WO2022054734A1 - 端末装置、基地局装置および通信方法 - Google Patents

端末装置、基地局装置および通信方法 Download PDF

Info

Publication number
WO2022054734A1
WO2022054734A1 PCT/JP2021/032572 JP2021032572W WO2022054734A1 WO 2022054734 A1 WO2022054734 A1 WO 2022054734A1 JP 2021032572 W JP2021032572 W JP 2021032572W WO 2022054734 A1 WO2022054734 A1 WO 2022054734A1
Authority
WO
WIPO (PCT)
Prior art keywords
dai
ack
harq
terminal device
group
Prior art date
Application number
PCT/JP2021/032572
Other languages
English (en)
French (fr)
Inventor
大一郎 中嶋
友樹 吉村
会発 林
翔一 鈴木
智造 野上
渉 大内
崇久 福井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2022547566A priority Critical patent/JPWO2022054734A1/ja
Publication of WO2022054734A1 publication Critical patent/WO2022054734A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える端末装置は、それぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信すること、を含む動作を実行する。

Description

端末装置、基地局装置および通信方法
 本発明は、端末装置、基地局装置および通信方法に関する。
 本願は、2020年9月8日に日本に出願された特願2020-150233号について優先権を主張し、その内容をここに援用する。
 セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution (LTE)」、または、「EUTRA:Evolved Universal Terrestrial Radio Access」と称する。)が、第三世代パートナーシッププロジェクト(3GPP:3rd Generation Partnership Project)において検討されている。LTEにおいて、基地局装置はeNodeB(evolved NodeB)、端末装置はUE(User Equipment)とも呼称される。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のサービングセルを管理してもよい。
 3GPPでは、5Gの通信方式として、次世代規格(NR:New Radio)の検討と標準化が行われている。NRは、単一の技術の枠組みにおいて、eMBB(enhanced Mobile BroadBand)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communication)の3つのシナリオを想定した要求を満たすことが求められている。
 また、カバレッジ改善の方法の検討が行われている(非特許文献1)。eMBBサービス、VoIPサービスがターゲットサービスとして考えられている。カバレッジ改善が必要なチャネルとしてPUSCH、PUCCHの上りリンクチャネルが考えられている。1ビットよりも多くのビットを送受信するPUCCHの方法としてsequence-based DMRS-less noncoherent PUCCH transmissionが検討されている(非特許文献2)。
"New SID on NR coverage enhancement", RP-193240, China Telecom, 3GPP TSG RAN Meeting #86, Sitges, Spain, December 9-12, 2019. "Potential techniques for coverage enhancements", R1-2004499, Qualcommm, 3GPP TSG RAN1 Meeting #101, e-Meeting, May 25th-June 5th, 2020.
 データの再送を適切に制御できるようにするために、データの受信側からデータの送信側に対してデータの誤り検出結果、データの受信結果(受信されたデータが誤っていなかった、受信されたデータが誤っていた、データが受信されなかった)等を適切にフィードバックする必要がある。データの送信側は、データの受信側からフィードバックされた情報に基づき受信側で適切に受信されなかったデータの再送を行う。例えば、データの送信側は基地局装置であり、データの受信側は端末装置であり、データはトランスポートブロック(PDSCHで送受信されるトランスポートブロック)であり、データの誤り検出結果や受信結果はHARQ-ACKである。適切な再送制御の実現により、効率的な通信が達成される。そのためにも、sequence-based DMRS-less noncoherent PUCCH transmissionを用いて複数のHARQ-ACKを送受信できるようにする必要がある。本発明の一態様は、効率的に通信を行う端末装置、基地局装置、該端末装置に用いられる通信方法、該基地局装置に用いられる通信方法を提供する。
 (1)上記の目的を達成するために、本発明の一態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える端末装置であって、それぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信すること、を含む動作を実行する。
 (2)更に、前記C-DAIの最大値を示すRRCシグナリングを受信すること、前記C-DAIの最大値に基づき前記複数の符号系列の候補を設定すること、を含む動作を実行する。
 (3)本発明の第2の態様は、プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える基地局装置であって、C-DAIの最大値を示すRRCシグナリングを端末装置に対して送信すること、前記C-DAIの最大値に基づき複数の符号系列の候補を設定すること、前記端末装置からの受信信号から前記複数の符号系列の候補の中から符号系列を検出すること、検出された前記符号系列からそれぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKを判断すること、を含む動作を実行する。
 (4)本発明の第3の態様は、端末装置に用いられる通信方法であって、それぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信するステップと、を含む。
 (5)更に、前記C-DAIの最大値を示すRRCシグナリングを受信するステップと、前記C-DAIの最大値に基づき前記複数の符号系列の候補を設定するステップと、を含む。
 (6)本発明の第4の態様は、基地局装置に用いられる通信方法であって、C-DAIの最大値を示すRRCシグナリングを端末装置に対して送信するステップと、前記C-DAIの最大値に基づき複数の符号系列の候補を設定するステップと、前記端末装置からの受信信号から前記複数の符号系列の候補の中から符号系列を検出するステップと、検出された前記符号系列からそれぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKを判断するステップと、を含む。
 この発明の一態様によれば、端末装置は効率的に通信を行うことができる。また、基地局装置は効率的に通信を行うことができる。
本実施形態の一態様に係る無線通信システムの概念図である。 本実施形態の一態様に係るNslot symb、サブキャリア間隔の設定μ、スロット設定、および、CP設定の関係を示す一例である。 本実施形態の一態様に係る無線フレーム、サブフレーム、および、スロットの構成を示す一例である。 本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。 本実施形態の一態様に係る1つのREGの構成の一例を示す図である。 本実施形態の一態様に係るCCEの構成例を示す図である。 本実施形態の一態様に係るREGのグループを構成するREG数とPDCCH候補のマッピング方法の関連の一例を示す図である。 本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。 本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。 C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。 C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。 C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。 C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。 C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。
 以下、本発明の実施形態について説明する。
 “A、および/または、B”は、“A”、“B”、または“AおよびB”を含む用語であってもよい。
 パラメータまたは情報が1または複数の値を示すことは、該パラメータまたは該情報が該1または複数の値を示すパラメータまたは情報を少なくとも含むことであってもよい。上位層パラメータは、単一の上位層パラメータであってもよい。上位層パラメータは、複数のパラメータを含む情報要素(IE: Information Element)であってもよい。
 図1は、本実施形態の一態様に係る無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および基地局装置3A~3Bを具備する。以下、端末装置1A~1Cを端末装置1(UE)とも呼称する。以下、基地局装置3A~3Bを基地局装置3(gNB)とも呼称する。
 基地局装置3は、MCG(Master Cell Group)、および、SCG(Secondary Cell Group)の一方または両方を含んで構成されてもよい。MCGは、少なくともPCell(Primary Cell)を含んで構成されるサービングセルのグループである。SCGは、少なくともPSCell(Primary Secondary Cell)を含んで構成されるサービングセルのグループである。PCellは、初期接続に基づき与えられるサービングセルであってもよい。MCGは、1または複数のSCell(Secondary Cell)を含んで構成されてもよい。SCGは、1または複数のSCellを含んで構成されてもよい。サービングセル識別子(serving cell identity)は、サービングセルを識別するための短い識別子である。サービングセル識別子は、上位層パラメータにより与えられてもよい。
 以下、フレーム構成について説明する。
 本実施形態の一態様に係る無線通信システムにおいて、OFDM(Orthogonal Frequency Division Multiplex)が少なくとも用いられる。OFDMシンボルは、OFDMの時間領域の単位である。OFDMシンボルは、少なくとも1または複数のサブキャリア(subcarrier)を含む。OFDMシンボルは、ベースバンド信号生成において時間連続信号(time-continuous signal)に変換されもよい。
 サブキャリア間隔(SCS: SubCarrier Spacing)は、サブキャリア間隔Δf=2μ・15kHzにより与えられてもよい。例えば、サブキャリア間隔の設定(subcarrier spacing configuration)μは0、1、2、3、4、および/または、5の何れかに設定されてもよい。あるBWP(BandWidth Part)のために、サブキャリア間隔の設定μが上位層パラメータにより与えられてもよい。
 本実施形態の一態様に係る無線通信システムにおいて、時間領域の長さの表現のために時間単位(タイムユニット)Tが用いられる。時間単位Tは、T=1/(Δfmax・N)で与えられてもよい。Δfmaxは、本実施形態の一態様に係る無線通信システムにおいてサポートされるサブキャリア間隔の最大値であってもよい。Δfmaxは、Δfmax=480kHzであってもよい。Nは、N=4096であってもよい。定数κは、κ=Δfmax・N/(Δfreff,ref)=64である。Δfrefは、15kHzであってもよい。Nf,refは、2048であってもよい。
 定数κは、参照サブキャリア間隔とTの関係を示す値であってもよい。定数κはサブフレームの長さのために用いられてもよい。定数κに少なくとも基づき、サブフレームに含まれるスロットの数が与えられてもよい。Δfrefは、参照サブキャリア間隔であり、Nf,refは、参照サブキャリア間隔に対応する値である。
 下りリンクにおける送信、および/または、上りリンクにおける送信は、10msのフレームにより構成される。フレームは、10個のサブフレームを含んで構成される。サブフレームの長さは1msである。フレームの長さは、サブキャリア間隔Δfに関わらず与えられてもよい。つまり、フレームの設定はμに関わらず与えられてもよい。サブフレームの長さは、サブキャリア間隔Δfに関わらず与えられてもよい。つまり、サブフレームの設定はμに関わらず与えられてもよい。
 あるサブキャリア間隔の設定μのために、サブフレームに含まれるスロットの数とインデックスが与えられてもよい。例えば、第1のスロット番号nμ は、サブフレーム内において0からNsubframe,μ slot-1の範囲で昇順に与えられてもよい。サブキャリア間隔の設定μのために、フレームに含まれるスロットの数とインデックスが与えられてもよい。例えば、第2のスロット番号nμ s,fは、フレーム内において0からNframe,μ slot-1の範囲で昇順に与えられてもよい。連続するNslot symb個のOFDMシンボルが1つのスロットに含まれてもよい。Nslot symbは、スロット設定(slot configuration)、および/または、CP(Cyclic Prefix)設定の一部または全部に少なくとも基づき与えられてもよい。スロット設定は、少なくとも上位層パラメータtdd-UL-DL-ConfigurationCommonにより与えられてもよい。CP設定は、上位層パラメータに少なくとも基づき与えられてもよい。CP設定は、専用RRCシグナリングに少なくとも基づき与えられてもよい。第1のスロット番号および第2のスロット番号は、スロット番号(スロットインデックス)とも呼称される。
 図2は、本実施形態の一態様に係るNslot symb、サブキャリア間隔の設定μ、スロット設定、および、CP設定の関係を示す一例である。図2Aにおいて、スロット設定が0であり、サブキャリア間隔の設定μが2であり、CP設定がノーマルCP(normal cyclic prefix)である場合、Nslot symb=14、Nframe,μ slot=40、Nsubframe,μ slot=4である。また、図2Bにおいて、スロット設定が0であり、サブキャリア間隔の設定μが2であり、CP設定が拡張CP(extended cyclic prefix)である場合、Nslot symb=12、Nframe,μ slot=40、Nsubframe,μ slot=4である。スロット設定0におけるNslot symbは、スロット設定1におけるNslot symbの2倍に対応してもよい。
 図3は、本実施形態の一態様に係る無線フレーム、サブフレーム、および、スロットの構成を示す一例である。図3に示す一例では、スロットの長さは0.5msであり、サブフレームの長さは1msであり、無線フレームの長さは10msである。スロットは、時間領域におけるリソース割り当ての単位であってもよい。例えば、スロットは、1つのトランスポートブロックがマップされる単位であってもよい。例えば、トランスポートブロックは、1つのスロットにマップされてもよい。ここで、トランスポートブロックは、上位層(例えば、MAC:Mediam Access Control、RRC:Radio Resource Control)で規定される所定の間隔(例えば、送信時間間隔(TTI:Transmission Time Interval))内に送信されるデータの単位であってもよい。
 例えば、スロットの長さは、OFDMシンボルの数によって与えられてもよい。例えば、OFDMシンボルの数は、7、または、14であってもよい。スロットの長さは、少なくともOFDMシンボルの長さに基づき与えられてもよい。OFDMシンボルの長さは、サブキャリア間隔に少なくとも基づき異なってもよい。また、OFDMシンボルの長さは、OFDMシンボルの生成に用いられる高速フーリエ変換(FFT:Fast Fourier Transform)のポイント数に少なくとも基づき与えられてもよい。また、OFDMシンボルの長さは、該OFDMシンボルに付加されるサイクリックプレフィックス(CP:Cyclic Prefix)の長さを含んでもよい。ここで、OFDMシンボルは、シンボルと呼称されてもよい。また、端末装置1と基地局装置3の間の通信において、OFDM以外の通信方式が使用される場合(例えば、SC-FDMAやDFT-s-OFDMが使用される場合等)、生成されるSC-FDMAシンボル、および/または、DFT-s-OFDMシンボルはOFDMシンボルとも呼称される。また、特に記載のない限り、OFDMはSC-FDMA、または、DFT-s-OFDMを含む。
 例えば、スロットの長さは、0.125ms、0.25ms、0.5ms、1msであってもよい。例えば、サブキャリア間隔が15kHzの場合、スロットの長さは1msであってもよい。例えば、サブキャリア間隔が30kHzの場合、スロットの長さは0.5msであってもよい。例えば、サブキャリア間隔が120kHzの場合、スロットの長さは0.125msであってもよい。例えば、サブキャリア間隔が15kHzの場合、スロットの長さは1msであってもよい。例えば、スロットの長さが0.125msの場合、1サブフレームは8個のスロットから構成されてもよい。例えば、スロットの長さが0.25msの場合、1サブフレームは4個のスロットから構成されてもよい。例えば、スロットの長さが0.5msの場合、1サブフレームは2個のスロットから構成されてもよい。例えば、スロットの長さが1msの場合、1サブフレームは1個のスロットから構成されてもよい。
 ここで、OFDMは、波形整形(Pulse Shape)、PAPR低減、帯域外輻射低減、または、フィルタリング、および/または、位相処理(例えば、位相回転等)が適用されたマルチキャリアの通信方式を含む。マルチキャリアの通信方式は、複数のサブキャリアが多重された信号を生成/送信する通信方式であってもよい。
 無線フレームは、サブフレームの数によって与えられてもよい。無線フレームのためのサブフレームの数は、例えば、10であってもよい。無線フレームは、スロットの数によって与えられてもよい。
 以下、物理リソースについて説明を行う。
 アンテナポートは、1つのアンテナポートにおいてシンボルが伝達されるチャネルが、同一のアンテナポートにおいてその他のシンボルが伝達されるチャネルから推定できることによって定義される。1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性(large scale property)が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCL(Quasi Co-Located)であると呼称される。大規模特性は、チャネルの長区間特性を少なくとも含んでもよい。大規模特性は、遅延拡がり(delay spread)、ドップラー拡がり(Doppler spread)、ドップラーシフト(Doppler shift)、平均利得(average gain)、平均遅延(average delay)、および、ビームパラメータ(spatial Rx parameters)の一部または全部を少なくとも含んでもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する受信ビームと第2のアンテナポートに対して受信側が想定する受信ビームとが同一であることであってもよい。第1のアンテナポートと第2のアンテナポートがビームパラメータに関してQCLであるとは、第1のアンテナポートに対して受信側が想定する送信ビームと第2のアンテナポートに対して受信側が想定する送信ビームとが同一であることであってもよい。端末装置1は、1つのアンテナポートにおいてシンボルが伝達されるチャネルの大規模特性が、もう一つのアンテナポートにおいてシンボルが伝達されるチャネルから推定できる場合、2つのアンテナポートはQCLであることが想定されてもよい。2つのアンテナポートがQCLであることは、2つのアンテナポートがQCLであることが想定されることであってもよい。
 サブキャリア間隔の設定とキャリアのセットのそれぞれのために、Nμ RB,xRB sc個のサブキャリアとN(μ) symbsubframe,μ symb個のOFDMシンボルのリソースグリッドが与えられる。Nμ RB,xは、キャリアxのためのサブキャリア間隔の設定μのために与えられるリソースブロック数を示してもよい。Nμ RB,xは、キャリアxのためのサブキャリア間隔の設定μのために与えられるリソースブロックの最大数であってもよい。キャリアxは下りリンクキャリアまたは上りリンクキャリアの何れかを示す。つまり、xは“DL”、または、“UL”である。Nμ RBは、Nμ RB,DL、および/または、Nμ RB,ULを含んだ呼称である。NRB scは、1つのリソースブロックに含まれるサブキャリア数を示してもよい。アンテナポートpごとに、および/または、サブキャリア間隔の設定μごとに、および/または、送信方向(Transmission direction)の設定ごとに少なくとも1つのリソースグリッドが与えられてもよい。送信方向は、少なくとも下りリンク(DL:DownLink)および上りリンク(UL:UpLink)を含む。以下、アンテナポートp、サブキャリア間隔の設定μ、および、送信方向の設定の一部または全部を少なくとも含むパラメータのセットは、第1の無線パラメータセットとも呼称される。つまり、リソースグリッドは、第1の無線パラメータセットごとに1つ与えられてもよい。
 下りリンクにおいて、サービングセルに含まれるキャリアを下りリンクキャリア(または、下りリンクコンポーネントキャリア)と称する。上りリンクにおいて、サービングセルに含まれるキャリアを上りリンクキャリア(上りリンクコンポーネントキャリア)と称する。下りリンクコンポーネントキャリア、および、上りリンクコンポーネントキャリアを総称して、コンポーネントキャリア(または、キャリア)と称する。
 第1の無線パラメータセットごとに与えられるリソースグリッドの中の各要素は、リソースエレメントと呼称される。リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。ある第1の無線パラメータセットのために、リソースエレメントは周波数領域のインデックスkscと、時間領域のインデックスlsymにより特定される。周波数領域のインデックスkscと時間領域のインデックスlsymにより特定されるリソースエレメントは、リソースエレメント(ksc、lsym)とも呼称される。周波数領域のインデックスkscは、0からNμ RBRB sc-1の何れかの値を示す。Nμ RBはサブキャリア間隔の設定μのために与えられるリソースブロック数であってもよい。NRB scは、リソースブロックに含まれるサブキャリア数であり、NRB sc=12である。周波数領域のインデックスkscは、サブキャリアインデックスkscに対応してもよい。時間領域のインデックスlsymは、OFDMシンボルインデックスlsymに対応してもよい。
