WO2022054684A1 - Ceramic plate and manufacturing method therefor, plate spring, setter, and method for manufacturing ceramic sintered body - Google Patents

Ceramic plate and manufacturing method therefor, plate spring, setter, and method for manufacturing ceramic sintered body Download PDF

Info

Publication number
WO2022054684A1
WO2022054684A1 PCT/JP2021/032285 JP2021032285W WO2022054684A1 WO 2022054684 A1 WO2022054684 A1 WO 2022054684A1 JP 2021032285 W JP2021032285 W JP 2021032285W WO 2022054684 A1 WO2022054684 A1 WO 2022054684A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
ceramic plate
setter
main surface
curved
Prior art date
Application number
PCT/JP2021/032285
Other languages
French (fr)
Japanese (ja)
Inventor
利貴 山縣
里樹 東
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=80632317&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022054684(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022540695A priority Critical patent/JP7126035B2/en
Publication of WO2022054684A1 publication Critical patent/WO2022054684A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/18Leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge

Definitions

  • the present disclosure relates to a ceramic plate and a method for manufacturing the same, a leaf spring, a setter, and a method for manufacturing a ceramic sintered body.
  • the circuit board mounted on the power module has an insulating ceramic plate.
  • the ceramic plate has, for example, a step of mixing ceramic powder, a sintering aid, an organic binder, a dispersant, etc. and then extruding into a sheet, a step of punching to form a ceramic green sheet, and a ceramic green sheet. Is manufactured by sequentially performing the steps of firing. At the time of firing, in order to improve productivity, it has been attempted to simultaneously produce a plurality of ceramic plates by placing a laminate containing a plurality of ceramic green sheets on a setter and heating the laminate.
  • Patent Document 1 proposes to reduce the influence of strain generated in such a shrinkage process by providing a dividing groove in the ceramic green sheet in advance.
  • the present disclosure discloses a leaf spring having excellent heat resistance and capable of suppressing the displacement of a plurality of laminated ceramic green sheets from each other, and a ceramic plate preferably used as the leaf spring and manufacturing thereof. Provide a method. Further, the present disclosure provides a setter capable of easily manufacturing such a ceramic plate. Further, the present disclosure provides a manufacturing method capable of stably manufacturing a ceramic sintered body having high quality by suppressing the positions of a plurality of laminated ceramic green sheets from being displaced from each other.
  • the present disclosure has a first main surface that is curved convexly on one side surface and a second main surface that is curved concavely on the opposite side of the first main surface, and the amount of warpage W is large.
  • a ceramic plate having a size of 1 mm or more. Since such a ceramic plate is made of ceramic, it has excellent heat resistance. Further, since it has a convex first main surface and a concave second main surface and has a large warp amount W, it can be suitably used as a leaf spring utilizing the restoring force generated by elastic deformation. However, its use is not limited to leaf springs.
  • the warp amount W of the ceramic plate in the present disclosure is measured as the maximum height of the second main surface from the measuring table when the ceramic plate is placed on the measuring table with the first main surface side facing upward. ..
  • the thickness of the ceramic plate may be 2 mm or less, and the radius of curvature of the first main surface and the second main surface may be 100 to 1000 mm.
  • the ratio of the warp amount W to the average value of the areas of the first main surface and the second main surface may be 1 ⁇ 10 -5 / mm or more. As a result, the deflection per unit area of the main surface can be increased, so that the spring can be more preferably used as a leaf spring.
  • the ceramic plate may be made of a silicon nitride sintered body.
  • the silicon nitride sintered body has both heat resistance and high strength, and can increase the deflection when used as a spring. Therefore, as a leaf spring, it can be particularly suitably used for applications that require a large restoring force (repulsive force) and a large deflection.
  • the present disclosure provides, in one aspect, a leaf spring composed of any of the ceramic plates described above. Since such a leaf spring has excellent heat resistance, it can sufficiently exert its function as a spring even at the heating temperature of the ceramic green sheet. Therefore, by holding the laminated body by using such a leaf spring, it is possible to prevent the positions of the plurality of green sheets included in the laminated body from being displaced from each other.
  • a setter having a convex or concave curved surface and a ceramic green sheet on one side surface are superposed and heated so that the main surface of the ceramic green sheet is along the curved surface, and the amount of warpage W
  • a method for manufacturing a ceramic plate which comprises a step of obtaining a ceramic plate having a size of 1 mm or more.
  • a ceramic plate having a warp amount W of 1 mm or more is obtained by using a setter having a convex or concave curved surface.
  • a ceramic plate suitably used as a leaf spring utilizing the restoring force can be obtained by a simple manufacturing method. Therefore, the above-mentioned method for manufacturing a ceramic plate can also be said to be a method for manufacturing a leaf spring.
  • the use of the ceramic plate obtained by the above-mentioned manufacturing method is not limited to the leaf spring.
  • the present disclosure provides a setter having a convex or concave curved surface on one side surface, and the height difference of the portion on the curved surface on which the ceramic green sheet is placed is 1 mm or more.
  • a ceramic plate suitably used as a leaf spring, for example can be easily manufactured.
  • the setter may heat a ceramic green sheet placed so as to cover the portion of the curved surface to form a ceramic plate having a warp amount W of 1 mm or more.
  • the present disclosure has, in one aspect, a degreasing step of heating and degreasing a laminate containing a plurality of ceramic green sheets, and a firing step of calcining the degreased laminate to obtain a ceramic plate, and degreasing.
  • the laminate provides a method for producing a ceramic sintered body, which is held by the restoring force generated by the elastic deformation of any of the ceramic plates described above.
  • the laminated body When the laminated body is heated to produce a ceramic sintered body, if the positions of the plurality of laminated ceramic green sheets are displaced from each other, the heated state changes between the exposed surface and the unexposed surface. It causes the quality such as color and properties to vary. Further, if the positions of the plurality of ceramic green sheets are displaced from each other, it may cause warpage.
  • the laminated body is held by the restoring force generated by the elastic deformation of the ceramic plate. Therefore, it is possible to prevent the positions of the plurality of laminated ceramic green sheets from shifting from each other. Therefore, it is possible to stably produce a ceramic sintered body having high quality.
  • the ceramic plate is arranged in an elastically deformed state between the fixing member provided above the laminated body and the laminated body, and accompanies the shrinkage of the laminated body.
  • the amount of warpage W of the ceramic plate may be increased.
  • the laminated body can be stably held, and the positions of the plurality of laminated ceramic green sheets can be sufficiently suppressed from being displaced from each other.
  • FIG. 1 is a perspective view of a ceramic plate according to an embodiment.
  • FIG. 2 is a side view of the ceramic plate according to the embodiment.
  • FIG. 3 is a perspective view of a ceramic plate according to another embodiment.
  • FIG. 4 is a perspective view of the setter according to the embodiment.
  • FIG. 5 is a side view of the setter of FIG.
  • FIG. 6 is a perspective view of the setter according to another embodiment.
  • FIG. 7 is a side view of the setter of FIG.
  • FIG. 8 is a perspective view showing an example of a laminated body used in a method for manufacturing a ceramic plate.
  • FIG. 9 is a perspective view showing another example of the laminated body used in the method for manufacturing a ceramic plate.
  • FIG. 1 is a perspective view of a ceramic plate according to an embodiment.
  • FIG. 2 is a side view of the ceramic plate according to the embodiment.
  • FIG. 3 is a perspective view of a ceramic plate according to another embodiment.
  • FIG. 4 is
  • FIG. 10 is a side view showing an example of a laminated body and a holding body used in the method for manufacturing a ceramic sintered body of the present embodiment.
  • FIG. 11 is a side view showing an example of the laminated body and the holding body after the degreasing step.
  • FIG. 12 is a graph showing the measurement result of the amount of deflection of Reference Example 1.
  • FIG. 13 is a graph showing the measurement result of the amount of deflection of Reference Example 2.
  • FIG. 1 is a perspective view of a ceramic plate according to an embodiment.
  • the ceramic plate 100 has a first main surface 100A that is curved in an arch shape and is curved in a convex shape, and a second main surface 100B that is curved in a concave shape on the opposite side of the first main surface 100A.
  • the pair of side surfaces 11 arranged facing each other is rectangular, while the other pair of side surfaces 13 arranged facing each other is curved in an arch shape.
  • FIG. 2 is a side view of the ceramic plate 100 of FIG.
  • the ceramic plate 100 is placed on a measuring table 150 having a horizontal flat surface.
  • the ceramic plate 100 is curved in an arch shape. Therefore, of the second main surface 100B of the ceramic plate 100, only the side 12 on the side of the pair of side surfaces 11 comes into contact with the measuring table 150, and between the other part of the second main surface 100B and the measuring table 150. There is a gap.
  • the amount of warpage W of the ceramic plate 100 is defined as the maximum height of the second main surface 100B from the measuring table 150 when the ceramic plate 100 is placed on the measuring table 150 with the first main surface 100A side facing upward. Be measured.
  • the warp amount W is a value in a state where no external force is applied to the ceramic plate 100 and the ceramic plate 100 is not elastically deformed. Since the warp amount W is 1 mm or more, the deflection until the second main surface 100B and the measuring table 150 become parallel can be sufficiently increased. Therefore, it can be suitably used as a leaf spring that utilizes the restoring force.
  • the warp amount Z of the ceramic plate 100 is the maximum value of the height difference of the first main surface 100A which is curved in a convex shape. The amount of warpage Z may also be 1 mm or more.
  • the radius of curvature of the first main surface 100A and the second main surface 100B may be 100 to 1000 mm, 150 to 800 mm, or 200 to 500 mm.
  • the radii of curvature of the first main surface 100A and the second main surface 100B may be the same or different.
  • the radius of curvature of the first main surface 100A does not have to be uniform and may differ depending on the position. In this case as well, the radius of curvature at each position may be within the above range.
  • the radius of curvature of the second main surface 100B does not have to be uniform and may differ depending on the position. In this case as well, the radius of curvature at each position may be within the above range.
  • the warp amount W (warp amount Z) may be 1.2 mm or more, and may be 1.4 mm or more. You may. On the other hand, if the amount of deformation is too large, the ceramic plate 100 tends to be easily damaged. Therefore, from the viewpoint of sufficiently increasing the durability of the ceramic plate 100, the warp amount W (warp amount Z) may be 5 mm or less, 4 mm or less, or 3 mm or less. The ratio of the warp amount Z to the warp amount W may be 0.9 to 1.1, or may be 0.95 to 1.05.
  • the thickness of the ceramic plate 100 (distance between the first main surface 100A and the second main surface 100B) may be 2 mm or less, 1.5 mm or less, and 1 mm or less from the viewpoint of sufficiently increasing the deflection. May be.
  • the thickness of the ceramic plate 100 may be 0.1 mm or more, or 0.2 mm or more, from the viewpoint of sufficiently increasing the restoring force when the ceramic plate 100 is used as a leaf spring.
  • An example of the thickness of the ceramic plate 100 may be 0.1 to 2 mm.
  • the ratio of the amount of warpage W to the thickness of the ceramic plate 100 may be 1 or more, and may be 2 or more, from the viewpoint of sufficiently increasing the deflection until the second main surface 100B and the measuring table 150 are parallel to each other. May be good.
  • the ratio of the warp amount W to the thickness of the ceramic plate 100 may be 15 or less, or 10 or less, from the viewpoint of sufficiently increasing the durability as a leaf spring.
  • An example of the ratio of the warp amount W to the thickness of the ceramic plate 100 may be 1 to 15.
  • the area of the first main surface 100A and the second main surface 100B may be 100 to 10000 mm 2 or 500 to 5000 mm 2 .
  • the areas of the first main surface 100A and the second main surface 100B may be the same or different.
  • the ratio of the warp amount W to the average value of the areas of the first main surface 100A and the second main surface 100B may be 1 ⁇ 10 -5 / mm or more from the viewpoint of sufficiently enhancing the usefulness as a leaf spring. It may be 5 ⁇ 10 -5 / mm or more, and may be 1 ⁇ 10 -4 / mm or more.
  • the ratio of the warp amount W to the average value of the areas of the first main surface 100A and the second main surface 100B may be 2 ⁇ 10 ⁇ 2 / mm or less, and may be 1 ⁇ 10 ⁇ 2 / mm or less. It may be 5 ⁇ 10 -3 / mm or less.
  • the ceramic plate 100 may be composed of a nitride sintered body, a carbide sintered body, or an oxide sintered body.
  • the ceramic plate 100 When the ceramic plate 100 is used as a leaf spring, it may be composed of a silicon nitride sintered body.
  • a leaf spring composed of a silicon nitride sintered body can sufficiently increase the deflection. Further, since the silicon nitride sintered body has high bending strength, it is also excellent in durability.
  • the bending strength of the ceramic plate 100 may be 500 MPa or more, or 600 MPa or more, from the viewpoint of improving durability.
  • the bending strength of the ceramic plate 100 may be, for example, 1000 MPa or less, or 900 MPa.
  • An example of the bending strength of the ceramic plate 100 is 500 to 1000 MPa.
  • the bending strength in the present disclosure is a three-point bending strength, and is measured using a commercially available bending strength meter (manufactured by Shimadzu Corporation, device name: AG-2000) in accordance with JIS R 1601: 2008. ..
  • the ceramic plate 100 is made of ceramic, it has excellent heat resistance. Therefore, the leaf spring composed of the ceramic plate 100 can be suitably used in various environments. For example, it is suitable for applications that require restoring force due to elastic deformation in a high temperature environment.
  • FIG. 3 is a perspective view of a ceramic plate according to another embodiment.
  • the ceramic plate 102 all four side surfaces 24 are curved so as to be arched, and the first main surface 102A is curved in a convex shape and the ceramic plate 102 is curved in a concave shape on the opposite side of the first main surface 102A. It has a second main surface 102B.
  • the central portion of the first main surface 102A projects upward from the end portion.
  • the central portion of the second main surface 102B is recessed from the end portion.
  • the arch shapes of the four side surfaces 24 may be the same or different from each other.
  • the warp amount W of the ceramic plate 102 is also the maximum height of the second main surface 102B from the measuring table 150 when the ceramic plate 102 is placed on the measuring table 150 with the first main surface 102A side facing upward. Measured as.
  • the warp amount Z of the ceramic plate 102 is also measured as the maximum value of the height difference of the first main surface 102A which is curved in a convex shape.
  • the numerical range such as the warp amount W, the warp amount Z, the thickness, and the ratio of the warp amount W to the thickness of the ceramic plate 102, and the material may be the same as those of the ceramic plate 100.
  • the numerical range such as the radius of curvature and the area of the first main surface 102A and the second main surface 102B may be the same as that of the first main surface 100A and the second main surface 100B.
  • the ceramic plate 102 can also be suitably used as a leaf spring under various environments.
  • FIG. 4 is a perspective view of the setter according to the embodiment.
  • the setter 50 has a substantially semi-cylindrical shape. That is, the setter 50 has a shape in which one surface is bulged in an arch shape, and has a curved surface 50A that is curved in a convex shape and a flat surface 50B on the opposite side of the curved surface 50A.
  • the pair of side edges 54 facing each other on the curved surface 50A are curved, and the other pair of side edges 52 facing each other extend linearly.
  • a ceramic green sheet is placed so as to cover at least a part of the curved surface 50A of the setter 50. When the ceramic green sheet is placed on the curved surface 50A, the ceramic green sheet is curved along the curved surface 50A.
  • the first main surface 100A which is curved in an arch shape and is curved in a convex shape, and the first main surface 100A are curved in a concave shape on the opposite side of the first main surface 100A. It is possible to form a ceramic plate 100 having a second main surface 100B and having a warp amount W (warp amount Z) of 1 mm or more.
  • the radius of curvature of the curved surface 50A of the setter 50 may be 100 to 1000 mm, 150 to 800 mm, or 200 to 500 mm. This makes it possible to easily manufacture a ceramic plate suitable as a leaf spring.
  • the height difference H1 between the top of the curved surface 50A at the center and the side edge 52 at the lower end of the curved surface may be 1 mm or more from the viewpoint of manufacturing a sufficiently flexible leaf spring (ceramic plate 100). It may be 2 mm or more, and may be 1.4 mm or more. From the viewpoint of producing a ceramic plate having excellent durability against repeated elastic deformation, the height difference H1 may be 5 mm or less, 4 mm or less, or 3 mm or less.
  • FIG. 6 is a perspective view of the setter according to another embodiment.
  • the setter 60 has a curved surface 60A curved in a concave shape and a flat surface 60B on the opposite side of the curved surface 60A.
  • the four side edges 64 that form the contour of the curved surface 60A are all curved and are curved so as to be convex downward.
  • the recessed portion 61 in the central portion of the curved surface 60A is a portion of the curved surface 60A closest to the plane 60B.
  • the curved surface 60A is curved so as to move away from the plane 60B toward the side edge 64 of the curved surface 60A from the central portion.
  • the tops 65 at the four corners of the curved surface 60A are the portions of the curved surface 60A that are farthest from the plane 60B.
  • a ceramic green sheet is placed so as to cover at least a part of the curved surface 60A of the setter 60.
  • the ceramic green sheet is curved along the curved surface 60A.
  • the first main surface 102A which is curved convexly
  • the second main surface 102A which is concavely curved on the opposite side of the first main surface 102A as shown in FIG. It is possible to manufacture a ceramic plate 102 having a surface 102B and having an arch shape on four side surfaces.
  • the radius of curvature of the curved surface 60A of the setter 60 may be 100 to 1000 mm, 150 to 800 mm, or 200 to 500 mm. This makes it possible to easily manufacture a ceramic plate suitable as a leaf spring.
  • the height difference H2 between the recess 61 at the center of the curved surface 60A and the top 65 of the curved surface may be 1 mm or more, and 1.2 mm or more, from the viewpoint of manufacturing a sufficiently flexible leaf spring (ceramic plate 100). It may be 1.4 mm or more. From the viewpoint of improving durability against repeated elastic deformation, the height difference H2 may be 5 mm or less, 4 mm or less, or 3 mm or less.
  • the method for manufacturing the ceramic plate 100 (102) is to use a setter 50 (60) having a convex curved surface 50A (concave curved surface 60A) and a ceramic green sheet, and the main surface of the ceramic green sheet is a curved surface 50A ( It has a step of superimposing and heating along 60A) to obtain a ceramic plate 100 (102) having a warp amount W (warp amount Z) of 1 mm or more.
  • a ceramic plate having a warp amount W (warp amount Z) of 1 mm or more can be obtained by using a setter 50 or a setter 60 having a convex or concave curved surface.
  • a ceramic plate suitably used as a leaf spring utilizing the restoring force can be obtained by a simple manufacturing method. The use of the ceramic plate is not limited to the leaf spring.
  • the setter used for manufacturing the ceramic plate is not limited to the shapes shown in FIGS. 4, 5, 6 and 7, and may be appropriately changed according to the shape of the ceramic plate.
  • a setter having a curved surface curved in a concave shape instead of the setter 50 in FIG. 4, a setter having a curved surface curved in a concave shape may be used. In this case, the pair of curved side edges 54 of the curved surface may be bent so as to project downward, contrary to FIG.
  • a setter having a curved surface curved in a convex shape may be used instead of the setter 60 in FIG. In this case, the four curved side edges 64 of the curved surface may be bent so as to project upward as opposed to FIG.
  • a ceramic plate manufactured using such a setter has a sufficient amount of warpage. Therefore, it is suitable as a leaf spring used in the method for manufacturing a ceramic sintered body described below.
  • FIG. 8 is a perspective view showing an example of a setter used in a method for manufacturing a ceramic plate and a laminated body in which a ceramic green sheet is laminated.
  • the setter 50 shown in FIG. 4 is arranged at the lowermost portion, and three ceramic green sheets 110 are laminated on the curved surface 50A of the setter 50.
  • a setter 70 is arranged on the setter 70, and three ceramic green sheets 110 are laminated on one surface (upper surface) of the setter 70.
