WO2022054817A1 - Sealing resin composition and production method therefor - Google Patents

Sealing resin composition and production method therefor Download PDF

Info

Publication number
WO2022054817A1
WO2022054817A1 PCT/JP2021/032937 JP2021032937W WO2022054817A1 WO 2022054817 A1 WO2022054817 A1 WO 2022054817A1 JP 2021032937 W JP2021032937 W JP 2021032937W WO 2022054817 A1 WO2022054817 A1 WO 2022054817A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sealing resin
composition
less
mass
Prior art date
Application number
PCT/JP2021/032937
Other languages
French (fr)
Japanese (ja)
Inventor
千佳 荒山
康成 冨田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180053481.0A priority Critical patent/CN116018370A/en
Priority to JP2022547614A priority patent/JPWO2022054817A1/ja
Publication of WO2022054817A1 publication Critical patent/WO2022054817A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present disclosure relates to a sealing resin composition and a method for producing the same, and more particularly to a sealing resin composition capable of rapid curing at a low temperature and a method for producing the same.
  • Patent Document 1 discloses an epoxy resin composition having excellent low-temperature curability.
  • This epoxy resin composition contains an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator.
  • the content of the epoxy resin is 8% by mass or more and 20% by mass or less with respect to the total solid content of the epoxy resin composition, and the content of the imidazole-based curing accelerator is relative to the total solid content of the epoxy resin. It is 4.0% by mass or more and 12.0% by mass or less.
  • the epoxy resin composition has a maximum exothermic peak temperature of 80 ° C. in the DSC curve obtained when the temperature is raised from 30 ° C. to 200 ° C. under the condition of a temperature rise rate of 10 ° C./min using a differential scanning calorimeter. The temperature is 145 ° C or lower.
  • the melt viscosity becomes high due to the low temperature of the resin melting, and unfilling under the component occurs.
  • the continuous productivity may deteriorate due to poor curing.
  • the object of the present disclosure is to provide a sealing resin composition having good curability and filling property and excellent continuous productivity when molding for sealing at a low temperature, and a method for producing the same.
  • the sealing resin composition according to one aspect of the present disclosure is a sealing resin composition that can be rapidly cured at a temperature of 150 ° C. or lower.
  • T1 the time until the torque value measured while heating at a predetermined temperature reaches 0.0098 Nm
  • T2 the time until the torque value reaches 70% of the maximum value
  • T2 the equation (1) holds.
  • the shore D hardness (HS) of the cured product obtained by heating at the predetermined temperature for a time of 2.5 ⁇ T1 satisfies the formula (2).
  • the method for producing a sealing resin composition comprises the sealing resin composition containing an epoxy resin, a curing catalyst, a filler, a curing agent, and a low viscosity agent. It is a manufacturing method. It includes a primary mixing step of heat-kneading components other than the curing catalyst to prepare a kneaded product, and a secondary mixing step of mixing the curing catalyst with the kneaded product at 95 ° C. or lower.
  • FIG. 1 is a graph showing changes over time in measured torque values of the sealing resin composition according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing an example of a semiconductor package using the sealing resin composition according to the present embodiment.
  • the semiconductor package can control the warp behavior that occurs during sealing by using a semiconductor encapsulation material with physical characteristics that match the package structure.
  • warpage behavior has been controlled by adjusting the molding shrinkage value of the semiconductor encapsulating material according to the structure such as the size of the semiconductor package and the chip size.
  • the solder ball is generally mounted by reflow processing, but in recent years, lead-free solder has been used, and the temperature of the reflow processing is used. Is mounted at a high temperature of 260 ° C. or higher.
  • SiP system-in-package
  • the warp of the package generated during encapsulation molding is large, so that mounting defects may occur during mounting reflow performed multiple times, or low-temperature solder may melt and flow out during molding. There are cases where it will be done.
  • the present inventors have developed a sealing resin composition that can be sealed by molding at a low temperature when producing a semiconductor package, and has excellent continuous moldability and filling property.
  • the sealing resin composition according to the present embodiment can be rapidly cured at a low temperature by satisfying the condition of the formula 1 represented by T2 ⁇ 2.5 ⁇ T1 at a temperature of 150 ° C. or lower.
  • T1 is the time until the torque value measured while heating the sealing resin composition at a predetermined temperature reaches 0.0098 Nm (0.1 kgf cm).
  • T2 is the time until the torque value measured while heating the sealing resin composition at a predetermined temperature reaches 70% of the maximum value.
  • the "predetermined temperature” is the molding temperature in the sealing molding to which the sealing resin composition according to the present embodiment is applied.
  • This molding temperature is a temperature of 150 ° C. or lower, for example, 130 ° C.
  • the "maximum value” means a value when the torque value measured while heating the sealing resin composition according to the present embodiment at a predetermined temperature does not increase. That is, as shown in FIG. 1, when the sealing resin composition is heated at a predetermined temperature, the torque value increases with the passage of time, but the increase in the torque value disappears and is constant. The value when the torque value of is reached is taken as the maximum value of the torque value. That is, when the sealing resin composition is heated at a predetermined temperature, the curing progresses with the passage of time, and the measured torque value becomes the maximum value. 70% of the maximum value can be calculated with the maximum value as 100%.
  • the shore D hardness (HS) of the cured product obtained by heating at the above-mentioned predetermined temperature for 2.5 ⁇ T1 is expressed by the formula 2 of 80 ⁇ HS.
  • the shore D hardness (HS) can be measured with a type D durometer, for example, in accordance with JIS K6253-3.
  • composition (X) the sealing resin composition according to the present embodiment (hereinafter, may be referred to as composition (X)) will be described in detail.
  • the composition (X) of the present embodiment is a sealing resin composition that can be rapidly cured at a temperature of 150 ° C. or lower.
  • T1 the time until the torque value measured while heating at a predetermined temperature reaches 0.0098 Nm
  • T2 the time until the torque value reaches 70% of the maximum value is set.
  • T2 the formula (1) is established, and the sealing resin composition is a cured product obtained by heating at the predetermined temperature for a time of 2.5 ⁇ T1 (HS).
  • the equation (2) is satisfied. Equation 1 is represented by T2 ⁇ 2.5 ⁇ T1. Equation 2 is represented by 80 ⁇ HS.
  • the above-mentioned predetermined temperature is a molding temperature when the resin composition (X) is used in sealing molding, for example, 130 ° C.
  • the torque value can be measured by, for example, a curast meter (registered trademark) VPS manufactured by JSR Trading Co., Ltd.
  • the shore D hardness HS is measured as follows. First, the composition (X) is injected into a mold heated to a temperature at which the formula (1) is established (that is, the above-mentioned "predetermined temperature") at an injection pressure of 6.9 MPa, and heat-treated for T2 hours. , A disk having a diameter of 50 mm and a thickness of 3 mm is formed. Subsequently, 10 seconds after being taken out from the mold, the shore D hardness HS of the disk, which is a semi-cured product of the molded composition (X), can be measured using an Asker rubber hardness tester D mold.
  • the coefficient of T1 is 2.5, but in a general sealing resin composition, the coefficient of T1 tends to be 3.0 or more.
  • the composition (X) having a T1 coefficient of 2.5 or less in the formula (1) has a heating time of 20% or more in molding as compared with the sealing resin composition having a T1 coefficient of 3.0 or more. Can be shortened. That is, the formula (1) can be an index for evaluating the quick-curing property of the sealing resin composition. Further, in the formula (1), T2 can be used as a heat treatment time during which the composition (X) can be taken out as a cured product when the composition (X) is molded.
  • T2 is a time that satisfies the condition of the formula (2) when the composition (X) is molded at a predetermined temperature. That is, if the formulas (1) and (2) are established at a low temperature, the heat treatment time (molding time) when molding the composition (X) at a low temperature can be shortened, and the composition (X) is continuously good. Easy to have formability. As described above, the composition (X) satisfying the formulas (1) and (2) can shorten the heat treatment time in molding and has good curability, even at a low temperature of 150 ° C. or lower. It can be cured quickly and tends to have good continuous moldability.
  • the melt viscosity of the composition (X) is suppressed to a low level during molding, it is easy to flow, and the filling property when sealing the semiconductor component is improved. Cheap.
  • the value of the slit viscosity defined as the pressure measured when the composition (X) flows is preferably 30 Pa ⁇ s or less.
  • the viscosity of the composition (X) at a low temperature is low and the flowability is good, and the composition (X) is suitably used as a mold underfill material.
  • the mold underfill material is a sealing material that fills the space under the component (the space between the substrate and the component) mounted on the surface of the substrate.
  • the slit viscosity is measured, for example, as follows. That is, using a molding machine (Single Pot Molding System manufactured by Daiichi Seiko Co., Ltd.), a slit having a thickness of 0.2 mm in a mold heated to a temperature satisfying the formulas (1) and (2) is sheared at a shear rate of 50 s. At -1, the pressure at which the composition (X) flows is measured.
  • a molding machine Single Pot Molding System manufactured by Daiichi Seiko Co., Ltd.
  • the value of the slit viscosity of the composition (X) is more preferably 20 Pa ⁇ s or less, and particularly preferably 15 Pa ⁇ s or less.
  • the slit viscosity value of the composition (X) is preferably 0.5 Pa ⁇ s or more.
  • the composition (X) is measured with the sealing resin composition after being stored at 20 ° C. for 24 hours, as opposed to the spiral flow measured with the sealing resin composition before being stored at 20 ° C. for 24 hours. It is preferable that the rate of change of the spiral flow is 30% or less. In this case, the storage stability of the composition (X) tends to be good. Based on ASTM D3123, it is possible to measure how much the composition (X) flows at a mold temperature of 130 ° C. and an injection pressure of 6.9 MPa, and use the length (cm) as a spiral flow. The rate of change of the spiral flow is more preferably 20% or less, and particularly preferably 15% or less.
  • composition of resin composition for encapsulation The above characteristics of the composition (X) can be achieved by the composition of the composition (X) described below. That is, the composition (X) preferably contains an epoxy resin (A), a curing catalyst (B), and a filler (C).
  • the epoxy resin (A) is preferably a compound having two or more epoxy groups in one molecule.
  • the epoxy resin (A) is, for example, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a biphenyl type epoxy compound, an o-cresol novolac type epoxy compound, a dicyclopentadiene type epoxy compound, a naphthalene ring-containing epoxy compound, an alicyclic type. It can contain at least one component of an epoxy compound, a brom-containing epoxy compound, and a hydrogenated product thereof.
  • the epoxy resin (A) is, for example, a solid at room temperature. In this case, the melting point of the epoxy resin (A) is preferably low.
  • the content ratio of the epoxy resin (A) is preferably 4% by mass or more and 35% by mass or less with respect to the total solid content of the composition (X).
  • the content ratio of the epoxy resin (A) is more preferably 4% by mass or more and 30% by mass or less, and preferably 4% by mass or more and 25% by mass or less, based on the total solid content of the composition (X). Especially preferable.
  • the curing catalyst (B) accelerates the curing of the epoxy resin (A).
  • the curing catalyst (B) preferably contains a latent catalyst containing phosphorus and a heterocyclic compound having a partial structure of amidine.
  • the latent catalyst is a curing catalyst in which curing is started by an external stimulus trigger such as heat or light.
  • the heterocyclic compound having a partial structure of amidine is a compound having a structure in which one carbon has one nitrogen atom in a double bond and one nitrogen atom in a single bond in a part of the heterocycle.
  • DBU diazabicycloundecene
  • DBN diazabicyclononene
  • imidazole pyrimidine
  • purine examples of the curing catalyst include amines, imidazole compounds, nitrogen-containing heterocyclic compounds, quaternary ammonium compounds, quaternary phosphonium compounds, and arsonium compounds in addition to the above two types.
  • the curing catalyst (B) is a latent catalyst containing phosphorus, a heterocyclic compound having a partial structure of amidine, and the composition (X) tends to have a low viscosity and has good curability at a low temperature. Easy to have. Therefore, the composition (X) tends to flow during molding, the filling property when sealing a semiconductor package or the like tends to be good, and the storage stability of the composition (X) tends to be improved.
  • the content ratio of the curing catalyst (B) is preferably 0.3% by mass or more and 1.0% by mass or less with respect to the total solid content of the composition (X).
  • the composition (X) tends to have good curability. Continuous formability is likely to improve.
  • the content ratio of the curing catalyst (B) is 1.0% by mass or less with respect to the total solid content of the composition (X)
  • the composition (X) tends to have a low melt viscosity and has fluidity. Is likely to be good, so that the filling property when sealing a semiconductor component is likely to be good.
  • the content ratio of the curing catalyst (B) is more preferably 0.3% by mass or more and 0.8% by mass or less, and 0.3% by mass or more and 0, based on the total solid content of the composition (X). It is particularly preferable that it is 6.6% by mass or less.
