WO2022052326A1 - 轨道交通车辆及其动力蓄电池放电平衡电路、控制方法 - Google Patents
轨道交通车辆及其动力蓄电池放电平衡电路、控制方法 Download PDFInfo
- Publication number
- WO2022052326A1 WO2022052326A1 PCT/CN2020/132321 CN2020132321W WO2022052326A1 WO 2022052326 A1 WO2022052326 A1 WO 2022052326A1 CN 2020132321 W CN2020132321 W CN 2020132321W WO 2022052326 A1 WO2022052326 A1 WO 2022052326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching module
- traction battery
- power
- traction
- battery
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000007599 discharging Methods 0.000 claims description 2
- 230000003137 locomotive effect Effects 0.000 abstract description 30
- 230000001276 controlling effect Effects 0.000 abstract 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
- B60L1/003—Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/22—Balancing the charge of battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61C—LOCOMOTIVES; MOTOR RAILCARS
- B61C3/00—Electric locomotives or railcars
- B61C3/02—Electric locomotives or railcars with electric accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/342—The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/34—Cabin temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the invention belongs to the technical field of rail transit, and in particular relates to a rail transit vehicle, a power battery discharge balance circuit and a control method thereof.
- lithium batteries Due to its high energy density, lithium batteries can meet the requirements of vehicle battery life, and are increasingly used as traction batteries (or power batteries) in the field of electric locomotives.
- traction batteries or power batteries
- the two traction converters respectively drive half of the traction motors of the locomotive
- the two auxiliary converters respectively provide the VVVF (Variable Voltage and Variable Frequency) auxiliary loads of the locomotive (such as cooling tower fans, traction cooling fans, etc. that require frequency conversion and voltage conversion) Controlled auxiliary loads) and CVCF (Constant Voltage and Constant Frequency) auxiliary loads (such as main compressors, control battery chargers, air conditioners, water pumps and other auxiliary loads that require constant frequency and constant pressure control) power supply.
- VVVF Very Voltage and Variable Frequency
- auxiliary loads such as cooling tower fans, traction cooling fans, etc. that require frequency conversion and voltage conversion
- CVCF Constant Voltage and Constant Frequency auxiliary loads
- the first traction battery and the second traction battery of the locomotive are two sets of completely independent traction batteries, which respectively supply power to two different traction converters and auxiliary converters.
- the two traction converters supply power to half of the traction motors of the locomotive respectively.
- the output power of the first traction converter and the second traction converter are equal; the first auxiliary converter and the second auxiliary converter Power is supplied to the VVVF auxiliary load and the CVCF auxiliary load of the locomotive respectively.
- the total power of the VVVF auxiliary load will be less than the total power of the CVCF auxiliary load, so the discharge depth of the second traction battery is higher, and the discharge depth of the first traction battery is lower. The discharge is unbalanced.
- the VVVF auxiliary load is generally operated in the CVCF mode, and is powered by another auxiliary converter (VVVF auxiliary load and CVCF auxiliary load).
- the load is connected through a contactor), that is, the same battery and the same auxiliary converter supply power to the VVVF auxiliary load and the CVCF auxiliary load at the same time.
- the VVVF auxiliary load operates in CVCF mode. Due to the increase of operating voltage and operating frequency, this method will not only increase the noise of the VVVF auxiliary load, but also increase the output power of the VVVF auxiliary load, thereby further affecting the battery life.
- the present invention provides a discharge balance circuit and control method of a rail transit vehicle and its power battery, so as to solve the problem of unbalanced discharge of two sets of traction battery packs caused by the inconsistency of the total power of the VVVF auxiliary load and the CVCF auxiliary load. .
- a rail transit vehicle power battery discharge balance circuit comprising a first traction battery, a first traction converter connected to the first traction battery, and a second traction battery , a second traction converter connected to the second traction battery, a first traction converter, a second traction converter, a first auxiliary converter, a VVVF auxiliary load connected to the first auxiliary converter, Two auxiliary converters and a CVCF auxiliary load connected to the second auxiliary converter;
- the first traction battery is connected to the first auxiliary converter through the first switching module, and the first traction battery is connected to the third auxiliary converter through the second switching module
- Two auxiliary inverters are connected;
- the second traction battery is connected to the second auxiliary inverter through a third switching module, and the second traction battery is connected to the first auxiliary inverter through a fourth switching module.
- each group of traction batteries is respectively connected to the first auxiliary converter and the second auxiliary converter through two switching modules, and the first auxiliary converter and the second auxiliary converter Provide energy for VVVF auxiliary load and CVCF auxiliary load, respectively.
- each set of traction batteries will, by default, discharge the VVVF auxiliary load and the CVCF auxiliary load in two discharge cycles.
- the amount of discharge is the depth of one discharge cycle, so that the total discharge amount of the two sets of traction batteries is basically the same throughout the life cycle, which prolongs the service life of the traction battery.
- the traction battery with higher discharge depth is automatically selected to provide energy for the VVVF auxiliary load, so that the traction battery with lower discharge depth provides energy for the CVCF auxiliary load, which avoids excessive auxiliary load power.
- the discharge leads to its early traction blockage, which improves the endurance of the locomotive.
- it avoids an auxiliary converter to provide energy for the VVVF auxiliary load and the CVCF auxiliary load at the same time, thus solving the problem of high noise and output power caused by the VVVF auxiliary load operating in the CVCF mode. added questions.
- the first switching module, the second switching module, the third switching module and the fourth switching module all use contactors.
- the present invention also provides a rail transit vehicle, which adopts the above-mentioned discharge balance circuit; Four switching modules are controlled by the closing and opening control system.
- the closing and opening of the first switching module, the second switching module, the third switching module and the fourth switching module in the present invention are controlled by the TCMS system (train control and management system).
- the present invention also provides a method for controlling the discharge balance of the power battery of a rail transit vehicle as described above, including:
- the discharge balance circuit is powered on, the number of discharge cycles of the first traction battery or the second traction battery is obtained and judged, and if the number of discharge cycles is an odd number, the first switching module and the third switching module are controlled to be closed , the second switching module and the fourth switching module are disconnected, so that the first traction battery provides energy for the first auxiliary converter, and the second traction battery provides energy for the second auxiliary converter; or, control the second switching module and The fourth switching module is closed, the first switching module and the third switching module are disconnected, so that the first traction battery provides energy for the second auxiliary converter, and the second traction battery provides energy for the first auxiliary converter;
- the second switching module and the fourth switching module are controlled to be closed, and the first switching module and the third switching module are disconnected, so that the first traction battery provides energy for the second auxiliary converter,
- the second traction battery provides energy for the first auxiliary converter; or, the first switching module and the third switching module are controlled to be closed, and the second switching module and the fourth switching module are disconnected, so that the first traction battery is the first auxiliary converter.
- the converter provides energy, and the second traction battery provides energy for the second auxiliary converter;
- the number of discharge cycles is increased by 1.
- the first traction battery and the second traction battery are automatically put into use, and the number of discharge cycles is not zero.
- the total power of the CVCF auxiliary load is greater than the total power of the VVVF auxiliary load. Therefore, the depth of discharge of the traction battery that provides power to the CVCF auxiliary load is higher, that is, the discharge volume is large, and the traction battery that provides power to the VVVF auxiliary load has a lower depth of discharge, that is, the discharge volume is small; the traction battery is discharged every time it is powered on.
- the detection of the number of cycles, the closing and opening of the first switching module, the second switching module, the third switching module and the fourth switching module are controlled according to the odd and even of the discharge cycle times, and the first traction module is controlled within two discharge cycles.
- the discharge capacity of the battery and the second traction battery is balanced, which prolongs the average service life of the two sets of traction batteries.
- the method further includes: judging whether the remaining power of the second traction battery is lower than the second set power, and judging whether the difference between the remaining power of the first traction battery and the remaining power of the second traction battery is lower than the third set power;
- the second switching module and the fourth The switching module is closed, the first switching module and the third switching module are disconnected, so that the first traction battery provides energy for the second auxiliary converter, and the second traction battery provides energy for the first auxiliary converter; otherwise, keep the first switching The module and the third switching module are closed, and the second switching module and the fourth switching module are disconnected.
- the solution of the present invention avoids the risk of feeding the second traction battery in advance (because after the first switching module and the third switching module are closed, the first traction battery supplies power to the VVVF load, the second traction battery supplies power to the CVCF load, and the CVCF load is greater than VVVF load), which improves the deep endurance of the locomotive.