  • a setter 80 is arranged on the setter 80.
  • the curved shape of the curved surface 50A is transferred to the three ceramic green sheets 110 arranged on the curved surface 50A of the setter 50.
  • the other surface (lower surface) of the setter 70 is a concave curved surface complementary to the convex curved surface 50A. Therefore, the curved shape of the curved surface 50A and the lower surface of the setter 70 is sufficiently transferred to the three ceramic green sheets 110 sandwiched between the setter 70 and the setter 50.
  • one main surface of the ceramic green sheet 110 is curved in a convex shape, and the other main surface is curved in a concave shape.
  • the upper surface of the setter 70 is curved in a convex shape like the curved surface 50A of the setter 50.
  • the lower surface of the setter 80 is a concave curved surface complementary to the upper surface of the convex setter 70. Therefore, the curved shape of the upper surface of the setter 70 and the curved shape of the lower surface of the setter 80 are sufficiently transferred to the three ceramic green sheets 110 placed on the upper surface of the setter 70.
  • one main surface of the ceramic green sheet 110 is curved in a convex shape, and the other main surface is curved in a concave shape.
  • the laminate 200 has a plurality of ceramic green sheets 110 sandwiched between a pair of setters 50 and 80 from above and below. Since the main surfaces of the pair of setters 50 and 80 in contact with the ceramic green sheets 110 are curved in a convex and concave shape and have complementary shapes to each other, the warpage amount W and the warp amount Z of the plurality of ceramic plates 100 The variation can be sufficiently reduced. Further, a setter 70 sandwiched between a pair of setters 50 and 80 by a ceramic green sheet 110 is used. The contact surface of the setter 70 with the ceramic green sheet 110 is curved in the same manner as the curved surface of the setters 50 and 80. By using such a setter 70, the number of laminated ceramic green sheets 110 can be increased.
  • the laminated body may be formed without using the setter 70. Further, a plurality of setters 70 may be individually arranged at arbitrary positions between the pair of setters 50 and 80.
  • FIG. 9 is a perspective view showing another example of a setter used in a method for manufacturing a ceramic plate and a laminated body in which ceramic green sheets are laminated.
  • the setter 82 is arranged at the lowermost portion, and three ceramic green sheets 111 are laminated on the curved surface of the setter 82.
  • a setter 72 is arranged on the setter 72, and three ceramic green sheets 111 are laminated on one surface (upper surface) of the setter 72.
  • the setter 60 of FIG. 6 is arranged so that the plane 60B faces upward.
  • the curved shape of the curved surface is transferred to the ceramic green sheet 111 arranged on the curved surface of the setter 82.
  • the curved surface of the setter 82 is a convex curved surface complementary to the curved surface 60A of the concave setter 60.
  • the other surface (lower surface) of the setter 72 is a curved surface having the same shape as the curved surface 60A of the setter 60. Therefore, in the ceramic green sheet 111 sandwiched between the setter 72 and the setter 82, the curved shape of the upper surface of the setter 82 and the curved shape of the lower surface of the setter 72 are sufficiently transferred. As a result, one main surface of the ceramic green sheet 111 is curved in a convex shape, and the other main surface is curved in a concave shape.
  • the upper surface of the setter 72 is a convex curved surface complementary to the curved surface 60A of the concave setter 60. Therefore, the curved shape of the upper surface of the setter 72 and the curved shape of the curved surface 60A of the setter 60 are sufficiently transferred to the ceramic green sheet 110 placed on the upper surface of the setter 72. Therefore, one main surface of the ceramic green sheet 110 sandwiched between the upper surface of the setter 72 and the curved surface 60A of the setter 60 is curved in a convex shape, and the other main surface is curved in a concave shape.
  • a plurality of ceramic green sheets 111 can be degreased and fired at the same time, and the ceramic plate 102 shown in FIG. 3 can be mass-produced.
  • the laminate 210 has a plurality of ceramic green sheets 111 sandwiched between a pair of setters 60 and 82 from above and below. Since the main surfaces of the pair of setters 60 and 82 in contact with the ceramic green sheets 111 are curved in a convex and concave shape and have complementary shapes to each other, the warpage amount W and the warp amount Z of the plurality of ceramic plates 102 The variation can be sufficiently reduced. Further, the setter 72 is arranged between the pair of setters 60 and 82 so as to be sandwiched between the ceramic green sheets 111. The contact surface of the setter 72 with the ceramic green sheet 111 is curved in the same manner as the curved surface of the setters 60 and 82.
  • the laminated body may be formed without using the setter 72. Further, a plurality of setters 72 may be individually arranged at arbitrary positions between the pair of setters 60 and 82.
  • the setters 50, 60, 70, 72, 80, 82 may be made of ceramic.
  • ceramic For example, those composed of at least one selected from the group consisting of boron nitride, silicon carbide, alumina, zirconia, graphite, and silicon nitride can be mentioned.
  • a setter made of boron nitride is preferably used because it has both heat resistance and good machinability.
  • the material of the setter may be different from the material of the ceramic plate from the viewpoint of suppressing the adhesion between the setter and the ceramic plate during firing.
  • the setters 50, 60, 70, 72, 80, 82 may be made of boron nitride (BN) from the viewpoint of heat resistance.
  • the boron nitride setter can be manufactured by the following procedure. First, a molded product is produced using hexagonal boron nitride powder as a raw material. If necessary, a sintering aid may be added to the hexagonal boron nitride powder before molding. Examples of the sintering aid include oxides of alkaline earth metals such as magnesium oxide and calcium oxide, rare earth oxides such as aluminum oxide, silicon oxide and yttrium oxide, and composite oxides such as spinel.
  • the molding may be performed by uniaxial pressure molding and CIP molding. Uniaxial pressure molding may be performed at 3 to 20 MPa. CIP molding may be performed at 50 to 300 MPa.
  • the obtained molded product is calcined to obtain a setter made of boron nitride.
  • the firing may be carried out under the conditions of a non-oxidizing atmosphere, a heating rate of 150 ° C./hr or less, a maximum temperature of 1800 to 2200 ° C., and a holding time of 5 hours or more in this temperature range.
  • the non-oxidizing atmosphere include a nitride gas atmosphere such as nitrogen and ammonia.
  • the density of the boron nitride setter may be 1600 kg / m 3 or more.
  • the method for manufacturing the setter is not limited to the above method. For example, it may be manufactured by a hot press method. Further, degreasing may be performed before firing. The degreasing may be performed by heating the molded product in air or in a non-oxidizing atmosphere such as nitrogen to 300 to 700 ° C. The heating time may be, for example, 1 to 10 hours.
  • a ceramic plate having a warp amount W of 1 mm or more is used.
  • the manufacturing method includes a laminating step of laminating a plurality of ceramic green sheets to obtain a laminated body, a degreasing step of heating and degreasing the laminated body, and a firing step of firing the degreased laminated body to obtain a ceramic plate. And have. Details will be described below.
  • a ceramic green sheet is produced, for example, by the following procedure.
  • the ceramic is not particularly limited, and examples thereof include nitrides, oxides, and carbides. Specific examples thereof include silicon nitride, silicon carbide, alumina, aluminum nitride and boron nitride.
  • Binders include those containing organic components.
  • the binder may be an acrylic copolymer.
  • the dispersant may be unsaturated fatty acids.
  • the ceramic green sheet may be processed into a desired shape by, for example, cutting.
  • the materials and shapes of the plurality of ceramic green sheets may be the same as each other or may be different from each other.
  • a commercially available setter may be purchased or may be produced by a known method.
  • the setter include those composed of at least one selected from the group consisting of boron nitride, silicon carbide, alumina, zirconia, graphite, and silicon nitride.
  • a setter made of boron nitride is preferably used because it has both heat resistance and good machinability.
  • the material of the setter may be different from the material of the ceramic sintered body from the viewpoint of suppressing the adhesion between the setter after firing and the ceramic sintered body manufactured by this manufacturing method.
  • a plurality of ceramic green sheets are layered on the setter prepared in this way to obtain a laminated body.
  • a plurality of ceramic green sheets may be laminated so that the main surfaces of the ceramic green sheets are in contact with each other, and another setter may be placed on the laminated body to prepare a laminated body. That is, a plurality of laminated ceramic green sheets may be sandwiched between a pair of setters arranged so as to face each other in the stacking direction to prepare a laminated body.
  • a ceramic plate having a warp amount of 1.5 mm or more is arranged outside the pair of setters in the produced laminate, and the laminate is pressed along the lamination direction to prepare a holding body.
  • FIG. 10 is a side view showing an example of a laminated body and a holding body used in the method for manufacturing a ceramic sintered body of the present embodiment.
  • the holding body 350 of FIG. 10 includes a laminated body 300, a fixing member 37 provided above the laminated body 300 and fixing the laminated body 300, and a ceramic plate 100a between the fixing member 37 and the laminated body 300. ..
  • the laminate 300 is placed on the support 400, and the setter 92, the plurality of ceramic green sheets 41, the setter 94, the plurality of ceramic green sheets 41, and the setter 96 are arranged in this order from the support 400 side. It is laminated. Both these setters and ceramic green sheets have a flat plate shape.
  • the ceramic plate 100a exhibits an arch shape with a warp amount W as shown as the ceramic plate 100 in FIG. 2 in a state where no external force is applied.
  • the ceramic plate 100a arranged so as to face the upper surface of the setter 96 is pressed toward the laminated body 300 by the fixing member 37. Therefore, it is elastically deformed so that the amount of warpage becomes small, and becomes a flat plate shape.
  • the setter 96 on the lower side of the ceramic plate 100a is urged downward by the restoring force of the ceramic plate 100a as a leaf spring. In this way, the holding body 350 restrains the laminated body 300 by sandwiching the laminated body 300 between the support 400 and the ceramic plate 100a in the laminating direction.
  • the holding body 350 provided with the laminated body 300 is housed in a degreasing furnace and heated to, for example, 300 ° C. to 700 ° C.
  • the binder and the dispersant contained in the ceramic green sheet 41 are volatilized, and the ceramic green sheet 41 shrinks.
  • FIG. 11 is a side view showing the ceramic green sheet 42, the laminated body 301, and the holding body 351 obtained by degreasing the ceramic green sheet 41.
  • the ceramic green sheet 42 is thinner due to shrinkage than the ceramic green sheet 41 before degreasing. Therefore, the position of the setter 96 in the laminated body 301 after degreasing is closer to the support 400 than in the setter 96 in the laminated body 300 before degreasing. At this time, since the positional relationship between the support 400 and the fixing member 37 does not change before and after degreasing, the distance between the setter 96 and the fixing member 37 becomes large. Along with this, the elastically deformed ceramic plate 100a is restored, and the warp amount W1 becomes large.
  • the warp amount W1 increases with the passage of the heating time.
  • the warp amount W1 of the ceramic plate 100b is smaller than the warp amount W of the ceramic plate 100 when no external force is applied. Therefore, the ceramic plate 100b can continue to restrain the laminated body 300 by the restoring force as a leaf spring.
  • the holding body 351 includes a ceramic plate 100 (100b) that functions as a leaf spring, even if the ceramic green sheet 42 shrinks during the degreasing step, the restoring force of the elastically deformed ceramic plate 100 acts. As a result, the laminated body 301 can be continuously restrained. Therefore, it is possible to prevent the ceramic green sheets 41 and 42 from being displaced from each other, resulting in uneven baking or warpage. Therefore, it is possible to stably produce a ceramic sintered body having high quality.
  • the number of ceramic plates 100 used in the holder 350 (351) is not limited to one, and a plurality of ceramic plates 100 may be stacked in the vertical direction. As a result, the restoring force of the leaf spring can be increased, and the laminated bodies 300 and 301 can be restrained more firmly.
  • the arrangement of the ceramic plate 100 is not limited to between the setter 96 and the fixing member 37, and may be between the setter 92 and the support 400, or between the pair of ceramic green sheets 41 (42). There may be.
  • a plurality of ceramic plates 100 may be arranged at different positions from each other.
  • the ceramic plate 102 may be used instead of the ceramic plate 100. Further, a ceramic plate having a shape different from these may be used as long as it functions as a leaf spring.
  • a mold release agent may be applied to the main surface of the ceramic green sheet 41 (42) in order to prevent the adjacent ceramic green sheets from adhering to each other during firing. Further, the mold release agent may be applied to the surface of the setters 92, 94, 96 facing the main surface of the ceramic green sheet 41 (42). Examples of the component contained in the release agent include ceramic powder such as boron nitride, graphite powder, and binder.
  • the degreased ceramic green sheet 42 is housed in a firing furnace and heated to 1600 ° C to 2000 ° C. As a result, the ceramic green sheet is fired and a ceramic plate is obtained.
  • the degreasing furnace used for degreasing and the firing furnace used for firing may be the same furnace or different furnaces. Further, the heating temperature, time and atmosphere may be appropriately adjusted according to the composition of the ceramic green sheet.
  • the holding body 351 of FIG. 11 may be housed in a firing furnace to fire the ceramic green sheet 42, or the holding body 351 may be disassembled and the ceramic green sheet 42 may be held and fired by another setter. You may. Also in the firing step, the ceramic green sheet 42 may further shrink due to factors such as the progress of grain growth and the volatilization of the remaining binder and the dispersant. Therefore, similarly to the degreasing step, the position shift of the ceramic green sheet 42 can be suppressed by urging and restraining the laminated body 301 by the restoring force of the ceramic plate 100.
  • the holding body provided with the ceramic plate 100 may be used only in the firing step. In this case as well, it is possible to prevent the positions of the plurality of ceramic green sheets from being displaced from each other after degreasing. This makes it possible to stably produce a ceramic sintered body having high quality.
  • the thickness of the ceramic plate is not uniform and may be different.
  • the average thickness of the ceramic plate can be obtained as the average value of the thickest portion and the thinnest portion. This average thickness may be within the numerical range of the above-mentioned thickness.
  • Ceramic plates may be used for different purposes than leaf springs.
  • the ceramic plate may be used as a member of the filter.
  • two ceramic plates 100 (102) are arranged so that the first main surface 100A (102A) and the second main surface 100B (102B) face each other to form a curved flow path between the two ceramic plates.
  • the liquid content or the solid content contained in the gas flowing through the flow path may be removed.
  • the medium flowing through the flow path is not limited to gas, and may be mist or liquid.
  • the filter may be configured by arranging three or more ceramic plates 100 (102) side by side so that the main surfaces face each other.
  • the flow path in the filter may be formed by arranging a ceramic plate having a flat main surface and a ceramic plate 100 (102) side by side.
  • This raw material powder was uniaxially pressure-molded to prepare a plurality of ceramic green sheets.
  • the produced ceramic green sheet and a setter made of boron nitride were superposed to obtain a laminate as shown in FIG.
  • the radius of curvature of the curved surface of each of the three setters was 290 mm. This is placed in an electric furnace equipped with a carbon heater, heated in air at 500 ° C. for 5 hours to degreas, and then fired at 1800 ° C. for 12 hours in a nitrogen gas atmosphere to form a silicon nitride sintered body.
  • a ceramic plate to be composed was obtained.
  • the ceramic plate is curved in an arch shape, and has a first main surface that is curved in a convex shape and a first main surface that is curved in a concave shape on the opposite side of the first main surface. It had two main surfaces.
  • the vertical length (arc length) measured along the longitudinal direction of the first main surface and the second main surface was 68 mm.
  • the lateral length (width) measured along the lateral direction of the first main surface and the second main surface was 35.4 mm.
  • the thickness (the shortest distance between the first main surface and the second main surface) measured along the direction orthogonal to the first main surface and the second main surface was 0.635 mm.
  • the obtained ceramic plate was placed on a measuring table having a horizontal flat surface, and the amount of warpage W was measured.
  • a one-shot 3D shape measuring machine (trade name: VR-3050) manufactured by KEYENCE CORPORATION was used for the measurement.
  • the measurement results of the warp amount W of the three ceramic plates are as shown in Table 1.
  • the warp amount W is the maximum height of the second main surface curved in a concave shape from the measuring table.
  • the warpage amount Z of the three ceramic plates measured using the same measuring instrument is as shown in Table 1.
  • the warp amount Z is the maximum value of the height difference of the first main surface that is curved in a convex shape.
  • the warpage amount W of the three ceramic plates was almost the same. Further, the warp amount W and the warp amount Z did not change significantly.
  • the radius of curvature of the first main surface and the second main surface was the same as the radius of curvature of the curved surface of the setter.
  • Table 1 shows the area and thickness of the main surface, the ratio of the warp amount W to the area of the main surface, and the ratio of the warp amount W to the thickness.
  • Three ceramic plates of Examples 1-1, 1-2, 1-3 were superposed to prepare a holding body similar to the holding body 350 of FIG.
  • FIG. 10 only one ceramic plate 100a is shown, but in this embodiment, three ceramic plates are used in an overlapping manner so that the directions of the first main surface and the second main surface are aligned.
  • 60 ceramic green sheets were prepared in the same manner as in the above-mentioned "Ceramic plate preparation”.
  • As the setters commercially available ones made of boron nitride were used. Thirty ceramic green sheets, setters (second setter), and 30 ceramic green sheets and setters (third setter) were laminated on the lower setter (first setter) in this order to obtain a laminated body.
  • Three ceramic plates were placed on the upper setter (third setter). The laminated body was restrained by pressing downward with a fixing member arranged on the upper side of the three ceramic plates to prepare a holding body as shown in FIG. The laminate was urged downward by the restoring force associated with the elastic deformation of the
  • the holding body provided with such a laminated body was housed in a degreasing furnace and heated in air at 500 ° C. for 5 hours to perform a degreasing step.
  • the degreasing step the positions of the plurality of ceramic green sheets did not shift from each other.
  • the ceramic green sheet was taken out from the holding body and placed on another boron nitride setter to perform a firing step.
  • the firing step the degreased ceramic green sheet was heated at 1800 ° C. for 12 hours in a firing furnace under a nitrogen atmosphere. The quality variation of the obtained silicon nitride sintered body was sufficiently reduced.
  • N pieces of the above-mentioned ceramic plates were prepared, and the amount of deflection was measured by the following procedure.
  • the amount of deflection was measured by performing a three-point bending test at a distance between fulcrums of 30 mm using a tensile compression tester (model: SDT-503NB-50R1T) manufactured by Imada Seisakusho Co., Ltd.
  • FIG. 12 shows the measurement results of n ceramic plates side by side.
  • Reference example 2 A flat plate-shaped ceramic plate composed of a silicon nitride sintered body was obtained in the same manner as in Reference Example 1 except that the thickness of the ceramic plate was changed.
  • N ceramic plates were prepared, and the amount of deflection was measured by the same procedure as in Reference Example 1. The measurement results are as shown in FIG. From the results of FIGS. 12 and 13, it was confirmed that the amount of deflection can be adjusted by changing the thickness of the ceramic plate.
  • a method can be provided. Further, it is possible to provide a setter capable of easily manufacturing such a ceramic plate. Further, by suppressing the positions of the plurality of laminated ceramic green sheets from being displaced from each other, it is possible to provide a manufacturing method capable of stably manufacturing a ceramic sintered body having high quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Provided is a ceramic plate having a convexly curved first main surface and a concavely curved second main surface on the reverse side from the first main surface, with a warpage amount W of 1 mm or more. Also provided is a method for manufacturing the ceramic plate comprising a step for overlapping and heating a setter having a convex or concave curved surface and a ceramic green sheet so that the main surface of the ceramic green sheet is along the curved surface, to obtain a ceramic plate with a warpage amount of 1 mm or more.

