WO2022052440A1 - 钢丝绳拉力缺陷检测方法 - Google Patents

钢丝绳拉力缺陷检测方法 Download PDF

Info

Publication number
WO2022052440A1
WO2022052440A1 PCT/CN2021/081787 CN2021081787W WO2022052440A1 WO 2022052440 A1 WO2022052440 A1 WO 2022052440A1 CN 2021081787 W CN2021081787 W CN 2021081787W WO 2022052440 A1 WO2022052440 A1 WO 2022052440A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rope
steel wire
defect
display diagram
guided wave
Prior art date
Application number
PCT/CN2021/081787
Other languages
English (en)
French (fr)
Inventor
张东来
高伟
朱雪丽
Original Assignee
哈尔滨工业大学(深圳)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学(深圳) filed Critical 哈尔滨工业大学(深圳)
Priority to EP21865503.3A priority Critical patent/EP4198506B1/en
Priority to US18/025,403 priority patent/US11852610B2/en
Publication of WO2022052440A1 publication Critical patent/WO2022052440A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/048Marking the faulty objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2626Wires, bars, rods

Definitions

  • the invention belongs to the technical field of wire rope detection, and in particular relates to a wire rope tension defect detection method.
  • micro steel wire rope is a kind of skeleton material widely used in the manufacture of elevator traction steel belts, conveyor belts and synchronous belts. Together strong. But now the detection of fine wire ropes is focused on its defect detection, and has not paid attention to the influence on the natural frequency of the wire rope when its tension changes. At the same time, when the tension of the steel wire rope is different, the wave speed, amplitude and energy coupling between the steel wires will change. There is no effective method to judge the changes of these parameters.
  • the main purpose of the present invention is to propose a wire rope tension defect detection method, which aims to solve the technical problems mentioned in the background art.
  • a method for detecting a wire rope tension defect of the present invention includes the following steps: step S10, setting the excitation sensor on the first position of the wire rope to be tested, and setting the detection sensor on the second position of the wire rope; step S20, obtaining the wire rope The magnitude of the pulling force received is obtained, and the first display diagram corresponding to the magnitude of the pulling force is obtained; step S30, the white noise signal is loaded onto the excitation sensor through the power amplifier; step S40, the data collected by the detection sensor is obtained within the first preset time period.
  • step S50 upload the detection signal to the PC and perform FFT processing to generate a second display diagram showing the natural frequency spectrum and direct guided wave amplitude; step S60, determine according to the first display diagram and the second display diagram Whether there is a defect in the wire rope, if so, step S70 is performed; in step S70, the defect position of the wire rope is determined.
  • step S70 specifically includes: step S71, acquiring a third display diagram corresponding to the magnitude of the pulling force; step S72, generating a fourth display diagram of direct guided wave amplitude and propagation time according to the second display diagram; step S73, according to the first display diagram The third display and the fourth display confirm the propagation time of the defective guided wave; step S74, calculate the location of the defect of the wire rope according to the propagation time.
  • the third display graph represents a graph showing the direct guided wave amplitude and propagation time of the wire rope without defects.
  • the first display diagram shows a line segment related to the natural frequency spectrum of the steel wire rope when there is no defect and the amplitude of the direct guided wave.
  • the first position is a position 0.8m away from one end of the wire rope
  • the second position is a position 2.0m away from one end of the wire rope.