  • the filler (C) is, for example, silica such as molten silica, spherical molten silica, and crystalline silica; high dielectric constant filler such as aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, high dielectric barium titanate, and titanium oxide; hard ferrite and the like.
  • Magnetic fillers; inorganic flame retardants such as magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, guanidine salts, zinc borate, molybdenum compounds, zinc tinate; talc; barium sulfate; calcium carbonate; and from mica flour.
  • the average particle size of the filler (C) is preferably 0.5 ⁇ m or more and 7.0 ⁇ m or less. In this case, the composition (X) tends to have good fluidity during molding.
  • the average particle size is a volume-based cumulative medium diameter (median diameter d50) based on the measured value of the particle size distribution by the laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device. It is more preferable that the average particle size of the filler (C) is 1.0 ⁇ m or more and 6.5 ⁇ m or less, and particularly preferably 1.5 ⁇ m or more and 6.0 ⁇ m or less.
  • the filler (C) may contain two or more components having different average particle diameters in order to adjust the melt viscosity of the composition (X) at the time of molding, the physical properties of the encapsulant, and the like.
  • the content ratio of the filler (C) is preferably 60% by mass or more and 93% by mass or less with respect to the total solid content of the composition (X).
  • the content ratio of the filler (C) is more preferably 70% by mass or more and 93% by mass or less, and particularly preferably 80% by mass or more and 93% by mass or less, based on the total solid content of the composition (X).
  • the composition (X) may further contain a curing agent (D).
  • the curing agent (D) is used to cure the epoxy resin (A).
  • the curing agent (D) is a resin having a viscosity measured at 150 ° C. by a cone plate type viscometer of 9 mPa ⁇ s or more and 65 mPa ⁇ s or less, which is 50% by mass or more and 95% by mass with respect to the entire curing agent (D). It is preferable to include it in a ratio of% or less.
  • the composition (X) is molded when the proportion of the curing agent (D) containing the resin having a viscosity of 9 mPa ⁇ s or more and 65 mPa ⁇ s or less is 50% by mass or more with respect to the entire curing agent (D). Sometimes it tends to have good curability, and the continuous moldability of the composition (X) tends to be enhanced.
  • the composition (X) is molded when the proportion of the curing agent (D) containing the resin having a viscosity of 9 mPa ⁇ s or more and 65 mPa ⁇ s or less is 95% by mass or less with respect to the entire curing agent (D). Sometimes it is easy to have good fluidity, and it is easy to improve the filling property when sealing semiconductor parts.
  • the resin examples include phenolic resins.
  • the components other than the resin having a viscosity of 9 mPa ⁇ s or more and 65 mPa ⁇ s or less may contain one or more components selected from the group consisting of acid anhydrides and functional compounds that generate phenolic hydroxyl groups. preferable.
  • the proportion of the resin containing the resin having a viscosity of 9 mPa ⁇ s or more and 65 mPa ⁇ s or less is more preferably 30% by mass or more and 98% by mass or less, more preferably 40% by mass or more and 98% by mass or less, based on the entire curing agent (D). % Or less is particularly preferable.
  • the content ratio of the curing agent (D) is preferably 1.0% by mass or more and 10% by mass or less with respect to the total solid content of the composition (X).
  • the content ratio of the curing agent (D) is 1.0% by mass or more with respect to the total solid content of the composition (X)
  • the composition (X) tends to have good curability at the time of molding.
  • the continuous formability of the composition (X) is likely to be improved.
  • the content ratio of the curing agent (D) is 10.0% by mass or less with respect to the total solid content of the composition (X)
  • the composition (X) tends to have good fluidity at the time of molding.
  • the content ratio of the curing agent (D) is more preferably 2.0% by mass or more and 8.0% by mass or less, and 3.0% by mass or more and 5. It is particularly preferable that it is 0% by mass or less.
  • the composition (X) may further contain a low viscosity agent (E).
  • a low viscosity agent (E) When the composition (X) contains the low viscosity agent (E), the fluidity of the composition (X) is further improved, and the filling property when sealing the semiconductor device is likely to be improved.
  • the low viscosity agent (E) preferably contains at least one selected from the group consisting of a terminal phenol-modified silane coupling agent, a long-chain fatty acid ester, and cyclic phosphazene.
  • the affinity between the epoxy resin (A) and the filler (C) is improved, and the melt viscosity of the composition (X) is low. It is suppressed and tends to have good fluidity.
  • a long-chain fatty acid ester or cyclic phosphazene as the low-viscosity agent (E), these are melted to a sufficiently low viscosity at the molding temperature and act as a plasticizer, so that the composition (X) becomes more at the time of molding. It tends to have good fluidity.
  • the content ratio of the low viscosity agent (E) is preferably 0.1% by mass or more and 3.0% by mass or less with respect to the total solid content of the composition (X). In this case, the composition (X) tends to have good fluidity during molding.
  • the content ratio of the low viscosity agent (E) is more preferably 0.2% by mass or more and 2.0% by mass or less, still more preferably 0.3% by mass, based on the total solid content of the composition (X). It is 1.0% by mass or less.
  • composition (X) may contain components other than the above components as long as the effects of the present embodiment are not impaired.
  • components other than the above include pigments, ion trap materials, silane coupling agents and the like.
  • the pigment can contain, for example, at least one component selected from the group consisting of carbon black, red iron oxide, titanium oxide, phthalocyanine and perylene black.
  • the ion trap material is an ion exchanger, and can contain, for example, at least one of a magnesium-aluminum ion exchanger and a hydrotalcite ion exchanger.
  • the composition (X) can be produced by mixing the constituents of the composition (X) as described above. More specifically, for example, a raw material containing an epoxy resin (A), a curing catalyst (B), a filler (C), a curing agent (D), and a low viscosity agent (E) is sufficiently uniformed with a mixer, a blender, or the like. The mixture is mixed until it becomes, and then melt-mixed while being heated by a kneader such as a hot roll or a kneader, and then cooled to room temperature.
  • the powdery composition (X) can be produced by pulverizing the resulting mixture by a known means.
  • the composition (X) does not have to be in the form of powder, and may be in the form of a tablet, for example. It is preferable that the composition (X) in the form of a tablet has dimensions and mass suitable for molding conditions.
  • the method for producing the composition (X) includes a primary mixing step and a secondary mixing step.
  • the primary mixing step components other than the curing catalyst (B) are heat-kneaded to prepare a kneaded product.
  • the secondary mixing step the curing catalyst (B) is mixed with the kneaded product at 95 ° C. or lower.
  • the kneading temperature in the secondary mixing step is preferably 95 ° C. or lower.
  • the temporary mixture and the curing catalyst (B) can be sufficiently melted and dispersed, and the encapsulant can be produced without proceeding with the curing reaction.
  • the kneading temperature is more preferably in the range of 65 ° C. or higher and 95 ° C. or lower, and particularly preferably in the range of 80 ° C. or higher and 90 ° C. or lower.
  • the composition (X) is preferably solid at 25 ° C.
  • a sealing material can be produced by molding the composition (X) by a pressure molding method such as an injection molding method, a transfer molding method, or a compression molding method. It is more preferable if the composition (X) is solid at any temperature within the range of 15 ° C. or higher and 25 ° C. or lower, and particularly preferably if it is solid at any temperature within the range of 5 ° C. or higher and 35 ° C. or lower.
  • FIG. 2 shows an example of the semiconductor device 100.
  • the semiconductor device 100 is a system-in-package (SiP) of a double-sided mounting substrate (Double-sided FC substrate) in which a plurality of electronic components 11 such as semiconductor chips are mounted on both sides of the substrate 10 in the thickness direction.
  • Each of the electronic components 11 is electrically and mechanically connected to the circuit of the substrate 10 by a bump 12, a bonding wire 13, or a solder joint 14.
  • the substrate 10 and each electronic component 11 are sealed with a sealing material 16.
  • the encapsulant 16 is a cured product of the composition (X) according to the present embodiment.
  • the semiconductor device 100 is provided with an external bump 15 that can be mounted on another substrate or the like on the lower surface thereof.
  • the semiconductor device as described above is manufactured as follows, for example. That is, electronic components such as semiconductor chips are mounted on the first surface, which is one side of the substrate, and wire bonding or flip chip bonding is performed. Next, electronic components are mounted on the second surface, which is the surface opposite to the first surface of the substrate, and wire bonding and flip-chip bonding using bumps are performed. Then, the electronic component on the substrate is sealed with the composition (X).
  • the semiconductor element on the substrate is sealed, for example, by transfer molding. In this case, after the substrate on which the electronic component is mounted is placed in the cavity of the mold, the melted composition (X) is injected into the cavity at a predetermined pressure to fill the cavity.
  • the injection pressure at this time can be set, for example, 3 MPa or more and 10 MPa or less
  • the mold temperature can be set, for example, 120 ° C. or more and 150 ° C. or less
  • the molding time can be set, for example, 10 seconds or more and 60 seconds or less.
  • the above mold temperature is realized by the composition (X) satisfying the formulas (1) and (2) and having good curability and filling property at a low temperature.
  • a semiconductor device is manufactured by performing post-curing (post-curing) with the mold closed and then opening the mold to take out a molded product, that is, a semiconductor device.
  • composition (X) The method for producing the composition (X) in Formulations AD in Table 1 was carried out by a two-stage kneading having a primary mixing step and a secondary mixing step. First, the components other than the curing catalyst (B), that is, the epoxy resin (A), the filler (C), the curing agent (D), the low viscosity agent (E), and other components as necessary are blended. Then, the mixture was sufficiently uniformly mixed using a mixer, and then a primary mixing step of hot kneading was performed using a twin-screw kneader to obtain a mixture.
  • B the components other than the curing catalyst
  • the components other than the curing catalyst (B) that is, the epoxy resin (A), the filler (C), the curing agent (D), the low viscosity agent (E), and other components as necessary are blended. Then, the mixture was sufficiently uniformly mixed using a mixer, and then a primary mixing step of hot kneading was performed using
  • this mixture was cooled to room temperature, pulverized, a curing catalyst (B) was added, and a secondary mixing step of hot kneading was performed using a twin-screw kneader.
  • the temperature was adjusted so that the temperature of the material was within the range of 65 to 95 ° C. Then, the mixture obtained in the secondary mixing step was cooled to room temperature and then pulverized to obtain a composition (X).
  • Epoxy resin C Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, "YL6810", epoxy equivalent 165 to 180 g / eq.
  • Phenol resin A Biphenyl aralkyl-like epoxy "MEHC-7841-4S” manufactured by Meiwa Kasei Co., Ltd., OH equivalent 161 to 171 g / eq.
  • -Phenol resin B manufactured by Meiwa Kasei Co., Ltd., "DL-92” OH equivalent 103-109 g / eq. -Pigment: Mitsubishi Chemical Corporation, carbon black, "MA600", particle diameter 20 nm (arithmetic mean diameter).
  • -Ion trap material "IXE-700F” (Mg, Al system) manufactured by Toagosei Co., Ltd.
  • -Curing catalyst A Organophosphorus curing agent "RP-701” manufactured by Sun Appro Co., Ltd.
  • -Curing catalyst B manufactured by San-Apro Co., Ltd., 1,8-diazabicyclo (5,4,0) -Undesen-7, "SA851".
  • -Curing catalyst C "2P4MHZ-PW", an imidazole-based epoxy curing agent manufactured by Shikoku Chemicals Corporation.
  • -Silane coupling agent 3-mercaptopropyltrimethoxysilane, "KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.
  • -Low viscosity agent A N-phenyl-3 aminopropyltrimethoxysilane, "KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.
  • -Low viscosity agent B Organic phosphazene derivative, "Ravitor FP-100” manufactured by Fushimi Pharmaceutical Co., Ltd.
  • -Low viscosity agent C Long-chain fatty acid ester manufactured by Dainichi Chemical Industry Co., Ltd., "EPL-6".
  • T1 and T2 The torque value was measured while heating the composition (X) at 130 ° C. using a curast meter VPS type manufactured by JSR Trading Co., Ltd. The time required from the start of heating until the measured torque value reached 0.0098 (Nm) was defined as T1 (seconds), and the time required for the torque value to reach 70% from the maximum value was defined as T2 (seconds).
  • composition (X) is injected into a mold heated to 130 ° C. at an injection pressure of 6.9 MPa, and the thickness is 50 mm from the composition (X) in a predetermined curing time shown in Table 1.
  • a 3 mm disk was molded, and the shore D hardness of the molded product 10 seconds after being removed from the mold was measured using an Asker rubber hardness tester D mold.
  • Example 3 The compositions (X) were prepared in the blending amounts shown in Tables 2 to 4, and the above evaluation was performed. The results are shown in Tables 2-4. In Examples and Comparative Examples other than Example 8, the above two-stage kneading was performed.
  • the production of the sealing resin composition using the one-stage kneading method in which one-stage kneading was performed requires the above-mentioned thermosetting resin, curing agent, curing catalyst, inorganic filler, pigment, and necessary.
  • other components are mixed and mixed sufficiently uniformly using a mixer, blender, etc., and then melt-mixed in a heated state using a heat roll, kneader, or the like. Then, it can be produced by cooling it to room temperature and then pulverizing it.