- the step of judging the feeding of the traction battery is also included, and the specific steps are:
- both the first traction battery and the second traction battery are normal, determine whether the remaining power of the second traction battery is lower than the second set power, and determine the difference between the remaining power of the first traction battery and the remaining power of the second traction battery Whether it is lower than the third set power level;
- the first switching module and the second switching module are controlled to be closed, the third switching module and the fourth switching module are disconnected, and the first traction battery is used for the first auxiliary converter
- the converter and the second auxiliary converter provide energy
- the third switching module and the fourth switching module are controlled to be closed, the first switching module and the second switching module are disconnected, and the second traction battery is used for the first auxiliary converter
- the converter and the second auxiliary converter provide energy
- the first switching module, the second switching module, the third switching module and the fourth switching module are controlled to be disconnected, and the first auxiliary converter and the second auxiliary converter are stopped.
- the converter supplies the energy.
- the method further includes: judging whether the remaining power of the first traction battery is lower than the second set power, and judging whether the remaining power of the first traction battery is lower than the second set power. Whether the difference between the remaining power of the second traction battery and the remaining power of the first traction battery is lower than the third set power;
- the first switching module and the third The switching module is closed, the second switching module and the fourth switching module are disconnected, so that the first traction battery provides energy for the first auxiliary converter, and the second traction battery provides energy for the second auxiliary converter; otherwise, the second switching is maintained.
- the module and the fourth switching module are closed, and the first switching module and the third switching module are disconnected.
- the solution of the present invention avoids the risk of feeding the first traction battery in advance (because after the second switching module and the fourth switching module are closed, the second traction battery supplies power to the VVVF load, the first traction battery supplies power to the CVCF load, and the CVCF load is greater than VVVF load), which improves the deep endurance of the locomotive.
- the step of judging the feeding of the traction battery is also included, and the specific steps are:
- both the first traction battery and the second traction battery are normal, determine whether the remaining power of the first traction battery is lower than the second set power, and determine the difference between the remaining power of the second traction battery and the remaining power of the first traction battery Whether it is lower than the third set power level;
- the first switching module and the second switching module are controlled to be closed, the third switching module and the fourth switching module are disconnected, and the first traction battery is used for the first auxiliary converter
- the converter and the second auxiliary converter provide energy
- the third switching module and the fourth switching module are controlled to be closed, the first switching module and the second switching module are disconnected, and the second traction battery is used for the first auxiliary converter
- the converter and the second auxiliary converter provide energy
- the first switching module, the second switching module, the third switching module and the fourth switching module are controlled to be disconnected, and the first auxiliary converter and the second auxiliary converter are stopped.
- the converter supplies the energy.
- the step of judging the feeding of the traction battery is also included, and the specific steps are:
- both the first traction battery and the second traction battery are normal, acquiring and judging the number of discharge cycles of the first traction battery or the second traction battery;
- the first switching module and the second switching module are controlled to be closed, the third switching module and the fourth switching module are disconnected, and the first traction battery is used for the first auxiliary converter
- the converter and the second auxiliary converter provide energy
- the third switching module and the fourth switching module are controlled to be closed, the first switching module and the second switching module are disconnected, and the second traction battery is used for the first auxiliary converter
- the converter and the second auxiliary converter provide energy
- the first switching module, the second switching module, the third switching module and the fourth switching module are controlled to be disconnected, and the first auxiliary converter and the second auxiliary converter are stopped.
- the converter supplies the energy.
- Judging the feeding of the traction battery can prevent the traction battery from being over-discharged.
- the VVVF auxiliary load and the CVCF auxiliary load can be powered simultaneously by the other traction battery. Because the first auxiliary converter and the second auxiliary converter provide energy for the VVVF auxiliary load and the CVCF auxiliary load respectively, it is avoided that one auxiliary converter provides energy for the VVVF auxiliary load and the CVCF auxiliary load at the same time, thus solving the problem of the VVVF auxiliary load. The problem of high noise and increased output power caused by the load operating in the CVCF mode.
- the first set power is the total power of the first traction battery or the second traction battery
- the second set power and the third set power should satisfy the following relationship: the second set power
- the power and the third set power meet the following relationship: when the remaining power of any group of traction batteries is the second set power, the group of traction batteries discharges one of the traction converters and the VVVF auxiliary load simultaneously to fully feed the battery.
- the time for charging is equal to the time for discharging the other traction converter and the CVCF auxiliary load to complete feeding when the remaining power of the other traction battery is the sum of the second set power and the third set power, and the second set
- the constant power value is the smallest.
- the invention can keep the discharge time balance of the traction battery even when the load is unbalanced, thereby effectively improving the deep cruising ability of the locomotive; and in the process, the second set electric quantity value is minimized, which can effectively reduce the two-way time caused by the load switching during deep cruising. Unbalanced effects of battery packs throughout their service life.
- each group of traction batteries in the present invention is connected to the first auxiliary converter and the second auxiliary converter respectively through two switching modules, and the first auxiliary converter and the second auxiliary converter are respectively:
- the VVVF auxiliary load and the CVCF auxiliary load provide energy.
- each set of traction batteries will, by default, discharge the VVVF auxiliary load and the CVCF auxiliary load in two discharge cycles.
- the total discharge volume is the depth of one discharge cycle, so that the total discharge volume of the two sets of traction batteries is basically the same throughout the life cycle, ensuring the same service life of the two sets of traction batteries.
- the traction battery with higher discharge depth is automatically selected to provide energy for the VVVF auxiliary load, so that the traction battery with lower discharge depth provides energy for the CVCF auxiliary load, avoiding the group of traction batteries with higher auxiliary load power. Due to over-discharge, its early traction blockage improves the locomotive endurance, and at the same time, an auxiliary converter is avoided to provide energy for the VVVF auxiliary load and the CVCF auxiliary load at the same time, thus solving the high noise caused by the operation of the VVVF auxiliary load in the CVCF mode. The problem of increased output power.
- FIG. 1 is a schematic structural diagram of a locomotive traction battery discharge balance circuit in Embodiment 1 of the present invention
- Embodiment 2 is a flowchart of a method for controlling a locomotive traction battery discharge balance circuit in Embodiment 1 of the present invention
- FIG. 3 is a flowchart of the judgment of traction battery feeding in Embodiment 1 of the present invention.
- the battery 1 is the first traction battery
- the battery 2 is the second traction battery.
- a rail transit vehicle power battery discharge balance circuit includes a first traction battery, a second traction battery, a first traction converter, a second traction converter, a first auxiliary The converter, the second auxiliary converter, the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04; the first traction battery is connected to the first traction converter, the second The traction battery is connected to the second traction converter, the first auxiliary converter is connected to the VVVF auxiliary load, and the second auxiliary converter is connected to the CVCF auxiliary load; the first traction battery is connected to the first auxiliary converter through the first switching module K01.
- the first traction battery is connected to the second auxiliary inverter through the second switching module K02; the second traction battery is connected to the second auxiliary inverter through the third switching module K03, and the second traction battery is connected through the fourth switching module K03.
- the module K04 is connected with the first auxiliary inverter; the closing and opening of the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled by the TCMS system, and the TCMS system is Train control and management system.
- a first switching module K01, a second switching module K02, a third switching module K03 and a fourth switching module K04 are configured for the first auxiliary converter and the second auxiliary converter. Control the closing and opening of the switching module under different conditions to realize the discharge balance of the two traction batteries.
- the specific control logic includes:
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are all double-pole double-throw type reversing contactors.
- the present invention also provides a method for controlling the discharge balance of power batteries of rail transit vehicles, including:
- step (2) when the discharge balance circuit is powered on each time, judge whether the first traction battery and the second traction battery are feeding; if the first traction battery and the second traction battery are both normal, then go to step (2); otherwise:
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- the judgment condition for whether to feed power is whether the remaining power of the traction battery is lower than the fourth set power, the fourth set power ⁇ the third set power ⁇ the second set power ⁇ the first set power, the fourth set power That is the minimum remaining power.
- the first auxiliary converter and the second auxiliary converter provide energy for the VVVF auxiliary load and the CVCF auxiliary load respectively, it is avoided that one auxiliary converter provides energy for the VVVF auxiliary load and the CVCF auxiliary load at the same time, thus solving the problem of the VVVF auxiliary load.
- the problem of loud noise and increased output power caused by the load running in the CVCF mode effectively improves the battery life of the traction battery.
- Step (2) Obtain and judge the number of discharge cycles of the first traction battery or the second traction battery each time the discharge balance circuit is powered on. If the number of discharge cycles is an odd number, go to step (3), otherwise go to Step (8).
- the number of discharge cycles of the traction battery is detected at each power-on. After power-on, the judgment and switching are no longer based on the number of discharge cycles, and the number of discharge cycles of the traction battery is detected at the next power-on. Control the closing and opening of the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 according to the count of the number of discharge cycles (odd or even), within two discharge cycles The discharge amount of the first traction battery and the second traction battery is balanced, avoiding the early traction blockade of the group of traction converters with a higher discharge depth, improving the cruising ability of the locomotive and prolonging the service life of the traction battery.