  • the wire rope tension defect detection method of the present invention has the following beneficial effects: the present invention detects the natural frequency of the fine wire rope by applying a white noise signal to the fine wire rope through the longitudinal guided wave sensor, and detects the tension condition of the wire rope with the change of the natural frequency, At the same time, monitor whether the tensile force changes. At the same time, the excitation frequency of the guided wave is selected according to the detected natural frequency to achieve the maximum amplitude of the guided wave, and whether there is a defect in the wire rope is judged according to the guided wave signal. As well as accurate calculation of the location of the defect.
  • FIG. 1 is a schematic flow chart of the first embodiment of the wire rope tensile defect detection method of the present invention.
  • FIG. 2 is a schematic diagram of the refinement process of step S70 in the first embodiment of the wire rope tensile defect detection method of the present invention.
  • FIG. 3 is a schematic diagram of step S10 in the present invention.
  • FIG. 4 is a third display diagram referred to in step S71 of the present invention.
  • FIG. 5 is a first display diagram referred to in step S20 of the present invention.
  • FIG. 6 is a second display diagram referred to in step S50 in the present invention.
  • FIG. 7 is a schematic diagram of step S60 and step S70 in the present invention.
  • the detection of fine wire ropes mentioned in the background art specifically relates to wire ropes.
  • Steel wire rope is a skeleton material widely used in the manufacture of elevator traction steel belts, conveyor belts and synchronous belts. This kind of steel wire rope has a smaller diameter, high twist quality, high-pass bar performance, low number of revolutions and strong adhesion to surface materials.
  • Magnetic flux leakage nondestructive testing is widely used in the nondestructive testing of steel wire ropes. By detecting the magnetic flux leakage of the pipeline, not only the location and size of the defect can be detected, but also the internal defects of the pipeline can be detected. At the same time, through signal processing, the wire rope can be detected online in a complex electromagnetic environment.
  • magnetostrictive guided waves can quickly detect long-distance structures without the need for couplants, making them widely used in non-destructive testing and structural health monitoring.
  • the tension on the wire rope will cause the phenomenon that the longitudinal guided wave frequency band is missing, and this frequency is the notch frequency.
  • the optimal excitation frequency and wave speed will change.
  • the coupling form of guided wave energy between steel wires will change, but there is no specific change law between it and tension in the article.
  • FIG. 1 is a schematic flow chart of the first embodiment of the method for detecting the tensile force defect of a wire rope of the present invention.
  • a method for detecting a wire rope tension defect of the present invention includes the following steps: as shown in FIG. 3 , in step S10 , the excitation sensor 10 is set on the first position of the wire rope 40 to be tested, and the detection sensor 20 is set on the wire rope 40 . In the second position; in step S10, the wire rope is used in the actual inspection, and the wire rope does not need to be removed, and then placed on our platform for inspection. Among them, the first position is 0.8m away from one end of the wire rope, and the second position is 2.0m away from one end of the wire rope; of course, the specific setting position can be adjusted according to actual needs.
  • Step S20 obtaining the magnitude of the tensile force received by the wire rope, and obtaining a first display diagram corresponding to the magnitude of the tensile force (as shown in Figure 5); the first display diagram shows that the natural frequency spectrum of the wire rope is correlated with the direct guided wave amplitude when there is no defect.
  • the figure contains 6 line segments, which are 10kg tension, 20kg tension, 30kg tension, 40kg tension, 50kg tension and 60kg tension related line segments.
  • step S30 the white noise signal is loaded onto the excitation sensor through the power amplifier, so that the excitation sensor sends an electrical signal to the wire rope; in step S30, the change of the amplitude of the guided wave can be more accurately reflected by the white noise signal.
  • the spectral energy of the white noise detection signal is large, the peak value of the direct guided wave will also be large. Therefore, the change of the amplitude of the direct guided wave at different frequencies can be accurately verified by the white noise detection signal.
