WO2022052231A1 - 一种高效测试系统实时状态检测装置 - Google Patents
一种高效测试系统实时状态检测装置 Download PDFInfo
- Publication number
- WO2022052231A1 WO2022052231A1 PCT/CN2020/124076 CN2020124076W WO2022052231A1 WO 2022052231 A1 WO2022052231 A1 WO 2022052231A1 CN 2020124076 W CN2020124076 W CN 2020124076W WO 2022052231 A1 WO2022052231 A1 WO 2022052231A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate
- module
- state
- status
- output end
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 44
- 238000012360 testing method Methods 0.000 title claims abstract description 41
- 239000000872 buffer Substances 0.000 claims abstract description 28
- 230000004044 response Effects 0.000 claims abstract description 14
- 238000005070 sampling Methods 0.000 claims description 15
- 230000002159 abnormal effect Effects 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 9
- 238000013461 design Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 230000005856 abnormality Effects 0.000 abstract 1
- 238000003745 diagnosis Methods 0.000 abstract 1
- 230000001960 triggered effect Effects 0.000 abstract 1
- 239000002699 waste material Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R35/00—Testing or calibrating of apparatus covered by the other groups of this subclass
Definitions
- the present application relates to the technical field of semiconductor testing, and in particular, to a real-time state detection device for an efficient testing system.
- the current state detection circuit of the test system can usually only implement simple state monitoring such as power supply and temperature, and cannot implement complex state detection. Insufficient detection coverage will cause the test system to work with diseases, which will lead to system failure or the risk of false detection of the device under test. If failures are not detected in time, unnecessary losses will be incurred when testing applications for mass production in test factories.
- the existing state detection mode usually adopts the polling sampling mode for state detection.
- the process is to collect the actual state of a parameter for comparison and judgment. If it is judged to be normal, the next parameter state is collected until an abnormal state is detected to trigger an interrupt.
- the total state acquisition time will be very long. In order to reduce the risk of false detection caused by system failure, the sampling interval of functional detection should be minimized in the actual test process, which will inevitably increase the total test time, seriously affect the test efficiency of the system, and increase the test cost.
- the technical problem to be solved by the present application is to provide a real-time state detection device of an efficient test system for the problems of insufficient detection coverage and low detection efficiency in the background art.
- a real-time state detection device for an efficient test system comprising a comparator L1, a comparator L2, a buffer Q1, a buffer Q2, an AND gate U1, an AND gate U2, an AND gate U3, an AND gate U4, an AND gate U5, and an AND gate U6 , flip-flop T1, flip-flop T2, flip-flop T3,
- the non-inverting input terminal of comparator L1 is connected to VCH;
- the inverting input terminal of the comparator L2 is connected to VCL;
- Monitor1 is respectively connected to the inverting input terminal of the comparator L1 and the non-inverting input terminal of the comparator L2;
- the output end of the comparator L1 is connected with the input end of the buffer Q1;
- the output end of the comparator L2 is connected with the input end of the buffer Q2;
- the output end of the buffer Q1 is connected to the 0 port of the AND gate U1;
- the output end of the buffer Q2 is connected with the 1 port of the AND gate U2;
- the output end of the AND gate is connected to the S end of the flip-flop T1;
- the S end of the trigger T2 is connected to Monitor2;
- the Q end of the flip-flop T1 is connected to the 0 port of the AND gate U2;
- the Q end of the flip-flop T2 is connected to the 1 port of the AND gate U2;
- Port 1 of AND gate U3 is connected to Monitor n;
- the output end of the AND gate U2 is connected to the 0 port of the AND gate U4;
- the output end of the AND gate U3 is connected to the 1 port of the AND gate U4;
- the output end of the AND gate U4 is connected with the 0 port of the AND gate U6;
- the Q terminal of the flip-flop T3 accesses the interrupt response
- the output end of the AND gate U6 is connected with the S end of the flip-flop T3 and is connected with the computer through the data bus.
- a real-time state detection device for an efficient test system comprising a detection state parameter setting module, a state parameter database module, a test running module, a system state detection module, a system state bit judgment module, a board state bit judgment module, a unit status bit judgment module, Function-level status identification and interrupt response module, status parameter display module, AD sampling circuit,
- the detection state parameter setting module is used for setting parameters and design results
- the state parameter database module is used to save parameters and design results,
- test running module is used for mass production testing
- the system state detection module is used to read system-level state data bits in real time
- the system status bit judging module is used for judging system data bits
- the board status bit judging module is used for judging the data bits of the board
- the unit status bit judging module is used for judging unit data bits
- the functional-level status recognition and interrupt response module is used to start the interrupt response mechanism and the status flag recognition mechanism when the abnormal status flag is read,
- the state parameter display module is used to display the detailed information of abnormal state parameters,
- the detection state parameter setting module should set the upper limit level, the lower limit level, the initial state bit, and the enable bit for whether the monitoring function is turned on,
- the AD sampling circuit is used to read the actual value of the state parameter.