Description

セラミック板及びその製造方法、板ばね、セッター、並びにセラミック焼結体の製造方法Ceramic plate and its manufacturing method, leaf spring, setter, and ceramic sintered body manufacturing method
 本開示は、セラミック板及びその製造方法、板ばね、セッター、並びにセラミック焼結体の製造方法に関する。 The present disclosure relates to a ceramic plate and a method for manufacturing the same, a leaf spring, a setter, and a method for manufacturing a ceramic sintered body.
 自動車、電鉄、産業用機器、及び発電関係等の分野には、大電流を制御するパワーモジュールが用いられている。パワーモジュールに搭載される回路基板は、絶縁性のセラミック板を有する。セラミック板は、例えば、セラミック粉末、焼結助剤、有機質バインダ及び分散剤等を混合した後にシート状に押出成形する工程と、打抜加工してセラミックグリーンシートを形成する工程と、セラミックグリーンシートを焼成する工程を順次行って製造される。焼成する際には、生産性向上のため、セッターの上に、複数のセラミックグリーンシートを含む積層体を載置し、加熱することによって複数のセラミック板を同時に生産することが試みられている。 Power modules that control large currents are used in fields such as automobiles, electric railways, industrial equipment, and power generation. The circuit board mounted on the power module has an insulating ceramic plate. The ceramic plate has, for example, a step of mixing ceramic powder, a sintering aid, an organic binder, a dispersant, etc. and then extruding into a sheet, a step of punching to form a ceramic green sheet, and a ceramic green sheet. Is manufactured by sequentially performing the steps of firing. At the time of firing, in order to improve productivity, it has been attempted to simultaneously produce a plurality of ceramic plates by placing a laminate containing a plurality of ceramic green sheets on a setter and heating the laminate.
 ところで、セラミックグリーンシートはバインダ及び分散剤等を含有することから、加熱に伴ってこれらの成分が内部から蒸発して収縮する。特許文献1では、このような収縮過程で生じる歪の影響を、セラミックグリーンシートに分割溝を予め設けることによって低減することが提案されている。 By the way, since the ceramic green sheet contains a binder, a dispersant, etc., these components evaporate from the inside and shrink with heating. Patent Document 1 proposes to reduce the influence of strain generated in such a shrinkage process by providing a dividing groove in the ceramic green sheet in advance.
特開2014-51409号公報Japanese Unexamined Patent Publication No. 2014-51409
 セラミックグリーンシートに含まれる成分が揮発して収縮すると、揮発及び収縮に伴って積層されている複数のセラミックグリーンシートの位置が互いにずれて、品質に影響を及ぼすことが懸念される。そこで、本開示は、優れた耐熱性を有し、積層された複数のセラミックグリーンシートの互いの位置がずれることを抑制できる板ばね、並びに、当該板ばねとして好適に用いられるセラミック板及びその製造方法を提供する。また、本開示では、そのようなセラミック板を簡便に製造できるセッターを提供する。また、本開示では、積層された複数のセラミックグリーンシートの互いの位置がずれることを抑制することによって、高い品質を有するセラミック焼結体を安定的に製造すること可能な製造方法を提供する。 When the components contained in the ceramic green sheet volatilize and shrink, there is a concern that the positions of the plurality of ceramic green sheets laminated due to the volatilization and shrinkage may shift from each other, affecting the quality. Therefore, the present disclosure discloses a leaf spring having excellent heat resistance and capable of suppressing the displacement of a plurality of laminated ceramic green sheets from each other, and a ceramic plate preferably used as the leaf spring and manufacturing thereof. Provide a method. Further, the present disclosure provides a setter capable of easily manufacturing such a ceramic plate. Further, the present disclosure provides a manufacturing method capable of stably manufacturing a ceramic sintered body having high quality by suppressing the positions of a plurality of laminated ceramic green sheets from being displaced from each other.
 本開示は、一つの側面において、凸状に湾曲している第1主面と、当該第1主面の反対側に凹状に湾曲している第2主面とを有し、反り量Wが1mm以上である、セラミック板を提供する。このようなセラミック板は、セラミック製であることから耐熱性に優れる。また、凸状の第1主面と凹状の第2主面を有するとともに、大きい反り量Wを有することから、弾性変形によって生じる復元力を利用する板ばねとして好適に用いることができる。ただし、その用途は板ばねに限定されない。本開示におけるセラミック板の反り量Wは、セラミック板を、第1主面側を上向きにして、測定台上に載置したときの測定台からの第2主面の最大高さとして測定される。 The present disclosure has a first main surface that is curved convexly on one side surface and a second main surface that is curved concavely on the opposite side of the first main surface, and the amount of warpage W is large. Provided is a ceramic plate having a size of 1 mm or more. Since such a ceramic plate is made of ceramic, it has excellent heat resistance. Further, since it has a convex first main surface and a concave second main surface and has a large warp amount W, it can be suitably used as a leaf spring utilizing the restoring force generated by elastic deformation. However, its use is not limited to leaf springs. The warp amount W of the ceramic plate in the present disclosure is measured as the maximum height of the second main surface from the measuring table when the ceramic plate is placed on the measuring table with the first main surface side facing upward. ..
 上記セラミック板の厚みは2mm以下であり、第1主面と第2主面の曲率半径が100~1000mmであってよい。これによって、板ばねとして用いたときに、変形による破損を抑制しつつたわみを十分に大きくすることができる。 The thickness of the ceramic plate may be 2 mm or less, and the radius of curvature of the first main surface and the second main surface may be 100 to 1000 mm. As a result, when used as a leaf spring, it is possible to sufficiently increase the deflection while suppressing damage due to deformation.
 第1主面と第2主面の面積の平均値に対する反り量Wの比は1×10-5/mm以上であってよい。これによって、主面の単位面積当たりのたわみを大きくすることができるため、板ばねとして一層好適に用いることができる。 The ratio of the warp amount W to the average value of the areas of the first main surface and the second main surface may be 1 × 10 -5 / mm or more. As a result, the deflection per unit area of the main surface can be increased, so that the spring can be more preferably used as a leaf spring.
 上記セラミック板は、窒化ケイ素焼結体で構成されてよい。窒化ケイ素焼結体は、耐熱性と高い強度を兼ね備えるうえに、ばねとして用いたときにたわみを大きくすることができる。このため、板ばねとして、大きい復元力(反発力)と大きいたわみを必要とする用途に特に好適に用いることができる。 The ceramic plate may be made of a silicon nitride sintered body. The silicon nitride sintered body has both heat resistance and high strength, and can increase the deflection when used as a spring. Therefore, as a leaf spring, it can be particularly suitably used for applications that require a large restoring force (repulsive force) and a large deflection.
 本開示は、一つの側面において、上述のいずれかのセラミック板で構成される板ばねを提供する。このような板ばねは、耐熱性に優れるため、セラミックグリーンシートの加熱温度においても、ばねとしての機能を十分に発揮することができる。したがって、このような板ばねを用いて積層体を保持することによって、積層体に含まれる複数のグリーンシートの位置が互いにずれることを抑制できる。 The present disclosure provides, in one aspect, a leaf spring composed of any of the ceramic plates described above. Since such a leaf spring has excellent heat resistance, it can sufficiently exert its function as a spring even at the heating temperature of the ceramic green sheet. Therefore, by holding the laminated body by using such a leaf spring, it is possible to prevent the positions of the plurality of green sheets included in the laminated body from being displaced from each other.
 本開示は、一つの側面において、凸状又は凹状の湾曲面を有するセッターと、セラミックグリーンシートとを、セラミックグリーンシートの主面が上記湾曲面に沿うように重ね合わせて加熱し、反り量Wが1mm以上であるセラミック板を得る工程を有する、セラミック板の製造方法を提供する。 In the present disclosure, a setter having a convex or concave curved surface and a ceramic green sheet on one side surface are superposed and heated so that the main surface of the ceramic green sheet is along the curved surface, and the amount of warpage W Provided is a method for manufacturing a ceramic plate, which comprises a step of obtaining a ceramic plate having a size of 1 mm or more.
 上記製造方法では、凸状又は凹状の湾曲面を有するセッターを用いることによって、反り量Wが1mm以上であるセラミック板を得ている。このように、簡便な製造方法で、復元力を利用する板ばねとして好適に用いられるセラミック板を得ることができる。したがって、上述のセラミック板の製造方法は、板ばねの製造方法ということもできる。ただし、上述の製造方法で得られるセラミック板の用途は板ばねに限定されない。 In the above manufacturing method, a ceramic plate having a warp amount W of 1 mm or more is obtained by using a setter having a convex or concave curved surface. As described above, a ceramic plate suitably used as a leaf spring utilizing the restoring force can be obtained by a simple manufacturing method. Therefore, the above-mentioned method for manufacturing a ceramic plate can also be said to be a method for manufacturing a leaf spring. However, the use of the ceramic plate obtained by the above-mentioned manufacturing method is not limited to the leaf spring.
 本開示は、一つの側面において、凸状又は凹状の湾曲面を有し、当該湾曲面におけるセラミックグリーンシートが載置される部分の高低差が1mm以上である、セッターを提供する。このようなセッターを用いることによって、例えば板ばねとして好適に用いられるセラミック板を簡便に製造することができる。上記セッターは、湾曲面の上記部分を覆うように載置されたセラミックグリーンシートを加熱し、反り量Wが1mm以上であるセラミック板を形成してよい。 The present disclosure provides a setter having a convex or concave curved surface on one side surface, and the height difference of the portion on the curved surface on which the ceramic green sheet is placed is 1 mm or more. By using such a setter, a ceramic plate suitably used as a leaf spring, for example, can be easily manufactured. The setter may heat a ceramic green sheet placed so as to cover the portion of the curved surface to form a ceramic plate having a warp amount W of 1 mm or more.
 本開示は、一つの側面において、複数のセラミックグリーンシートを含む積層体を加熱して脱脂する脱脂工程と、脱脂された積層体を焼成してセラミック板を得る焼成工程と、を有し、脱脂工程及び焼成工程の一方又は双方において、上記積層体は、上述のいずれかのセラミック板の弾性変形によって生じる復元力によって保持される、セラミック焼結体の製造方法を提供する。 The present disclosure has, in one aspect, a degreasing step of heating and degreasing a laminate containing a plurality of ceramic green sheets, and a firing step of calcining the degreased laminate to obtain a ceramic plate, and degreasing. In one or both of the steps and the firing step, the laminate provides a method for producing a ceramic sintered body, which is held by the restoring force generated by the elastic deformation of any of the ceramic plates described above.
 積層体を加熱してセラミック焼結体を製造する場合、積層された複数のセラミックグリーンシートの位置が互いにずれると、露出した表面と露出していない表面とで加熱状態が変わるため、一表面における色及び性状等の品質がばらつく要因となる。また、複数のセラミックグリーンシートの位置が互いにずれると反り発生の要因となる場合もある。しかしながら、上記製造方法では、セラミック板の弾性変形によって生じる復元力によって積層体が保持される。このため、積層された複数のセラミックグリーンシートの位置が互いにずれることを抑制できる。したがって、高い品質を有するセラミック焼結体を安定的に製造することができる。 When the laminated body is heated to produce a ceramic sintered body, if the positions of the plurality of laminated ceramic green sheets are displaced from each other, the heated state changes between the exposed surface and the unexposed surface. It causes the quality such as color and properties to vary. Further, if the positions of the plurality of ceramic green sheets are displaced from each other, it may cause warpage. However, in the above manufacturing method, the laminated body is held by the restoring force generated by the elastic deformation of the ceramic plate. Therefore, it is possible to prevent the positions of the plurality of laminated ceramic green sheets from shifting from each other. Therefore, it is possible to stably produce a ceramic sintered body having high quality.
 上記製造方法の脱脂工程及び焼成工程の一方又は双方において、セラミック板は、積層体の上方に設けられた固定部材と積層体との間に弾性変形した状態で配置され、積層体の収縮に伴ってセラミック板の反り量Wが大きくなってよい。これによって、積層体を安定的に保持し、積層された複数のセラミックグリーンシートの位置が互いにずれることを十分に抑制することができる。 In one or both of the degreasing step and the firing step of the above-mentioned manufacturing method, the ceramic plate is arranged in an elastically deformed state between the fixing member provided above the laminated body and the laminated body, and accompanies the shrinkage of the laminated body. The amount of warpage W of the ceramic plate may be increased. As a result, the laminated body can be stably held, and the positions of the plurality of laminated ceramic green sheets can be sufficiently suppressed from being displaced from each other.
 優れた耐熱性を有し、積層された複数のセラミックグリーンシートの互いの位置がずれることを抑制できる板ばね、並びに、当該板ばねとして好適に用いられるセラミック板及びその製造方法を提供することができる。また、そのようなセラミック板を簡便に製造できるセッターを提供することができる。また、積層された複数のセラミックグリーンシートの互いの位置がずれることを抑制することによって、高い品質を有するセラミック焼結体を安定的に製造すること可能な製造方法を提供することができる。 It is possible to provide a leaf spring having excellent heat resistance and capable of suppressing the displacement of a plurality of laminated ceramic green sheets from each other, and a ceramic plate preferably used as the leaf spring and a method for manufacturing the same. can. Further, it is possible to provide a setter capable of easily manufacturing such a ceramic plate. Further, by suppressing the positions of the plurality of laminated ceramic green sheets from being displaced from each other, it is possible to provide a manufacturing method capable of stably manufacturing a ceramic sintered body having high quality.
図1は、一実施形態に係るセラミック板の斜視図である。FIG. 1 is a perspective view of a ceramic plate according to an embodiment. 図2は、一実施形態に係るセラミック板の側面図である。FIG. 2 is a side view of the ceramic plate according to the embodiment. 図3は、別の実施形態に係るセラミック板の斜視図である。FIG. 3 is a perspective view of a ceramic plate according to another embodiment. 図4は、一実施形態に係るセッターの斜視図である。FIG. 4 is a perspective view of the setter according to the embodiment. 図5は、図4のセッターの側面図である。FIG. 5 is a side view of the setter of FIG. 図6は、別の実施形態に係るセッターの斜視図である。FIG. 6 is a perspective view of the setter according to another embodiment. 図7は、図6のセッターの側面図である。FIG. 7 is a side view of the setter of FIG. 図8は、セラミック板の製造方法に用いる積層体の例を示す斜視図である。FIG. 8 is a perspective view showing an example of a laminated body used in a method for manufacturing a ceramic plate. 図9は、セラミック板の製造方法に用いる積層体の別の例を示す斜視図である。FIG. 9 is a perspective view showing another example of the laminated body used in the method for manufacturing a ceramic plate. 図10は、本実施形態のセラミック焼結体の製造方法で用いる積層体及び保持体の一例を示す側面図である。FIG. 10 is a side view showing an example of a laminated body and a holding body used in the method for manufacturing a ceramic sintered body of the present embodiment. 図11は、脱脂工程後の積層体及び保持体の一例を示す側面図である。FIG. 11 is a side view showing an example of the laminated body and the holding body after the degreasing step. 図12は、参考例1のたわみ量の測定結果を示すグラフである。FIG. 12 is a graph showing the measurement result of the amount of deflection of Reference Example 1. 図13は、参考例2のたわみ量の測定結果を示すグラフである。FIG. 13 is a graph showing the measurement result of the amount of deflection of Reference Example 2.
 以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。また、説明に使用される上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same elements or elements having the same function are designated by the same reference numerals, and duplicate description will be omitted. In addition, the positional relationship such as up, down, left, and right used in the explanation shall be based on the positional relationship shown in the drawings unless otherwise specified.
 図1は、一実施形態に係るセラミック板の斜視図である。セラミック板100は、アーチ状に反っており、凸状に湾曲している第1主面100Aと、第1主面100Aの反対側に凹状に湾曲している第2主面100Bとを有する。セラミック板100の4つの側面のうち、対向配置される一対の側面11は長方形であるのに対し、対向配置される別の一対の側面13はアーチ状に湾曲している。 FIG. 1 is a perspective view of a ceramic plate according to an embodiment. The ceramic plate 100 has a first main surface 100A that is curved in an arch shape and is curved in a convex shape, and a second main surface 100B that is curved in a concave shape on the opposite side of the first main surface 100A. Of the four side surfaces of the ceramic plate 100, the pair of side surfaces 11 arranged facing each other is rectangular, while the other pair of side surfaces 13 arranged facing each other is curved in an arch shape.
 図2は、図1のセラミック板100の側面図である。セラミック板100は、水平な平面を有する測定台150上に載置されている。セラミック板100はアーチ状に反っている。このため、セラミック板100の第2主面100Bのうち、一対の側面11側の辺12のみが測定台150と接触し、第2主面100Bの他の部分と測定台150との間には隙間が生じている。セラミック板100の反り量Wは、セラミック板100を、第1主面100A側を上向きにして、測定台150上に載置したときの測定台150からの第2主面100Bの最大高さとして測定される。反り量Wは、セラミック板100に外力が与えられておらず、弾性変形していない状態での値である。反り量Wは1mm以上であるため、第2主面100Bと測定台150とが平行になるまでのたわみを十分に大きくすることができる。したがって、復元力を利用する板ばねとして好適に用いることができる。セラミック板100の反り量Zは、凸状に湾曲している第1主面100Aの高低差の最大値である。反り量Zも1mm以上であってよい。 FIG. 2 is a side view of the ceramic plate 100 of FIG. The ceramic plate 100 is placed on a measuring table 150 having a horizontal flat surface. The ceramic plate 100 is curved in an arch shape. Therefore, of the second main surface 100B of the ceramic plate 100, only the side 12 on the side of the pair of side surfaces 11 comes into contact with the measuring table 150, and between the other part of the second main surface 100B and the measuring table 150. There is a gap. The amount of warpage W of the ceramic plate 100 is defined as the maximum height of the second main surface 100B from the measuring table 150 when the ceramic plate 100 is placed on the measuring table 150 with the first main surface 100A side facing upward. Be measured. The warp amount W is a value in a state where no external force is applied to the ceramic plate 100 and the ceramic plate 100 is not elastically deformed. Since the warp amount W is 1 mm or more, the deflection until the second main surface 100B and the measuring table 150 become parallel can be sufficiently increased. Therefore, it can be suitably used as a leaf spring that utilizes the restoring force. The warp amount Z of the ceramic plate 100 is the maximum value of the height difference of the first main surface 100A which is curved in a convex shape. The amount of warpage Z may also be 1 mm or more.
 図2のような側面視において、第1主面100A及び第2主面100Bの曲率半径は100~1000mmであってよく、150~800mmであってよく、200~500mmであってよい。これによって、破損を抑制しつつ、たわみを十分に大きくすることができる。このため、板ばねとしての機能を十分に発揮することができる。第1主面100Aと第2主面100Bの曲率半径は同一であってよく、異なっていてもよい。また、第1主面100Aにおける曲率半径は一様でなくてよく、位置によって異なっていてもよい。この場合も、各位置における曲率半径が上述の範囲にあればよい。第2主面100Bにおける曲率半径も一様でなくてよく、位置によって異なっていてもよい。この場合も、各位置における曲率半径が上述の範囲にあればよい。 In the side view as shown in FIG. 2, the radius of curvature of the first main surface 100A and the second main surface 100B may be 100 to 1000 mm, 150 to 800 mm, or 200 to 500 mm. As a result, the deflection can be sufficiently increased while suppressing the damage. Therefore, the function as a leaf spring can be fully exhibited. The radii of curvature of the first main surface 100A and the second main surface 100B may be the same or different. Further, the radius of curvature of the first main surface 100A does not have to be uniform and may differ depending on the position. In this case as well, the radius of curvature at each position may be within the above range. The radius of curvature of the second main surface 100B does not have to be uniform and may differ depending on the position. In this case as well, the radius of curvature at each position may be within the above range.