  • the electrical signal is propagated on the wire rope.
  • Step S40 acquiring the detection signal collected by the detection sensor 20 within the first preset time period;
  • Step S50 uploading the detection signal to the PC and performing FFT processing to generate a display showing the correlation between the natural frequency spectrum and the direct guided wave amplitude.
  • step S60 it specifically includes: placing the first line segment and the second line segment in the same coordinate system to compare the degree of coincidence, judging whether there is an error area, and if there is an error area, perform step S70; the error area represents the newly added
  • the signal area can be understood as the non-overlapping area between the first line segment and the second line segment, that is, the newly added signal area represents a defective guided wave; obviously, when there is an error area, it means that the wire rope has a defect problem.
  • step S70 the defect position of the wire rope is determined.
  • the wire rope tension defect detection method of the present invention has the following beneficial effects: the present invention detects the natural frequency of the fine wire rope by applying a white noise signal to the fine wire rope through the longitudinal guided wave sensor, and detects the tension condition of the wire rope with the change of the natural frequency, At the same time, monitor whether the tensile force changes. At the same time, the excitation frequency of the guided wave is selected according to the detected natural frequency to achieve the maximum amplitude of the guided wave, and whether there is a defect in the wire rope is judged according to the guided wave signal. As well as accurate calculation of the location of the defect.
  • step S70 specifically includes: step S71 , obtaining a third display diagram corresponding to the magnitude of the pulling force (as shown in FIG. 4 ); wherein, the third display diagram shows the direct connection of the wire rope when there is no defect
  • the third line segment (shown in Figure 4 and the solid line in Figure 7) correlates the magnitude of the guided wave with the propagation time.
  • Step S72 according to the second display diagram (shown in FIG. 6 ), generate a fourth display diagram of the direct guided wave amplitude and propagation time; the propagation time represents the propagation time of the electrical signal on the wire rope; After propagating on the steel wire rope, it reaches the fourth line segment (dashed line segment in Figure 7) related to the amplitude and propagation time of the guided wave.
  • Step S73 confirm the propagation time of the defective guided wave Z according to the third display and the fourth display; in step S73, confirm the propagation time of the defective guided wave; step S74, calculate the location of the defect of the wire rope according to the propagation time.
  • step S74 one-half of the product of the guided wave speed and the propagation time represents the distance of the defect position from the detection sensor 20 .
  • the beneficial effects of the present invention are as follows: 1) The detection of the natural frequency of the steel wire rope can be realized under the condition of low power consumption; 2) The change of the natural frequency of the steel wire rope can be detected in real time to judge the change of the tension force of the steel wire rope; 3) The energy density of the natural frequency spectrum can be By judging the magnitude of the guided wave amplitude, the excitation frequency of the maximum guided wave amplitude can be selected, and the signal-to-noise ratio of the guided wave can be improved; 4) The wire rope condition monitoring and defect detection can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种钢丝绳拉力缺陷检测方法,包括以下步骤:步骤S10,将激励传感器(10)设置于待测的钢丝绳(40)的第一位置上,将检测传感器(20)设置于钢丝绳(40)的第二位置上;步骤S20,获取钢丝绳(40)所受到的拉力大小,获取与拉力大小对应的第一显示图;步骤S30,白噪声信号通过功率放大器加载至激励传感器(10)上;步骤S40,在第一预设时间段内获取检测传感器(20)所收集到的检测信号;步骤S50,将检测信号上传至PC机后进行FFT处理,生成显示有固有频率频谱和直达导波幅值的第二显示图;步骤S60,根据第一显示图和第二显示图判断钢丝绳(40)是否存在缺陷问题,如果存在则执行步骤S70;步骤S70,确定钢丝绳(40)的缺陷位置。通过纵向导波传感器向微细钢丝绳(40)上施加白噪声信号来检测微细钢丝绳(40)的固有频率,以固有频率的变化情况来检测钢丝绳(40)所受拉力情况,同时监测其所受拉力是否发生变化;根据检测的固有频率选择导波的激励频率,以达到导波最大幅值,根据导波信号来判断钢丝绳(40)中是否存在缺陷,并且精确计算出缺陷所在位置。