 図4は、本実施形態の一態様に係るサブフレームにおけるリソースグリッドの一例を示す概略図である。図4のリソースグリッドにおいて、横軸は時間領域のインデックスlsymであり、縦軸は周波数領域のインデックスkscである。1つのサブフレームにおいて、リソースグリッドの周波数領域はNμ RBRB sc個のサブキャリアを含む。1つのサブフレームにおいて、リソースグリッドの時間領域は14・2μ個のOFDMシンボルを含んでもよい。1つのリソースブロックは、NRB sc個のサブキャリアを含んで構成される。リソースブロックの時間領域は、1OFDMシンボルに対応してもよい。リソースブロックの時間領域は、14OFDMシンボルに対応してもよい。リソースブロックの時間領域は、1または複数のスロットに対応してもよい。リソースブロックの時間領域は、1つのサブフレームに対応してもよい。
 端末装置1は、リソースグリッドのサブセットのみを用いて送受信を行うことが指示されてもよい。リソースグリッドのサブセットは、BWP(BWP:BandWidth Part)とも呼称され、BWPは上位層パラメータ、および/または、DCIの一部または全部に少なくとも基づき与えられてもよい。BWPをバンドパートとも称する(BP:Bandwidth Part)。つまり、端末装置1は、リソースグリッドのすべてのセットを用いて送受信を行なうことが指示されなくてもよい。つまり、端末装置1は、リソースグリッド内の一部の周波数リソースを用いて送受信を行なうことが指示されてもよい。1つのBWPは、周波数領域における複数のリソースブロックから構成されてもよい。1つのBWPは、周波数領域において連続する複数のリソースブロックから構成されてもよい。下りリンクキャリアに対して設定されるBWPは、下りリンクBWPとも呼称される。上りリンクキャリアに対して設定されるBWPは、上りリンクBWPとも呼称される。
 端末装置1に対して、1または複数の下りリンクBWPが設定されてもよい。端末装置1は、1または複数の下りリンクBWPのうちの1つの下りリンクBWPにおいて物理チャネル(例えば、PDCCH、PDSCH、SS/PBCH等)の受信を試みてもよい。該1つの下りリンクBWPは、活性化下りリンクBWPとも呼称される。
 端末装置1に対して、1または複数の上りリンクBWPが設定されてもよい。端末装置1は、1または複数の上りリンクBWPのうちの1つの上りリンクBWPにおいて物理チャネル(例えば、PUCCH、PUSCH、PRACH等)の送信を試みてもよい。該1つの上りリンクBWPは、活性化上りリンクBWPとも呼称される。
 サービングセルに対して下りリンクBWPのセットが設定されてもよい。下りリンクBWPのセットは1または複数の下りリンクBWPを含んでもよい。サービングセルに対して上りリンクBWPのセットが設定されてもよい。上りリンクBWPのセットは1または複数の上りリンクBWPを含んでもよい。
 上位層パラメータは、上位層の信号に含まれるパラメータである。上位層の信号は、RRC(Radio Resource Control)シグナリングであってもよいし、MAC CE(Medium Access Control Control Element)であってもよい。ここで、上位層の信号は、RRC層の信号であってもよいし、MAC層の信号であってもよい。
 上位層の信号は、共通RRCシグナリング(common RRC signaling)であってもよい。共通RRCシグナリングは、以下の特徴C1から特徴C3の一部または全部を少なくとも備えてもよい。特徴C1)BCCHロジカルチャネル、または、CCCHロジカルチャネルにマップされる特徴C2)radioResourceConfigCommon情報要素を少なくとも含む特徴C3)PBCHにマップされる
 radioResourceConfigCommon情報要素は、サービングセルにおいて共通に用いられる設定を示す情報を含んでもよい。サービングセルにおいて共通に用いられる設定は、PRACHの設定を少なくとも含んでもよい。該PRACHの設定は、1または複数のランダムアクセスプリアンブルインデックスを少なくとも示してもよい。該PRACHの設定は、PRACHの時間/周波数リソースを少なくとも示してもよい。
 上位層の信号は、専用RRCシグナリング(dedicated RRC signaling)であってもよい。専用RRCシグナリングは、以下の特徴D1からD2の一部または全部を少なくとも備えてもよい。
特徴D1)DCCHロジカルチャネルにマップされる
特徴D2)radioResourceConfigDedicated情報要素を少なくとも含む
 radioResourceConfigDedicated情報要素は、端末装置1に固有の設定を示す情報を少なくとも含んでもよい。radioResourceConfigDedicated情報要素は、BWPの設定を示す情報を少なくとも含んでもよい。該BWPの設定は、該BWPの周波数リソースを少なくとも示してもよい。
 例えば、MIB、第1のシステム情報、および、第2のシステム情報は共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、且つ、radioResourceConfigCommonを少なくとも含む上位層のメッセージは、共通RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、且つ、radioResourceConfigCommon情報要素を含まない上位層のメッセージは、専用RRCシグナリングに含まれてもよい。また、DCCHロジカルチャネルにマップされ、且つ、radioResourceConfigDedicated情報要素を少なくとも含む上位層のメッセージは、専用RRCシグナリングに含まれてもよい。
 第1のシステム情報は、SS(Synchronization Signal)ブロックの時間インデックスを少なくとも示してもよい。SSブロック(SS block)は、SS/PBCHブロック(SS/PBCH block)とも呼称される。SS/PBCHブロックは、SS/PBCHとも呼称される。第1のシステム情報は、PRACHリソースに関連する情報を少なくとも含んでもよい。第1のシステム情報は、初期接続の設定に関連する情報を少なくとも含んでもよい。第2のシステム情報は、第1のシステム情報以外のシステム情報であってもよい。
 radioResourceConfigDedicated情報要素は、PRACHリソースに関連する情報を少なくとも含んでもよい。radioResourceConfigDedicated情報要素は、初期接続の設定に関連する情報を少なくとも含んでもよい。
 以下、本実施形態の種々の態様に係る物理チャネルおよび物理シグナルを説明する。
 上りリンク物理チャネルは、上位層において発生する情報を運ぶリソースエレメントのセットに対応してもよい。上りリンク物理チャネルは、上りリンクキャリアにおいて用いられる物理チャネルである。本実施形態の一態様に係る無線通信システムにおいて、少なくとも下記の一部または全部の上りリンク物理チャネルが用いられる。
・PUCCH(Physical Uplink Control CHannel)
・PUSCH(Physical Uplink Shared CHannel)
・PRACH(Physical Random Access CHannel)
 PUCCHは、上りリンク制御情報(UCI:Uplink Control Information)を送信するために用いられてもよい。上りリンク制御情報は、チャネル状態情報(CSI:Channel State Information)、スケジューリングリクエスト(SR:Scheduling Request)、トランスポートブロック(TB:Transport block, MAC PDU:Medium Access Control Protocol Data Unit, DL-SCH:Downlink-Shared Channel, PDSCH:Physical Downlink Shared Channel)に対応するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)の一部または全部を含む。なお、上りリンク制御情報が、上記に記載されない情報を含んでもよい。
 HARQ-ACKは、1つのトランスポートブロックに少なくとも対応するHARQ-ACKビット(HARQ-ACK情報)を少なくとも含んでもよい。HARQ-ACKビットは、1または複数のトランスポートブロックに対応するACK(acknowledgement)またはNACK(negative-acknowledgement)を示してもよい。HARQ-ACKは、1または複数のHARQ-ACKビットを含むHARQ-ACKコードブック(HARQ-ACK codebook)を少なくとも含んでもよい。HARQ-ACKビットが1または複数のトランスポートブロックに対応することは、HARQ-ACKビットが該1または複数のトランスポートブロックを含むPDSCHに対応することであってもよい。HARQ-ACKビットは、トランスポートブロックに含まれる1つのCBG(Code Block Group)に対応するACKまたはNACKを示してもよい。
 スケジューリングリクエスト(SR:Scheduling Request)は、初期送信のためのPUSCHのリソースを要求するために少なくとも用いられてもよい。スケジューリングリクエストビットは、正のSR(positive SR)または、負のSR(negative SR)の何れかを示すために用いられてもよい。スケジューリングリクエストビットが正のSRを示すことは、“正のSRが送信される”とも呼称される。正のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されることを示してもよい。正のSRは、上位層によりスケジューリングリクエストがトリガ(Trigger)されることを示してもよい。正のSRは、上位層によりスケジューリングリクエストを送信することが指示された場合に、送信されてもよい。スケジューリングリクエストビットが負のSRを示すことは、“負のSRが送信される”とも呼称される。負のSRは、端末装置1によって初期送信のためのPUSCHのリソースが要求されないことを示してもよい。負のSRは、上位層によりスケジューリングリクエストがトリガされないことを示してもよい。負のSRは、上位層によりスケジューリングリクエストを送信することが指示されない場合に、送信されてもよい。
 チャネル状態情報は、チャネル品質指標(CQI:Channel Quality Indicator)、プレコーダ行列指標(PMI:Precoder Matrix Indicator)、および、ランク指標(RI:Rank Indicator)の一部または全部を少なくとも含んでもよい。CQIは、チャネルの品質(例えば、伝搬強度)に関連する指標であり、PMIは、プレコーダを指示する指標である。RIは、送信ランク(または、送信レイヤ数)を指示する指標である。
 PUCCHは、1つ以上のPUCCHフォーマット(例えば、PUCCHフォーマット0からPUCCHフォーマット4、PUCCHフォーマット5)がサポートされてもよい。PUCCHフォーマットは、PUCCHにマップされて送信されてもよい。PUCCHフォーマットは、PUCCHで送信されてもよい。PUCCHフォーマットが送信されることは、PUCCHが送信されることであってもよい。
 PUSCHは、トランスポートブロック(TB, MAC PDU, UL-SCH, PUSCH)を送信するために少なくとも用いられる。PUSCHは、トランスポートブロック、HARQ-ACK、チャネル状態情報、および、スケジューリングリクエストの一部または全部を少なくとも送信するために用いられてもよい。PUSCHは、ランダムアクセスメッセージ3を送信するために少なくとも用いられる。PUSCHは、上記に記載されない情報を送信するために用いられてもよい。
 PRACHは、ランダムアクセスプリアンブル(ランダムアクセスメッセージ1)を送信するために少なくとも用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、PUSCHの送信に対する同期(タイミング調整)、およびPUSCHのためのリソースの要求の一部または全部を示すために少なくとも用いられてもよい。ランダムアクセスプリアンブルは、端末装置1の上位層より与えられるインデックス(ランダムアクセスプリアンブルインデックス)を基地局装置3に通知するために用いられてもよい。
 図1において、上りリンクの無線通信では、以下の上りリンク物理シグナルが用いられる。上りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・UL DMRS(UpLink Demodulation Reference Signal)
・SRS(Sounding Reference Signal)
・UL PTRS(UpLink Phase Tracking Reference Signal)
 UL DMRSは、PUSCH、および/または、PUCCHの送信に関連する。UL DMRSは、PUSCHまたはPUCCHと多重される。基地局装置3は、PUSCHまたはPUCCHの伝搬路補正を行なうためにUL DMRSを使用してよい。以下、PUSCHと、該PUSCHに関連するUL DMRSを共に送信することを、単に、PUSCHを送信する、と称する。以下、PUCCHと該PUCCHに関連するUL DMRSを共に送信することを、単に、PUCCHを送信する、と称する。PUSCHに関連するUL DMRSは、PUSCH用UL DMRSとも称される。PUCCHに関連するUL DMRSは、PUCCH用UL DMRSとも称される。
 SRSは、PUSCHまたはPUCCHの送信に関連しなくてもよい。基地局装置3は、チャネル状態の測定のためにSRSを用いてもよい。SRSは、上りリンクスロットにおけるサブフレームの最後、または、最後から所定数のOFDMシンボルにおいて送信されてもよい。
 UL PTRSは、位相トラッキングのために少なくとも用いられる参照信号であってもよい。UL PTRSは、1または複数のUL DMRSに用いられるアンテナポートを少なくとも含むUL DMRSグループに関連してもよい。UL PTRSとUL DMRSグループが関連することは、UL PTRSのアンテナポートとUL DMRSグループに含まれるアンテナポートの一部または全部が少なくともQCLであることであってもよい。UL DMRSグループは、UL DMRSグループに含まれるUL DMRSにおいて最も小さいインデックスのアンテナポートに少なくとも基づき識別されてもよい。UL PTRSは、1つのコードワードがマップされる1または複数のアンテナポートにおいて、最もインデックスの小さいアンテナポートにマップされてもよい。UL PTRSは、1つのコードワードが第1のレイヤ及び第2のレイヤに少なくともマップされる場合に、該第1のレイヤにマップされてもよい。UL PTRSは、該第2のレイヤにマップされなくてもよい。UL PTRSがマップされるアンテナポートのインデックスは、下りリンク制御情報に少なくとも基づき与えられてもよい。
 なお、上述に記載されない上りリンク物理シグナルが用いられてもよい。
 図1において、基地局装置3から端末装置1への下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために、物理層によって使用される。
・PBCH(Physical Broadcast Channel)
・PDCCH(Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
 PBCHは、マスターインフォメーションブロック(MIB:Master Information Block, BCH, Broadcast Channel)を送信するために少なくとも用いられる。PBCHは、所定の送信間隔に基づき送信されてもよい。PBCHは、80msの間隔で送信されてもよい。PBCHは、160msの間隔で送信されてもよい。PBCHに含まれる情報の中身は、80msごとに更新されてもよい。PBCHに含まれる情報の一部または全部は、160msごとに更新されてもよい。PBCHは、288サブキャリアにより構成されてもよい。PBCHは、2、3、または、4つのOFDMシンボルを含んで構成されてもよい。MIBは、同期信号の識別子(インデックス)に関連する情報を含んでもよい。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および/または、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。
 PDCCHは、下りリンク制御情報(DCI:Downlink Control Information)の送信のために少なくとも用いられる。PDCCHは、下りリンク制御情報を少なくとも含んで送信されてもよい。PDCCHは下りリンク制御情報を含んでもよい。下りリンク制御情報は、DCIフォーマットとも呼称される。下りリンク制御情報は、下りリンクグラント(downlink grant)(DL grant)または上りリンクグラント(uplink grant)(UL grant)の何れかを少なくとも含んでもよい。PDSCHのスケジューリングのために用いられるDCIフォーマットは、下りリンクDCIフォーマットとも呼称される。PUSCHのスケジューリングのために用いられるDCIフォーマットは、上りリンクDCIフォーマットとも呼称される。下りリンクグラントは、下りリンクアサインメント(downlink assignment)(DL assignment)または下りリンク割り当て(downlink allocation)(DL allocation)とも呼称される。上りリンクDCIフォーマットは、DCIフォーマット0_0およびDCIフォーマット0_1の一方または両方を少なくとも含む。
 DCIフォーマット0_0は、1Aから1Fの一部または全部を少なくとも含んで構成される。
1A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
1B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
1C)時間領域リソース割り当てフィールド(Time domain resourceassignment field)
1D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
1E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
1F)CSIリスエストフィールド(CSI request field)
 DCIフォーマット特定フィールドは、該DCIフォーマット特定フィールドを含むDCIフォーマットが1または複数のDCIフォーマットの何れに対応するかを示すために少なくとも用いられてもよい。該1または複数のDCIフォーマットは、DCIフォーマット1_0、DCIフォーマット1_1、DCIフォーマット0_0、および/または、DCIフォーマット0_1の一部または全部に少なくとも基づき与えられてもよい。
 周波数領域リソース割り当てフィールドは、該周波数領域リソース割り当てフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための周波数リソースの割り当てを示すために少なくとも用いられてもよい。周波数領域リソース割り当てフィールドは、FDRA(Frequency Domain Resource Allocation)フィールドとも呼称される。
 時間領域リソース割り当てフィールドは、該時間領域リソース割り当てフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための時間リソースの割り当てを示すために少なくとも用いられてもよい。
 周波数ホッピングフラグフィールドは、該周波数ホッピングフラグフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHに対して周波数ホッピングが適用されるか否かを示すために少なくとも用いられてもよい。
 MCSフィールドは、該MCSフィールドを含むDCIフォーマットによりスケジューリングされるPUSCHのための変調方式、および/または、ターゲット符号化率の一部または全部を示すために少なくとも用いられてもよい。該ターゲット符号化率は、該PUSCHのトランスポートブロックのためのターゲット符号化率であってもよい。該トランスポートブロックのサイズ(TBS:Transport Block Size)は、該ターゲット符号化率に少なくとも基づき与えられてもよい。
 CSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。CSIリクエストフィールドのサイズは、所定の値であってもよい。CSIリクエストフィールドのサイズは、0であってもよいし、1であってもよいし、2であってもよいし、3であってもよい。
 DCIフォーマット0_1は、2Aから2Hの一部または全部を少なくとも含んで構成される。
2A)DCIフォーマット特定フィールド
2B)周波数領域リソース割り当てフィールド
2C)時間領域リソース割り当てフィールド
2D)周波数ホッピングフラグフィールド
2E)MCSフィールド
2F)CSIリクエストフィールド(CSI request field)
2G)BWPフィールド(BWP field)
2H)UL DAIフィールド(downlink assignment index)
 UL DAIフィールドは、PDSCHの送信状況を示すために少なくとも用いられる。動的HARQ-ACKコードブック(Dynamic HARQ-ACK codebook)が用いられる場合、UL DAIフィールドのサイズは2ビットであってもよい。UL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookのサイズを示す。UL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookに含められるHARQ-ACKの数を示す。UL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookにおいて、対応するHARQ-ACKが含められるPDSCHの数を示す。UL DAIフィールドは、PUSCHで送信されるHARQ-ACK codebookにおいて、対応するHARQ-ACKが含められるPDSCHとSPS releaseの数を示す。
 UL DAIフィールドは、モジュロ演算が適用された値が示されてもよい。UL DAIフィールドが2ビットの例について説明する。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が0個の場合、UL DAIフィールドとして“00”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が1個の場合、UL DAIフィールドとして“01”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が2個の場合、UL DAIフィールドとして“10”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が3個の場合、UL DAIフィールドとして“11”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が4個の場合、UL DAIフィールドとして“00”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が5個の場合、UL DAIフィールドとして“01”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が6個の場合、UL DAIフィールドとして“10”が示される。PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が7個の場合、UL DAIフィールドとして“11”が示される。この例では、PUSCHで送信されるHARQ-ACK codebookにおいて、対応するHARQ-ACKが含められるPDSCHの数に対して、数値‘4’を用いたモジュロ演算が行われる。
 端末装置1は、受信されたPDSCHの総数を考慮してUL DAIフィールドを解釈する。例えば、端末装置1は、4個のPDSCHを受信しており、“00”を示すUL DAIフィールドを受信する。この場合、端末装置1は、UL DAIフィールドで示される、PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が4個であると解釈する。例えば、端末装置1は、3個のPDSCHを受信しており、“00”を示すUL DAIフィールドを受信する。この場合、端末装置1は、UL DAIフィールドで示される、PUSCHで送信されるHARQ-ACK codebookに、対応するHARQ-ACKが含められるPDSCHの数が4個であると解釈し、1つのPDSCHの受信をミスしたと判断する。