 第2主面100Bと測定台150とが平行になるまでの変形量を一層大きくする観点から、反り量W(反り量Z)は、1.2mm以上であってよく、1.4mm以上であってもよい。一方、変形量を大きくし過ぎるとセラミック板100が破損し易くなる傾向にある。このため、セラミック板100の耐久性を十分に高くする観点から、反り量W(反り量Z)は、5mm以下であってよく、4mm以下であってよく、3mm以下であってもよい。反り量Wに対する反り量Zの比は、0.9~1.1であってよく、0.95~1.05であってもよい。 From the viewpoint of further increasing the amount of deformation until the second main surface 100B and the measuring table 150 are parallel to each other, the warp amount W (warp amount Z) may be 1.2 mm or more, and may be 1.4 mm or more. You may. On the other hand, if the amount of deformation is too large, the ceramic plate 100 tends to be easily damaged. Therefore, from the viewpoint of sufficiently increasing the durability of the ceramic plate 100, the warp amount W (warp amount Z) may be 5 mm or less, 4 mm or less, or 3 mm or less. The ratio of the warp amount Z to the warp amount W may be 0.9 to 1.1, or may be 0.95 to 1.05.
 セラミック板100の厚み(第1主面100Aと第2主面100Bとの距離)は、たわみを十分に大きくする観点から、2mm以下であってよく、1.5mm以下であってよく、1mm以下であってよい。セラミック板100の厚みは、板ばねとしたときの復元力を十分に大きくする観点から、0.1mm以上であってよく、0.2mm以上であってもよい。セラミック板100の厚みの一例は、0.1~2mmであってよい。 The thickness of the ceramic plate 100 (distance between the first main surface 100A and the second main surface 100B) may be 2 mm or less, 1.5 mm or less, and 1 mm or less from the viewpoint of sufficiently increasing the deflection. May be. The thickness of the ceramic plate 100 may be 0.1 mm or more, or 0.2 mm or more, from the viewpoint of sufficiently increasing the restoring force when the ceramic plate 100 is used as a leaf spring. An example of the thickness of the ceramic plate 100 may be 0.1 to 2 mm.
 セラミック板100の厚みに対する反り量Wの比は、第2主面100Bと測定台150とが平行になるまでのたわみを十分に大きくする観点から、1以上であってよく、2以上であってもよい。セラミック板100の厚みに対する反り量Wの比は、板ばねとしての耐久性を十分に高くする観点から、15以下であってよく、10以下であってもよい。セラミック板100の厚みに対する反り量Wの比の一例は、1~15であってよい。 The ratio of the amount of warpage W to the thickness of the ceramic plate 100 may be 1 or more, and may be 2 or more, from the viewpoint of sufficiently increasing the deflection until the second main surface 100B and the measuring table 150 are parallel to each other. May be good. The ratio of the warp amount W to the thickness of the ceramic plate 100 may be 15 or less, or 10 or less, from the viewpoint of sufficiently increasing the durability as a leaf spring. An example of the ratio of the warp amount W to the thickness of the ceramic plate 100 may be 1 to 15.
 第1主面100A及び第2主面100Bの面積は、100~10000mmであってよく、500~5000mmであってもよい。第1主面100Aと第2主面100Bの面積は同じであってよく、異なっていてもよい。第1主面100A及び第2主面100Bの面積の平均値に対する反り量Wの比は、板ばねとしての有用性を十分に高める観点から、1×10-5/mm以上であってよく、5×10-5/mm以上であってよく、1×10-4/mm以上であってもよい。第1主面100A及び第2主面100Bの面積の平均値に対する反り量Wの比は、同様の観点から、2×10-2/mm以下であってよく、1×10-2/mm以下であってよく、5×10-3/mm以下であってもよい。 The area of the first main surface 100A and the second main surface 100B may be 100 to 10000 mm 2 or 500 to 5000 mm 2 . The areas of the first main surface 100A and the second main surface 100B may be the same or different. The ratio of the warp amount W to the average value of the areas of the first main surface 100A and the second main surface 100B may be 1 × 10 -5 / mm or more from the viewpoint of sufficiently enhancing the usefulness as a leaf spring. It may be 5 × 10 -5 / mm or more, and may be 1 × 10 -4 / mm or more. From the same viewpoint, the ratio of the warp amount W to the average value of the areas of the first main surface 100A and the second main surface 100B may be 2 × 10 − 2 / mm or less, and may be 1 × 10 − 2 / mm or less. It may be 5 × 10 -3 / mm or less.
 セラミック板100は、窒化物焼結体、炭化物焼結体、又は酸化物焼結体で構成されていてよい。セラミック板100を板ばねとして用いる場合、窒化ケイ素焼結体で構成されていてよい。窒化ケイ素焼結体で構成される板ばねは、たわみを十分に大きくすることができる。また、窒化ケイ素焼結体は高い抗折強度を有するため、耐久性にも優れる。 The ceramic plate 100 may be composed of a nitride sintered body, a carbide sintered body, or an oxide sintered body. When the ceramic plate 100 is used as a leaf spring, it may be composed of a silicon nitride sintered body. A leaf spring composed of a silicon nitride sintered body can sufficiently increase the deflection. Further, since the silicon nitride sintered body has high bending strength, it is also excellent in durability.
 セラミック板100の抗折強度は、耐久性向上の観点から、500MPa以上であってよく、600MPa以上であってもよい。セラミック板100の抗折強度は、例えば、1000MPa以下であってよく、900MPaであってよい。セラミック板100の抗折強度の一例は500~1000MPaである。本開示における抗折強度は、3点曲げ抗折強度であり、JIS R 1601:2008に準拠して市販の抗折強度計(島津製作所製、装置名:AG-2000)を用いて測定される。 The bending strength of the ceramic plate 100 may be 500 MPa or more, or 600 MPa or more, from the viewpoint of improving durability. The bending strength of the ceramic plate 100 may be, for example, 1000 MPa or less, or 900 MPa. An example of the bending strength of the ceramic plate 100 is 500 to 1000 MPa. The bending strength in the present disclosure is a three-point bending strength, and is measured using a commercially available bending strength meter (manufactured by Shimadzu Corporation, device name: AG-2000) in accordance with JIS R 1601: 2008. ..
 セラミック板100は、セラミック製であるため、耐熱性に優れる。このため、セラミック板100で構成される板ばねは、種々の環境下において好適に用いることができる。例えば、高温環境下において、弾性変形による復元力が必要となる用途に好適である。 Since the ceramic plate 100 is made of ceramic, it has excellent heat resistance. Therefore, the leaf spring composed of the ceramic plate 100 can be suitably used in various environments. For example, it is suitable for applications that require restoring force due to elastic deformation in a high temperature environment.
 図3は、別の実施形態に係るセラミック板の斜視図である。セラミック板102は、4つの側面24がいずれもアーチ状となるように反っており、凸状に湾曲している第1主面102Aと、第1主面102Aの反対側に凹状に湾曲している第2主面102Bとを有する。第1主面102Aの中心部は端部よりも上方に突出している。第2主面102Bの中心部は端部よりも窪んでいる。4つの側面24のアーチ形状は互いに同じであってよく、異なっていてもよい。 FIG. 3 is a perspective view of a ceramic plate according to another embodiment. In the ceramic plate 102, all four side surfaces 24 are curved so as to be arched, and the first main surface 102A is curved in a convex shape and the ceramic plate 102 is curved in a concave shape on the opposite side of the first main surface 102A. It has a second main surface 102B. The central portion of the first main surface 102A projects upward from the end portion. The central portion of the second main surface 102B is recessed from the end portion. The arch shapes of the four side surfaces 24 may be the same or different from each other.
 セラミック板102を、図2と同様に、第1主面102A側を上向きにして、測定台150上に載置すると、セラミック板102の第2主面102Bのうち、4つの頂部20のみが測定台150と接触する。第2主面102Bの他の部分と測定台150との間には隙間が生じる。セラミック板102の反り量Wも、図2と同様に、第1主面102A側を上向きにして、測定台150上に載置したときの測定台150からの第2主面102Bの最大高さとして測定される。セラミック板102の反り量Zも、凸状に湾曲している第1主面102Aの高低差の最大値として測定される。 When the ceramic plate 102 is placed on the measuring table 150 with the first main surface 102A facing upward as in FIG. 2, only the four tops 20 of the second main surface 102B of the ceramic plate 102 are measured. Contact the table 150. There is a gap between the other part of the second main surface 102B and the measuring table 150. The warp amount W of the ceramic plate 102 is also the maximum height of the second main surface 102B from the measuring table 150 when the ceramic plate 102 is placed on the measuring table 150 with the first main surface 102A side facing upward. Measured as. The warp amount Z of the ceramic plate 102 is also measured as the maximum value of the height difference of the first main surface 102A which is curved in a convex shape.
 セラミック板102の反り量W、反り量Z、厚み、及び厚みに対する反り量Wの比等の数値範囲、並びに材質は、セラミック板100と同じであってよい。第1主面102A及び第2主面102Bの曲率半径及び面積等の数値範囲も、第1主面100A及び第2主面100Bと同じであってよい。セラミック板102も、板ばねとして種々の環境下において好適に用いることができる。 The numerical range such as the warp amount W, the warp amount Z, the thickness, and the ratio of the warp amount W to the thickness of the ceramic plate 102, and the material may be the same as those of the ceramic plate 100. The numerical range such as the radius of curvature and the area of the first main surface 102A and the second main surface 102B may be the same as that of the first main surface 100A and the second main surface 100B. The ceramic plate 102 can also be suitably used as a leaf spring under various environments.
 図4は、一実施形態に係るセッターの斜視図である。セッター50は、略蒲鉾形状を呈している。すなわち、セッター50は、一方面がアーチ状に膨らんだ形状を有しており、凸状に湾曲している湾曲面50Aと、湾曲面50Aの反対側に平面50Bを有する。湾曲面50Aにおいて対向する一対の側縁54は曲線状であり、対向する他方の一対の側縁52は直線状に伸びている。セッター50の湾曲面50Aの少なくとも一部を覆うようにセラミックグリーンシートが載置される。湾曲面50Aにセラミックグリーンシートを載置すると、セラミックグリーンシートは湾曲面50Aに沿って湾曲する。湾曲したセラミックグリーンシートを加熱することによって、図1に示すとおり、アーチ状に反り、凸状に湾曲している第1主面100Aと、第1主面100Aの反対側に凹状に湾曲している第2主面100Bとを有し、反り量W(反り量Z)が1mm以上であるセラミック板100を形成することができる。 FIG. 4 is a perspective view of the setter according to the embodiment. The setter 50 has a substantially semi-cylindrical shape. That is, the setter 50 has a shape in which one surface is bulged in an arch shape, and has a curved surface 50A that is curved in a convex shape and a flat surface 50B on the opposite side of the curved surface 50A. The pair of side edges 54 facing each other on the curved surface 50A are curved, and the other pair of side edges 52 facing each other extend linearly. A ceramic green sheet is placed so as to cover at least a part of the curved surface 50A of the setter 50. When the ceramic green sheet is placed on the curved surface 50A, the ceramic green sheet is curved along the curved surface 50A. By heating the curved ceramic green sheet, as shown in FIG. 1, the first main surface 100A, which is curved in an arch shape and is curved in a convex shape, and the first main surface 100A are curved in a concave shape on the opposite side of the first main surface 100A. It is possible to form a ceramic plate 100 having a second main surface 100B and having a warp amount W (warp amount Z) of 1 mm or more.
 図5のような側面視において、セッター50の湾曲面50Aの曲率半径は100~1000mmであってよく、150~800mmであってよく、200~500mmであってよい。これによって、板ばねとして好適なセラミック板を簡便に製造することができる。湾曲面50Aの中央部における頂部と湾曲面の下端にある側縁52との高低差H1は、十分にたわむ板ばね(セラミック板100)を製造する観点から、1mm以上であってよく、1.2mm以上であってよく、1.4mm以上であってもよい。弾性変形の繰り返しに対する耐久性に優れるセラミック板を製造する観点から、高低差H1は、5mm以下であってよく、4mm以下であってよく、3mm以下であってもよい。 In the side view as shown in FIG. 5, the radius of curvature of the curved surface 50A of the setter 50 may be 100 to 1000 mm, 150 to 800 mm, or 200 to 500 mm. This makes it possible to easily manufacture a ceramic plate suitable as a leaf spring. The height difference H1 between the top of the curved surface 50A at the center and the side edge 52 at the lower end of the curved surface may be 1 mm or more from the viewpoint of manufacturing a sufficiently flexible leaf spring (ceramic plate 100). It may be 2 mm or more, and may be 1.4 mm or more. From the viewpoint of producing a ceramic plate having excellent durability against repeated elastic deformation, the height difference H1 may be 5 mm or less, 4 mm or less, or 3 mm or less.
 図6は、別の実施形態に係るセッターの斜視図である。セッター60は、凹状に湾曲している湾曲面60Aと、湾曲面60Aの反対側に平面60Bを有する。湾曲面60Aの輪郭をなす4つの側縁64はいずれも曲線状であり、下方に向かって凸形状となるように曲がっている。湾曲面60Aの中心部における窪み部61は、湾曲面60Aにおいて、平面60Bに最も近接する部位である。湾曲面60Aは、当該中心部から湾曲面60Aの側縁64に向かうにつれて、平面60Bから離れるように湾曲している。湾曲面60Aの4隅にある頂部65は、湾曲面60Aにおいて平面60Bから最も離れている部位である。 FIG. 6 is a perspective view of the setter according to another embodiment. The setter 60 has a curved surface 60A curved in a concave shape and a flat surface 60B on the opposite side of the curved surface 60A. The four side edges 64 that form the contour of the curved surface 60A are all curved and are curved so as to be convex downward. The recessed portion 61 in the central portion of the curved surface 60A is a portion of the curved surface 60A closest to the plane 60B. The curved surface 60A is curved so as to move away from the plane 60B toward the side edge 64 of the curved surface 60A from the central portion. The tops 65 at the four corners of the curved surface 60A are the portions of the curved surface 60A that are farthest from the plane 60B.
 セッター60の湾曲面60Aの少なくとも一部を覆うようにセラミックグリーンシートが載置される。湾曲面60Aにセラミックグリーンシートを載置すると、セラミックグリーンシートは湾曲面60Aに沿って湾曲する。湾曲したセラミックグリーンシートを加熱することによって、図3に示すような、凸状に湾曲している第1主面102Aと、第1主面102Aの反対側に凹状に湾曲している第2主面102Bとを有し、4つの側面がアーチ形状を有するセラミック板102を製造することができる。 A ceramic green sheet is placed so as to cover at least a part of the curved surface 60A of the setter 60. When the ceramic green sheet is placed on the curved surface 60A, the ceramic green sheet is curved along the curved surface 60A. By heating the curved ceramic green sheet, the first main surface 102A which is curved convexly and the second main surface 102A which is concavely curved on the opposite side of the first main surface 102A as shown in FIG. It is possible to manufacture a ceramic plate 102 having a surface 102B and having an arch shape on four side surfaces.
 図7のような側面視において、セッター60の湾曲面60Aの曲率半径は100~1000mmであってよく、150~800mmであってよく、200~500mmであってよい。これによって、板ばねとして好適なセラミック板を簡便に製造することができる。湾曲面60Aの中心部における窪み部61と湾曲面の頂部65との高低差H2は、十分にたわむ板ばね(セラミック板100)を製造する観点から、1mm以上であってよく、1.2mm以上であってよく、1.4mm以上であってもよい。弾性変形の繰り返しに対する耐久性を向上する観点から、高低差H2は、5mm以下であってよく、4mm以下であってよく、3mm以下であってもよい。 In the side view as shown in FIG. 7, the radius of curvature of the curved surface 60A of the setter 60 may be 100 to 1000 mm, 150 to 800 mm, or 200 to 500 mm. This makes it possible to easily manufacture a ceramic plate suitable as a leaf spring. The height difference H2 between the recess 61 at the center of the curved surface 60A and the top 65 of the curved surface may be 1 mm or more, and 1.2 mm or more, from the viewpoint of manufacturing a sufficiently flexible leaf spring (ceramic plate 100). It may be 1.4 mm or more. From the viewpoint of improving durability against repeated elastic deformation, the height difference H2 may be 5 mm or less, 4 mm or less, or 3 mm or less.
 セラミック板100(102)の製造方法は、凸状の湾曲面50A(凹状の湾曲面60A)を有するセッター50(60)と、セラミックグリーンシートとを、セラミックグリーンシートの主面が湾曲面50A(60A)に沿うように重ね合わせて加熱し、反り量W(反り量Z)が1mm以上であるセラミック板100(102)を得る工程を有する。上記製造方法では、凸状又は凹状の湾曲面を有するセッター50又はセッター60を用いることによって、反り量W(反り量Z)が1mm以上であるセラミック板を得ることができる。このように、簡便な製造方法で、復元力を利用する板ばねとして好適に用いられるセラミック板を得ることができる。なお、セラミック板の用途は板ばねに限定されるものではない。 The method for manufacturing the ceramic plate 100 (102) is to use a setter 50 (60) having a convex curved surface 50A (concave curved surface 60A) and a ceramic green sheet, and the main surface of the ceramic green sheet is a curved surface 50A ( It has a step of superimposing and heating along 60A) to obtain a ceramic plate 100 (102) having a warp amount W (warp amount Z) of 1 mm or more. In the above manufacturing method, a ceramic plate having a warp amount W (warp amount Z) of 1 mm or more can be obtained by using a setter 50 or a setter 60 having a convex or concave curved surface. As described above, a ceramic plate suitably used as a leaf spring utilizing the restoring force can be obtained by a simple manufacturing method. The use of the ceramic plate is not limited to the leaf spring.
 セラミック板の製造に用いるセッターは、図4,図5,図6,図7のような形状に限定されず、セラミック板の形状に応じて適宜変更してよい。例えば、変形例では、図4のセッター50に変えて、凹状に湾曲している湾曲面を有するセッターを用いてよい。この場合の湾曲面の曲線状の一対の側縁54は、図4とは逆に下方に突出するように曲がってよい。また、別の変形例では、図6のセッター60に変えて、凸状に湾曲している湾曲面を有するセッターを用いてよい。この場合の湾曲面の曲線状の4つの側縁64は、図6とは逆に上方に突出するように曲がってよい。このようなセッターを用いて製造されるセラミック板は、十分な反り量を有する。このため、以下に述べるセラミック焼結体の製造方法に用いられる板ばねとして好適である。 The setter used for manufacturing the ceramic plate is not limited to the shapes shown in FIGS. 4, 5, 6 and 7, and may be appropriately changed according to the shape of the ceramic plate. For example, in the modified example, instead of the setter 50 in FIG. 4, a setter having a curved surface curved in a concave shape may be used. In this case, the pair of curved side edges 54 of the curved surface may be bent so as to project downward, contrary to FIG. Further, in another modification, a setter having a curved surface curved in a convex shape may be used instead of the setter 60 in FIG. In this case, the four curved side edges 64 of the curved surface may be bent so as to project upward as opposed to FIG. A ceramic plate manufactured using such a setter has a sufficient amount of warpage. Therefore, it is suitable as a leaf spring used in the method for manufacturing a ceramic sintered body described below.
 図8は、セラミック板の製造方法に用いるセッターと、セラミックグリーンシートが積層された積層体の例を示す斜視図である。図8の積層体200は、最下部に図4に示すセッター50が配置され、セッター50の湾曲面50Aの上に、3枚のセラミックグリーンシート110が積層されている。その上に、セッター70が配置され、セッター70の一方面(上面)上に、3枚のセラミックグリーンシート110が積層されている。その上に、セッター80が配置されている。 FIG. 8 is a perspective view showing an example of a setter used in a method for manufacturing a ceramic plate and a laminated body in which a ceramic green sheet is laminated. In the laminated body 200 of FIG. 8, the setter 50 shown in FIG. 4 is arranged at the lowermost portion, and three ceramic green sheets 110 are laminated on the curved surface 50A of the setter 50. A setter 70 is arranged on the setter 70, and three ceramic green sheets 110 are laminated on one surface (upper surface) of the setter 70. A setter 80 is arranged on the setter 80.
 セッター50の湾曲面50Aの上に配置される3枚のセラミックグリーンシート110には湾曲面50Aの湾曲形状が転写される。セッター70の他方面(下面)は、凸状の湾曲面50Aと相補的な凹状の湾曲面となる。したがって、セッター70とセッター50で挟まれる3枚のセラミックグリーンシート110には、湾曲面50Aとセッター70の下面の湾曲形状が十分に転写される。これによって、セラミックグリーンシート110の一方の主面は凸状に湾曲し、他方の主面は凹状に湾曲する。 The curved shape of the curved surface 50A is transferred to the three ceramic green sheets 110 arranged on the curved surface 50A of the setter 50. The other surface (lower surface) of the setter 70 is a concave curved surface complementary to the convex curved surface 50A. Therefore, the curved shape of the curved surface 50A and the lower surface of the setter 70 is sufficiently transferred to the three ceramic green sheets 110 sandwiched between the setter 70 and the setter 50. As a result, one main surface of the ceramic green sheet 110 is curved in a convex shape, and the other main surface is curved in a concave shape.