- the first traction battery supplies the VVVF auxiliary load (assuming a power consumption of 40%), and the second traction battery is The CVCF auxiliary load supplies power (assuming the power consumption is 60%); in the next discharge cycle, the number of discharge cycles is an even number, then the first traction battery supplies the CVCF auxiliary load (the power consumption is 60%), and the first The second traction battery supplies power to the VVVF auxiliary load (power consumption is 40%), then in two discharge cycles, the first traction battery consumes 40%+60% of the power, and the second traction battery consumes 60% of the power +40%, then within two discharge cycles, the first traction battery and the second traction battery reach a discharge balance.
- the first set power is the total power of the traction battery.
- the number of discharge cycles is incremented by 1.
- the traction battery may also be charged after or during discharge. Therefore, the present invention switches according to the number of discharge cycles to ensure that the first traction battery and the second traction battery are discharged within two discharge cycles. balance.
- the first traction battery provides energy for the first auxiliary converter
- the second traction battery provides energy for the second auxiliary converter
- the first traction battery provides energy for the second auxiliary converter
- the second traction battery provides energy for the first auxiliary converter
- step (5) (4) judge whether the first traction battery and the second traction battery are fed; if the first traction battery and the second traction battery are both normal, then go to step (5); otherwise:
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- the second traction battery supplies power to the second auxiliary converter with a heavy load. Under normal circumstances, the power of the second traction battery drops rapidly. Therefore, the remaining power of the second traction battery is judged.
- the power supply is switched between the first auxiliary converter and the second auxiliary converter only when the power is low and the difference between the remaining power of the first traction battery and the second traction battery is relatively large, that is, when the second traction battery is deeply discharged It will only switch, avoiding repeated switching and reducing stability.
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- step (10) Judging whether the first traction battery and the second traction battery are fed; if the first traction battery and the second traction battery are both normal, then go to step (10); otherwise:
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- the first traction battery supplies power to the second auxiliary converter with a heavy load. Under normal circumstances, the power of the first traction battery drops rapidly. Therefore, the remaining power of the first traction battery is judged.
- the power supply is switched between the first auxiliary converter and the second auxiliary converter only when the power is low and the remaining power of the second traction battery and the first traction battery is greatly different, that is, the first traction battery needs to be deeply discharged It will switch only when it is necessary to avoid repeated switching and reduce the stability.
- the second traction battery with more remaining power is used to supply power to the second auxiliary converter with a heavy load, so as to achieve a discharge balance between the first traction battery and the second traction battery during the discharge cycle period.
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- the second set power is 40% of the total power of the first traction battery or the second traction battery
- the third set power is 10% of the total power of the first traction battery or the second traction battery.
- the first set power level, the second set power level, the third set power level and the fourth set power level can all be adjusted as required.
- the present invention also provides another method for controlling the discharge balance of the power battery, including:
- step (2) when the discharge balance circuit is powered on each time, judge whether the first traction battery and the second traction battery are feeding; if the first traction battery and the second traction battery are both normal, then go to step (2); otherwise:
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- the judgment condition for whether to feed power is whether the remaining power of the traction battery is lower than the fourth set power, the fourth set power ⁇ the third set power ⁇ the second set power ⁇ the first set power, the fourth set power It is the minimum remaining power.
- the traction battery is prevented from being over-discharged. Even if a traction battery is fed, another traction battery will provide energy for the VVVF auxiliary load and the CVCF auxiliary load at the same time.
- the converter and the second auxiliary converter provide energy for the VVVF auxiliary load and the CVCF auxiliary load respectively, avoiding the possibility that one auxiliary converter can provide energy for the VVVF auxiliary load and the CVCF auxiliary load at the same time, thus avoiding the VVVF auxiliary load.
- Operating in CVCF mode causes problems such as loud noise and increased output power, which effectively improves the battery life of the traction battery.
- Step (2) Obtain and judge the number of discharge cycles of the first traction battery or the second traction battery each time the discharge balance circuit is powered on. If the number of discharge cycles is an odd number, go to step (3), otherwise go to Step (8).
- step (5) (4) judge whether the first traction battery and the second traction battery are fed; if the first traction battery and the second traction battery are both normal, then go to step (5); otherwise:
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- the first switching module K01 and the third The switching module K03 is closed, the second switching module K02 and the fourth switching module K04 are disconnected, so that the first traction battery provides energy for the first auxiliary converter, and the second traction battery provides energy for the second auxiliary converter.
- the first traction battery supplies power to the second auxiliary converter with a heavy load. Under normal circumstances, the power of the first traction battery drops rapidly. Therefore, the remaining power of the first traction battery is judged.
- the power supply is switched between the first auxiliary converter and the second auxiliary converter only when the power is low and the remaining power of the second traction battery and the first traction battery is greatly different, that is, the first traction battery needs to be deeply discharged It will switch only when it is necessary to avoid repeated switching and reduce the stability.
- the second traction battery with more remaining power supplies power to the second auxiliary converter with a heavier load, so as to achieve a discharge balance between the first traction battery and the second traction battery during the discharge cycle.
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- the first traction battery provides energy for the first auxiliary converter
- the second traction battery provides energy for the second auxiliary converter
- the first traction battery provides energy for the second auxiliary converter
- the second traction battery provides energy for the first auxiliary converter
- step (10) Judging whether the first traction battery and the second traction battery are fed; if the first traction battery and the second traction battery are both normal, then go to step (10); otherwise:
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and stop being the first auxiliary converter and a second auxiliary converter to provide energy, as shown in Figure 3.
- each discharge cycle when the remaining capacity of a traction battery is low and much lower than the remaining capacity of the other traction battery, a switch is made to make the first traction battery and the second traction battery in each discharge cycle
- the discharge capacity of the traction battery is as close as possible to achieve a balance of discharge; switching is performed only when the remaining capacity of the traction battery is low, avoiding frequent switching leading to poor stability; since the second traction battery supplies power to the CVCF auxiliary load that consumes a lot of power , therefore, the remaining power of the second traction battery is judged.
- the second traction battery supplies power to the second auxiliary converter with a heavy load. Under normal circumstances, the power of the second traction battery drops rapidly. Therefore, the remaining power of the second traction battery is judged.
- the power supply is switched between the first auxiliary converter and the second auxiliary converter only when the power is low and the difference between the remaining power of the first traction battery and the second traction battery is relatively large, that is, when the second traction battery is deeply discharged It will only switch, avoiding repeated switching and reducing stability.
- the first switching module K01 and the second switching module K02 are controlled to be closed, the third switching module K03 and the fourth switching module K04 are disconnected, and the first traction battery is the first traction battery.
- An auxiliary converter and a second auxiliary converter provide energy;
- the third switching module K03 and the fourth switching module K04 are controlled to be closed, the first switching module K01 and the second switching module K02 are disconnected, and the second traction battery is the first switching module.
- An auxiliary converter and a second auxiliary converter provide energy;
- the first switching module K01, the second switching module K02, the third switching module K03 and the fourth switching module K04 are controlled to be disconnected, and the first auxiliary converter is stopped. and a second auxiliary converter to provide energy, as shown in Figure 3.
- the second set power is 40% of the total power of the first traction battery or the second traction battery
- the third set power is 10% of the total power of the first traction battery or the second traction battery.
- the first set power level, the second set power level, the third set power level and the fourth set power level can all be adjusted as required.
- the method for controlling the discharge balance circuit of the traction battery of the present invention automatically adjusts the default configuration of the auxiliary load according to the number of discharge cycles of a certain group of batteries, so that the battery group can supply the first auxiliary converter and the second auxiliary converter within two discharge cycles.
- the discharge capacity of the converter is basically equal.
- the discharge amounts to the first auxiliary converter and to the second auxiliary converter of another group of batteries in two discharge cycles are also substantially equal. Therefore, the discharge amounts of the two sets of batteries in the entire service life cycle are basically the same, which can ensure that their service lives are basically the same.
- the configuration of the auxiliary load is automatically switched, so that the battery with the original load is larger.
- the battery automatically selects the auxiliary converter with a smaller load for power supply, and the battery with a smaller original load automatically selects the auxiliary converter with a larger load for power supply, so that the discharge of the two groups of batteries is relatively balanced during deep discharge, which can make full use of the battery's capacity.
- the remaining power improves the endurance of the locomotive, and avoids the repeated configuration of the auxiliary converter when the battery power is high, thereby improving the running stability of the locomotive.