Abstract

Provided is a sealing resin composition having favorable curing properties and filling properties and excellent continuous productivity when performing molding for sealing at a low temperature. The present invention pertains to a sealing resin composition which is rapidly curable at a temperature of at most 150ºC. When the time until the torque value of the sealing resin composition measured using a curelastometer while heating at a predetermined temperature reaches 0.0098 N∙m is defined as T1, and the time until the torque value reaches 70% of the maximum value is defined as T2, expression (1) is satisfied, and the Shore D hardness (HS) of a cured product obtained by heating the sealing resin composition at a predetermined temperature for a time of 2.5×T1 satisfies expression (2). (Expression 1) T2<2.5×T1 (Expression 2) 80<HS

Description

封止用樹脂組成物及びその製造方法Encapsulating resin composition and its manufacturing method
 本開示は、封止用樹脂組成物及びその製造方法に関し、詳しくは、低温で速硬化可能な封止用樹脂組成物及びその製造方法に関する。 The present disclosure relates to a sealing resin composition and a method for producing the same, and more particularly to a sealing resin composition capable of rapid curing at a low temperature and a method for producing the same.
 特許文献1には、低温硬化性に優れるエポキシ樹脂組成物が開示されている。このエポキシ樹脂組成物は、エポキシ樹脂と、硬化剤と、無機充填剤と、硬化促進剤と、を含む。エポキシ樹脂の含有量が、エポキシ樹脂組成物の全固形分に対して、8質量%以上20質量%以下であり、イミダゾール系硬化促進剤の含有量が、エポキシ樹脂の全固形分に対して、4.0質量%以上12.0質量%以下である。また当該エポキシ樹脂組成物は、示差走査熱量計を用いて昇温速度10℃/分の条件下で30℃から200℃まで昇温した際に得られるDSC曲線における最大発熱ピーク温度が、80℃以上145℃以下である。 Patent Document 1 discloses an epoxy resin composition having excellent low-temperature curability. This epoxy resin composition contains an epoxy resin, a curing agent, an inorganic filler, and a curing accelerator. The content of the epoxy resin is 8% by mass or more and 20% by mass or less with respect to the total solid content of the epoxy resin composition, and the content of the imidazole-based curing accelerator is relative to the total solid content of the epoxy resin. It is 4.0% by mass or more and 12.0% by mass or less. Further, the epoxy resin composition has a maximum exothermic peak temperature of 80 ° C. in the DSC curve obtained when the temperature is raised from 30 ° C. to 200 ° C. under the condition of a temperature rise rate of 10 ° C./min using a differential scanning calorimeter. The temperature is 145 ° C or lower.
特許第6436263号公報Japanese Patent No. 6436263
 しかしながら、上記のような従来のエポキシ樹脂組成物を封止材料として、低温で成形を実施した場合、樹脂の溶融が低温の為に溶融粘度が高くなって、部品下での未充填が発生したり、硬化不良に起因する連続生産性が悪化したりする場合があった。 However, when molding is performed at a low temperature using the conventional epoxy resin composition as described above as a sealing material, the melt viscosity becomes high due to the low temperature of the resin melting, and unfilling under the component occurs. In some cases, the continuous productivity may deteriorate due to poor curing.
 本開示は、低温で封止するための成形を行う場合に、硬化性及び充填性が良好で、連続生産性に優れる封止用樹脂組成物及びその製造方法の提供を目的とする。 The object of the present disclosure is to provide a sealing resin composition having good curability and filling property and excellent continuous productivity when molding for sealing at a low temperature, and a method for producing the same.
 本開示の一態様に係る封止用樹脂組成物は、150℃以下の温度で速硬化可能な封止用樹脂組成物である。前記封止用樹脂組成物は、所定の温度で加熱しながら測定されるトルク値が0.0098N・mに達するまでの時間をT1、前記トルク値が最大値の70%に達するまでの時間をT2とした場合に、式(1)が成立する。また前記封止用樹脂組成物は、前記所定の温度で2.5×T1の時間加熱して得られる硬化物のショアD硬度(HS)が、式(2)を満たす。 The sealing resin composition according to one aspect of the present disclosure is a sealing resin composition that can be rapidly cured at a temperature of 150 ° C. or lower. In the sealing resin composition, the time until the torque value measured while heating at a predetermined temperature reaches 0.0098 Nm is T1, and the time until the torque value reaches 70% of the maximum value is set. When T2 is set, the equation (1) holds. Further, in the sealing resin composition, the shore D hardness (HS) of the cured product obtained by heating at the predetermined temperature for a time of 2.5 × T1 satisfies the formula (2).
 (式1) T2<2.5×T1
 (式2) 80<HS
 本開示の一態様に係る封止用樹脂組成物の製造方法は、エポキシ樹脂と、硬化触媒と、フィラーと、硬化剤と、低粘度化剤と、を含有する前記封止用樹脂組成物を製造する方法である。前記硬化触媒以外の成分を熱混練して、混練物を作製する一次混合工程と、前記硬化触媒を95℃以下で前記混練物に混合する二次混合工程と、を含む。
(Equation 1) T2 <2.5 × T1
(Equation 2) 80 <HS
The method for producing a sealing resin composition according to one aspect of the present disclosure comprises the sealing resin composition containing an epoxy resin, a curing catalyst, a filler, a curing agent, and a low viscosity agent. It is a manufacturing method. It includes a primary mixing step of heat-kneading components other than the curing catalyst to prepare a kneaded product, and a secondary mixing step of mixing the curing catalyst with the kneaded product at 95 ° C. or lower.
図1は、本実施形態に係る封止用樹脂組成物について、トルク値の測定値の経時変化を示すグラフである。FIG. 1 is a graph showing changes over time in measured torque values of the sealing resin composition according to the present embodiment. 図2は、本実施形態に係る封止用樹脂組成物を使用した半導体パッケージの一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a semiconductor package using the sealing resin composition according to the present embodiment.
 1.概要
 本実施形態に至った経緯を説明する。
1. 1. Outline The process leading to this embodiment will be described.
 半導体パッケージ(半導体装置)は、そのパッケージ構造に合わせた物理特性の半導体用封止材料を用いることによって、封止の際に生じる反り挙動をコントロールすることが可能である。従来は、半導体パッケージのサイズやチップサイズなどの構造に合わせて、半導体封止材料の成形収縮の値を調整することで反り挙動のコントロールを行っていた。また半導体パッケージは、プリント基板等の基板に実装する際に、一般的には半田ボールをリフロー処理することによる実装が行われるが、近年では、鉛フリー半田が使用されており、リフロー処理の温度が260℃以上の高温での実装が行われている。 The semiconductor package (semiconductor device) can control the warp behavior that occurs during sealing by using a semiconductor encapsulation material with physical characteristics that match the package structure. Conventionally, warpage behavior has been controlled by adjusting the molding shrinkage value of the semiconductor encapsulating material according to the structure such as the size of the semiconductor package and the chip size. Further, when mounting a semiconductor package on a substrate such as a printed circuit board, the solder ball is generally mounted by reflow processing, but in recent years, lead-free solder has been used, and the temperature of the reflow processing is used. Is mounted at a high temperature of 260 ° C. or higher.
 一方、半導体パッケージの高機能化、高速化を実現する為、様々な部品を搭載しモジュール化したシステムインパッケージ(SiP)が考案されている。近年、このSiPが従来の片面実装ではなく、部品を基板の両面に実装した構造や半導体パッケージの上にさらに他の半導体パッケージを実装するような構造が増えてきており、それに伴い部品の実装リフロー処理の回数も増加している。また、高温でのリフローに耐えられない部品や基板を実装する場合、低温はんだの適用も行われている。したがって、高温での封止では、封止成形時に発生するパッケージの反りが大きい為に、複数回実施される実装リフローの際に実装不良が発生したり、低温はんだが成形時に溶融し流出したりしてしまうケースがある。 On the other hand, in order to realize high functionality and high speed of the semiconductor package, a system-in-package (SiP) that is modularized by mounting various parts has been devised. In recent years, there has been an increase in the number of structures in which this SiP is mounted on both sides of a substrate instead of the conventional single-sided mounting, or in which another semiconductor package is mounted on a semiconductor package. The number of processes is also increasing. In addition, when mounting parts and substrates that cannot withstand reflow at high temperatures, low-temperature solder is also applied. Therefore, in the case of encapsulation at a high temperature, the warp of the package generated during encapsulation molding is large, so that mounting defects may occur during mounting reflow performed multiple times, or low-temperature solder may melt and flow out during molding. There are cases where it will be done.
 このため、低温で半導体を封止することが必要となるが、従来の封止材料を用いて低温での成形を実施した場合、樹脂の溶融が低温の為に溶融粘度が高く、部品下の未充填が発生したり、硬化不良起因による連続生産性の悪化が生じたりする場合があった。 For this reason, it is necessary to seal the semiconductor at a low temperature, but when molding is performed at a low temperature using a conventional sealing material, the melting viscosity of the resin is high due to the low temperature of the resin, and the melt viscosity is high under the parts. Unfilling may occur, or continuous productivity may deteriorate due to poor curing.
 そこで、本発明者らは、半導体パッケージを作製する際に、低温での成形により封止することができ、しかも連続成形性と充填性に優れる封止用樹脂組成物を開発するに至った。 Therefore, the present inventors have developed a sealing resin composition that can be sealed by molding at a low temperature when producing a semiconductor package, and has excellent continuous moldability and filling property.
 すなわち、本実施形態に係る封止用樹脂組成物は、150℃以下の温度で、T2<2.5×T1で示される式1の条件を満たすことにより、低温で速硬化可能と言える。ここで、150℃以下の低温であれば、特に、下限は設定されないが、例えば、120℃以上の温度で速硬化可能であることが好ましい。T1は、封止用樹脂組成物を所定の温度で加熱しながら測定されるトルク値が、0.0098N・m(0.1kgf・cm)に達するまでの時間である。T2は、封止用樹脂組成物を所定の温度で加熱しながら測定されるトルク値が、最大値の70%に達するまでの時間である。 That is, it can be said that the sealing resin composition according to the present embodiment can be rapidly cured at a low temperature by satisfying the condition of the formula 1 represented by T2 <2.5 × T1 at a temperature of 150 ° C. or lower. Here, if the temperature is as low as 150 ° C. or lower, no lower limit is set, but it is preferable that the product can be quickly cured at a temperature of 120 ° C. or higher, for example. T1 is the time until the torque value measured while heating the sealing resin composition at a predetermined temperature reaches 0.0098 Nm (0.1 kgf cm). T2 is the time until the torque value measured while heating the sealing resin composition at a predetermined temperature reaches 70% of the maximum value.
 ここで、「所定の温度」とは、本実施形態に係る封止用樹脂組成物が適用される封止成形での成形温度である。この成形温度は150℃以下の温度であって、例えば、130℃である。また「最大値」とは、本実施形態に係る封止用樹脂組成物を所定の温度で加熱しながら測定されるトルク値が上昇しなくなったときの値をいう。すなわち、図1に示すように、封止用樹脂組成物は所定の温度で加熱していくと、時間の経過と共に、トルク値が上昇していくが、このトルク値の上昇がなくなって、一定のトルク値になったときの値を、トルク値の最大値とする。つまり、封止用樹脂組成物は所定の温度で加熱していくと、時間の経過と共に、硬化が進み、測定されるトルク値が最大値となる。最大値の70%は、最大値を100%として算出することができる。 Here, the "predetermined temperature" is the molding temperature in the sealing molding to which the sealing resin composition according to the present embodiment is applied. This molding temperature is a temperature of 150 ° C. or lower, for example, 130 ° C. Further, the "maximum value" means a value when the torque value measured while heating the sealing resin composition according to the present embodiment at a predetermined temperature does not increase. That is, as shown in FIG. 1, when the sealing resin composition is heated at a predetermined temperature, the torque value increases with the passage of time, but the increase in the torque value disappears and is constant. The value when the torque value of is reached is taken as the maximum value of the torque value. That is, when the sealing resin composition is heated at a predetermined temperature, the curing progresses with the passage of time, and the measured torque value becomes the maximum value. 70% of the maximum value can be calculated with the maximum value as 100%.
 また本実施形態に係る封止用樹脂組成物は、上記所定の温度で2.5×T1の時間加熱して得られる硬化物のショアD硬度(HS)が、80<HSで示される式2の条件を満たすことにより、低温での成形を行った際の硬化性及び充填性が良好で、連続生産性に優れると言える。ショアD硬度(HS)は、例えば、JIS K 6253-3に準拠して、タイプDデュロメータで測定することができる。 Further, in the sealing resin composition according to the present embodiment, the shore D hardness (HS) of the cured product obtained by heating at the above-mentioned predetermined temperature for 2.5 × T1 is expressed by the formula 2 of 80 <HS. By satisfying the above conditions, it can be said that the curability and filling property when molding at a low temperature are good, and the continuous productivity is excellent. The shore D hardness (HS) can be measured with a type D durometer, for example, in accordance with JIS K6253-3.
 2.詳細
 以下、本実施形態に係る封止用樹脂組成物(以下、組成物(X)ということがある)を詳細に説明する。
2. 2. Details Hereinafter, the sealing resin composition according to the present embodiment (hereinafter, may be referred to as composition (X)) will be described in detail.
 <封止用樹脂組成物の性状等>
 本実施形態の組成物(X)は、上述の通り、150℃以下の温度で速硬化可能な封止用樹脂組成物である。前記封止用樹脂組成物は、所定の温度で加熱しながら測定されるトルク値が0.0098N・mに達するまでの時間をT1、前記トルク値が最大値の70%に達するまでの時間をT2とした場合に、式(1)が成立し、かつ前記封止用樹脂組成物は、前記所定の温度で2.5×T1の時間加熱して得られる硬化物のショアD硬度(HS)が、式(2)を満たす。式1は、T2<2.5×T1で示される。式2は、80<HSで示される。
<Characteristics of sealing resin composition, etc.>
As described above, the composition (X) of the present embodiment is a sealing resin composition that can be rapidly cured at a temperature of 150 ° C. or lower. In the sealing resin composition, the time until the torque value measured while heating at a predetermined temperature reaches 0.0098 Nm is T1, and the time until the torque value reaches 70% of the maximum value is set. In the case of T2, the formula (1) is established, and the sealing resin composition is a cured product obtained by heating at the predetermined temperature for a time of 2.5 × T1 (HS). However, the equation (2) is satisfied. Equation 1 is represented by T2 <2.5 × T1. Equation 2 is represented by 80 <HS.
