정량 토출기(150)에서 물이 일정하게 채워진 얼음 몰드(M)를 에탄올 수조(120)로 하강시키고, 에탄올 수조(120)에서 냉각된 상기 얼음 몰드(M)를 상승시키도록 전후단에 각각 한 쌍의 가이드 롤러(R)가 구비된다.First, the main frame F1 is formed in a rectangular shape. At this time, the main frame F1 lowers the ice mold M constantly filled with water from the water dispenser 150 into the ethanol tank 120 , and the ice mold M cooled in the ethanol tank 120 . A pair of guide rollers (R) are provided at the front and rear ends to raise the .
그리고, 서브 프레임(F2)은 메인 프레임(F1)의 일측에 별도로 설치된다.In addition, the sub-frame F2 is separately installed on one side of the main frame F1.
또한, 이송 스프로켓(SP)은 메인 프레임(F1)의 전후단에 설치되어 구동 모터(M)에 의해 회전되고, 메인 프레임(F1)의 상부를 따라 이동하는 얼음 몰드(M)를 반전시켜 하부로 이송시키고, 다시 하부에서 상부로 이동시 반전시킨다.In addition, the transfer sprocket SP is installed at the front and rear ends of the main frame F1, rotated by the driving motor M, and reverses the ice mold M moving along the upper part of the main frame F1 to lower it. It is transferred and reversed when moving from the lower part to the upper part again.
또, 이송 트레이 체인(110)은 이송 스프로켓(SP)에 의해 메인 프레임(F1)을 따라 연속 회전되고, 복수의 얼음 몰드(M)가 설치된다. 이때, 얼음 몰드(M)는 열전도율이 우수하고, 저온에 파손되지 않는 알루미늄과 같은 금속 재질로 직사각형태의 트레이 형상으로 양단이 이송 트레이 체인(110)에 고정된다.In addition, the transfer tray chain 110 is continuously rotated along the main frame F1 by the transfer sprocket SP, and a plurality of ice molds M are installed. At this time, the ice mold M has excellent thermal conductivity and is made of a metal material such as aluminum that is not damaged at low temperatures, has a rectangular tray shape, and both ends are fixed to the transfer tray chain 110 .
이어서, 에탄올 수조(120)는 메인 프레임(F1)의 상단에 설치되고, 내부에 냉매인 에탄올이 저장되어 이송 트레이 체인(110)을 따라 이동되는 얼음 몰드(M)가 침지된다. 이때, 에탄올 수조(120)는 저면에 복수의 배출 조절 밸브(V1)와 복수의 공급 조절 밸브(V2)가 구비되는 데, 배출 조절 밸브(V1)에서 에탄올이 수집되고, 공급 조절 밸브(V2)가 얼음 몰드(M)와 미간섭되도록 하부로 절곡되는 복수의 요홈(121)이 형성되어 요홈(121)에 배출 조절 밸브(V1)와 공급 조절 밸브(V2)가 설치되며, 각각의 배출 조절 밸브(V1)가 배출 라인(L1)을 통해 순환 펌프(P)와 연결되고, 각각의 공급 조절 밸브(V2)가 공급 라인(L2)을 통해 열교환기(160)와 연결된다.Subsequently, the ethanol tank 120 is installed on the upper end of the main frame F1 , and the ice mold M that stores ethanol as a refrigerant therein and moves along the transfer tray chain 110 is immersed therein. At this time, the ethanol tank 120 is provided with a plurality of discharge control valves (V1) and a plurality of supply control valves (V2) on the bottom surface, the ethanol is collected from the discharge control valve (V1), the supply control valve (V2) A plurality of grooves 121 bent downward so as not to interfere with the ice mold M are formed, and a discharge control valve V1 and a supply control valve V2 are installed in the grooves 121, and each discharge control valve (V1) is connected to the circulation pump (P) through the discharge line (L1), each supply control valve (V2) is connected to the heat exchanger 160 through the supply line (L2).
그리고, 에탄올 수조(120)는 에탄올 흐름을 전체적으로 원활하게 하기 위하여 배출 조절 밸브(V1)와, 공급 조절 밸브(V2)를 통해 에탄올 수조(120) 전체에 규일한 량과 흐름을 조절하도록 하고, -60℃의 에탄올을 열손실을 최소화하기 위해 우레탄 경질폼으로 박스 형태로 제작되는 것이 바람직하다.And, the ethanol tank 120 controls the uniform amount and flow of the ethanol tank 120 through the discharge control valve (V1) and the supply control valve (V2) to smooth the flow of ethanol as a whole, In order to minimize the heat loss of ethanol at 60° C., it is preferable to make it in the form of a box with urethane rigid foam.
계속해서, 열풍기(130)는 에탄올 수조(120)에 침지되어 냉동이 완료된 얼음 몰드(M)에 열풍을 가하도록 메인 프레임(F1)에서 에탄올 수조(120) 하단에 설치되는 1차 열풍 히터(131)와, 1차 열풍 히터(131)의 후단에 설치되어 얼음 몰드(M)에 열풍을 가하는 2차 열풍 히터(133)로 구성된다. 이때, 1, 2차 열풍 히터(131, 133)는 열선을 통해 열을 발생시켜 송풍팬으로 열풍을 배출하는 구조이고, 2차 열풍 히터(133)가 1차 열풍 히터(131)보다 더 높은 온도의 열풍을 배출할 수도 있다.Subsequently, the hot air blower 130 is immersed in the ethanol water tank 120 to apply hot air to the ice mold M that has been completely frozen, the primary hot air heater 131 installed at the bottom of the ethanol water tank 120 in the main frame F1. ) and a secondary hot air heater 133 installed at the rear end of the primary hot air heater 131 to apply hot air to the ice mold M. At this time, the primary and secondary hot air heaters 131 and 133 have a structure that generates heat through a hot wire to discharge hot air to a blower fan, and the secondary hot air heater 133 has a higher temperature than the primary hot air heater 131 . It can also release the hot air of
그리고, 배출 슈트(140)는 메인 프레임(F1)의 하단에 설치되어 열풍기(130)의 1, 2차 열풍 히터(131, 133)에서 발생되는 열풍에 의해 얼음 몰드(M)에서 낙하되는 소형 얼음을 배출시킨다. 이때, 배출 슈트(140)는 소형 얼음이 미끄러지면서 낙하되어 배출되도록 일측면에 개방된 호퍼 형태로 형성되는 것이 바람직하다.In addition, the discharge chute 140 is installed at the lower end of the main frame F1 and is dropped from the ice mold M by the hot air generated by the primary and secondary hot air heaters 131 and 133 of the hot air fan 130 . emits At this time, it is preferable that the discharge chute 140 is formed in the form of a hopper open on one side so that the small ice falls and is discharged while sliding.
또한, 물 정량 토출기(150)는 브라켓 본체(151)와, 물 주입 실린더 모듈(153)과, 가압 모듈(155)과, 승하강 모듈(157) 및 슬라이딩 모듈(159)로 이루어진다.In addition, the water dispenser 150 includes a bracket body 151 , a water injection cylinder module 153 , a pressure module 155 , an elevation module 157 , and a sliding module 159 .
브라켓 본체(151)는 메인 브라켓(F1)의 후방 상단에서 얼음 몰드(M)의 이동 경로 상부에 설치된다. 이때, 브라켓 본체(151)는 메인 프레임(F1)에서 가이드 레일(G)을 따라 전후로 슬라이딩될 수 있도록 설치되어 위치를 조정한다.The bracket body 151 is installed above the movement path of the ice mold M at the rear upper end of the main bracket F1. At this time, the bracket body 151 is installed so as to slide back and forth along the guide rail G in the main frame F1 to adjust the position.
물 주입 실린더 모듈(153)은 얼음 몰드(M)의 홈 개수와 동일한 개수의 물 주입 실린더(153a)가 배열되어 브라켓 본체(151)의 상부에 설치되고, 상부에서 가해지는 압력에 의해 내부에 충전된 물을 주입 튜브(T)를 통해 얼음 몰드(M) 내부로 물을 주입한다.In the water injection cylinder module 153, the same number of water injection cylinders 153a as the number of grooves of the ice mold M are arranged and installed on the upper part of the bracket body 151, and the water injection cylinder module 153 is filled inside by the pressure applied from the top. The water is injected into the ice mold (M) through the injection tube (T).