 BWPフィールドは、DCIフォーマット0_1によりスケジューリングされるPUSCHがマップされる上りリンクBWPを指示するために用いられてもよい。
 CSIリクエストフィールドは、CSIの報告を指示するために少なくとも用いられる。CSIリクエストフィールドのサイズは、上位層のパラメータReportTriggerSizeに少なくとも基づき与えられてもよい。
 下りリンクDCIフォーマットは、DCIフォーマット1_0、および、DCIフォーマット1_1の一方または両方を少なくとも含む。
 DCIフォーマット1_0は、3Aから3Hの一部または全部を少なくとも含んで構成される。
3A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
3B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
3C)時間領域リソース割り当てフィールド(Time domain resourceassignment field)
3D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
3E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
3F)第1のCSIリスエストフィールド(First CSI request field)
3G)PDSCH-to-HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ feedback timing indicator field)
3H)PUCCHリソース指示フィールド(PUCCH resource indicator field)
 PDSCHからHARQフィードバックへのタイミング指示フィールドは、タイミングK1を示すフィールドであってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるトランスポートブロックに対応するHARQ-ACKを少なくとも含むPUCCHまたはPUSCHが含まれるスロットのインデックスはn+K1であってもよい。PDSCHの最後のOFDMシンボルが含まれるスロットのインデックスがスロットnである場合、該PDSCHに含まれるトランスポートブロックに対応するHARQ-ACKを少なくとも含むPUCCHの先頭のOFDMシンボルまたはPUSCHの先頭のOFDMシンボルが含まれるスロットのインデックスはn+K1であってもよい。
 以下、PDSCH-to-HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ_feedback timing indicator field)は、HARQ指示フィールドと呼称されてもよい。
 PUCCHリソース指示フィールドは、PUCCHリソースセットに含まれる1または複数のPUCCHリソースのインデックスを示すフィールドであってもよい。
 DCIフォーマット1_1は、4Aから4Jの一部または全部を少なくとも含んで構成される。
4A)DCIフォーマット特定フィールド(Identifier for DCI formats field)
4B)周波数領域リソース割り当てフィールド(Frequency domain resource assignment field)
4C)時間領域リソース割り当てフィールド(Time domain resourceassignment field)
4D)周波数ホッピングフラグフィールド(Frequency hopping flag field)
4E)MCSフィールド(MCS field: Modulation and Coding Scheme field)
4F)第1のCSIリスエストフィールド(First CSI request field)
4G)PDSCH-to-HARQフィードバックタイミングインジケーターフィールド(PDSCH-to-HARQ feedback timing indicator field)
4H)PUCCHリソース指示フィールド(PUCCH resource indicator field)
4J)BWPフィールド(BWP field)
 BWPフィールドは、DCIフォーマット1_1によりスケジューリングされるPDSCHがマップされる下りリンクBWPを指示するために用いられてもよい。
 DCIフォーマット2_0は、1または複数のスロットフォーマットインディケータ(SFI:Slot Format Indicator)を少なくとも含んで構成されてもよい。
 下りリンク制御情報は、スロットフォーマット指標(SFI:Slot Format Indicator)を含んでもよい。複数のサブフレーム(スロット)における各サブフレーム(スロット)が上りリンクのサブフレーム(スロット)なのか、下りリンクのサブフレーム(スロット)なのか、フレキシブルサブフレーム(スロット)なのかを示すパターンが、下りリンク制御情報を用いて送受信されてもよい。端末装置1は、受信したSFIにより示されないサブフレーム(スロット)は、フレキシブルサブフレーム(スロット)と判断してもよい。端末装置1は、フレキシブルサブフレーム(スロット)に対してUL grantによりPUSCHの送信がスケジュールされた場合、フレキシブルサブフレーム(スロット)を上りリンクサブフレーム(スロット)として処理を行なう。端末装置1は、フレキシブルサブフレーム(スロット)に対してUL grantによりPUSCHの送信がスケジュールされていなかった場合、フレキシブルサブフレーム(スロット)においてPDCCH候補のモニタリングを行い、DL assignmentを検出する処理を行なう。端末装置1は、フレキシブルサブフレーム(スロット)においてDL assignmentによりPDSCHの受信がスケジュールされた場合、フレキシブルサブフレーム(スロット)を下りリンクサブフレーム(スロット)として処理を行なう。
 例えば、下りリンクグラントまたは上りリンクグラントを含む下りリンク制御情報は、C-RNTI(Cell-Radio Network Temporary Identifier)を含めてPDCCHで送受信される。
 本実施形態の種々の態様において、特別な記載のない限り、リソースブロックの数は周波数領域におけるリソースブロックの数を示す。
 下りリンクグラントは、1つのサービングセル内の1つのPDSCHのスケジューリングのために少なくとも用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロットと同じスロット内のPDSCHのスケジューリングのために少なくとも用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロットと異なるスロット内のPDSCHのスケジューリングのために用いられてもよい。上りリンクグラントは、1つのサービングセル内の1つのPUSCHのスケジューリングのために少なくとも用いられる。
 下りリンクDCIフォーマットは、送信されたPDCCHの累積数を示すフィールド(C-DAI:Counter Downlink Assignment Index フィールド)が含まれる。C-DAIは、送信されたPDSCHの累積数を示してもよい。例えば、送信されたPDSCHを含み、それまでに送信されたPDSCHの累積数が1個の場合は、C-DAIの値として“1”が示される。例えば、送信されたPDSCHを含み、それまでに送信されたPDSCHの累積数が8個の場合は、C-DAIの値として“8”が示される。
 なお、各種DCIフォーマットは、上述のフィールドとは異なるフィールドが更に含まれてもよい。例えば、PDSCHのHARQ-ACK情報が正しく検出されたか否かを示すフィールド(NFI:New Feedback Indicator フィールド)が含まれてもよい。メモリなどの記録媒体に保存されたHARQ-ACKビットを消去(フラッシュ)するか否かを示すフィールド(NFIフィールド)が含まれてもよい。送信されたHARQ-ACK codebookの再送を含めるか否かを示すフィールド(NFIフィールド)が含まれてもよい。DCIフォーマットによりスケジュールされるPDSCHが属する(紐づけられる)PDSCHグループを示すフィールド(PGI:PDSCH Group ID フィールド)が含まれてもよい。HARQ-ACK情報の送信が指示されるPDSCHグループを示すフィールド(RPGI:Request PDSCH Group ID フィールド)が含まれてもよい。送信されるPDCCHの総数を示すフィールド(T-DAI:Total Downlink Assignment
 Index フィールド)が含まれてもよい。
 端末装置1は、各PDSCHに対してPDSCHグループ識別子(PGI: PDSCH Group ID)を紐付けられてもよい。あるPDSCHのPGIは、該PDSCHのスケジューリングに用いられるDCIフォーマットに少なくとも基づき指示されてもよい。例えば、PGIを示すフィールド(PGIフィールド)がDCIフォーマットに含まれてもよい。例えば、PDSCHグループは、同じPGI(PDSCHグループ識別子)を有するPDSCHの集合であってもよい。PDSCHグループは、1つのPDSCH、または、同じPGIを紐づけられた、1つ以上のPDSCHの集合であってもよい。端末装置1に対して設定されるPDSCHグループの数は、1であってもよいし、2であってもよいし、3であってもよいし、4であってもよいし、それ以外の0以上の整数であってもよい。
 リクエストPDSCHグループ(RPG: Requested PDSCH Group)は、次のPUCCHまたはPUSCHを介して送信(報告)されるHARQ-ACK情報に対応するPDSCHグループであってもよい。RPG(リクエストPDSCHグループ)は、1つのPDSCHグループを含めてもよいし、複数のPDSCHグループを含めてもよい。RPGの指示は、DCIフォーマットに少なくとも基づき、ビットマップ(bitmap)の形式で各PDSCHグループに対応して示してもよい。RPGは、DCIフォーマットに含まれるRPGIフィールドに少なくとも基づき示されてもよい。端末装置1は、指示されたRPGに対して、HARQ-ACKコードブックを生成し、PUCCHまたはPUSCHを介して送信(報告)してもよい。
 PDCCHに含まれるDCIフォーマットにより指示されるK1(PDSCHからHARQフィードバックへのタイミング指示フィールドにより示される情報、またはパラメータ)の値は、数値(numerical)であってもよいし、非数値(non-numerical)であってもよい。ここで、数値の値は、数字で表す値を意味し、例えば、{0,1,2,...,15}のうちの値であってもよい。非数値の値は、数字以外の値を意味してもよいし、数値を示さないことを意味してもよい。以下、数値のK1の値、および、非数値のK1の値の運用を説明する。例えば、該DCIフォーマットによりスケジュールされるPDSCHは、スロットnにおいて基地局装置3において送信され、端末装置1において受信される。該DCIフォーマットにより示されるK1の値が数値である場合、端末装置1は、該PDSCHに対応するHARQ-ACK情報をスロットn+K1において、PUCCHまたはPUSCHを介して送信(報告)してもよい。該DCIフォーマットにより示されるK1の値が非数値である場合、端末装置1は、該PDSCHに対応するHARQ-ACK情報の報告を延期してもよい。PDSCHのスケジューリング情報を含むDCIフォーマットにより非数値のK1の値が示される場合、端末装置1は、該PDSCHに対応するHARQ-ACK情報の報告を延期してもよい。例えば、端末装置1は、該HARQ-ACK情報をメモリなどの記録媒体に保存して、次のPUCCHまたはPUSCHを介して該HARQ-ACK情報を送信(報告)せず、前述のDCIフォーマット以外のDCIフォーマットに少なくとも基づき該HARQ-ACK情報の送信がトリガされて該HARQ-ACK情報を送信(報告)してもよい。
 非数値のK1の値は、上位層パラメータの系列に含まれてもよい。上位層パラメータは、上位層パラメータdl-DataToUL-ACKであってもよい。上位層パラメータは、上位層パラメータdl-DataToUL-ACKと異なる上位層パラメータであってもよい。K1の値は、上位層パラメータの系列のうち、DCIフォーマットに含まれるPDSCHからHARQフィードバックへのタイミング指示フィールドによって示される値であってもよい。例えば、上位層パラメータの系列は{0,1,2,3,4,5,15,非数値の値}にセットされ、PDSCHからHARQフィードバックへのタイミング指示フィールドのビット数は3であると想定する場合、PDSCHからHARQフィードバックへのタイミング指示フィールドのコードポイント“000”はK1の値が0であることを示してもよいし、コードポイント“001”はK1の値が1であることを示してもよいし、コードポイント“111”はK1の値が非数値の値であることを示してもよい。例えば、上位層パラメータの系列は{非数値の値,0,1,2,3,4,5,15}にセットされ、PDSCHからHARQフィードバックへのタイミング指示フィールドのビット数は3であると想定する場合、PDSCHからHARQフィードバックへのタイミング指示フィールドのコードポイント“000”はK1の値が非数値の値であることを示してもよいし、コードポイント“001”はK1の値が0であることを示してもよいし、コードポイント“111”はK1の値が15であることを示してもよい。
 1つの物理チャネルは、1つのサービングセルにマップされてもよい。1つの物理チャネルは、1つのサービングセルに含まれる1つのキャリアに設定される1つのBWPにマップされてもよい。
 端末装置1は、1または複数の制御リソースセット(CORESET:COntrolREsource SET)が設定されてもよい。端末装置1は、1または複数の制御リソースセットにおいてPDCCHを監視する(monitor)。ここで、1または複数の制御リソースセットにおいてPDCCHを監視することは、1または複数の制御リソースセットのそれぞれに対応する1または複数のPDCCHを監視することを含んでもよい。なお、PDCCHは、1または複数のPDCCH候補および/またはPDCCH候補のセットを含んでもよい。また、PDCCHを監視することは、PDCCH、および/または、PDCCHを介して送信されるDCIフォーマットを監視し、検出することを含んでもよい。
 制御リソースセットは、1または複数のPDCCHがマップされうる時間周波数領域であってもよい。制御リソースセットは、端末装置1がPDCCHを監視する領域であってもよい。制御リソースセットは、連続的なリソース(Localized resource)により構成されてもよい。制御リソースセットは、非連続的なリソース(distributed resource)により構成されてもよい。
 周波数領域において、制御リソースセットのマッピングの単位はリソースブロックであってもよい。例えば、周波数領域において、制御リソースセットのマッピングの単位は6リソースブロックであってもよい。時間領域において、制御リソースセットのマッピングの単位はOFDMシンボルであってもよい。例えば、時間領域において、制御リソースセットのマッピングの単位は1OFDMシンボルであってもよい。
 制御リソースセットのリソースブロックへのマッピングは、上位層パラメータに少なくとも基づき与えられてもよい。該上位層パラメータは、リソースブロックのグループ(RBG:Resource Block Group)に対するビットマップを含んでもよい。該リソースブロックのグループは、6つの連続するリソースブロックにより与えられてもよい。
 制御リソースセットを構成するOFDMシンボルの数は、上位層パラメータに少なくとも基づき与えられてもよい。例えば、制御リソースセットを構成するOFDMシンボルの開始位置が上位層のシグナリングを用いて基地局装置3から端末装置1に通知される。例えば、制御リソースセットを構成するOFDMシンボルの終了位置が上位層のシグナリングを用いて基地局装置3から端末装置1に通知される。
 ある制御リソースセットは、共通制御リソースセット(Common control resource set)であってもよい。共通制御リソースセットは、複数の端末装置1に対して共通に設定される制御リソースセットであってもよい。共通制御リソースセットは、MIB、第1のシステム情報、第2のシステム情報、共通RRCシグナリング、および、セルIDの一部または全部に少なくとも基づき与えられてもよい。例えば、第1のシステム情報のスケジューリングのために用いられるPDCCHを監視することが設定される制御リソースセットの時間リソース、および/または、周波数リソースは、MIBに少なくとも基づき与えられてもよい。
 MIBで設定される制御リソースセットは、CORESET#0とも呼称される。CORESET#0は、インデックス#0の制御リソースセットであってもよい。
 ある制御リソースセットは、専用制御リソースセット(Dedicated control resource set)であってもよい。専用制御リソースセットは、端末装置1のために専用に用いられるように設定される制御リソースセットであってもよい。専用制御リソースセットは、専用RRCシグナリング、および、C-RNTIの値の一部または全部に少なくとも基づき与えられてもよい。端末装置1に複数の制御リソースセットが構成され、それぞれの制御リソースセットにインデックス(制御リソースセットインデックス)が付与されてもよい。制御リソースセット内に1つ以上の制御チャネル要素(CCE)が構成され、それぞれのCCEにインデックス(CCEインデックス)が付与されてもよい。
 CCEは、1または複数のREGのグループを含んで構成されてもよい。REGのグループは、REGバンドル(bundle)とも呼称される。1つのREGのグループを構成するREGの数は、Bundle sizeと呼称される。例えば、REGのBundle sizeは、1、2、3、6の何れかであってもよい。interleaved mappingにおいて、REGバンドル単位でインタリーバが適用されてもよい。端末装置1は、REGのグループ内のREに適用されるプレコーダが同一であると想定してもよい。端末装置1は、REGのグループ内のREに適用されるプレコーダが同一であると想定して、チャネル推定を行うことができる。一方、端末装置1は、REGのグループ間のREに適用されるプレコーダが同一ではないと想定してもよい。言い換えれば、端末装置1は、REGのグループ間のREに適用されるプレコーダが同一であると想定しなくてもよい。「REGのグループ間」は、「異なる2つのREGのグループの間」と言い換えられてもよい。端末装置1は、REGのグループ間のREに適用されるプレコーダが同一ではないと想定してチャネル推定を行うことができる。
 端末装置1によって監視されるPDCCHの候補(PDCCH candidate)のセットは、探索領域(Search space)の観点から定義される。つまり、端末装置1によって監視されるPDCCH候補のセットは、探索領域によって与えられる。
 探索領域は、1または複数の集約レベル(Aggregation level)のPDCCH候補を1または複数含んで構成されてもよい。PDCCH候補の集約レベルは、該PDCCHを構成するCCEの個数を示してもよい。PDDCH候補は、1または複数のCCEにマップされてもよい。
 PDCCH候補を構成するCCEの数は、集約レベル(AL:Aggregation Level)とも呼称される。1つのPDCCH候補が複数のCCEの集約で構成される場合、1つのPDCCH候補はCCEの番号が連続する複数のCCEから構成される。集約レベルがALXのPDCCH候補の集合は、集約レベルALXの探索領域とも呼称される。つまり、集約レベルALXの探索領域は、集約レベルがALの1つまたは複数のPDCCH候補を含んで構成されてもよい。また、探索領域は、複数の集約レベルのPDCCH候補を含んでもよい。例えば、CSSは、複数の集約レベルのPDCCH候補を含んでもよい。例えば、USSは、複数の集約レベルのPDCCH候補を含んでもよい。CSSに含まれるPDCCH候補の集約レベルのセットと、USSに含まれるPDCCH候補の集約レベルのセットはそれぞれ規定/設定されてもよい。
 端末装置1は、DRX(Discontinuous reception)が設定されないスロットにおいて少なくとも1または複数の探索領域を監視してもよい。DRXは、上位層パラメータに少なくとも基づき与えられてもよい。端末装置1は、DRXが設定されないスロットにおいて少なくとも1または複数の探索領域セット(Search space set)を監視してもよい。端末装置1に複数の探索領域セットが構成されてもよい。それぞれの探索領域セットにインデックス(探索領域セットインデックス)が付与されてもよい。
 探索領域セットは、1または複数の探索領域を少なくとも含んで構成されてもよい。それぞれの探索領域にインデックス(探索領域インデックス)が付与されてもよい。
 探索領域セットのそれぞれは、1つの制御リソースセットに少なくとも関連してもよい。探索領域セットのそれぞれは、1つの制御リソースセットに含まれてもよい。探索領域セットのそれぞれに対して、該探索領域セットに関連する制御リソースセットのインデックスが与えられてもよい。
 探索領域は、CSS(Common Search Space、共通探索領域)とUSS(UE-specific Search Space)の2つのタイプを持ってもよい。CSSは、複数の端末装置1に対して共通に設定される探索領域であってもよい。USSは、個別の端末装置1のために専用的に用いられる設定を含む探索領域であってもよい。CSSは、同期信号、MIB、第1のシステム情報、第2のシステム情報、共通RRCシグナリング、専用RRCシグナリング、セルID、等に少なくとも基づき与えられてもよい。USSは、専用RRCシグナリング、および/または、C-RNTIの値に少なくとも基づき与えられてもよい。CSSは、複数の端末装置1に対して共通のリソース(制御リソースエレメント)に設定される探索領域であってもよい。USSは、個別の端末装置1毎のリソース(制御リソースエレメント)に設定される探索領域であってもよい。
 CSSは、プライマリセルにおいてシステム情報を送信するために用いられるSI-RNTIによってスクランブルされたDCIフォーマットに対するタイプ0PDCCH CSS、および、初期アクセスに用いられるRA-RNTI、TC-RNTIによってスクランブルされたDCIフォーマットに対するタイプ1PDCCH CSSが用いられてもよい。CSSは、Unlicensed accessに用いられるCC-RNTIによってスクランブルされたDCIフォーマットに対するタイプのPDCCH CSSが用いられてもよい。端末装置1は、それらの探索領域におけるPDCCH候補をモニタすることができる。所定のRNTIによってスクランブルされたDCIフォーマットとは、所定のRNTIによってスクランブルされたCRC(Cyclic Redundancy Check)が付加されたDCIフォーマットであってもよい。
 PDCCHの受信に関連する情報は、PDCCHの宛先を指示するIDに関連する情報を含んでもよい。PDCCHの宛先を指示するIDは、PDCCHに付加されるCRCビットのスクランブリングに用いられるIDであってもよい。PDCCHの宛先を指示するIDは、RNTI(Radio Network Temporary Identifier)とも呼称される。PDCCHの受信に関連する情報は、PDCCHに付加されるCRCビットのスクランブリングに用いられるIDに関連する情報を含んでもよい。端末装置1は、PBCHに含まれる該IDに関連する情報に少なくとも基づき、PDCCHの受信を試みることができる。
 RNTIは、SI-RNTI(System Information - RNTI)、P-RNTI(Paging - RNTI)、C-RNTI(Common - RNTI)、Temporary C-RNTI(TC-RNTI)、RA-RNTI(Random Access - RNTI)、CC-RNTI(Common Control - RNTI)、INT-RNTI(Interruption - RNTI)を含んでもよい。SI-RNTIは、システム情報を含んで送信されるPDSCHのスケジューリングのために少なくとも用いられる。P-RNTIは、ページング情報、および/または、システム情報の変更通知等の情報を含んで送信されるPDSCHのスケジューリングのために少なくとも用いられる。C-RNTIは、RRC接続された端末装置1に対して、ユーザーデータをスケジューリングするために少なくとも用いられる。Temporary C-RNTIは、ランダムアクセスメッセージ4のスケジューリングのために少なくとも用いられる。Temporary C-RNTIは、ロジカルチャネルにおけるCCCHにマップされるデータを含むPDSCHをスケジューリングするために少なくとも用いられる。RA-RNTIは、ランダムアクセスメッセージ2のスケジューリングのために少なくとも用いられる。CC-RNTIは、Unlicensed accessの制御情報の送受信のために少なくとも用いられる。INT-RNTIは、下りリンクでのPre-emptionを示すために少なくとも用いられる。