Description

钢丝绳拉力缺陷检测方法 技术领域
本发明属于钢丝绳检测技术领域,尤其涉及一种钢丝绳拉力缺陷检测方法。
背景技术
目前,微细钢丝绳是一种广泛用于制造电梯曳引钢带、传送带、同步带的骨架材料,该种钢丝绳绳径更细、高捻制质量 、高通条性能、低回转数以及与表面材料粘合强。但现在微细钢丝绳检测都集中在其缺陷检测,并没有关注过其拉力变化时,对钢丝绳固有频率造成的影响。同时钢丝绳所受的拉力不同时,导波的波速、幅值及钢丝之间的能量耦合都会发生变化,现在没有有效的方法来判断这些参数的变化情况。
因此,急需一种钢丝绳拉力缺陷检测方法。
技术问题
本发明的主要目的在于提出一种钢丝绳拉力缺陷检测方法,旨在解决背景技术中所提及的技术问题。
技术解决方案
本发明的一种钢丝绳拉力缺陷检测方法,包括以下步骤:步骤S10,将激励传感器设置于待测的钢丝绳的第一位置上,将检测传感器设置于钢丝绳的第二位置上;步骤S20,获取钢丝绳所受到的拉力大小,获取与拉力大小对应的第一显示图;步骤S30,白噪声信号通过功率放大器加载至激励传感器上;步骤S40,在第一预设时间段内获取检测传感器所收集到的检测信号;步骤S50,将检测信号上传至 PC 机后进行 FFT 处理,生成显示有固有频率频谱和直达导波幅值的第二显示图;步骤S60,根据第一显示图和第二显示图判断钢丝绳是否存在缺陷问题,如果存在则执行步骤S70;步骤S70,确定钢丝绳的缺陷位置。
优选地,步骤S70具体包括:步骤S71,获取与拉力大小对应的第三显示图;步骤S72,根据第二显示图生成直达导波幅值和传播时间的第四显示图;步骤S73,根据第三显示图和第四显示图确认缺陷导波的传播时间;步骤S74,根据传播时间计算钢丝绳的缺陷所在位置。
优选地,第三显示图表示钢丝绳在没有缺陷时的显示有直达导波幅值和传播时间的图。
优选地,第一显示图显示有钢丝绳在没有缺陷时固有频率频谱和直达导波幅值相关的线段。
优选地,第一位置为距离钢丝绳一端为0.8m的位置,第二位置为距离钢丝绳一端为2.0m的位置。
有益效果
本发明的钢丝绳拉力缺陷检测方法,有益效果如下:本发明通过纵向导波传感器向微细钢丝绳上施加白噪声信号来检测微细钢丝绳的固有频率,以固有频率的变化情况来检测钢丝绳所受拉力情况,同时监测其所受拉力是否发生变化。同时根据检测的固有频率选择导波的激励频率,以达到导波最大幅值,根据导波信号来判断钢丝绳中是否存在缺陷。以及精确计算处缺陷所在位置。
附图说明
图1为本发明的钢丝绳拉力缺陷检测方法第一实施例的流程示意图。
图2为本发明的钢丝绳拉力缺陷检测方法第一实施例中步骤S70的细化流程示意图。
图3为本发明中步骤S10的示意图。
图4为本发明中步骤S71所指的第三显示图。
图5为本发明中步骤S20中所指的第一显示图。
图6为本发明中步骤S50所指的第二显示图。
图7为本发明中步骤S60、步骤S70的示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。需要注意的是,相关术语如“第一”、“第二”等可以用于描述各种组件,但是这些术语并不限制该组件。这些术语仅用于区分一个组件和另一组件。例如,不脱离本发明的范围,第一组件可以被称为第二组件,并且第二组件类似地也可以被称为第一组件。术语“和/或”是指相关项和描述项的任何一个或多个的组合。
背景技术中提及的微细钢丝绳检测,具体地涉及钢丝绳。钢丝绳是一种广泛用于制造电梯曳引钢带、传送带、同步带的骨架材料, 该种钢丝绳绳径更细、高捻制质量 、高通条性能、低回转数以及与表面材料粘合强。漏磁无损检测在钢丝绳的无损检测中被广泛应用,通过检测管道漏磁情况, 不仅能够检测出缺陷的位置及大小,还能够检测出管道的内部缺陷。同时 通过信号处理,能够在复杂的电磁环境下实现在线检测钢丝绳。相比较传统的点对点式的检测方式,磁致伸缩导波能够快速地检测长距离结构,同时不需要耦合剂,使得其在无损检测和结构健康监测中得到广泛应用。利用导波检测钢丝绳时,钢丝绳上的拉力会造成纵向导波频带缺失的现象,该频率即为陷波频率。当钢丝绳所受的拉力不同时,其最佳的激励频率和波速会发生变化。同时随着拉力的改变,钢丝之间的导波能量耦合形式会发生变化,但没有文章中提出其与拉力的具体的变化规律。由于钢丝绳的钢丝之间的耦合关系是非线性的,因此当拉力变化时,会导致超声导波在钢绞线中传播所产生的倍频谐波幅值发生变化。即现有检测方法没有考虑到钢丝绳当前所受到拉力大小,因此检测结果不准确。