 上記所定の温度は、樹脂組成物(X)が封止成形で使用される際の成形温度であり、例えば、130℃である。トルク値は、例えば、JSRトレーディング株式会社製のキュラストメータ(登録商標)VPSで測定することができる。ショアD硬度HSは、次のようにして測定される。まず、式(1)が成立する温度(すなわち、上記「所定の温度」)に加熱した金型に、注入圧力6.9MPaで、組成物(X)を注入し、T2時間加熱処理することで、直径50mm、厚み3mmの円板を成形する。続いて、金型から取り出して10秒後に、成形された組成物(X)の半硬化物である円板のショアD硬度HSを、アスカーゴム硬度計D型を用いて測定することができる。 The above-mentioned predetermined temperature is a molding temperature when the resin composition (X) is used in sealing molding, for example, 130 ° C. The torque value can be measured by, for example, a curast meter (registered trademark) VPS manufactured by JSR Trading Co., Ltd. The shore D hardness HS is measured as follows. First, the composition (X) is injected into a mold heated to a temperature at which the formula (1) is established (that is, the above-mentioned "predetermined temperature") at an injection pressure of 6.9 MPa, and heat-treated for T2 hours. , A disk having a diameter of 50 mm and a thickness of 3 mm is formed. Subsequently, 10 seconds after being taken out from the mold, the shore D hardness HS of the disk, which is a semi-cured product of the molded composition (X), can be measured using an Asker rubber hardness tester D mold.
 ここで、式(1)において、T1の係数は2.5であるが、一般的な封止用樹脂組成物では、T1の係数は3.0以上の数値を取りやすい。式(1)におけるT1の係数が2.5以下である組成物(X)は、T1の係数が3.0以上である封止用樹脂組成物に比べて、成形における加熱時間を20%以上短縮することができる。すなわち、式(1)は、封止用樹脂組成物の速硬化性を評価するための指標となり得る。また式(1)において、T2は、組成物(X)を成形する際に、組成物(X)を硬化物として取り出すことが可能な加熱処理時間として用いることができる。すなわち、T2は、所定の温度で組成物(X)を成形した場合、式(2)の条件を満たす時間である。すなわち、低温で式(1)及び式(2)が成立すれば、組成物(X)を低温で成形する際の加熱処理時間(成形時間)を短くでき、組成物(X)が良好な連続成形性を有しやすい。このように式(1)及び式(2)を満たす組成物(X)は、成形における加熱処理時間を短くでき、かつ良好な硬化性を有するものであり、150℃以下の低温であっても速硬化可能であり、良好な連続成形性を有しやすい。すなわち、スリット粘度の値が30Pa・s以下であることで、組成物(X)は、成形時に溶融粘度が低く抑えられ、流動しやすく、半導体部品を封止する際の充填性が良好になりやすい。 Here, in the formula (1), the coefficient of T1 is 2.5, but in a general sealing resin composition, the coefficient of T1 tends to be 3.0 or more. The composition (X) having a T1 coefficient of 2.5 or less in the formula (1) has a heating time of 20% or more in molding as compared with the sealing resin composition having a T1 coefficient of 3.0 or more. Can be shortened. That is, the formula (1) can be an index for evaluating the quick-curing property of the sealing resin composition. Further, in the formula (1), T2 can be used as a heat treatment time during which the composition (X) can be taken out as a cured product when the composition (X) is molded. That is, T2 is a time that satisfies the condition of the formula (2) when the composition (X) is molded at a predetermined temperature. That is, if the formulas (1) and (2) are established at a low temperature, the heat treatment time (molding time) when molding the composition (X) at a low temperature can be shortened, and the composition (X) is continuously good. Easy to have formability. As described above, the composition (X) satisfying the formulas (1) and (2) can shorten the heat treatment time in molding and has good curability, even at a low temperature of 150 ° C. or lower. It can be cured quickly and tends to have good continuous moldability. That is, when the value of the slit viscosity is 30 Pa · s or less, the melt viscosity of the composition (X) is suppressed to a low level during molding, it is easy to flow, and the filling property when sealing the semiconductor component is improved. Cheap.
 組成物(X)が流動する際に測定される圧力として規定されるスリット粘度の値は、30Pa・s以下であることが好ましい。この場合、低温での組成物(X)の粘度が低く流れ性が良好であり、組成物(X)はモールドアンダーフィル材として好適に使用される。モールドアンダーフィル材は、基板の表面に実装された部品の下の空間(基板と部品との間の空間)に充填される封止材である。組成物(X)のスリット粘度の値が上記の範囲であると、基板と部品との間の狭い空間に進入しやすく、組成物(X)の充填性が良好であるといえる。 The value of the slit viscosity defined as the pressure measured when the composition (X) flows is preferably 30 Pa · s or less. In this case, the viscosity of the composition (X) at a low temperature is low and the flowability is good, and the composition (X) is suitably used as a mold underfill material. The mold underfill material is a sealing material that fills the space under the component (the space between the substrate and the component) mounted on the surface of the substrate. When the value of the slit viscosity of the composition (X) is in the above range, it is easy to enter the narrow space between the substrate and the component, and it can be said that the filling property of the composition (X) is good.
 スリット粘度は、例えば次のようにして測定される。すなわち、成形機(第一精工株式会社製、Single Pot Molding System)を用いて、式(1)及び式(2)を満たす温度に加熱された金型における厚み0.2mmのスリットをせん断速度50s-1で、組成物(X)が流動する際の圧力を測定する。 The slit viscosity is measured, for example, as follows. That is, using a molding machine (Single Pot Molding System manufactured by Daiichi Seiko Co., Ltd.), a slit having a thickness of 0.2 mm in a mold heated to a temperature satisfying the formulas (1) and (2) is sheared at a shear rate of 50 s. At -1, the pressure at which the composition (X) flows is measured.
 組成物(X)のスリット粘度の値は、20Pa・s以下であることがより好ましく、15Pa・s以下であることが特に好ましい。また組成物(X)のスリット粘度の値は、0.5Pa・s以上であることが好ましい。 The value of the slit viscosity of the composition (X) is more preferably 20 Pa · s or less, and particularly preferably 15 Pa · s or less. The slit viscosity value of the composition (X) is preferably 0.5 Pa · s or more.
 組成物(X)は、20℃で24時間保管する前の封止用樹脂組成物で測定されるスパイラルフローに対して、20℃で24時間保管した後の封止用樹脂組成物で測定されるスパイラルフローの変化率が30%以下であることが好ましい。この場合、組成物(X)の保存安定性が良好になりやすい。ASTM D3123に基づき、金型温度130℃、注入圧力6.9MPaで組成物(X)が、どの程度流動するかを測定し、その長さ(cm)をスパイラルフローとすることができる。スパイラルフローの上記変化率は、20%以下であることがより好ましく、15%以下であることが特に好ましい。 The composition (X) is measured with the sealing resin composition after being stored at 20 ° C. for 24 hours, as opposed to the spiral flow measured with the sealing resin composition before being stored at 20 ° C. for 24 hours. It is preferable that the rate of change of the spiral flow is 30% or less. In this case, the storage stability of the composition (X) tends to be good. Based on ASTM D3123, it is possible to measure how much the composition (X) flows at a mold temperature of 130 ° C. and an injection pressure of 6.9 MPa, and use the length (cm) as a spiral flow. The rate of change of the spiral flow is more preferably 20% or less, and particularly preferably 15% or less.
 <封止用樹脂組成物の組成>
 以上のような組成物(X)の特性は、下記で説明される組成物(X)の組成によって達成できる。すなわち、組成物(X)は、エポキシ樹脂(A)と、硬化触媒(B)と、フィラー(C)と、を含有することが好ましい。
<Composition of resin composition for encapsulation>
The above characteristics of the composition (X) can be achieved by the composition of the composition (X) described below. That is, the composition (X) preferably contains an epoxy resin (A), a curing catalyst (B), and a filler (C).
 <エポキシ樹脂>
 エポキシ樹脂(A)は、1分子中に2個以上のエポキシ基を有する化合物であることが好ましい。エポキシ樹脂(A)は、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビフェニル型エポキシ化合物、o-クレゾールノボラック型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、ナフタレン環含有エポキシ化合物、脂環式エポキシ化合物、ブロム含有エポキシ化合物、及びこれらの水添物のうち、少なくとも一種の成分を含有できる。
<Epoxy resin>
The epoxy resin (A) is preferably a compound having two or more epoxy groups in one molecule. The epoxy resin (A) is, for example, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a biphenyl type epoxy compound, an o-cresol novolac type epoxy compound, a dicyclopentadiene type epoxy compound, a naphthalene ring-containing epoxy compound, an alicyclic type. It can contain at least one component of an epoxy compound, a brom-containing epoxy compound, and a hydrogenated product thereof.
 エポキシ樹脂(A)は、例えば常温で固体である。この場合、エポキシ樹脂(A)の融点は低いことが好ましい。 The epoxy resin (A) is, for example, a solid at room temperature. In this case, the melting point of the epoxy resin (A) is preferably low.
 エポキシ樹脂(A)の含有割合は、組成物(X)の固形分全質量に対し、4質量%以上35質量%以下であることが好ましい。エポキシ樹脂(A)の含有割合が、組成物(X)の固形分全質量に対し、4質量%以上であることで、成形時に組成物(X)が良好な硬化性を有しやすく、組成物(X)が良好な連続成形性を有しやすい。エポキシ樹脂(A)の含有割合は、組成物(X)の固形分全質量に対し、4質量%以上30質量%以下であることがより好ましく、4質量%以上25質量%以下であることが特に好ましい。 The content ratio of the epoxy resin (A) is preferably 4% by mass or more and 35% by mass or less with respect to the total solid content of the composition (X). When the content ratio of the epoxy resin (A) is 4% by mass or more with respect to the total solid content of the composition (X), the composition (X) tends to have good curability at the time of molding, and the composition The object (X) tends to have good continuous formability. The content ratio of the epoxy resin (A) is more preferably 4% by mass or more and 30% by mass or less, and preferably 4% by mass or more and 25% by mass or less, based on the total solid content of the composition (X). Especially preferable.
 <硬化触媒>
 硬化触媒(B)は、エポキシ樹脂(A)の硬化を促進する。硬化触媒(B)としては、リンを含有する潜在性触媒と、アミジンの部分構造を有する複素環式化合物と、を含むことが好ましい。この場合、組成物(X)の低粘度と低温硬化の両立が可能となる。潜在性触媒は、熱や光といった外部からの刺激トリガーにより硬化を開始させるようにした硬化触媒である。アミジンの部分構造を有する複素環式化合物とは、1つの炭素に二重結合で窒素原子が1つ、単結合で窒素原子が1つ付いている構造を複素環の一部に有する化合物であり、例えば、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、イミダゾール、ピリミジン、プリンなどの各種誘導体が挙げられる。硬化触媒としては、上記2種類の他に、アミン、イミダゾール系化合物、含窒素複素環式化合物、第4級アンモニウム化合物、4級ホスホニウム化合物、アルソニウム化合物等が挙げられる。
<Curing catalyst>
The curing catalyst (B) accelerates the curing of the epoxy resin (A). The curing catalyst (B) preferably contains a latent catalyst containing phosphorus and a heterocyclic compound having a partial structure of amidine. In this case, it is possible to achieve both low viscosity and low temperature curing of the composition (X). The latent catalyst is a curing catalyst in which curing is started by an external stimulus trigger such as heat or light. The heterocyclic compound having a partial structure of amidine is a compound having a structure in which one carbon has one nitrogen atom in a double bond and one nitrogen atom in a single bond in a part of the heterocycle. For example, various derivatives such as diazabicycloundecene (DBU), diazabicyclononene (DBN), imidazole, pyrimidine, and purine can be mentioned. Examples of the curing catalyst include amines, imidazole compounds, nitrogen-containing heterocyclic compounds, quaternary ammonium compounds, quaternary phosphonium compounds, and arsonium compounds in addition to the above two types.
 硬化触媒(B)が、リンを含有する潜在性触媒と、アミジンの部分構造を有する複素環式化合物と、組成物(X)が低い粘度を有しやすく、かつ低い温度での良好な硬化性を有しやすい。そのため、組成物(X)が、成形時に流動しやすく、半導体パッケージ等の封止をする際の充填性が良好になりやすく、かつ組成物(X)の保存安定性を高めやすい。 The curing catalyst (B) is a latent catalyst containing phosphorus, a heterocyclic compound having a partial structure of amidine, and the composition (X) tends to have a low viscosity and has good curability at a low temperature. Easy to have. Therefore, the composition (X) tends to flow during molding, the filling property when sealing a semiconductor package or the like tends to be good, and the storage stability of the composition (X) tends to be improved.
 硬化触媒(B)の含有割合は、組成物(X)の固形分全質量に対して、0.3質量%以上1.0質量%以下であることが好ましい。硬化触媒(B)の含有割合が、組成物(X)の固形分全質量に対して、0.3質量%以上であることで、組成物(X)が良好な硬化性を有しやすく、連続成形性が向上しやすい。硬化触媒(B)の含有割合が、組成物(X)の固形分全質量に対して、1.0質量%以下であることで、組成物(X)が低い溶融粘度を有しやすく流動性が良好になりやすいため、半導体部品を封止する際の充填性が良好になりやすい。硬化触媒(B)の含有割合は、組成物(X)の固形分全質量に対して、0.3質量%以上0.8質量%以下であることがより好ましく、0.3質量%以上0.6質量%以下であることが特に好ましい。 The content ratio of the curing catalyst (B) is preferably 0.3% by mass or more and 1.0% by mass or less with respect to the total solid content of the composition (X). When the content ratio of the curing catalyst (B) is 0.3% by mass or more with respect to the total solid content of the composition (X), the composition (X) tends to have good curability. Continuous formability is likely to improve. When the content ratio of the curing catalyst (B) is 1.0% by mass or less with respect to the total solid content of the composition (X), the composition (X) tends to have a low melt viscosity and has fluidity. Is likely to be good, so that the filling property when sealing a semiconductor component is likely to be good. The content ratio of the curing catalyst (B) is more preferably 0.3% by mass or more and 0.8% by mass or less, and 0.3% by mass or more and 0, based on the total solid content of the composition (X). It is particularly preferable that it is 6.6% by mass or less.
 <フィラー(無機充填材)>
 フィラー(C)は、例えば溶融シリカ、球状溶融シリカ、結晶シリカといったシリカ;酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、高誘電率性チタン酸バリウム、酸化チタンといった高誘電率フィラー;ハードフェライトといった磁性フィラー;水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、グアニジン塩、ホウ酸亜鉛、モリブデン化合物、スズ酸亜鉛といった無機系難燃剤;タルク;硫酸バリウム;炭酸カルシウム;並びに雲母粉からなる群から選択される少なくとも一種の材料を含有できる。