가압 모듈(155)은 물 주입 실린더 모듈(153)의 상부에서 수직 로드(156)에 의해 상하로 이동되도록 설치되어 물 주입 실린더 모듈(153)을 가압시켜 물 주입 실린더 모듈(153)의 물 주입 실린더(153a)가 가압되면서 내부의 물을 배출하도록 한다. 가압 모듈(155)은 상부에 물 주입 실린더 모듈(153)의 각각의 물 주입 실린더(153a)로 물을 충전하도록 물 저장 탱크(ST1)로부터 물을 공급받아 저장하는 보조 물 저장 탱크(ST3)가 구비된다.The pressurization module 155 is installed to move up and down by the vertical rod 156 at the upper portion of the water injection cylinder module 153 to pressurize the water injection cylinder module 153 to thereby pressurize the water injection cylinder module 153 of the water injection cylinder module 153 . (153a) is pressurized to discharge the water inside. The pressurization module 155 has an auxiliary water storage tank (ST3) that receives and stores water from the water storage tank (ST1) to fill water into each water injection cylinder (153a) of the water injection cylinder module 153 on the upper part. provided
승하강 모듈(157)은 공압, 유압 실린더로서 가압 모듈(155)의 상면에서 수직으로 연결 설치되어 가압 모듈(155)을 승하강시킨다.The elevating module 157 is a pneumatic, hydraulic cylinder that is vertically connected and installed on the upper surface of the pressurizing module 155 to elevate the pressurizing module 155 .
슬라이딩 모듈(159)은 브라켓 본체(151) 내부에서 얼음 몰드(M)의 상부에 수평하게 설치되고, 물 주입 실린더(153a)에 연결된 각각의 주입 튜브(T)가 고정되어 얼음 몰드(M)의 이동에 따라 전후로 슬라이딩되며 얼음 몰드(M) 내부로 물을 주입한다. 이때, 슬라이딩 모듈(159)은 전동 볼 스크류(B)를 따라 전후로 슬라이딩된다.The sliding module 159 is installed horizontally on the top of the ice mold M inside the bracket body 151 , and each injection tube T connected to the water injection cylinder 153a is fixed to the ice mold M. It slides back and forth as it moves, and water is injected into the ice mold (M). At this time, the sliding module 159 slides back and forth along the electric ball screw (B).
또, 순환 펌프(P)는 서브 프레임(F2)에 설치되고, 배출 라인(L1)을 통해 에탄올 수조(120)의 승온된 에탄올을 공급받아 열교환기(160)로 배출해서 열교환기(160)에서 냉각된 에탄올을 공급 라인(L2)을 통해 에탄올 수조(120)로 순환시킨다.In addition, the circulation pump (P) is installed in the sub-frame (F2), receives the ethanol heated in the ethanol tank 120 through the discharge line (L1) is supplied to the heat exchanger 160 and discharged to the heat exchanger (160) The cooled ethanol is circulated to the ethanol bath 120 through the supply line L2.
또, 열교환기(160)는 서브 프레임(F2)에 설치되고, 순환 펌프(P)를 통해 순환되는 에탄올을 냉각시켜 에탄올 수조(120)로 공급한다.In addition, the heat exchanger 160 is installed in the sub-frame F2, cools the ethanol circulated through the circulation pump P, and supplies it to the ethanol tank 120.
계속해서, 에어 나이프(170)는 메인 프레임(F1)에 설치되어 에탄올 수조(120)에서 배출되는 얼음 몰드(M)로 컴프레셔(미도시)에서 공급되는 고압 에어를 분사하여 에탄올을 제거한다. 이때, 에어 나이프(170)는 얼음 몰드(M)에서 고압 에어에 의해 떨어지는 에탄올이 에탄올 수조(120)로 낙하될 수 있게 에탄올 수조(120)의 배출측에서 경사를 가지도록 설치되는 것이 바람직하다.Subsequently, the air knife 170 is installed on the main frame F1 and sprays high-pressure air supplied from a compressor (not shown) to the ice mold M discharged from the ethanol tank 120 to remove ethanol. In this case, the air knife 170 is preferably installed so as to have an inclination on the discharge side of the ethanol water tank 120 so that ethanol falling by the high-pressure air from the ice mold M can fall into the ethanol water tank 120 .
그리고, 물 저장 탱크(ST1)는 서브 프레임(F2)의 상단에 설치되어 물 정량 토출기(150)로 물을 공급한다.In addition, the water storage tank ST1 is installed on the upper end of the sub-frame F2 to supply water to the fixed water dispenser 150 .
이어서, 에탄올 저장 탱크(ST2)는 서브 프레임(F2)의 인근에 별도로 설치되어 순환 펌프(P)를 통해 에탄올 수조(120)로 에탄올을 보충한다.Subsequently, the ethanol storage tank ST2 is separately installed in the vicinity of the sub-frame F2 to supplement the ethanol into the ethanol tank 120 through the circulation pump P.
그러나, 이러한 종래의 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템은 1개의 에탄올 수조에 1개의 열교환기, 즉 냉동기로 에탄올을 냉각시켜 공급하기 때문에 에탄올 수조 내에서 에탄올의 온도가 일정하지 못하고, 물 저장 탱크에 저장된 상온의 물을 물 정량 토출기로 공급하기 때문에 얼음 제조시 에탄올의 온도가 높아져 얼음 제조에 많은 시간이 소요되고, 균질한 재질의 얼음을 제조하기가 어려운 문제점이 있다.However, in this conventional small-scale industrial ice rapid manufacturing system of the continuous circulation method, since ethanol is cooled and supplied to one ethanol tank by one heat exchanger, that is, a freezer, the temperature of ethanol in the ethanol tank is not constant, and water is stored Since the water at room temperature stored in the tank is supplied to the water dispenser, the temperature of ethanol increases during ice production, so it takes a lot of time to make ice, and it is difficult to manufacture ice of a homogeneous material.
또한, 종래의 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템은 열풍기로 얼음 몰드를 가열하여 얼음을 낙하시킨 다음 온도가 상승된 얼음 몰드가 에탄올 수조로 투입되기 때문에 얼음 몰드에 결로가 발생하고, 이로 인해 에탄올이 희석되어 냉동 성능이 저하되는 다른 문제점이 있다.In addition, in the conventional continuous circulation type industrial small rapid ice production system, the ice mold is heated with a hot air blower to drop the ice, and then the ice mold whose temperature has risen is put into the ethanol tank, which causes dew condensation on the ice mold. There is another problem in that the ethanol is diluted and the refrigeration performance is deteriorated.
또, 종래의 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템은 에탄올 수조의 상면이 외기에 노출되어 있기 때문에 외기로 열이 배출되어 냉동 효율이 저하되고, 이로 인해 많은 에너지가 소비되는 또 다른 문제점이 있다.In addition, in the conventional continuous circulation type industrial small rapid ice production system, since the upper surface of the ethanol tank is exposed to the outside air, heat is discharged to the outside air, thereby lowering the refrigeration efficiency, and thus there is another problem in that a lot of energy is consumed. .
또, 종래의 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템은 상수도나 지하수가 직접 물 저장 탱크에 저장되는 데, 수질이 나쁜 지역에서는 식용 얼음을 제조할 수 없는 또 다른 문제점이 있다.In addition, in the conventional continuous circulation type industrial small rapid ice production system, tap water or groundwater is directly stored in a water storage tank, but there is another problem in that edible ice cannot be produced in an area with poor water quality.
<선행기술문헌><Prior art literature>
<특허문헌><Patent Literature>
(특허문헌 001) 대한민국 공개특허공보 제10-2003-0039535호(Patent Document 001) Republic of Korea Patent Publication No. 10-2003-0039535
(특허문헌 002) 대한민국 등록특허공보 제10-2116881호(Patent Document 002) Republic of Korea Patent Publication No. 10-2116881
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 수조를 다단으로 구획하고, 복수의 열교환기와 이원 냉동기를 설치하여 얼음 제조를 위한 물을 냉각시켜 공급하고, 얼음 제조를 위한 냉매를 1, 2차로 냉각시켜 구획된 수조에 각각 공급하여 냉매를 일정 온도로 유지시켜 균질한 얼음을 제조하도록 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템을 제공하는데 그 목적이 있다.In order to solve the above problems, the present invention divides the water tank into multiple stages, installs a plurality of heat exchangers and a dual refrigerator to cool and supply water for ice production, and supply refrigerant for ice production in primary and secondary stages. An object of the present invention is to provide a small industrial ice rapid manufacturing system of a continuous circulation method that cools and supplies each of the divided water tanks to maintain the refrigerant at a constant temperature to produce homogeneous ice.
또한, 본 발명은 열풍기로 얼음 몰드를 가열하여 얼음을 낙하시킨 다음 온도가 상승된 얼음 몰드를 냉각시켜 얼음 몰드에서 결로가 발생되는 것을 방지하여 에탄올이 희석되어 냉동 성능이 저하되는 것을 방지하도록 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템을 제공하는데 다른 목적이 있다.In addition, the present invention provides a continuous method to prevent dew condensation from occurring in the ice mold by heating the ice mold with a hot air blower to drop ice and then cooling the ice mold whose temperature has risen to prevent the ethanol from being diluted and the refrigeration performance from being deteriorated. Another object of the present invention is to provide a small-scale industrial ice rapid manufacturing system of a circulation type.