为了解决上述技术问题,如图1所示,图1为本发明的钢丝绳拉力缺陷检测方法第一实施例的流程示意图。本发明的一种钢丝绳拉力缺陷检测方法,包括以下步骤:如图3所示,步骤S10,将激励传感器10设置于待测的钢丝绳40的第一位置上,将检测传感器20设置于钢丝绳40的第二位置上;在步骤S10中,钢丝绳是实际检测中应用,不用将钢丝绳取下,然后放到我们的平台上进行检测。其中,第一位置为距离钢丝绳一端为0.8m的位置,第二位置为距离钢丝绳一端为2.0m的位置;当然,具体设置位置可根据实际需要进行调整。
步骤S20,获取钢丝绳所受到的拉力大小,获取与拉力大小对应的第一显示图(如图5所示);第一显示图显示有钢丝绳在没有缺陷时固有频率频谱和直达导波幅值相关的第一线段;从图5可以看到,该图含有6个线段,分别为10kg拉力、20kg拉力、30kg拉力、40kg拉力、50kg拉力、60kg拉力相关线段。
步骤S30,白噪声信号通过功率放大器加载至激励传感器上,以使得激励传感器对钢丝绳发出电信号;在步骤S30中,通过白噪声信号能够较为准确的反应导波幅值大小的变化情况。当白噪声检测信号频谱能量较大时,其直达导波峰值也会较大,因此,能够通过白噪声检测信号准确验证在不同频率下直达导波幅值的变化情况。电信号在钢丝绳上进行传播。
步骤S40,在第一预设时间段内获取检测传感器20所收集到的检测信号;步骤S50,将检测信号上传至 PC 机后进行 FFT 处理,生成显示有固有频率频谱和直达导波幅值相关的第二线段的第二显示图(如图6所示);步骤S60,根据第一显示图(如图5所示)和第二显示图(如图6所示)判断钢丝绳是否存在缺陷问题,如果存在则执行步骤S70;其中,缺陷问题包括钢丝绳中至少一根钢丝断裂或者老化问题。
在步骤S60中,具体包括:将第一线段和第二线段置于同一坐标系中进行重合度对比,判断是否存在误差区域,如果存在误差区域,则执行步骤S70;误差区域表示新增加的信号区域,可理解为第一线段和第二线段之间不重合区域,即新增加的信号区域表示缺陷导波;显然,当存在误差区域,表示钢丝绳存在缺陷问题。
步骤S70,确定钢丝绳的缺陷位置。
本发明的钢丝绳拉力缺陷检测方法,有益效果如下:本发明通过纵向导波传感器向微细钢丝绳上施加白噪声信号来检测微细钢丝绳的固有频率,以固有频率的变化情况来检测钢丝绳所受拉力情况,同时监测其所受拉力是否发生变化。同时根据检测的固有频率选择导波的激励频率,以达到导波最大幅值,根据导波信号来判断钢丝绳中是否存在缺陷。以及精确计算处缺陷所在位置。
如图2所示,优选地,步骤S70具体包括:步骤S71,获取与拉力大小对应的第三显示图(如图4所示);其中,第三显示图显示有钢丝绳在没有缺陷时的直达导波幅值和传播时间相关的第三线段(如图4所示和如图7中实线线段)。
步骤S72,根据第二显示图(图6所示)生成直达导波幅值和传播时间的第四显示图;传播时间表示电信号在钢丝绳上的传播时间;第四显示图显示有电信号在钢丝绳上进行传播后直达导波幅值和传播时间相关的第四线段(图7中虚线线段)。
步骤S73,根据第三显示图和第四显示图确认缺陷导波Z的传播时间;在步骤S73中,确认缺陷导波的传播时间;步骤S74,根据传播时间计算钢丝绳的缺陷所在位置。
在步骤S74中,导波波速与传播时间的乘积的二分之一表示缺陷位置距离检测传感器20的距离。
本发明的有益效果: 1)能够在低功耗的情况下实现钢丝绳固有频率检测; 2)实时检测钢丝绳固有频率的变化以判断钢丝绳拉力的变化情况; 3)通过固有频率频谱能量密度的大小能够判断出导波幅值大小,能够选择出最大导波幅值的激励频率,提高导波的信噪比; 4)能够实现钢丝绳状态监测及缺陷检测。
通过以上几点有效实现钢丝拉力和缺陷检测。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (5)