<Filler (inorganic filler)>
The filler (C) is, for example, silica such as molten silica, spherical molten silica, and crystalline silica; high dielectric constant filler such as aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, high dielectric barium titanate, and titanium oxide; hard ferrite and the like. Magnetic fillers; inorganic flame retardants such as magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, guanidine salts, zinc borate, molybdenum compounds, zinc tinate; talc; barium sulfate; calcium carbonate; and from mica flour. Can contain at least one material selected from the group.
 フィラー(C)の平均粒子径は、0.5μm以上7.0μm以下であることが好ましい。この場合、組成物(X)が成形時に良好な流動性を有しやすい。なお、この平均粒子径は、レーザー回折・散乱式粒度分布測定装置を用いたレーザー回折・散乱法による粒度分布の測定値に基づく、体積基準の累積中位径(メディアン径d50)である。フィラー(C)の平均粒子径が1.0μm以上6.5μm以下であればより好ましく、1.5μm以上6.0μm以下であれば特に好ましい。フィラー(C)は、成形時の組成物(X)の溶融粘度、封止材の物性などの調整のために、平均粒子径の異なる二種以上の成分を含有してもよい。 The average particle size of the filler (C) is preferably 0.5 μm or more and 7.0 μm or less. In this case, the composition (X) tends to have good fluidity during molding. The average particle size is a volume-based cumulative medium diameter (median diameter d50) based on the measured value of the particle size distribution by the laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device. It is more preferable that the average particle size of the filler (C) is 1.0 μm or more and 6.5 μm or less, and particularly preferably 1.5 μm or more and 6.0 μm or less. The filler (C) may contain two or more components having different average particle diameters in order to adjust the melt viscosity of the composition (X) at the time of molding, the physical properties of the encapsulant, and the like.
 フィラー(C)の含有割合は、組成物(X)の固形分全質量に対し、60質量%以上93質量%以下であることが好ましい。フィラー(C)の含有割合が、組成物(X)の固形分全質量に対し、60質量%以上であると、組成物(X)から得られる封止材の線膨張係数が十分に低められやすく、リフロー処理などにより加熱されても半導体パッケージに反りが発生しにくい。フィラー(C)の含有割合が、組成物(X)の固形分全質量に対し、93質量%以下であると、成形時の組成物(X)の十分な流動性が得られやすく、組成物(X)を用いて、半導体部品を封止する際の充填性が良好になりやすい。フィラー(C)の含有割合は、組成物(X)の固形分全質量に対し、70質量%以上93質量%以下であればより好ましく、80質量%以上93質量%以下であれば特に好ましい。 The content ratio of the filler (C) is preferably 60% by mass or more and 93% by mass or less with respect to the total solid content of the composition (X). When the content ratio of the filler (C) is 60% by mass or more with respect to the total solid content of the composition (X), the linear expansion coefficient of the encapsulant obtained from the composition (X) is sufficiently lowered. It is easy to warp the semiconductor package even if it is heated by reflow processing. When the content ratio of the filler (C) is 93% by mass or less with respect to the total solid content of the composition (X), sufficient fluidity of the composition (X) at the time of molding can be easily obtained, and the composition Using (X), the filling property when sealing the semiconductor component tends to be good. The content ratio of the filler (C) is more preferably 70% by mass or more and 93% by mass or less, and particularly preferably 80% by mass or more and 93% by mass or less, based on the total solid content of the composition (X).
 <硬化剤>
 組成物(X)は、硬化剤(D)をさらに含有してもよい。硬化剤(D)は、エポキシ樹脂(A)を硬化させるために用いられる。硬化剤(D)は、コーンプレート型粘度計により150℃で測定される粘度が、9mPa・s以上65mPa・s以下である樹脂を、硬化剤(D)全体に対し、50質量%以上95質量%以下の割合で含むことが好ましい。硬化剤(D)における、粘度が9mPa・s以上65mPa・s以下である樹脂を含む割合が、硬化剤(D)全体に対し、50質量%以上であることで、組成物(X)が成形時に良好な硬化性を有しやすく、組成物(X)の連続成形性が高められやすい。硬化剤(D)における、粘度が9mPa・s以上65mPa・s以下である樹脂を含む割合が、硬化剤(D)全体に対し、95質量%以下であることで、組成物(X)が成形時に良好な流動性を有しやすく、半導体部品を封止する際に充填性が高められやすい。
<Curing agent>
The composition (X) may further contain a curing agent (D). The curing agent (D) is used to cure the epoxy resin (A). The curing agent (D) is a resin having a viscosity measured at 150 ° C. by a cone plate type viscometer of 9 mPa · s or more and 65 mPa · s or less, which is 50% by mass or more and 95% by mass with respect to the entire curing agent (D). It is preferable to include it in a ratio of% or less. The composition (X) is molded when the proportion of the curing agent (D) containing the resin having a viscosity of 9 mPa · s or more and 65 mPa · s or less is 50% by mass or more with respect to the entire curing agent (D). Sometimes it tends to have good curability, and the continuous moldability of the composition (X) tends to be enhanced. The composition (X) is molded when the proportion of the curing agent (D) containing the resin having a viscosity of 9 mPa · s or more and 65 mPa · s or less is 95% by mass or less with respect to the entire curing agent (D). Sometimes it is easy to have good fluidity, and it is easy to improve the filling property when sealing semiconductor parts.
 樹脂としては、例えば、フェノール樹脂が挙げられる。粘度が、9mPa・s以上65mPa・s以下である樹脂以外の成分としては、酸無水物、及びフェノール性水酸基を生成する機能性化合物からなる群から選択される一種以上の成分を含有することが好ましい。粘度が、9mPa・s以上65mPa・s以下である樹脂を含む割合が、硬化剤(D)全体に対して、30質量%以上98質量%以下であることがより好ましく、40質量%以上98質量%以下であることが特に好ましい。 Examples of the resin include phenolic resins. The components other than the resin having a viscosity of 9 mPa · s or more and 65 mPa · s or less may contain one or more components selected from the group consisting of acid anhydrides and functional compounds that generate phenolic hydroxyl groups. preferable. The proportion of the resin containing the resin having a viscosity of 9 mPa · s or more and 65 mPa · s or less is more preferably 30% by mass or more and 98% by mass or less, more preferably 40% by mass or more and 98% by mass or less, based on the entire curing agent (D). % Or less is particularly preferable.
 硬化剤(D)の含有割合は、組成物(X)の固形分全質量に対し、1.0質量%以上10質量%以下であることが好ましい。硬化剤(D)の含有割合が、組成物(X)の固形分全質量に対し、1.0質量%以上であることで、成形時に組成物(X)が良好な硬化性を有しやすく、組成物(X)の連続成形性が向上しやすい。硬化剤(D)の含有割合が、組成物(X)の固形分全質量に対し、10.0質量%以下であることで、成形時に組成物(X)が良好な流動性を有しやすく、組成物(X)を用いて半導体部品を封止する際に、良好な充填性を示しやすい。硬化剤(D)の含有割合が、組成物(X)の固形分全質量に対し、2.0質量%以上8.0質量%以下であることがより好ましく、3.0質量%以上5.0質量%以下であることが特に好ましい。 The content ratio of the curing agent (D) is preferably 1.0% by mass or more and 10% by mass or less with respect to the total solid content of the composition (X). When the content ratio of the curing agent (D) is 1.0% by mass or more with respect to the total solid content of the composition (X), the composition (X) tends to have good curability at the time of molding. , The continuous formability of the composition (X) is likely to be improved. When the content ratio of the curing agent (D) is 10.0% by mass or less with respect to the total solid content of the composition (X), the composition (X) tends to have good fluidity at the time of molding. , When a semiconductor component is sealed using the composition (X), it is easy to show good filling property. The content ratio of the curing agent (D) is more preferably 2.0% by mass or more and 8.0% by mass or less, and 3.0% by mass or more and 5. It is particularly preferable that it is 0% by mass or less.
 <低粘度化剤>
 組成物(X)は、低粘度化剤(E)をさらに含有してもよい。組成物(X)が、低粘度化剤(E)を含有することで、組成物(X)の流動性がさらに向上し、半導体装置を封止する際の充填性が高まりやすい。低粘度化剤(E)は、末端フェノール変性シランカップリング剤、長鎖脂肪酸エステル、及び環状ホスファゼンからなる群より選択される少なくとも一種を含むことが好ましい。低粘度化剤(E)が、末端フェノール変性シランカップリング剤を含有することで、エポキシ樹脂(A)とフィラー(C)との親和性が向上し、組成物(X)の溶融粘度が低く抑えられ、良好な流動性を有しやすい。低粘度化剤(E)として長鎖脂肪酸エステル又は環状ホスファゼンを含有することで、成形温度時にこれらが十分低粘度に溶融し、可塑剤として作用することで、組成物(X)が成形時により良好な流動性を有しやすい。上記の群の特徴として、一般的な低粘度可塑剤と比較し、エポキシ樹脂及びフェノール樹脂との親和性が高く、溶融した際に分離が起きにくい為、MSL特性(吸湿耐性特性)などの信頼性と低粘度化が両立できる点である。
<Low viscosity agent>
The composition (X) may further contain a low viscosity agent (E). When the composition (X) contains the low viscosity agent (E), the fluidity of the composition (X) is further improved, and the filling property when sealing the semiconductor device is likely to be improved. The low viscosity agent (E) preferably contains at least one selected from the group consisting of a terminal phenol-modified silane coupling agent, a long-chain fatty acid ester, and cyclic phosphazene. By containing the terminal phenol-modified silane coupling agent in the low viscosity agent (E), the affinity between the epoxy resin (A) and the filler (C) is improved, and the melt viscosity of the composition (X) is low. It is suppressed and tends to have good fluidity. By containing a long-chain fatty acid ester or cyclic phosphazene as the low-viscosity agent (E), these are melted to a sufficiently low viscosity at the molding temperature and act as a plasticizer, so that the composition (X) becomes more at the time of molding. It tends to have good fluidity. As a feature of the above group, compared to general low-viscosity plasticizers, it has a high affinity with epoxy resins and phenolic resins, and separation does not easily occur when melted, so reliability such as MSL characteristics (moisture absorption resistance characteristics) is reliable. The point is that both properties and low viscosity can be achieved.
 低粘度化剤(E)の含有割合は、組成物(X)の固形分全質量に対し、0.1質量%以上3.0質量%以下であることが好ましい。この場合、組成物(X)が成形時に良好な流動性を有しやすい。低粘度化剤(E)の含有割合は、組成物(X)の固形分全質量に対し、より好ましくは0.2質量%以上2.0質量%以下、更に好ましくは、0.3質量%以上1.0質量%以下である。 The content ratio of the low viscosity agent (E) is preferably 0.1% by mass or more and 3.0% by mass or less with respect to the total solid content of the composition (X). In this case, the composition (X) tends to have good fluidity during molding. The content ratio of the low viscosity agent (E) is more preferably 0.2% by mass or more and 2.0% by mass or less, still more preferably 0.3% by mass, based on the total solid content of the composition (X). It is 1.0% by mass or less.
 <その他の成分>
 組成物(X)には、本実施形態の効果を損なわない範囲内において、上記成分以外の成分を含有してもよい。上記以外の成分として、顔料、イオントラップ材、シランカップリング剤などが挙げられる。
<Other ingredients>
The composition (X) may contain components other than the above components as long as the effects of the present embodiment are not impaired. Examples of components other than the above include pigments, ion trap materials, silane coupling agents and the like.
 顔料は、例えば、カーボンブラック、ベンガラ、酸化チタン、フタロシアニン及びペリレンブラックからなる群から選択される少なくとも一種の成分を含有することができる。 The pigment can contain, for example, at least one component selected from the group consisting of carbon black, red iron oxide, titanium oxide, phthalocyanine and perylene black.
 イオントラップ材はイオン交換体であって、例えば、マグネシウム・アルミニウム系イオン交換体及びハイドロタルサイト系イオン交換体のうち少なくとも一方を含有することができる。 The ion trap material is an ion exchanger, and can contain, for example, at least one of a magnesium-aluminum ion exchanger and a hydrotalcite ion exchanger.
 <封止用樹脂組成物の製造方法>
 上記のような組成物(X)の構成成分を混合することで、組成物(X)を製造できる。より具体的には、例えばエポキシ樹脂(A)、硬化触媒(B)、フィラー(C)、硬化剤(D)、及び低粘度化剤(E)を含む原料を、ミキサー、ブレンダーなどで十分均一になるまで混合し、続いて熱ロールやニーダーなどの混練機により加熱されている状態で溶融混合してから、室温に冷却する。これにより得られた混合物を公知の手段で粉砕することで、粉体状の組成物(X)を製造できる。組成物(X)は粉体状でなくてもよく、例えばタブレット状であってもよい、タブレット状である場合の組成物(X)は成形条件に適した寸法と質量を有することが好ましい。
<Manufacturing method of resin composition for encapsulation>
The composition (X) can be produced by mixing the constituents of the composition (X) as described above. More specifically, for example, a raw material containing an epoxy resin (A), a curing catalyst (B), a filler (C), a curing agent (D), and a low viscosity agent (E) is sufficiently uniformed with a mixer, a blender, or the like. The mixture is mixed until it becomes, and then melt-mixed while being heated by a kneader such as a hot roll or a kneader, and then cooled to room temperature. The powdery composition (X) can be produced by pulverizing the resulting mixture by a known means. The composition (X) does not have to be in the form of powder, and may be in the form of a tablet, for example. It is preferable that the composition (X) in the form of a tablet has dimensions and mass suitable for molding conditions.
 ここで、組成物(X)の製造方法は、一次混合工程と、二次混合工程と、を含むことが好ましい。一次混合工程では、硬化触媒(B)以外の成分を熱混練し、混練物を作製する。二次混合工程では、硬化触媒(B)を95℃以下で上記混練物に混合させる。 Here, it is preferable that the method for producing the composition (X) includes a primary mixing step and a secondary mixing step. In the primary mixing step, components other than the curing catalyst (B) are heat-kneaded to prepare a kneaded product. In the secondary mixing step, the curing catalyst (B) is mixed with the kneaded product at 95 ° C. or lower.
 二次混合工程での混練温度は、95℃以下であることが好ましい。この場合、一時混合物と硬化触媒(B)が十分に溶融分散でき、且つ硬化反応を進行させずに封止材を作製できる。この混練温度は65℃以上95℃以下の範囲であればより好ましく、80℃以上90℃以下の範囲内であれば特に好ましい。 The kneading temperature in the secondary mixing step is preferably 95 ° C. or lower. In this case, the temporary mixture and the curing catalyst (B) can be sufficiently melted and dispersed, and the encapsulant can be produced without proceeding with the curing reaction. The kneading temperature is more preferably in the range of 65 ° C. or higher and 95 ° C. or lower, and particularly preferably in the range of 80 ° C. or higher and 90 ° C. or lower.