또, 본 발명은 냉매 수조의 상면에 단열 커버를 설치하여 외기에 노출되는 것을 방지하여 냉동 효율을 상대적으로 높여 에너지 효율을 높일 수 있도록 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템을 제공하는데 또 다른 목적이 있다.Another aspect of the present invention is to provide an industrial small ice rapid manufacturing system of a continuous circulation method that can increase energy efficiency by relatively increasing refrigeration efficiency by preventing exposure to outside air by installing an insulating cover on the upper surface of the refrigerant tank. There is a purpose.
또, 본 발명은 상수도나 지하수를 정수기로 정수한 다음 물 저장 탱크에 저장시킴으로써 수질이 나쁜 지역에서는 식용 얼음을 제조할 수 있도록 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템을 제공하는데 또 다른 목적이 있다.Another object of the present invention is to provide a small industrial ice rapid manufacturing system of a continuous circulation method that purifies tap water or groundwater with a water purifier and then stores it in a water storage tank to produce edible ice in an area with poor water quality. there is.
상기와 같은 목적을 달성하기 위한 본 발명의 특징은,Features of the present invention for achieving the above object,
장방형으로 형성되는 메인 프레임과; 상기 메인 프레임의 일측면에 설치되는 서브 프레임과; 상기 메인 프레임의 전후단에 설치되어 구동 모터에 의해 회전되는 이송 스프로켓과; 상기 이송 스프로켓에 의해 상기 메인 프레임을 따라 연속 회전되고, 복수의 얼음 몰드가 설치되는 이송 트레이 체인과; 상기 메인 프레임의 상단에 설치되고, 내부에 냉매인 제 1냉매가 저장되어 상기 이송 트레이 체인을 따라 이동되는 상기 얼음 몰드가 침지되며, 다단으로 구획되어 복수의 냉매 저장 공간부가 구비되는 냉매 수조와; 상기 메인 프레임의 하단에 설치되어 상기 냉매 수조에 침지되어 냉동이 완료된 상기 얼음 몰드에 열풍을 가하는 열풍기와; 상기 메인 프레임의 하단에 설치되어 상기 열풍기의 열풍에 의해 상기 얼음 몰드에서 낙하되는 소형 얼음을 배출시키는 배출 슈트와; 상기 메인 프레임의 상단 일측에 설치되어 상기 얼음 몰드에 물을 채우는 물 정량 토출기와; 상기 서브 프레임에 설치되고, 상기 냉매 수조의 각 냉매 저장 공간부에 저장된 제 1냉매를 순환시키는 복수의 냉매 순환 펌프와; 상기 서브 프레임에 설치되고, 각각의 상기 에탄올 순환 펌프를 통해 순환되는 제 1냉매를 각각 냉각시켜 상기 각각의 냉매 저장 공간부로 공급하는 복수의 냉각 열교환기와; 외부에 설치되어 제 1냉매가 상기 냉각 열교환기에서 제 2냉매와 열교환되어 냉각되도록 각각의 상기 냉각 열교환기로 제 2냉매를 순환시키는 복수의 이원 냉동기; 및 상기 메인 프레임에 설치되고, 복수의 상기 이원 냉동기중 어느 하나의 이원 냉동기와 연결되어 제 3냉매를 순환시키면서 냉각시킨 후 공기와 열교환시켜 공기를 냉각시키고, 냉각된 공기를 상기 물 정량 토출기로 공급되는 상기 이송 트레이 체인과의 얼음 몰드로 배출하여 상기 얼음 몰드를 냉각시키는 공랭식 냉동기로 이루어지는 것을 특징으로 한다.a main frame formed in a rectangular shape; a sub frame installed on one side of the main frame; a transfer sprocket installed at the front and rear ends of the main frame and rotated by a driving motor; a transfer tray chain continuously rotated along the main frame by the transfer sprocket and provided with a plurality of ice molds; a refrigerant tank installed at the upper end of the main frame, the first refrigerant as a refrigerant is stored therein, the ice mold moving along the transfer tray chain is immersed, and the refrigerant tank is divided into multiple stages and provided with a plurality of refrigerant storage spaces; a hot air blower installed at the lower end of the main frame to apply hot air to the ice mold immersed in the refrigerant tank to complete freezing; a discharge chute installed at the lower end of the main frame to discharge small ice falling from the ice mold by the hot air of the hot air blower; a water dispenser installed at an upper end of the main frame to fill the ice mold with water; a plurality of refrigerant circulation pumps installed in the subframe and circulating the first refrigerant stored in each refrigerant storage space of the refrigerant tank; a plurality of cooling heat exchangers installed in the sub-frame and cooling the first refrigerant circulated through each of the ethanol circulation pumps and supplying them to the respective refrigerant storage spaces; a plurality of dual refrigerators installed outside to circulate a second refrigerant to each of the cooling heat exchangers so that the first refrigerant exchanges heat with the second refrigerant in the cooling heat exchanger to be cooled; and installed on the main frame, connected to any one of the plurality of dual refrigerators, cooled while circulating the third refrigerant, and then heat exchanged with air to cool the air, and supply the cooled air to the water dispenser It is characterized in that it consists of an air-cooled freezer that cools the ice mold by discharging it to the ice mold with the transfer tray chain.
여기에서, 상기 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템은 상기 냉매 수조에서 배출되는 상기 얼음 몰드로 에어를 분사하여 제 1냉매를 제거하도록 상기 메인 프레임에 설치되는 에어 나이프와; 상기 서브 프레임에 설치되어 상기 물 정량 토출기로 물을 공급하는 물 저장 탱크와; 상기 서브 프레임에 설치되어 상기 물 저장 탱크로 공급되는 물을 정수시키는 정수기와; 상기 서브 프레임에 설치되어 상기 물 저장 탱크의 물을 순환시키는 물 순환 펌프와; 상기 서브 프레임에 설치되어 상기 물 순환 펌프를 통해 순환되는 물을 복수의 상기 이원 냉동기중 어느 하나의 이원 냉동기와 연결되어 제 3냉매를 순환시키면서 냉각시킨 후 물과 열교환시켜서 물을 5℃로 냉각시키고, 냉각된 물을 상기 물 저장 탱크에 저장하는 물 냉각용 열교환기; 및 상기 서브 프레임의 인근에 설치되어 각각의 상기 순환 펌프를 통해 상기 냉매 수조의 각 냉매 저장 공간부에 제 1냉매를 보충하는 냉매 저장 탱크를 더 포함한다.Here, the continuous circulation type industrial small rapid ice production system includes: an air knife installed on the main frame to remove the first refrigerant by spraying air into the ice mold discharged from the refrigerant tank; a water storage tank installed on the sub-frame and supplying water to the water dispenser; a water purifier installed on the sub-frame to purify water supplied to the water storage tank; a water circulation pump installed in the sub-frame to circulate water in the water storage tank; Installed in the sub-frame, water circulated through the water circulation pump is connected to any one of the plurality of dual refrigerators to cool the third refrigerant while circulating, and then heat exchange with water to cool the water to 5° C. , a water cooling heat exchanger for storing the cooled water in the water storage tank; and a refrigerant storage tank installed in the vicinity of the sub-frame to replenish the first refrigerant in each refrigerant storage space of the refrigerant water tank through each of the circulation pumps.
여기에서 또한, 상기 냉매 수조는,Here also, the refrigerant tank,
상기 제 1냉매의 열손실을 최소화하기 위해 측면 및 저면이 우레탄 경질폼으로 박스 형태로 제작되고, 상면에 단열 덮개가 설치된다.In order to minimize the heat loss of the first refrigerant, side and bottom surfaces are manufactured in a box shape with urethane rigid foam, and an insulating cover is installed on the upper surface.
여기에서 또, 각각의 상기 이원 냉동기는 상대적으로 낮은 압력과 높은 온도로 제 2냉매를 냉각시키는 저온단과; 상대적으로 높은 압력과 낮은 온도로 제 2냉매를 냉각시키는 고온단으로 구성된다.Here, each of the dual refrigerators includes a low-temperature stage for cooling the second refrigerant to a relatively low pressure and high temperature; It consists of a high-temperature stage that cools the second refrigerant at a relatively high pressure and low temperature.