  1. 一种钢丝绳拉力缺陷检测方法,其特征在于,包括以下步骤:步骤S10,将激励传感器设置于待测的钢丝绳的第一位置上,将检测传感器设置于钢丝绳的第二位置上;步骤S20,获取钢丝绳所受到的拉力大小,获取与拉力大小对应的第一显示图;步骤S30,白噪声信号通过功率放大器加载至激励传感器上;步骤S40,在第一预设时间段内获取检测传感器所收集到的检测信号;步骤S50,将检测信号上传至 PC 机后进行 FFT 处理,生成显示有固有频率频谱和直达导波幅值的第二显示图;步骤S60,根据第一显示图和第二显示图判断钢丝绳是否存在缺陷问题,如果存在则执行步骤S70;步骤S70,确定钢丝绳的缺陷位置。
  2. 如权利要求1所述钢丝绳拉力缺陷检测方法,其特征在于,步骤S70具体包括:步骤S71,获取与拉力大小对应的第三显示图;步骤S72,根据第二显示图生成直达导波幅值和传播时间的第四显示图;步骤S73,根据第三显示图和第四显示图确认缺陷导波的传播时间;步骤S74,根据传播时间计算钢丝绳的缺陷所在位置。
  3. 如权利要求2所述钢丝绳拉力缺陷检测方法,其特征在于,第三显示图表示钢丝绳在没有缺陷时的显示有直达导波幅值和传播时间的图。
  4. 如权利要求1所述钢丝绳拉力缺陷检测方法,其特征在于,第一显示图显示有钢丝绳在没有缺陷时固有频率频谱和直达导波幅值相关的线段。
  5. 如权利要求1所述钢丝绳拉力缺陷检测方法,其特征在于,第一位置为距离钢丝绳一端为0.8m的位置,第二位置为距离钢丝绳一端为2.0m的位置。
PCT/CN2021/081787 2020-09-10 2021-03-19 钢丝绳拉力缺陷检测方法 WO2022052440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21865503.3A EP4198506B1 (en) 2020-09-10 2021-03-19 Steel wire rope tension defect detection method
US18/025,403 US11852610B2 (en) 2020-09-10 2021-03-19 Method for detecting tension force defect of steel cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010948050.8 2020-09-10
CN202010948050.8A CN112098522B (zh) 2020-09-10 2020-09-10 钢丝绳拉力缺陷检测方法