 組成物(X)は、25℃で固体であることが好ましい。この場合、組成物(X)を射出成型法、トランスファ成形法、圧縮成型法などの加圧成形法で成形することで、封止材を作製できる。組成物(X)が15℃以上25℃以下の範囲内のいずれの温度でも固体であればより好ましく、5℃以上35℃以下の範囲内のいずれの温度でも固体であれば特に好ましい。 The composition (X) is preferably solid at 25 ° C. In this case, a sealing material can be produced by molding the composition (X) by a pressure molding method such as an injection molding method, a transfer molding method, or a compression molding method. It is more preferable if the composition (X) is solid at any temperature within the range of 15 ° C. or higher and 25 ° C. or lower, and particularly preferably if it is solid at any temperature within the range of 5 ° C. or higher and 35 ° C. or lower.
 <半導体装置(半導体パッケージ)の製造方法>
 図2は、半導体装置100の一例を示している。この半導体装置100は、基板10の厚み方向の両面に半導体チップなどの電子部品11を複数実装した両面実装基板(Double-sided FC substrate)のシステムインパッケージ(SiP)である。各電子部品11は、それぞれ、バンプ12、ボンディングワイヤ13、あるいははんだ接合部14で基板10の回路に電気的及び機械的に接続されている。基板10及び各電子部品11は、封止材16で封止されている。封止材16は、本実施形態に係る組成物(X)の硬化物である。半導体装置100は下面に、他の基板等に実装可能な外部バンプ15が設けられている。
<Manufacturing method of semiconductor device (semiconductor package)>
FIG. 2 shows an example of the semiconductor device 100. The semiconductor device 100 is a system-in-package (SiP) of a double-sided mounting substrate (Double-sided FC substrate) in which a plurality of electronic components 11 such as semiconductor chips are mounted on both sides of the substrate 10 in the thickness direction. Each of the electronic components 11 is electrically and mechanically connected to the circuit of the substrate 10 by a bump 12, a bonding wire 13, or a solder joint 14. The substrate 10 and each electronic component 11 are sealed with a sealing material 16. The encapsulant 16 is a cured product of the composition (X) according to the present embodiment. The semiconductor device 100 is provided with an external bump 15 that can be mounted on another substrate or the like on the lower surface thereof.
 上記のような半導体装置は、例えば次のようにして製造される。すなわち、基板の片面である第一面に半導体チップ等の電子部品を搭載し、ワイヤボンディングやフリップチップボンディングを行う。次に、基板の第一面とは反対側の面である第二面にも電子部品を搭載し、ワイヤボンディング及びバンプを用いたフリップチップボンディングを行う。その後、基板上の電子部品を組成物(X)で封止する。基板上の半導体素子の封止は、例えばトランスファ成形により行われる。この場合、電子部品を搭載した基板を金型のキャビティ内に配置した後、このキャビティ内に溶融した組成物(X)を所定の圧力で注入し、キャビティ内に充満させる。このときの注入圧力は、例えば、3MPa以上10MPa以下、金型温度は例えば120℃以上150℃以下、成形時間は例えば10秒以上60秒以下に設定することができる。上記の金型温度は、組成物(X)が式(1)及び式(2)を満たし、低温での良好な硬化性と充填性とを有することにより実現される。次に、金型を閉じたまま後硬化(ポストキュア)を行った後、型開して成形物すなわち半導体装置を取り出すことで、半導体装置が作製される。 The semiconductor device as described above is manufactured as follows, for example. That is, electronic components such as semiconductor chips are mounted on the first surface, which is one side of the substrate, and wire bonding or flip chip bonding is performed. Next, electronic components are mounted on the second surface, which is the surface opposite to the first surface of the substrate, and wire bonding and flip-chip bonding using bumps are performed. Then, the electronic component on the substrate is sealed with the composition (X). The semiconductor element on the substrate is sealed, for example, by transfer molding. In this case, after the substrate on which the electronic component is mounted is placed in the cavity of the mold, the melted composition (X) is injected into the cavity at a predetermined pressure to fill the cavity. The injection pressure at this time can be set, for example, 3 MPa or more and 10 MPa or less, the mold temperature can be set, for example, 120 ° C. or more and 150 ° C. or less, and the molding time can be set, for example, 10 seconds or more and 60 seconds or less. The above mold temperature is realized by the composition (X) satisfying the formulas (1) and (2) and having good curability and filling property at a low temperature. Next, a semiconductor device is manufactured by performing post-curing (post-curing) with the mold closed and then opening the mold to take out a molded product, that is, a semiconductor device.
 以下、実施例を通して本開示をさらに具体的に説明するが、本開示はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail through examples, but the present disclosure is not limited to these examples.
 1.組成物(X)の調整
 表1における配合A-Dにおける組成物(X)の製造方法は、一次混合工程と、二次混合工程と、を有する2段混練により行った。最初に、硬化触媒(B)を除く成分、すなわち、エポキシ樹脂(A)、フィラー(C)、硬化剤(D)、低粘度化剤(E)、及び必要に応じて他の成分、を配合してミキサーを用いて十分均一に混合し、次いで二軸混練機を用いて熱混練する一次混合工程を行い、混合物を得た。次に、この混合物を室温に冷却後粉砕し、硬化触媒(B)を添加し、二軸混練機を用いて熱混錬する二次混合工程を行った。二次混合工程においては、材料の温度が65~95℃の範囲内になるように温度調整を行った。その後、二次混合工程で得られた混合物を、室温に冷却した後、粉砕することにより組成物(X)を得た。
1. 1. Preparation of Composition (X) The method for producing the composition (X) in Formulations AD in Table 1 was carried out by a two-stage kneading having a primary mixing step and a secondary mixing step. First, the components other than the curing catalyst (B), that is, the epoxy resin (A), the filler (C), the curing agent (D), the low viscosity agent (E), and other components as necessary are blended. Then, the mixture was sufficiently uniformly mixed using a mixer, and then a primary mixing step of hot kneading was performed using a twin-screw kneader to obtain a mixture. Next, this mixture was cooled to room temperature, pulverized, a curing catalyst (B) was added, and a secondary mixing step of hot kneading was performed using a twin-screw kneader. In the secondary mixing step, the temperature was adjusted so that the temperature of the material was within the range of 65 to 95 ° C. Then, the mixture obtained in the secondary mixing step was cooled to room temperature and then pulverized to obtain a composition (X).
 表1中の「組成」の欄に示す成分を配合して封止用樹脂組成物を得た。なお、表1に示す成分の詳細は、以下のとおりである。
・無機充填材(フィラー):デンカ株式会社、「FB-5SDC」、平均粒子径(d50)4.1μm、シリカ。
・エポキシ樹脂A:日本化薬株式会社製、ビフェニルアラルキル型エポキシ樹脂、「NC-3000」、エポキシ当量265~285g/eq。
・エポキシ樹脂B:三菱ケミカル株式会社製、ビフェニル型エポキシ樹脂、「YX4000」、エポキシ当量180~192g/eq。
・エポキシ樹脂C:三菱ケミカル株式会社製、ビスフェノールA型エポキシ樹脂、「YL6810」、エポキシ当量165~180g/eq。
・フェノール樹脂A:明和化成株式会社製、ビフェニルアラルキル類似エポキシ「MEHC-7841-4S」、OH当量161~171g/eq。
・フェノール樹脂B:明和化成株式会社製、「DL-92」OH当量103~109g/eq。
・顔料:三菱ケミカル株式会社製、カーボンブラック、「MA600」、粒子径20nm(算術平均径)。
・イオントラップ材:東亞合成株式会社製、「IXE-700F」(Mg、Al系)。
・硬化触媒A:サンアプロ株式会社製、有機リン系硬化剤「RP-701」。
・硬化触媒B:サンアプロ株式会社製、1,8-ジアザビシクロ(5,4,0)-ウンデセンー7、「SA851」。
・硬化触媒C:四国化成株式会社製、イミダゾール系エポキシ硬化剤、「2P4MHZ-PW」。
・シランカップリング剤:信越化学工業株式会社製、3-メルカプトプロピルトリメトキシシラン、「KBM-803」。
・低粘度化剤A:信越化学工業株式会社製、N-フェニルー3アミノプロピルトリメトキシシラン、「KBM-573」。
・低粘度化剤B:株式会社伏見製薬所製、有機ホスファゼン誘導体、「ラビトルFP-100」。
・低粘度化剤C:大日化学工業株式会社製、長鎖脂肪酸エステル、「EPL-6」。
The components shown in the "Composition" column in Table 1 were blended to obtain a sealing resin composition. The details of the components shown in Table 1 are as follows.
-Inorganic filler: Denka Co., Ltd., "FB-5SDC", average particle size (d50) 4.1 μm, silica.
Epoxy resin A: Biphenyl aralkyl type epoxy resin manufactured by Nippon Kayaku Co., Ltd., "NC-3000", epoxy equivalent 265 to 285 g / eq.
Epoxy resin B: Mitsubishi Chemical Corporation, biphenyl type epoxy resin, "YX4000", epoxy equivalent 180-192 g / eq.
Epoxy resin C: Mitsubishi Chemical Corporation, bisphenol A type epoxy resin, "YL6810", epoxy equivalent 165 to 180 g / eq.
Phenol resin A: Biphenyl aralkyl-like epoxy "MEHC-7841-4S" manufactured by Meiwa Kasei Co., Ltd., OH equivalent 161 to 171 g / eq.
-Phenol resin B: manufactured by Meiwa Kasei Co., Ltd., "DL-92" OH equivalent 103-109 g / eq.
-Pigment: Mitsubishi Chemical Corporation, carbon black, "MA600", particle diameter 20 nm (arithmetic mean diameter).
-Ion trap material: "IXE-700F" (Mg, Al system) manufactured by Toagosei Co., Ltd.
-Curing catalyst A: Organophosphorus curing agent "RP-701" manufactured by Sun Appro Co., Ltd.
-Curing catalyst B: manufactured by San-Apro Co., Ltd., 1,8-diazabicyclo (5,4,0) -Undesen-7, "SA851".
-Curing catalyst C: "2P4MHZ-PW", an imidazole-based epoxy curing agent manufactured by Shikoku Chemicals Corporation.
-Silane coupling agent: 3-mercaptopropyltrimethoxysilane, "KBM-803" manufactured by Shin-Etsu Chemical Co., Ltd.
-Low viscosity agent A: N-phenyl-3 aminopropyltrimethoxysilane, "KBM-573" manufactured by Shin-Etsu Chemical Co., Ltd.
-Low viscosity agent B: Organic phosphazene derivative, "Ravitor FP-100" manufactured by Fushimi Pharmaceutical Co., Ltd.
-Low viscosity agent C: Long-chain fatty acid ester manufactured by Dainichi Chemical Industry Co., Ltd., "EPL-6".
 2.評価
 (1)T1及びT2の測定
 JSRトレーディング株式会社製のキュラストメータVPS型を用いて、組成物(X)を130℃で加熱しながら、トルク値の測定を行った。加熱開始からトルク値の測定値が0.0098(N・m)に達するまでに要する時間をT1(秒)、トルク値が最大値から70%に達する時間をT2(秒)とした。
2. 2. Evaluation (1) Measurement of T1 and T2 The torque value was measured while heating the composition (X) at 130 ° C. using a curast meter VPS type manufactured by JSR Trading Co., Ltd. The time required from the start of heating until the measured torque value reached 0.0098 (Nm) was defined as T1 (seconds), and the time required for the torque value to reach 70% from the maximum value was defined as T2 (seconds).
 (2)ショアD硬度の測定
 130℃に加熱した金型に、注入圧力6.9MPaで組成物(X)を注入し、表1に示す所定の硬化時間で組成物(X)から直径50mm厚み3mmの円板を成形し、金型から脱型10秒後の成形品のショアD硬度を、アスカーゴム硬度計D型を用いて測定した。
(2) Measurement of Shore D hardness The composition (X) is injected into a mold heated to 130 ° C. at an injection pressure of 6.9 MPa, and the thickness is 50 mm from the composition (X) in a predetermined curing time shown in Table 1. A 3 mm disk was molded, and the shore D hardness of the molded product 10 seconds after being removed from the mold was measured using an Asker rubber hardness tester D mold.
 (3)スパイラルフロー(SF)の測定
 ASTM D3123に基づき、金型温度130℃、注入圧力6.9MPaで成形材料がどの程度流動するかを測定し、その長さ(cm)をスパイラルフロー長さとした。
(3) Measurement of spiral flow (SF) Based on ASTM D3123, how much the molding material flows at a mold temperature of 130 ° C. and an injection pressure of 6.9 MPa is measured, and the length (cm) is defined as the spiral flow length. did.
 (4)スリット粘度の測定
 第一精工製S-potを用いて金型のスリット(厚み0.2mm)せん断速度50s-1で材料が流動する際の圧力を測定し、粘度指標を測定した。
(4) Measurement of Slit Viscosity Using S-pot manufactured by Daiichi Seiko Co., Ltd., the pressure at which the material flowed at the slit (thickness 0.2 mm) shear rate 50s-1 of the mold was measured, and the viscosity index was measured.
 (5)連続成形性(離型性)
 エジェクトピンを有しない金型(60mm×60mm×1mm)を用い、金型温度130℃、注圧力9.8MPa所定の硬化時間で熱時硬化させ、組成物(X)の成形品を作製した。この成形品について、デジタルフォースゲージ(株式会社イマダ製、型番:ZTA-DPU-50N)を用いて、脱型時の応力を測定した。同様の条件で、成形による効果を繰り返し、脱型時の応力が30N以上、かつ3回連続になるまで成形硬化を行った。連続成形性はショット数が多いほど好ましく、特に、50ショット以上であれば、連続成形性が優れると言える。
(5) Continuous moldability (release property)
Using a mold (60 mm × 60 mm × 1 mm) having no eject pin, the mold was heat-cured at a mold temperature of 130 ° C. and a injection pressure of 9.8 MPa for a predetermined curing time to prepare a molded product of the composition (X). For this molded product, the stress at the time of demolding was measured using a digital force gauge (manufactured by Imada Co., Ltd., model number: ZTA-DPU-50N). Under the same conditions, the effect of molding was repeated, and molding and curing were performed until the stress at the time of demolding was 30 N or more and became continuous three times. The larger the number of shots, the more preferable the continuous formability, and it can be said that the continuous formability is particularly excellent when the number of shots is 50 or more.
 3.実施例および比較例
 表2~4に示す配合量で組成物(X)を調製し、上記評価を行った。結果を表2~4に示す。なお、実施例8以外の実施例および比較例は、上記2段混練を行った。実施例8は1段混練を行った、1段混練工法を用いた封止用樹脂組成物の製造は、上記の熱硬化性樹脂、硬化剤、硬化触媒、無機充填材、顔料及び、必要に応じて他の成分を配合してミキサー、ブレンダー等を用いて十分均一に混合し、次いで熱ロールやニーダー等を用いて加熱状態にて溶融混合する。そして、これを室温に冷却した後、粉砕することにより製造することができる。
3. 3. Examples and Comparative Examples The compositions (X) were prepared in the blending amounts shown in Tables 2 to 4, and the above evaluation was performed. The results are shown in Tables 2-4. In Examples and Comparative Examples other than Example 8, the above two-stage kneading was performed. In Example 8, the production of the sealing resin composition using the one-stage kneading method in which one-stage kneading was performed requires the above-mentioned thermosetting resin, curing agent, curing catalyst, inorganic filler, pigment, and necessary. Depending on the situation, other components are mixed and mixed sufficiently uniformly using a mixer, blender, etc., and then melt-mixed in a heated state using a heat roll, kneader, or the like. Then, it can be produced by cooling it to room temperature and then pulverizing it.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 