여기에서 또, 복수의 상기 냉각 열교환기는 상기 이원 냉동기의 저온단과 연결되어 상기 냉매 순환 펌프를 통해 공급되는 제 1냉매를 제 2냉매와 열교환시켜 -35℃로 1차 냉각시키는 1차 냉각 열교환기와; 상기 이원 냉동기의 고온단 및 1차 냉각 열교환기와 연결되어 상기 1차 냉각 열교환기를 통해 1차 냉각된 제 1냉매를 제 2냉매와 열교환시켜 -60℃로 2차 냉각시키는 2차 열교환기로 구성된다.Here, the plurality of cooling heat exchangers are connected to the low-temperature end of the dual refrigerator and heat-exchange the first refrigerant supplied through the refrigerant circulation pump with the second refrigerant, and a primary cooling heat exchanger for primary cooling to -35°C; It is connected to the high-temperature end of the dual refrigerator and the primary cooling heat exchanger, and is configured as a secondary heat exchanger for heat-exchanging the first refrigerant cooled primarily through the primary cooling heat exchanger with the second refrigerant for secondary cooling to -60°C.
여기에서 또, 상기 공랭식 냉동기는 냉각 공기과 외부로 미유출되도록 상기 단열 보호 벽체 내에서 공간을 구획하고, 구획된 공간 내에 설치된다.Here, the air-cooled refrigerator partitions a space within the heat insulation protective wall so that the cooling air and the outside do not flow out, and is installed in the partitioned space.
여기에서 또, 상기 제 1냉매는 염수 또는 에탄계이고, 상기 제 2냉매는 메탄계 냉매 또는 에탄계와 메탄계가 혼합된 비공비 혼합 냉매이며, 상기 제 3냉매는 염수, 메탄계, 에탄계, 프로판, 비유기 화합물, 공비 혼합 냉매, 비공비 혼합 냉매중 선택된 어느 하나이다.Here, the first refrigerant is brine or ethane, the second refrigerant is a methane-based refrigerant or a non-azeotropic mixed refrigerant in which ethane and methane are mixed, and the third refrigerant is brine, methane, ethane, Any one selected from propane, inorganic compounds, azeotropic refrigerants, and non-azeotropic refrigerants.
상기와 같이 구성되는 본 발명인 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템에 따르면, 수조를 다단으로 구획하고, 복수의 열교환기와 이원 냉동기를 설치하여 얼음 제조를 위한 물을 냉각시켜 공급하고, 얼음 제조를 위한 냉매를 1, 2차로 냉각시켜 구획된 수조에 각각 공급하여 냉매를 일정 온도로 유지시켜 균질한 얼음을 제조하고, 빠른 시간안에 소형 얼음을 제조할 수 있다.According to the present invention, which is a continuous circulation type rapid industrial ice production system configured as described above, the water tank is divided into multiple stages, a plurality of heat exchangers and a dual refrigerator are installed to cool and supply water for ice production, and to produce ice. By cooling the refrigerant for the first and second phases and supplying it to the divided water tanks, the refrigerant is maintained at a constant temperature to produce homogeneous ice, and small ice can be manufactured in a short time.
또한, 본 발명에 따르면 열풍기로 얼음 몰드를 가열하여 얼음을 낙하시킨 다음 온도가 상승된 얼음 몰드를 냉각시켜 얼음 몰드에서 결로가 발생되는 것을 방지하여 에탄올이 희석되어 냉동 성능이 저하되는 것을 방지할 수 있다.In addition, according to the present invention, it is possible to prevent dew condensation in the ice mold by heating the ice mold with a hot air blower to drop the ice and then cooling the ice mold whose temperature has risen, thereby preventing the ethanol from being diluted and reducing the freezing performance. there is.
또, 본 발명에 따르면 냉매 수조의 상면에 단열 커버를 설치하여 외기에 노출되는 것을 방지하여 냉동 효율을 상대적으로 높여 에너지 효율을 높일 수 있다.In addition, according to the present invention, it is possible to increase the energy efficiency by installing a heat insulating cover on the upper surface of the refrigerant tank to prevent exposure to the outside air, thereby increasing the refrigeration efficiency relatively.
또, 본 발명에 따르면 상수도나 지하수를 정수기로 정수한 다음 물 저장 탱크에 저장시킴으로써 수질이 나쁜 지역에서는 식용 얼음을 제조할 수 있다.In addition, according to the present invention, edible ice can be manufactured in an area with poor water quality by purifying tap water or groundwater with a water purifier and then storing it in a water storage tank.
도 1은 종래의 식품류의 급속동결을 위한 다층구조의 터널식 동결방법을 설명하기 위한 도면이다.1 is a view for explaining a conventional tunnel-type freezing method of a multi-layer structure for rapid freezing of foods.
도 2 내지 도 8은 종래의 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템의 구성을 나타낸 도면이다.2 to 8 are diagrams illustrating the configuration of a conventional continuous circulation type industrial small-sized rapid ice production system.
도 9는 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템의 구성을 나타낸 사시도이다.9 is a perspective view showing the configuration of a small industrial ice rapid manufacturing system of a continuous circulation method according to an embodiment of the present invention.
도 10은 도 9의 정면도이다.FIG. 10 is a front view of FIG. 9 ;
도 11은 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템중 냉매 수조의 구성을 나타낸 사시도이다.11 is a perspective view illustrating a configuration of a refrigerant tank in a continuous circulation type industrial small rapid ice production system according to an embodiment of the present invention.
도 12는 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템중 냉각 계통의 구성을 나타낸 사시도이다.12 is a perspective view showing the configuration of a cooling system in a continuous circulation type industrial small ice rapid manufacturing system according to an embodiment of the present invention.
도 13은 도 12의 좌측면도이다.13 is a left side view of FIG. 12 .
도 14는 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템중 공랭식 냉동기의 구성을 나타낸 부분 정면도이다.14 is a partial front view illustrating the configuration of an air-cooled refrigerator in a continuous circulation type industrial small ice rapid manufacturing system according to an embodiment of the present invention.
도 15는 도 14의 우측면도이다.FIG. 15 is a right side view of FIG. 14 ;
이하, 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템의 구성을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, the configuration of an industrial small ice rapid manufacturing system of a continuous circulation method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted. And, the terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators. Therefore, the definition should be made based on the content throughout this specification.
도 9는 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템의 구성을 나타낸 사시도이고, 도 10은 도 9의 정면도이며, 도 11은 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템중 냉매 수조의 구성을 나타낸 사시도이고, 도 12는 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템중 냉각 계통의 구성을 나타낸 사시도이며, 도 13은 도 12의 좌측면도이고, 도 14는 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템중 공랭식 냉동기의 구성을 나타낸 부분 정면도이며, 도 15는 도 14의 우측면도이다.9 is a perspective view showing the configuration of an industrial small rapid ice production system of a continuous circulation method according to an embodiment of the present invention, FIG. 10 is a front view of FIG. 9 , and FIG. 11 is a continuous circulation according to an embodiment of the present invention. 12 is a perspective view showing the configuration of a refrigerant tank in a small-scale industrial ice rapid manufacturing system according to the present invention, and FIG. 13 is a left side view of FIG. 12, FIG. 14 is a partial front view showing the configuration of an air-cooled refrigerator in a continuous circulation type industrial small ice rapid manufacturing system according to an embodiment of the present invention, and FIG. 15 is a right side view of FIG. .
도 9 내지 도 15를 참조하면, 본 발명의 일실시예에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템(100′)은 메인 프레임(F1)과, 서브 프레임(F2)과, 이송 스프로켓(SP)과, 이송 트레이 체인(110)과, 냉매 수조(120′)와, 열풍기(130)와, 배출 슈트(140)와, 물 정량 토출기(150)와, 냉매 순환 펌프(P1)와, 냉각 열교환기(160′)와, 이원 냉동기(A1)와, 공랭식 냉동기(A2)와, 에어 나이프(170)와, 물 저장 탱크(ST1)와, 정수기(B)와, 물 순환 펌프(P2)와, 물 냉각용 열교환기(180) 및 냉매 저장 탱크(ST2)로 구성된다.9 to 15 , a continuous circulation type industrial small rapid ice production system 100 ′ according to an embodiment of the present invention includes a main frame F1 , a sub frame F2 , and a transfer sprocket SP ), the transfer tray chain 110 , the refrigerant water tank 120 ′, the hot air fan 130 , the discharge chute 140 , the water fixed discharge unit 150 , the refrigerant circulation pump P1 and the cooling A heat exchanger 160', a binary refrigerator A1, an air-cooled refrigerator A2, an air knife 170, a water storage tank ST1, a water purifier B, and a water circulation pump P2 , a water cooling heat exchanger 180 and a refrigerant storage tank ST2.
