WO2022054469A1 - 測光装置 - Google Patents

測光装置 Download PDF

Info

Publication number
WO2022054469A1
WO2022054469A1 PCT/JP2021/028941 JP2021028941W WO2022054469A1 WO 2022054469 A1 WO2022054469 A1 WO 2022054469A1 JP 2021028941 W JP2021028941 W JP 2021028941W WO 2022054469 A1 WO2022054469 A1 WO 2022054469A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
attenuation filter
light attenuation
reflected
interference
Prior art date
Application number
PCT/JP2021/028941
Other languages
English (en)
French (fr)
Inventor
月果 馬ノ段
通 中谷
祐亮 平尾
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202180054564.1A priority Critical patent/CN116157657A/zh
Priority to US18/025,381 priority patent/US20230341261A1/en
Priority to JP2022547443A priority patent/JPWO2022054469A1/ja
Publication of WO2022054469A1 publication Critical patent/WO2022054469A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating

Definitions

  • This disclosure relates to a photometric device.
  • Patent Document 1 discloses an optical spectrum measuring device including a spectroscope, a light attenuation means, and a photodetector.
  • the light attenuation means includes a rotating plate, a plurality of ND filters attached to the rotating plate, and a motor for rotating the rotating plate.
  • the plurality of ND filters have different light attenuation rates from each other.
  • An ND filter having the most appropriate light attenuation rate among the plurality of ND filters is inserted into the optical path of the light according to the intensity of the light incident on the light spectrum measuring device. In this way, the photodetector is prevented from being saturated, and the intensity of the light incident on the photodetector is within the dynamic range of the photodetector.
  • the photometric device of the present disclosure includes a variable optical attenuator and a photodetector.
  • the variable optical attenuator includes a plurality of optical attenuation filters and a driving device.
  • the photodetector receives the light that has passed through the variable optical attenuator.
  • the drive device can insert and retract the plurality of light attenuation filters into and out of the optical axis of the light independently of each other.
  • the plurality of light attenuation filters are arranged at different positions in the direction along the optical axis.
  • Each of the plurality of light attenuation filters includes an interference multilayer film and a transparent substrate that supports the interference multilayer film.
  • any combination of any two of the plurality of light attenuation filters is referred to as a first light attenuation filter and a second light attenuation filter.
  • the second light attenuation filter is proximal to the photodetector than the first light attenuation filter.
  • the first light attenuation filter includes a first interference multilayer film as an interference multilayer film and a first transparent substrate as a transparent substrate.
  • the second light attenuation filter includes a second interference multilayer film as an interference multilayer film and a second transparent substrate as a transparent substrate.
  • the first optical path length of the first transparent substrate is different from the second optical path length of the second transparent substrate.
  • the light has a distribution of angles of incidence on the variable optical attenuator, and the photometric device satisfies the following conditional expression (1).
  • OPD ⁇ max1 (OP 1220max -OP 1022max ).
  • OPD ⁇ min1 (OP 1220min -OP 1022min ).
  • is the wavelength of light included in the measurable wavelength range of the photometric device.
  • OP 1220max is the optical path length of the maximum incident angle light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • the maximum incident angle light is the light having the maximum incident angle to the variable optical attenuator.
  • OP 1022max is the optical path length of the maximum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • OP 1220min is the optical path length of the minimum incident angle light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • the minimum incident angle light is the light having the smallest incident angle to the variable optical attenuator.
  • OP 1022min is the optical path length of the minimum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • the photometric device is a spectroscope capable of measuring spectroscopic information.
  • the photometric device satisfies the following conditional expression (2).
  • OPD 12
  • is the wavelength of light included in the measurable wavelength range of the photometric device.
  • ⁇ a is a half width of the spectral response spectrum of the photodetector included in the photodetector.
  • OP 1220 is an optical path length of light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1022 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • the photometric device satisfies the following conditional expression (3).
  • OPD 13 (1 / ⁇ -1 / ( ⁇ + ⁇ b ))> 0.5... (3)
  • OPD 13
  • is the wavelength of light included in the measurable wavelength range of the photometric device.
  • ⁇ b is the line width of the light emitted from the object to be measured.
  • OP 1220 is an optical path length of light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1022 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • the first thickness of the first transparent substrate is different from the second thickness of the second transparent substrate.
  • the first refractive index of the first transparent substrate is different from the second refractive index of the second transparent substrate.
  • the interference multilayer film of each of the plurality of light attenuation filters is formed of the same material, and the transparent substrate of each of the plurality of light attenuation filters is formed of the same material.
  • the plurality of light attenuation filters are arranged at the same angle with respect to the optical axis.
  • the photometric device further comprises a collimating lens arranged on the incident side of the plurality of light attenuation filters.
  • the photometric device satisfies the following conditional expressions (4) and (5).
  • OPD ⁇ max2 (OP 1420max -OP 1022max ).
  • OPD ⁇ min2 (OP 1420min -OP 1022min ).
  • OPD ⁇ max3 (OP 1024max -OP 1220max ).
  • OPD ⁇ min3 (OP 1024min -OP 1220min ).
  • OP 1420max is the optical path length of the maximum incident angle light that is reflected four times by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1022max is the optical path length of the maximum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • OP 1420min is the optical path length of the minimum incident angle light that is reflected four times by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1022min is the optical path length of the minimum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • OP 1024max is the optical path length of the maximum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected four times by the second light attenuation filter.
  • OP 1220max is the optical path length of the maximum incident angle light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1024min is the optical path length of the minimum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected four times by the second light attenuation filter.
  • OP 1220min is the optical path length of the minimum incident angle light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • the photometric device satisfies the following conditional expressions (6) and (7).
  • OPD 21 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a ))> 0.5 ... (6)
  • OPD 22 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a ))> 0.5 ... (7)
  • OPD 21
  • OPD 22
  • OP 1420 is an optical path length of light that is reflected four times by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1022 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • OP 1024 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected four times by the second light attenuation filter.
  • OP 1220 is an optical path length of light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • the photometric device satisfies the following conditional expressions (8) and (9).
  • OPD 21
  • OPD 22
  • OP 1420 is an optical path length of light that is reflected four times by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1022 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • OP 1024 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected four times by the second light attenuation filter.
  • OP 1220 is an optical path length of light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • the plurality of light attenuation filters include a third light attenuation filter as a first light attenuation filter and a fourth light attenuation filter as a second light attenuation filter.
  • the third light attenuation filter and the fourth light attenuation filter are arbitrary two light attenuation filters that are adjacent to each other among the plurality of light attenuation filters.
  • the photometric device satisfies the following conditional expressions (10) and (11).
  • OPD ⁇ max4 (OP 3240max -OP 30G240max ).
  • OPD ⁇ min4 (OP 3240min -OP 30G240min ).
  • OPD ⁇ max5 (OP 3042max -OP 30G240max ).
  • OPD ⁇ min5 (OP 3042min -OP 30G240min ).
  • OP 3240max is the optical path length of the maximum incident angle light that is reflected twice by the third light attenuation filter and passes through the fourth light attenuation filter without being reflected by the fourth light attenuation filter.
  • the OP 30G240max passes through the 3rd light attenuation filter and the 4th light attenuation filter without being reflected by the 3rd light attenuation filter and the 4th light attenuation filter, and has the 3rd light attenuation filter and the 4th light attenuation filter.
  • OP 3240min is the optical path length of the minimum incident angle light that is reflected twice by the third light attenuation filter and passes through the fourth light attenuation filter without being reflected by the fourth light attenuation filter.
  • the OP 30G 240min passes through the 3rd light attenuation filter and the 4th light attenuation filter without being reflected by the 3rd light attenuation filter and the 4th light attenuation filter, and has the 3rd light attenuation filter and the 4th light attenuation filter. It is the optical path length of the minimum incident angle light reflected twice in the layer between.
  • OP 3042max is the optical path length of the maximum incident angle light that passes through the third light attenuation filter without being reflected by the third light attenuation filter and is reflected twice by the fourth light attenuation filter.
  • OP 3042min is the optical path length of the minimum incident angle light that passes through the third light attenuation filter without being reflected by the third light attenuation filter and is reflected twice by the fourth light attenuation filter.
  • the plurality of light attenuation filters include a third light attenuation filter as a first light attenuation filter and a fourth light attenuation filter as a second light attenuation filter.
  • the third light attenuation filter and the fourth light attenuation filter are arbitrary two light attenuation filters that are adjacent to each other among the plurality of light attenuation filters.
  • the photometric device satisfies the following conditional expressions (12) and (13).
  • OPD g1 (1 / ⁇ -1 / ( ⁇ + ⁇ a ))> 0.5... (12) OPD g2 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a ))> 0.5... (13)
  • OPD g1
  • OPD g2
  • OP 3240 is an optical path length of light that is reflected twice by the third light attenuation filter and passes through the fourth light attenuation filter without being reflected by the fourth light attenuation filter.
  • the OP 30G 240 passes through the 3rd light attenuation filter and the 4th light attenuation filter without being reflected by the 3rd light attenuation filter and the 4th light attenuation filter, and has the 3rd light attenuation filter and the 4th light attenuation filter.
  • the length of the light path that is reflected twice in the layer between. OP 3042 is the optical path length of the light that passes through the third light attenuation filter without being reflected by the third light attenuation filter and is reflected twice by the fourth light attenuation filter.
  • the plurality of light attenuation filters include a third light attenuation filter as a first light attenuation filter and a fourth light attenuation filter as a second light attenuation filter.
  • the third light attenuation filter and the fourth light attenuation filter are arbitrary two light attenuation filters that are adjacent to each other among the plurality of light attenuation filters.
  • the photometric device satisfies the following conditional expressions (14) and (15).
  • OPD g1
  • OPD g2
  • OP 3240 is an optical path length of light that is reflected twice by the third light attenuation filter and passes through the fourth light attenuation filter without being reflected by the fourth light attenuation filter.
  • the OP 30G 240 passes through the 3rd light attenuation filter and the 4th light attenuation filter without being reflected by the 3rd light attenuation filter and the 4th light attenuation filter, and has the 3rd light attenuation filter and the 4th light attenuation filter.
  • the length of the light path that is reflected twice in the layer between. OP 3042 is the optical path length of the light that passes through the third light attenuation filter without being reflected by the third light attenuation filter and is reflected twice by the fourth light attenuation filter.
  • FIG. 1 It is a schematic diagram which shows the 2nd interference in the variable optical attenuator of embodiment. It is a schematic diagram which shows the 3rd interference in the variable optical attenuator of embodiment. It is a schematic diagram which shows the 3rd interference in the variable optical attenuator of embodiment. It is a schematic diagram which shows the 3rd interference in the variable optical attenuator of embodiment. It is a schematic diagram which shows the 3rd interference in the variable optical attenuator of embodiment. It is a figure which shows the graph which shows the distribution of the incident angle of the light incident on the variable optical attenuator in Example 1.
  • FIG. 1 shows the 2nd interference in the variable optical attenuator of embodiment. It is a schematic diagram which shows the 3rd interference in the variable optical attenuator of embodiment. It is a schematic diagram which shows the 3rd interference in the variable optical attenuator of embodiment. It is a schematic diagram which shows the 3rd interference in the variable optical attenuator of embodiment. It is a figure which shows
  • the figure which shows the graph which shows the relative intensity of the interference light caused by the second interference when the incident angle range of the light to be measured to the variable optical attenuator is 3 ° or more and 7 ° or less (5 ° ⁇ 2 °).
  • the figure which shows the graph which shows the relative intensity of the interference light caused by the third interference when the incident angle range of the light to be measured to the variable optical attenuator is 3 ° or more and 7 ° or less (5 ° ⁇ 2 °). Is.
  • the photometric device 1 of the embodiment will be described with reference to FIGS. 1 to 4.
  • the photometric device 1 is a device that measures the light (measured light) emitted from the object 2 to be measured.
  • the object 2 to be measured is not particularly limited, but is, for example, a flat panel display such as a liquid crystal display or an organic EL display.
  • the photometric device 1 mainly includes a variable optical attenuator 4 and a photodetector 8.
  • the photometric device 1 may further include a spectroscopic element 6, or may be a device (for example, an optical spectrum measuring device) capable of measuring the spectral information of the object 2 to be measured (for example, the spectrum of the light to be measured).
  • the photometric device 1 may further include a collimator lens 3 and a condenser lens 7.
  • the collimator lens 3 is arranged on the incident side of the variable optical attenuator 4 (a plurality of optical attenuation filters 10, 20).
  • the collimator lens 3 collimates the light emitted from the object 2 to be measured.
  • variable optical attenuator 4 is arranged on the exit side of the collimator lens 3.
  • the light collimated by the collimator lens 3 is incident on the variable optical attenuator 4.
  • the variable optical attenuator 4 includes a plurality of optical attenuation filters 10 and 20 and a driving device 5.
  • the plurality of optical attenuation filters 10 and 20 may be arranged at the same angle with respect to the optical axis 2p of the light incident on the variable optical attenuator 4, respectively.
  • the plurality of optical attenuators 10 and 20 may be tilted at the same angle with respect to the optical axis 2p of the light incident on the variable optical attenuator 4, respectively.
  • the plurality of light attenuation filters 10 and 20 may be arranged in parallel with each other. Therefore, the variable optical attenuator 4 can be miniaturized, and the photometric device 1 can be miniaturized.
  • the plurality of light attenuation filters 10, 20 are the interference multilayer films 12, 13, 22, 23, respectively, and the transparent substrates 11, 21, supporting the interference multilayer films 12, 13, 22, 23, respectively. including. Any combination of any two of the plurality of light attenuation filters 10 and 20 is referred to as a first light attenuation filter (for example, light attenuation filter 10) and a second light attenuation filter (for example, light attenuation filter 20). In the direction along the optical axis 2p, the second light attenuation filter is proximal to the photodetector 8 than the first light attenuation filter.
  • a first light attenuation filter for example, light attenuation filter 10
  • a second light attenuation filter for example, light attenuation filter 20
  • the second light attenuation filter is proximal to the photodetector 8 than the first light attenuation filter.
  • the first light attenuation filter includes a first interference multilayer film as an interference multilayer film (for example, at least one of the interference multilayer films 12 and 13) and a first transparent substrate as a transparent substrate (for example, a transparent substrate 11).
  • the second light attenuation filter includes a second interference multilayer film (at least one of the interference multilayer films 22 and 23) as an interference multilayer film and a second transparent substrate (for example, a transparent substrate 21) as a transparent substrate.
  • the first optical path length of the first transparent substrate (for example, the transparent substrate 11) is different from the second optical path length of the second transparent substrate (for example, the transparent substrate 21).
  • the first optical path length of the first transparent substrate is the product of the first refractive index (for example, refractive index n 1 ) of the first transparent substrate and the first thickness (for example, thickness d 1 ) of the first transparent substrate.
  • the second optical path length of the second transparent substrate is the product of the second refractive index (for example, refractive index n 2 ) of the second transparent substrate and the second thickness (for example, thickness d 2 ) of the second transparent substrate. Given.
  • the first optical path length of the first transparent substrate for example, the transparent substrate 11
  • the optical path length of the first optical attenuation filter for example, the optical attenuation filter 10
  • the optical path length of the second optical attenuation filter is the second optical path length of the second optical attenuation filter (for example, the optical attenuation filter). It means that it is different from the optical path length of 20).
  • the transparent substrates 11 and 21 are made of an optical material that is transparent to the light to be measured, such as glass, plastic, crystal, or sapphire.
  • the transparent optical material forming the transparent substrates 11 and 21 can be appropriately selected according to the wavelength range of the light to be measured.
  • the interference multilayer films 12, 13, 22, and 23 are formed on at least one of the incident surfaces 14, 24 or the exit surfaces 15, 25, respectively, of the corresponding transparent substrates 11 and 21, respectively.
  • the light attenuation filter 10 includes at least one of the interference multilayer films 12 and 13.
  • the interference multilayer film 12 is formed on the incident surface 14 of the transparent substrate 11.
  • the interference multilayer film 13 is formed on the exit surface 15 of the transparent substrate 11.
  • the light attenuation filter 20 includes at least one of the interference multilayer films 22 and 23.
  • the interference multilayer film 22 is formed on the incident surface 24 of the transparent substrate 21.
  • the interference multilayer film 23 is formed on the exit surface 25 of the transparent substrate 21.
  • the interference multilayer films 12, 13, 22, and 23 are formed on both the incident surfaces 14, 24 and the exit surfaces 15, 25, respectively, of the corresponding transparent substrates 11 and 21, respectively.
  • the light attenuation filter 10 includes an interference multilayer film 12 formed on the incident surface 14 of the transparent substrate 11 and an interference multilayer film 13 formed on the exit surface 15 of the transparent substrate 11.
  • the light attenuation filter 20 includes an interference multilayer film 22 formed on the incident surface 24 of the transparent substrate 21 and an interference multilayer film 23 formed on the exit surface 25 of the transparent substrate 21.
  • the interference multilayer films 12, 13, 22, and 23 may have the same multilayer film configuration as each other, or may have different multilayer film configurations from each other.
  • the interference multilayer films 12, 13, 22, and 23 may be formed of the same material or may be made of different materials.
  • Materials for the layers of the interfering multilayer films 12, 13, 22, 23 include, for example, dielectric materials such as SiO 2 or MgF 2 , and metal oxides such as Al 2 O 3 , TIO 2 , Nb 2 O 5 or Nb O. Materials or metallic materials such as Cr or Nb can be used.
  • an absorption type light attenuation filter that absorbs light inside a substrate (for example, a glass substrate) is known.
  • the degree of freedom in designing the transmission spectrum of the absorption type light attenuation filter is relatively low.
  • the stability of the absorption type light attenuation filter with respect to the environmental temperature and the environmental humidity is relatively low.
  • the degree of freedom in designing the transmission spectrum of the interference type light attenuation filter is relatively high. Further, the stability of the interference type light attenuation filter with respect to the environmental temperature and the environmental humidity is relatively high.
  • the drive device 5 inserts a plurality of optical attenuation filters 10 and 20 independently of each other into the optical axis 2p of the light incident on the variable optical attenuator 4 and retracts from the optical axis 2p. Can be made to. Therefore, it is possible to prevent the photodetector 8 from being saturated and to keep the intensity of the light to be measured incident on the photodetector 8 within the dynamic range of the photodetector 8. Further, the photometric device 1 has a more compact size.
  • the drive device 5 is, for example, a linear actuator.
  • the spectroscopic element 6 disperses the light that has passed through the variable optical attenuator 4.
  • the spectroscopic element 6 is, for example, a diffraction grating.
  • the condensing lens 7 condenses the light dispersed by the spectroscopic element 6 on the photodetector 8.
  • the photodetector 8 receives the light that has passed through the variable optical attenuator 4. Specifically, the photodetector 8 receives the light dispersed by the spectroscopic element 6.
  • the photodetector 8 is a line sensor including a plurality of photodetectors 9. Each of the plurality of photodetecting elements 9 detects light having a plurality of wavelengths different from each other contained in the light to be measured.
  • Each of the plurality of photodetecting elements 9 is, for example, a charge-coupled device (CCD) sensor or a complementary metal oxide semiconductor (CMOS) sensor.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • the light reflectance of the light attenuation filters 10 and 20 including the interference multilayer films 12, 13, 22, 23 tends to be larger than the light reflectance of the absorption type light attenuation filter. Therefore, the reflected light generated by the light attenuation filters 10 and 20 including the interference multilayer films 12, 13, 22, and 23 may adversely affect the measurement result of the photometric device 1. As described below, this adverse effect is reduced in this embodiment.
  • the relative inclination between any two light attenuation filters (for example, light attenuation filters 10 and 20) among the plurality of optical attenuation filters. It is difficult to always make the corners exactly equal.
  • the relative tilt angle between any two light attenuation filters (for example, light attenuation filters 10 and 20) among the plurality of optical attenuation filters is obtained. May fluctuate slightly.
  • the tilt angle may fluctuate slightly.
  • the measurement result of the photometric device fluctuates greatly due to a slight fluctuation of. Therefore, it becomes difficult to measure light stably using a photometric device. Since the thickness of each of the interference multilayer films 12, 13, 22, and 23 is negligible as compared with the thickness of each of the transparent substrates 11, 21, the optical path lengths of the plurality of light attenuation filters 10 and 20 are equal to each other. This means that the optical path lengths of the plurality of transparent substrates 11 and 21 are substantially equal to each other.
  • the cause of the large variation in the measurement result of the photometric device 1 is the variation component of the interference intensity due to the interference between the plurality of multiple reflected lights generated in the plurality of optical attenuation filters 10 and 20.
  • the difference in optical path length between the two multiple reflected lights generated by the two light attenuation filters 10 and 20 is equal to or less than the wavelength of the light measured by the photometric device 1 (for example, when the measured light is visible light, it is several tens of nm or more).
  • the interference between the plurality of multiple reflected lights mainly includes the following three interferences (first interference, second interference and third interference).
  • the first interference is the interference between the double reflected light generated by the first light attenuation filter (light attenuation filter 10) and the double reflected light generated by the second light attenuation filter (light attenuation filter 20). (See FIGS. 5 and 6).
  • the second interference is the twice reflected light generated in one of the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20), the first light attenuation filter and the second. It is the interference between the four times reflected light generated by the other of the light attenuation filters (see FIGS. 7 to 10).
  • the third interference is the twice reflected light generated in one of the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20), the third light attenuation filter, and the fourth. Interference with the double reflected light generated in the layer (eg, the air layer) with the light attenuation filter (see FIGS. 11-14).
  • the third light attenuation filter corresponds to the first light attenuation filter
  • the fourth light attenuation filter corresponds to the second light attenuation filter.
  • the third light attenuation filter and the fourth light attenuation filter are arbitrary two light attenuation filters that are adjacent to each other among the plurality of light attenuation filters.
  • the first interference often has the greatest effect on the fluctuation of the measurement result of the photometric device 1.
  • the reason is as follows.
  • the number of reflections of the multiple reflected light in the second interference is larger than the number of reflections of the multiple reflected light in the first interference. Therefore, the fluctuation component of the interference strength caused by the second interference is often smaller than the fluctuation component of the interference strength caused by the first interference.
  • the reflectance of the light attenuation filter using the interference multilayer film with respect to the light incident on the interference multilayer film from the air layer side is the light incident on the interference multilayer film from the inner side (transparent substrate side) of the light attenuation filter. Of many cases, the reflectance is lower than that of a light attenuation filter using an interference multilayer film.
  • the variable component of the interference strength caused by the third interference is often smaller than the variable component of the interference strength caused by the first interference.
  • the fluctuation of the measurement result of the photometric device 1 can be effectively reduced, and the light can be stably used by using the photometric device 1. Moreover, it can be measured with high accuracy.
  • the interference between the plurality of multiple reflected lights generated in the plurality of light attenuation filters 10 and 20 includes higher-order interference in addition to the first interference, the second interference and the third interference.
  • the number of times the multiple reflected light is reflected in the higher-order interference is the number of times the multiple reflected light is reflected in the first interference
  • the number of times the multiple reflected light is reflected in the third interference More than any of the number of reflections. Therefore, the fluctuation component of the interference strength caused by the higher-order interference includes the fluctuation component of the interference strength caused by the first interference, the fluctuation component of the interference strength caused by the second interference, and the third interference. It is smaller than any of the resulting fluctuation components of the interference intensity and can be ignored.
  • the first optical path length of the first transparent substrate (for example, the transparent substrate 11) of the first light attenuation filter (for example, the optical attenuation filter 10) is the second optical attenuation filter (for example, the optical attenuation filter 20).
  • the second optical attenuation filter for example, the optical attenuation filter 20.
  • the photometric device 1 can measure the light emitted from the object 2 to be measured with higher accuracy.
  • the reduction of the fluctuation component of the interference intensity caused by the first interference, the second interference and the third interference in Examples 1 to 3 is caused by the first interference in Examples 4 to 6.
  • the reduction of the fluctuation component of the interference strength caused by the first interference and the second interference in Examples 7 to 9 the reduction of the fluctuation component of the interference strength caused by the second interference, the first in Examples 10 to 12.
  • the reduction of the fluctuation component of the interference intensity due to the interference and the third interference will be described respectively.
  • the plurality of light attenuation filters 10 and 20 are composed of two light attenuation filters 10 and 20.
  • the first light attenuation filter is a light attenuation filter 10
  • the second light attenuation filter is a light attenuation filter 20. Since the light attenuation filter 10 and the light attenuation filter 20 are adjacent to each other, the light attenuation filter 10 is also a third light attenuation filter, and the light attenuation filter 20 is also a fourth light attenuation filter.