- the contactor (K01/K02/K03/K04) that realizes the switching of the auxiliary load is set on the branch on the input side of the traction battery bank and the auxiliary converter.
- the switching of the contactor does not affect the power supply of the traction battery to the traction converter.
- the configuration conversion process or the switching process does not affect the normal running of the locomotive.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
一种轨道交通车辆及其动力蓄电池放电平衡电路、控制方法,通过控制四个切换模块动作,调整两组牵引蓄电池与两组辅助变流器的VVVF辅助负载和CVCF辅助负载的供电配置关系。机车正常运用时,使每个牵引蓄电池组默认在两个放电循环周期内对VVVF辅助负载和CVCF辅助负载总的放电量均为一次放电循环深度;机车深度续航时,耗电较多的牵引蓄电池自动选择对辅助负载较低的辅助变流器供电,不但提高了机车的续航能力,而且延长了牵引蓄电池的使用寿命。
Description
本发明属于轨道交通技术领域,尤其涉及一种轨道交通车辆及其动力蓄电池放电平衡电路、控制方法。
锂电池由于具有较高的能量密度,可满足车辆续航的要求,作为牵引蓄电池(或动力蓄电池)在电力机车领域的应用越来越普遍。为提高锂电池的应用安全性,加强对锂电池组的电压、电流、容量等参数精准监控,同时减少故障蓄电池对整车影响,一般根据机车主辅电路由两个牵引变流器和两个辅助变流器组成的结构特征,将整个蓄电池组分成两组完全独立的牵引蓄电池,分别给机车的两个不同的牵引变流器和辅助变流器供电。其中,两个牵引变流器分别驱动机车一半的牵引电机,两个辅助变流器分别给机车的VVVF(Variable Voltage and Variable Frequency)辅助负载(如冷却塔风机、牵引冷却风机等需要变频变压控制的辅助负载)和CVCF(Constant Voltage and Constant Frequency)辅助负载(如主压缩机、控制蓄电池充电机、空调、水泵等需要定频定压控制的辅助负载)供电。
在实际的应用中,由于机车的VVVF辅助负载和CVCF辅助负载的总功率不一致,会导致两组蓄电池的放电不平衡,长期使用的话,耗电较多的那组蓄电池由于每次放电深度比另一组牵引蓄电池深,导致其使用寿命明显比另一组蓄电池短(注:机车VVVF辅助负载的功率一般会小于机车的CVCF负载)。
现有技术中,机车的第一牵引蓄电池和第二牵引蓄电池为两组完全独立的牵引蓄电池,分别给两个不同的牵引变流器和辅助变流器供电,第一牵引变流器和第二牵引变流器分别给机车的一半牵引电机供电,正常情况下第一牵引变流器和第二牵引变流器两者的输出功率相等;第一辅助变流器和第二辅助变流器分别给机车的VVVF辅助负载和CVCF辅助负载供电,正常情况下VVVF辅助负载总功率会小于CVCF辅助负载总功率,因此导致第二牵引蓄电池放电深度较高,第一牵引蓄电池放电深度较低,两者放电不平衡。
若蓄电池放电深度较高(放量大或多),耗电较多的蓄电池易导致对应牵引变流器因电量过低提前牵引封锁保护,使机车损失一半的牵引性能。情节严重时,还会导致对应辅助变流器也禁止工作,此时为保障机车正常运行,一般会将VVVF辅助负载按照CVCF模式运行,由另一个辅助变流器供电(VVVF辅助负载与CVCF辅助负载之间通过接触器连接),即由同一个蓄电池和同一个辅助变流器同时对VVVF辅助负载和CVCF辅助负载供电。 VVVF辅助负载按照CVCF模式运行,由于工作电压和工作频率的增加,这种方式不但会使VVVF辅助负载噪音增大,还会导致VVVF辅助负载的输出功率增加,从而进一步影响蓄电池的续航能力。
发明内容
针对现有技术的不足,本发明提供一种轨道交通车辆及其动力蓄电池放电平衡电路、控制方法,以解决因VVVF辅助负载和CVCF辅助负载总功率不一致导致两组牵引蓄电池组放电不平衡的问题。
本发明是通过如下的技术方案来解决上述技术问题的:一种轨道交通车辆动力蓄电池放电平衡电路,包括第一牵引蓄电池、与第一牵引蓄电池连接的第一牵引变流器、第二牵引蓄电池、与第二牵引蓄电池连接的第二牵引变流器、第一牵引变流器、第二牵引变流器、第一辅助变流器、与第一辅助变流器连接的VVVF辅助负载、第二辅助变流器以及与第二辅助变流器连接的CVCF辅助负载;所述第一牵引蓄电池通过第一切换模块与第一辅助变流器连接,第一牵引蓄电池通过第二切换模块与第二辅助逆变器连接;所述第二牵引蓄电池通过第三切换模块与第二辅助逆变器连接,第二牵引蓄电池通过第四切换模块与第一辅助逆变器连接。
本发明所述的牵引蓄电池放电平衡电路,每组牵引蓄电池通过两个切换模块分别与第一辅助变流器和第二辅助变流器连接,第一辅助变流器和第二辅助变流器分别为VVVF辅助负载和CVCF辅助负载提供能量。通过控制四个切换模块动作,当两组牵引蓄电池的放电循环次数为单数或双数时,每组牵引蓄电池在默认情况下对VVVF辅助负载和CVCF辅助负载在两个放电循环周期内总的放电量均为一次放电循环深度,使两组牵引蓄电池在整个生命周期中,总的放电量基本保持一致,延长了牵引蓄电池的使用寿命。当机车需要深度续航时,自动选择放电深度较高的牵引蓄电池为VVVF辅助负载提供能量,使放电深度较低的牵引蓄电池为CVCF辅助负载提供能量,避免了辅助负载功率较高的牵引蓄电池因过度放电导致其提前牵引封锁,提高了机车续航能力,同时避免了一个辅助变流器同时为VVVF辅助负载和CVCF辅助负载提供能量,从而解决了VVVF辅助负载按照CVCF模式运行导致的噪音大,输出功率增加的问题。
进一步地,为便于控制,降低成本,所述第一切换模块、第二切换模块、第三切换模块以及第四切换模块均采用接触器。
相应地,本发明还提供了一种轨道交通车辆,该轨道交通车辆采用上述放电平衡电路; 其中,所述动力蓄电池放电平衡电路的第一切换模块、第二切换模块、第三切换模块以及第四切换模块的闭合和断开控制系统控制。
为控制方便,节省成本,本发明所述第一切换模块、第二切换模块、第三切换模块以及第四切换模块的闭合和断开是由TCMS系统(列车控制和管理系统)来控制的。
本发明还提供一种如上所述轨道交通车辆动力蓄电池放电平衡的控制方法,包括:
在所述放电平衡电路每次上电时,获取并判断第一牵引蓄电池或第二牵引蓄电池的放电循环次数,如果所述放电循环次数为单数,则控制第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开,使第一牵引蓄电池为第一辅助变流器提供能量,第二牵引蓄电池为第二辅助变流器提供能量;或,控制第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开,使第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量;
如果所述放电循环次数为双数,则控制第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开,使第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量;或,控制第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开,使第一牵引蓄电池为第一辅助变流器提供能量,第二牵引蓄电池为第二辅助变流器提供能量;
其中,第一牵引蓄电池或第二牵引蓄电池的累计放电量每达到第一设定电量,放电循环次数加1。第一牵引蓄电池和第二牵引蓄电池自投入使用,放电循环次数不清零。
本发明所述动力蓄电池放电平衡电路控制方法,正常情况下,CVCF辅助负载的总功率大于VVVF辅助负载的总功率。因此,为CVCF辅助负载提供电能的牵引蓄电池放电深度较高,即放电量大,为VVVF辅助负载提供电能的牵引蓄电池放电深度较低,即放电量小;在每次上电时进行牵引蓄电池放电循环次数的检测,根据放电循环次数的单双来控制第一切换模块、第二切换模块、第三切换模块以及第四切换模块的闭合和断开,在两个放电循环周期内使第一牵引蓄电池与第二牵引蓄电池的放电量达到平衡,延长了两组牵引蓄电池的平均使用寿命。
进一步地,在所述第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开之后,还包括:判断第二牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差是否低于第三设定电量;
如果第二牵引蓄电池的剩余电量低于第二设定电量,且第一牵引蓄电池的剩余电量与第 二牵引蓄电池的剩余电量之差大于第三设定电量,则控制第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开,使第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量;否则保持第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开的状态。
本发明的方案避免了第二牵引蓄电池提前馈电的风险(因第一切换模块和第三切换模块闭合后,第一牵引蓄电池给VVVF负载供电,第二牵引蓄电池给CVCF负载供电,CVCF负载大于VVVF负载),提高了机车的深度续航能力。
进一步地,在所述第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开之后,判断第二牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差是否低于第三设定电量之前,还包括牵引蓄电池馈电判断的步骤,具体步骤为:
判断第一牵引蓄电池和第二牵引蓄电池是否馈电;
如果第一牵引蓄电池和第二牵引蓄电池均正常,则判断第二牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差是否低于第三设定电量;
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块和第二切换模块闭合,第三切换模块和第四切换模块断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块和第四切换模块闭合,第一切换模块和第二切换模块断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块、第二切换模块、第三切换模块和第四切换模块断开,停止为第一辅助变流器和第二辅助变流器提供能量。