먼저, 메인 프레임(F1), 서브 프레임(F2), 이송 스프로켓(SP), 이송 트레이 체인(110), 열풍기(130), 배출 슈트(140), 에어 나이프(170)와, 물 저장 탱크(ST1) 및 냉매 저장 탱크(ST2)는 도 2 내지 도 8에 개시된 종래 기술인 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템(100)과 동일 구성으로 그 중복 설명은 생략한다.First, the main frame (F1), the sub frame (F2), the transfer sprocket (SP), the transfer tray chain 110, the hot air fan 130, the discharge chute 140, the air knife 170 and the water storage tank (ST1) ) and the refrigerant storage tank (ST2) have the same configuration as the conventional continuous circulation type industrial small ice rapid manufacturing system 100 shown in FIGS. 2 to 8 , and a duplicate description thereof will be omitted.
그리고, 냉매 수조(120′)는 도 11에 도시된 바와 같이 메인 프레임(F1)의 상단에 설치되고, 길이 방향으로 다단으로 구획되어서 복수의 냉매 저장 공간부(S)가 구비되어 각 냉매 저장 공간부(S)에 제 1냉매가 저장되어 이송 트레이 체인(110)을 따라 이동되는 얼음 몰드(M)가 침지된다. 이때, 제 1냉매는 얼음이나 식품과 접촉시 인체에 무해하도록 염수, 에탄올계가 적용되는 것이 바람직하고, 선택에 따라 냉매 저장 공간부(S)에 서로 다른 냉매를 공급하여 냉동 효율을 증대시킬 수도 있다.In addition, the refrigerant tank 120 ′ is installed at the upper end of the main frame F1 as shown in FIG. 11 , and is divided into multiple stages in the longitudinal direction so that a plurality of refrigerant storage spaces S are provided, so that each refrigerant storage space The first refrigerant is stored in the portion S and the ice mold M moved along the transfer tray chain 110 is immersed. In this case, the first refrigerant is preferably brine or ethanol-based so that it is harmless to the human body when it comes into contact with ice or food. .
또한, 냉매 수조(120′)는 -60℃의 제 1냉매의 열손실을 최소화하기 위해 측면 및 저면이 우레탄 경질폼으로 박스 형태로 제작되고, 상면에 단열 덮개(C)가 설치된다.In addition, the refrigerant tank 120' is manufactured in the form of a box with the side and bottom surfaces of the urethane rigid foam in order to minimize the heat loss of the first refrigerant at -60°C, and an insulating cover (C) is installed on the upper surface.
또, 냉매 순환 펌프(P1)는 도 12 및 도 13에 도시된 바와 같이 서브 프레임(F2)에 설치되고, 냉매 수조(120′)의 각 냉매 저장 공간부(S)와 냉각 열교환기(160′) 사이에 설치되어 냉매 수조(120′)의 각 냉매 저장 공간부(S)에 저장된 제 1냉매를 냉각 열교환기(160')로 각각 배출해서 냉각 열교환기(160′)의 제 2냉매와 열교환시켜 냉각된 제 1냉매를 냉매 수조(120′)의 각 냉매 저장 공간부(S)로 순환시킨다.In addition, the refrigerant circulation pump (P1) is installed in the sub-frame (F2) as shown in Figs. 12 and 13, each refrigerant storage space (S) of the refrigerant water tank (120') and the cooling heat exchanger (160') ) installed between the first refrigerants and stored in each refrigerant storage space (S) of the refrigerant tank 120' to the cooling heat exchanger 160', respectively, to exchange heat with the second refrigerant of the cooling heat exchanger 160'. The cooled first refrigerant is circulated to each refrigerant storage space S of the refrigerant tank 120'.
또, 냉각 열교환기(160′)는 도 12 및 도 13에 도시된 바와 같이 서브 프레임(F2)에 설치되고, 순환 펌프(P)를 통해 순환되는 제 1냉매와 이원 냉동기(A1)의 제 2냉매를 열교환시켜서 제 1냉매를 -60℃로 냉각시켜 냉매 수조(120′)로 공급한다.In addition, the cooling heat exchanger 160 ′ is installed on the sub frame F2 as shown in FIGS. 12 and 13 , and the first refrigerant circulated through the circulation pump P and the second of the dual refrigerator A1 . The first refrigerant is cooled to -60°C by exchanging the refrigerant and supplied to the refrigerant tank 120'.
이때, 각각의 냉각 열교환기(160′)는 하기에서 설명할 이원 냉동기(A1)의 저온단(L)과 연결되어 냉매 순환 펌프(P1)를 통해 공급되는 제 1냉매를 제 2냉매와 열교환시켜 -35℃로 1차 냉각시키는 1차 냉각 열교환기(161)와, 이원 냉동기(A1)의 고온단(H) 및 1차 냉각 열교환기와 연결되어 1차 냉각 열교환기(161)를 통해 1차 냉각된 제 1냉매를 제 2냉매와 열교환시켜 -60℃로 2차 냉각시키는 2차 열교환기(163)로 구성된다. 즉, 이원 냉동기(A1)가 2개가 구비되면 1차 냉각 열교환기(161)와 2차 냉각 열교환기(163)가 한 쌍을 이루며 두 쌍이 설치되고, 이원 냉동기(A1)가 3개가 구비되면 1차 냉각 열교환기(161)와 2차 냉각 열교환기(163)가 한 쌍을 이루며 세 쌍이 설치된다.At this time, each cooling heat exchanger 160 ′ is connected to the low-temperature stage L of the dual refrigerator A1 to be described below and heat-exchanges the first refrigerant supplied through the refrigerant circulation pump P1 with the second refrigerant. The primary cooling heat exchanger 161 for primary cooling to -35° C. is connected to the high temperature end (H) and the primary cooling heat exchanger of the dual refrigerator (A1) for primary cooling through the primary cooling heat exchanger 161 It is composed of a secondary heat exchanger 163 for secondary cooling to -60 ℃ by heat-exchanging the first refrigerant with the second refrigerant. That is, when two binary refrigerators A1 are provided, the primary cooling heat exchanger 161 and the secondary cooling heat exchanger 163 form a pair and two pairs are installed, and when three binary refrigerators A1 are provided, 1 The primary cooling heat exchanger 161 and the secondary cooling heat exchanger 163 form a pair, and three pairs are installed.
계속해서, 이원 냉동기(A1)는 도 12 및 도 13에 도시된 바와 같이 공장 외부에 설치되고, 냉매 수조(120′)의 냉매 저장 공간부(S) 개수와 동일한 개수가 구비되어 제 1냉매가 냉각 열교환기(160′)에서 제 2냉매와 열교환되어 냉각되도록 각각의 냉각 열교환기(160′)로 제 2냉매를 순환시킨다.Subsequently, the binary refrigerator A1 is installed outside the factory as shown in FIGS. 12 and 13 , and the same number as the number of refrigerant storage spaces S of the refrigerant tank 120 ′ is provided so that the first refrigerant is The second refrigerant is circulated to each of the cooling heat exchangers 160' to be cooled by heat exchange with the second refrigerant in the cooling heat exchanger 160'.
그리고, 각각의 이원 냉동기(A1)는 상대적으로 낮은 압력과 높은 온도로 제 2냉매를 냉각시키는 저온단(L)과, 상대적으로 높은 압력과 낮은 온도로 제 2냉매를 냉각시키는 고온단(H)으로 구성된다. 이때, 제 2냉매는 메탄계 냉매 또는 에탄계와 메탄계가 혼합된 비공비 혼합 냉매가 적용되는 데, 저온단(L)에는 R23, 고온단(H)에는 R404가 적용되는 것이 바람직하다.And, each of the dual refrigerators (A1) has a low temperature stage (L) for cooling the second refrigerant to a relatively low pressure and high temperature, and a high temperature stage (H) for cooling the second refrigerant to a relatively high pressure and low temperature is composed of At this time, as the second refrigerant, a methane-based refrigerant or a non-azeotropic mixed refrigerant of ethane and methane is applied, and R23 is preferably applied to the low-temperature stage (L) and R404 is applied to the high-temperature stage (H).
이어서, 공랭식 냉동기(A2)는 도 14 및 도 15에 도시된 바와 같이 메인 프레임(F1)에 설치되고, 복수의 이원 냉동기(A1)중 어느 하나의 이원 냉동기와 연결되어 제 3냉매를 순환시키면서 냉각시킨 후 공기와 열교환시켜 공기를 냉각시키고, 냉각된 공기를 물 정량 토출기(150)로 공급되는 이송 트레이 체인(110)과의 얼음 몰드(M)로 배출하여 얼음 몰드(M)를 냉각시킨다. 이때, 공랭식 냉동기(A2)는 냉각 공기과 외부로 미유출되도록 단열 보호 벽체(W)에 의해 공간이 형성되고, 공간 내에 설치된다.Subsequently, the air-cooled refrigerator A2 is installed on the main frame F1 as shown in FIGS. 14 and 15 , is connected to any one of the plurality of dual refrigerators A1, and is cooled while circulating the third refrigerant. Then, the air is cooled by heat exchange with the air, and the cooled air is discharged to the ice mold M with the transfer tray chain 110 supplied to the fixed water dispenser 150 to cool the ice mold M. At this time, in the air-cooled refrigerator (A2), a space is formed by the insulating protective wall (W) so that the cooling air and the outside do not flow out, and is installed in the space.