- the AD sampling circuit includes a buffer L, an operational amplifier U, an analog-to-digital converter J, and a data bus;
- the input end of the buffer L is connected to the Monitor, and the Monitor represents the monitoring point;
- the output end of the buffer L is connected to the non-inverting input end of the operational amplifier U;
- the output end of the operational amplifier is connected to the Vin port of the analog/digital converter J;
- the B1 to B8 pins of the analog-to-digital converter J are connected to the data bus;
- the data bus is connected to the computer.
- the application has the advantages of good ease of use and portability, and the detection status parameters are in database format, which is convenient for parameter function increase and decrease settings and version update management;
- the detection efficiency of this application is high. During the system operation, the system only reads the system-level status bit data, and the use time is very short, which reduces the impact on the test time;
- the fault location accuracy of this application is high.
- the system will trigger the interrupt mechanism only when the abnormal status bit is identified, and identify the faulty board status bit according to the read system-level status bit, and then further read the board-level status bit. Identify the status bit of the faulty functional unit, and finally read the status parameters of the functional unit module to identify and determine the fault location, and realize the ability to accurately locate errors.
- Fig. 1 is the state sampling latch module diagram of the present application
- Fig. 2 is the process control diagram of the present application
- Fig. 3 is the structural principle diagram of the present application.
- FIG. 4 is an AD sampling circuit of the present application.
- a real-time state detection device for an efficient test system includes a comparator L1, a comparator L2, a buffer Q1, a buffer Q2, an AND gate U1, an AND gate U2, an AND gate U3, an AND gate U4, AND gate U5, AND gate U6, flip-flop T1, flip-flop T2, flip-flop T3, wherein,
- the non-inverting input terminal of comparator L1 is connected to VCH;
- the inverting input terminal of the comparator L2 is connected to VCL;
- Monitor1 is respectively connected to the inverting input terminal of the comparator L1 and the non-inverting input terminal of the comparator L2;
- the output end of the comparator L1 is connected with the input end of the buffer Q1;
- the output end of the comparator L2 is connected with the input end of the buffer Q2;
- the output end of the buffer Q1 is connected to the 0 port of the AND gate U1;
- the output end of the buffer Q2 is connected with the 1 port of the AND gate U2;
- the output end of the AND gate U1 is connected to the S end of the flip-flop T1;
- the S end of the trigger T2 is connected to Monitor2;
- the Q end of the flip-flop T1 is connected to the 0 port of the AND gate U2;
- the Q end of the flip-flop T2 is connected to the 1 port of the AND gate U2;
- Port 1 of AND gate U3 is connected to Monitor n;
- the output end of the AND gate U2 is connected to the 0 port of the AND gate U4;
- the output end of the AND gate U3 is connected to the 1 port of the AND gate U4;
- the output end of the AND gate U4 is connected with the 0 port of the AND gate U6;
- the Q terminal of the flip-flop T3 accesses the interrupt response
- the output end of the AND gate U6 is connected with the S end of the flip-flop T3 and is connected with the computer through the data bus.
- an efficient test system real-time state detection device includes a detection state parameter setting module, a state parameter database module, a test running module, a system state detection module, a system state bit judgment module, a board status bit judgment module, Unit status bit judgment module, functional level status identification and interrupt response module, status parameter display module, AD sampling circuit (not shown in the figure),
- the detection state parameter setting module is used for setting parameters and design results
- the state parameter database module is used to save parameters and design results
- test running module is used for mass production testing
- the system state detection module is used to read system-level state data bits in real time
- the system status bit judging module is used for judging system data bits
- the board state bit judging module is used for judging the board card data bit
- the unit status bit judging module is used for judging unit data bits
- the functional-level state identification and interrupt response module is used to start the interrupt response mechanism and the state identification mechanism when the state flag is abnormal;
- the state parameter display module is used to display detailed information of abnormal state parameters
- the detection state parameter setting module should set the upper limit level, the lower limit level, the initial state bit, and the enable bit for whether the monitoring function is turned on;
- the AD sampling circuit is used to read the actual value of the state parameter.