进一步地,在第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开之后,还包括:判断第一牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差是否低于第三设定电量;
如果第一牵引蓄电池的剩余电量低于第二设定电量,且第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差大于第三设定电量,则控制第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开,使第一牵引蓄电池为第一辅助变流器提供能量,第二牵 引蓄电池为第二辅助变流器提供能量;否则保持第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开的状态。
本发明的方案避免了第一牵引蓄电池提前馈电的风险(因第二切换模块和第四切换模块闭合后,第二牵引蓄电池给VVVF负载供电,第一牵引蓄电池给CVCF负载供电,CVCF负载大于VVVF负载),提高了机车的深度续航能力。
进一步地,在所述第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开之后,判断第一牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差是否低于第三设定电量之前,还包括牵引蓄电池馈电判断的步骤,具体步骤为:
判断第一牵引蓄电池和第二牵引蓄电池是否馈电;
如果第一牵引蓄电池和第二牵引蓄电池均正常,则判断第一牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差是否低于第三设定电量;
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块和第二切换模块闭合,第三切换模块和第四切换模块断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块和第四切换模块闭合,第一切换模块和第二切换模块断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块、第二切换模块、第三切换模块和第四切换模块断开,停止为第一辅助变流器和第二辅助变流器提供能量。
进一步地,在所述获取并判断第一牵引蓄电池或第二牵引蓄电池的放电循环次数之前,还包括牵引蓄电池馈电判断的步骤,具体步骤为:
判断第一牵引蓄电池和第二牵引蓄电池是否馈电;
如果第一牵引蓄电池和第二牵引蓄电池均正常,则获取并判断第一牵引蓄电池或第二牵引蓄电池的放电循环次数;
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块和第二切换模块闭合,第三切换模块和第四切换模块断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块和第四切换模块闭合,第一切换模块和第二切换模块断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块、第二切换模块、第三切换模块和第四切换模块断开,停止为第一辅助变流器和第二辅助变流器提供能量。
对牵引蓄电池(动力蓄电池)进行馈电判断,可以防止牵引蓄电池过度放电。当某一牵引蓄电池馈电时,可以由另一牵引蓄电池同时为VVVF辅助负载和CVCF辅助负载提供能量。因为第一辅助变流器、第二辅助变流器分别为VVVF辅助负载、CVCF辅助负载提供能量,避免了一个辅助变流器同时为VVVF辅助负载和CVCF辅助负载提供能量,从而解决了VVVF辅助负载按照CVCF模式运行导致的噪音大,输出功率增加的问题。
进一步地,所述第一设定电量为第一牵引蓄电池或第二牵引蓄电池的总电量,所述第二设定电量和所述第三设定电量应满足以下关系:所述第二设定电量和所述第三设定电量满足以下关系:当任意一组牵引蓄电池的剩余电量为第二设定电量时,该组牵引蓄电池给其中一个牵引变流器和VVVF辅助负载同时放电至完全馈电的时间等于另一组牵引蓄电池的剩余电量为第二设定电量与第三设定电量之和时给另一个牵引变流器和CVCF辅助负载放电至完全馈电的时间,且第二设定电量值最小。本发明可使牵引蓄电池在负载不平衡时依然保持其放电时间平衡,有效提高机车的深度续航能力;而该过程中使第二设定电量值最小,可有效降低因深度续航时负载切换导致两组蓄电池在整个使用寿命中的不平衡性影响。
与现有技术相比,本发明每组牵引蓄电池通过两个切换模块分别与第一辅助变流器和第二辅助变流器连接,第一辅助变流器和第二辅助变流器分别为VVVF辅助负载和CVCF辅助负载提供能量。通过控制四个切换模块动作,当两组牵引蓄电池的放电循环次数为单数或双数时,每组牵引蓄电池在默认情况下对VVVF辅助负载和CVCF辅助负载在两个放电循环周期内总的放电量均为一次放电循环深度,使两组牵引蓄电池在整个生命周期中,总的放电量基本保持一致,保证了两组牵引蓄电池的使用寿命一致。当机车需要深度续航时,自动选择放电深度较高的牵引蓄电池为VVVF辅助负载提供能量,使放电深度较低的牵引蓄电池为CVCF辅助负载提供能量,避免了辅助负载功率较高的那组牵引蓄电池因过度放电导致其提前牵引封锁,提高了机车续航能力,同时避免了一个辅助变流器同时为VVVF辅助负载和CVCF辅助负载提供能量,从而解决了VVVF辅助负载按照CVCF模式运行导致的 噪音大,输出功率增加的问题。
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一个实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1中一种机车牵引蓄电池放电平衡电路的结构示意图;
图2是本发明实施例1中一种机车牵引蓄电池放电平衡电路控制方法的流程图;
图3是本发明实施例1中牵引蓄电池馈电判断流程图;
图4是本发明实施例2中一种机车牵引蓄电池放电平衡电路控制方法的流程图;
其中,蓄电池1为第一牵引蓄电池,蓄电池2为第二牵引蓄电池。
下面结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,本发明所提供的一种轨道交通车辆动力蓄电池放电平衡电路,包括第一牵引蓄电池、第二牵引蓄电池、第一牵引变流器、第二牵引变流器、第一辅助变流器、第二辅助变流器、第一切换模块K01、第二切换模块K02、第三切换模块K03以及第四切换模块K04;第一牵引蓄电池与第一牵引变流器连接,第二牵引蓄电池与第二牵引变流器连接,第一辅助变流器与VVVF辅助负载连接,第二辅助变流器与CVCF辅助负载连接;第一牵引蓄电池通过第一切换模块K01与第一辅助变流器连接,第一牵引蓄电池通过第二切换模块K02与第二辅助逆变器连接;第二牵引蓄电池通过第三切换模块K03与第二辅助逆变器连接,第二牵引蓄电池通过第四切换模块K04与第一辅助逆变器连接;第一切换模块K01、第二切换模块K02、第三切换模块K03以及第四切换模块K04的闭合和断开是由TCMS系统来控制的,TCMS系统为列车控制和管理系统。
本发明实施例1中,为第一辅助变流器和第二辅助变流器配置第一切换模块K01、第二切换模块K02、第三切换模块K03以及第四切换模块K04。在不同情况下对切换模块的闭合和断开进行控制,实现两个牵引蓄电池的放电平衡,具体控制逻辑包括:
(1)当K01和K03闭合,K02和K04断开时,第一牵引蓄电池给第一辅助变流器供 电、第二牵引蓄电池给第二辅助变流器供电;
(2)当K02和K04闭合、K01和K03断开时,第一牵引蓄电池给第二辅助变流器供电、第二牵引蓄电池给第一辅助变流器供电;
(3)当K01和K02闭合,K03和K04断开时,第一牵引蓄电池同时给第一辅助变流器和第二辅助变流器供电;
(4)当K03和K04闭合,K01和K02断开时,第二牵引蓄电池同时给第一辅助变流器和第二辅助变流器供电;
(5)当K01、K02、K03和K04全部断开时,第一牵引蓄电池和第二牵引蓄电池停止对两个辅助变流器供电。
本实施例中,第一切换模块K01、第二切换模块K02、第三切换模块K03以及第四切换模块K04均为双刀双掷型换向接触器。
如图2所示,本发明还提供一种轨道交通车辆动力蓄电池放电平衡的控制方法,包括:
(1)在放电平衡电路每次上电时,判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则转入步骤(2);否则:
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
是否馈电的判断条件为牵引蓄电池的剩余电量是否低于第四设定电量,第四设定电量<第三设定电量<第二设定电量<第一设定电量,第四设定电量即为最低剩余电量。通过设置最低剩余电量的保护判断,防止牵引蓄电池过度放电,即使某一牵引蓄电池馈电,还可以由另一牵引蓄电池同时为VVVF辅助负载和CVCF辅助负载提供能量。因为第一辅助变流器、第二辅助变流器分别为VVVF辅助负载、CVCF辅助负载提供能量,避免了一个辅助变流器同时为VVVF辅助负载和CVCF辅助负载提供能量,从而解决了VVVF辅助负载按照 CVCF模式运行导致的噪音大,输出功率增加的问题,有效地提高了牵引蓄电池的续航能力。
(2)在放电平衡电路每次上电时,获取并判断第一牵引蓄电池或第二牵引蓄电池的放电循环次数,如果所述放电循环次数为单数,则转入步骤(3),否则转入步骤(8)。
在每次上电时进行牵引蓄电池放电循环次数的检测,上电后不再根据放电循环次数进行判断和切换,在下一次上电时又进行牵引蓄电池放电循环次数的检测。根据放电循环次数的计数情况(单数或双数)控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04的闭合和断开,在两个放电循环周期内使第一牵引蓄电池与第二牵引蓄电池的放电量达到平衡,避免了放电深度较高的那组牵引变流器提前牵引封锁,提高了机车续航能力,延长了牵引蓄电池的使用寿命。例如,在一个放电循环周期内(即一个放电循环次数内),如果放电循环次数为单数,那么由第一牵引蓄电池为VVVF辅助负载供电(假设耗电量为40%),第二牵引蓄电池为CVCF辅助负载供电(假设耗电量为60%);在下一个放电循环周期内,放电循环次数则为双数,那么由第一牵引蓄电池为CVCF辅助负载供电(耗电量为60%),第二牵引蓄电池为VVVF辅助负载供电(耗电量为40%),则在两个放电循环周期内,第一牵引蓄电池消耗的电量为40%+60%,第二牵引蓄电池消耗的电量为60%+40%,则在两个放电循环周期内,第一牵引蓄电池与第二牵引蓄电池达到放电量平衡。在本实施例中,第一设定电量为牵引蓄电池的总电量,牵引蓄电池每累计放一额定电量,放电循环次数加1,牵引蓄电池在放电后或放电时也可能被充电,如果根据剩余电量来进行判断并切换,会导致接触器切换频繁,从而导致机车的稳定性差,因此本发明根据放电循环次数来进行切换,保证了两个放电循环周期内,第一牵引蓄电池和第二牵引蓄电池放电平衡。