 セッター70の上面は、セッター50の湾曲面50Aと同様に凸状に湾曲している。セッター80の下面は、凸状のセッター70の上面と相補的な凹状の湾曲面となっている。このため、セッター70の上面上に載置される3枚のセラミックグリーンシート110には、セッター70の上面の湾曲形状と、セッター80の下面の湾曲形状が十分に転写される。これによって、セラミックグリーンシート110の一方の主面は凸状に湾曲し、他方の主面は凹状に湾曲する。このような積層体200を加熱することによって、複数のセラミックグリーンシート110を同時に脱脂して焼成し、図1に示すセラミック板100を大量生産することができる。 The upper surface of the setter 70 is curved in a convex shape like the curved surface 50A of the setter 50. The lower surface of the setter 80 is a concave curved surface complementary to the upper surface of the convex setter 70. Therefore, the curved shape of the upper surface of the setter 70 and the curved shape of the lower surface of the setter 80 are sufficiently transferred to the three ceramic green sheets 110 placed on the upper surface of the setter 70. As a result, one main surface of the ceramic green sheet 110 is curved in a convex shape, and the other main surface is curved in a concave shape. By heating such a laminated body 200, a plurality of ceramic green sheets 110 can be degreased and fired at the same time, and the ceramic plate 100 shown in FIG. 1 can be mass-produced.
 積層体200は、複数のセラミックグリーンシート110を上下から一対のセッター50,80で挟んでいる。一対のセッター50,80のセラミックグリーンシート110と接する主面は、それぞれ凸状及び凹状に湾曲するとともに互いに相補的な形状を有することから、複数のセラミック板100の反り量W及び反り量Zのばらつきを十分に低減することができる。また、一対のセッター50,80の間に、セラミックグリーンシート110で挟まれるセッター70を用いている。セッター70のセラミックグリーンシート110との接触面は、セッター50,80の湾曲面と同じように湾曲している。このようなセッター70を用いることによって、セラミックグリーンシート110の積層数を増やすことができる。これによって、多数のセラミック板100を同時に製造することができる。ただし、セッター70を用いずに積層体を構成してもよい。また、一対のセッター50,80の間の任意の位置に、複数のセッター70を個別に配置してもよい。 The laminate 200 has a plurality of ceramic green sheets 110 sandwiched between a pair of setters 50 and 80 from above and below. Since the main surfaces of the pair of setters 50 and 80 in contact with the ceramic green sheets 110 are curved in a convex and concave shape and have complementary shapes to each other, the warpage amount W and the warp amount Z of the plurality of ceramic plates 100 The variation can be sufficiently reduced. Further, a setter 70 sandwiched between a pair of setters 50 and 80 by a ceramic green sheet 110 is used. The contact surface of the setter 70 with the ceramic green sheet 110 is curved in the same manner as the curved surface of the setters 50 and 80. By using such a setter 70, the number of laminated ceramic green sheets 110 can be increased. As a result, a large number of ceramic plates 100 can be manufactured at the same time. However, the laminated body may be formed without using the setter 70. Further, a plurality of setters 70 may be individually arranged at arbitrary positions between the pair of setters 50 and 80.
 図9は、セラミック板の製造方法に用いるセッターと、セラミックグリーンシートが積層された積層体の別の例を示す斜視図である。図9の積層体210は、最下部にセッター82を配置し、セッター82の湾曲面の上に、3枚のセラミックグリーンシート111が積層されている。その上に、セッター72が配置され、セッター72の一方面(上面)上に、3枚のセラミックグリーンシート111が積層されている。その上に、図6のセッター60が、平面60Bが上方を向くようにして配置されている。 FIG. 9 is a perspective view showing another example of a setter used in a method for manufacturing a ceramic plate and a laminated body in which ceramic green sheets are laminated. In the laminated body 210 of FIG. 9, the setter 82 is arranged at the lowermost portion, and three ceramic green sheets 111 are laminated on the curved surface of the setter 82. A setter 72 is arranged on the setter 72, and three ceramic green sheets 111 are laminated on one surface (upper surface) of the setter 72. On it, the setter 60 of FIG. 6 is arranged so that the plane 60B faces upward.
 セッター82の湾曲面の上に配置されるセラミックグリーンシート111には当該湾曲面の湾曲形状が転写される。セッター82の湾曲面は、凹状のセッター60の湾曲面60Aと相補的な凸状の湾曲面となっている。セッター72の他方面(下面)は、セッター60の湾曲面60Aと同一形状の湾曲面となっている。したがって、セッター72とセッター82で挟まれるセラミックグリーンシート111は、セッター82の上面の湾曲形状と、セッター72の下面の湾曲形状が十分に転写される。これによって、セラミックグリーンシート111の一方の主面は凸状に湾曲し、他方の主面は凹状に湾曲する。 The curved shape of the curved surface is transferred to the ceramic green sheet 111 arranged on the curved surface of the setter 82. The curved surface of the setter 82 is a convex curved surface complementary to the curved surface 60A of the concave setter 60. The other surface (lower surface) of the setter 72 is a curved surface having the same shape as the curved surface 60A of the setter 60. Therefore, in the ceramic green sheet 111 sandwiched between the setter 72 and the setter 82, the curved shape of the upper surface of the setter 82 and the curved shape of the lower surface of the setter 72 are sufficiently transferred. As a result, one main surface of the ceramic green sheet 111 is curved in a convex shape, and the other main surface is curved in a concave shape.
 セッター72の上面は、凹状のセッター60の湾曲面60Aと相補的な凸状の湾曲面となっている。このため、セッター72の上面上に載置されるセラミックグリーンシート110にも、セッター72の上面の湾曲形状と、セッター60の湾曲面60Aの湾曲形状が十分に転写される。このため、セッター72の上面とセッター60の湾曲面60Aで挟まれるセラミックグリーンシート110の一方の主面は凸状に湾曲し、他方の主面は凹状に湾曲する。このような積層体210を加熱することによって、複数のセラミックグリーンシート111を同時に脱脂して焼成し、図3に示すセラミック板102を大量生産することができる。 The upper surface of the setter 72 is a convex curved surface complementary to the curved surface 60A of the concave setter 60. Therefore, the curved shape of the upper surface of the setter 72 and the curved shape of the curved surface 60A of the setter 60 are sufficiently transferred to the ceramic green sheet 110 placed on the upper surface of the setter 72. Therefore, one main surface of the ceramic green sheet 110 sandwiched between the upper surface of the setter 72 and the curved surface 60A of the setter 60 is curved in a convex shape, and the other main surface is curved in a concave shape. By heating such a laminated body 210, a plurality of ceramic green sheets 111 can be degreased and fired at the same time, and the ceramic plate 102 shown in FIG. 3 can be mass-produced.
 積層体210は、複数のセラミックグリーンシート111を上下から一対のセッター60,82で挟んでいる。一対のセッター60,82のセラミックグリーンシート111と接する主面は、それぞれ凸状及び凹状に湾曲するとともに互いに相補的な形状を有することから、複数のセラミック板102の反り量W及び反り量Zのばらつきを十分に低減することができる。また、一対のセッター60,82の間に、セラミックグリーンシート111で挟まれるようにセッター72が配置されている。セッター72のセラミックグリーンシート111との接触面は、セッター60,82の湾曲面と同じように湾曲している。このようなセッター72を用いることによって、セラミックグリーンシート111の積層数を増やすことができる。これによって、多数のセラミック板102を同時に製造することができる。ただし、セッター72を用いずに積層体を構成してもよい。また、一対のセッター60,82の間の任意の位置に、複数のセッター72を個別に配置してもよい。 The laminate 210 has a plurality of ceramic green sheets 111 sandwiched between a pair of setters 60 and 82 from above and below. Since the main surfaces of the pair of setters 60 and 82 in contact with the ceramic green sheets 111 are curved in a convex and concave shape and have complementary shapes to each other, the warpage amount W and the warp amount Z of the plurality of ceramic plates 102 The variation can be sufficiently reduced. Further, the setter 72 is arranged between the pair of setters 60 and 82 so as to be sandwiched between the ceramic green sheets 111. The contact surface of the setter 72 with the ceramic green sheet 111 is curved in the same manner as the curved surface of the setters 60 and 82. By using such a setter 72, the number of laminated ceramic green sheets 111 can be increased. As a result, a large number of ceramic plates 102 can be manufactured at the same time. However, the laminated body may be formed without using the setter 72. Further, a plurality of setters 72 may be individually arranged at arbitrary positions between the pair of setters 60 and 82.
 セッター50,60,70,72,80,82は、セラミック製であってよい。例えば、窒化ホウ素、炭化ケイ素、アルミナ、ジルコニア、グラファイト、及び窒化ケイ素からなる群より選ばれる少なくとも一種で構成されるものが挙げられる。これらのうち、窒化ホウ素製のセッターは、耐熱性と良好な切削性を兼ね備えるため、好適に用いられる。なお、焼成時にセッターとセラミック板との接着を抑制する観点から、セッターの材質は、セラミック板の材質とは異なるものであってよい。 The setters 50, 60, 70, 72, 80, 82 may be made of ceramic. For example, those composed of at least one selected from the group consisting of boron nitride, silicon carbide, alumina, zirconia, graphite, and silicon nitride can be mentioned. Of these, a setter made of boron nitride is preferably used because it has both heat resistance and good machinability. The material of the setter may be different from the material of the ceramic plate from the viewpoint of suppressing the adhesion between the setter and the ceramic plate during firing.
 セッター50,60,70,72,80,82は、耐熱性の観点から、窒化ホウ素(BN)製であってよい。窒化ホウ素製のセッターは、以下の手順で製造することができる。まず、原料として、六方晶窒化ホウ素粉末を用いて成形体を作製する。必要に応じて、成形前に六方晶窒化ホウ素粉末に焼結助剤を配合してもよい。焼結助剤としては、酸化マグネシウム、酸化カルシウム等のアルカリ土類金属の酸化物、酸化アルミニウム、酸化ケイ素、酸化イットリウム等の希土類酸化物、及び、スピネル等の複合酸化物が挙げられる。成形は、一軸加圧成形とCIP成形を行ってよい。一軸加圧成形は3~20MPaで行ってよい。CIP成形は、50~300MPaで行ってよい。 The setters 50, 60, 70, 72, 80, 82 may be made of boron nitride (BN) from the viewpoint of heat resistance. The boron nitride setter can be manufactured by the following procedure. First, a molded product is produced using hexagonal boron nitride powder as a raw material. If necessary, a sintering aid may be added to the hexagonal boron nitride powder before molding. Examples of the sintering aid include oxides of alkaline earth metals such as magnesium oxide and calcium oxide, rare earth oxides such as aluminum oxide, silicon oxide and yttrium oxide, and composite oxides such as spinel. The molding may be performed by uniaxial pressure molding and CIP molding. Uniaxial pressure molding may be performed at 3 to 20 MPa. CIP molding may be performed at 50 to 300 MPa.
 得られた成形体の焼成を行って窒化ホウ素製のセッターを得る。焼成は、非酸化性雰囲気下、昇温速度を150℃/hr以下、最高温度を1800~2200℃、この温度範囲における保持時間を5時間以上の条件で行ってよい。非酸化性雰囲気としては、例えば窒素、アンモニア等の窒化性ガス雰囲気が挙げられる。窒化ホウ素製のセッターの密度は1600kg/m以上であってよい。なお、セッターの製造方法は上述の方法に限定されない。例えば、ホットプレス法によって製造してもよい。また、焼成の前に脱脂を行ってもよい。脱脂は、成形体を空気中又は窒素等の非酸化雰囲気中で300~700℃に加熱して行ってよい。加熱時間は、例えば1~10時間であってよい。 The obtained molded product is calcined to obtain a setter made of boron nitride. The firing may be carried out under the conditions of a non-oxidizing atmosphere, a heating rate of 150 ° C./hr or less, a maximum temperature of 1800 to 2200 ° C., and a holding time of 5 hours or more in this temperature range. Examples of the non-oxidizing atmosphere include a nitride gas atmosphere such as nitrogen and ammonia. The density of the boron nitride setter may be 1600 kg / m 3 or more. The method for manufacturing the setter is not limited to the above method. For example, it may be manufactured by a hot press method. Further, degreasing may be performed before firing. The degreasing may be performed by heating the molded product in air or in a non-oxidizing atmosphere such as nitrogen to 300 to 700 ° C. The heating time may be, for example, 1 to 10 hours.
 一実施形態に係るセラミック焼結体の製造方法では、反り量Wが1mm以上であるセラミック板を用いる。当該製造方法は、複数のセラミックグリーンシートを積層して積層体を得る積層工程と、当該積層体を加熱して脱脂する脱脂工程と、脱脂された積層体を焼成してセラミック板を得る焼成工程と、を有する。詳細を以下に説明する。 In the method for manufacturing a ceramic sintered body according to one embodiment, a ceramic plate having a warp amount W of 1 mm or more is used. The manufacturing method includes a laminating step of laminating a plurality of ceramic green sheets to obtain a laminated body, a degreasing step of heating and degreasing the laminated body, and a firing step of firing the degreased laminated body to obtain a ceramic plate. And have. Details will be described below.
 セラミックグリーンシートを、例えば以下の手順で作製する。セラミック粉末、焼結助剤、バインダ及び分散剤を含む原料スラリーを調製する。セラミックとしては、特に制限されず、例えば、窒化物、酸化物及び炭化物等が挙げられる。具体的には、窒化ケイ素、炭化ケイ素、アルミナ、窒化アルミニウム及び窒化ホウ素等が挙げられる。バインダは有機成分を含むものが挙げられる。バインダは、アクリル系共重合物であってよい。分散剤は、不飽和脂肪酸であってよい。 A ceramic green sheet is produced, for example, by the following procedure. Prepare a raw material slurry containing ceramic powder, sintering aid, binder and dispersant. The ceramic is not particularly limited, and examples thereof include nitrides, oxides, and carbides. Specific examples thereof include silicon nitride, silicon carbide, alumina, aluminum nitride and boron nitride. Binders include those containing organic components. The binder may be an acrylic copolymer. The dispersant may be unsaturated fatty acids.
 原料スラリーをドクターブレード法、カレンダー法、又は押し出し法等によって離型フィルム上に所定の厚みで塗布する。その後、塗布された原料スラリーを乾燥させて離型フィルムから剥がすことによって、セラミックグリーンシートが得られる。セラミックグリーンシートは、例えば切断等によって所望の形状に加工してよい。複数のセラミックグリーンシートの材質及び形状は、互いに同一であってもよいし、互いに異なっていてもよい。 Apply the raw material slurry to a predetermined thickness on the release film by the doctor blade method, calendar method, extrusion method, etc. Then, the applied raw material slurry is dried and peeled off from the release film to obtain a ceramic green sheet. The ceramic green sheet may be processed into a desired shape by, for example, cutting. The materials and shapes of the plurality of ceramic green sheets may be the same as each other or may be different from each other.
 セラミック焼結体の製造方法で用いるセッターは、例えば市販のものを購入してもよいし、公知の方法で製造してもよい。セッターは、例えば、窒化ホウ素、炭化ケイ素、アルミナ、ジルコニア、グラファイト、及び窒化ケイ素からなる群より選ばれる少なくとも一種で構成されるものが挙げられる。これらのうち、窒化ホウ素製のセッターは、耐熱性と良好な切削性を兼ね備えるため、好適に用いられる。なお、焼成後のセッターと本製造方法で製造されるセラミック焼結体との接着を抑制する観点から、セッターの材質は、セラミック焼結体の材質とは異なるものであってよい。 As the setter used in the method for producing the ceramic sintered body, for example, a commercially available setter may be purchased or may be produced by a known method. Examples of the setter include those composed of at least one selected from the group consisting of boron nitride, silicon carbide, alumina, zirconia, graphite, and silicon nitride. Of these, a setter made of boron nitride is preferably used because it has both heat resistance and good machinability. The material of the setter may be different from the material of the ceramic sintered body from the viewpoint of suppressing the adhesion between the setter after firing and the ceramic sintered body manufactured by this manufacturing method.
 このようにして準備したセッターの上に、複数のセラミックグリーンシートを重ねて積層体を得る。複数のセラミックグリーンシートの主面同士が互いに接触するように積層し、その上に別のセッターを載せて積層体を作製してよい。すなわち、積層された複数のセラミックグリーンシートを、積層方向に対向するように配置される一対のセッターで挟み、積層体を作製してよい。作製した積層体における一対のセッターよりも外側に反り量が1.5mm以上のセラミック板を配置し、積層方向に沿って積層体を押圧して保持体を作製する。 A plurality of ceramic green sheets are layered on the setter prepared in this way to obtain a laminated body. A plurality of ceramic green sheets may be laminated so that the main surfaces of the ceramic green sheets are in contact with each other, and another setter may be placed on the laminated body to prepare a laminated body. That is, a plurality of laminated ceramic green sheets may be sandwiched between a pair of setters arranged so as to face each other in the stacking direction to prepare a laminated body. A ceramic plate having a warp amount of 1.5 mm or more is arranged outside the pair of setters in the produced laminate, and the laminate is pressed along the lamination direction to prepare a holding body.
 図10は、本実施形態のセラミック焼結体の製造方法で用いる積層体及び保持体の一例を示す側面図である。図10の保持体350は、積層体300と、積層体300の上方に設けられ、積層体300を固定する固定部材37と、固定部材37と積層体300の間にセラミック板100aと、を備える。積層体300は、支持体400の上に載置されており、支持体400側から、セッター92、複数のセラミックグリーンシート41、セッター94、複数のセラミックグリーンシート41、及びセッター96が、この順に積層されている。これらのセッター及びセラミックグリーンシートは、いずれも平板形状を有している。セラミック板100aは、外力が与えられていない状態では、図2にセラミック板100として示すように反り量Wのアーチ状を呈する。 FIG. 10 is a side view showing an example of a laminated body and a holding body used in the method for manufacturing a ceramic sintered body of the present embodiment. The holding body 350 of FIG. 10 includes a laminated body 300, a fixing member 37 provided above the laminated body 300 and fixing the laminated body 300, and a ceramic plate 100a between the fixing member 37 and the laminated body 300. .. The laminate 300 is placed on the support 400, and the setter 92, the plurality of ceramic green sheets 41, the setter 94, the plurality of ceramic green sheets 41, and the setter 96 are arranged in this order from the support 400 side. It is laminated. Both these setters and ceramic green sheets have a flat plate shape. The ceramic plate 100a exhibits an arch shape with a warp amount W as shown as the ceramic plate 100 in FIG. 2 in a state where no external force is applied.
 図10の保持体350では、セッター96の上面に対向するように配置されているセラミック板100aは、固定部材37によって積層体300に向かって押圧されている。このため、反り量が小さくなるように弾性変形し、平板形状になっている。セラミック板100aの下側にあるセッター96は、セラミック板100aの板ばねとしての復元力によって、下方に付勢されている。このようにして、保持体350は、積層体300を支持体400とセラミック板100aとによって積層方向に挟んで拘束している。 In the holding body 350 of FIG. 10, the ceramic plate 100a arranged so as to face the upper surface of the setter 96 is pressed toward the laminated body 300 by the fixing member 37. Therefore, it is elastically deformed so that the amount of warpage becomes small, and becomes a flat plate shape. The setter 96 on the lower side of the ceramic plate 100a is urged downward by the restoring force of the ceramic plate 100a as a leaf spring. In this way, the holding body 350 restrains the laminated body 300 by sandwiching the laminated body 300 between the support 400 and the ceramic plate 100a in the laminating direction.
 脱脂工程では、この積層体300を備える保持体350を脱脂炉に収容し、例えば300℃~700℃に加熱する。これによって、セラミックグリーンシート41に含まれるバインダ及び分散剤が揮散し、セラミックグリーンシート41が収縮する。 In the degreasing step, the holding body 350 provided with the laminated body 300 is housed in a degreasing furnace and heated to, for example, 300 ° C. to 700 ° C. As a result, the binder and the dispersant contained in the ceramic green sheet 41 are volatilized, and the ceramic green sheet 41 shrinks.
 図11は、セラミックグリーンシート41を脱脂して得られるセラミックグリーンシート42、積層体301及び保持体351を示す側面図である。セラミックグリーンシート42は、脱脂前のセラミックグリーンシート41よりも、収縮によって厚みが薄くなっている。このため、脱脂後の積層体301におけるセッター96の位置は、脱脂前の積層体300におけるセッター96よりも支持体400に近づいている。このとき、支持体400と固定部材37の位置関係は脱脂前後で不変であるため、セッター96と固定部材37との間隔が大きくなる。これにともなって、弾性変形していたセラミック板100aは復元し、反り量W1が大きくなる。すなわち、反り量W1は加熱時間の経過に伴って大きくなる。セラミック板100bの反り量W1は、外力が与えられていない時のセラミック板100の反り量Wよりも小さい。このため、セラミック板100bは、積層体300を板ばねとしての復元力で拘束し続けることができる。 FIG. 11 is a side view showing the ceramic green sheet 42, the laminated body 301, and the holding body 351 obtained by degreasing the ceramic green sheet 41. The ceramic green sheet 42 is thinner due to shrinkage than the ceramic green sheet 41 before degreasing. Therefore, the position of the setter 96 in the laminated body 301 after degreasing is closer to the support 400 than in the setter 96 in the laminated body 300 before degreasing. At this time, since the positional relationship between the support 400 and the fixing member 37 does not change before and after degreasing, the distance between the setter 96 and the fixing member 37 becomes large. Along with this, the elastically deformed ceramic plate 100a is restored, and the warp amount W1 becomes large. That is, the warp amount W1 increases with the passage of the heating time. The warp amount W1 of the ceramic plate 100b is smaller than the warp amount W of the ceramic plate 100 when no external force is applied. Therefore, the ceramic plate 100b can continue to restrain the laminated body 300 by the restoring force as a leaf spring.