- the test system is initially set through the state parameter setting software interface before starting the test;
- each hardware function module of the system will collect and latch the status bits of the function modules in real time.
- the function module status bits are combined into the board status bits, and then the board status bits are combined into the system status bits.
- each state parameter is converted into a state bit by the detection sampling circuit and then latched by the state register in the FPGA, and finally collected into a group of 16 or 32-bit system state bit data;
- the system-level status detection module will read the system-level status data bits in real time, and the system will judge the data bits according to the read system status data bits;
- the system will start the interrupt response mechanism and the status flag identification mechanism.
- the test system reads the system state bits in real time according to the preset detection interval.
- the system-level status flag bit is first read, and the abnormal data bit read is based on the order of the digits of the 0 value to determine the corresponding board;
- the user can continue to work after troubleshooting the system fault according to the error prompt.
- the AD sampling circuit includes a buffer L, an operational amplifier U, an analog-to-digital converter J, and a data bus;
- the input end of the buffer L is connected to the Monitor, and the Monitor represents the monitoring point;
- the output end of the buffer L is connected to the non-inverting input end of the operational amplifier U;
- the output end of the operational amplifier is connected to the Vin port of the analog/digital converter J;
- the B1 to B8 pins of the analog-to-digital converter J are connected to the data bus;
- the data bus is connected to the computer.
- connection should be understood in a broad sense, and may be mechanical connection. or electrical connection, or internal communication between two components, or direct connection, "up”, “down”, “left”, “right”, etc. are only used to indicate relative positional relationship, when the absolute position of the object being described changes, the relative positional relationship may change;
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
Abstract
Description
Claims (3)
- 一种高效测试系统实时状态检测装置,包括:比较器L1、比较器L2、缓冲器Q1、缓冲器Q2、与门U1、与门U2、与门U3、与门U4、与门U5、与门U6、触发器T1、触发器T2、触发器T3;其中,所述比较器L1的同相输入端接入VCH;所述比较器L2的反相输入端接入VCL;Monitor1分别接入所述比较器L1的反相输入端和所述比较器L2的同相输入端;所述比较器L1的输出端与所述缓冲器Q1的输入端连接;所述比较器L2的输出端与所述缓冲器Q2的输入端连接;所述缓冲器Q1的输出端与所述与门U1的0端口连接;所述缓冲器Q2的输出端与所述与门U2的1端口连接;所述与门U1的输出端连接所述触发器T1的S端;所述触发器T2的S端接入Monitor2;所述触发器T1的Q端与所述与门U2的0端口连接;所述触发器T2的Q端与所述与门U2的1端口连接;所述与门U3的0端口接入Monitor n-1;所述与门U3的1端口接入Monitor n;所述与门U2的输出端与所述与门U4的0端口连接;所述与门U3的输出端与所述与门U4的1端口连接;所述与门U4的输出端与所述与门U6的0端口连接;所述触发器T3的Q端接入中断响应;所述与门U6的输出端与所述触发器T3的S端连接并通过数据总线与计算机连接。