그리고, 정수기(B)는 서브 프레임(F2)에 설치되어 물 저장 탱크(ST1)로 공급되는 물을 정수시킨다.In addition, the water purifier B is installed in the sub-frame F2 to purify the water supplied to the water storage tank ST1.
또한, 물 순환 펌프(P2)는 서브 프레임(F2)에 설치되어 물 저장 탱크(ST1)의 물을 순환시킨다.In addition, the water circulation pump (P2) is installed in the sub-frame (F2) circulates the water in the water storage tank (ST1).
또, 물 냉각용 열교환기(180)는 서브 프레임(F2)에 설치되어 물 순환 펌프(P2)를 통해 순환되는 물을 복수의 이원 냉동기(A1)중 어느 하나의 이원 냉동기와 연결되어 제 3냉매를 순환시키면서 냉각시킨 후 물과 열교환시켜서 물을 5℃로 냉각시키고, 냉각된 물을 물 저장 탱크(ST1)에 저장한다. 이때, 제 3냉매는 염수, 메탄계, 에탄계, 프로판, 비유기 화합물, 공비 혼합 냉매, 비공비 혼합 냉매중 선택된 어느 하나가 적용되는 것이 바람직하다.In addition, the water cooling heat exchanger 180 is installed in the sub-frame F2 and connected to any one of the plurality of dual refrigerators A1 for water circulated through the water circulation pump P2, and the third refrigerant After cooling while circulating, heat exchange with water to cool the water to 5° C., and store the cooled water in the water storage tank ST1. In this case, as the third refrigerant, any one selected from brine, methane-based, ethane-based, propane, inorganic compound, azeotropic refrigerant, and non-azeotropic refrigerant is preferably applied.
이하, 본 발명에 따른 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템의 동작을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, the operation of the industrial small rapid ice production system of the continuous circulation method according to the present invention will be described in detail as follows.
먼저, 이송 스프로켓(SP)이 회전되어 이송 트레이 체인(110)을 이송시키면 얼음 몰드(M)가 함께 회전되고, 이와 동시에 물 정량 토출기(150)에서 얼음 몰드(M)에 정량의 물을 채운다. 이때, 물 정량 토출기(150)는 얼음 몰드(M)의 이동에 따라 전후진되면서 물을 채운다. 하편, 물 정량 토출기(150)에서 토출되는 물은 물 저장 탱크(ST1)에 정수기(B)에 의해 정수되어 저장된 후 물 순환 펌프(P2)를 통해 물 냉각용 열교환기(180)로 순환되면서 5℃로 냉각되어 물 저장 탱크(ST1)에 저장된다.First, when the transfer sprocket SP is rotated to transfer the transfer tray chain 110 , the ice mold M rotates together, and at the same time, the water dispenser 150 fills the ice mold M with a fixed amount of water. . At this time, the water dispenser 150 is filled with water while moving forward and backward according to the movement of the ice mold M. On the other hand, water discharged from the fixed water dispenser 150 is purified and stored in the water storage tank ST1 by the water purifier B, and then is circulated to the water cooling heat exchanger 180 through the water circulation pump P2. It is cooled to 5° C. and stored in a water storage tank ST1.
물이 채워진 얼음 몰드(M)는 이송 트레이 체인(110)을 따라 전진되다가 메인 프레임(F1)의 후방에 위치한 가이드 롤러(R)에 의해 하강되어 냉매 수조(120)에 얼음 몰드(M)가 침지된다.The ice mold M filled with water is advanced along the transport tray chain 110 and is lowered by the guide roller R located at the rear of the main frame F1, and the ice mold M is immersed in the refrigerant tank 120. do.
계속해서, 얼음 몰드(M)는 냉매 수조(120)에서 침지된 상태로 분당 약 2M의 속도로 이동되면서 -60℃ 제 1냉매와 4~5분간 접촉되면서 물이 얼음 결정으로 변화된다.Subsequently, while the ice mold M is immersed in the coolant tank 120 and moved at a speed of about 2M per minute, the water is changed into ice crystals while in contact with the first refrigerant at -60°C for 4 to 5 minutes.
얼음 몰드(M)는 이송 트레이 체인(110)을 따라 냉매 수조(120)에서 전진되다가 메인 프레임(F1)의 전방에 위치한 가이드 롤러(R)에 의해 상승된 후 메인 프레임(F1)의 전방에 위치한 이송 스프로켓(SP)을 따라 반전된 상태(얼음이 자유 낙하가 가능하도록 수직으로 세워진 상태)로 메인 프레임(F1)의 하단을 통해 메인 프레임(F1)의 후방에 위치한 이송 스프로켓(SP) 측으로 이송된다.The ice mold M is advanced from the refrigerant tank 120 along the transport tray chain 110, is raised by the guide roller R located in front of the main frame F1, and then is located in front of the main frame F1. It is transferred to the transfer sprocket SP located at the rear of the main frame F1 through the lower end of the main frame F1 in an inverted state along the transfer sprocket SP (the state in which the ice stands vertically to allow free fall). .
이러한 상태에서, 얼음 몰드(M)가 열풍기(130)의 1, 2차 열풍 히터(131, 133)를 지나가면서 열풍에 의해 얼음 몰드(M)의 얼음 표면이 녹게 되면서 얼음 몰드(M)에서 배출 슈트(140)로 자유 낙하되고, 배출 슈트(140)에서 다시 낙하되는 소형 얼음이 컨베이어 벨트(미도시)를 따라 이동되어 포장 라인으로 이송된다.In this state, as the ice mold M passes the primary and secondary hot air heaters 131 and 133 of the hot air blower 130 , the ice surface of the ice mold M is melted by the hot air and discharged from the ice mold M The small ice that falls freely into the chute 140 and falls again from the discharge chute 140 is moved along a conveyor belt (not shown) and transferred to a packaging line.
그리고, 얼음이 제거된 얼음 몰드(M)는 공랭식 냉동기(A2)가 설치된 공간을 통과하면서 냉기에 의해 냉각된 다음 메인 프레임(F1)의 후방에 위치한 이송 스프로켓(SP)에서 다시 반전된 후, 물 정량 토출기(150)에서 얼음 몰드(M)에 정량의 물이 채워져 상기 과정을 반복하게 된다.Then, the ice mold M from which the ice has been removed is cooled by cold air while passing through the space where the air-cooled refrigerator A2 is installed, and then inverted again at the transfer sprocket SP located at the rear of the main frame F1, and then water In the fixed quantity dispenser 150 , the ice mold M is filled with a quantity of water and the above process is repeated.
이와 동시에 냉매 수조(120)의 각 냉매 저장 공간부(S)에 저장된 제 1냉매는 냉매 순환 펌프(P1)를 통해 1차 냉각 열교환기(161)에서 제 2냉매와 열교환시켜 -35℃로 1차 냉각시킨 다음 2차 열교환기(163)에서 다시 -35℃로 1차 냉각된 제 1냉매를 제 2냉매와 열교환시켜 -60℃로 2차 냉각된 후 냉매 저장 공간부(S)로 공급되어 일정 온도를 유지하게 된다.At the same time, the first refrigerant stored in each refrigerant storage space (S) of the refrigerant tank 120 is heat-exchanged with the second refrigerant in the primary cooling heat exchanger 161 through the refrigerant circulation pump (P1) to -35 ℃ 1 After secondary cooling, the first refrigerant cooled to -35°C again in the secondary heat exchanger 163 is heat-exchanged with the second refrigerant to be secondarily cooled to -60°C and then supplied to the refrigerant storage space (S). maintain a constant temperature.
한편, 각각의 이원 냉동기(A1)의 저압단(L)은 제 1냉매와 열교환되어 승온된 제 2냉매를 상대적으로 낮은 압력과 높은 온도로 제 2냉매를 냉각시키고, 고압단(H)은 제 1냉매와 열교환되어 승온된 제 2냉매를 상대적으로 상대적으로 높은 압력과 낮은 온도로 제 2냉매를 냉각시킨다.On the other hand, the low-pressure stage L of each dual refrigerator A1 cools the second refrigerant heated by heat exchange with the first refrigerant to a relatively low pressure and high temperature, and the high-pressure stage H is the second refrigerant. The second refrigerant heated by heat exchange with the first refrigerant is cooled to a relatively high pressure and low temperature.