 なお、CSSに含まれるPDCCHおよび/またはDCIには、該PDCCH/DCIが、どのサービングセル(または、どのコンポーネントキャリア)に対するPDSCHまたはPUSCHをスケジュールしているかを示すCIF(Carrier Indicator Field)が含まれなくてもよい。
 なお、端末装置1に対して複数のサービングセルおよび/または複数のコンポーネントキャリアを集約して通信(送信および/または受信)を行なうキャリア集約(CA:キャリアアグリゲーション)が設定される場合には、所定のサービングセル(所定のコンポーネントキャリア)に対するUSSに含まれるPDCCHおよび/またはDCIには、該PDCCH/DCIが、どのサービングセルおよび/またはどのコンポーネントキャリアに対するPDSCHまたはPUSCHをスケジュールしているかを示すCIFが含まれてもよい。
 なお、端末装置1に対して1つのサービングセルおよび/または1つのコンポーネントキャリアを用いて通信を行なう場合には、USSに含まれるPDCCHおよび/またはDCIには、該PDCCH/DCIが、どのサービングセルおよび/またはどのコンポーネントキャリアに対するPDSCHまたはPUSCHをスケジュールしているかを示すCIFが含まれなくてもよい。
 共通制御リソースセットは、CSSを含んでもよい。共通制御リソースセットは、CSSおよびUSSの両方を含んでもよい。専用制御リソースセットは、USSを含んでもよい。専用制御リソースセットは、CSSを含んでもよい。
 探索領域の物理リソースは制御チャネルの構成単位(CCE:Control Channel Element)により構成される。CCEは所定の数のリソース要素グループ(REG:Resource Element Group)により構成される。例えば、CCEは6個のREGにより構成されてもよい。REGは1つのPRB(Physical Resource Block)の1OFDMシンボルにより構成されてもよい。つまり、REGは12個のリソースエレメント(RE:Resource Element)を含んで構成されてもよい。PRBは、単にRB(Resource Block:リソースブロック)とも呼称される。
 つまり、端末装置1は、制御リソースセット内の探索領域に含まれるPDCCH候補をブラインド検出することによって、該端末装置1に対するPDCCHおよび/またはDCIを検出することができる。
 1つのサービングセルおよび/または1つのコンポーネントキャリアにおける1つの制御リソースセットに対するブラインド検出の回数は、該制御リソースセットに含まれるPDCCHに対する探索領域の種類、集約レベルの種類、PDCCH候補の数に基づいて決定されてもよい。ここで、探索領域の種類とは、CSSおよび/またはUSSおよび/またはUGSS(UE Group SS)および/またはGCSS(Group CSS)のうち、少なくとも1つが含まれてもよい。集約レベルの種類とは、探索領域を構成するCCEに対してサポートされる最大集約レベルを示し、{1,2,4,8,…,X}(Xは所定の値)のうち、少なくとも1つから規定/設定されてもよい。PDCCH候補の数とは、ある集約レベルに対するPDCCH候補の数を示してもよい。つまり、複数の集約レベルに対してそれぞれ、PDCCH候補の数が規定/設定されてもよい。なお、UGSSは、1つまたは複数の端末装置1に対して共通して割り当てられる探索領域であってもよい。GCSSは、1つまたは複数の端末装置1に対してCSSに関連するパラメータを含むDCIがマップされた探索領域であってもよい。なお、集約レベルは、所定のCCE数の集約レベルを示し、1つのPDCCHおよび/または探索領域を構成するCCEの総数に関連する。
 なお、集約レベルの大きさが、PDCCHおよび/または探索領域に対応するカバレッジまたはPDCCHおよび/または探索領域に含まれるDCIのサイズ(DCIフォーマットサイズ、ペイロードサイズ)に関連付けられてもよい。
 なお、1つの制御リソースセットに対して、PDCCHのOFDMシンボルの開始位置(スタートシンボル)が設定される場合、且つ、所定の期間において、1つよりも多くの制御リソースセット内のPDCCHを検出可能である場合には、各スタートシンボルに対応する時間領域に対して、該制御リソースセットに含まれるPDCCHに対する探索領域の種類、集約レベルの種類、PDCCH候補の数がそれぞれ設定されてもよい。該制御リソースセットに含まれるPDCCHに対する、探索領域の種類、集約レベルの種類、PDCCH候補の数はそれぞれ、制御リソースセット毎に設定されてもよいし、DCIおよび/または上位層の信号(RRCシグナリング)を介して提供/設定されてもよいし、仕様書によって予め規定/設定されてもよい。なお、PDCCH候補の数は、所定の期間のPDCCH候補の数であってもよい。なお、所定の期間は、1ミリ秒であってもよい。所定の期間は、1マイクロ秒であってもよい。また、所定の期間は、1スロットの期間であってもよい。また、所定の期間は、1つのOFDMシンボルの期間であってもよい。
 なお、1つの制御リソースセットに対してPDCCHのOFDMシンボルの開始位置(スタートシンボル)が1つよりも多い場合、つまり、所定の期間において、PDCCHをブラインド検出(モニタ)するタイミングが複数ある場合には、各スタートシンボルに対応する時間領域に対して、該制御リソースセットに含まれるPDCCHに対する探索領域の種類、集約レベルの種類、PDCCH候補の数がそれぞれ設定されてもよい。該制御リソースセットに含まれるPDCCHに対する、探索領域の種類、集約レベルの種類、PDCCH候補の数はそれぞれ、制御リソースセット毎に設定されてもよいし、DCIおよび/または上位層の信号を介して提供/設定されてもよいし、仕様書によって予め規定/設定されてもよい。
 なお、PDCCH候補の数の示し方として、PDCCH候補の所定の数から削減する個数を、集約レベル毎に規定/設定されるような構成でもよい。
 端末装置1は、ブラインド検出に関連する能力情報を基地局装置3に送信/通知してもよい。端末装置1は、1つのサブフレームにおいて処理可能なPDCCH候補の数をPDCCHに関する能力情報として基地局装置3に送信/通知してもよい。端末装置1は、1つまたは複数のサービングセル/コンポーネントキャリアに対して所定の数よりも多い制御リソースセットが設定できる場合、ブラインド検出に関連する能力情報を基地局装置3に送信/通知してもよい。
 端末装置1は、1つまたは複数のサービングセル/コンポーネントキャリアの所定の期間に対して所定の数よりも多い制御リソースセットが設定できる場合、ブラインド検出に関連する能力情報を基地局装置3に送信/通知してもよい。
 なお、該ブラインド検出に関連する能力情報には、所定の期間におけるブラインド検出の最大回数を示す情報が含まれてもよい。また、該ブラインド検出に関連する能力情報には、PDCCH候補を削減することができることを示す情報が含まれてもよい。また、該ブラインド検出に関連する能力情報には、所定の期間においてブラインド検出可能な制御リソースセットの最大数を示す情報が含まれてもよい。該制御リソースセットの最大数とPDCCHのモニタリングが可能なサービングセルおよび/またはコンポーネントキャリアの最大数はそれぞれ、個別のパラメータとして設定されてもよいし、共通のパラメータとして設定されてもよい。また、該ブラインド検出に関連する能力情報には、所定の期間において、同時にブラインド検出を行なうことのできる制御リソースセットの最大数を示す情報が含まれてもよい。
 端末装置1は、所定の期間において、所定の数よりも多い制御リソースセットの検出(ブラインド検出)を行なう能力をサポートしていない場合には、該ブラインド検出に関連する能力情報を送信/通知しなくてもよい。基地局装置3は、該ブラインド検出に関連する能力情報を受信しなかった場合には、ブラインド検出に対する所定の数を超えないように、制御リソースセットに関する設定を行ない、PDCCHを送信してもよい。
 制御リソースセットに関する設定には、制御リソースセットを識別するインデックス(ControlResourceSetId)を示すパラメータが含まれる。また、制御リソースセットに関する設定には、該制御リソースセットの周波数リソース領域(該制御リソースセットを構成するリソースブロック数)を示すパラメータが含まれてもよい。また、制御リソースセットに関する設定には、CCEからREGへのマッピングの種類を示すパラメータが含まれてもよい。また、制御リソースセットに関する設定には、REGバンドルサイズが含まれてもよい。制御リソースセットに関する設定を示すメッセージの送受信にRRCシグナリングが用いられてもよい。制御リソースセットに関する設定を示すメッセージの送受信にSIBが用いられてもよい。制御リソースセットに関する設定を示すメッセージの送受信にMIBが用いられてもよい。
 探索領域に関する設定には、探索領域を識別するインデックス(探索領域インデックス)を示すパラメータが含まれる。探索領域に関する設定には、探索領域が配置される制御リソースセットのインデックスを示すパラメータが含まれる。探索領域に関する設定には、探索領域が配置されるスロットの周期、オフセットを示すパラメータが含まれてもよい。探索領域に関する設定には、探索領域が連続して配置されるスロットの個数を示すパラメータが含まれてもよい。探索領域に関する設定には、PDCCH候補のモニタリングが行なわれる、スロット内のOFDMシンボルを示すパラメータが含まれてもよい。探索領域に関する設定には、CCE集約レベル毎のモニタリングが行われるPDCCH候補の数を示すパラメータが含まれてもよい。探索領域に関する設定には、モニタリングが行われるDCI formatを示すパラメータが含まれてもよい。探索領域に関する設定には、探索領域のタイプ(CSSまたはUSS)を示すパラメータが含まれてもよい。探索領域に関する設定を示すメッセージの送受信にRRCシグナリングが用いられてもよい。探索領域に関する設定を示すメッセージの送受信にSIBが用いられてもよい。探索領域に関する設定を示すメッセージの送受信にMIBが用いられてもよい。
 PDSCHは、トランスポートブロックを送信/受信するために少なくとも用いられる。PDSCHは、ランダムアクセスメッセージ2(ランダムアクセスレスポンス)を送信/受信するために少なくとも用いられてもよい。PDSCHは、初期アクセスのために用いられるパラメータを含むシステム情報を送信/受信するために少なくとも用いられてもよい。
 図1において、下りリンクの無線通信では、以下の下りリンク物理シグナルが用いられる。下りリンク物理シグナルは、上位層から出力された情報を送信するために使用されなくてもよいが、物理層によって使用される。
・同期信号(SS:Synchronization signal)
・DL DMRS(DownLink DeModulation Reference Signal)
・CSI-RS(Channel State Information-Reference Signal)
・DL PTRS(DownLink Phase Tracking Reference Signal)
 同期信号は、端末装置1が下りリンクの周波数領域、および/または、時間領域の同期をとるために用いられる。同期信号は、PSS(Primary Synchronization Signal)、および、SSS(Secondary Synchronization Signal)を含む。
 SSブロック(SS/PBCHブロック)は、PSS、SSS、および、PBCHの一部または全部を少なくとも含んで構成される。
 DL DMRSは、PBCH、PDCCH、および/または、PDSCHの送信に関連する。DL DMRSは、PBCH、PDCCH、および/または、PDSCHに多重される。端末装置1は、PBCH、PDCCH、または、PDSCHの伝搬路補正を行なうために該PBCH、該PDCCH、または、該PDSCHと対応するDL DMRSを使用してよい。端末装置1は、基地局装置3が信号の送信を行っていることをDL DMRSの検出に基づき判断してもよい。
 CSI-RSは、チャネル状態情報を算出するために少なくとも用いられる信号であってもよい。端末装置1によって想定されるCSI-RSのパターンは、少なくとも上位層パラメータにより与えられてもよい。
 PTRSは、位相雑音の補償のために少なくとも用いられる信号であってもよい。端末装置1によって想定されるPTRSのパターンは、上位層パラメータ、および/または、DCIに少なくとも基づき与えられてもよい。
 DL PTRSは、1または複数のDL DMRSに用いられるアンテナポートを少なくとも含むDL DMRSグループに関連してもよい。
 なお、上述に記載されない下りリンク物理シグナルが用いられてもよい。
 下りリンク物理チャネルおよび下りリンク物理シグナルは、下りリンク信号とも呼称される。上りリンク物理チャネルおよび上りリンク物理シグナルは、上りリンク信号とも呼称される。下りリンク信号および上りリンク信号はまとめて物理信号とも呼称される。下りリンク信号および上りリンク信号はまとめて信号とも呼称される。下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルと称する。下りリンク物理シグナルおよび上りリンク物理シグナルを総称して、物理シグナルと称する。
 BCH(Broadcast CHannel)、UL-SCH(Uplink-Shared CHannel)およびDL-SCH(Downlink-Shared CHannel)は、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルはトランスポートチャネルと呼称される。MAC層で用いられるトランスポートチャネルの単位は、トランスポートブロック(TB)またはMAC PDUとも呼称される。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に変調処理が行なわれる。
 基地局装置3と端末装置1は、上位層(higher layer)において上位層の信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC:Radio Resource Control)層において、RRCシグナリング(RRC message:Radio Resource Control message; RRC information:Radio Resource Control information)を送受信してもよい。また、基地局装置3と端末装置1は、MAC層において、MAC CE(Control Element)を送受信してもよい。ここで、RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。
 PUSCHおよびPDSCHは、RRCシグナリング、および/または、MAC CEを送信するために少なくとも用いられてよい。ここで、基地局装置3よりPDSCHで送信されるRRCシグナリングは、サービングセル内における複数の端末装置1に対して共通のシグナリングであってもよい。サービングセル内における複数の端末装置1に対して共通のシグナリングは、共通RRCシグナリングとも呼称される。基地局装置3からPDSCHで送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingまたはUE specific signalingとも呼称される)であってもよい。端末装置1に対して専用のシグナリングは、専用RRCシグナリングとも呼称される。サービングセルにおいて固有な上位層パラメータは、サービングセル内における複数の端末装置1に対して共通のシグナリング、または、ある端末装置1に対して専用のシグナリングを用いて送信/受信されてもよい。UE固有な上位層パラメータは、ある端末装置1に対して専用のシグナリングを用いて送信/受信されてもよい。
 BCCH(Broadcast Control CHannel)、CCCH(Common Control CHannel)、および、DCCH(Dedicated Control CHannel)は、ロジカルチャネルである。例えば、BCCHは、MIBを送信/受信するために用いられる上位層のチャネルである。また、CCCH(Common Control CHannel)は、複数の端末装置1において共通な情報を送信/受信するために用いられる上位層のチャネルである。ここで、CCCHは、例えば、RRC接続されていない端末装置1のために用いられてもよい。また、DCCH(Dedicated Control CHannel)は、端末装置1に専用の制御情報(dedicated control information)を送信/受信するために少なくとも用いられる上位層のチャネルである。ここで、DCCHは、例えば、RRC接続されている端末装置1のために用いられてもよい。
 ロジカルチャネルにおけるBCCHは、トランスポートチャネルにおいてBCH、DL-SCH、または、UL-SCHにマップされてもよい。ロジカルチャネルにおけるCCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。ロジカルチャネルにおけるDCCHは、トランスポートチャネルにおいてDL-SCHまたはUL-SCHにマップされてもよい。
 トランスポートチャネルにおけるUL-SCHは、物理チャネルにおいてPUSCHにマップされてもよい。トランスポートチャネルにおけるDL-SCHは、物理チャネルにおいてPDSCHにマップされてもよい。トランスポートチャネルにおけるBCHは、物理チャネルにおいてPBCHにマップされてもよい。
 図5は、本実施形態の一態様に係る1つのREGの構成の一例を示す図である。REGは、1つのPRBの1つのOFDMシンボルにより構成されてもよい。つまり、REGは周波数領域において連続する12個のREにより構成されてもよい。REGを構成する複数のREのうちの一部は、下りリンク制御情報がマップされないREであってもよい。REGは、下りリンク制御情報がマップされないREを含んで構成されてもよいし、下りリンク制御情報がマップされないREを含まずに構成されてもよい。下りリンク制御情報がマップされないREは、参照信号がマップされるREであってもよいし、制御チャネル以外のチャネルがマップされるREであってもよいし、制御チャネルがマップされないことが端末装置1によって想定されるREであってもよい。
 図6は、本実施形態の一態様に係るCCEの構成例を示す図である。CCEは、6個のREGにより構成されてもよい。図6(a)に示されるように、CCE(CCE#0)は連続的にマップされるREGにより構成されてもよい(このようなマッピングをLocalized mappingと称してもよい)(このようなマッピングをnon-interleaved CCE-to-REG mappingと称してもよい)(このようなマッピングをnon-interleaved mappingと称してもよい)。なお、必ずしもCCEを構成する全てのREGが周波数領域で連続していなくてもよい。例えば、制御リソースセットを構成する複数のリソースブロックの全てが周波数領域で連続ではない場合、REGに割り振られた番号が連続していたとしても、連続する番号の各REGを構成する各リソースブロックは周波数領域で連続ではない。制御リソースセットが複数のOFDMシンボルから構成され、1つのCCEを構成する複数のREGが複数の時間区間(OFDMシンボル)にわたって配置される場合、図6(b)に示されるように、CCE(CCE#1)は連続的にマップされるREGのグループにより構成されてもよい。
 図6(c)に示されるように、CCE(CCE#2)は非連続的にマップされるREGにより構成されてもよい(このようなマッピングをDistributed mappingと称してもよい)(このようなマッピングをinterleaved CCE-to-REG mappingと称してもよい)(このようなマッピングをinterleaved mappingと称してもよい)。インタリーバを用いてCCEを構成するREGが時間周波数領域のリソースに非連続的にマップされてもよい。制御リソースセットが複数のOFDMシンボルから構成され、1つのCCEを構成する複数のREGが複数の時間区間(OFDMシンボル)にわたって配置される場合、図6(d)に示されるように、CCE(CCE#3)は、異なる時間区間(OFDMシンボル)のREGがミックスされて、非連続的にマップされるREGにより構成されてもよい。図6(e)に示されるように、CCE(CCE#4)は、複数のREGのグループ単位で分散してマップされるREGにより構成されてもよい。図6(f)に示されるように、CCE(CCE#5)は、複数のREGのグループ単位で分散してマップされるREGにより構成されてもよい。
 図7は、本実施形態の一態様に係るPDCCH候補を構成するREGと、REGのグループを構成するREGの数についての一例を示す図である。図7(a)に示される一例では、PDCCH候補が1つのOFDMシンボルにマップされており、2つのREGを含むREGのグループ(REG group)が3つ構成されている。つまり、図7(a)に示される一例では、1つのREGのグループは2つのREGにより構成される。周波数領域においてREGのグループを構成するREGの数は、周波数方向にマップされるPRBの個数の約数を含んでもよい。図7(a)に示される一例では、周波数領域のREGのグループを構成するREGの数は1、2、3、または、6であってもよい。
 図7(b)に示される一例では、PDCCH候補が2つのOFDMシンボルにマップされており、2つのREGを含むREGのグループが3つ構成されている。図7(b)に示される一例では、周波数領域のREGのグループを構成するREGの数は、1と3のいずれかであってもよい。
 以下、本実施形態の一態様に係る端末装置1の構成例を説明する。
 図8は、本実施形態の一態様に係る端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13の一部または全部を少なくとも含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、および、無線リソース制御層処理部16の一部または全部を少なくとも含んで構成される。無線送受信部10を送信部、受信部、または、物理層処理部とも称する。
 物理層処理部は復号部を含む。端末装置1の受信部(受信処理部とも呼称する)は、PDCCHを受信する。端末装置1の復号部は、受信したPDCCHを復号する。より詳細には、端末装置1の復号部は、USSのPDCCH候補が対応するリソースの受信信号に対してブラインド復号処理を行う。端末装置1の復号部は、CSSのPDCCH候補が対応するリソースの受信信号に対してブランド復号処理を行う。端末装置1の受信処理部は、制御リソースセット内でPDCCH候補をモニタする。端末装置1の受信処理部は、制御リソースセット内でPDCCH候補をモニタする。