- 一种高效测试系统实时状态检测装置,包括检测状态参数设置模块、状态参数数据库模块、测试运行模块、系统状态检测模块、系统状态位判断模块、板卡状态位判断模块、单元状态位判断模块、功能级 状态识别及中断响应模块、状态参数显示模块、AD采样电路,其中,所述检测状态参数设置模块用于设置参数、设计结果;所述状态参数数据库模块用于保存参数、设计结果,所述测试运行模块用于量产测试;所述系统状态检测模块用于实时读取系统级状态数据位;所述系统状态位判断模块用于系统数据位的判断;所述板卡状态位判断模块用于板卡数据位的判断;所述单元状态位判断模块用于单元数据位的判断;所述功能级状态识别及中断响应模块用于读取到状态标志位异常时,启动中断响应机制及状态标识位识别机制;所述状态参数显示模块用于显示异常状态参数的详细信息;所述检测状态参数设置模块要设置上限电平,下限电平,初始状态位,以及此监测功能是否开启的使能位;所述AD采样电路用于读取状态参数的实际值。
- 根据权利要求2所述的一种高效测试系统实时状态检测装置,其中:所述AD采样电路包括缓冲器L、运算放大器U、模拟/数字转换器J、数据总线;其中,所述缓冲器L的输入端连接Monitor,Monitor表示监测点;所述缓冲器L的输出端连接所述运算放大器U的同相输入端;所述运算放大器的输出端连接所述模拟/数字转换器J的Vin端口;所述模拟/数字转换器J的B1至B8引脚均连接至所述数据总线;所述数据总线连接至计算机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010957410.0A CN112198471A (zh) | 2020-09-13 | 2020-09-13 | 一种高效测试系统实时状态检测装置 |
CN202010957410.0 | 2020-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022052231A1 true WO2022052231A1 (zh) | 2022-03-17 |
Family
ID=74014799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/124076 WO2022052231A1 (zh) | 2020-09-13 | 2020-10-27 | 一种高效测试系统实时状态检测装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112198471A (zh) |
WO (1) | WO2022052231A1 (zh) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5757811A (en) * | 1996-01-10 | 1998-05-26 | Mitsubishi Denki Kabushiki Kaisha | System for testing a fault detecting means |
JP2004177208A (ja) * | 2002-11-26 | 2004-06-24 | Honda Motor Co Ltd | 電圧検出回路の故障検知装置 |
JP2007024824A (ja) * | 2005-07-21 | 2007-02-01 | Nissan Motor Co Ltd | 車載電流センサの故障診断装置 |
CN101957418A (zh) * | 2010-10-20 | 2011-01-26 | 天津豪风机电设备有限公司 | 汽车线束导通检测仪及其检测方法 |
CN103226023A (zh) * | 2013-01-07 | 2013-07-31 | 中国人民解放军装备学院 | 一种电子测试系统工作状态的实时监测方法及设备 |
CN103424609A (zh) * | 2013-08-20 | 2013-12-04 | 电子科技大学 | 一种基于分段驱动的电流采样电路 |
CN105654678A (zh) * | 2016-01-29 | 2016-06-08 | 上海华岭集成电路技术股份有限公司 | 测试设备状态自动监测装置 |
CN106249151A (zh) * | 2015-06-15 | 2016-12-21 | 广达电脑股份有限公司 | 状态检测装置以及方法 |
CN106408089A (zh) * | 2016-08-26 | 2017-02-15 | 隆鑫通用动力股份有限公司 | 产品的测试设备监管方法 |
CN108267682A (zh) * | 2016-12-30 | 2018-07-10 | 杭州广立微电子有限公司 | 一种高密度测试芯片及其测试系统及其测试方法 |
CN108919157A (zh) * | 2018-07-10 | 2018-11-30 | 中国人民解放军战略支援部队航天工程大学 | 一种电子测试系统工况的实时告警方法及设备 |
CN108957207A (zh) * | 2018-07-19 | 2018-12-07 | 比克希汽车科技(合肥)有限公司 | 一种汽车线束导通的检测方法 |
CN109100671A (zh) * | 2018-07-05 | 2018-12-28 | 北京华峰测控技术股份有限公司 | 在集成电路电子元器件测试中针对测试系统的监控方法和监控系统 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5465216A (en) * | 1993-06-02 | 1995-11-07 | Intel Corporation | Automatic design verification |
US6408262B1 (en) * | 1998-03-27 | 2002-06-18 | Iar Systems A/S | Method and an apparatus for analyzing a state based system model |
CN100485635C (zh) * | 2006-11-17 | 2009-05-06 | 上海高性能集成电路设计中心 | 实时监测处理器内部状态的装置 |
CN102063356B (zh) * | 2009-11-18 | 2014-05-21 | 杭州华三通信技术有限公司 | 一种多中央处理单元cpu心跳检测系统及方法 |
CN102628921B (zh) * | 2012-03-01 | 2014-12-03 | 华为技术有限公司 | 一种集成电路及对集成电路中总线状态进行监控的方法 |
CN204536515U (zh) * | 2015-04-13 | 2015-08-05 | 浙江宇视科技有限公司 | 一种多电源系统故障诊断装置 |
CN106445407A (zh) * | 2016-08-17 | 2017-02-22 | 北京兆易创新科技股份有限公司 | 一种芯片处理方法及装置 |
CN107300911A (zh) * | 2017-08-15 | 2017-10-27 | 中车唐山机车车辆有限公司 | 故障检测方法、装置及系统 |