  • the light attenuation filter 10 includes the interference multilayer films 12 and 13 and a transparent substrate 11 that supports the interference multilayer films 12 and 13.
  • the light attenuation filter 20 includes an interference multilayer film 22 and 23 and a transparent substrate 21 that supports the interference multilayer films 22 and 23.
  • the configurations of the variable optical attenuator 4 in Examples 1 to 3 are as shown in Table 1. Therefore, the optical path length of the transparent substrate 11 is different from the optical path length of the transparent substrate 21.
  • the reflectance of the incident surface 14 of the transparent substrate 11 and the reflectance of the exit surface 15 of the transparent substrate 11 are 10%, respectively.
  • the reflectance of the incident surface 14 of the transparent substrate 11 is the reflectance of the interference multilayer film 12.
  • the reflectance of the exit surface 15 of the transparent substrate 11 is the reflectance of the interference multilayer film 13.
  • the reflectance of the incident surface 24 of the transparent substrate 21 and the reflectance of the exit surface 25 of the transparent substrate 21 are 10%, respectively.
  • the reflectance of the incident surface 24 of the transparent substrate 11 is the reflectance of the interference multilayer film 22.
  • the reflectance of the exit surface 25 of the transparent substrate 21 is the reflectance of the interference multilayer film 23.
  • the relative tilt angle between the light attenuation filter 10 and the light attenuation filter 20 (for example, the inclination angle of the light attenuation filter 10 with respect to the light attenuation filter 20) ⁇ is 0.0. °.
  • the relative inclination angle ⁇ between the light attenuation filter 10 and the light attenuation filter 20 is 0.1 °.
  • the incident angle of the light to be measured incident on the variable optical attenuator 4 is the light to be measured with respect to the optical axis of the variable optical attenuator 4 (when the light to be measured has a distribution of incident angles). It is defined as the incident angle of the measured light component) having the incident angle at the center of the distribution of the incident angle of the light to be measured.
  • the line width ⁇ b of the light to be measured is defined as the half width of the spectrum of the light to be measured.
  • Example 2 (a) reduction of the fluctuation component of the interference intensity due to the first interference, the second interference and the third interference due to the distribution of the incident angle of the light to be measured incident on the variable light attenuator 4.
  • Example 2 (b) reduction of the fluctuation component of the interference intensity due to the first interference, the second interference and the third interference due to the half value width ⁇ a of the spectral response degree spectrum of the light detection element 9.
  • Example 3 the interference intensity caused by the first interference, the second interference, and the third interference due to the line width ⁇ b of the light (measured light) emitted from the object 2 to be measured (c).
  • the wavelength ⁇ of the light is the wavelength at which the fluctuation component of the interference intensity due to the interference between the plurality of multiple reflected lights is the largest, that is, the measurable wavelength range of the photometric device 1. The maximum wavelength of.
  • the measurable wavelength range of the photometric device 1 is 380 nm or more and 780 nm or less.
  • the distribution of the incident angle of the light incident on the variable optical attenuator 4 is in the incident angle range of 3 ° or more and 7 ° or less (incident angle range of 5 ° ⁇ 2 °) (see Table 2), and this incident The light intensity is uniform over the angular range (see FIG. 15).
  • the photometric device 1 is a spectroscope (polychromator), and the photodetector 8 includes a plurality of photodetectors 9.
  • the spectral response spectrum of the photodetecting element 9 corresponding to the maximum wavelength in the measurable wavelength range of the photometric device 1 has the shape of Gaussian having a peak wavelength of 780 nm.
  • the half-value width ⁇ a of the spectral response spectrum of the photodetection element 9 is 10 nm (see Table 2).
  • the spectrum of the light emitted from the object 2 to be measured (light to be measured) has the shape of a Gaussian having a peak wavelength of 780 nm.
  • the line width ⁇ b of the light emitted from the object 2 to be measured (light to be measured) is 0.01 nm (see Table 2).
  • the half-value width ⁇ a of the spectral response spectrum of the photodetection element 9 and the above (c) to be measured is minute and can be ignored.
  • OP 1220max is the maximum incidental light that is reflected twice by the first light attenuation filter (light attenuation filter 10) and passes through the second light attenuation filter without being reflected by the second light attenuation filter (light attenuation filter 20). It is the optical path length of the angular light.
  • the maximum incident angle light is the light having the maximum incident angle on the variable optical attenuator 4 among the light incident on the variable optical attenuator 4.
  • OP 1022max is the optical path length of the maximum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • OP 1220min is the optical path length of the minimum incident angle light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • the minimum incident angle light is light having the smallest incident angle on the variable optical attenuator 4 among the light incident on the variable optical attenuator 4.
  • OP 1022min is the optical path length of the minimum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5). ),
  • / ⁇ is 3.571.
  • / ⁇ is 3.368. Therefore, this embodiment satisfies the conditional expression (1).
  • the first interference (light reflected twice by the first light attenuation filter (light attenuation filter 10) and light reflected twice by the second light attenuation filter (light attenuation filter 20)). It is possible to reduce the fluctuation component of the interference intensity due to the interference between the two.
  • the first interference due to the first interference when the incident angle range of the light to be measured incident on the variable optical attenuator 4 is 3 ° or more and 7 ° or less (5 ° ⁇ 2 °).
  • the variation in the relative interference intensity is smaller than the variation in the relative interference intensity caused by the first interference when the incident angle of the light to be measured incident on the variable optical attenuator 4 is 5 °.
  • the relative interference intensity is the interference intensity standardized by the reference intensity of the light transmitted through the light attenuation filters 10 and 20 without being reflected by the light attenuation filters 10 and 20, and the reference intensity is the reference intensity. Is obtained by converting to zero relative intensity.
  • the reason why the fluctuation component of the interference intensity due to the first interference is reduced by the distribution of the incident angle of the light to be measured incident on the variable optical attenuator 4 is as follows.
  • the interference waveform in FIG. 16 shifts laterally.
  • the interference waveform of FIG. 17 is averaged by adding a plurality of interference waveforms of FIG. 16 laterally shifted by different amounts according to each of the incident angles of the light to be measured incident on the variable optical attenuator 4. It is a waveform. Therefore, when the incident angle range of the light to be measured incident on the variable optical attenuator 4 is 3 ° or more and 7 ° or less (5 ° ⁇ 2 °), the fluctuation of the interference intensity due to the first interference is variable. It is smaller than the fluctuation of the interference intensity caused by the first interference when the incident angle of the light to be measured incident on the optical attenuator 4 is 5 °.
  • the left side of the conditional equation (1) is between the case where the incident angle of the measured light incident on the variable optical attenuator 4 is the maximum and the case where the incident angle of the measured light incident on the variable optical attenuator 4 is the minimum. 16 shows how many times the period of the interference waveform is shifted by the interference waveform. If the conditional equation (1) is satisfied, a high averaging effect can be obtained, and the first interference (light reflected twice by the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20)) can be obtained. ), It is possible to reduce the fluctuation of the interference intensity due to the interference with the light reflected twice.
  • the variation is 0.26%.
  • the measured value variation of the photometric device 1 is the relative interference intensity of light having a wavelength of 780 nm at a relative tilt angle ⁇ of 0.0 ° and the relative interference of light having a wavelength of 780 nm at a relative tilt angle ⁇ of 0.1 °. Defined as the difference between intensity. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the fluctuation of the interference intensity due to the first interference is reduced, and the measured light is accurate. Can be measured well.
  • OP 1420max is the maximum incidental light that is reflected four times by the first light attenuation filter (light attenuation filter 10) and passes through the second light attenuation filter without being reflected by the second light attenuation filter (light attenuation filter 20). It is the optical path length of the angular light.
  • OP 1022max is the optical path length of the maximum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • OP 1420min is the optical path length of the minimum incident angle light that is reflected four times by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1022min is the optical path length of the minimum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter.
  • OP 1024max is the maximum incidental value that passes through the first light attenuation filter without being reflected by the first light attenuation filter (light attenuation filter 10) and is reflected four times by the second light attenuation filter (light attenuation filter 20).
  • OP 1220max is the optical path length of the maximum incident angle light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • OP 1024min is the optical path length of the minimum incident angle light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected four times by the second light attenuation filter.
  • OP 1220min is the optical path length of the minimum incident angle light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • / ⁇ which is the left side of the conditional expression (4)
  • / ⁇ is 3.061.
  • / ⁇ is 2.797. Therefore, this embodiment satisfies the conditional expression (4).
  • the second interference (light reflected four times by the first light attenuation filter (light attenuation filter 10) and light reflected twice by the second light attenuation filter (light attenuation filter 20)). It is possible to reduce the fluctuation component of the interference intensity due to the interference between the two. From FIGS. 18 and 19, relative interference caused by the second interference when the incident angle range of the light to be measured incident on the variable optical attenuator 4 is 3 ° or more and 7 ° or less (5 ° ⁇ 2 °). The variation in intensity is smaller than the variation in relative interference intensity due to the second interference when the incident angle of the light to be measured incident on the variable optical attenuator 4 is 5 °.
  • the reason why the variation component of the interference intensity caused by the second interference is reduced by the distribution of the incident angle of the light to be measured incident on the variable optical attenuator 4 is that the variation of the interference intensity caused by the first interference is reduced. It is because of the averaging effect of the interference waveform as well as the reason why it is done.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) changes from 0.0 ° to 0.1 °.
  • the fluctuation of the measured value of the photometer 1 due to the second interference is -0.01%. Is. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the fluctuation of the interference intensity due to the second interference is reduced, and the measured light is accurate. Can be measured well.
  • the light reflected twice by the second interference (the first light attenuation filter (light attenuation filter 10) and the second light attenuation) are the same as when the conditional equation (4) is satisfied. It is possible to reduce the fluctuation component of the interference intensity caused by the filter (interference with the light reflected four times by the filter (light attenuation filter 20)). Specifically, the measured value of the photometric device 1 due to the second interference when the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes from 0.0 ° to 0.1 °. The variation is 0.00%. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the fluctuation of the interference intensity due to the second interference is reduced, and the measured light is accurate. Can be measured well.
  • OP 3240max is the maximum incidental light that is reflected twice by the third light attenuation filter (light attenuation filter 10) and passes through the fourth light attenuation filter without being reflected by the fourth light attenuation filter (light attenuation filter 20).
  • the OP 30G240max passes through the 3rd light attenuation filter and the 4th light attenuation filter without being reflected by the 3rd light attenuation filter and the 4th light attenuation filter, and has the 3rd light attenuation filter and the 4th light attenuation filter.
  • OP 3240min is the optical path length of the minimum incident angle light that is reflected twice by the third light attenuation filter and passes through the fourth light attenuation filter without being reflected by the fourth light attenuation filter.
  • the OP 30G240min passes through the third light attenuation filter and the fourth light attenuation filter without being reflected by the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20), and It is the optical path length of the minimum incident angle light reflected twice in the layer (for example, the air layer) between the third light attenuation filter and the fourth light attenuation filter.
  • OP 3042max is the optical path length of the maximum incident angle light that passes through the third light attenuation filter without being reflected by the third light attenuation filter and is reflected twice by the fourth light attenuation filter.
  • OP 3042min is the optical path length of the minimum incident angle light that passes through the third light attenuation filter without being reflected by the third light attenuation filter and is reflected twice by the fourth light attenuation filter.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 13).
  • / ⁇ which is the left side of the conditional expression (10)
  • / ⁇ is 40.774. Therefore, this embodiment satisfies the conditional expression (10).
  • the light reflected twice by the third interference (the third light attenuation filter (light attenuation filter 10), the third light attenuation filter, and the fourth light attenuation filter (light attenuation filter 20) are used. It is possible to reduce the variation component of the interference intensity due to the interference between the light reflected twice in the layer between them (for example, the air layer). From FIGS. 20 and 21, relative interference caused by the third interference when the incident angle range of the light to be measured incident on the variable optical attenuator 4 is 3 ° or more and 7 ° or less (5 ° ⁇ 2 °).
  • the variation in intensity is smaller than the variation in relative interference intensity due to the third interference when the incident angle of the light to be measured incident on the variable optical attenuator 4 is 5 °.
  • the reason why the variation component of the interference intensity caused by the third interference is reduced by the distribution of the incident angle of the light to be measured incident on the variable optical attenuator 4 is that the variation of the interference intensity caused by the first interference is reduced. It is because of the averaging effect of the interference waveform as well as the reason why it is done.
  • the relative tilt angle ⁇ between the third light attenuation filter (third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° to 0.
  • Third interference when changing to 1 ° (light reflected twice by the third light attenuation filter and reflected twice by the layer between the third light attenuation filter and the fourth light attenuation filter (eg, the air layer)
  • the variation in the measured value of the photometric device 1 due to (interference with the light) is 0.01%. Therefore, the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes slightly. Even so, the fluctuation of the interference intensity caused by the third interference is reduced, and the light to be measured can be measured with high accuracy.
  • the light reflected twice by the third interference (the fourth light attenuation filter (light attenuation filter 20) and the third light attenuation) are the same as in the case where the conditional expression (10) is satisfied. It is possible to reduce the variation component of the interference intensity due to the interference between the light reflected twice by the layer (for example, the air layer) between the filter (light attenuation filter 10) and the fourth light attenuation filter). .. Specifically, the measured value of the photometric device 1 due to the third interference when the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes from 0.0 ° to 0.1 °. The variation is 0.00%. Therefore, even if the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes slightly, the fluctuation of the interference intensity due to the third interference is reduced, and the measured light is accurate. Can be measured well.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is 0.26%. If the absolute value of the measured value fluctuation of the photometric device 1 is within 5%, the light to be measured can be measured accurately. It is more preferable that the absolute value of the measured value fluctuation of the photometric device 1 is within 1%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 1%, the light to be measured can be measured accurately.
  • the photometric device 1 of the present embodiment is the same as the photometric device 1 of the first embodiment, but is mainly different in the following points. There is no distribution of the incident angle of the light incident on the variable optical attenuator 4, and the incident angle of the light on the variable optical attenuator 4 is 5 ° (see Table 3).
  • the full width at half maximum ⁇ a of the spectral response spectrum of the photodetection element 9 is 3 nm (see Table 3 and FIG. 22).
  • the line width ⁇ b of the light emitted from the object 2 to be measured (light to be measured) is 300 nm (see Table 3).
  • the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9 is sufficiently smaller than the line width ⁇ b of the light (measured light) emitted from the object 2 to be measured, interference between a plurality of multiple reflected lights.
  • the reduction of the fluctuation component of the interference intensity due to the above (b) is the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9 and the above (c) the light emitted from the object 2 to be measured (light to be measured).
  • the line width ⁇ b it depends on the half-value width ⁇ a of the spectral response degree spectrum of the above (b) light detection element 9.
  • a plurality of (a) a plurality of incident angles of the light to be measured incident on the variable optical attenuator 4 are distributed.
  • the OP 1220 is for light that is reflected twice by the first light attenuation filter (light attenuation filter 10) and passes through the second light attenuation filter without being reflected by the second light attenuation filter (light attenuation filter 20).
  • Optical path length see FIG. 5
  • OP 1022 passes through the first light attenuation filter without being reflected by the first light attenuation filter (light attenuation filter 10), and is reflected twice by the second light attenuation filter (light attenuation filter 20).
  • Optical path length see FIG. 6).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • OPD 12 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )), which is the left side of the conditional expression (2) is 5.236.
  • OPD 12 ⁇ (1) which is the left side of the conditional expression (2).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 5.237. Therefore, this embodiment satisfies the conditional expression (2).
  • the first interference (light reflected twice by the first light attenuation filter (light attenuation filter 10) and light reflected twice by the second light attenuation filter (light attenuation filter 20)). It is possible to reduce the fluctuation component of the interference intensity due to the interference between the two.
  • the measured value measured by the photodetector 8 is the product of the spectrum of the relative interference intensity due to the first interference (see FIG. 16) and the spectral response spectrum of the photodetector 9 (see FIG. 22). Given in.
  • the left side of the conditional equation (2) shows how many cycles the interference waveform shown in FIG. 16 is included in the half width ⁇ a of the spectral response spectrum of the photodetection element 9 shown in FIG. 22. If the conditional expression (2) is satisfied, a high averaging effect of the interference waveform can be obtained, and the fluctuation of the interference intensity due to the first interference can be reduced.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) changes from 0.0 ° to 0.1 °.
  • the fluctuation of the measured value of the photometric device 1 due to the first interference is 0.00%. be. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the fluctuation of the interference intensity due to the first interference is reduced, and the measured light is accurate. Can be measured well.
  • the OP 1420 is for light that is reflected four times by the first light attenuation filter (light attenuation filter 10) and passes through the second light attenuation filter without being reflected by the second light attenuation filter (light attenuation filter 20).
  • Optical path length (see FIGS. 7 and 9).
  • OP 1022 is the optical path length of the light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter (see FIGS. 7 and 9). ).
  • OP 1024 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected four times by the second light attenuation filter (see FIGS. 8 and 10). ).
  • OP 1220 is the optical path length of light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter (see FIGS. 8 and 10). ).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • the OPD 21 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )) on the left side of the conditional expression (6) is 4.488.
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 4.489.
  • this embodiment satisfies the conditional expression (6).
  • OPD 21 ⁇ (1) which is the left side of the conditional equation (7). / ⁇ -1 / ( ⁇ + ⁇ a )) is 20.194.
  • OPD 21 ⁇ (1) which is the left side of the conditional expression (7). / ⁇ -1 / ( ⁇ + ⁇ a )) is 20.196. Therefore, this embodiment satisfies the conditional expression (7).
  • the second interference (light reflected twice by the first light attenuation filter (light attenuation filter 10) and light reflected twice by the second light attenuation filter (light attenuation filter 20)). It is possible to reduce the fluctuation component of the interference intensity due to the interference between the two.
  • the measured value measured by the photodetector 8 is the product of the spectrum of the relative interference intensity due to the second interference (see FIG. 18) and the spectral response spectrum of the photodetector 9 (see FIG. 22). Given in.
  • the left side of the conditional equation (6) shows how many cycles the interference waveform shown in FIG. 18 is included in the half-value width ⁇ a of the spectral response spectrum of the photodetection element 9. If the conditional expression (6) is satisfied, a high averaging effect of the interference waveform can be obtained, and the fluctuation of the interference intensity due to the second interference can be reduced.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) changes from 0.0 ° to 0.1 °.
  • the fluctuation of the measured value of the photometric device 1 due to the second interference of the above is 0.00%. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the second interference (light reflected twice by the first light attenuation filter and second light attenuation) The variation in the interference intensity due to the interference between the light reflected twice by the filter) is reduced, and the light to be measured can be measured accurately.
  • the light reflected twice by the second interference (the first light attenuation filter (light attenuation filter 10) and the second light attenuation) are the same as when the conditional equation (6) is satisfied. It is possible to reduce the fluctuation component of the interference intensity caused by the filter (interference with the light reflected four times by the filter (light attenuation filter 20)). As a result, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the interference intensity due to the second interference hardly changes.
  • the variation is 0.00%. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the fluctuation of the interference intensity due to the second interference is reduced, and the measured light is accurate. Can be measured well.
  • the OP 3240 is for light that is reflected twice by the third light attenuation filter (light attenuation filter 10) and passes through the fourth light attenuation filter without being reflected by the fourth light attenuation filter (light attenuation filter 20).
  • the OP 30G 240 passes through the 3rd light attenuation filter and the 4th light attenuation filter without being reflected by the 3rd light attenuation filter and the 4th light attenuation filter, and has the 3rd light attenuation filter and the 4th light attenuation filter.
  • the length of the light path that is reflected twice in the layer between eg, the air layer).
  • OP 3042 is an optical path length of light that passes through the third light attenuation filter without being reflected by the third light attenuation filter and is reflected twice by the fourth light attenuation filter.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 11).
  • OPD g1 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )) which is the left side of the conditional expression (12) is 19.637.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (12).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 19.634.
  • this embodiment satisfies the conditional expression (12).
  • OPD g2 ⁇ (1) which is the left side of the conditional equation (13).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 14.402.
  • OPD g2 ⁇ (1) which is the left side of the conditional expression (13).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 14.398. Therefore, this embodiment satisfies the conditional expression (13).
  • the light reflected twice by the third interference (the third light attenuation filter (light attenuation filter 10), the third light attenuation filter (light attenuation filter 10), and the fourth light attenuation filter) are satisfied. It is possible to reduce the fluctuation component of the interference intensity due to the interference between the light reflected twice by the layer (for example, the air layer) between the (light attenuation filter 20) and the light).
  • the measured value measured by the photodetector 8 is the product of the spectrum of the relative interference intensity due to the third interference (see FIG. 20) and the spectral response spectrum of the photodetector 9 (see FIG. 22). Given in.
  • the left side of the conditional equation (12) shows how many cycles the interference waveform shown in FIG. 20 is included in the half-value width ⁇ a of the spectral response spectrum of the photodetection element 9. If the conditional expression (12) is satisfied, a high averaging effect of the interference waveform can be obtained, and the fluctuation of the interference intensity due to the third interference can be reduced.
  • the relative tilt angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) changes from 0.0 ° to 0.1 °.
  • the variation in the measured value of the photometric device 1 due to the third interference of the above is 0.00%. Therefore, even if the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes slightly, the third interference (light reflected twice by the third light attenuation filter and the third light).
  • the variation in interference intensity due to the interference between the light reflected twice by the layer between the attenuation filter and the fourth light attenuation filter is reduced, and the measured light is measured accurately. Can be done.
  • the light reflected twice by the third interference (the fourth light attenuation filter (light attenuation filter 20) and the third light attenuation) are the same as when the conditional expression (12) is satisfied. It is possible to reduce the variation component of the interference intensity due to the interference between the light reflected twice by the layer (for example, the air layer) between the filter (light attenuation filter 10) and the fourth light attenuation filter). .. As a result, even if the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes slightly, the interference intensity due to the third interference hardly changes.
  • the variation is 0.00%. Therefore, even if the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes slightly, the fluctuation of the interference intensity due to the third interference is reduced, and the measured light is accurate. Can be measured well.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is 0.00%. If the absolute value of the measured value fluctuation of the photometric device 1 is within 5%, the light to be measured can be measured accurately. It is more preferable that the absolute value of the measured value fluctuation of the photometric device 1 is within 1%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 1%, the light to be measured can be measured accurately.
  • the photometric device 1 of the present embodiment is the same as the photometric device 1 of the first embodiment, but is mainly different in the following points. There is no distribution of the incident angle of the light incident on the variable optical attenuator 4, and the incident angle of the light on the variable optical attenuator 4 is 5 ° (see Table 4).
  • the full width at half maximum ⁇ a of the spectral response spectrum of the photodetection element 9 is 20 nm (see Table 4).
  • the line width ⁇ b of the light emitted from the object 2 to be measured (light to be measured) is 1 nm (see Table 4 and FIG. 23).
  • the line width ⁇ b of the light emitted from the object 2 to be measured is sufficiently smaller than the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, interference between a plurality of multiple reflected lights.
  • the reduction of the fluctuation component of the interference intensity due to the above (b) is the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9 and the above (c) the light emitted from the object 2 to be measured (light to be measured).
  • the line width ⁇ b it depends on the line width ⁇ b of the light (measured light) emitted from the above (c) object 2 to be measured.
  • is the wavelength of light included in the measurable wavelength range of the photometric device 1.
  • ⁇ b is the line width of the light emitted from the object 2 to be measured (light to be measured).
  • the OP 1220 is for light that is reflected twice by the first light attenuation filter (light attenuation filter 10) and passes through the second light attenuation filter without being reflected by the second light attenuation filter (light attenuation filter 20).