 端末装置1の受信処理部は、基地局装置3において管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)の制御リソースセット内でPDCCH候補をモニタする。端末装置1の受信部は、PDSCHを受信する。端末装置1の受信処理部は、基地局装置3において管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)でPDSCHを受信する処理を行なう。端末装置1の受信処理部は、PDSCHに対して復調、復号等の処理を行なう。端末装置1の受信処理部は、復号したPDSCHに対するHARQ-ACKを生成する。端末装置1の受信処理部は、受信したある値のC-DAIに基づき、異なる値のC-DAIに対応するPDSCHのHARQ-ACKを生成する。例えば、端末装置1の受信処理部は、値が“1”のC-DAIを受信した次に値が‘3’のC-DAIを受信した場合、間の値の“2”のC-DAIに対応するPDSCHの受信に失敗したと判断し、値が“2”のC-DAIに対応するPDSCHのHARQ-ACKとしてNACKを生成する。つまり、端末装置1の受信処理部は、連続的に受信したC-DAIの値が非連続となった場合、間の値のC-DAIに対応するPDCCH、PDSCHの受信(検出)に失敗したと判断する。また、端末装置1の受信処理部は、最後に受信したC-DAIの値よりも大きい値のC-DAIに対応するPDSCHは受信しなかったと判断する。端末装置1の受信処理部は、実際に受信しなかった(検出しなかった)PDSCHに対するHARQ-ACKはNACKを設定する。DTXに対してはNACKが設定されるともいえる。例えば、端末装置1の受信処理部は、値が“1”のC-DAIを受信した次に値が‘3’のC-DAIを受信した場合、“2”のC-DAIに対応するPDSCHを受信しなかった(検出しなかった)と判断し、値が“2”のC-DAIに対応するPDSCHのHARQ-ACKとしてNACKを生成する。例えば、C-DAIの最大値が8の場合において、端末装置1の受信処理部は、最後に受信したC-DAIの値が“5”の場合、“6”と“7”と“8”のC-DAIに対応するPDSCHを受信しなかった(検出しなかった)と判断し、値が“6”のC-DAIに対応するPDSCHのHARQ-ACKと、値が“7”のC-DAIに対応するPDSCHのHARQ-ACKと、値が“8”のC-DAIに対応するPDSCHのHARQ-ACKのそれぞれに対してNACKを設定する(生成する)。
 端末装置1の送信部(送信処理部とも呼称する)は、HARQ-ACKを送信する。端末装置1の送信処理部は、PDSCHに対するHARQ-ACKを送信する。端末装置1の送信処理部は、基地局装置3において管理される上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)でHARQ-ACKを送信する。端末装置1の送信処理部は、基地局装置3において管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKを送信する。端末装置1の送信処理部は、基地局装置3において管理される下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKを基地局装置3において管理される上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)で送信する。端末装置1の送信処理部は、受信処理部で生成されたC-DAIの値毎のPDSCHに対応するHARQ-ACKの組み合わせに基づき符号系列を選択する。端末装置1の送信処理部は、無線リソース制御層処理部16によって符号系列の候補の数が設定される。端末装置1の送信処理部は、C-DAIの値毎のPDSCHに対応するHARQ-ACKの組み合わせに基づき、設定された符号系列の候補の中から符号系列を選択する。端末装置1の送信処理部は、選択された符号系列を用いてPUCCH(PUCCH format 5)を送信する。
 上位層処理部14は、ユーザーの操作等により生成された上りリンクデータ(トランスポートブロック)を、無線送受信部10に出力する。上位層処理部14は、MAC層、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、RRC層の処理を行なう。
 上位層処理部14が備える媒体アクセス制御層処理部15は、MAC層の処理を行う。
 上位層処理部14が備える無線リソース制御層処理部16は、RRC層の処理を行う。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。尚、該設定情報は、物理チャネルや物理シグナル(つまり、物理層)、MAC層、PDCP層、RLC層、RRC層の処理または設定に関連する情報を含んでもよい。該パラメータは上位層パラメータであってもよい。
 無線リソース制御層処理部16は、基地局装置3から受信したRRCシグナリングに基づいて制御リソースセットを設定する。無線リソース制御層処理部16は、制御リソースセット内の探索領域を設定する。無線リソース制御層処理部16は、制御リソースセット内でモニタされるPDCCH候補を設定する。無線リソース制御層処理部16は、制御リソースセット内でモニタされるPDCCH候補の数を設定する。無線リソース制御層処理部16は、制御リソースセット内でモニタされるPDCCH候補のAggregation levelを設定する。無線リソース制御層処理部16は、RRCシグナリングに基づいてC-DAIの最大値を設定する。例えば、C-DAIの最大値として4、6、8の何れかが設定されてもよい。C-DAIの最大値として4、6、8とは異なる値、例えば10、12などが設定されてもよい。無線リソース制御層処理部16は、HARQ-ACKが生成されるC-DAIに対応する数を受信処理部に対して設定する。無線リソース制御層処理部16は、C-DAIの最大値に基づき符号系列の候補の数を送信処理部に対して設定する。例えば、C-DAIの最大値が4の場合、無線リソース制御層処理部16は、16個の符号系列の候補を用いるように送信処理部に対して設定する。例えば、C-DAIの最大値が6の場合、無線リソース制御層処理部16は、64個の符号系列の候補を用いるように送信処理部に対して設定する。例えば、C-DAIの最大値が8の場合、無線リソース制御層処理部16は、256個の符号系列の候補を用いるように送信処理部に対して設定する。
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、受信した物理信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化、ベースバンド信号生成(時間連続信号への変換)することによって物理信号を生成し、基地局装置3に送信する。
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート:down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。
 ベースバンド部13は、RF部12から入力されたアナログ信号をディジタル信号に変換する。ベースバンド部13は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(FFT:Fast Fourier Transform)を行い、周波数領域の信号を抽出する。
 ベースバンド部13は、データを逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は送信電力を制御する機能を備えてもよい。RF部12を送信電力制御部とも称する。
 端末装置1は、PDCCHを受信する。端末装置1は、PDSCHを受信する。無線リソース制御層処理部16は、制御リソースセットを設定する。無線リソース制御層処理部16は、探索領域を設定する。無線リソース制御層処理部16は、RRCシグナリングに基づき制御リソースセットを設定する。無線リソース制御層処理部16は、RRCシグナリングに基づき探索領域を設定する。端末装置1の受信部は、設定された制御リソースセットの探索領域内で複数のPDCCH候補をモニタする。端末装置1の受信部は、あるスロットにおいて設定された制御リソースセットの探索領域内で複数のPDCCH候補をモニタする。端末装置1の復号部は、モニタされたPDCCH候補を復号する。端末装置1の復号部は、受信されたPDSCHを復号する。
 端末装置1の受信部は、あるスロットにおいて制御リソースセットの探索領域内でRRCシグナリングに基づいて設定された数のPDCCH候補をモニタする。端末装置1の受信部は、あるスロットにおいて制御リソースセットの探索領域内でRRCシグナリングに基づいて設定された1つ以上のOFDMシンボルから構成されるPDCCH候補をモニタする。端末装置1の受信部は、あるスロットにおいてスロットの前半部分(例えば、1番目のOFDMシンボル、または1番目と2番目のOFDMシンボル、または1番目と2番目と3番目のOFDMシンボル)の探索領域でPDCCH候補をモニタする。端末装置1の受信部は、あるスロットにおいてスロットの前半部分(例えば、1番目のOFDMシンボル、または1番目と2番目のOFDMシンボル、または1番目と2番目と3番目のOFDMシンボル)の探索領域でPDCCH候補をモニタし、スロットの後半部分(例えば、8番目のOFDMシンボル、または8番目と9番目のOFDMシンボル、または8番目と9番目と10番目のOFDMシンボル)の探索領域でPDCCH候補をモニタする。なお、端末装置1の受信部は、あるスロットにおいてそれぞれが異なるOFDMシンボルの探索領域であって、3個以上の探索領域を設定して、更にスロット内に分散してPDCCH候補をモニタしてもよい。
 以下、本実施形態の一態様に係る基地局装置3の構成例を説明する。
 図9は、本実施形態の一態様に係る基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、および、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部、受信部、または、物理層処理部とも称する。
 上位層処理部34は、MAC層、PDCP層、RLC層、RRC層の処理を行なう。
 上位層処理部34が備える媒体アクセス制御層処理部35は、MAC層の処理を行う。
 上位層処理部34が備える無線リソース制御層処理部36は、RRC層の処理を行う。無線リソース制御層処理部36は、PDSCHに配置される下りリンクデータ(トランスポートブロック)、システム情報、RRCメッセージ、MAC CEなどを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。尚、該設定情報は、物理チャネルや物理シグナル(つまり、物理層)、MAC層、PDCP層、RLC層、RRC層の処理または設定に関連する情報を含んでもよい。該パラメータは上位層パラメータであってもよい。
 無線リソース制御層処理部36は、端末装置1に対して制御リソースセットを設定する。設定された制御リソースセット内で複数のPDCCH候補が構成(設定)される。無線リソース制御層処理部36は、端末装置1に対して探索領域を設定する。
 無線リソース制御層処理部36は、端末装置1に対してHARQ-ACKの送信用のリソースを設定する。基地局装置3の無線リソース制御層処理部36は、下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKの送信用のリソースを設定する。基地局装置3の無線リソース制御層処理部36は、下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKの送信用のリソースを上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)に設定する。無線リソース制御層処理部36は、端末装置1に対してC-DAIの最大値を設定する。基地局装置3は、RRCシグナリングを用いて端末装置1に対してC-DAIの最大値を通知する。無線リソース制御層処理部36は、受信処理部に対して検出に用いる符号系列の候補を設定する。
 無線送受信部30の機能は、無線送受信部10と同様であるため説明を適宜省略する。また、無線送受信部30は、端末装置1に構成されるSS(Search space:探索領域)を把握する。無線送受信部30は、端末装置1に構成される制御リソースセット内の探索領域を把握する。無線送受信部30は、端末装置1においてモニタされるPDCCH候補を把握して、探索領域を把握する。無線送受信部30は、端末装置1においてモニタされる各PDCCH候補がいずれの制御チャネルエレメントから構成されるかを把握する(PDCCH候補が構成される制御チャネルエレメントの番号を把握する)。無線送受信部30はSS把握部を含み、SS把握部が端末装置1に構成されるSSを把握する。SS把握部は、端末装置のSearch spaceとして構成される、制御リソースセット内の1つ以上のPDCCH候補を把握する。SS把握部は、端末装置1の制御リソースセットの探索領域に構成されるPDCCH候補(PDCCH候補の数、PDCCH候補の番号)を把握する。
 SS把握部は、制御リソースセット内の探索領域の構成(PDCCH候補の個数、PDCCH候補のOFDMシンボル、PDCCH候補のAggregation level)を把握する。無線送受信部30の送信部は、端末装置1に対して制御リソースセットの探索領域内のPDCCH候補を用いてPDCCHを送信する。
 SS把握部は、あるスロットの探索領域の構成として、1つ以上のPDCCH候補がスロットの前半部分(例えば、1番目のOFDMシンボル、または1番目と2番目のOFDMシンボル、または1番目と2番目と3番目のOFDMシンボル)のOFDMシンボルから構成されると把握してもよい。SS把握部は、あるスロットの探索領域の構成として、1つ以上のPDCCH候補がスロットの前半部分(例えば、1番目のOFDMシンボル、または1番目と2番目のOFDMシンボル、または1番目と2番目と3番目のOFDMシンボル)のOFDMシンボルから構成され、1つ以上のPDCCH候補がスロットの後半部分(例えば、8番目のOFDMシンボル、または8番目と9番目のOFDMシンボル、または8番目と9番目と10番目のOFDMシンボル)のOFDMシンボルから構成されると把握してもよい。なお、SS把握部は、あるスロットにおいてそれぞれが異なるOFDMシンボルの探索領域であって、3個以上の探索領域が構成されると把握してもよい。
 基地局装置3の受信部(受信処理部とも呼称する)は、HARQ-ACKを受信する。基地局装置3の受信処理部は、PDSCHに対するHARQ-ACKを受信する。基地局装置3の受信処理部は、上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)でHARQ-ACKを受信する。基地局装置3の受信処理部は、下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKを受信する。基地局装置3の受信処理部は、下りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)のPDSCHに対するHARQ-ACKを上りリンク周波数帯域(セル、コンポーネントキャリア、キャリア)で受信する。基地局装置3の受信処理部は、無線リソース制御層処理部36に設定された符号系列の候補を用いてHARQ-ACKの送信に用いられたPUCCHを検出する。基地局装置3の受信処理部は、検出された符号系列に対応するC-DAIの値毎のPDSCHに対するHARQ-ACKを抽出する(生成する、判断する)。基地局装置3は、抽出されたHARQ-ACKに基づきPDSCHの再送を制御する。例えば、基地局装置3の受信処理部は、各符号系列から生成した信号と受信信号の相関検出を行い、相関値が最も高い符号系列が端末装置1から送信されたと判断する。
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。
 端末装置1は、上りリンク制御情報(UCI)を基地局装置3に送信する。端末装置1は、UCIをPUCCHに多重して送信してもよい。端末装置1は、UCIをPUSCHに多重して送信してもよい。UCIは、下りリンクのチャネル状態情報(ChannelState Information: CSI)、PUSCHリソースの要求を示すスケジューリング要求(Scheduling Request: SR)、下りリンクデータ(Transport block,Medium Access Control Protocol Data Unit: MAC PDU,Downlink-Shared Channel: DL-SCH,Physical Downlink Shared Channel:PDSCH)に対するHARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)のうち、少なくとも1つを含んでもよい。
 HARQ-ACKを、ACK/NACK、HARQフィードバック、HARQ-ACKフィードバック、HARQ応答、HARQ-ACK応答、HARQ情報、HARQ-ACK情報、HARQ制御情報、および、HARQ-ACK制御情報とも呼称されてもよい。
 下りリンクデータが成功裏に復号された場合、該下りリンクデータに対するACKが生成される。下りリンクデータが成功裏に復号されなかった場合、該下りリンクデータに対するNACKが生成される。HARQ-ACKは、1つのトランスポートブロックに少なくとも対応するHARQ-ACKビットを少なくとも含んでもよい。HARQ-ACKビットは、1つ、または、複数のトランスポートブロックに対応するACK(ACKnowledgement)または、NACK(Negative-ACKnowledgement)を示してもよい。HARQ-ACKは、1つまたは複数のHARQ-ACKビットを含むHARQ-ACKコードブック(HARQ-ACK codebook)を少なくとも含んでもよい。HARQ-ACKビットが1つ、または、複数のトランスポートブロックに対応することは、HARQ-ACKビットが該1または複数のトランスポートブロックを含むPDSCHに対応することであってもよい。
 1つのトランスポートブロックに対するHARQ制御をHARQプロセスと呼んでもよい。HARQプロセス毎に一つのHARQプロセス識別子が与えられてもよい。DCIフォーマットにHARQプロセス識別子を示すフィールドが含まれる。
 HARQプロセス毎にNDI(New Data Indicator)がDCIフォーマットで示される。例えば、PDSCHのスケジューリング情報を含むDCIフォーマット(DL assignment)にNDIフィールドが含まれる。NDIフィールドは1ビットである。端末装置1は、HARQプロセス毎にNDIの値を格納する(記憶する)。基地局装置3は、端末装置1毎に対して、HARQプロセス毎にNDIの値を格納する(記憶する)。端末装置1は、検出されたDCIフォーマットのNDIフィールドを用いて格納しているNDIの値を更新する。基地局装置3は、更新されたNDIの値、または更新されないNDIの値をDCIフォーマットのNDIフィールドに設定して端末装置1に送信する。端末装置1は、検出されたDCIフォーマットのHARQプロセス識別子フィールドの値と対応するHARQプロセスに対して、検出されたDCIフォーマットのNDIフィールドを用いて格納しているNDIの値を更新する。
 端末装置1は、DCIフォーマット(DL assignment)のNDIフィールドの値に基づき、受信されたトランスポートブロックが新規送信であるか、再送信であるかを判断する。端末装置1は、あるHARQプロセスのトランスポートブロックに対して以前受信されたNDIの値と比較して、検出されたDCIフォーマットのNDIフィールドの値がトグルされていたら、受信されたトランスポートブロックが新規送信であると判断する。基地局装置3は、あるHARQプロセスにおいて新規送信のトランスポートブロックを送信する場合、該HARQプロセスに対して格納されたNDIの値をトグルして、トグルされたNDIを端末装置1に送信する。基地局装置3は、あるHARQプロセスにおいて再送信のトランスポートブロックを送信する場合、該HARQプロセスに対して格納されたNDIの値をトグルせず、トグルされないNDIを端末装置1に送信する。端末装置1は、あるHARQプロセスのトランスポートブロックに対して以前受信されたNDIの値と比較して、検出されたDCIフォーマットのNDIフィールドの値がトグルされていなかったら(同じなら)、受信されたトランスポートブロックが再送信であると判断する。なお、ここで、トグルするとは、異なる値に切り替えることを意味する。
 端末装置1は、PDSCH受信に対応するDCIフォーマット1_0、または、DCIフォーマット1_1に含まれるHARQ指示フィールドの値により指示されるスロットにおいて、HARQ-ACK情報を、HARQ-ACKコードブック(HARQ-ACK codebook)を用いて基地局装置3に報告してもよい。
 DCIフォーマット1_0に対して、HARQ指示フィールドの値はスロット数のセット(1,2,3,4,5,6,7,8)にマップされてもよい。DCIフォーマット1_1に対して、HARQ指示フィールドの値は、上位層パラメータdl-DataToUL-ACKによって与えられるスロット数のセットにマップされてもよい。HARQ指示フィールドの値に少なくとも基づき指示されるスロット数は、HARQ-ACKタイミング、または、K1とも呼称されてもよい。例えば、スロットnにおいて送信されるPDSCH(下りリンクデータ)の復号状態を表すHARQ-ACKは、スロットn+K1において報告(送信)されてもよい。
 dl-DataToUL-ACKは、PDSCHに対するHARQ-ACKのタイミングのリストを示す。タイミングとは、PDSCHが受信されたスロット(または、PDSCHがマップされる最後のOFDMシンボルを含むスロット)を基準として、受信されたPDSCHに対するHARQ-ACKが送信されるスロットとの間のスロット数である。例えば、dl-DataToUL-ACKは、1個、または2個、または3個、または4個、または5個、または6個、または7個、または8個のタイミングのリストである。dl-DataToUL-ACKが1個のタイミングのリストの場合、HARQ指示フィールドは0ビットである。dl-DataToUL-ACKが2個のタイミングのリストの場合、HARQ指示フィールドは1ビットである。dl-DataToUL-ACKが3個、または4個のタイミングのリストの場合、HARQ指示フィールドは2ビットである。dl-DataToUL-ACKが5個、または6個、または7個、または8個のタイミングのリストの場合、HARQ指示フィールドは3ビットである。例えば、dl-DataToUL-ACKは、0から31の範囲の何れかの値のタイミングのリストから構成される。例えば、dl-DataToUL-ACKは、0から63の範囲の何れかの値のタイミングのリストから構成される。
 dl-DataToUL-ACKのサイズは、dl-DataToUL-ACKが含める要素の数と定義される。dl-DataToUL-ACKのサイズは、Lparaと呼称されてもよい。dl-DataToUL-ACKのインデックスは、dl-DataToUL-ACKの要素の順番(番号)を示す。例えば、dl-DataToUL-ACKのサイズが8である(Lpara=8)場合、dl-DataToUL-ACKのインデックスは1、2、3、4、5、6、7、または、8の何れかの値である。dl-DataToUL-ACKのインデックスは、HARQ指示フィールドが示す値により与えられてもよい、または示されてもよい、または指示されてもよい。
 端末装置1がDCIフォーマット1_0を含むPDCCHをモニタリングするように構成され、且つ、DCIフォーマット1_1を含むPDCCHをモニタリングしないように構成される場合、HARQ-ACKタイミング値K1は(1、2、3、4、5、6、7、8)の一部または全部であってもよい。端末装置1がDCIフォーマット1_1を含むPDCCHをモニタリングするように構成される場合、該HARQ-ACKタイミング値K1は上位層パラメータdl-DataToUL-ACKによって与えられてもよい。
 カウンターDAIフィールドは、対応するDCIフォーマットの受信までにスケジュールされたPDSCH、またはトランスポートブロックの累積数を示す。
 カウンターDAI(Counter DAI)は、M個のPDCCHの監視機会において、あるサービングセルにおけるあるPDCCHの監視機会に対して、該サービングセルにおける該PDCCHの監視機会までに検出されるPDCCHの累積数(または、累積数に少なくとも関連する値であってもよい)を示す。カウンターDAIは、C-DAIとも呼称されてもよい。PDSCHに対応するC-DAIは、該PDSCHのスケジューリングに用いられるDCIフォーマットに含まれるフィールドによって示されてもよい。
 HARQ-ACKの端末装置1における送信方法、HARQ-ACKの基地局装置3における受信方法について説明する。PUCCH(PUCCH format 5)の送信に用いられる符号系列として複数の符号系列の候補が用いられる。例えば、4個、または8個、または16個、または32個、または64個、または128個、または256個の符号系列の候補が用いられてもよい。端末装置1は、C-DAIの値毎のHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信する。基地局装置3は、受信した(検出した)符号系列に基づき端末装置1に対して送信したC-DAI毎のPDSCHのHARQ-ACKの組み合わせを認識する(判断する)。端末装置1は、それぞれのC-DAIの値に対応するPDSCHのHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信する。基地局装置3は、受信した(検出した)符号系列に基づき端末装置1に対して送信したそれぞれのC-DAIの値に対応するPDSCHのHARQ-ACKの組み合わせを認識する(判断する)。端末装置1は、ある値のC-DAIに対応するPDSCHを受信してる場合は、そのPDSCHのトランスポートブロックの誤り検出結果に基づきACK、またはNACKをHARQ-ACKに設定する。端末装置1は、ある値のC-DAIに対応するPDSCHを受信していない場合は、そのPDSCHに対するHARQ-ACKにNACKを設定する。