 保持体351は、板ばねとして機能するセラミック板100(100b)を備えることから、脱脂工程の間、セラミックグリーンシート42が収縮しても、弾性変形していたセラミック板100の復元力が作用することによって積層体301を継続して拘束することができる。このため、セラミックグリーンシート41,42の位置がずれて、焼き具合がばらついたり、反りが発生したりすることを抑制できる。したがって、高い品質を有するセラミック焼結体を安定的に製造することができる。 Since the holding body 351 includes a ceramic plate 100 (100b) that functions as a leaf spring, even if the ceramic green sheet 42 shrinks during the degreasing step, the restoring force of the elastically deformed ceramic plate 100 acts. As a result, the laminated body 301 can be continuously restrained. Therefore, it is possible to prevent the ceramic green sheets 41 and 42 from being displaced from each other, resulting in uneven baking or warpage. Therefore, it is possible to stably produce a ceramic sintered body having high quality.
 保持体350(351)で用いられるセラミック板100の枚数は一枚に限定されず、複数枚を上下方向に重ねて用いてもよい。これによって板ばねとしての復元力を大きくして、積層体300,301をより強固に拘束することができる。また、セラミック板100の配置は、セッター96と固定部材37の間に限定されず、セッター92と支持体400との間であってもよいし、一対のセラミックグリーンシート41(42)の間であってもよい。複数のセラミック板100を、互いに異なる位置に配置してもよい。セラミック板100の代わりにセラミック板102を用いてもよい。また、板ばねとして機能するものであれば、これらとは異なる形状を有するセラミック板を用いてもよい。 The number of ceramic plates 100 used in the holder 350 (351) is not limited to one, and a plurality of ceramic plates 100 may be stacked in the vertical direction. As a result, the restoring force of the leaf spring can be increased, and the laminated bodies 300 and 301 can be restrained more firmly. Further, the arrangement of the ceramic plate 100 is not limited to between the setter 96 and the fixing member 37, and may be between the setter 92 and the support 400, or between the pair of ceramic green sheets 41 (42). There may be. A plurality of ceramic plates 100 may be arranged at different positions from each other. The ceramic plate 102 may be used instead of the ceramic plate 100. Further, a ceramic plate having a shape different from these may be used as long as it functions as a leaf spring.
 積層体300,301を構成するセッター92,94,96及びセラミックグリーンシート41(42)の枚数に特に制限はない。複数のセラミックグリーンシート41(42)の材質及び厚みは、互いに同一であってよいし、異なっていてもよい。セラミックグリーンシート41(42)の主面には、焼成の際に隣り合うセラミックグリーンシート同士が接着することを抑制するため、離型剤が塗布されていてもよい。また、セッター92,94,96のセラミックグリーンシート41(42)の主面との対向面にも、離型剤が塗布されていてもよい。離型剤の含有成分としては、窒化ホウ素等のセラミック粉末、黒鉛粉末、及びバインダ等が挙げられる。 There is no particular limitation on the number of setters 92, 94, 96 and the ceramic green sheet 41 (42) constituting the laminated body 300, 301. The materials and thicknesses of the plurality of ceramic green sheets 41 (42) may be the same or different from each other. A mold release agent may be applied to the main surface of the ceramic green sheet 41 (42) in order to prevent the adjacent ceramic green sheets from adhering to each other during firing. Further, the mold release agent may be applied to the surface of the setters 92, 94, 96 facing the main surface of the ceramic green sheet 41 (42). Examples of the component contained in the release agent include ceramic powder such as boron nitride, graphite powder, and binder.
 焼成工程では、脱脂されたセラミックグリーンシート42を焼成炉に収容して、1600℃~2000℃に加熱する。これによって、セラミックグリーンシートが焼成され、セラミック板が得られる。脱脂で用いる脱脂炉と焼成で用いる焼成炉は同一炉であってもよいし、異なる炉であってもよい。また、加熱の温度、時間及び雰囲気は、セラミックグリーンシートの組成に応じて適宜調整してよい。 In the firing step, the degreased ceramic green sheet 42 is housed in a firing furnace and heated to 1600 ° C to 2000 ° C. As a result, the ceramic green sheet is fired and a ceramic plate is obtained. The degreasing furnace used for degreasing and the firing furnace used for firing may be the same furnace or different furnaces. Further, the heating temperature, time and atmosphere may be appropriately adjusted according to the composition of the ceramic green sheet.
 焼成工程では、図11の保持体351を焼成炉に収容してセラミックグリーンシート42を焼成してもよいし、保持体351を解体し、別のセッターでセラミックグリーンシート42を保持して焼成してもよい。焼成工程においても、粒成長の進行、並びに残存するバインダ及び分散剤の揮発等の要因によって、セラミックグリーンシート42がさらに収縮する場合がある。このため、脱脂工程と同様に、セラミック板100の復元力によって積層体301を付勢し、拘束することによって、セラミックグリーンシート42の位置ずれを抑制することができる。 In the firing step, the holding body 351 of FIG. 11 may be housed in a firing furnace to fire the ceramic green sheet 42, or the holding body 351 may be disassembled and the ceramic green sheet 42 may be held and fired by another setter. You may. Also in the firing step, the ceramic green sheet 42 may further shrink due to factors such as the progress of grain growth and the volatilization of the remaining binder and the dispersant. Therefore, similarly to the degreasing step, the position shift of the ceramic green sheet 42 can be suppressed by urging and restraining the laminated body 301 by the restoring force of the ceramic plate 100.
 変形例では、セラミック板100を備える保持体を、焼成工程のみで用いてもよい。この場合も、脱脂後の複数のセラミックグリーンシート同士の位置がずれることを抑制することができる。これによって、高い品質を有するセラミック焼結体を安定的に製造することができる。 In the modified example, the holding body provided with the ceramic plate 100 may be used only in the firing step. In this case as well, it is possible to prevent the positions of the plurality of ceramic green sheets from being displaced from each other after degreasing. This makes it possible to stably produce a ceramic sintered body having high quality.
 以上、本開示の実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、セラミック板の厚みは一様ではなく、異なっていてもよい。この場合、セラミック板の平均厚みは、最も厚みの大きい部分と、最も厚みが小さい部分の平均値として求めることができる。この平均厚みが、上述の厚みの数値範囲内にあってよい。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. For example, the thickness of the ceramic plate is not uniform and may be different. In this case, the average thickness of the ceramic plate can be obtained as the average value of the thickest portion and the thinnest portion. This average thickness may be within the numerical range of the above-mentioned thickness.
 セラミック板は、板ばねとは異なる用途に用いてもよい。例えば、セラミック板はフィルタの部材として用いてもよい。この場合、例えば、2つのセラミック板100(102)を、第1主面100A(102A)と第2主面100B(102B)が対向するように並べて2つのセラミック板の間に湾曲した流路を形成し、当該流路を流通するガス中に含まれる液体分又は固形分を取り除いてもよい。なお、流路を流通する媒体はガスに限定されず、ミスト又は液体であってもよい。フィルタは、3つ以上のセラミック板100(102)を、主面同士が互いに対向するように並べて構成されてもよい。フィルタにおける流路は、平らな主面を有するセラミック板とセラミック板100(102)とを並べて形成してもよい。 Ceramic plates may be used for different purposes than leaf springs. For example, the ceramic plate may be used as a member of the filter. In this case, for example, two ceramic plates 100 (102) are arranged so that the first main surface 100A (102A) and the second main surface 100B (102B) face each other to form a curved flow path between the two ceramic plates. , The liquid content or the solid content contained in the gas flowing through the flow path may be removed. The medium flowing through the flow path is not limited to gas, and may be mist or liquid. The filter may be configured by arranging three or more ceramic plates 100 (102) side by side so that the main surfaces face each other. The flow path in the filter may be formed by arranging a ceramic plate having a flat main surface and a ceramic plate 100 (102) side by side.
 実施例及び参考例を参照して本開示の内容をより詳細に説明するが、本開示は下記の具体例に限定されるものではない。 The contents of the present disclosure will be described in more detail with reference to Examples and Reference Examples, but the present disclosure is not limited to the following specific examples.
(実施例1)
<セラミック板の作製>
 窒化ケイ素粉末と、焼結助剤として、酸化マグネシウム粉末、及び酸化イットリウム粉末を準備した。これらを、Si:Y:MgO=94.0:3.0:3.0(質量比)で配合して原料粉末を得た。この原料粉末を、一軸加圧成形し、複数枚のセラミックグリーンシートを作製した。作製したセラミックグリーンシートと、窒化ホウ素製のセッターとを重ねて、図8に示すような積層体を得た。3枚のセッターの湾曲面の曲率半径は、いずれも290mmであった。これを、カーボンヒータを備える電気炉中に配置し、空気中、500℃で5時間加熱して脱脂した後、窒素ガスの雰囲気下、1800℃で12時間焼成して、窒化ケイ素焼結体で構成されるセラミック板を得た。
(Example 1)
<Ceramic plate production>
Silicon nitride powder, magnesium oxide powder, and yttrium oxide powder were prepared as sintering aids. These were blended at Si 3 N 4 : Y 2 O 3 : MgO = 94.0: 3.0: 3.0 (mass ratio) to obtain a raw material powder. This raw material powder was uniaxially pressure-molded to prepare a plurality of ceramic green sheets. The produced ceramic green sheet and a setter made of boron nitride were superposed to obtain a laminate as shown in FIG. The radius of curvature of the curved surface of each of the three setters was 290 mm. This is placed in an electric furnace equipped with a carbon heater, heated in air at 500 ° C. for 5 hours to degreas, and then fired at 1800 ° C. for 12 hours in a nitrogen gas atmosphere to form a silicon nitride sintered body. A ceramic plate to be composed was obtained.
<セラミック板の形状評価>
 このセラミック板は、図1及び図2に示すようにアーチ状に反っており、凸状に湾曲している第1主面と、当該第1主面の反対側に凹状に湾曲している第2主面とを有していた。第1主面及び第2主面の長手方向に沿って測定される縦方向の長さ(弧の長さ)はともに68mmであった。第1主面及び第2主面の短手方向に沿って測定される横方向の長さ(幅)は、ともに35.4mmであった。第1主面及び第2主面の面積は、ともに68×35.4=2407.2mmであった。第1主面及び第2主面に直交する方向に沿って測定される厚さ(第1主面と第2主面との最短距離)は、0.635mmであった。
<Evaluation of the shape of the ceramic plate>
As shown in FIGS. 1 and 2, the ceramic plate is curved in an arch shape, and has a first main surface that is curved in a convex shape and a first main surface that is curved in a concave shape on the opposite side of the first main surface. It had two main surfaces. The vertical length (arc length) measured along the longitudinal direction of the first main surface and the second main surface was 68 mm. The lateral length (width) measured along the lateral direction of the first main surface and the second main surface was 35.4 mm. The areas of the first main surface and the second main surface were both 68 × 35.4 = 2407.2 mm 2 . The thickness (the shortest distance between the first main surface and the second main surface) measured along the direction orthogonal to the first main surface and the second main surface was 0.635 mm.
 得られたセラミック板を、図2に示すように、水平な平面を有する測定台の上におき、反り量Wを測定した。測定には、株式会社キーエンス製のワンショット3D形状測定機(商品名:VR-3050)を用いた。3枚のセラミック板の反り量Wの測定結果は、表1に示すとおりであった。反り量Wは、図2に示されるとおり、測定台からの凹状に湾曲している第2主面の最大高さである。また、同じ測定器を用いて測定した、3枚のセラミック板の反り量Zは表1に示すとおりであった。反り量Zは、図2に示されるとおり、凸状に湾曲している第1主面の高低差の最大値である。 As shown in FIG. 2, the obtained ceramic plate was placed on a measuring table having a horizontal flat surface, and the amount of warpage W was measured. A one-shot 3D shape measuring machine (trade name: VR-3050) manufactured by KEYENCE CORPORATION was used for the measurement. The measurement results of the warp amount W of the three ceramic plates are as shown in Table 1. As shown in FIG. 2, the warp amount W is the maximum height of the second main surface curved in a concave shape from the measuring table. The warpage amount Z of the three ceramic plates measured using the same measuring instrument is as shown in Table 1. As shown in FIG. 2, the warp amount Z is the maximum value of the height difference of the first main surface that is curved in a convex shape.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、3枚のセラミック板の反り量Wはほぼ同じであった。また、反り量Wと反り量Zも大きく変わらなかった。第1主面と第2主面の曲率半径は、セッターの湾曲面の曲率半径と同じであった。表1には、主面の面積、厚み、主面の面積に対する反り量Wの比、及び、厚みに対する反り量Wの比を示した。 As shown in Table 1, the warpage amount W of the three ceramic plates was almost the same. Further, the warp amount W and the warp amount Z did not change significantly. The radius of curvature of the first main surface and the second main surface was the same as the radius of curvature of the curved surface of the setter. Table 1 shows the area and thickness of the main surface, the ratio of the warp amount W to the area of the main surface, and the ratio of the warp amount W to the thickness.
 実施例1-1,1-2,1-3のセラミック板を3枚重ね合わせて、図10の保持体350と同様の保持体を作製した。図10では、セラミック板100aが1枚しか示されていないが、この実施例では、3枚のセラミック板を、第1主面及び第2主面の向きが揃うように重ね合わせて用いた。セラミックグリーンシートは、上述の「セラミック板の作製」と同様にして60枚作製した。セッターは、いずれも窒化ホウ素製の市販のものを用いた。下側のセッター(第1セッター)の上に30枚のセラミックグリーンシート、セッター(第2セッター)及び30枚のセラミックグリーンシート及びセッター(第3セッター)の順に積層して積層体を得た。上側のセッター(第3セッター)の上に3枚のセラミック板を配置した。3枚のセラミック板の上側に配置した固定部材で下方に押圧して積層体を拘束し、図10に示されるような保持体を作製した。積層体は、3枚のセラミック板の弾性変形に伴う復元力によって下方に付勢されていた。 Three ceramic plates of Examples 1-1, 1-2, 1-3 were superposed to prepare a holding body similar to the holding body 350 of FIG. In FIG. 10, only one ceramic plate 100a is shown, but in this embodiment, three ceramic plates are used in an overlapping manner so that the directions of the first main surface and the second main surface are aligned. 60 ceramic green sheets were prepared in the same manner as in the above-mentioned "Ceramic plate preparation". As the setters, commercially available ones made of boron nitride were used. Thirty ceramic green sheets, setters (second setter), and 30 ceramic green sheets and setters (third setter) were laminated on the lower setter (first setter) in this order to obtain a laminated body. Three ceramic plates were placed on the upper setter (third setter). The laminated body was restrained by pressing downward with a fixing member arranged on the upper side of the three ceramic plates to prepare a holding body as shown in FIG. The laminate was urged downward by the restoring force associated with the elastic deformation of the three ceramic plates.
 このような積層体を備える保持体を、脱脂炉に収容し、空気中、500℃で5時間加熱して脱脂工程を行った。脱脂工程において、複数のセラミックグリーンシート同士の位置がずれることはなかった。その後、保持体からセラミックグリーンシートを取り出し、別の窒化ホウ素製のセッターの上に載置して焼成工程を行った。焼成工程は、窒素雰囲気下、焼成炉中で脱脂されたセラミックグリーンシートを1800℃で12時間加熱した。得られた窒化ケイ素焼結体は、十分に品質のばらつきが低減されていた。 The holding body provided with such a laminated body was housed in a degreasing furnace and heated in air at 500 ° C. for 5 hours to perform a degreasing step. In the degreasing step, the positions of the plurality of ceramic green sheets did not shift from each other. Then, the ceramic green sheet was taken out from the holding body and placed on another boron nitride setter to perform a firing step. In the firing step, the degreased ceramic green sheet was heated at 1800 ° C. for 12 hours in a firing furnace under a nitrogen atmosphere. The quality variation of the obtained silicon nitride sintered body was sufficiently reduced.
(参考例1)
 実施例1と同様の手順でセラミックグリーンシートを作製した。平板形状のセッターの上にセラミックグリーンシートを載置し、実施例1と同じ加熱条件で脱脂工程と焼成工程を行って、窒化ケイ素焼結体で構成される平板形状のセラミック板を得た。セラミック板のサイズは、縦×横×厚さ=68mm×35.4mm×0.635mmであった。
(Reference example 1)
A ceramic green sheet was produced by the same procedure as in Example 1. A ceramic green sheet was placed on a flat plate-shaped setter, and a degreasing step and a firing step were performed under the same heating conditions as in Example 1 to obtain a flat plate-shaped ceramic plate composed of a silicon nitride sintered body. The size of the ceramic plate was length × width × thickness = 68 mm × 35.4 mm × 0.635 mm.
 上述のセラミック板をn個作製し、たわみ量を以下の手順で測定した。たわみ量は、株式会社今田製作所製の引張圧縮試験機(型式:SDT-503NB-50R1T)を用い、支点間距離30mmにて3点曲げ試験を行って測定した。図12に、n個のセラミック板の測定結果を並べて示す。 N pieces of the above-mentioned ceramic plates were prepared, and the amount of deflection was measured by the following procedure. The amount of deflection was measured by performing a three-point bending test at a distance between fulcrums of 30 mm using a tensile compression tester (model: SDT-503NB-50R1T) manufactured by Imada Seisakusho Co., Ltd. FIG. 12 shows the measurement results of n ceramic plates side by side.
(参考例2)
 セラミック板の厚さを変更したこと以外は、参考例1と同様にして窒化ケイ素焼結体で構成される平板形状のセラミック板を得た。セラミック板のサイズは、縦×横×厚さ=68mm×35.4mm×0.32mmであった。セラミック板をn個用意して、参考例1と同じ手順でたわみ量を測定した。測定結果は図13に示すとおりであった。図12及び図13の結果から、セラミック板の厚みを変えることで、たわみ量を調整できることが確認された。
(Reference example 2)
A flat plate-shaped ceramic plate composed of a silicon nitride sintered body was obtained in the same manner as in Reference Example 1 except that the thickness of the ceramic plate was changed. The size of the ceramic plate was length × width × thickness = 68 mm × 35.4 mm × 0.32 mm. N ceramic plates were prepared, and the amount of deflection was measured by the same procedure as in Reference Example 1. The measurement results are as shown in FIG. From the results of FIGS. 12 and 13, it was confirmed that the amount of deflection can be adjusted by changing the thickness of the ceramic plate.
 本開示によれば、優れた耐熱性を有し、積層された複数のセラミックグリーンシートの互いの位置がずれることを抑制できる板ばね、並びに、当該板ばねとして好適に用いられるセラミック板及びその製造方法を提供することができる。また、そのようなセラミック板を簡便に製造できるセッターを提供することができる。また、積層された複数のセラミックグリーンシートの互いの位置がずれることを抑制することによって、高い品質を有するセラミック焼結体を安定的に製造すること可能な製造方法を提供することができる。 According to the present disclosure, a leaf spring having excellent heat resistance and capable of suppressing the position of a plurality of laminated ceramic green sheets from shifting from each other, and a ceramic plate preferably used as the leaf spring and manufacturing thereof. A method can be provided. Further, it is possible to provide a setter capable of easily manufacturing such a ceramic plate. Further, by suppressing the positions of the plurality of laminated ceramic green sheets from being displaced from each other, it is possible to provide a manufacturing method capable of stably manufacturing a ceramic sintered body having high quality.
 11,13,24…側面、20,65…頂部、37…固定部材、41,42,110…セラミックグリーンシート、50,60,70,72,80,82,92,94,96…セッター、50A,60A…湾曲面、50B,60B…平面、52,54…側縁、61…窪み部、64…側縁、400…支持体、100,100a,100b,102…セラミック板、100A,102A…第1主面、100B,102B…第2主面、150…測定台、200,210,300,301…積層体、350,351…保持体。 11,13,24 ... Side, 20,65 ... Top, 37 ... Fixing member, 41,42,110 ... Ceramic green sheet, 50,60,70,72,80,82,92,94,96 ... Setter, 50A , 60A ... Curved surface, 50B, 60B ... Flat surface, 52, 54 ... Side edge, 61 ... Recess, 64 ... Side edge, 400 ... Support, 100, 100a, 100b, 102 ... Ceramic plate, 100A, 102A ... 1 main surface, 100B, 102B ... second main surface, 150 ... measuring table, 200, 210, 300, 301 ... laminated body, 350, 351 ... holding body.