  • Optical path length (see FIG. 5).
  • OP 1022 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter (see FIG. 5).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • the OPD 13 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )) on the left side of the conditional expression (3) is 1.750.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG. 6)
  • the left side of the conditional expression (3) is OPD 13 ⁇ (1).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) Is 1.750. Therefore, this embodiment satisfies the conditional expression (3).
  • the first interference (light reflected twice by the first light attenuation filter (light attenuation filter 10) and light reflected twice by the second light attenuation filter (light attenuation filter 20)). It is possible to reduce the fluctuation component of the interference intensity due to the interference between the two.
  • the measured values measured by the light detector 8 are the spectrum of the relative interference intensity due to the first interference (see FIG. 16) and the spectrum of the light emitted from the object 2 to be measured (light to be measured) (FIG. 16). 23) is given as a product. On the left side of the conditional equation (3), how many cycles of the interference waveform shown in FIG.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) changes from 0.0 ° to 0.1 °.
  • the fluctuation of the measured value of the photometric device 1 due to the first interference is 0.00%. be. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the fluctuation of the interference intensity due to the first interference is reduced, and the measured light is accurate. Can be measured well.
  • the OP 1420 is for light that is reflected four times by the first light attenuation filter (light attenuation filter 10) and passes through the second light attenuation filter without being reflected by the second light attenuation filter (light attenuation filter 20).
  • Optical path length (see FIGS. 7 and 9).
  • OP 1022 is the optical path length of the light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected twice by the second light attenuation filter (see FIGS. 7 and 9). ).
  • OP 1024 is an optical path length of light that passes through the first light attenuation filter without being reflected by the first light attenuation filter and is reflected four times by the second light attenuation filter (see FIGS. 8 and 10). ).
  • OP 1220 is the optical path length of light that is reflected twice by the first light attenuation filter and passes through the second light attenuation filter without being reflected by the second light attenuation filter (see FIGS. 8 and 10). ).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • OPD 21 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )) which is the left side of the conditional expression (8), is 1.500.
  • the left side of the conditional equation (8) is OPD 21 ⁇ (1).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 1.500. Therefore, this embodiment satisfies the conditional expression (8).
  • the second interference (light reflected twice by the first light attenuation filter (light attenuation filter 10) and light reflected twice by the second light attenuation filter (light attenuation filter 20)). It is possible to reduce the fluctuation component of the interference intensity due to the interference between the two.
  • the measured values measured by the light detector 8 are the spectrum of the relative interference intensity due to the second interference (see FIG. 18) and the spectrum of the light emitted from the object 2 to be measured (light to be measured) (FIG. 18). 23) is given as a product.
  • the conditional equation (8) how many cycles of the interference waveform shown in FIG.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) changes from 0.0 ° to 0.1 °.
  • the fluctuation of the measured value of the photometric device 1 due to the second interference of the above is 0.00%. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the second interference (light reflected twice by the first light attenuation filter and second light attenuation) The variation in the interference intensity due to the interference between the light reflected twice by the filter) is reduced, and the light to be measured can be measured accurately.
  • the light reflected twice by the second interference (the first light attenuation filter (light attenuation filter 10) and the second light attenuation) are the same as when the conditional equation (8) is satisfied. It is possible to reduce the fluctuation component of the interference intensity caused by the filter (interference with the light reflected four times by the filter (light attenuation filter 20)). As a result, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the interference intensity due to the second interference hardly changes.
  • the variation is 0.00%. Therefore, even if the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter changes slightly, the fluctuation of the interference intensity due to the second interference is reduced, and the measured light is accurate. Can be measured well.
  • the OP 3240 is for light that is reflected twice by the third light attenuation filter (light attenuation filter 10) and passes through the fourth light attenuation filter without being reflected by the fourth light attenuation filter (light attenuation filter 20).
  • the OP 30G 240 passes through the 3rd light attenuation filter and the 4th light attenuation filter without being reflected by the 3rd light attenuation filter and the 4th light attenuation filter, and has the 3rd light attenuation filter and the 4th light attenuation filter.
  • the length of the light path that is reflected twice in the layer between eg, the air layer).
  • OP 3042 is an optical path length of light that passes through the third light attenuation filter without being reflected by the third light attenuation filter and is reflected twice by the fourth light attenuation filter.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 11).
  • the OPD g1 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )) on the left side of the conditional expression (14) is 6.562.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (14).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 6.562.
  • this embodiment satisfies the conditional expression (14).
  • OPD g1 ⁇ (1) which is the left side of the conditional equation (15).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 4.813.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (15).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 4.812. Therefore, this embodiment satisfies the conditional expression (15).
  • the light reflected twice by the third interference (the third light attenuation filter (light attenuation filter 10), the third light attenuation filter and the fourth light attenuation filter (light attenuation filter 20)). It is possible to reduce the variation component of the interference intensity due to the interference between the light and the light reflected twice in the layer between the and (for example, the air layer).
  • the measured values measured by the light detector 8 are the spectrum of the relative interference intensity due to the third interference (see FIG. 20) and the spectrum of the light emitted from the object 2 to be measured (light to be measured) (FIG. 20). 23) is given as a product. On the left side of the conditional equation (14), how many cycles of the interference waveform shown in FIG.
  • the relative tilt angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) changes from 0.0 ° to 0.1 °.
  • the variation in the measured value of the photometric device 1 due to the third interference of the above is 0.00%. Therefore, even if the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes slightly, the third interference (light reflected twice by the third light attenuation filter and the third light).
  • the variation in interference intensity due to the interference between the light reflected twice by the layer between the attenuation filter and the fourth light attenuation filter is reduced, and the measured light is measured accurately. Can be done.
  • the light reflected twice by the third interference (the fourth light attenuation filter (light attenuation filter 20) and the third light attenuation) are the same as when the conditional expression (14) is satisfied. It is possible to reduce the variation component of the interference intensity due to the interference between the light reflected twice by the layer (for example, the air layer) between the filter (light attenuation filter 10) and the fourth light attenuation filter). .. As a result, even if the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes slightly, the interference intensity due to the third interference hardly changes.
  • the variation is 0.00%. Therefore, even if the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter changes slightly, the fluctuation of the interference intensity due to the third interference is reduced, and the measured light is accurate. Can be measured well.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is 0.00%. If the absolute value of the measured value fluctuation of the photometric device 1 is within 5%, the light to be measured can be measured accurately. It is more preferable that the absolute value of the measured value fluctuation of the photometric device 1 is within 1%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 1%, the light to be measured can be measured accurately.
  • Examples 4 to 6 will be described with reference to FIGS. 1 to 23.
  • the photometric devices 1 of Examples 4 to 6 have the same configurations as the photometric devices 1 of Examples 1 to 3, but are mainly different in the following points.
  • variable optical attenuator 4 of Examples 4 to 6 are as shown in Table 5. Therefore, the optical path length of the transparent substrate 11 is different from the optical path length of the transparent substrate 21.
  • Example 4 The distribution of the incident angle of the light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (light to be measured).
  • the line width ⁇ b is from the distribution of the incident angle of the light incident on the variable light attenuator 4 of Example 1, the half-value width ⁇ a of the spectral response spectrum of the light detection element 9, and the object 2 to be measured. It is the same as the line width ⁇ b of the emitted light (light to be measured) (see Table 2).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • / ⁇ which is the left side of the conditional expression (1), is 5.101.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • / ⁇ which is the left side of the conditional expression (4), is 0.000.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is ⁇ 0.20%.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 13).
  • / ⁇ which is the left side of the conditional expression (10)
  • the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter is 0.1 ° (see FIG.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is -2.24%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • the absolute value of the measured value fluctuation of the photometric device 1 of the present embodiment is larger than the absolute value of the measured value fluctuation of the photometric device 1 of the first embodiment. Therefore, the photometric device 1 of the first embodiment is more desirable than the photometric device 1 of the present embodiment.
  • ⁇ Example 5> The angle of light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the line width of the light (measured light) emitted from the object 2 to be measured.
  • ⁇ b is the angle of incidence of light on the variable light attenuator 4 of Example 2, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (subject). It is the same as the line width ⁇ b of the measurement light) (see Table 3).
  • the first interference between the plurality of multiple reflected lights due to the half-value width ⁇ a of the spectral response spectrum of the photodetection element 9 is the second interference.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • the OPD 12 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )) on the left side of the conditional expression (2) is 7.479.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • OPD 12 ⁇ (1) which is the left side of the conditional expression (2).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 7.480. Therefore, this embodiment satisfies the conditional expression (2).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is 0.00%.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 11).
  • OPD g1 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )) which is the left side of the conditional expression (12) is 7.397.
  • the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter is 0.1 ° (see FIG.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (12).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 7.395. Therefore, this embodiment satisfies the conditional expression (12).
  • the fluctuation of the measured value of the photometric device 1 due to the interference between the light reflected twice by the layer (for example, the air layer) between the third light attenuation filter and the fourth light attenuation filter) is 0.00%. Is.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is 1.16%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • the absolute value of the measured value fluctuation of the photometric device 1 of the present embodiment is larger than the absolute value of the measured value fluctuation of the photometric device 1 of the second embodiment. Therefore, the photometric device 1 of the second embodiment is more desirable than the photometric device 1 of the present embodiment.
  • ⁇ Example 6> The angle of light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the line width of the light (measured light) emitted from the object 2 to be measured.
  • ⁇ b is the angle of incidence of light on the variable light attenuator 4 of Example 3, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (subject). It is the same as the line width ⁇ b of the measurement light) (see Table 4).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the left side of the conditional expression (3) is OPD 13 ⁇ (1). / ⁇ -1 / ( ⁇ + ⁇ b )) is 2.500. Therefore, this embodiment satisfies the conditional expression (3).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is 0.00%.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • the OPD 21 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )) on the left side of the conditional expression (8) is 0.000.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • OPD 21 ⁇ (1) which is the left side of the conditional expression (8).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 0.000. Therefore, this embodiment does not satisfy the conditional expression (8).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is ⁇ 0.20%.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative tilt angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 11).
  • the OPD g1 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )) on the left side of the conditional expression (14) is 2.472.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (14).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 2.471. Therefore, this embodiment satisfies the conditional expression (14).
  • the fluctuation of the measured value of the photometric device 1 due to the interference between the light reflected twice by the layer (for example, the air layer) between the third light attenuation filter and the fourth light attenuation filter) is 0.00%. Is.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is 2.10%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • the absolute value of the measured value fluctuation of the photometric device 1 of the present embodiment is larger than the absolute value of the measured value fluctuation of the photometric device 1 of the third embodiment. Therefore, the photometric device 1 of the third embodiment is more desirable than the photometric device 1 of the present embodiment.
  • Examples 7 to 9 will be described with reference to FIGS. 1 to 23.
  • the photometric devices 1 of Examples 7 to 9 have the same configurations as the photometric devices 1 of Examples 1 to 3, but are mainly different in the following points.
  • variable optical attenuator 4 of Examples 7 to 9 are as shown in Table 6. Therefore, the optical path length of the transparent substrate 11 is different from the optical path length of the transparent substrate 21.
  • Example 7 The distribution of the incident angle of the light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (light to be measured).
  • the line width ⁇ b is from the distribution of the incident angle of the light incident on the variable light attenuator 4 of Example 1, the half-value width ⁇ a of the spectral response spectrum of the light detection element 9, and the object 2 to be measured. It is the same as the line width ⁇ b of the emitted light (light to be measured) (see Table 2).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • / ⁇ which is the left side of the conditional expression (1), is 2.040.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • / ⁇ which is the left side of the conditional expression (4), is 6.112.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 13).
  • / ⁇ which is the left side of the conditional expression (10)
  • the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter is 0.1 ° (see FIG.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is -2.39%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • the absolute value of the measured value fluctuation of the photometric device 1 of the present embodiment is larger than the absolute value of the measured value fluctuation of the photometric device 1 of the first embodiment. Therefore, the photometric device 1 of the first embodiment is more desirable than the photometric device 1 of the present embodiment.
  • ⁇ Example 8> The angle of light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the line width of the light (measured light) emitted from the object 2 to be measured.
  • ⁇ b is the angle of incidence of light on the variable light attenuator 4 of Example 2, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (subject). It is the same as the line width ⁇ b of the measurement light) (see Table 3).
  • the first interference between the plurality of multiple reflected lights due to the half-value width ⁇ a of the spectral response spectrum of the photodetection element 9 is the second interference.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • the OPD 12 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )) on the left side of the conditional expression (2) is 2.992.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • OPD 12 ⁇ (1) which is the left side of the conditional expression (2).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 2.993. Therefore, this embodiment satisfies the conditional expression (2).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is 0.00%.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • the OPD 21 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )) on the left side of the conditional expression (6) is 8.975.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • OPD 21 ⁇ (1) which is the left side of the conditional expression (6).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 8.977. Therefore, this embodiment satisfies the conditional expression (6).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is 0.00%.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 11).
  • OPD g1 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )), which is the left side of the conditional expression (12) is 0.266.
  • the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter is 0.1 ° (see FIG.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (12).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 0.265. Therefore, this embodiment does not satisfy the conditional expression (12).
  • the fluctuation of the measured value of the photometric device 1 due to the interference between the light reflected twice by the layer between the third light attenuation filter and the fourth light attenuation filter is 2.74%. be.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is 2.74%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • the absolute value of the measured value fluctuation of the photometric device 1 of the present embodiment is larger than the absolute value of the measured value fluctuation of the photometric device 1 of the second embodiment. Therefore, the photometric device 1 of the second embodiment is more desirable than the photometric device 1 of the present embodiment.
  • ⁇ Example 9> The angle of light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the line width of the light (measured light) emitted from the object 2 to be measured.
  • ⁇ b is the angle of incidence of light on the variable light attenuator 4 of Example 3, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (subject). It is the same as the line width ⁇ b of the measurement light) (see Table 4).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the left side of the conditional expression (3) is OPD 13 ⁇ (1). / ⁇ -1 / ( ⁇ + ⁇ b )) is 1.000. Therefore, this embodiment satisfies the conditional expression (3).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is 0.01%.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • the OPD 21 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )) on the left side of the conditional expression (8) is 2.999.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • OPD 21 ⁇ (1) which is the left side of the conditional expression (8).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 3.000. Therefore, this embodiment satisfies the conditional expression (8).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is 0.00%.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 11).
  • the OPD g1 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )) on the left side of the conditional expression (14) is 0.089.
  • the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter is 0.1 ° (see FIG.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (14).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 0.088. Therefore, this embodiment does not satisfy the conditional expression (14).
  • the fluctuation of the measured value of the photometric device 1 due to the interference between the light reflected twice by the layer between the third light attenuation filter and the fourth light attenuation filter is 3.43%. be.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is 3.50%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • the absolute value of the measured value fluctuation of the photometric device 1 of the present embodiment is larger than the absolute value of the measured value fluctuation of the photometric device 1 of the third embodiment. Therefore, the photometric device 1 of the third embodiment is more desirable than the photometric device 1 of the present embodiment.
  • Examples 10 to 12 will be described with reference to FIGS. 1 to 23.
  • the photometric devices 1 of Examples 10 to 12 have the same configurations as those of the photometric devices 1 of Examples 1 to 3, but are mainly different in the following points.
  • variable optical attenuator 4 of Examples 10 to 12 are as shown in Table 7. Therefore, the optical path length of the transparent substrate 11 is different from the optical path length of the transparent substrate 21.
  • Example 10 The distribution of the incident angle of the light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (light to be measured).
  • the line width ⁇ b is from the distribution of the incident angle of the light incident on the variable light attenuator 4 of Example 1, the half-value width ⁇ a of the spectral response spectrum of the light detection element 9, and the object 2 to be measured. It is the same as the line width ⁇ b of the emitted light (light to be measured) (see Table 2).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • / ⁇ which is the left side of the conditional expression (1), is 5.101.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • / ⁇ which is the left side of the conditional expression (4), is 0.000.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is ⁇ 0.20%.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 13).
  • / ⁇ which is the left side of the conditional expression (10)
  • the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter is 0.1 ° (see FIG.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is ⁇ 0.21%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • ⁇ Example 11> The angle of light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the line width of the light (measured light) emitted from the object 2 to be measured.
  • ⁇ b is the angle of incidence of light on the variable light attenuator 4 of Example 2, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (subject). It is the same as the line width ⁇ b of the measurement light) (see Table 3).
  • the first interference between the plurality of multiple reflected lights due to the half-value width ⁇ a of the spectral response spectrum of the photodetection element 9 is the second interference.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • the OPD 12 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )) on the left side of the conditional expression (2) is 7.479.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • OPD 12 ⁇ (1) which is the left side of the conditional expression (2).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 7.480. Therefore, this embodiment satisfies the conditional expression (2).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is 0.00%.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • OPD 21 ⁇ (1) which is the left side of the conditional expression (6).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 0.001. Therefore, this embodiment does not satisfy the conditional expression (6).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is ⁇ 0.20%.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 11).
  • OPD g1 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ a )), which is the left side of the conditional expression (12) is 21.881.
  • the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter is 0.1 ° (see FIG.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (12).
  • / ⁇ -1 / ( ⁇ + ⁇ a )) is 21.878. Therefore, this embodiment satisfies the conditional expression (12).
  • the fluctuation of the measured value of the photometric device 1 due to the interference between the light reflected twice by the layer (for example, the air layer) between the third light attenuation filter and the fourth light attenuation filter) is 0.00%. Is.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is ⁇ 0.20%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • the absolute value of the measured value fluctuation of the photometric device 1 of the present embodiment is larger than the absolute value of the measured value fluctuation of the photometric device 1 of the second embodiment. Therefore, the photometric device 1 of the second embodiment is more desirable than the photometric device 1 of the present embodiment.
  • ⁇ Example 12> The angle of light incident on the variable light attenuator 4 of this embodiment, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the line width of the light (measured light) emitted from the object 2 to be measured.
  • ⁇ b is the angle of incidence of light on the variable light attenuator 4 of Example 3, the half-value width ⁇ a of the spectral response degree spectrum of the light detection element 9, and the light emitted from the object 2 to be measured (subject). It is the same as the line width ⁇ b of the measurement light) (see Table 4).
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 5).
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • the left side of the conditional expression (3) is OPD 13 ⁇ (1). / ⁇ -1 / ( ⁇ + ⁇ b )) is 2.500. Therefore, this embodiment satisfies the conditional expression (3).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is 0.00%.
  • the relative tilt angle ⁇ between the first light attenuation filter (light attenuation filter 10) and the second light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 7).
  • the OPD 21 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )) on the left side of the conditional expression (8) is 0.000.
  • the relative tilt angle ⁇ between the first light attenuation filter and the second light attenuation filter is 0.1 ° (see FIG.
  • OPD 21 ⁇ (1) which is the left side of the conditional expression (8).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 0.000. Therefore, this embodiment does not satisfy the conditional expression (8).
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected twice by the second light attenuation filter) is ⁇ 0.20%.
  • the variation in the measured value of the photometric device 1 due to the interference between the light and the light reflected four times by the second light attenuation filter) is 0.00%.
  • the relative inclination angle ⁇ between the third light attenuation filter (light attenuation filter 10) and the fourth light attenuation filter (light attenuation filter 20) is 0.0 ° (see FIG. 11).
  • OPD g1 ⁇ (1 / ⁇ -1 / ( ⁇ + ⁇ b )), which is the left side of the conditional expression (14), is 7312.
  • the relative tilt angle ⁇ between the third light attenuation filter and the fourth light attenuation filter is 0.1 ° (see FIG.
  • OPD g1 ⁇ (1) which is the left side of the conditional expression (14).
  • / ⁇ -1 / ( ⁇ + ⁇ b )) is 7.311. Therefore, this embodiment satisfies the conditional expression (14).
  • the fluctuation of the measured value of the photometric device 1 due to the interference between the light reflected twice by the layer (for example, the air layer) between the third light attenuation filter and the fourth light attenuation filter) is 0.00%. Is.
  • the measured value variation of the photometric device 1 of this embodiment is the sum of the measured value variation caused by the first interference, the measured value variation caused by the second interference, and the measured value variation caused by the third interference. Given.
  • the measured value variation of the photometric device 1 of this embodiment is ⁇ 0.20%. Since the absolute value of the measured value fluctuation of the photometric device 1 of this embodiment is within 5%, the light to be measured can be measured accurately.
  • the absolute value of the measured value fluctuation of the photometric device 1 of the present embodiment is larger than the absolute value of the measured value fluctuation of the photometric device 1 of the third embodiment. Therefore, the photometric device 1 of the third embodiment is more desirable than the photometric device 1 of the present embodiment.
  • the optical path length of the transparent substrate 11 may be different from the optical path length of the transparent substrate 21 by making the refractive index n 1 of the transparent substrate 11 different from the refractive index n 2 of the transparent substrate 21.
  • the photometric device 1 of the embodiment includes two light attenuation filters, but may include three or more light attenuation filters. Any two light attenuation filters among the plurality of light attenuation filters included in the photometric device 1 may satisfy the conditional expression shown in the embodiment.
  • the photometric device 1 of the embodiment can also be applied to a photometric device such as a colorimeter that directly reads the stimulus value.
  • a photometric device such as a colorimeter that directly reads the stimulus value.
  • the width of the spectral response spectrum of the photodetection element 9 is as large as about 50 nm or more, but if the conditions shown in the embodiment are satisfied, the photodetection element 9 has a compact size while realizing a wide dynamic range. It is possible to provide a photometric device 1 capable of measuring light with higher accuracy.
  • the photometric device 1 of the embodiment is not limited to the light attenuation filter, and may include an interference filter having characteristics different from the light attenuation filter, such as a shortcut filter, a long cut filter, a bandpass filter, and the like.
  • the photometric device 1 provided with an interference filter having characteristics different from those of the light attenuation filter enables optical measurement with different characteristics.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