Claims (7)

  1.  150℃以下の温度で速硬化可能な封止用樹脂組成物であって、
     前記封止用樹脂組成物は、所定の温度で加熱しながら測定されるトルク値が0.0098N・mに達するまでの時間をT1、前記トルク値が最大値の70%に達するまでの時間をT2とした場合に、式(1)が成立し、かつ
     前記封止用樹脂組成物は、前記所定の温度で2.5×T1の時間加熱して得られる硬化物のショアD硬度(HS)が、式(2)を満たす、
     封止用樹脂組成物。
     (式1) T2<2.5×T1
     (式2) 80<HS
    A sealing resin composition that can be rapidly cured at a temperature of 150 ° C. or lower.
    In the sealing resin composition, the time until the torque value measured while heating at a predetermined temperature reaches 0.0098 Nm is T1, and the time until the torque value reaches 70% of the maximum value is set. In the case of T2, the formula (1) holds, and the sealing resin composition is the Shore D hardness (HS) of the cured product obtained by heating at the predetermined temperature for 2.5 × T1. However, the equation (2) is satisfied.
    Resin composition for encapsulation.
    (Equation 1) T2 <2.5 × T1
    (Equation 2) 80 <HS
  2.  前記所定の温度において測定されるスリット粘度の値が30Pa・s以下である、
     請求項1に記載の封止用樹脂組成物。
    The value of the slit viscosity measured at the predetermined temperature is 30 Pa · s or less.
    The sealing resin composition according to claim 1.
  3.  エポキシ樹脂と、硬化触媒と、フィラーと、を含有し、
     前記硬化触媒は、前記封止用樹脂組成物全体に対し0.3質量%以上1.0質量%以下であり、リンを含有する潜在性触媒と、アミジンの部分構造を有する複素環式化合物と、を含み、
     前記フィラーの平均粒子径は、0.5μm以上7.0μm以下である、
     請求項1又は2に記載の封止用樹脂組成物。
    Contains epoxy resin, curing catalyst, and filler,
    The curing catalyst is 0.3% by mass or more and 1.0% by mass or less with respect to the entire sealing resin composition, and includes a latent catalyst containing phosphorus and a heterocyclic compound having a partial structure of amidine. , Including
    The average particle size of the filler is 0.5 μm or more and 7.0 μm or less.
    The sealing resin composition according to claim 1 or 2.
  4.  硬化剤を更に含有し、
     前記硬化剤は、9mPa・s以上65mPa・s以下の粘度を有する樹脂を、前記硬化剤全体に対し、50質量%以上95%以下含む、
     請求項1~3のいずれか1項に記載の封止用樹脂組成物。
    Contains more hardener,
    The curing agent contains 50% by mass or more and 95% or less of a resin having a viscosity of 9 mPa · s or more and 65 mPa · s or less with respect to the entire curing agent.
    The sealing resin composition according to any one of claims 1 to 3.
  5.  低粘度化剤を更に含有し、
     前記低粘度化剤は、末端フェノール変性シランカップリング剤、長鎖脂肪酸エステル、及び環状ホスファゼンからなる群より選択される少なくとも一種を含む、
     請求項1~4のいずれか1項に記載の封止用樹脂組成物。
    Further contains a low viscosity agent,
    The low viscosity agent comprises at least one selected from the group consisting of terminal phenol-modified silane coupling agents, long chain fatty acid esters, and cyclic phosphazene.
    The sealing resin composition according to any one of claims 1 to 4.
  6.  20℃で24時間保管する前の封止用樹脂組成物で測定されるスパイラルフローに対して、20℃で24時間保管した後の封止用樹脂組成物で測定されるスパイラルフローの変化率が30%以下である、
     請求項1~5のいずれか1項に記載の封止用樹脂組成物。
    The rate of change of the spiral flow measured by the sealing resin composition after storing at 20 ° C. for 24 hours is different from the spiral flow measured by the sealing resin composition before storing at 20 ° C. for 24 hours. 30% or less,
    The sealing resin composition according to any one of claims 1 to 5.
  7.  エポキシ樹脂と、硬化触媒と、フィラーと、硬化剤と、低粘度化剤と、を含有する請求項1又は2に記載の封止用樹脂組成物を製造する方法であって、
     前記硬化触媒以外の成分を熱混練して、混練物を作製する一次混合工程と、
     前記硬化触媒を95℃以下で前記混練物に混合する二次混合工程と、を含む、
     封止用樹脂組成物の製造方法。