Claims (10)

  1.  凸状に湾曲している第1主面と、当該第1主面の反対側に凹状に湾曲している第2主面とを有し、反り量Wが1mm以上である、セラミック板。 A ceramic plate having a first main surface that is curved in a convex shape and a second main surface that is curved in a concave shape on the opposite side of the first main surface, and has a warp amount W of 1 mm or more.
  2.  厚みが2mm以下であり、前記第1主面と前記第2主面の曲率半径が100~1000mmである、請求項1に記載のセラミック板。 The ceramic plate according to claim 1, wherein the thickness is 2 mm or less, and the radius of curvature of the first main surface and the second main surface is 100 to 1000 mm.
  3.  前記第1主面と前記第2主面の面積の平均値に対する反り量Wの比が1×10-5/mm以上である、請求項1又は2に記載のセラミック板。 The ceramic plate according to claim 1 or 2, wherein the ratio of the warp amount W to the average value of the areas of the first main surface and the second main surface is 1 × 10 -5 / mm or more.
  4.  窒化ケイ素焼結体で構成される、請求項1~3のいずれか一項に記載のセラミック板。 The ceramic plate according to any one of claims 1 to 3, which is composed of a silicon nitride sintered body.
  5.  請求項1~4のいずれか一項に記載のセラミック板で構成される板ばね。 A leaf spring composed of the ceramic plate according to any one of claims 1 to 4.
  6.  凸状又は凹状の湾曲面を有するセッターとセラミックグリーンシートとを、前記セラミックグリーンシートの主面が前記湾曲面に沿うように重ね合わせて加熱し、反り量Wが1mm以上であるセラミック板を得る工程を有する、セラミック板の製造方法。 A setter having a convex or concave curved surface and a ceramic green sheet are superposed and heated so that the main surface of the ceramic green sheet is along the curved surface to obtain a ceramic plate having a warp amount W of 1 mm or more. A method for manufacturing a ceramic plate having a process.
  7.  凸状又は凹状の湾曲面を有し、前記湾曲面におけるセラミックグリーンシートが載置される部分の高低差が1mm以上である、セッター。 A setter that has a convex or concave curved surface, and the height difference of the portion on the curved surface on which the ceramic green sheet is placed is 1 mm or more.
  8.  前記湾曲面の前記部分を覆うように載置された前記セラミックグリーンシートを加熱し、反り量Wが1mm以上であるセラミック板を形成する、請求項7に記載のセッター。 The setter according to claim 7, wherein the ceramic green sheet placed so as to cover the portion of the curved surface is heated to form a ceramic plate having a warp amount W of 1 mm or more.
  9.  複数のセラミックグリーンシートを含む積層体を加熱して脱脂する脱脂工程と、
     脱脂された前記積層体を焼成してセラミック板を得る焼成工程と、を有し、
     前記脱脂工程及び前記焼成工程の一方又は双方において、前記積層体は、請求項1~4のいずれか一項に記載のセラミック板の弾性変形によって生じる復元力によって保持される、セラミック焼結体の製造方法。
    A degreasing process that heats and degreases a laminate containing multiple ceramic green sheets,
    It has a firing step of firing the degreased laminate to obtain a ceramic plate.
    In one or both of the degreasing step and the firing step, the laminated body is held by the restoring force generated by the elastic deformation of the ceramic plate according to any one of claims 1 to 4. Production method.
  10.  前記脱脂工程及び前記焼成工程の一方又は双方において、前記セラミック板は、前記積層体の上方に設けられた固定部材と前記積層体との間に弾性変形した状態で配置され、前記積層体の収縮に伴って前記セラミック板の前記反り量Wが大きくなる、請求項9に記載のセラミック焼結体の製造方法。 In one or both of the degreasing step and the firing step, the ceramic plate is arranged in a state of being elastically deformed between the fixing member provided above the laminated body and the laminated body, and shrinkage of the laminated body. The method for producing a ceramic sintered body according to claim 9, wherein the amount of warpage W of the ceramic plate increases accordingly.
PCT/JP2021/032285 2020-09-10 2021-09-02 Ceramic plate and manufacturing method therefor, plate spring, setter, and method for manufacturing ceramic sintered body WO2022054684A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022540695A JP7126035B2 (en) 2020-09-10 2021-09-02 Ceramic plate and manufacturing method thereof, plate spring, setter, and manufacturing method of ceramic sintered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151970 2020-09-10
JP2020-151970 2020-09-10