測光装置(1)は、可変光減衰器(4)を備える。可変光減衰器(4)は、複数の光減衰フィルタと、駆動装置(5)とを含む。複数の光減衰フィルタは、各々、干渉多層膜と、透明基板とを含む。複数の光減衰フィルタのうちの任意の二つの組み合わせを、第1光減衰フィルタ(光減衰フィルタ(10))及び第2光減衰フィルタ(光減衰フィルタ(20))とする。第1光減衰フィルタの第1透明基板(透明基板(11))の第1光路長は、第2光減衰フィルタの第2透明基板(透明基板(21))の第2光路長と異なる。

Description

測光装置
 本開示は、測光装置に関する。
 特開平8-15012号公報(特許文献1)は、分光器と、光減衰手段と、光検出器とを備える光スペクトル測定装置を開示している。光減衰手段は、回転板と、回転板に取り付けられる複数のNDフィルタと、回転板を回転させるモータとを含む。複数のNDフィルタは、互いに異なる光減衰率を有している。光スペクトル測定装置へ入射する光の強度に応じて、複数のNDフィルタのうち最も適切な光減衰率を有するNDフィルタを、当該光の光路に挿入する。こうして、光検出器が飽和することを防ぎ、光検出器に入射する当該光の強度を光検出器のダイナミックレンジ内としている。
特開平8-15012号公報
 しかし、特許文献1に開示された光スペクトル測定装置に含まれる光減衰手段では、回転板に取り付けられる複数のNDフィルタとモータを用いて回転させているため、光減衰手段のサイズが大きくなる。本開示はこのような課題に鑑みてなされたものであって、その目的は、よりコンパクトなサイズを有し、かつ、より高い精度で光を測定することができる測光装置を提供することである。
 本開示の測光装置は、可変光減衰器と、光検出器とを備える。可変光減衰器は、複数の光減衰フィルタと、駆動装置とを含む。光検出器は、可変光減衰器を通過した光を受光する。駆動装置は、複数の光減衰フィルタを、互いに独立して、光の光軸に挿入すること及び光軸から退避させることができる。複数の光減衰フィルタは、光軸に沿う方向において互いに異なる位置に配置されている。複数の光減衰フィルタの各々は、干渉多層膜と、干渉多層膜を支持する透明基板とを含む。複数の光減衰フィルタのうちの任意の二つの組み合わせを、第1光減衰フィルタ及び第2光減衰フィルタとする。光軸に沿う方向において、第2光減衰フィルタは第1光減衰フィルタより光検出器に近位している。第1光減衰フィルタは、干渉多層膜としての第1干渉多層膜と、透明基板としての第1透明基板とを含む。第2光減衰フィルタは、干渉多層膜としての第2干渉多層膜と、透明基板としての第2透明基板とを含む。第1透明基板の第1光路長は、第2透明基板の第2光路長と異なっている。
 好ましくは、光は可変光減衰器への入射角の分布を有しており、かつ、測光装置は以下の条件式(1)を満足する。
|OPDθmax1-OPDθmin1|/λ>0.5 …(1)
ただし、OPDθmax1=(OP1220max-OP1022max)である。OPDθmin1=(OP1220min-OP1022min)である。λは、測光装置の測定可能波長範囲内に含まれる光の波長である。OP1220maxは、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最大入射角光の光路長である。最大入射角光は、光のうち可変光減衰器への入射角が最大である光である。OP1022maxは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する最大入射角光の光路長である。OP1220minは、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最小入射角光の光路長である。最小入射角光は、光のうち可変光減衰器への入射角が最小である光である。OP1022minは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する最小入射角光の光路長である。
 好ましくは、測光装置は、分光情報を測定可能な分光器である。
 好ましくは、測光装置は、以下の条件式(2)を満足する。
OPD12×(1/λ-1/(λ+Δλa))>0.5 …(2)
ただし、OPD12=|OP1220-OP1022|である。λは、測光装置の測定可能波長範囲内に含まれる光の波長である。Δλaは、光検出器に含まれる光検出素子の分光応答度スペクトルの半値幅である。OP1220は、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する光の光路長である。OP1022は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する光の光路長である。
 好ましくは、測光装置は、以下の条件式(3)を満足する。
OPD13×(1/λ-1/(λ+Δλb))>0.5 …(3)
ただし、OPD13=|OP1220-OP1022|である。λは、測光装置の測定可能波長範囲内に含まれる光の波長である。Δλbは、被測定物から放射される光の線幅である。OP1220は、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する光の光路長である。OP1022は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する光の光路長である。
 好ましくは、第1透明基板の第1厚さは、第2透明基板の第2厚さと異なっている。
 好ましくは、第1透明基板の第1屈折率は、第2透明基板の第2屈折率と異なっている。
 好ましくは、複数の光減衰フィルタの各々の干渉多層膜は、同じ材料で形成されており、複数の光減衰フィルタの各々の透明基板は、同じ材料で形成されている。
 好ましくは、複数の光減衰フィルタは、各々、光軸に対して同じ角度で配置されている。
 好ましくは、測光装置は、複数の光減衰フィルタの入射側に配置されているコリメートレンズをさらに備える。
 好ましくは、測光装置は、以下の条件式(4)及び(5)を満足する。
|OPDθmax2-OPDθmin2|/λ>0.5 …(4)
|OPDθmax3-OPDθmin3|/λ>0.5 …(5)
ただし、OPDθmax2=(OP1420max-OP1022max)である。OPDθmin2=(OP1420min-OP1022min)である。OPDθmax3=(OP1024max-OP1220max)である。OPDθmin3=(OP1024min-OP1220min)である。OP1420maxは、第1光減衰フィル
タで4回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最大入射角光の光路長である。OP1022maxは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する最大入射角光の光路長である。OP1420minは、第1光減衰フィルタで4回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最小入射角光の光路長である。OP1022minは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する、最小入射角光の光路長である。OP1024maxは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで4回反射する最大入射角光の光路長である。OP1220maxは、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最大入射角光の光路長である。OP1024minは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで4回反射する最小入射角光の光路長である。OP1220minは、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最小入射角光の光路長である。
 好ましくは、測光装置は、以下の条件式(6)及び(7)を満足する。
OPD21×(1/λ-1/(λ+Δλa))>0.5 …(6)
OPD22×(1/λ-1/(λ+Δλa))>0.5 …(7)
ただし、OPD21=|OP1420-OP1022|である。OPD22=|OP1024-OP1220|である。OP1420は、第1光減衰フィルタで4回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する光の光路長である。OP1022は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する光の光路長である。OP1024は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで4回反射する光の光路長である。OP1220は、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する光の光路長である。
 好ましくは、測光装置は、以下の条件式(8)及び(9)を満足する。
OPD21×(1/λ-1/(λ+Δλb))>0.5 …(8)
OPD22×(1/λ-1/(λ+Δλb))>0.5 …(9)
ただし、OPD21=|OP1420-OP1022|である。OPD22=|OP1024-OP1220|である。OP1420は、第1光減衰フィルタで4回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する光の光路長である。OP1022は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する光の光路長である。OP1024は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで4回反射する光の光路長である。OP1220は、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する光の光路長である。
 好ましくは、複数の光減衰フィルタは、第1光減衰フィルタとしての第3光減衰フィルタと第2光減衰フィルタとしての第4光減衰フィルタとを含む。第3光減衰フィルタと第4光減衰フィルタとは、複数の光減衰フィルタのうち互いに隣り合う任意の二つの光減衰フィルタである。測光装置は、以下の条件式(10)及び(11)を満足する。
|OPDθmax4-OPDθmin4|/λ>0.5 …(10)
|OPDθmax5-OPDθmin5|/λ>0.5 …(11)
ただし、OPDθmax4=(OP3240max-OP30G240max)である。OPDθmin4=(OP3240min-OP30G240min)である。OPDθmax5=(OP3042max-OP30G240max)である。OPDθmin5=(OP3042min-OP30G240min)である。OP3240maxは、第3光減衰フィルタで2回反射し、かつ、第4光減衰フィルタで反射されることなく第4光減衰フィルタを通過する最大入射角光の光路長である。OP30G240maxは、第3光減衰フィルタ及び第4光減衰フィルタで反射されることなく第3光減衰フィルタ及び第4光減衰フィルタを通過し、かつ、第3光減衰フィルタと第4光減衰フィルタとの間の層で2回反射する最大入射角光の光路長である。OP3240minは、第3光減衰フィルタで2回反射し、かつ、第4光減衰フィルタで反射されることなく第4光減衰フィルタを通過する最小入射角光の光路長である。OP30G240minは、第3光減衰フィルタ及び第4光減衰フィルタで反射されることなく第3光減衰フィルタ及び第4光減衰フィルタを通過し、かつ、第3光減衰フィルタと第4光減衰フィルタとの間の層で2回反射する最小入射角光の光路長である。OP3042maxは、第3光減衰フィルタで反射されることなく第3光減衰フィルタを通過し、かつ、第4光減衰フィルタで2回反射する最大入射角光の光路長である。OP3042minは、第3光減衰フィルタで反射されることなく第3光減衰フィルタを通過し、かつ、第4光減衰フィルタで2回反射する最小入射角光の光路長である。
 好ましくは、複数の光減衰フィルタは、第1光減衰フィルタとしての第3光減衰フィルタと第2光減衰フィルタとしての第4光減衰フィルタとを含む。第3光減衰フィルタと第4光減衰フィルタとは、複数の光減衰フィルタのうち互いに隣り合う任意の二つの光減衰フィルタである。測光装置は、以下の条件式(12)及び(13)を満足する。
OPDg1×(1/λ-1/(λ+Δλa))>0.5 …(12)
OPDg2×(1/λ-1/(λ+Δλa))>0.5 …(13)
ただし、OPDg1=|OP3240-OP30G240|である。OPDg2=|OP3042-OP30G240|である。OP3240は、第3光減衰フィルタで2回反射し、かつ、第4光減衰フィルタで反射されることなく第4光減衰フィルタを通過する光の光路長である。OP30G240は、第3光減衰フィルタ及び第4光減衰フィルタで反射されることなく第3光減衰フィルタ及び第4光減衰フィルタを通過し、かつ、第3光減衰フィルタと第4光減衰フィルタとの間の層で2回反射する光の光路長である。OP3042は、第3光減衰フィルタで反射されることなく第3光減衰フィルタを通過し、かつ、第4光減衰フィルタで2回反射する光の光路長である。
 好ましくは、複数の光減衰フィルタは、第1光減衰フィルタとしての第3光減衰フィルタと第2光減衰フィルタとしての第4光減衰フィルタとを含む。第3光減衰フィルタと第4光減衰フィルタとは、複数の光減衰フィルタのうち互いに隣り合う任意の二つの光減衰フィルタである。測光装置は、以下の条件式(14)及び(15)を満足する。
OPDg1×(1/λ-1/(λ+Δλb))>0.5 …(14)
OPDg2×(1/λ-1/(λ+Δλb))>0.5 …(15)
ただし、OPDg1=|OP3240-OP30G240|である。OPDg2=|OP3042-OP30G240|である。OP3240は、第3光減衰フィルタで2回反射し、かつ、第4光減衰フィルタで反射されることなく第4光減衰フィルタを通過する光の光路長である。OP30G240は、第3光減衰フィルタ及び第4光減衰フィルタで反射されることなく第3光減衰フィルタ及び第4光減衰フィルタを通過し、かつ、第3光減衰フィルタと第4光減衰フィルタとの間の層で2回反射する光の光路長である。OP3042は、第3光減衰フィルタで反射されることなく第3光減衰フィルタを通過し、かつ、第4光減衰フィルタで2回反射する光の光路長である。
 本開示によれば、よりコンパクトなサイズを有し、かつ、より高い精度で光を測定することができる測光装置を提供することができる。
実施の形態の測光装置の概略斜視図である。 実施の形態の可変光減衰器の概略ブロック図である。 実施の形態の可変光減衰器の概略図である。 実施の形態の光検出器の概略部分拡大図である。 実施の形態の可変光減衰器における第1の干渉を示す概略図である。 実施の形態の可変光減衰器における第1の干渉を示す概略図である。 実施の形態の可変光減衰器における第2の干渉を示す概略図である。 実施の形態の可変光減衰器における第2の干渉を示す概略図である。 実施の形態の可変光減衰器における第2の干渉を示す概略図である。 実施の形態の可変光減衰器における第2の干渉を示す概略図である。 実施の形態の可変光減衰器における第3の干渉を示す概略図である。 実施の形態の可変光減衰器における第3の干渉を示す概略図である。 実施の形態の可変光減衰器における第3の干渉を示す概略図である。 実施の形態の可変光減衰器における第3の干渉を示す概略図である。 実施例1における、可変光減衰器に入射する光の入射角の分布を表すグラフを示す図である。 可変光減衰器への被測定光の入射角が5°である場合の、第一の干渉に起因する干渉光の相対強度を表すグラフを示す図である。 可変光減衰器への被測定光の入射角範囲が3°以上7°以下(5°±2°)である場合の、第一の干渉に起因する干渉光の相対強度を表すグラフを示す図である。 可変光減衰器への被測定光の入射角が5°である場合の、第二の干渉に起因する干渉光の相対強度を表すグラフを示す図である。 可変光減衰器への被測定光の入射角範囲が3°以上7°以下(5°±2°)である場合の、第二の干渉に起因する干渉光の相対強度を表すグラフを示す図である。 可変光減衰器への被測定光の入射角が5°である場合の、第三の干渉に起因する干渉光の相対強度を表すグラフを示す図である。 可変光減衰器への被測定光の入射角範囲が3°以上7°以下(5°±2°)である場合の、第三の干渉に起因する干渉光の相対強度を表すグラフを示す図である。 光検出器に含まれる複数の光検出素子のうちの一つの分光応答度スペクトルを表すグラフを示す図である。 被測定物から放射される光のスペクトルを表すグラフを示す図である。
 図1から図4を参照して、実施の形態の測光装置1を説明する。測光装置1は、被測定物2から放射される光(被測定光)を測定する装置である。被測定物2は、特に限定されないが、例えば、液晶ディスプレイまたは有機ELディスプレイのようなフラットパネルディスプレイである。
 図1を参照して、測光装置1は、可変光減衰器4と、光検出器8とを主に備える。測光装置1は、分光素子6をさらに備えてもよく、被測定物2の分光情報(例えば、被測定光のスペクトル)を測定可能な装置(例えば、光スペクトル測定装置)であってもよい。測光装置1は、コリメータレンズ3と、集光レンズ7とをさらに備えてもよい。
 コリメータレンズ3は、可変光減衰器4(複数の光減衰フィルタ10,20)の入射側に配置されている。コリメータレンズ3は、被測定物2から放射される光をコリメートする。
 図1及び図2を参照して、可変光減衰器4は、コリメータレンズ3の出射側に配置されている。可変光減衰器4には、コリメータレンズ3によってコリメートされた光が入射する。可変光減衰器4は、複数の光減衰フィルタ10,20と、駆動装置5とを含む。
 複数の光減衰フィルタ10,20は、各々、可変光減衰器4に入射する光の光軸2pに対して同じ角度で配置されてもよい。複数の光減衰フィルタ10,20は、各々、可変光減衰器4に入射する光の光軸2pに対して同じ角度で傾いてもよい。複数の光減衰フィルタ10,20は、互いに平行に配置されてもよい。そのため、可変光減衰器4を小型化することができて、測光装置1を小型化することができる。
 図3を参照して、複数の光減衰フィルタ10,20は、各々、干渉多層膜12,13,22,23と、干渉多層膜12,13,22,23を支持する透明基板11,21とを含む。複数の光減衰フィルタ10,20のうちの任意の二つの組み合わせを、第1光減衰フィルタ(例えば、光減衰フィルタ10)及び第2光減衰フィルタ(例えば、光減衰フィルタ20)とする。光軸2pに沿う方向において、第2光減衰フィルタは第1光減衰フィルタより光検出器8に近位している。第1光減衰フィルタは、干渉多層膜としての第1干渉多層膜(例えば、干渉多層膜12,13の少なくとも一つ)と、透明基板としての第1透明基板(例えば、透明基板11)とを含む。第2光減衰フィルタは、干渉多層膜としての第2干渉多層膜(干渉多層膜22,23の少なくとも一つ)と、透明基板としての第2透明基板(例えば、透明基板21)とを含む。
 第1透明基板(例えば、透明基板11)の第1光路長は、第2透明基板(例えば、透明基板21)の第2光路長と異なっている。第1透明基板の第1光路長は、第1透明基板の第1屈折率(例えば、屈折率n1)と第1透明基板の第1厚さ(例えば、厚さd1)との積で与えられる。第2透明基板の第2光路長は、第2透明基板の第2屈折率(例えば、屈折率n2)と第2透明基板の第2厚さ(例えば、厚さd2)との積で与えられる。干渉多層膜12,13,22,23の各々の厚さは透明基板11,21の各々の厚さに比べて無視し得るので、第1透明基板(例えば、透明基板11)の第1光路長が第2透明基板(例えば、透明基板21)の第2光路長と異なることは、第1光減衰フィルタ(例えば、光減衰フィルタ10)の光路長が第2光減衰フィルタ(例えば、光減衰フィルタ20)の光路長と異なることを意味する。
 透明基板11,21は、例えば、ガラス、プラスチック、水晶またはサファイアのような、被測定光に対して透明な光学材料で形成されている。透明基板11,21を形成する透明光学材料は、被測定光の波長範囲に応じて適切に選択され得る。
 干渉多層膜12,13,22,23は、各々、対応する透明基板11,21の各々の入射面14,24または出射面15,25の少なくとも一つに形成されている。具体的には、光減衰フィルタ10は、干渉多層膜12,13の少なくとも一つを含む。干渉多層膜12は、透明基板11の入射面14に形成される。干渉多層膜13は、透明基板11の出射面15に形成される。光減衰フィルタ20は、干渉多層膜22,23の少なくとも一つを含む。干渉多層膜22は、透明基板21の入射面24に形成される。干渉多層膜23は、透明基板21の出射面25に形成される。
 特定的には、干渉多層膜12,13,22,23は、各々、対応する透明基板11,21の各々の入射面14,24及び出射面15,25の両方に形成されている。具体的には、光減衰フィルタ10は、透明基板11の入射面14に形成される干渉多層膜12と、透明基板11の出射面15に形成される干渉多層膜13とを含む。光減衰フィルタ20は、透明基板21の入射面24に形成される干渉多層膜22と、透明基板21の出射面25に形成される干渉多層膜23とを含む。
 干渉多層膜12,13,22,23は、互いに同じ多層膜構成を有してもよいし、互いに異なる多層膜構成を有してもよい。干渉多層膜12,13,22,23は、互いに同じ材料で形成されてもよいし、互いに異なる材料で形成されてもよい。干渉多層膜12,13,22,23の各層の材料として、例えば、SiO2もしくはMgF2のような誘電体材料、Al23、TiO2、Nb25もしくはNbOのような金属酸化物材料、または、CrもしくはNbのような金属材料が用いられ得る。
 光減衰フィルタとして、基板(例えば、ガラス基板)の内部で光を吸収する吸収型光減衰フィルタが知られている。吸収型光減衰フィルタの透過スペクトルの設計の自由度は、相対的に低い。また、環境温度及び環境湿度に対する吸収型光減衰フィルタの安定性は、相対的に低い。これに対し、干渉型光減衰フィルタ(例えば、干渉多層膜12,13,22,23を含む光減衰フィルタ10,20)の透過スペクトルの設計の自由度は、相対的に高い。また、環境温度及び環境湿度に対する干渉型光減衰フィルタの安定性は、相対的に高い。
 図2を参照して、駆動装置5は、複数の光減衰フィルタ10,20を、互いに独立して、可変光減衰器4に入射する光の光軸2pに挿入すること及び光軸2pから退避させることができる。そのため、光検出器8が飽和することを防ぎ、光検出器8に入射する被測定光の強度を光検出器8のダイナミックレンジ内とすることができる。また、測光装置1は、よりコンパクトなサイズを有する。駆動装置5は、例えば、リニアアクチュエータである。
 図1を参照して、分光素子6は、可変光減衰器4を通過した光を分光する。分光素子6は、例えば、回折格子である。集光レンズ7は、分光素子6で分光された光を、光検出器8に集光させる。
 図1及び図4を参照して、光検出器8は、可変光減衰器4を通過した光を受光する。特定的には、光検出器8は、分光素子6で分光された光を受光する。光検出器8は、複数の光検出素子9を含むラインセンサである。複数の光検出素子9は、それぞれ、被測定光に含まれる互いに異なる複数の波長の光を検出する。複数の光検出素子9は、各々、例えば、電荷結合素子(CCD)センサまたは相補性金属酸化膜半導体(CMOS)センサである。
 干渉多層膜12,13,22,23を含む光減衰フィルタ10,20の光反射率は、吸収型光減衰フィルタの光反射率より大きくなる傾向にある。そのため、干渉多層膜12,13,22,23を含む光減衰フィルタ10,20において発生する反射光が、測光装置1の測定結果に悪影響を及ぼす可能性がある。以下に述べるように、本実施の形態では、この悪影響は低減されている。
 複数の光減衰フィルタを、複数回、光軸2pに挿入する場合、複数の光減衰フィルタのうちの任意の二つの光減衰フィルタ(例えば、光減衰フィルタ10,20)の間の相対的な傾き角を常に完全に等しくすることは困難である。複数の光減衰フィルタを、複数回、光軸2pに挿入すると、複数の光減衰フィルタのうちの任意の二つの光減衰フィルタ(例えば、光減衰フィルタ10,20)の間の相対的な傾き角がわずかに変動することがある。また、複数の光減衰フィルタが配置されている環境の温度の変化によっても、複数の光減衰フィルタのうちの任意の二つの光減衰フィルタ(例えば、光減衰フィルタ10,20)の間の相対的な傾き角がわずかに変動することがある。
 複数の光減衰フィルタのそれぞれの光路長が互いに等しい場合には、複数の光減衰フィルタのうちの任意の二つの光減衰フィルタ(例えば、光減衰フィルタ10,20)の間の相対的な傾き角のわずかな変動により、測光装置の測定結果は大きく変動する。そのため、測光装置を用いて安定的に光を測定することが困難になる。干渉多層膜12,13,22,23の各々の厚さは透明基板11,21の各々の厚さに比べて無視し得るので、複数の光減衰フィルタ10,20のそれぞれの光路長が互いに等しいことは、実質的に、複数の透明基板11,21のそれぞれの光路長が互いに等しいことを意味する。
 本発明者は、測光装置1の測定結果の上記大きな変動の原因が、複数の光減衰フィルタ10,20において発生する複数の多重反射光の間の干渉に起因する干渉強度の変動成分にあることを見出した。例えば、二つの光減衰フィルタ10,20において発生する二つの多重反射光の間の光路長差が測光装置1によって測定される光の波長以下(例えば、測定光が可視光の場合、数10nm以上数100nm以下)変動するだけで、二つの多重反射光の間の干渉強度の変動成分が大きくなって、二つの光減衰フィルタ10,20の間の相対的な傾き角のわずかな変動により、測光装置1の測定結果が大きく変動してしまう。このような複数の多重反射光の間の干渉は、主に、以下の三つの干渉(第一の干渉、第二の干渉及び第三の干渉)を含む。
 第一の干渉は、第1光減衰フィルタ(光減衰フィルタ10)で発生する2回反射光と第2光減衰フィルタ(光減衰フィルタ20)で発生する2回反射光との間の干渉である(図5及び図6を参照)。第二の干渉は、第1光減衰フィルタ(光減衰フィルタ10)及び第2光減衰フィルタ(光減衰フィルタ20)のうちの一方で発生する2回反射光と、第1光減衰フィルタ及び第2光減衰フィルタのうちの他方で発生する4回反射光との間の干渉である(図7から図10を参照)。第三の干渉は、第3光減衰フィルタ(光減衰フィルタ10)及び第4光減衰フィルタ(光減衰フィルタ20)のうちの一方で発生する2回反射光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で発生する2回反射光との間の干渉である(図11から図14を参照)。なお、第3光減衰フィルタは第1光減衰フィルタに対応し、かつ、第4光減衰フィルタは第2光減衰フィルタに対応している。第3光減衰フィルタと第4光減衰フィルタとは、複数の光減衰フィルタのうち互いに隣り合う任意の二つの光減衰フィルタである。
 上記三つの干渉のうち第一の干渉が、測光装置1の測定結果の変動に最も大きな影響を及ぼすことが多い。その理由は、以下のとおりである。第二の干渉における多重反射光の反射回数は、第一の干渉における多重反射光の反射回数より多い。そのため、第二の干渉に起因する干渉強度の変動成分は、第一の干渉に起因する干渉強度の変動成分より小さくなることが多い。また、一般に、空気層側から干渉多層膜に入射する光に対する、干渉多層膜を用いた光減衰フィルタの反射率は、光減衰フィルタの内部側(透明基板側)から干渉多層膜に入射する光に対する、干渉多層膜を用いた光減衰フィルタの反射率より低いことが多い。こうして、第三の干渉に起因する干渉強度の変動成分は、第一の干渉に起因する干渉強度の変動成分より小さくなることが多い。
 そのため、第一の干渉に起因する干渉強度の変動成分を低減することによって、測光装置1の測定結果の変動を効果的に低減することができて、測光装置1を用いて光を安定的にかつ高い精度で測定することができる。第一の干渉に加えて、第二の干渉に起因する干渉強度の変動成分または第三の干渉に起因する干渉強度の変動成分の少なくとも一つをさらに低減することが好ましい。そのため、測光装置1の測定結果の変動をさらに効果的に低減することができて、測光装置1を用いて光をさらに向上された精度で測定することができる。
 なお、複数の光減衰フィルタ10,20において発生する複数の多重反射光の間の干渉は、第一の干渉、第二の干渉及び第三の干渉に加えて、より高次の干渉も含む。しかし、より高次の干渉における多重反射光の反射回数は、第一の干渉における多重反射光の反射回数、第二の干渉における多重反射光の反射回数、及び、第三の干渉における多重反射光の反射回数のいずれよりも多い。そのため、より高次の干渉に起因する干渉強度の変動成分は、第一の干渉に起因する干渉強度の変動成分、第二の干渉に起因する干渉強度の変動成分、及び、第三の干渉に起因する干渉強度の変動成分のいずれよりも小さく、無視することができる。