그리고, 본 발명의 다른 실시예에 따르면, 얼음 몰드(M)를 대신하여 냉동 식품(육류, 어류, 가공 식품 등)을 거치하는 트레이(미도시)를 이송 트레이 체인(110)에 설치하고, 냉동 식품을 냉동시킬 수도 있다.And, according to another embodiment of the present invention, a tray (not shown) for holding frozen food (meat, fish, processed food, etc.) in place of the ice mold M is installed in the transfer tray chain 110 and frozen You can also freeze food.
본 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있으며 상기 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The present invention may be variously modified and may take various forms, and in the detailed description of the invention, only specific embodiments thereof have been described. However, it is to be understood that the present invention is not limited to the particular form recited in the detailed description, but rather, it is to be understood to cover all modifications and equivalents and substitutions falling within the spirit and scope of the present invention as defined by the appended claims. should be
본 발명은 소형 얼음 뿐만 아니라 냉동 식품의 냉동에도 적용이 가능하다.The present invention can be applied not only to small ice, but also to freezing of frozen food.
<부호의 설명><Explanation of code>
110 : 이송 트레이 체인 120′ : 냉매 수조110: transfer tray chain 120′: refrigerant tank
130 : 열풍기 140 : 배출 슈트130: hot air fan 140: exhaust chute
150 : 물 정량 토출기 160′ : 냉각 열교환기150: water quantitative discharger 160′: cooling heat exchanger
170 : 에어 나이프 180 : 물 냉각용 열교환기170: air knife 180: water cooling heat exchanger
A1 : 이원 냉동기 A2 : 공랭식 냉동기A1: Binary chiller A2: Air-cooled chiller
B : 정수기 P1 : 물 순환 펌프B: Water purifier P1: Water circulation pump
P2 : 냉매 순환 펌프 ST1 : 물 저장 탱크P2: Refrigerant circulation pump ST1: Water storage tank
ST2 : 냉매 저장 탱크 W : 단열 보호 벽체ST2: Refrigerant storage tank W: Thermal insulation protection wall

Claims (7)

  1. 장방형으로 형성되는 메인 프레임과;a main frame formed in a rectangular shape;
    상기 메인 프레임의 일측면에 설치되는 서브 프레임과;a sub frame installed on one side of the main frame;
    상기 메인 프레임의 전후단에 설치되어 구동 모터에 의해 회전되는 이송 스프로켓과;a transfer sprocket installed at the front and rear ends of the main frame and rotated by a driving motor;
    상기 이송 스프로켓에 의해 상기 메인 프레임을 따라 연속 회전되고, 복수의 얼음 몰드가 설치되는 이송 트레이 체인과;a transfer tray chain continuously rotated along the main frame by the transfer sprocket and provided with a plurality of ice molds;
    상기 메인 프레임의 상단에 설치되고, 내부에 제 1냉매가 저장되어 상기 이송 트레이 체인을 따라 이동되는 상기 얼음 몰드가 침지되며, 다단으로 구획되어 복수의 냉매 저장 공간부가 구비되는 냉매 수조와;a refrigerant tank installed on the upper end of the main frame, the first refrigerant stored therein, the ice mold moving along the transfer tray chain is immersed, and the refrigerant tank is divided into multiple stages and provided with a plurality of refrigerant storage spaces;
    상기 메인 프레임의 하단에 설치되어 상기 냉매 수조에 침지되어 냉동이 완료된 상기 얼음 몰드에 열풍을 가하는 열풍기와;a hot air blower installed at the lower end of the main frame to apply hot air to the ice mold immersed in the refrigerant tank to complete freezing;
    상기 메인 프레임의 하단에 설치되어 상기 열풍기의 열풍에 의해 상기 얼음 몰드에서 낙하되는 소형 얼음을 배출시키는 배출 슈트와;a discharge chute installed at the lower end of the main frame to discharge small ice falling from the ice mold by the hot air of the hot air blower;
    상기 메인 프레임의 상단 일측에 설치되어 상기 얼음 몰드에 물을 채우는 물 정량 토출기와;a water dispenser installed at an upper end of the main frame to fill the ice mold with water;
    상기 서브 프레임에 설치되고, 상기 냉매 수조의 각 냉매 저장 공간부에 저장된 제 1냉매를 순환시키는 복수의 냉매 순환 펌프와;a plurality of refrigerant circulation pumps installed in the subframe and circulating the first refrigerant stored in each refrigerant storage space of the refrigerant tank;
    상기 서브 프레임에 설치되고, 각각의 상기 에탄올 순환 펌프를 통해 순환되는 제 1냉매를 각각 냉각시켜 상기 각각의 냉매 저장 공간부로 공급하는 복수의 냉각 열교환기와;a plurality of cooling heat exchangers installed in the sub-frame and cooling the first refrigerant circulated through each of the ethanol circulation pumps and supplying them to the respective refrigerant storage spaces;
    외부에 설치되어 제 1냉매가 상기 냉각 열교환기에서 제 2냉매와 열교환되어 냉각되도록 각각의 상기 냉각 열교환기로 제 2냉매를 순환시키는 복수의 이원 냉동기; 및a plurality of dual refrigerators installed outside to circulate a second refrigerant to each of the cooling heat exchangers so that the first refrigerant exchanges heat with the second refrigerant in the cooling heat exchanger to be cooled; and
    상기 메인 프레임에 설치되고, 복수의 상기 이원 냉동기중 어느 하나의 이원 냉동기와 연결되어 제 3냉매를 순환시키면서 냉각시킨 후 공기와 열교환시켜 공기를 냉각시키고, 냉각된 공기를 상기 물 정량 토출기로 공급되는 상기 이송 트레이 체인과의 얼음 몰드로 배출하여 상기 얼음 몰드를 냉각시키는 공랭식 냉동기로 이루어지는 것을 특징으로 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템.Installed on the main frame, connected to any one of the dual refrigerators among the plurality of dual refrigerators, cooled while circulating the third refrigerant, heat exchanged with air to cool the air, and the cooled air is supplied to the water dispenser and an air-cooled freezer cooling the ice mold by discharging it to the ice mold with the transfer tray chain.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템은,The continuous circulation type industrial small ice rapid manufacturing system comprises:
    상기 냉매 수조에서 배출되는 상기 얼음 몰드로 에어를 분사하여 제 1냉매를 제거하도록 상기 메인 프레임에 설치되는 에어 나이프와;an air knife installed in the main frame to remove the first refrigerant by spraying air into the ice mold discharged from the refrigerant tank;
    상기 서브 프레임에 설치되어 상기 물 정량 토출기로 물을 공급하는 물 저장 탱크와;a water storage tank installed on the sub-frame and supplying water to the water dispenser;
    상기 서브 프레임에 설치되어 상기 물 저장 탱크로 공급되는 물을 정수시키는 정수기와;a water purifier installed on the sub-frame to purify water supplied to the water storage tank;
    상기 서브 프레임에 설치되어 상기 물 저장 탱크의 물을 순환시키는 물 순환 펌프와;a water circulation pump installed in the sub-frame to circulate water in the water storage tank;
    상기 서브 프레임에 설치되어 상기 물 순환 펌프를 통해 순환되는 물을 복수의 상기 이원 냉동기중 어느 하나의 이원 냉동기와 연결되어 제 3냉매를 순환시키면서 냉각시킨 후 물과 열교환시켜서 물을 5℃로 냉각시키고, 냉각된 물을 상기 물 저장 탱크에 저장하는 물 냉각용 열교환기; 및Installed in the sub-frame, water circulated through the water circulation pump is connected to one of the plurality of dual refrigerators to cool while circulating the third refrigerant, and then heat exchange with water to cool the water to 5 ° C. , a water cooling heat exchanger for storing the cooled water in the water storage tank; and
    상기 서브 프레임의 인근에 설치되어 각각의 상기 순환 펌프를 통해 상기 냉매 수조의 각 냉매 저장 공간부에 제 1냉매를 보충하는 냉매 저장 탱크를 더 포함하는 것을 특징으로 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템.The continuous circulation type of industrial small ice rapid, characterized in that it further comprises a refrigerant storage tank installed near the sub-frame and replenishing the first refrigerant in each refrigerant storage space of the refrigerant tank through each of the circulation pumps. manufacturing system.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 냉매 수조는,The refrigerant tank,
    상기 제 1냉매의 열손실을 최소화하기 위해 측면 및 저면이 우레탄 경질폼으로 박스 형태로 제작되고, 상면에 단열 덮개가 설치되는 것을 특징으로 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템.In order to minimize the heat loss of the first refrigerant, the side and bottom surfaces are made of urethane rigid foam in the form of a box, and an insulating cover is installed on the upper surface.