Publications (1)

Publication Number Publication Date
WO2022052440A1 true WO2022052440A1 (zh) 2022-03-17

Family

ID=73750819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081787 WO2022052440A1 (zh) 2020-09-10 2021-03-19 钢丝绳拉力缺陷检测方法

Country Status (4)

Country Link
US (1) US11852610B2 (zh)
EP (1) EP4198506B1 (zh)
CN (1) CN112098522B (zh)
WO (1) WO2022052440A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115560890A (zh) * 2022-10-11 2023-01-03 北京工业大学 一种基于超声导波能量泄漏比的钢绞线预应力识别方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112098522B (zh) 2020-09-10 2022-08-12 哈尔滨工业大学(深圳) 钢丝绳拉力缺陷检测方法
CN115031877B (zh) * 2022-06-09 2023-08-01 哈尔滨工业大学(深圳) 钢丝绳应力大小及应力方向检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241397A (ja) * 1999-02-24 2000-09-08 Nkk Corp 表面欠陥検出方法および装置
CN203396752U (zh) * 2013-05-20 2014-01-15 浙江宁波甬台温高速公路有限公司 用于桥梁吊索锚头索体导波无损检测的磁化器探头检测系统
CN106950282A (zh) * 2017-04-21 2017-07-14 华南理工大学 一种基于纵向超声导波的玻璃钢芯棒缺陷检测方法及系统
CN107941898A (zh) * 2017-11-16 2018-04-20 北京工业大学 一种磁声复用的钢索缺陷与应力一体化检测装置
CN109187752A (zh) * 2018-10-11 2019-01-11 哈尔滨工业大学(深圳) 检测电梯曳引钢带的磁致伸缩导波传感器及其检测方法
CN112098522A (zh) * 2020-09-10 2020-12-18 哈尔滨工业大学(深圳) 钢丝绳拉力缺陷检测方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821430A (en) * 1997-02-28 1998-10-13 Southwest Research Institute Method and apparatus for conducting in-situ nondestructive tensile load measurements in cables and ropes
KR100373517B1 (ko) * 1999-04-28 2003-02-25 장승필 케이블의 동적 특성을 이용한 교량 케이블의 장력 측정장치
JP5026440B2 (ja) * 2007-01-31 2012-09-12 三菱電機株式会社 ワイヤロープ探傷装置
CN101666783A (zh) * 2008-09-01 2010-03-10 中国科学院金属研究所 超声导波复合式无损检测方法及其装置
CN101963536B (zh) * 2010-08-13 2012-08-15 重庆大学 一种索力实时监测方法
US9103798B2 (en) * 2011-12-07 2015-08-11 Ndt Technologies, Inc. Magnetic inspection device and method
CN103424472B (zh) * 2013-08-14 2016-01-27 哈尔滨工业大学深圳研究生院 一种基于磁致伸缩导波的横波检测装置及检测方法
CN104848973A (zh) * 2015-04-12 2015-08-19 北京工业大学 基于超声导波陷频的钢索拉力测量方法
CN104792404B (zh) * 2015-04-22 2018-09-25 华中科技大学 一种管道固有频率的测量方法及测量系统
CN105181184B (zh) * 2015-08-06 2017-06-20 华中科技大学 一种基于磁致伸缩导波短吊杆索力测量装置及方法
CN107860465B (zh) * 2017-10-12 2021-03-16 哈尔滨工业大学(深圳) 一种磁致伸缩导波纵波管道固有频率检测方法
CN108152375B (zh) * 2017-12-19 2020-06-02 大连理工大学 基于超声导波的t型桁条缺陷定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241397A (ja) * 1999-02-24 2000-09-08 Nkk Corp 表面欠陥検出方法および装置
CN203396752U (zh) * 2013-05-20 2014-01-15 浙江宁波甬台温高速公路有限公司 用于桥梁吊索锚头索体导波无损检测的磁化器探头检测系统
CN106950282A (zh) * 2017-04-21 2017-07-14 华南理工大学 一种基于纵向超声导波的玻璃钢芯棒缺陷检测方法及系统
CN107941898A (zh) * 2017-11-16 2018-04-20 北京工业大学 一种磁声复用的钢索缺陷与应力一体化检测装置
CN109187752A (zh) * 2018-10-11 2019-01-11 哈尔滨工业大学(深圳) 检测电梯曳引钢带的磁致伸缩导波传感器及其检测方法
CN112098522A (zh) * 2020-09-10 2020-12-18 哈尔滨工业大学(深圳) 钢丝绳拉力缺陷检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4198506A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115560890A (zh) * 2022-10-11 2023-01-03 北京工业大学 一种基于超声导波能量泄漏比的钢绞线预应力识别方法
CN115560890B (zh) * 2022-10-11 2024-01-09 北京工业大学 一种基于超声导波能量泄漏比的钢绞线预应力识别方法