(3)控制第一切换模块K01和第三切换模块K03闭合,第二切换模块K02和第四切换模块K04断开,使第一牵引蓄电池为第一辅助变流器提供能量,第二牵引蓄电池为第二辅助变流器提供能量。
在当前放电循环周期内(放电循环次数为单数),由第一牵引蓄电池为第一辅助变流器提供能量,第二牵引蓄电池为第二辅助变流器提供能量;在下一个放电循环周期内(放电循环次数为双数),由第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量,使两个放电循环周期内,第一牵引蓄电池与第二牵引蓄电池的放电电量平衡。
(4)判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则转入步骤(5);否则:
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
(5)判断第二牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差是否低于第三设定电量。
在每个放电循环周期内,当某一牵引蓄电池的剩余电量较低,且远低于另一牵引蓄电池的剩余电量时,进行一次切换,使每个放电循环周期内第一牵引蓄电池和第二牵引蓄电池的放电电量尽可能接近,达到放电平衡。只有在牵引蓄电池的剩余电量较低时才进行切换,避免了频繁切换导致稳定性差。由于第二牵引蓄电池给耗电量多的CVCF辅助负载供电,因此,对第二牵引蓄电池的剩余电量进行判断。
(6)如果第二牵引蓄电池的剩余电量低于第一设定电量,且第一牵引蓄电池与第二牵引蓄电池的剩余电量之差大于第二设定电量,则控制第二切换模块K02和第四切换模块K04闭合,第一切换模块K01和第三切换模块K03断开,使第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量。
第二牵引蓄电池对负载较重的第二辅助变流器供电,正常情况下,第二牵引蓄电池的电量下降较快,因此,对第二牵引蓄电池的剩余电量进行判断,在第二牵引蓄电池剩余电量较低,且第一牵引蓄电池与第二牵引蓄电池的剩余电量相差较大时,才进行第一辅助变流器与第二辅助变流器的供电切换,即第二牵引蓄电池进行深度放电时才会切换,避免了反复切换而降低稳定性。
(7)判断第一牵引蓄电池和第二牵引蓄电池是否馈电;
如果第一牵引蓄电池和第二牵引蓄电池均正常,保持第二切换模块K02和第四切换模块K04闭合,第一切换模块K01和第三切换模块K03断开的状态;否则:
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切 换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
(8)控制第二切换模块K02和第四切换模块K04闭合,第一切换模块K01和第三切换模块K03断开,使第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量。
(9)判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则转入步骤(10);否则:
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
(10)判断第一牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差是否低于第三设定电量。
(11)如果第一牵引蓄电池的剩余电量低于第一设定电量,且第二牵引蓄电池与第一牵引蓄电池的剩余电量之差大于第二设定电量,则第一切换模块K01和第三切换模块K03闭合,第二切换模块K02和第四切换模块K04断开,使第一牵引蓄电池为第一辅助变流器提供能量,第二牵引蓄电池为第二辅助变流器提供能量。
第一牵引蓄电池对负载较重的第二辅助变流器供电,正常情况下,第一牵引蓄电池的电 量下降较快,因此,对第一牵引蓄电池的剩余电量进行判断,在第一牵引蓄电池剩余电量较低,且第二牵引蓄电池与第一牵引蓄电池的剩余电量相差较大时,才进行第一辅助变流器与第二辅助变流器的供电切换,即第一牵引蓄电池需要进行深度放电时才会切换,避免了反复切换而降低稳定性。
利用剩余电量较多的第二牵引蓄电池对负载较重的第二辅助变流器供电,以达到在放电循环周期内第一牵引蓄电池和第二牵引蓄电池的放电平衡。
(12)判断第一牵引蓄电池和第二牵引蓄电池是否馈电;
如果第一牵引蓄电池和第二牵引蓄电池均正常,保持第一切换模块K01和第三切换模块K03闭合,第二切换模块K02和第四切换模块K04断开的状态;
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
本实施例中,第二设定电量为第一牵引蓄电池或第二牵引蓄电池总电量的40%,第三设定电量为第一牵引蓄电池或第二牵引蓄电池总电量的10%。第一设定电量、第二设定电量、第三设定电量以及第四设定电量均可以根据需要进行调整。
实施例2
如图4所示,本发明还提供一种另一种动力蓄电池放电平衡的控制方法,包括:
(1)在放电平衡电路每次上电时,判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则转入步骤(2);否则:
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切 换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
是否馈电的判断条件为牵引蓄电池的剩余电量是否低于第四设定电量,第四设定电量<第三设定电量<第二设定电量<第一设定电量,第四设定电量即为最低剩余电量,通过设置最低剩余电量的保护判断,防止牵引蓄电池过度放电,即使某一牵引蓄电池馈电,由另一牵引蓄电池同时为VVVF辅助负载和CVCF辅助负载提供能量,因为第一辅助变流器、第二辅助变流器分别为VVVF辅助负载、CVCF辅助负载提供能量,避免了一个辅助变流器同时为VVVF辅助负载和CVCF辅助负载提供能量的可能性,从而避免了VVVF辅助负载按照CVCF模式运行导致的噪音大,输出功率增加等问题,有效地提高了牵引蓄电池的续航能力。
(2)在放电平衡电路每次上电时,获取并判断第一牵引蓄电池或第二牵引蓄电池的放电循环次数,如果所述放电循环次数为单数,则转入步骤(3),否则转入步骤(8)。
(3)控制第二切换模块K02和第四切换模块K04闭合,第一切换模块K01和第三切换模块K03断开,使第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量。
(4)判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则转入步骤(5);否则:
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
(5)判断第一牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差是否低于第三设定电量。
(6)如果第一牵引蓄电池的剩余电量低于第一设定电量,且第二牵引蓄电池与第一牵引蓄电池的剩余电量之差大于第二设定电量,则第一切换模块K01和第三切换模块K03闭合,第二切换模块K02和第四切换模块K04断开,使第一牵引蓄电池为第一辅助变流器提供能量,第二牵引蓄电池为第二辅助变流器提供能量。
第一牵引蓄电池对负载较重的第二辅助变流器供电,正常情况下,第一牵引蓄电池的电量下降较快,因此,对第一牵引蓄电池的剩余电量进行判断,在第一牵引蓄电池剩余电量较低,且第二牵引蓄电池与第一牵引蓄电池的剩余电量相差较大时,才进行第一辅助变流器与第二辅助变流器的供电切换,即第一牵引蓄电池需要进行深度放电时才会切换,避免了反复切换而降低稳定性。
使剩余电量较多的第二牵引蓄电池对负载较重的第二辅助变流器供电,以达到在放电循环周期内第一牵引蓄电池和第二牵引蓄电池的放电平衡。
(7)判断第一牵引蓄电池和第二牵引蓄电池是否馈电;
如果第一牵引蓄电池和第二牵引蓄电池均正常,保持第一切换模块K01和第三切换模块K03闭合,第二切换模块K02和第四切换模块K04断开的状态;
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
(8)控制第一切换模块K01和第三切换模块K03闭合,第二切换模块K02和第四切换模块K04断开,使第一牵引蓄电池为第一辅助变流器提供能量,第二牵引蓄电池为第二辅助变流器提供能量。
在当前放电循环周期内(放电循环次数为双数),由第一牵引蓄电池为第一辅助变流器 提供能量,第二牵引蓄电池为第二辅助变流器提供能量;在下一个放电循环周期内(放电循环次数为单数),由第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量,使两个放电循环周期内,第一牵引蓄电池与第二牵引蓄电池的放电电量平衡。
(9)判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则转入步骤(10);否则:
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
(10)判断第二牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差是否低于第三设定电量。
在每个放电循环周期内,当某一牵引蓄电池的剩余电量较低,且远低于另一牵引蓄电池的剩余电量时,进行一次切换,使每个放电循环周期内第一牵引蓄电池和第二牵引蓄电池的放电电量尽可能接近,达到放电平衡;只有在牵引蓄电池的剩余电量较低时才进行切换,避免了频繁切换导致稳定性差;由于第二牵引蓄电池给耗电量多的CVCF辅助负载供电,因此,对第二牵引蓄电池的剩余电量进行判断。
(11)如果第二牵引蓄电池的剩余电量低于第一设定电量,且第一牵引蓄电池与第二牵引蓄电池的剩余电量之差大于第二设定电量,则控制第二切换模块K02和第四切换模块K04闭合,第一切换模块K01和第三切换模块K03断开,使第一牵引蓄电池为第二辅助变流器提供能量,第二牵引蓄电池为第一辅助变流器提供能量。