 複数の符号系列の候補は、複数のグループに分かれて構成されてもよい。ある値のC-DAIに対応するPDSCHのHARQ-ACKがACKであり、その値よりも大きい値の1つ以上のC-DAIに対応するPDSCHのHARQ-ACKがNACK(DTX含む)である組み合わせ毎に複数の符号系列の候補の各グループが構成されてもよい。
 図10は、C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。図11は、C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。図12は、C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。図10~図12では、C-DAIの値が1から8までのHARQ-ACKの組み合わせに対して256個の符号系列の候補が用いられる場合を示している。図10~図12において、値が1であるC-DAIはC-DAI“1”、値が2であるC-DAIはC-DAI“2”、値が3であるC-DAIはC-DAI“3”、値が4であるC-DAIはC-DAI“4”、値が5であるC-DAIはC-DAI“5”、値が6であるC-DAIはC-DAI“6”、値が7であるC-DAIはC-DAI“7”、値が8であるC-DAIはC-DAI“8”と記載されている。図10において、グループ1は1個の符号系列の候補で構成され、グループ2は1個の符号系列の候補で構成され、グループ3は2個の符号系列の候補から構成され、グループ4は4個の符号系列の候補から構成され、グループ5は8個の符号系列の候補から構成され、グループ6は16個の符号系列の候補から構成され、グループ7は32個の符号系列の候補から構成される。図11において、グループ8は64個の符号系列の候補から構成される。図12において、グループ8は128個の符号系列の候補から構成される。なお、グループ1とグループ2が同じグループとして構成されてもよい。なお、図10~図12において、グループは細分化されて構成されてもよい。なお、図10~図12において、グループは統合されて構成されてもよい。なお、グループの識別符号は図10~図12に記載の値と異なってもよい。
 グループ1は、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACK、C-DAI“7”のHARQ-ACK、C-DAI“8”のHARQ-ACKのそれぞれがNACKである組み合わせに対して符号系列が対応する。グループ2は、C-DAI“1”のHARQ-ACKがACKであり、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACK、C-DAI“7”のHARQ-ACK、C-DAI“8”のHARQ-ACKのそれぞれがNACKである組み合わせに対して符号系列が対応する。グループ3は、C-DAI“2”のHARQ-ACKがACKであり、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACK、C-DAI“7”のHARQ-ACK、C-DAI“8”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACKがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ4は、C-DAI“3”のHARQ-ACKがACKであり、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACK、C-DAI“7”のHARQ-ACK、C-DAI“8”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ5は、C-DAI“4”のHARQ-ACKがACKであり、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACK、C-DAI“7”のHARQ-ACK、C-DAI“8”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ6は、C-DAI“5”のHARQ-ACKがACKであり、C-DAI“6”のHARQ-ACK、C-DAI“7”のHARQ-ACK、C-DAI“8”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ7は、C-DAI“6”のHARQ-ACKがACKであり、C-DAI“7”のHARQ-ACK、C-DAI“8”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ8は、C-DAI“7”のHARQ-ACKがACKであり、C-DAI“8”のHARQ-ACKがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ9は、C-DAI“8”のHARQ-ACKがACKでありであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACK、C-DAI“7”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。
 図13は、C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。図13では、C-DAIの値が1から4までのHARQ-ACKの組み合わせに対して16個の符号系列の候補が用いられる場合を示している。図13において、値が1であるC-DAIはC-DAI“1”、値が2であるC-DAIはC-DAI“2”、値が3であるC-DAIはC-DAI“3”、値が4であるC-DAIはC-DAI“4”と記載されている。図13において、グループ11は1個の符号系列の候補で構成され、グループ12は1個の符号系列の候補で構成され、グループ13は2個の符号系列の候補から構成され、グループ14は4個の符号系列の候補から構成され、グループ15は8個の符号系列の候補から構成される。
 グループ11は、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACKのそれぞれがNACKである組み合わせに対して符号系列が対応する。グループ12は、C-DAI“1”のHARQ-ACKがACKであり、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACKのそれぞれがNACKである組み合わせに対して符号系列が対応する。グループ13は、C-DAI“2”のHARQ-ACKがACKであり、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACKがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ14は、C-DAI“3”のHARQ-ACKがACKであり、C-DAI“4”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ15は、C-DAI“4”のHARQ-ACKがACKでありであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。
 図14は、C-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補の一例を示す図である。図14では、C-DAIの値が1から6までのHARQ-ACKの組み合わせに対して64個の符号系列の候補が用いられる場合を示している。図14において、値が1であるC-DAIはC-DAI“1”、値が2であるC-DAIはC-DAI“2”、値が3であるC-DAIはC-DAI“3”、値が4であるC-DAIはC-DAI“4”、値が5であるC-DAIはC-DAI“5”、値が6であるC-DAIはC-DAI“6”と記載されている。図14において、グループ101は1個の符号系列の候補で構成され、グループ102は1個の符号系列の候補で構成され、グループ103は2個の符号系列の候補から構成され、グループ104は4個の符号系列の候補から構成され、グループ105は8個の符号系列の候補から構成され、グループ106は16個の符号系列の候補から構成され、グループ107は32個の符号系列の候補から構成される。
 グループ101は、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACKのそれぞれがNACKである組み合わせに対して符号系列が対応する。グループ102は、C-DAI“1”のHARQ-ACKがACKであり、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACKのそれぞれがNACKである組み合わせに対して符号系列が対応する。グループ103は、C-DAI“2”のHARQ-ACKがACKであり、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACKがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ104は、C-DAI“3”のHARQ-ACKがACKであり、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ105は、C-DAI“4”のHARQ-ACKがACKであり、C-DAI“5”のHARQ-ACK、C-DAI“6”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ106は、C-DAI“5”のHARQ-ACKがACKであり、C-DAI“6”のHARQ-ACKのそれぞれがNACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。グループ107は、C-DAI“6”のHARQ-ACKがACKであり、C-DAI“1”のHARQ-ACK、C-DAI“2”のHARQ-ACK、C-DAI“3”のHARQ-ACK、C-DAI“4”のHARQ-ACK、C-DAI“5”のHARQ-ACKのそれぞれがACK、NACKのそれぞれに対する組み合わせに対して符号系列が対応する。
 以上のようなC-DAIの値毎のHARQ-ACKの組み合わせと対応する複数の符号系列の候補を用いることにより、端末装置1は各C-DAIの値に対応するPDSCHに対するHARQ-ACKを基地局装置3に通知することができ、基地局装置3は各C-DAIの値に対応するPDSCHに対するHARQ-ACKを検出することができる。C-DAIの最大値に応じて用いられる符号系列の候補の数が設定され、基地局装置3における符号系列の検出精度が改善される。
 C-DAIの最大値が8の場合について説明する。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“1”の場合、端末装置1はC-DAIの値が“2”から“8”に対応するPDSCHを受信しないためC-DAIの値が“2”から“8”に対応するHARQ-ACKとしてNACKを示し、グループ1またはグループ2から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ1とグループ2に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“2”の場合、端末装置1はC-DAIの値が“3”から“8”に対応するPDSCHを受信しないためC-DAIの値が“3”から“8”に対応するHARQ-ACKとしてNACKを示し、グループ1またはグループ2またはグループ3から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ1とグループ2とグループ3に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“3”の場合、端末装置1はC-DAIの値が“4”から“8”に対応するPDSCHを受信しないためC-DAIの値が“4”から“8”に対応するHARQ-ACKとしてNACKを示し、グループ1またはグループ2またはグループ3とグループ4から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ1とグループ2とグループ3とグループ4に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“4”の場合、端末装置1はC-DAIの値が“5”から“8”に対応するPDSCHを受信しないためC-DAIの値が“5”から“8”に対応するHARQ-ACKとしてNACKを示し、グループ1またはグループ2またはグループ3とグループ4とグループ5から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ1とグループ2とグループ3とグループ4とグループ5に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“5”の場合、端末装置1はC-DAIの値が“6”から“8”に対応するPDSCHを受信しないためC-DAIの値が“6”から“8”に対応するHARQ-ACKとしてNACKを示し、グループ1またはグループ2またはグループ3とグループ4とグループ5とグループ6から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ1とグループ2とグループ3とグループ4とグループ5とグループ6に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“6”の場合、端末装置1はC-DAIの値が“7”から“8”に対応するPDSCHを受信しないためC-DAIの値が“7”から“8”に対応するHARQ-ACKとしてNACKを示し、グループ1またはグループ2またはグループ3とグループ4とグループ5とグループ6とグループ7から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ1とグループ2とグループ3とグループ4とグループ5とグループ6とグループ7に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“7”の場合、端末装置1はC-DAIの値が“8”に対応するPDSCHを受信しないためC-DAIの値が“8”に対応するHARQ-ACKとしてNACKを示し、グループ1またはグループ2またはグループ3とグループ4とグループ5とグループ6とグループ7とグループ8から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ1とグループ2とグループ3とグループ4とグループ5とグループ6とグループ7とグループ8に絞り込むことができる。
 C-DAIの最大値が4の場合について説明する。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“1”の場合、端末装置1はC-DAIの値が“2”から“4”に対応するPDSCHを受信しないためC-DAIの値が“2”から“4”に対応するHARQ-ACKとしてNACKを示し、グループ11またはグループ12から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ11とグループ12に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“2”の場合、端末装置1はC-DAIの値が“3”から“4”に対応するPDSCHを受信しないためC-DAIの値が“3”から“4”に対応するHARQ-ACKとしてNACKを示し、グループ11またはグループ12またはグループ13から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ11とグループ12とグループ13に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“3”の場合、端末装置1はC-DAIの値が“4”に対応するPDSCHを受信しないためC-DAIの値が“4”に対応するHARQ-ACKとしてNACKを示し、グループ11またはグループ12またはグループ13とグループ14から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ11とグループ12とグループ13とグループ14に絞り込むことができる。
 C-DAIの最大値が6の場合について説明する。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“1”の場合、端末装置1はC-DAIの値が“2”から“6”に対応するPDSCHを受信しないためC-DAIの値が“2”から“6”に対応するHARQ-ACKとしてNACKを示し、グループ101またはグループ102から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ101とグループ102に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“2”の場合、端末装置1はC-DAIの値が“3”から“6”に対応するPDSCHを受信しないためC-DAIの値が“3”から“6”に対応するHARQ-ACKとしてNACKを示し、グループ101またはグループ102またはグループ103から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ101とグループ102とグループ103に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“3”の場合、端末装置1はC-DAIの値が“4”から“6”に対応するPDSCHを受信しないためC-DAIの値が“4”から“6”に対応するHARQ-ACKとしてNACKを示し、グループ101またはグループ102またはグループ103とグループ104から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ101とグループ102とグループ103とグループ104に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“4”の場合、端末装置1はC-DAIの値が“5”から“6”に対応するPDSCHを受信しないためC-DAIの値が“5”から“6”に対応するHARQ-ACKとしてNACKを示し、グループ101またはグループ102またはグループ103とグループ104とグループ105から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ101とグループ102とグループ103とグループ104とグループ105に絞り込むことができる。基地局装置3が一連の送信の最後の送信に用いたC-DAIの値が“5”の場合、端末装置1はC-DAIの値が“6”に対応するPDSCHを受信しないためC-DAIの値が“6”に対応するHARQ-ACKとしてNACKを示し、グループ101またはグループ102またはグループ103とグループ104とグループ105とグループ106から符号系列を選択するため、基地局装置3は検出に用いる符号系列の候補をグループ101とグループ102とグループ103とグループ104とグループ105とグループ106に絞り込むことができる。
 以上の説明のように、本発明の一態様は、端末装置1と基地局装置3間でHARQ-ACKを適切にやり取りすることができる。その結果、基地局装置3は、データの再送を適切に制御できる。適切な再送制御の実現により、効率的な通信が達成される。
 以下、本実施形態の一態様に係る種々の装置の態様を説明する。
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の第1の態様は、プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える端末装置であって、それぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信すること、を含む動作を実行する。
 (2)更に、前記C-DAIの最大値を示すRRCシグナリングを受信すること、前記C-DAIの最大値に基づき前記複数の符号系列の候補を設定すること、を含む動作を実行する。
 (3)本発明の第2の態様は、プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える基地局装置であって、C-DAIの最大値を示すRRCシグナリングを端末装置に対して送信すること、前記C-DAIの最大値に基づき複数の符号系列の候補を設定すること、前記端末装置からの受信信号から前記複数の符号系列の候補の中から符号系列を検出すること、検出された前記符号系列からそれぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKを判断すること、を含む動作を実行する。
 (4)本発明の第3の態様は、端末装置に用いられる通信方法であって、それぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信するステップと、を含む。
 (5)更に、前記C-DAIの最大値を示すRRCシグナリングを受信するステップと、前記C-DAIの最大値に基づき前記複数の符号系列の候補を設定するステップと、を含む。
 (6)本発明の第4の態様は、基地局装置に用いられる通信方法であって、C-DAIの最大値を示すRRCシグナリングを端末装置に対して送信するステップと、前記C-DAIの最大値に基づき複数の符号系列の候補を設定するステップと、前記端末装置からの受信信号から前記複数の符号系列の候補の中から符号系列を検出するステップと、検出された前記符号系列からそれぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKを判断するステップと、を含む。
 本発明の一態様に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明の一態様に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であってもよい。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしてもよい。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 端末装置1は、少なくとも1つのプロセッサと、コンピュータプログラムインストラクション(コンピュータプログラム)を含む少なくとも1つのメモリからなってもよい。メモリとコンピュータプログラムインストラクション(コンピュータプログラム)はプロセッサを用いて、上記の実施形態に記載の動作、処理を端末装置1に行わせるような構成でもよい。基地局装置3は、少なくとも1つのプロセッサと、コンピュータプログラムインストラクション(コンピュータプログラム)を含む少なくとも1つのメモリからなってもよい。メモリとコンピュータプログラムインストラクション(コンピュータプログラム)はプロセッサを用いて、上記の実施形態に記載の動作、処理を基地局装置3に行わせるような構成でもよい。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)および/またはNG-RAN(NextGen RAN,NR RAN)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBおよび/またはgNBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明の一態様は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明の一態様は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。
1(1A、1B、1C) 端末装置
3 基地局装置
10、30 無線送受信部
11、31 アンテナ部
12、32 RF部
13、33 ベースバンド部
14、34 上位層処理部
15、35 媒体アクセス制御層処理部
16、36 無線リソース制御層処理部