Publications (1)

Publication Number Publication Date
WO2022054684A1 true WO2022054684A1 (en) 2022-03-17

Family

ID=80632317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032285 WO2022054684A1 (en) 2020-09-10 2021-09-02 Ceramic plate and manufacturing method therefor, plate spring, setter, and method for manufacturing ceramic sintered body

Country Status (2)

Country Link
JP (1) JP7126035B2 (en)
WO (1) WO2022054684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038151A1 (en) * 2021-09-13 2023-03-16 デンカ株式会社 Method for producing boron nitride sintered body, and boron nitride sintered body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188033A (en) * 1984-10-04 1986-05-06 Kyocera Corp Spring made of ceramics
JPH01201081A (en) * 1988-02-05 1989-08-14 Toyota Motor Corp Calcination of ceramic laminate
JPH06293553A (en) * 1993-04-02 1994-10-21 Inax Corp Firing method of bent tile
JPH08247666A (en) * 1995-01-10 1996-09-27 Ngk Insulators Ltd Burning tool
JP2003090372A (en) * 2001-09-20 2003-03-28 Denki Kagaku Kogyo Kk Silicon nitride made disc spring material, its manufacturing method and its use
WO2009031236A1 (en) * 2007-09-07 2009-03-12 Nippon Shokubai Co., Ltd. Process for producing ceramic sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6293553B2 (en) 2014-03-31 2018-03-14 株式会社ファンケル Method for masking sulfur odor of sulfur-containing compounds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188033A (en) * 1984-10-04 1986-05-06 Kyocera Corp Spring made of ceramics
JPH01201081A (en) * 1988-02-05 1989-08-14 Toyota Motor Corp Calcination of ceramic laminate
JPH06293553A (en) * 1993-04-02 1994-10-21 Inax Corp Firing method of bent tile
JPH08247666A (en) * 1995-01-10 1996-09-27 Ngk Insulators Ltd Burning tool
JP2003090372A (en) * 2001-09-20 2003-03-28 Denki Kagaku Kogyo Kk Silicon nitride made disc spring material, its manufacturing method and its use
WO2009031236A1 (en) * 2007-09-07 2009-03-12 Nippon Shokubai Co., Ltd. Process for producing ceramic sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038151A1 (en) * 2021-09-13 2023-03-16 デンカ株式会社 Method for producing boron nitride sintered body, and boron nitride sintered body
JP7282279B1 (en) * 2021-09-13 2023-05-26 デンカ株式会社 Method for manufacturing boron nitride sintered body and boron nitride sintered body

Also Published As

Publication number Publication date
JPWO2022054684A1 (en) 2022-03-17
JP7126035B2 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2022054684A1 (en) Ceramic plate and manufacturing method therefor, plate spring, setter, and method for manufacturing ceramic sintered body
JP2008050222A (en) Ceramic thin plate member
EP1858106A3 (en) Ceramic thin plate member
TW202043176A (en) Calcination jig
JP2012038825A (en) Apparatus and method for manufacturing power module substrate
JPH08151270A (en) Ceramic sheet
KR100944829B1 (en) Jig and method for producing aluminum nitride sintered compact
JP7185099B2 (en) Ceramic plate manufacturing method, setter manufacturing method, and setter recycling method
CN111278792A (en) Method for producing oriented ceramic sintered body and flat sheet
JP2797372B2 (en) Manufacturing method of aluminum nitride substrate
JP2016038194A (en) Setter for defatting and firing
WO2021193739A1 (en) Method for manufacturing ceramic plate and method for using cutting processing machine
KR970069947A (en) Sintering method of ceramics by multilayer stack hot pressing method
WO2007000963A1 (en) Process for producing nonflat ceramic substrate
JP2014148435A (en) Burning tool
JP6643483B2 (en) Ceramic joint
CN217785845U (en) Firing clamp
RU2470896C1 (en) Method of making corundum articles
JP4041191B2 (en) Raw material powder for ceramic sheets
JP2683528B2 (en) Method for firing aluminum nitride substrate
CN115057711A (en) Flat sheet
JP4581575B2 (en) Manufacturing method of plate-shaped ceramic body and load applying member for ceramic firing
JPH02141476A (en) Production of ceramics substrate
JP2842445B2 (en) Method for manufacturing container having setter and method for firing aluminum nitride substrate using the same
JP2021024106A (en) Method for producing ceramic substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540695

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866643

Country of ref document: EP

Kind code of ref document: A1