 本実施の形態では、第1光減衰フィルタ(例えば、光減衰フィルタ10)の第1透明基板(例えば、透明基板11)の第1光路長は、第2光減衰フィルタ(例えば、光減衰フィルタ20)の第2透明基板(例えば、透明基板21)の第2光路長と異なっている。そのため、複数の光減衰フィルタ10,20において発生する複数の多重反射光の間の干渉に起因する干渉波形の周期は短くなる。干渉波形が平均化されて、複数の光減衰フィルタ10,20において発生する複数の多重反射光の間の干渉強度の変動成分は低減する。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角が変動しても、測光装置1の測定結果はほとんど変動しなくなる。測光装置1は、被測定物2から放射される光を、より高い精度で測定することができる。
 以下、実施例1から実施例3において第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を、実施例4から実施例6において第一の干渉に起因する干渉強度の変動成分の低減を、実施例7から実施例9において第一の干渉及び第二の干渉に起因する干渉強度の変動成分の低減を、実施例10から実施例12において第一の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を、それぞれ説明する。
 <実施例1、実施例2、実施例3>
 図1から図23を参照して、実施例1から実施例3を説明する。実施例1から実施例3では、複数の光減衰フィルタ10,20は、二枚の光減衰フィルタ10,20で構成されている。第1光減衰フィルタは光減衰フィルタ10であり、第2光減衰フィルタは光減衰フィルタ20である。光減衰フィルタ10と光減衰フィルタ20とは互いに隣り合っているため、光減衰フィルタ10は第3光減衰フィルタでもあり、かつ、光減衰フィルタ20は第4光減衰フィルタでもある。光減衰フィルタ10は、干渉多層膜12,13と、干渉多層膜12,13を支持する透明基板11とを含む。光減衰フィルタ20は、干渉多層膜22,23と、干渉多層膜22,23を支持する透明基板21とを含む。
 実施例1から実施例3における可変光減衰器4の構成は、表1に示されるとおりである。そのため、透明基板11の光路長は、透明基板21の光路長と異なっている。透明基板11の入射面14の反射率および透明基板11の出射面15の反射率は、各々、10%である。透明基板11の入射面14の反射率は、干渉多層膜12の反射率である。透明基板11の出射面15の反射率は、干渉多層膜13の反射率である。透明基板21の入射面24の反射率および透明基板21の出射面25の反射率は、各々、10%である。透明基板11の入射面24の反射率は、干渉多層膜22の反射率である。透明基板21の出射面25の反射率は、干渉多層膜23の反射率である。図5,7,8,11,12では、光減衰フィルタ10と光減衰フィルタ20の間の相対的な傾き角(例えば、光減衰フィルタ20に対する光減衰フィルタ10の傾き角)θは0.0°である。図6,9,10,13,14では、光減衰フィルタ10と光減衰フィルタ20との間の相対的な傾き角θは0.1°である。
Figure JPOXMLDOC01-appb-T000001
 (a)可変光減衰器4に入射する被測定光の入射角の分布、(b)光検出素子9の分光応答度スペクトルの半値幅Δλa、または、(c)被測定物2から放射される光(被測定光)の線幅Δλbの少なくとも一つは、複数の多重反射光の間の干渉に起因する干渉強度の変動成分を低減して、光減衰フィルタ10と光減衰フィルタ20との間の相対的な傾き角θがわずかに変化した時の測光装置1の測定結果の変動を低減させる。なお、本明細書において、可変光減衰器4に入射する被測定光の入射角は、可変光減衰器4の光軸に対する被測定光(被測定光が入射角の分布を有する場合には、被測定光の入射角の分布の中心の入射角を有する被測定光成分)の入射角として定義される。被測定光の線幅Δλbは、被測定光のスペクトルの半値幅として定義される。
 実施例1では上記(a)可変光減衰器4に入射する被測定光の入射角の分布による、第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を、実施例2では上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を、実施例3では上記(c)被測定物2から放射される光(被測定光)の線幅Δλbによる、第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を、それぞれ検討する。なお、光の波長λが長いほど、条件式(1)から条件式(15)の各々の左辺の値は小さくなる。そして、条件式(1)から条件式(15)の各々の左辺の値が小さくなるほど、複数の多重反射光の間の干渉に起因する干渉強度の変動成分は大きくなる。そこで、実施例1から実施例3では、光の波長λを、複数の多重反射光の間の干渉に起因する干渉強度の変動成分が最も大きくなる波長、すなわち、測光装置1の測定可能波長範囲の最大波長とする。
 <実施例1>
 本実施例では、測光装置1の測定可能波長範囲は、380nm以上780nm以下である。可変光減衰器4に入射する光の入射角の分布は、3°以上7°以下の入射角範囲(5°±2°の入射角範囲)であり(表2を参照)、かつ、この入射角範囲において光の強度は一様である(図15を参照)。測光装置1は、分光器(ポリクロメーター)であり、光検出器8は、複数の光検出素子9を含んでいる。複数の光検出素子9のうち、測光装置1の測定可能波長範囲の最大波長に対応する光検出素子9の分光応答度スペクトルは、780nmのピーク波長を有するガウシアンの形状を有している。この光検出素子9の分光応答度スペクトルの半値幅Δλaは、10nmである(表2を参照)。被測定物2から放射される光(被測定光)のスペクトルは、780nmのピーク波長を有するガウシアンの形状を有している。被測定物2から放射される光(被測定光)の線幅Δλbは、0.01nmである(表2を参照)。
Figure JPOXMLDOC01-appb-T000002
 被測定物2から放射される光(被測定光)の線幅Δλbは十分に小さいため、上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλaと上記(c)被測定物2から放射される光(被測定光)の線幅Δλbとによる、複数の多重反射光の間の干渉に起因する干渉強度の変動成分の低減は微小であり無視し得る。実施例1では、上記(a)可変光減衰器4に入射する被測定光の入射角の分布による、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(1)が満たされている。
|OPDθmax1-OPDθmin1|/λ>0.5 …(1)
 OPDθmax1=(OP1220max-OP1022max)である。OPDθmin1=(OP1220min-OP1022min)である。λは、測光装置1の測定可能波長範囲内に含まれる光の波長である。
 OP1220maxは、第1光減衰フィルタ(光減衰フィルタ10)で2回反射し、かつ、第2光減衰フィルタ(光減衰フィルタ20)で反射されることなく第2光減衰フィルタを通過する最大入射角光の光路長である。最大入射角光は、可変光減衰器4へ入射する光のうち可変光減衰器4への入射角が最大である光である。OP1022maxは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する最大入射角光の光路長である。OP1220minは、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最小入射角光の光路長である。最小入射角光は、可変光減衰器4へ入射する光のうち可変光減衰器4への入射角が最小である光である。OP1022minは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する最小入射角光の光路長である。
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(1)の左辺である|OPDθmax1-OPDθmin1|/λは3.571である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(1)の左辺である|OPDθmax1-OPDθmin1|/λは3.368である。したがって、本実施例は、条件式(1)を満たす。
 条件式(1)を満たす場合、第一の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。図16及び図17を参照して、可変光減衰器4に入射する被測定光の入射角範囲が3°以上7°以下(5°±2°)である場合の、第一の干渉に起因する相対干渉強度の変動は、可変光減衰器4に入射する被測定光の入射角が5°である場合の、第一の干渉に起因する相対干渉強度の変動より小さくなっている。本明細書において、相対干渉強度は、光減衰フィルタ10,20で反射されることなく光減衰フィルタ10,20を透過する光の基準強度で規格化された干渉強度であり、かつ、当該基準強度を相対強度ゼロに換算することによって得られる。可変光減衰器4に入射する被測定光の入射角の分布によって、第一の干渉に起因する干渉強度の変動成分が低減される理由は、以下のとおりである。
 可変光減衰器4に入射する被測定光の入射角が変化すると、図16の干渉波形は横方向にシフトする。図17の干渉波形は、可変光減衰器4に入射する被測定光の入射角のそれぞれに応じて互いに異なる量だけ横方向にシフトされた複数の図16の干渉波形が足し合わされて平均化された波形である。そのため、可変光減衰器4に入射する被測定光の入射角範囲が3°以上7°以下(5°±2°)である場合の、第一の干渉に起因する干渉強度の変動は、可変光減衰器4に入射する被測定光の入射角が5°である場合の、第一の干渉に起因する干渉強度の変動より小さくなる。
 条件式(1)の左辺は、可変光減衰器4に入射する被測定光の入射角が最大の場合と、可変光減衰器4に入射する被測定光の入射角が最小の場合との間で、図16の干渉波形が、当該干渉波形の周期の何倍分シフトするかを表している。条件式(1)を満たせば、高い平均化効果が得られ、第一の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で2回反射する光との間の干渉)に起因する干渉強度の変動を低減できる。具体的には、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉による測光装置1の測定値変動は、0.26%である。本明細書において、測光装置1の測定値変動は、0.0°の相対傾き角θにおける波長780nmの光の相対干渉強度と0.1°の相対傾き角θにおける波長780nmの光の相対干渉強度との間の差として定義される。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第一の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(4)及び(5)が満たされている。
|OPDθmax2-OPDθmin2|/λ>0.5 …(4)
|OPDθmax3-OPDθmin3|/λ>0.5 …(5)
 OPDθmax2=(OP1420max-OP1022max)である。OPDθmin2=(OP1420min-OP1022min)である。OPDθmax3=(OP1024max-OP1220max)である。OPDθmin3=(OP1024min-OP1220min)である。
 OP1420maxは、第1光減衰フィルタ(光減衰フィルタ10)で4回反射し、かつ、第2光減衰フィルタ(光減衰フィルタ20)で反射されることなく第2光減衰フィルタを通過する最大入射角光の光路長である。OP1022maxは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する最大入射角光の光路長である。OP1420minは、第1光減衰フィルタで4回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最小入射角光の光路長である。OP1022minは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する、最小入射角光の光路長である。
 OP1024maxは、第1光減衰フィルタ(光減衰フィルタ10)で反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタ(光減衰フィルタ20)で4回反射する最大入射角光の光路長である。OP1220maxは、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最大入射角光の光路長である。OP1024minは、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで4回反射する最小入射角光の光路長である。OP1220minは、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する最小入射角光の光路長である。
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(4)の左辺である|OPDθmax2-OPDθmin2|/λは3.061である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(4)の左辺である|OPDθmax2-OPDθmin2|/λは2.797である。したがって、本実施例は、条件式(4)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(5)の左辺である|OPDθmax3-OPDθmin3|/λは13.772である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(5)の左辺である|OPDθmax3-OPDθmin3|/λは13.367である。したがって、本実施例は、条件式(5)を満たす。
 条件式(4)を満たす場合、第二の干渉(第1光減衰フィルタ(光減衰フィルタ10)で4回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。図18及び図19から、可変光減衰器4に入射する被測定光の入射角範囲が3°以上7°以下(5°±2°)である場合の、第二の干渉に起因する相対干渉強度の変動は、可変光減衰器4に入射する被測定光の入射角が5°である場合の、第二の干渉に起因する相対干渉強度の変動より小さくなっている。可変光減衰器4に入射する被測定光の入射角の分布によって、第二の干渉に起因する干渉強度の変動成分が低減される理由は、第一の干渉に起因する干渉強度の変動が低減される理由と同様に、干渉波形の平均化効果のためである。
 具体的には、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.01%である。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第二の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 条件式(5)を満たす場合には、条件式(4)を満たす場合と同様に、第二の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で4回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。具体的には、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉による測光装置1の測定値変動は、0.00%である。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第二の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(10)及び(11)が満たされている。
|OPDθmax4-OPDθmin4|/λ>0.5 …(10)
|OPDθmax5-OPDθmin5|/λ>0.5 …(11)
 OPDθmax4=(OP3240max-OP30G240max)である。OPDθmin4=(OP3240min-OP30G240min)である。OPDθmax5=(OP3042max-OP30G240max)である。OPDθmin5=(OP3042min-OP30G240min)である。
 OP3240maxは、第3光減衰フィルタ(光減衰フィルタ10)で2回反射し、かつ、第4光減衰フィルタ(光減衰フィルタ20)で反射されることなく第4光減衰フィルタを通過する最大入射角光の光路長である。OP30G240maxは、第3光減衰フィルタ及び第4光減衰フィルタで反射されることなく第3光減衰フィルタ及び第4光減衰フィルタを通過し、かつ、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する最大入射角光の光路長である。OP3240minは、第3光減衰フィルタで2回反射し、かつ、第4光減衰フィルタで反射されることなく第4光減衰フィルタを通過する最小入射角光の光路長である。
 OP30G240minは、第3光減衰フィルタ(光減衰フィルタ10)及び第4光減衰フィルタ(光減衰フィルタ20)で反射されることなく第3光減衰フィルタ及び第4光減衰フィルタを通過し、かつ、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する最小入射角光の光路長である。OP3042maxは、第3光減衰フィルタで反射されることなく第3光減衰フィルタを通過し、かつ、第4光減衰フィルタで2回反射する最大入射角光の光路長である。OP3042minは、第3光減衰フィルタで反射されることなく第3光減衰フィルタを通過し、かつ、第4光減衰フィルタで2回反射する最小入射角光の光路長である。
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図13を参照)に、条件式(10)の左辺である|OPDθmax4-OPDθmin4|/λは40.164である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図16を参照)に、条件式(10)の左辺である|OPDθmax4-OPDθmin4|/λは40.774である。したがって、本実施例は、条件式(10)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(11)の左辺である|OPDθmax5-OPDθmin5|は36.594である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(11)の左辺である|OPDθmax5-OPDθmin5|は37.274である。したがって、本実施例は、条件式(11)を満たす。
 条件式(10)を満たす場合、第三の干渉(第3光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第3光減衰フィルタと第4光減衰フィルタ(光減衰フィルタ20)との間の層(例えば、空気層)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。図20及び図21から、可変光減衰器4に入射する被測定光の入射角範囲が3°以上7°以下(5°±2°)である場合の、第三の干渉に起因する相対干渉強度の変動は、可変光減衰器4に入射する被測定光の入射角が5°である場合の、第三の干渉に起因する相対干渉強度の変動より小さくなっている。可変光減衰器4に入射する被測定光の入射角の分布によって、第三の干渉に起因する干渉強度の変動成分が低減される理由は、第一の干渉に起因する干渉強度の変動が低減される理由と同様に、干渉波形の平均化効果のためである。
 具体的には、第3光減衰フィルタ(第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.01%である。そのため、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第三の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 条件式(11)を満たす場合には、条件式(10)を満たす場合と同様に、第三の干渉(第4光減衰フィルタ(光減衰フィルタ20)で2回反射する光と第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。具体的には、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉による測光装置1の測定値変動は、0.00%である。そのため、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第三の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、0.26%である。測光装置1の測定値変動の絶対値が5%以内であれば、被測定光は精度よく測定され得る。測光装置1の測定値変動の絶対値が1%以内であれば、より好ましい。本実施例の測光装置1の測定値変動の絶対値は1%以内であるため、被測定光は精度よく測定され得る。
 <実施例2>
 本実施例の測光装置1は、実施例1の測光装置1と同様であるが、主に以下の点で異なっている。可変光減衰器4に入射する光の入射角の分布はなく、可変光減衰器4への光の入射角は5°である(表3を参照)。光検出素子9の分光応答度スペクトルの半値幅Δλaは、3nmである(表3及び図22を参照)。被測定物2から放射される光(被測定光)の線幅Δλbは、300nmである(表3を参照)。
Figure JPOXMLDOC01-appb-T000003
 光検出素子9の分光応答度スペクトルの半値幅Δλaは、被測定物2から放射される光(被測定光)の線幅Δλbより十分に小さいため、複数の多重反射光の間の干渉に起因する干渉強度の変動成分の低減は、上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλa及び上記(c)被測定物2から放射される光(被測定光)の線幅Δλbのうち、上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλaに依存する。また、本実施例では、可変光減衰器4に入射する被測定光の入射角の分布はないため、上記(a)可変光減衰器4に入射する被測定光の入射角の分布による複数の多重反射光の間の干渉に起因する干渉強度の変動成分の低減は無い。本実施例では、上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλaによる、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(2)が満たされている。
OPD12×(1/λ-1/(λ+Δλa))>0.5 …(2)
 OPD12=|OP1220-OP1022|である。λは、測光装置1の測定可能波長範囲内に含まれる光の波長である。Δλaは、光検出素子9の分光応答度スペクトルの半値幅である。
 OP1220は、第1光減衰フィルタ(光減衰フィルタ10)で2回反射し、かつ、第2光減衰フィルタ(光減衰フィルタ20)で反射されることなく第2光減衰フィルタを通過する光の光路長である(図5を参照)。OP1022は、第1光減衰フィルタ(光減衰フィルタ10)で反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタ(光減衰フィルタ20)で2回反射する光の光路長である(図6を参照)。
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(2)の左辺であるOPD12×(1/λ-1/(λ+Δλa))は5.236である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(2)の左辺であるOPD12×(1/λ-1/(λ+Δλa))は5.237である。したがって、本実施例は、条件式(2)を満たす。
 条件式(2)を満たす場合、第一の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。光検出器8で測定される測定値は、第一の干渉に起因する相対干渉強度のスペクトル(図16を参照)と、光検出素子9の分光応答度スペクトル(図22を参照)との積で与えられる。条件式(2)の左辺は、図22に示される光検出素子9の分光応答度スペクトルの半値幅Δλa内に、図16に示される干渉波形が何周期分含まれるかを示す。条件式(2)を満たせば、干渉波形の高い平均化効果が得られ、第一の干渉に起因する干渉強度の変動を低減できる。
 具体的には、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第一の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(6)及び(7)が満たされている。
OPD21×(1/λ-1/(λ+Δλa))>0.5 …(6)
OPD22×(1/λ-1/(λ+Δλa))>0.5 …(7)
 OPD21=|OP1420-OP1022|である。OPD22=|OP1024-OP1220|である。
 OP1420は、第1光減衰フィルタ(光減衰フィルタ10)で4回反射し、かつ、第2光減衰フィルタ(光減衰フィルタ20)で反射されることなく第2光減衰フィルタを通過する光の光路長である(図7及び図9を参照)。OP1022は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する光の光路長である(図7及び図9を参照)。OP1024は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで4回反射する光の光路長である(図8及び図10を参照)。OP1220は、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する光の光路長である(図8及び図10を参照)。
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(6)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は4.488である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(6)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は4.489である。したがって、本実施例は、条件式(6)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(7)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は20.194である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(7)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は20.196である。したがって、本実施例は、条件式(7)を満たす。
 条件式(6)を満たす場合、第二の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。光検出器8で測定される測定値は、第二の干渉に起因する相対干渉強度のスペクトル(図18を参照)と、光検出素子9の分光応答度スペクトル(図22を参照)との積で与えられる。条件式(6)の左辺は、光検出素子9の分光応答度スペクトルの半値幅Δλa内に、図18に示される干渉波形が何周期分含まれるかを示す。条件式(6)を満たせば、干渉波形の高い平均化効果が得られ、第二の干渉に起因する干渉強度の変動を低減できる。