Claims (6)

  1.  プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える端末装置であって、それぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信すること、を含む動作を実行する端末装置。
  2.  前記C-DAIの最大値を示すRRCシグナリングを受信すること、前記C-DAIの最大値に基づき前記複数の符号系列の候補を設定すること、を含む動作を実行する請求項1に記載の端末装置。
  3.  プロセッサと、コンピュータプログラムコードを格納するメモリと、を備える基地局装置であって、C-DAIの最大値を示すRRCシグナリングを端末装置に対して送信すること、前記C-DAIの最大値に基づき複数の符号系列の候補を設定すること、前記端末装置からの受信信号から前記複数の符号系列の候補の中から符号系列を検出すること、検出された前記符号系列からそれぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKを判断すること、を含む動作を実行する基地局装置。
  4.  端末装置に用いられる通信方法であって、それぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKの組み合わせに基づき複数の符号系列の候補の中から符号系列を選択して送信するステップと、を含む通信方法。
  5.  前記C-DAIの最大値を示すRRCシグナリングを受信するステップと、前記C-DAIの最大値に基づき前記複数の符号系列の候補を設定するステップと、を含む請求項4に記載の通信方法。
  6.  基地局装置に用いられる通信方法であって、C-DAIの最大値を示すRRCシグナリングを端末装置に対して送信するステップと、前記C-DAIの最大値に基づき複数の符号系列の候補を設定するステップと、前記端末装置からの受信信号から前記複数の符号系列の候補の中から符号系列を検出するステップと、検出された前記符号系列からそれぞれのC-DAIの値に対応するPDSCHに対するHARQ-ACKを判断するステップと、を含む通信方法。
PCT/JP2021/032572 2020-09-08 2021-09-06 端末装置、基地局装置および通信方法 WO2022054734A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022547566A JPWO2022054734A1 (ja) 2020-09-08 2021-09-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020150233 2020-09-08
JP2020-150233 2020-09-08