CN109408339A (zh) * | 2018-11-05 | 2019-03-01 | 郑州云海信息技术有限公司 | 一种cpld/fpga寄存器控制方法和系统 |
-
2020
- 2020-09-13 CN CN202010957410.0A patent/CN112198471A/zh active Pending
- 2020-10-27 WO PCT/CN2020/124076 patent/WO2022052231A1/zh active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5757811A (en) * | 1996-01-10 | 1998-05-26 | Mitsubishi Denki Kabushiki Kaisha | System for testing a fault detecting means |
JP2004177208A (ja) * | 2002-11-26 | 2004-06-24 | Honda Motor Co Ltd | 電圧検出回路の故障検知装置 |
JP2007024824A (ja) * | 2005-07-21 | 2007-02-01 | Nissan Motor Co Ltd | 車載電流センサの故障診断装置 |
CN101957418A (zh) * | 2010-10-20 | 2011-01-26 | 天津豪风机电设备有限公司 | 汽车线束导通检测仪及其检测方法 |
CN103226023A (zh) * | 2013-01-07 | 2013-07-31 | 中国人民解放军装备学院 | 一种电子测试系统工作状态的实时监测方法及设备 |
CN103424609A (zh) * | 2013-08-20 | 2013-12-04 | 电子科技大学 | 一种基于分段驱动的电流采样电路 |
CN106249151A (zh) * | 2015-06-15 | 2016-12-21 | 广达电脑股份有限公司 | 状态检测装置以及方法 |
CN105654678A (zh) * | 2016-01-29 | 2016-06-08 | 上海华岭集成电路技术股份有限公司 | 测试设备状态自动监测装置 |
CN106408089A (zh) * | 2016-08-26 | 2017-02-15 | 隆鑫通用动力股份有限公司 | 产品的测试设备监管方法 |
CN108267682A (zh) * | 2016-12-30 | 2018-07-10 | 杭州广立微电子有限公司 | 一种高密度测试芯片及其测试系统及其测试方法 |
CN109100671A (zh) * | 2018-07-05 | 2018-12-28 | 北京华峰测控技术股份有限公司 | 在集成电路电子元器件测试中针对测试系统的监控方法和监控系统 |
CN108919157A (zh) * | 2018-07-10 | 2018-11-30 | 中国人民解放军战略支援部队航天工程大学 | 一种电子测试系统工况的实时告警方法及设备 |
CN108957207A (zh) * | 2018-07-19 | 2018-12-07 | 比克希汽车科技(合肥)有限公司 | 一种汽车线束导通的检测方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112198471A (zh) | 2021-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021159710A1 (zh) | 一种bbu故障诊断方法、装置、电子设备及存储介质 | |
WO2022078013A1 (zh) | 一种服务器掉电检测的方法、系统、设备及介质 | |
CN2932488Y (zh) | 故障检测装置 | |
CN111078492B (zh) | 一种SoC内部总线的状态监控系统及方法 | |
CN108287780A (zh) | 一种监控服务器cpld状态的装置及方法 | |
CN108427623A (zh) | 一种计算机故障报警系统及方法 | |
WO2020063672A1 (zh) | 尿素泵的型号识别方法、尿素泵诊断仪及其诊断系统 | |
CN111856243A (zh) | 一种自动化电流测量精度测试系统及方法 | |
EP3839742A1 (en) | A method for diagnosing power supply failure in a wireless communication device | |
CN208140901U (zh) | 一种服务器电源实时监控装置 | |
WO2022052231A1 (zh) | 一种高效测试系统实时状态检测装置 | |
CN210863959U (zh) | 一种基于fpga电气信号检测的主板自检装置 | |
TWI393003B (zh) | 遠距硬體檢測系統及方法 | |
CN111505531B (zh) | 一种板卡测试系统 | |
CN117033050A (zh) | 状态信息的发送方法、系统、存储介质及电子设备 | |
CN101201378A (zh) | 电接触件瞬断测试系统 | |
CN111338455A (zh) | 一种服务器电源管理装置、方法及系统 | |
CN110261761B (zh) | 一种基于fpga电气信号检测的主板自检装置及方法 | |
CN110794807A (zh) | 一种远程控制器的性能测试装置及测试方法 | |
CN113739926B (zh) | 列车电器柜温升故障的检测方法、装置及终端设备 | |
CN110570897A (zh) | 存储器检测系统、存储器检测方法及错误映射表建立方法 | |
CN113533942B (zh) | 芯片测试系统及方法 | |
CN112231157B (zh) | 一种基于硬件拓扑的ai服务器hca卡性能测试方法及系统 | |
CN208781208U (zh) | Pci总线测试板卡 | |
CN110058978A (zh) | 一种用于计算机的错误日志记录装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20953016 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20953016 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21/09/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20953016 Country of ref document: EP Kind code of ref document: A1 |