 具体的には、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉による測光装置1の測定値変動は、0.00%である。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 条件式(7)を満たす場合には、条件式(6)を満たす場合と同様に、第二の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で4回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。その結果、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第二の干渉に起因する干渉強度はほとんど変化しない。具体的には、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉による測光装置1の測定値変動は、0.00%である。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第二の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(12)及び(13)が満たされている。
OPDg1×(1/λ-1/(λ+Δλa))>0.5 …(12)
OPDg2×(1/λ-1/(λ+Δλa))>0.5 …(13)
 OPDg1=|OP3240-OP30G240|である。OPDg2=|OP3042-OP30G240|である。
 OP3240は、第3光減衰フィルタ(光減衰フィルタ10)で2回反射し、かつ、第4光減衰フィルタ(光減衰フィルタ20)で反射されることなく第4光減衰フィルタを通過する光の光路長である。OP30G240は、第3光減衰フィルタ及び第4光減衰フィルタで反射されることなく第3光減衰フィルタ及び第4光減衰フィルタを通過し、かつ、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光の光路長である。OP3042は、第3光減衰フィルタで反射されることなく第3光減衰フィルタを通過し、かつ、第4光減衰フィルタで2回反射する光の光路長である。
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図11を参照)に、条件式(12)の左辺であるOPDg1×(1/λ-1/(λ+Δλa))は19.637である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図13を参照)に、条件式(12)の左辺であるOPDg1×(1/λ-1/(λ+Δλa))は19.634である。したがって、本実施例は、条件式(12)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(13)の左辺であるOPDg2×(1/λ-1/(λ+Δλa))は14.402である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図14を参照)に、条件式(13)の左辺であるOPDg2×(1/λ-1/(λ+Δλa))は14.398である。したがって、本実施例は、条件式(13)を満たす。
 条件式(12)を満たす場合、第三の干渉(第3光減衰フィルタ(光減衰フィルタ10)で2回反射する光と、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の層(例えば、空気層)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。光検出器8で測定される測定値は、第三の干渉に起因する相対干渉強度のスペクトル(図20を参照)と、光検出素子9の分光応答度スペクトル(図22を参照)との積で与えられる。条件式(12)の左辺は、光検出素子9の分光応答度スペクトルの半値幅Δλa内に、図20に示される干渉波形が何周期分含まれるかを示す。条件式(12)を満たせば、干渉波形の高い平均化効果が得られ、第三の干渉に起因する干渉強度の変動を低減できる。
 具体的には、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉による測光装置1の測定値変動は、0.00%である。そのため、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第三の干渉(第3光減衰フィルタで2回反射する光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 条件式(13)を満たす場合には、条件式(12)を満たす場合と同様に、第三の干渉(第4光減衰フィルタ(光減衰フィルタ20)で2回反射する光と第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。その結果、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第三の干渉に起因する干渉強度はほとんど変化しない。具体的には、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉による測光装置1の測定値変動は、0.00%である。そのため、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第三の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、0.00%である。測光装置1の測定値変動の絶対値が5%以内であれば、被測定光は精度よく測定され得る。測光装置1の測定値変動の絶対値が1%以内であれば、より好ましい。本実施例の測光装置1の測定値変動の絶対値は1%以内であるため、被測定光は精度よく測定され得る。
 <実施例3>
 本実施例の測光装置1は、実施例1の測光装置1と同様であるが、主に以下の点で異なっている。可変光減衰器4に入射する光の入射角の分布はなく、可変光減衰器4への光の入射角は5°である(表4を参照)。光検出素子9の分光応答度スペクトルの半値幅Δλaは、20nmである(表4を参照)。被測定物2から放射される光(被測定光)の線幅Δλbは、1nmである(表4及び図23を参照)。
Figure JPOXMLDOC01-appb-T000004
 被測定物2から放射される光(被測定光)の線幅Δλbは、光検出素子9の分光応答度スペクトルの半値幅Δλaより十分に小さいため、複数の多重反射光の間の干渉に起因する干渉強度の変動成分の低減は、上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλa及び上記(c)被測定物2から放射される光(被測定光)の線幅Δλbのうち、上記(c)被測定物2から放射される光(被測定光)の線幅Δλbに依存する。また、本実施例では、可変光減衰器4に入射する被測定光の入射角の分布はないため、上記(a)可変光減衰器4に入射する被測定光の入射角の分布による複数の多重反射光の間の干渉に起因する干渉強度の変動成分の低減は無い。本実施例では、上記(c)被測定物2から放射される光(被測定光)の線幅Δλbによる、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(3)が満たされている。
 OPD13×(1/λ-1/(λ+Δλb))>0.5 …(3)
 OPD13=|OP1220-OP1022|である。λは、測光装置1の測定可能波長範囲内に含まれる光の波長である。Δλbは、被測定物2から放射される光(被測定光)の線幅である。
 OP1220は、第1光減衰フィルタ(光減衰フィルタ10)で2回反射し、かつ、第2光減衰フィルタ(光減衰フィルタ20)で反射されることなく第2光減衰フィルタを通過する光の光路長である(図5を参照)。OP1022は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する光の光路長である(図5を参照)。
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(3)の左辺であるOPD13×(1/λ-1/(λ+Δλb))は1.750である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(3)の左辺であるOPD13×(1/λ-1/(λ+Δλb))
は1.750である。したがって、本実施例は、条件式(3)を満たす。
 条件式(3)を満たす場合、第一の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。光検出器8で測定される測定値は、第一の干渉に起因する相対干渉強度のスペクトル(図16を参照)と、被測定物2から放射される光(被測定光)のスペクトル(図23を参照)との積で与えられる。条件式(3)の左辺は、図23に示される被測定物2から放射される光(被測定光)の線幅Δλb内に、図16に示される干渉波形が何周期分含まれるかを示す。条件式(3)を満たせば、干渉波形の高い平均化効果が得られ、第一の干渉に起因する相対干渉強度の変動を低減できる。
 具体的には、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第一の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(8)及び(9)が満たされている。OPD21×(1/λ-1/(λ+Δλb))>0.5 …(8)
OPD22×(1/λ-1/(λ+Δλb))>0.5 …(9)
 OPD21=|OP1420-OP1022|である。OPD22=|OP1024-OP1220|である。
 OP1420は、第1光減衰フィルタ(光減衰フィルタ10)で4回反射し、かつ、第2光減衰フィルタ(光減衰フィルタ20)で反射されることなく第2光減衰フィルタを通過する光の光路長である(図7及び図9を参照)。OP1022は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで2回反射する光の光路長である(図7及び図9を参照)。OP1024は、第1光減衰フィルタで反射されることなく第1光減衰フィルタを通過し、かつ、第2光減衰フィルタで4回反射する光の光路長である(図8及び図10を参照)。OP1220は、第1光減衰フィルタで2回反射し、かつ、第2光減衰フィルタで反射されることなく第2光減衰フィルタを通過する光の光路長である(図8及び図10を参照)。
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(8)の左辺であるOPD21×(1/λ-1/(λ+Δλb))は1.500である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(8)の左辺であるOPD21×(1/λ-1/(λ+Δλb))は1.500である。したがって、本実施例は、条件式(8)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(9)の左辺であるOPD22×(1/λ-1/(λ+Δλb))は6.749である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(9)の左辺であるOPD22×(1/λ-1/(λ+Δλb))は6.749である。したがって、本実施例は、条件式(9)を満たす。
 条件式(8)を満たす場合、第二の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。光検出器8で測定される測定値は、第二の干渉に起因する相対干渉強度のスペクトル(図18を参照)と、被測定物2から放射される光(被測定光)のスペクトル(図23を参照)との積で与えられる。条件式(8)の左辺は、図23に示される被測定物2から放射される光(被測定光)の線幅Δλb内に、図18に示される干渉波形が何周期分含まれるかを示す。条件式(8)を満たせば、干渉波形の高い平均化効果が得られ、第二の干渉に起因する干渉強度の変動を低減できる。
 具体的には、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉による測光装置1の測定値変動は、0.00%である。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 条件式(9)を満たす場合には、条件式(8)を満たす場合と同様に、第二の干渉(第1光減衰フィルタ(光減衰フィルタ10)で2回反射する光と第2光減衰フィルタ(光減衰フィルタ20)で4回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。その結果、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第二の干渉に起因する干渉強度は、ほとんど変化しない。具体的には、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉による測光装置1の測定値変動は、0.00%である。そのため、第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第二の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、以下の条件式(14)及び(15)が満たされている。
OPDg1×(1/λ-1/(λ+Δλb))>0.5 …(14)
OPDg2×(1/λ-1/(λ+Δλb))>0.5 …(15)
 OPDg1=|OP3240-OP30G240|である。OPDg2=|OP3042-OP30G240|である。
 OP3240は、第3光減衰フィルタ(光減衰フィルタ10)で2回反射し、かつ、第4光減衰フィルタ(光減衰フィルタ20)で反射されることなく第4光減衰フィルタを通過する光の光路長である。OP30G240は、第3光減衰フィルタ及び第4光減衰フィルタで反射されることなく第3光減衰フィルタ及び第4光減衰フィルタを通過し、かつ、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光の光路長である。OP3042は、第3光減衰フィルタで反射されることなく第3光減衰フィルタを通過し、かつ、第4光減衰フィルタで2回反射する光の光路長である。
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図11を参照)に、条件式(14)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は6.562である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図13を参照)に、条件式(14)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は6.562である。したがって、本実施例は、条件式(14)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(15)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は4.813である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図14を参照)に、条件式(15)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は4.812である。したがって、本実施例は、条件式(15)を満たす。
 条件式(14)を満たす場合、第三の干渉(第3光減衰フィルタ(光減衰フィルタ10)で2回反射する光と、第3光減衰フィルタと第4光減衰フィルタ(光減衰フィルタ20)との間の層(例えば、空気層)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。光検出器8で測定される測定値は、第三の干渉に起因する相対干渉強度のスペクトル(図20を参照)と、被測定物2から放射される光(被測定光)のスペクトル(図23を参照)との積で与えられる。条件式(14)の左辺は、図23に示される被測定物2から放射される光(被測定光)の線幅Δλb内に、図20に示される干渉波形が何周期分含まれるかを示す。条件式(14)を満たせば、干渉波形の高い平均化効果が得られ、第三の干渉に起因する干渉強度の変動を低減できる。
 具体的には、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉による測光装置1の測定値変動は、0.00%である。そのため、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第三の干渉(第3光減衰フィルタで2回反射する光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 条件式(15)を満たす場合には、条件式(14)を満たす場合と同様に、第三の干渉(第4光減衰フィルタ(光減衰フィルタ20)で2回反射する光と第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)に起因する干渉強度の変動成分を低減させることができる。その結果、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第三の干渉に起因する干渉強度は、ほとんど変化しない。具体的には、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉による測光装置1の測定値変動は、0.00%である。そのため、第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θがわずかに変化しても、第三の干渉に起因する干渉強度の変動は低減されて、被測定光は精度よく測定され得る。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、0.00%である。測光装置1の測定値変動の絶対値が5%以内であれば、被測定光は精度よく測定され得る。測光装置1の測定値変動の絶対値が1%以内であれば、より好ましい。本実施例の測光装置1の測定値変動の絶対値は1%以内であるため、被測定光は精度よく測定され得る。
 <実施例4、実施例5、実施例6>
 図1から図23を参照して、実施例4から実施例6を説明する。実施例4から実施例6の測光装置1は、実施例1から実施例3の測光装置1と同様の構成を備えているが、以下の点で主に異なっている。
 実施例4から実施例6の可変光減衰器4の構成は、表5に示されるとおりである。そのため、透明基板11の光路長は、透明基板21の光路長と異なっている。
Figure JPOXMLDOC01-appb-T000005
 <実施例4>
 本実施例の可変光減衰器4に入射する光の入射角の分布、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例1の可変光減衰器4に入射する光の入射角の分布、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表2を参照)。そのため、本実施例では、実施例1と同様に、上記(a)可変光減衰器4に入射する被測定光の入射角の分布による、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(1)の左辺である|OPDθmax1-OPDθmin1|/λは5.101である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(1)の左辺である|OPDθmax1-OPDθmin1|/λは4.898である。したがって、本実施例は、条件式(1)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.03%である。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(4)の左辺である|OPDθmax2-OPDθmin2|/λは0.000である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(4)の左辺である|OPDθmax2-OPDθmin2|/λは0.203である。したがって、本実施例は、条件式(4)を満たさない。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.20%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(5)の左辺である|OPDθmax3-OPDθmin3|/λは15.303である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(5)の左辺である|OPDθmax3-OPDθmin3|/λは14.897である。したがって、本実施例は、条件式(5)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図13を参照)に、条件式(10)の左辺である|OPDθmax4-OPDθmin4|/λは5.038である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図16を参照)に、条件式(10)の左辺である|OPDθmax4-OPDθmin4|/λは5.243である。したがって、本実施例は、条件式(10)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.03%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(11)の左辺である|OPDθmax5-OPDθmin5|は0.063である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(11)の左辺である|OPDθmax5-OPDθmin5|は0.244である。したがって、本実施例は、条件式(11)を満たさない。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は-2.04%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、-2.24%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。本実施例の測光装置1の測定値変動の絶対値は、実施例1の測光装置1の測定値変動の絶対値より大きい。そのため、実施例1の測光装置1は、本実施例の測光装置1より望ましい。
 <実施例5>
 本実施例の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例2の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表3を参照)。そのため、本実施例では、実施例2と同様に、上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλaによる、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(2)の左辺であるOPD12×(1/λ-1/(λ+Δλa))は7.479である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(2)の左辺であるOPD12×(1/λ-1/(λ+Δλa))は7.480である。したがって、本実施例は、条件式(2)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(6)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は0.000である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(6)の左辺であるOPD21×(1/λ-1/(λ+Δλa))
は0.001である。したがって、本実施例は、条件式(6)を満たさない。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.20%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(7)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は22.438である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(7)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は22.440である。したがって、本実施例は、条件式(7)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図11を参照)に、条件式(12)の左辺であるOPDg1×(1/λ-1/(λ+Δλa))は7.397である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図13を参照)に、条件式(12)の左辺であるOPDg1×(1/λ-1/(λ+Δλa))は7.395である。したがって、本実施例は、条件式(12)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(13)の左辺であるOPDg2×(1/λ-1/(λ+Δλa))は0.083である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図14を参照)に、条件式(13)の左辺であるOPDg2×(1/λ-1/(λ+Δλa))は0.085である。したがって、本実施例は、条件式(13)を満たさない。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、1.37%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、1.16%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。本実施例の測光装置1の測定値変動の絶対値は、実施例2の測光装置1の測定値変動の絶対値より大きい。そのため、実施例2の測光装置1は、本実施例の測光装置1より望ましい。
 <実施例6>
 本実施例の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例3の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表4を参照)。そのため、本実施例では、実施例3と同様に、上記(c)被測定物2から放射される光(被測定光)の線幅Δλbによる、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(3)の左辺であるOPD13×(1/λ-1/(λ+Δλb))は2.500である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(3)の左辺であるOPD13×(1/λ-1/(λ+Δλb))は2.500である。したがって、本実施例は、条件式(3)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(8)の左辺であるOPD21×(1/λ-1/(λ+Δλb))は0.000である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(8)の左辺であるOPD21×(1/λ-1/(λ+Δλb))は0.000である。したがって、本実施例は、条件式(8)を満たさない。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.20%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(9)の左辺であるOPD22×(1/λ-1/(λ+Δλb))は7.499である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(9)の左辺であるOPD22×(1/λ-1/(λ+Δλb))は7.499である。したがって、本実施例は、条件式(9)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図11を参照)に、条件式(14)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は2.472である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図13を参照)に、条件式(14)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は2.471である。したがって、本実施例は、条件式(14)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(15)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は0.028である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図14を参照)に、条件式(15)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は0.028である。したがって、本実施例は、条件式(15)を満たさない。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は2.30%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、2.10%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。本実施例の測光装置1の測定値変動の絶対値は、実施例3の測光装置1の測定値変動の絶対値より大きい。そのため、実施例3の測光装置1は、本実施例の測光装置1より望ましい。