  4. 제 1 항에 있어서,The method of claim 1,
    각각의 상기 이원 냉동기는,Each of the binary refrigerators,
    상대적으로 낮은 압력과 높은 온도로 제 2냉매를 냉각시키는 저온단과;a low-temperature stage for cooling the second refrigerant to a relatively low pressure and high temperature;
    상대적으로 높은 압력과 낮은 온도로 제 2냉매를 냉각시키는 고온단으로 구성되는 것을 특징으로 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템.A small-scale industrial ice rapid manufacturing system of a continuous circulation method, characterized in that it consists of a high-temperature stage that cools the second refrigerant at a relatively high pressure and low temperature.
  5. 제 4 항에 있어서,5. The method of claim 4,
    복수의 상기 냉각 열교환기는,The plurality of cooling heat exchangers,
    상기 이원 냉동기의 저온단과 연결되어 상기 냉매 순환 펌프를 통해 공급되는 제 1냉매를 제 2냉매와 열교환시켜 -35℃로 1차 냉각시키는 1차 냉각 열교환기와;a primary cooling heat exchanger connected to the low-temperature end of the dual refrigerator to heat-exchange the first refrigerant supplied through the refrigerant circulation pump with the second refrigerant to primary cooling to -35°C;
    상기 이원 냉동기의 고온단 및 1차 냉각 열교환기와 연결되어 상기 1차 냉각 열교환기를 통해 1차 냉각된 제 1냉매를 제 2냉매와 열교환시켜 -60℃로 2차 냉각시키는 2차 열교환기로 구성되는 것을 특징으로 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템.It is connected to the high-temperature end of the dual refrigerator and the primary cooling heat exchanger, and is configured as a secondary heat exchanger that heats the first refrigerant cooled primarily through the primary cooling heat exchanger with the second refrigerant to secondary cooling to -60 ° C. Industrial compact ice rapid manufacturing system with continuous circulation method.
  6. 제 3 항에 있어서,4. The method of claim 3,
    상기 공랭식 냉동기는,The air-cooled refrigerator,
    냉각 공기과 외부로 미유출되도록 상기 단열 보호 벽체 내에서 공간을 구획하고, 구획된 공간 내에 설치되는 것을 특징으로 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템.A continuous circulation type industrial small ice rapid manufacturing system, characterized in that the space is partitioned within the insulating protective wall so that the cooling air and the outside do not flow out, and the space is installed in the partitioned space.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제 1냉매는,The first refrigerant is
    염수 또는 에탄계이고,brine or ethane,
    상기 제 2냉매는,The second refrigerant is
    메탄계 또는 에탄계와 메탄계가 혼합된 비공비 혼합 냉매며,It is a non-azeotropic mixture of methane-based or ethane-based and methane-based refrigerants,
    상기 제 3냉매는,The third refrigerant is
    염수, 메탄계, 에탄계, 프로판, 비유기 화합물, 공비 혼합 냉매, 비공비 혼합 냉매중 선택된 어느 하나인 것을 특징으로 하는 연속 순환 방식의 산업용 소형 얼음 급속 제조 시스템.A continuous circulation type industrial small rapid ice production system, characterized in that any one selected from brine, methane-based, ethane-based, propane, inorganic compound, azeotropic refrigerant, and non-azeotropic refrigerant.
PCT/KR2021/001178 2020-09-10 2021-01-28 Continuous circulation-type industrial rapid ice-making system for small-sized ice WO2022055051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200116155A KR102183632B1 (en) 2020-09-10 2020-09-10 System for rapidly making continuous-circulating small-sized ice for industry
KR10-2020-0116155 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022055051A1 true WO2022055051A1 (en) 2022-03-17

Family

ID=73679158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001178 WO2022055051A1 (en) 2020-09-10 2021-01-28 Continuous circulation-type industrial rapid ice-making system for small-sized ice

Country Status (3)

Country Link
KR (1) KR102183632B1 (en)
CN (1) CN114251885A (en)
WO (1) WO2022055051A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183632B1 (en) * 2020-09-10 2020-11-26 (주)제이엘피엔지니어링 System for rapidly making continuous-circulating small-sized ice for industry
KR102530539B1 (en) * 2023-01-12 2023-05-16 주식회사 탑그린테크 Method for producing white ice with reduced transparency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771850A (en) * 1993-08-31 1995-03-17 Mitsui Constr Co Ltd Ice and snow making and spraying device
KR200275917Y1 (en) * 2001-11-13 2002-05-18 장광균 apparatus for manufacturing an ice case
KR101324167B1 (en) * 2011-08-18 2013-11-05 엘지전자 주식회사 An apparatus for water purifier having plural ice making modes and a methoed for ice making
KR102116881B1 (en) * 2020-02-27 2020-05-29 (주)제이엘피엔지니어링 System for rapidly making continuous-circulating small-sized ice for industry
KR102183632B1 (en) * 2020-09-10 2020-11-26 (주)제이엘피엔지니어링 System for rapidly making continuous-circulating small-sized ice for industry

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB498412A (en) * 1937-07-08 1939-01-09 Reinhard Emil Wilhelm Wussow Improvements in and relating to processes and apparatus for the production of ice and for cooling liquids
KR20030039535A (en) 2001-11-13 2003-05-22 장광균 apparatus for manufacturing an ice case
US6588219B2 (en) * 2001-12-12 2003-07-08 John Zevlakis Commercial ice making apparatus and method
JP2010271000A (en) * 2009-05-25 2010-12-02 Yamato:Kk Heat storage type refrigerating system
KR101343462B1 (en) * 2012-04-27 2013-12-20 인 이 Ice-making and cooling system
KR20160050256A (en) * 2014-10-29 2016-05-11 강영환 Ice maker
CN107289699A (en) * 2017-08-18 2017-10-24 浙江冰欧新能源科技有限公司 A kind of Novel movable ice machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771850A (en) * 1993-08-31 1995-03-17 Mitsui Constr Co Ltd Ice and snow making and spraying device
KR200275917Y1 (en) * 2001-11-13 2002-05-18 장광균 apparatus for manufacturing an ice case
KR101324167B1 (en) * 2011-08-18 2013-11-05 엘지전자 주식회사 An apparatus for water purifier having plural ice making modes and a methoed for ice making
KR102116881B1 (en) * 2020-02-27 2020-05-29 (주)제이엘피엔지니어링 System for rapidly making continuous-circulating small-sized ice for industry
KR102183632B1 (en) * 2020-09-10 2020-11-26 (주)제이엘피엔지니어링 System for rapidly making continuous-circulating small-sized ice for industry

Also Published As

Publication number Publication date
CN114251885A (en) 2022-03-29
KR102183632B1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2022055051A1 (en) Continuous circulation-type industrial rapid ice-making system for small-sized ice
CN1111342A (en) Method and apparatus for absorbing heat and preserving fresh products at a predetermined temperature ensuring optimal conditions of same
WO2009151191A1 (en) Multifloor tunnel type freezing method and the refrigerant
KR102116881B1 (en) System for rapidly making continuous-circulating small-sized ice for industry
CN212057909U (en) Refrigeration cold-storage system that many connects
CA2128352C (en) Liquid nitrogen immersion/impingement freezing method and apparatus
WO2013172649A1 (en) Cold storage device using brine circulation
US2405272A (en) Ice manufacture
KR101371362B1 (en) Multi-cooled method heat exchanger integrated phase change material cold storage tank.
US7322204B2 (en) Low temperature zoning formation system for holding freshness of food
CN116753658A (en) Heat preservation and insulation refrigerator
WO2013172666A1 (en) Freezer showcase having cold storage system
JP4282454B2 (en) Liquid-cooled food freezer
CN117287862B (en) Vegetable cold chain ice making system and ice making process
KR101429165B1 (en) Cold-storage module using brine-cooled heat exchanger system.
CN210374257U (en) Protection device of double-spiral tunnel instant freezer
RU2289072C1 (en) Device for freezing food products by means of liquid cooling
KR100600909B1 (en) Liquid cooling type food freezing apparatus
WO2008108744A9 (en) Device for deicing an air-cooler for the refrigerated showcase of shop equipment
CN110470071A (en) Contact thermal insert knife handle cooling system and method based on semiconductor refrigerating
CN217952811U (en) Quick-freezing equipment for refrigeration house
RU2278336C2 (en) Air tunnel quick freezing apparatus
CN118049802A (en) Refrigerating equipment and system thereof
RU2189750C2 (en) Apparatus for in-line freezing of dough semi-finished products
CN217920492U (en) Cooling device of food transportation equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866923

Country of ref document: EP

Kind code of ref document: A1