Publications (1)

Publication Number Publication Date
WO2022054734A1 true WO2022054734A1 (ja) 2022-03-17

Family

ID=80631778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032572 WO2022054734A1 (ja) 2020-09-08 2021-09-06 端末装置、基地局装置および通信方法

Country Status (2)

Country Link
JP (1) JPWO2022054734A1 (ja)
WO (1) WO2022054734A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252257A (ja) * 2009-04-20 2010-11-04 Sharp Corp 無線通信システム、基地局装置、移動局装置、無線通信方法及びプログラム
US20170366305A1 (en) * 2014-12-09 2017-12-21 Lg Electronics Inc. Method and user equipment for transmitting harq ack/nack for downlink data when using more than five cells according to carrier aggregation
EP3664338A1 (en) * 2017-08-04 2020-06-10 Wilus Institute of Standards and Technology Inc. Method, apparatus, and system for transmitting or receiving data channel and control channel in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252257A (ja) * 2009-04-20 2010-11-04 Sharp Corp 無線通信システム、基地局装置、移動局装置、無線通信方法及びプログラム
US20170366305A1 (en) * 2014-12-09 2017-12-21 Lg Electronics Inc. Method and user equipment for transmitting harq ack/nack for downlink data when using more than five cells according to carrier aggregation
EP3664338A1 (en) * 2017-08-04 2020-06-10 Wilus Institute of Standards and Technology Inc. Method, apparatus, and system for transmitting or receiving data channel and control channel in wireless communication system

Also Published As

Publication number Publication date
JPWO2022054734A1 (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
JP7099835B2 (ja) 端末装置、基地局装置、および、通信方法
JP7156887B2 (ja) 端末装置、基地局装置、および、通信方法
WO2021162050A1 (ja) 端末装置および通信方法
WO2020059750A1 (ja) 端末装置、基地局装置、および方法
WO2021153576A1 (ja) 端末装置および通信方法
WO2020195530A1 (ja) 端末装置、および、通信方法
WO2021192843A1 (ja) 端末装置、基地局装置および通信方法
WO2021060488A1 (ja) 端末装置、基地局装置および通信方法
WO2021006333A1 (ja) 端末装置および通信方法
WO2021025176A1 (ja) 端末装置、基地局装置および通信方法
WO2020184209A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020166627A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020166626A1 (ja) 端末装置、基地局装置、および、通信方法
WO2020162299A1 (ja) 端末装置、基地局装置、および、通信方法
JP2024054434A (ja) 端末装置、基地局装置、および、通信方法
WO2020129592A1 (ja) 端末装置、基地局装置、および、通信方法
WO2022054734A1 (ja) 端末装置、基地局装置および通信方法
WO2022054741A1 (ja) 端末装置、基地局装置および通信方法
WO2021166948A1 (ja) 端末装置、基地局装置および通信方法
WO2021166959A1 (ja) 端末装置、基地局装置および通信方法
WO2022071229A1 (ja) 端末装置、基地局装置および通信方法
WO2021025030A1 (ja) 端末装置、基地局装置および通信方法
WO2021025175A1 (ja) 端末装置、基地局装置および通信方法
WO2023100751A1 (ja) 端末装置、基地局装置、および、通信方法
RU2795697C2 (ru) Терминальное устройство, устройство базовой станции и способ связи

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866693

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547566

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866693

Country of ref document: EP

Kind code of ref document: A1