 <実施例7、実施例8、実施例9>
 図1から図23を参照して、実施例7から実施例9を説明する。実施例7から実施例9の測光装置1は、実施例1から実施例3の測光装置1と同様の構成を備えているが、以下の点で主に異なっている。
 実施例7から実施例9の可変光減衰器4の構成は、表6に示されるとおりである。そのため、透明基板11の光路長は、透明基板21の光路長と異なっている。
Figure JPOXMLDOC01-appb-T000006
 <実施例7>
 本実施例の可変光減衰器4に入射する光の入射角の分布、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例1の可変光減衰器4に入射する光の入射角の分布、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表2を参照)。そのため、本実施例では、実施例1と同様に、上記(a)可変光減衰器4に入射する被測定光の入射角の分布による、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(1)の左辺である|OPDθmax1-OPDθmin1|/λは2.040である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(1)の左辺である|OPDθmax1-OPDθmin1|/λは1.838である。したがって、本実施例は、条件式(1)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.05%である。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(4)の左辺である|OPDθmax2-OPDθmin2|/λは6.121である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(4)の左辺である|OPDθmax2-OPDθmin2|/λは5.797である。したがって、本実施例は、条件式(4)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(5)の左辺である|OPDθmax3-OPDθmin3|/λは12.242である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(5)の左辺である|OPDθmax3-OPDθmin3|/λは11.837である。したがって、本実施例は、条件式(5)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図13を参照)に、条件式(10)の左辺である|OPDθmax4-OPDθmin4|/λは0.362である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図16を参照)に、条件式(10)の左辺である|OPDθmax4-OPDθmin4|/λは0.120である。したがって、本実施例は、条件式(10)を満たさない。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は-2.41%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(11)の左辺である|OPDθmax5-OPDθmin5|は2.402である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(11)の左辺である|OPDθmax5-OPDθmin5|は2.120である。したがって、本実施例は、条件式(11)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.07%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、-2.39%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。本実施例の測光装置1の測定値変動の絶対値は、実施例1の測光装置1の測定値変動の絶対値より大きい。そのため、実施例1の測光装置1は、本実施例の測光装置1より望ましい。
 <実施例8>
 本実施例の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例2の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表3を参照)。そのため、本実施例では、実施例2と同様に、上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλaによる、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(2)の左辺であるOPD12×(1/λ-1/(λ+Δλa))は2.992である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(2)の左辺であるOPD12×(1/λ-1/(λ+Δλa))は2.993である。したがって、本実施例は、条件式(2)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(6)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は8.975である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(6)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は8.977である。したがって、本実施例は、条件式(6)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(7)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は17.950である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(7)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は17.952である。したがって、本実施例は、条件式(7)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図11を参照)に、条件式(12)の左辺であるOPDg1×(1/λ-1/(λ+Δλa))は0.266である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図13を参照)に、条件式(12)の左辺であるOPDg1×(1/λ-1/(λ+Δλa))は0.265である。したがって、本実施例は、条件式(12)を満たさない。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は2.74%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(13)の左辺であるOPDg2×(1/λ-1/(λ+Δλa))は2.725である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図14を参照)に、条件式(13)の左辺であるOPDg2×(1/λ-1/(λ+Δλa))は2.727である。したがって、本実施例は、条件式(13)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、2.74%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。本実施例の測光装置1の測定値変動の絶対値は、実施例2の測光装置1の測定値変動の絶対値より大きい。そのため、実施例2の測光装置1は、本実施例の測光装置1より望ましい。
 <実施例9>
 本実施例の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例3の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表4を参照)。そのため、本実施例では、実施例3と同様に、上記(c)被測定物2から放射される光(被測定光)の線幅Δλbによる、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(3)の左辺であるOPD13×(1/λ-1/(λ+Δλb))は1.000である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(3)の左辺であるOPD13×(1/λ-1/(λ+Δλb))は1.000である。したがって、本実施例は、条件式(3)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.01%である。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(8)の左辺であるOPD21×(1/λ-1/(λ+Δλb))は2.999である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(8)の左辺であるOPD21×(1/λ-1/(λ+Δλb))は3.000である。したがって、本実施例は、条件式(8)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(9)の左辺であるOPD22×(1/λ-1/(λ+Δλb))は5.999である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(9)の左辺であるOPD22×(1/λ-1/(λ+Δλb))は5.999である。したがって、本実施例は、条件式(9)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図11を参照)に、条件式(14)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は0.089である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図13を参照)に、条件式(14)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は0.088である。したがって、本実施例は、条件式(14)を満たさない。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は3.43%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(15)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は0.911である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図14を参照)に、条件式(15)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は0.911である。したがって、本実施例は、条件式(15)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.06%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、3.50%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。本実施例の測光装置1の測定値変動の絶対値は、実施例3の測光装置1の測定値変動の絶対値より大きい。そのため、実施例3の測光装置1は、本実施例の測光装置1より望ましい。
 <実施例10、実施例11、実施例12>
 図1から図23を参照して、実施例10から実施例12を説明する。実施例10から実施例12の測光装置1は、実施例1から実施例3の測光装置1と同様の構成を備えているが、以下の点で主に異なっている。
 実施例10から実施例12の可変光減衰器4の構成は、表7に示されるとおりである。そのため、透明基板11の光路長は、透明基板21の光路長と異なっている。
Figure JPOXMLDOC01-appb-T000007
 <実施例10>
 本実施例の可変光減衰器4に入射する光の入射角の分布、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例1の可変光減衰器4に入射する光の入射角の分布、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表2を参照)。そのため、本実施例では、実施例1と同様に、上記(a)可変光減衰器4に入射する被測定光の入射角の分布による、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(1)の左辺である|OPDθmax1-OPDθmin1|/λは5.101である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(1)の左辺である|OPDθmax1-OPDθmin1|/λは4.898である。したがって、本実施例は、条件式(1)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.03%である。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(4)の左辺である|OPDθmax2-OPDθmin2|/λは0.000である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(4)の左辺である|OPDθmax2-OPDθmin2|/λは0.203である。したがって、本実施例は、条件式(4)を満たさない。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.20%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(5)の左辺である|OPDθmax3-OPDθmin3|/λは15.303である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(5)の左辺である|OPDθmax3-OPDθmin3|/λは14.897である。したがって、本実施例は、条件式(5)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <可変光減衰器4に入射する被測定光の入射角の分布による、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図13を参照)に、条件式(10)の左辺である|OPDθmax4-OPDθmin4|/λは41.694である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図16を参照)に、条件式(10)の左辺である|OPDθmax4-OPDθmin4|/λは42.274である。したがって、本実施例は、条件式(10)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.03%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(11)の左辺である|OPDθmax5-OPDθmin5|は36.594である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(11)の左辺である|OPDθmax5-OPDθmin5|は37.274である。したがって、本実施例は、条件式(11)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、-0.21%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。
 <実施例11>
 本実施例の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例2の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表3を参照)。そのため、本実施例では、実施例2と同様に、上記(b)光検出素子9の分光応答度スペクトルの半値幅Δλaによる、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(2)の左辺であるOPD12×(1/λ-1/(λ+Δλa))は7.479である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(2)の左辺であるOPD12×(1/λ-1/(λ+Δλa))は7.480である。したがって、本実施例は、条件式(2)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(6)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は0.000である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(6)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は0.001である。したがって、本実施例は、条件式(6)を満たさない。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.20%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(7)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は22.438である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(7)の左辺であるOPD21×(1/λ-1/(λ+Δλa))は22.440である。したがって、本実施例は、条件式(7)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <光検出素子9の分光応答度スペクトルの半値幅Δλaによる、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図11を参照)に、条件式(12)の左辺であるOPDg1×(1/λ-1/(λ+Δλa))は21.881である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図13を参照)に、条件式(12)の左辺であるOPDg1×(1/λ-1/(λ+Δλa))は21.878である。したがって、本実施例は、条件式(12)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(13)の左辺であるOPDg2×(1/λ-1/(λ+Δλa))は14.402である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図14を参照)に、条件式(13)の左辺であるOPDg2×(1/λ-1/(λ+Δλa))は14.398である。したがって、本実施例は、条件式(13)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、-0.20%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。本実施例の測光装置1の測定値変動の絶対値は、実施例2の測光装置1の測定値変動の絶対値より大きい。そのため、実施例2の測光装置1は、本実施例の測光装置1より望ましい。
 <実施例12>
 本実施例の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbは、それぞれ、実施例3の可変光減衰器4への光の入射角、光検出素子9の分光応答度スペクトルの半値幅Δλa、及び、被測定物2から放射される光(被測定光)の線幅Δλbと同じである(表4を参照)。そのため、本実施例では、実施例3と同様に、上記(c)被測定物2から放射される光(被測定光)の線幅Δλbによる、複数の多重反射光の間の第一の干渉、第二の干渉及び第三の干渉に起因する干渉強度の変動成分の低減を検討する。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第一の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図5を参照)に、条件式(3)の左辺であるOPD13×(1/λ-1/(λ+Δλb))は2.500である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図6を参照)に、条件式(3)の左辺であるOPD13×(1/λ-1/(λ+Δλb))は2.500である。したがって、本実施例は、条件式(3)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第一の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第二の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図7を参照)に、条件式(8)の左辺であるOPD21×(1/λ-1/(λ+Δλb))は0.000である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図9を参照)に、条件式(8)の左辺であるOPD21×(1/λ-1/(λ+Δλb))は0.000である。したがって、本実施例は、条件式(8)を満たさない。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで4回反射する光と第2光減衰フィルタで2回反射する光との間の干渉)による測光装置1の測定値変動は、-0.20%である。
 第1光減衰フィルタ(光減衰フィルタ10)と第2光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図8を参照)に、条件式(9)の左辺であるOPD22×(1/λ-1/(λ+Δλb))は7.499である。第1光減衰フィルタと第2光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図10を参照)に、条件式(9)の左辺であるOPD22×(1/λ-1/(λ+Δλb))は7.499である。したがって、本実施例は、条件式(9)を満たす。第1光減衰フィルタと第2光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第二の干渉(第1光減衰フィルタで2回反射する光と第2光減衰フィルタで4回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 <被測定物2から放射される光(被測定光)の線幅Δλbによる、第三の干渉に起因する干渉強度の変動成分の低減>
 本実施例では、第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図11を参照)に、条件式(14)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は7.312である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図13を参照)に、条件式(14)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は7.311である。したがって、本実施例は、条件式(14)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第3光減衰フィルタで2回反射する光と、第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 第3光減衰フィルタ(光減衰フィルタ10)と第4光減衰フィルタ(光減衰フィルタ20)との間の相対的な傾き角θが0.0°の場合(図12を参照)に、条件式(15)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は4.813である。第3光減衰フィルタと第4光減衰フィルタとの間の相対的な傾き角θが0.1°の場合(図14を参照)に、条件式(15)の左辺であるOPDg1×(1/λ-1/(λ+Δλb))は4.812である。したがって、本実施例は、条件式(15)を満たす。第3光減衰フィルタと第4光減衰フィルタとの間の相対傾き角θが0.0°から0.1°に変化したときの第三の干渉(第4光減衰フィルタで2回反射する光と第3光減衰フィルタと第4光減衰フィルタとの間の層(例えば、空気層)で2回反射する光との間の干渉)による測光装置1の測定値変動は、0.00%である。
 本実施例の測光装置1の測定値変動は、第一の干渉に起因する測定値変動と、第二の干渉に起因する測定値変動と、第三の干渉の起因する測定値変動の合計によって与えられる。本実施例の測光装置1の測定値変動は、-0.20%である。本実施例の測光装置1の測定値変動の絶対値は5%以内であるため、被測定光は精度よく測定され得る。本実施例の測光装置1の測定値変動の絶対値は、実施例3の測光装置1の測定値変動の絶対値より大きい。そのため、実施例3の測光装置1は、本実施例の測光装置1より望ましい。
 (変形例)
 透明基板11の屈折率n1を透明基板21の屈折率n2と異ならせることによって、透明基板11の光路長を、透明基板21の光路長と異ならせてもよい。
 実施の形態の測光装置1は2枚の光減衰フィルタを備えているが、3枚以上の光減衰フィルタを備えてもよい。測光装置1が備える複数の光減衰フィルタのうちの任意の2枚の光減衰フィルタが、実施の形態に示される条件式を満たしていればよい。
 実施の形態の測光装置1は、刺激値直読型の測色計等の測光装置にも適用できる。その場合、光検出素子9の分光応答度スペクトルの幅は50nm程度以上と大きいが、実施の形態に示される条件を満たせば、広いダイナミックレンジを実現しながら、コンパクトなサイズを有し、かつ、より高い精度で光を測定することができる測光装置1を提供することができる。
 実施の形態では、2枚の光減衰フィルタを挿入または退避させる場合を想定しているが、複数のフィルタが、光軸2p上に固定されていてもよい。複数のフィルタが光軸2p上に固定されている場合でも、測光装置1の周りの環境温度の変化または測光装置1に印加される振動衝撃等によって、複数のフィルタの間の相対的な傾き角がわずかに変化することがある。このように、複数のフィルタが光軸2p上に固定されていて、複数のフィルタの間の相対的な傾き角がわずかに変化する場合でも、より高い精度でかつより安定的に光を測定することが可能になる。
 実施の形態の測光装置1は、光減衰フィルタに限らず、ショートカットフィルタ、ロングカットフィルタまたはバンドパスフィルタ等のような、光減衰フィルタとは異なる特性を有する干渉フィルタを備えてもよい。光減衰フィルタとは異なる特性を有する干渉フィルタを備える測光装置1は、異なる特性の光学測定が可能となる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 測光装置、2 被測定物、2p 光軸、3 コリメータレンズ、4 可変光減衰器、5 駆動装置、6 分光素子、7 集光レンズ、8 光検出器、9 光検出素子、10,20 光減衰フィルタ、11,21 透明基板、12,13,22,23 干渉多層膜、14,24 入射面、15,25 出射面。