Also Published As

Publication number Publication date
EP4198506B1 (en) 2024-08-28
EP4198506A1 (en) 2023-06-21
US20230288377A1 (en) 2023-09-14
CN112098522A (zh) 2020-12-18
US11852610B2 (en) 2023-12-26
CN112098522B (zh) 2022-08-12
EP4198506A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2022052440A1 (zh) 钢丝绳拉力缺陷检测方法
CN101806778B (zh) 金属材料疲劳早期损伤非线性超声在线检测方法
CN103353479B (zh) 一种电磁超声纵向导波与漏磁检测复合的检测方法
US9074927B2 (en) Methods for non-destructively evaluating a joined component
US20230228720A1 (en) Method, System, Device, and Medium for Online Stress Monitoring without Baseline Data based on Single-Mode Multi-Frequency Signal Fusion
CN201637722U (zh) 金属材料疲劳早期损伤非线性超声在线检测装置
CN108802203B (zh) 一种基于多模态技术的杆状构件内部缺陷定位方法
CN113029773A (zh) 材料疲劳程度的检测方法及测量系统
JP3735006B2 (ja) 非線形超音波を用いた内部微視亀裂検出方法及び装置
KR101039593B1 (ko) 검사 신뢰성이 제고된 초음파 가진 열화상을 이용한 물체의 결함검출장치 및 결함검출방법
CN110879252B (zh) 一种声波检测混凝土结合面质量的方法
JP2002055089A (ja) トンネル診断装置及び方法
CN109738518B (zh) 一种非线性电磁超声谐振评估材料热处理效果的方法和装置
CN110907076A (zh) 超声波实时检测圆钢管混凝土柱均匀套箍约束力的方法
Masserey et al. IN‐SITU MONITORING OF FATIGUE CRACK GROWTH AT FASTENER HOLES USING RAYLEIGH‐LIKE WAVES
JP2004347572A (ja) 超音波探傷装置および超音波探傷方法
Tang et al. Characterization on vermicular graphite rate and tensile strength in vermicular graphite cast iron based on nonlinear ultrasonic technique
Budenkov et al. Principal regularities of Pochhammer-wave interaction with defects
Kim et al. Nondestructive detection and characterization of carbonation in concrete
Chai et al. Application of the Phase Spectrum of Impact Echo in the Detection of Grouting Defects in the Tendon Ducts
JPS61111460A (ja) 橋梁用平行線ケ−ブルの破断素線検知法
CN118130627A (zh) 集成局部复检的声发射无损检测系统、方法及存储介质
JP2003227816A (ja) 薄膜接合強度の非破壊検査方法
JP2006084305A (ja) 材料欠陥検出方法および装置
WO2011089734A1 (ja) ガイド波を用いた検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21865503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021865503

Country of ref document: EP

Effective date: 20230315

NENP Non-entry into the national phase

Ref country code: DE