第二牵引蓄电池对负载较重的第二辅助变流器供电,正常情况下,第二牵引蓄电池的电量下降较快,因此,对第二牵引蓄电池的剩余电量进行判断,在第二牵引蓄电池剩余电量较低,且第一牵引蓄电池与第二牵引蓄电池的剩余电量相差较大时,才进行第一辅助变流器与 第二辅助变流器的供电切换,即第二牵引蓄电池进行深度放电时才会切换,避免了反复切换而降低稳定性。
(12)判断第一牵引蓄电池和第二牵引蓄电池是否馈电;
如果第一牵引蓄电池和第二牵引蓄电池均正常,保持第二切换模块K02和第四切换模块K04闭合,第一切换模块K01和第三切换模块K03断开的状态;否则:
如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块K01和第二切换模块K02闭合,第三切换模块K03和第四切换模块K04断开,由第一牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块K03和第四切换模块K04闭合,第一切换模块K01和第二切换模块K02断开,由第二牵引蓄电池为第一辅助变流器和第二辅助变流器提供能量;
如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块K01、第二切换模块K02、第三切换模块K03和第四切换模块K04断开,停止为第一辅助变流器和第二辅助变流器提供能量,如图3所示。
本实施例中,第二设定电量为第一牵引蓄电池或第二牵引蓄电池总电量的40%,第三设定电量为第一牵引蓄电池或第二牵引蓄电池总电量的10%。第一设定电量、第二设定电量、第三设定电量以及第四设定电量均可以根据需要进行调整。
本发明牵引蓄电池放电平衡电路控制方法,根据某组蓄电池的放电循环次数,自动调整辅助负载的默认配置,使该蓄电池组在两个放电循环周期内对第一辅助变流器和对第二辅助变流器的放电量基本相等。同理另一组蓄电池在两个放电循环周期内对第一辅助变流器和对第二辅助变流器的放电量也基本相等。因此,两组蓄电池在整个使用寿命周期中的放电量也基本相等,可以保证其使用寿命基本一致。
仅当负载较大的蓄电池电量较低,且该组蓄电池比另一组蓄电池的电量低于一定值(相差第三设定电量)时,才自动切换辅助负载的配置,使原负载较大的蓄电池自动选择负载较小的辅助变流器供电,原负载较小的蓄电池自动选择负载较大的辅助变流器供电,使两组蓄电池在深度放电时放电量相对均衡,既可以充分利用蓄电池的剩余电量提高机车续航能力,又可以在蓄电池电量较高时避免了辅助变流器的反复配置,提高了机车运行的稳定性。
实现辅助负载切换的接触器(K01/K02/K03/K04)设置在牵引蓄电池组与辅助变流器输入侧的支路上,接触器的切换不影响牵引蓄电池对牵引变流器的供电,因此其配置转换过程 或切换过程不影响机车的正常行驶。
以上所揭露的仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或变型,都应涵盖在本发明的保护范围之内。
Claims (10)
- 一种轨道交通车辆动力蓄电池放电平衡电路,包括第一牵引蓄电池、与第一牵引蓄电池连接的第一牵引变流器、第二牵引蓄电池、与第二牵引蓄电池连接的第二牵引变流器、第一牵引变流器、第二牵引变流器、第一辅助变流器、与第一辅助变流器连接的VVVF辅助负载、第二辅助变流器以及与第二辅助变流器连接的CVCF辅助负载,其特征在于:所述第一牵引蓄电池通过第一切换模块与第一辅助变流器连接,第一牵引蓄电池通过第二切换模块与第二辅助逆变器连接;所述第二牵引蓄电池通过第三切换模块与第二辅助逆变器连接,第二牵引蓄电池通过第四切换模块与第一辅助逆变器连接。
- 如权利要求1所述的轨道交通车辆动力蓄电池放电平衡电路,其特征在于:所述第一切换模块、第二切换模块、第三切换模块以及第四切换模块均为接触器。
- 一种轨道交通车辆,其特征在于:其采用权利要求1或2所述的动力蓄电池放电平衡电路;其中,所述动力蓄电池放电平衡电路的第一切换模块、第二切换模块、第三切换模块以及第四切换模块的闭合和断开控制系统控制;优选地,所述第一切换模块、第二切换模块、第三切换模块以及第四切换模块的闭合和断开由TCMS系统控制。
- 一种权利要求3所述轨道交通车辆动力蓄电池放电平衡的控制方法,其特征在于,包括:在所述放电平衡电路每次上电时,获取并判断第一牵引蓄电池或第二牵引蓄电池的放电循环次数,如果所述放电循环次数为单数,则控制第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开;或,控制第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开;如果所述放电循环次数为双数,则控制第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开;或,控制第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开;其中,第一牵引蓄电池或第二牵引蓄电池的累计放电量每达到第一设定电量,放电循环次数加1。
- 如权利要求4所述的控制方法,其特征在于:在所述第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开之后,还包括:判断第二牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差是否低于第三设定电量;如果第二牵引蓄电池的剩余电量低于第二设定电量,且第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差大于第三设定电量,则控制第二切换模块和第四切换模块闭合, 第一切换模块和第三切换模块断开;否则保持第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开。
- 如权利要求5所述的控制方法,其特征在于:在所述第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开之后,判断第二牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差是否低于第三设定电量之前,还包括牵引蓄电池馈电判断的步骤,具体实现过程包括:判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则判断第二牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第一牵引蓄电池的剩余电量与第二牵引蓄电池的剩余电量之差是否低于第三设定电量;如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块和第二切换模块闭合,第三切换模块和第四切换模块断开;如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块和第四切换模块闭合,第一切换模块和第二切换模块断开;如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块、第二切换模块、第三切换模块和第四切换模块断开。
- 如权利要求4~6中任一项所述的控制方法,其特征在于:在第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开之后,还包括:判断第一牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差是否低于第三设定电量;如果第一牵引蓄电池的剩余电量低于第二设定电量,且第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差大于第三设定电量,则控制第一切换模块和第三切换模块闭合,第二切换模块和第四切换模块断开;否则保持第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开。
- 如权利要求7所述的控制方法,其特征在于:在所述第二切换模块和第四切换模块闭合,第一切换模块和第三切换模块断开之后,判断第一牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差是否低于第三设定电量之前,还包括牵引蓄电池馈电判断的步骤,具体步骤为:判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则判断第一牵引蓄电池的剩余电量是否低于第二设定电量,以及判断第二牵引蓄电池的剩余电量与第一牵引蓄电池的剩余电量之差 是否低于第三设定电量;如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块和第二切换模块闭合,第三切换模块和第四切换模块断开;如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块和第四切换模块闭合,第一切换模块和第二切换模块断开;如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块、第二切换模块、第三切换模块和第四切换模块断开。
- 如权利要求4~8中任一项所述的控制方法,其特征在于:在所述获取并判断第一牵引蓄电池或第二牵引蓄电池的放电循环次数之前,还包括牵引蓄电池馈电判断的步骤,具体步骤为:判断第一牵引蓄电池和第二牵引蓄电池是否馈电;如果第一牵引蓄电池和第二牵引蓄电池均正常,则获取并判断第一牵引蓄电池或第二牵引蓄电池的放电循环次数;如果第一牵引蓄电池正常,第二牵引蓄电池馈电,则控制第一切换模块和第二切换模块闭合,第三切换模块和第四切换模块断开;如果第一牵引蓄电池馈电,第二牵引蓄电池正常,则控制第三切换模块和第四切换模块闭合,第一切换模块和第二切换模块断开;如果第一牵引蓄电池和第二牵引蓄电池均馈电,则控制第一切换模块、第二切换模块、第三切换模块和第四切换模块断开。
- 如权利要求5~8中任一项所述的控制方法,其特征在于:所述第一设定电量为第一牵引蓄电池或第二牵引蓄电池的总电量;所述第二设定电量和所述第三设定电量满足以下关系:当任意一组牵引蓄电池的剩余电量为第二设定电量时,该组牵引蓄电池给其中一个牵引变流器和VVVF辅助负载同时放电至完全馈电的时间等于另一组牵引蓄电池的剩余电量为第二设定电量与第三设定电量之和时给另一个牵引变流器和CVCF辅助负载放电至完全馈电的时间,且第二设定电量值最小。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20953111.0A EP4212383A4 (en) | 2020-09-11 | 2020-11-27 | RAIL TRANSPORT VEHICLE AND ASSOCIATED POWER BATTERY DISCHARGE BALANCING CIRCUIT, AND CONTROL METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010952357.5 | 2020-09-11 | ||