Claims (16)

  1.  複数の光減衰フィルタと、駆動装置とを含む可変光減衰器と、
     前記可変光減衰器を通過した光を受光する光検出器とを備え、
     前記駆動装置は、前記複数の光減衰フィルタを、互いに独立して、前記光の光軸に挿入すること及び前記光軸から退避させることができ、
     前記複数の光減衰フィルタは、前記光軸に沿う方向において互いに異なる位置に配置されており、
     前記複数の光減衰フィルタの各々は、干渉多層膜と、前記干渉多層膜を支持する透明基板とを含み、
     前記複数の光減衰フィルタのうちの任意の二つの組み合わせを、第1光減衰フィルタ及び第2光減衰フィルタとすると、
     前記光軸に沿う前記方向において、前記第2光減衰フィルタは前記第1光減衰フィルタより前記光検出器に近位しており、
     前記第1光減衰フィルタは、前記干渉多層膜としての第1干渉多層膜と、前記透明基板としての第1透明基板とを含み、
     前記第2光減衰フィルタは、前記干渉多層膜としての第2干渉多層膜と、前記透明基板としての第2透明基板とを含み、
     前記第1透明基板の第1光路長は、前記第2透明基板の第2光路長と異なっている、測光装置。
  2.  前記光は、前記可変光減衰器への入射角の分布を有しており、
     以下の条件式(1)を満足する、請求項1に記載の測光装置;
     |OPDθmax1-OPDθmin1|/λ>0.5 …(1)
     ただし、
     OPDθmax1=(OP1220max-OP1022max)であり、
     OPDθmin1=(OP1220min-OP1022min)であり、
     λは、前記測光装置の測定可能波長範囲内に含まれる前記光の波長であり、
     OP1220maxは、前記第1光減衰フィルタで2回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する最大入射角光の光路長であり、前記最大入射角光は、前記光のうち前記可変光減衰器への入射角が最大である光であり、
     OP1022maxは、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで2回反射する前記最大入射角光の光路長であり、
     OP1220minは、前記第1光減衰フィルタで2回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する最小入射角光の光路長であり、前記最小入射角光は、前記光のうち前記可変光減衰器への入射角が最小である光であり、
     OP1022minは、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで2回反射する前記最小入射角光の光路長である。
  3.  分光情報を測定可能な分光器である、請求項1に記載の測光装置。
  4.  以下の条件式(2)を満足する、請求項3に記載の測光装置;
     OPD12×(1/λ-1/(λ+Δλa))>0.5 …(2)
     ただし、
     OPD12=|OP1220-OP1022|であり、
     λは、前記測光装置の測定可能波長範囲内に含まれる前記光の波長であり、
     前記Δλaは、前記光検出器に含まれる光検出素子の分光応答度スペクトルの半値幅であり、
     OP1220は、前記第1光減衰フィルタで2回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記光の光路長であり、
     OP1022は、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで2回反射する前記光の光路長である。
  5.  以下の条件式(3)を満足する、請求項1に記載の測光装置;
     OPD13×(1/λ-1/(λ+Δλb))>0.5 …(3)
     ただし、
     OPD13=|OP1220-OP1022|であり、
     λは、前記測光装置の測定可能波長範囲内に含まれる前記光の波長であり、
     前記Δλbは、被測定物から放射される前記光の線幅であり、
     OP1220は、前記第1光減衰フィルタで2回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記光の光路長であり、
     OP1022は、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで2回反射する前記光の光路長である。
  6.  前記第1透明基板の第1厚さは、前記第2透明基板の第2厚さと異なっている、請求項1から請求項5のいずれか一項に記載の測光装置。
  7.  前記第1透明基板の第1屈折率は、前記第2透明基板の第2屈折率と異なっている、請求項1から請求項6のいずれか一項に記載の測光装置。
  8.  前記複数の光減衰フィルタの各々の前記干渉多層膜は、同じ材料で形成されており、
     前記複数の光減衰フィルタの各々の前記透明基板は、同じ材料で形成されている、請求項1から請求項6のいずれか一項に記載の測光装置。
  9.  前記複数の光減衰フィルタは、各々、前記光軸に対して同じ角度で配置されている、請求項1から請求項8のいずれか一項に記載の測光装置。
  10.  前記複数の光減衰フィルタの入射側に配置されているコリメートレンズをさらに備える、請求項1から請求項9のいずれか一項に記載の測光装置。
  11.  以下の条件式(4)及び(5)を満足する、請求項2に記載の測光装置;
     |OPDθmax2-OPDθmin2|/λ>0.5 …(4)
     |OPDθmax3-OPDθmin3|/λ>0.5 …(5)
     ただし、
     OPDθmax2=(OP1420max-OP1022max)であり、
     OPDθmin2=(OP1420min-OP1022min)であり、
     OPDθmax3=(OP1024max-OP1220max)であり、
     OPDθmin3=(OP1024min-OP1220min)であり、
     OP1420maxは、前記第1光減衰フィルタで4回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記最大入射角光の光路長であり、
     OP1022maxは、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで2回反射する前記最大入射角光の光路長であり、
     OP1420minは、前記第1光減衰フィルタで4回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記最小入射角光の光路長であり、
     OP1022minは、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで2回反射する、前記最小入射角光の光路長であり、
     OP1024maxは、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで4回反射する前記最大入射角光の光路長であり、
     OP1220maxは、前記第1光減衰フィルタで2回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記最大入射角光の光路長であり、
     OP1024minは、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで4回反射する前記最小入射角光の光路長であり、
     OP1220minは、前記第1光減衰フィルタで2回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記最小入射角光の光路長である。
  12.  以下の条件式(6)及び(7)を満足する、請求項4に記載の測光装置;
     OPD21×(1/λ-1/(λ+Δλa))>0.5 …(6)
     OPD22×(1/λ-1/(λ+Δλa))>0.5 …(7)
     ただし、
     OPD21=|OP1420-OP1022|であり、
     OPD22=|OP1024-OP1220|であり、
     OP1420は、前記第1光減衰フィルタで4回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記光の光路長であり、
     OP1022は、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで2回反射する前記光の光路長であり、
     OP1024は、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで4回反射する前記光の光路長であり、
     OP1220は、前記第1光減衰フィルタで2回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記光の光路長である。
  13.  以下の条件式(8)及び(9)を満足する、請求項5に記載の測光装置;
     OPD21×(1/λ-1/(λ+Δλb))>0.5 …(8)
     OPD22×(1/λ-1/(λ+Δλb))>0.5 …(9)
     ただし、
     OPD21=|OP1420-OP1022|であり、
     OPD22=|OP1024-OP1220|であり、
     OP1420は、前記第1光減衰フィルタで4回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記光の光路長であり、
     OP1022は、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで2回反射する前記光の光路長であり、
     OP1024は、前記第1光減衰フィルタで反射されることなく前記第1光減衰フィルタを通過し、かつ、前記第2光減衰フィルタで4回反射する前記光の光路長であり、
     OP1220は、前記第1光減衰フィルタで2回反射し、かつ、前記第2光減衰フィルタで反射されることなく前記第2光減衰フィルタを通過する前記光の光路長である。
  14.  前記複数の光減衰フィルタは、前記第1光減衰フィルタとしての第3光減衰フィルタと前記第2光減衰フィルタとしての第4光減衰フィルタとを含み、前記第3光減衰フィルタと前記第4光減衰フィルタとは、前記複数の光減衰フィルタのうち互いに隣り合う任意の二つの光減衰フィルタであり、
     以下の条件式(10)及び(11)を満足する、請求項2または請求項11に記載の測光装置;
     |OPDθmax4-OPDθmin4|/λ>0.5 …(10)
     |OPDθmax5-OPDθmin5|/λ>0.5 …(11)
     ただし、
     OPDθmax4=(OP3240max-OP30G240max)であり、
     OPDθmin4=(OP3240min-OP30G240min)であり、
     OPDθmax5=(OP3042max-OP30G240max)であり、
     OPDθmin5=(OP3042min-OP30G240min)であり、
     OP3240maxは、前記第3光減衰フィルタで2回反射し、かつ、前記第4光減衰フィルタで反射されることなく前記第4光減衰フィルタを通過する前記最大入射角光の光路長であり、
     OP30G240maxは、前記第3光減衰フィルタ及び前記第4光減衰フィルタで反射されることなく前記第3光減衰フィルタ及び前記第4光減衰フィルタを通過し、かつ、前記第3光減衰フィルタと前記第4光減衰フィルタとの間の層で2回反射する前記最大入射角光の光路長であり、
     OP3240minは、前記第3光減衰フィルタで2回反射し、かつ、前記第4光減衰フィルタで反射されることなく前記第4光減衰フィルタを通過する前記最小入射角光の光路長であり、
     OP30G240minは、前記第3光減衰フィルタ及び前記第4光減衰フィルタで反射されることなく前記第3光減衰フィルタ及び前記第4光減衰フィルタを通過し、かつ、前記第3光減衰フィルタと前記第4光減衰フィルタとの間の前記層で2回反射する前記最小入射角光の光路長であり、
     OP3042maxは、前記第3光減衰フィルタで反射されることなく前記第3光減衰フィルタを通過し、かつ、前記第4光減衰フィルタで2回反射する前記最大入射角光の光路長であり、
     OP3042minは、前記第3光減衰フィルタで反射されることなく前記第3光減衰フィルタを通過し、かつ、前記第4光減衰フィルタで2回反射する前記最小入射角光の光路長である。
  15.  前記複数の光減衰フィルタは、前記第1光減衰フィルタとしての第3光減衰フィルタと前記第2光減衰フィルタとしての第4光減衰フィルタとを含み、前記第3光減衰フィルタと前記第4光減衰フィルタとは、前記複数の光減衰フィルタのうち互いに隣り合う任意の二つの光減衰フィルタであり、
     以下の条件式(12)及び(13)を満足する、請求項4または請求項12に記載の測光装置;
     OPDg1×(1/λ-1/(λ+Δλa))>0.5 …(12)
     OPDg2×(1/λ-1/(λ+Δλa))>0.5 …(13)
     ただし、
     OPDg1=|OP3240-OP30G240|であり、
     OPDg2=|OP3042-OP30G240|であり、
     OP3240は、前記第3光減衰フィルタで2回反射し、かつ、前記第4光減衰フィルタで反射されることなく前記第4光減衰フィルタを通過する前記光の光路長であり、
     OP30G240は、前記第3光減衰フィルタ及び前記第4光減衰フィルタで反射されることなく前記第3光減衰フィルタ及び前記第4光減衰フィルタを通過し、かつ、前記第3光減衰フィルタと前記第4光減衰フィルタとの間の層で2回反射する前記光の光路長であり、
     OP3042は、前記第3光減衰フィルタで反射されることなく前記第3光減衰フィルタを通過し、かつ、前記第4光減衰フィルタで2回反射する前記光の光路長である。
  16.  前記複数の光減衰フィルタは、前記第1光減衰フィルタとしての第3光減衰フィルタと前記第2光減衰フィルタとしての第4光減衰フィルタとを含み、前記第3光減衰フィルタと前記第4光減衰フィルタとは、前記複数の光減衰フィルタのうち互いに隣り合う任意の二つの光減衰フィルタであり、
     以下の条件式(14)及び(15)を満足する、請求項5または請求項13に記載の測光装置;
     OPDg1×(1/λ-1/(λ+Δλb))>0.5 …(14)
     OPDg2×(1/λ-1/(λ+Δλb))>0.5 …(15)
     ただし、
     OPDg1=|OP3240-OP30G240|であり、
     OPDg2=|OP3042-OP30G240|であり、
     OP3240は、前記第3光減衰フィルタで2回反射し、かつ、前記第4光減衰フィルタで反射されることなく前記第4光減衰フィルタを通過する前記光の光路長であり、
     OP30G240は、前記第3光減衰フィルタ及び前記第4光減衰フィルタで反射されることなく前記第3光減衰フィルタ及び前記第4光減衰フィルタを通過し、かつ、前記第3光減衰フィルタと前記第4光減衰フィルタとの間の層で2回反射する前記光の光路長であり、
     OP3042は、前記第3光減衰フィルタで反射されることなく前記第3光減衰フィルタを通過し、かつ、前記第4光減衰フィルタで2回反射する前記光の光路長である。
PCT/JP2021/028941 2020-09-09 2021-08-04 測光装置 WO2022054469A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180054564.1A CN116157657A (zh) 2020-09-09 2021-08-04 测光装置
US18/025,381 US20230341261A1 (en) 2020-09-09 2021-08-04 Photometric device
JP2022547443A JPWO2022054469A1 (ja) 2020-09-09 2021-08-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-151214 2020-09-09
JP2020151214 2020-09-09

Publications (1)

Publication Number Publication Date
WO2022054469A1 true WO2022054469A1 (ja) 2022-03-17

Family

ID=80632547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028941 WO2022054469A1 (ja) 2020-09-09 2021-08-04 測光装置

Country Status (4)

Country Link
US (1) US20230341261A1 (ja)
JP (1) JPWO2022054469A1 (ja)
CN (1) CN116157657A (ja)
WO (1) WO2022054469A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989667A (ja) * 1995-09-22 1997-04-04 Nikon Corp 分光照射装置
JPH09218092A (ja) * 1996-02-14 1997-08-19 Jasco Corp 分光光度計のリニアリティの検証方法および減光フィルタ
US20050207014A1 (en) * 2004-03-05 2005-09-22 Coronado Instruments, Inc. Solar tunable filter assembly
US20070253063A1 (en) * 2006-04-29 2007-11-01 Hruska Curtis R Narrow bandpass filter assemblies for solar telescopes
JP2009063377A (ja) * 2007-09-05 2009-03-26 Nippon Telegr & Teleph Corp <Ntt> 光線路試験システムおよび光線路試験方法
WO2012014767A1 (ja) * 2010-07-26 2012-02-02 岩崎電気株式会社 照射装置
WO2019039584A1 (ja) * 2017-08-24 2019-02-28 国立大学法人名古屋大学 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0989667A (ja) * 1995-09-22 1997-04-04 Nikon Corp 分光照射装置
JPH09218092A (ja) * 1996-02-14 1997-08-19 Jasco Corp 分光光度計のリニアリティの検証方法および減光フィルタ
US20050207014A1 (en) * 2004-03-05 2005-09-22 Coronado Instruments, Inc. Solar tunable filter assembly
US20070253063A1 (en) * 2006-04-29 2007-11-01 Hruska Curtis R Narrow bandpass filter assemblies for solar telescopes
JP2009063377A (ja) * 2007-09-05 2009-03-26 Nippon Telegr & Teleph Corp <Ntt> 光線路試験システムおよび光線路試験方法
WO2012014767A1 (ja) * 2010-07-26 2012-02-02 岩崎電気株式会社 照射装置
WO2019039584A1 (ja) * 2017-08-24 2019-02-28 国立大学法人名古屋大学 光発生装置並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Also Published As

Publication number Publication date
CN116157657A (zh) 2023-05-23
JPWO2022054469A1 (ja) 2022-03-17
US20230341261A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
TWI641813B (zh) 光學濾波器及光譜儀及用於獲得沿著一光學路徑傳播之一光束之一光譜之方法
US7773302B2 (en) Low cost filter for fluorescence systems
JPH04213403A (ja) 可変波長光フィルタ及びセンサシステム
US20140049630A1 (en) Dichroic image splitter
US20120026588A1 (en) Tunable spectral filtration device
US20040070765A1 (en) Spectrometer and spectrally separating method
JP4743917B2 (ja) 光学ユニット
JP2010197358A (ja) 分光分析装置及び元素分析装置
WO2022054469A1 (ja) 測光装置
US7576860B2 (en) Light filter having a wedge-shaped profile
JP2011117884A (ja) 分光測定器
KR20210093154A (ko) 이미지 센서 및 그의 동작 방법
JP5470842B2 (ja) 光学フィルタ及び受光装置
WO2015188058A1 (en) Cascaded beam combiner
US20100208348A1 (en) Tunable spectral filtration device
JP5226420B2 (ja) 光学フィルター
US20170201657A1 (en) Bandpass filter with variable passband
US7164477B2 (en) Infrared spectrometer
KR20210093153A (ko) 분산 어레이 및 그의 제조 방법
US20210164831A1 (en) Filter assembly, detector, and method of manufacture of a filter assembly
TW202104857A (zh) 使用多通道色彩感測器的光譜重建
JP3512974B2 (ja) レーザ光源の波長モニタ装置
WO2022137902A1 (ja) 光学部材及び光学装置
Turner et al. For Compactness and Ruggedness, Linear Variable Filters Fit the Bill
CN217542855U (zh) 串联光栅光谱仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547443

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866429

Country of ref document: EP

Kind code of ref document: A1