     
    The method for producing a sealing resin composition according to claim 1 or 2, which comprises an epoxy resin, a curing catalyst, a filler, a curing agent, and a low viscosity agent.
    A primary mixing step of heat-kneading components other than the curing catalyst to prepare a kneaded product, and
    A secondary mixing step of mixing the curing catalyst with the kneaded product at 95 ° C. or lower, and the like.
    A method for producing a resin composition for encapsulation.

PCT/JP2021/032937 2020-09-14 2021-09-08 Sealing resin composition and production method therefor WO2022054817A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180053481.0A CN116018370A (en) 2020-09-14 2021-09-08 Sealing resin composition and method for producing same
JP2022547614A JPWO2022054817A1 (en) 2020-09-14 2021-09-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020154055 2020-09-14
JP2020-154055 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022054817A1 true WO2022054817A1 (en) 2022-03-17

Family

ID=80631563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032937 WO2022054817A1 (en) 2020-09-14 2021-09-08 Sealing resin composition and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2022054817A1 (en)
CN (1) CN116018370A (en)
WO (1) WO2022054817A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050215A (en) * 2014-08-28 2016-04-11 ナミックス株式会社 Encapsulant composition and semiconductor device using the same
WO2018083885A1 (en) * 2016-11-02 2018-05-11 住友ベークライト株式会社 Epoxy resin composition and structure
JP2019506509A (en) * 2016-02-11 2019-03-07 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Thermosetting sealant for fuel cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050215A (en) * 2014-08-28 2016-04-11 ナミックス株式会社 Encapsulant composition and semiconductor device using the same
JP2019506509A (en) * 2016-02-11 2019-03-07 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Thermosetting sealant for fuel cells
WO2018083885A1 (en) * 2016-11-02 2018-05-11 住友ベークライト株式会社 Epoxy resin composition and structure

Also Published As

Publication number Publication date
CN116018370A (en) 2023-04-25
JPWO2022054817A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
KR100997606B1 (en) Epoxy resin composition and semiconductor device
US9633922B2 (en) Sealing epoxy resin composition, hardened product, and semiconductor device
CN109890894B (en) Epoxy resin composition and structure
JP5256185B2 (en) Epoxy resin composition and semiconductor device
JP5189606B2 (en) Epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP5177763B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
TWI821334B (en) Resin composition for semiconductor sealing, semiconductor device, and production method of semiconductor device
JP2016040383A (en) Epoxy resin composition for encapsulating electronic component and electronic component device using the same
JP2010280805A (en) Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP4973322B2 (en) Epoxy resin composition and semiconductor device
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JPWO2019131097A1 (en) Epoxy resin composition for sealing ball grid array packages, cured epoxy resin, and electronic component equipment
JP2020152844A (en) Sealing resin composition and electronic device
JP2006152185A (en) Epoxy resin composition and semiconductor device
WO2022054817A1 (en) Sealing resin composition and production method therefor
JP2006008956A (en) Resin composition for sealing semiconductor and semiconductor device using the same
JP4496740B2 (en) Epoxy resin composition and semiconductor device
JP2010024464A (en) Epoxy resin composition and semiconductor device
JP4463030B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2005162826A (en) Sealing resin composition and resin-sealed semiconductor device
KR101758448B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JP2005154717A (en) Epoxy resin composition and semiconductor device
KR20190096741A (en) Epoxy resin composition
JP2007077237A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device by using the same
KR102545654B1 (en) Epoxy Resin Composition for Sealing Semiconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866776

Country of ref document: EP

Kind code of ref document: A1