CN202010952357.5A CN112193123B (zh) | 2020-09-11 | 2020-09-11 | 一种机车牵引蓄电池放电平衡电路及控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022052326A1 true WO2022052326A1 (zh) | 2022-03-17 |
Family
ID=74016246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/132321 WO2022052326A1 (zh) | 2020-09-11 | 2020-11-27 | 轨道交通车辆及其动力蓄电池放电平衡电路、控制方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4212383A4 (zh) |
CN (1) | CN112193123B (zh) |
WO (1) | WO2022052326A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116198319A (zh) * | 2021-11-30 | 2023-06-02 | 比亚迪股份有限公司 | 车辆及其供电方法 |
CN115402362A (zh) * | 2022-09-23 | 2022-11-29 | 中车株洲电力机车有限公司 | 蓄电池电力工程车及其车载控制方法与装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140033945A1 (en) * | 2012-07-31 | 2014-02-06 | Electro-Motive Diesel, Inc. | Consist power system having auxiliary load management |
CN107299567A (zh) * | 2017-06-27 | 2017-10-27 | 北京拓博尔轨道维护技术有限公司 | 一种电力接触网和蓄电池组双动力钢轨铣磨车 |
CN109383307A (zh) * | 2017-08-02 | 2019-02-26 | 株洲中车时代电气股份有限公司 | 用于电传动牵引轨道交通车辆的蓄电池供电牵引系统 |
CN109733420A (zh) * | 2019-01-04 | 2019-05-10 | 中车青岛四方机车车辆股份有限公司 | 一种列车蓄电池牵引系统、方法及列车 |
CN111452670A (zh) * | 2019-01-18 | 2020-07-28 | 通用汽车环球科技运作有限责任公司 | 多电池组电驱动车辆的电池组电压切换系统和控制逻辑 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009284690A (ja) * | 2008-05-23 | 2009-12-03 | Kawasaki Heavy Ind Ltd | 電池駆動車両 |
JP5322685B2 (ja) * | 2009-02-17 | 2013-10-23 | 川崎重工業株式会社 | 蓄電型電車の給電システム |
CN102029883B (zh) * | 2009-09-25 | 2015-07-08 | 北汽福田汽车股份有限公司 | 一种电机动力系统以及使用该系统的车辆 |
TW201545443A (zh) * | 2014-05-29 | 2015-12-01 | Jin-Tian An | 電池發電裝置及其方法 |
CN108621797B (zh) * | 2017-03-20 | 2020-06-05 | 克诺尔轨道车辆技术(上海)有限公司 | 轨道车辆及其供电系统和变频空调系统 |
CN111284506A (zh) * | 2018-12-07 | 2020-06-16 | 株洲中车时代电气股份有限公司 | 一种混合动力机车牵引传动系统 |
DE102018131363A1 (de) * | 2018-12-07 | 2020-06-10 | Schaeffler Technologies AG & Co. KG | Verfahren zum Betrieb eines Hochvoltnetzes in einem Elektro- oder Hybridfahrzeug, Hochvoltnetz für ein Elektro- oder Hybridfahrzeug und Elektro- oder Hybridfahrzeug |
CN110949416B (zh) * | 2019-12-04 | 2021-02-05 | 中车株洲电力机车有限公司 | 一种电力机车及其牵引电路 |
-
2020
- 2020-09-11 CN CN202010952357.5A patent/CN112193123B/zh active Active
- 2020-11-27 WO PCT/CN2020/132321 patent/WO2022052326A1/zh unknown
- 2020-11-27 EP EP20953111.0A patent/EP4212383A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140033945A1 (en) * | 2012-07-31 | 2014-02-06 | Electro-Motive Diesel, Inc. | Consist power system having auxiliary load management |
CN107299567A (zh) * | 2017-06-27 | 2017-10-27 | 北京拓博尔轨道维护技术有限公司 | 一种电力接触网和蓄电池组双动力钢轨铣磨车 |
CN109383307A (zh) * | 2017-08-02 | 2019-02-26 | 株洲中车时代电气股份有限公司 | 用于电传动牵引轨道交通车辆的蓄电池供电牵引系统 |
CN109733420A (zh) * | 2019-01-04 | 2019-05-10 | 中车青岛四方机车车辆股份有限公司 | 一种列车蓄电池牵引系统、方法及列车 |
CN111452670A (zh) * | 2019-01-18 | 2020-07-28 | 通用汽车环球科技运作有限责任公司 | 多电池组电驱动车辆的电池组电压切换系统和控制逻辑 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4212383A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN112193123B (zh) | 2021-12-17 |
CN112193123A (zh) | 2021-01-08 |
EP4212383A4 (en) | 2024-03-13 |
EP4212383A1 (en) | 2023-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120319657A1 (en) | Battery management system | |
JP5571129B2 (ja) | ハイブリッド電源システム | |
WO2022052326A1 (zh) | 轨道交通车辆及其动力蓄电池放电平衡电路、控制方法 | |
CN107968446B (zh) | 分布式电池包供电系统及充放电控制方法 | |
CN108155657B (zh) | 储能变流器及其主电路拓扑结构以及均衡控制方法 | |
EP3893318A1 (en) | Battery pack management system, battery pack, vehicle and management method | |
CN103560548A (zh) | 新型电池组、电池组连接方法及电池组充放电管理方法 | |
CN109921490A (zh) | 一种锂电池均压控制系统以及基于该系统的控制方法 | |
CN106787040A (zh) | 直流电源系统 | |
WO2023029552A1 (zh) | 储能系统控制方法及装置、储能系统、和储能设备 | |
CN108110352A (zh) | 一种锂电池均衡管理系统 | |
CN103532193A (zh) | 基于双向变换器的电池均衡装置及控制电池均衡的方法 | |
CN117713314B (zh) | 一种共直流母线的储能系统簇间均衡系统及方法 | |
JPWO2013128564A1 (ja) | エレベータ装置 | |
CN112072734A (zh) | 一种针对液态金属电池组的均衡系统及方法 | |
CN218415866U (zh) | 一种储能系统充电电压、功率自动调节系统 | |
KR20040017629A (ko) | 하이브리드 전기 자동차의 배터리 관리장치 및 방법 | |
CN111703443B (zh) | 混合动力机车及其能量平衡控制方法与系统 | |
CN102624048B (zh) | 一体化充放电式中压系统应急电源 | |
CN108923088B (zh) | 蓄电池放电能力提升装置及方法 | |
KR101969519B1 (ko) | 배터리 시스템 및 패시브 밸런싱 방법 | |
CN206259735U (zh) | 直流电源系统 | |
CN113910983B (zh) | 一种光伏供能的可重构电池均衡系统及应用 | |
CN110556970A (zh) | 充放电控制电路、发供电控制系统及电力机车 | |
CN116599181A (zh) | 一种串联电池簇在线均衡装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20953111 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020953111 Country of ref document: EP Effective date: 20230411 |