WO2022051922A1 - 列车自动驾驶节能控制方法、相关设备及可读存储介质 - Google Patents

列车自动驾驶节能控制方法、相关设备及可读存储介质 Download PDF

Info

Publication number
WO2022051922A1
WO2022051922A1 PCT/CN2020/114146 CN2020114146W WO2022051922A1 WO 2022051922 A1 WO2022051922 A1 WO 2022051922A1 CN 2020114146 W CN2020114146 W CN 2020114146W WO 2022051922 A1 WO2022051922 A1 WO 2022051922A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction force
distribution strategy
performance index
force distribution
strategy
Prior art date
Application number
PCT/CN2020/114146
Other languages
English (en)
French (fr)
Inventor
梅文庆
文宇良
李程
张征方
钟谱华
罗源
蒋杰
边刘阳
邵跃虎
周权强
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to PCT/CN2020/114146 priority Critical patent/WO2022051922A1/zh
Priority to AU2020467390A priority patent/AU2020467390B2/en
Priority to US17/924,148 priority patent/US20230174125A1/en
Publication of WO2022051922A1 publication Critical patent/WO2022051922A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/16Trackside optimisation of vehicle or train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry

Definitions

  • the present application relates to the technical field of automatic driving of trains, and more specifically, to an energy-saving control method for automatic driving of trains, related equipment, and a readable storage medium.
  • a series of speed curve models are usually calculated first, then the energy consumption of each speed curve model is estimated, and finally the optimal speed curve model is selected, and the optimal speed curve model is used as the target speed of the train automatic driving system. curve to reduce energy consumption during train operation.
  • the train energy consumption model is often considered when selecting the optimal speed curve model, and the train energy consumption model often deviates greatly from the actual energy consumption of the train, resulting in a deviation in the selection of the optimal speed curve model, thus affecting the train.
  • the optimal speed curve model selected in this way is not suitable for the line section that has strict requirements on the running speed of the train, which also affects the energy-saving effect of the train.
  • the present application proposes a control method, a related device and a readable storage medium for a train automatic driving system.
  • the specific plans are as follows:
  • a control method for a train automatic driving system comprising:
  • the automatic train driving system is controlled based on the optimal tractive force distribution strategy.
  • calculating the performance index of the traction force allocation strategy including:
  • the traction force curve of each axle corresponding to the traction force distribution strategy is calculated, wherein the traction force curve of each axle corresponding to the traction force distribution strategy is used to indicate that under the traction force distribution strategy, the train The traction force of the axle at each position in the interval planned by the automatic driving system;
  • the performance index of the traction force distribution strategy is calculated.
  • the performance index of the traction force allocation strategy is calculated and obtained, including:
  • the first performance index of the traction force distribution strategy is calculated and obtained, and the first performance index is used to measure the traction energy of the traction force distribution strategy consume;
  • a second performance index of the traction force allocation strategy is calculated and obtained, and the second performance index is used to measure the degree of balance of the traction force of each axle under the traction force allocation strategy;
  • the performance index of the traction force distribution strategy is calculated.
  • the described performance index based on each tractive force allocation strategy determine the optimal tractive force allocation strategy, including:
  • the preset multiple traction force distribution strategies include:
  • the first traction force distribution strategy is used to instruct the balanced distribution of traction force of each axle
  • the second traction force distribution strategy is used to instruct as many axles as possible to achieve optimal efficiency, and the remaining axles are equally distributed;
  • the third traction force distribution strategy is used to instruct as many axles as possible to be in a state of not consuming power, and the remaining axles are as efficient as possible;
  • the fourth traction force distribution strategy is used to instruct as many axles as possible to be in a state of no power consumption, and the remaining axles are evenly distributed.
  • controlling the train automatic driving system based on the optimal traction force distribution strategy includes:
  • a train automatic driving system control device comprising:
  • the acquisition unit is used to acquire various preset traction force distribution strategies
  • a calculation unit configured to calculate the performance index of the traction force distribution strategy for each traction force distribution strategy
  • a determination unit used for determining the optimal traction force distribution strategy based on the performance index of each traction force distribution strategy
  • a control unit configured to control the automatic driving system based on the optimal traction force distribution strategy.
  • the computing unit includes:
  • a speed curve and total traction curve acquisition unit used for acquiring the speed curve and the total traction curve planned by the train automatic driving system, wherein the speed curve is used to indicate the speed of each position in the interval planned by the train automatic driving system, and the total traction force
  • the curve is used to indicate the total tractive force of the train at each position in the section planned by the automatic train driving system;
  • Each axle traction force curve calculation unit is configured to calculate, based on the total traction force curve, each axle traction force curve corresponding to the traction force distribution strategy, wherein the traction force curve of each axis corresponding to the traction force distribution strategy is used to indicate the Under the traction force distribution strategy, the traction force of the axle at each position in the interval planned by the automatic driving system of the train;
  • the performance index calculation unit is configured to calculate and obtain the performance index of the traction force distribution strategy based on the traction force curve of each axle corresponding to the traction force distribution strategy and the speed curve.
  • the performance index calculation unit includes:
  • a first performance index calculation unit configured to calculate a first performance index of the traction force distribution strategy based on the traction force curve of each axle corresponding to the traction force distribution strategy, and the speed curve, and the first performance index is used for measuring the traction energy consumption of the traction distribution strategy;
  • the second performance index calculation unit is configured to calculate and obtain a second performance index of the traction force distribution strategy based on the traction force curves of each axle corresponding to the traction force distribution strategy, and the second performance index is used to measure the traction force distribution strategy under the traction force distribution strategy. Balanced degree of traction force of each axle;
  • a weight coefficient obtaining unit configured to obtain the weight coefficient of the first performance index and the weight coefficient of the second performance index
  • a performance index calculation subunit configured to calculate the traction force distribution strategy based on the first performance index, the second performance index, the weight coefficient of the first performance index, and the weight coefficient of the second performance index performance indicators.
  • the determining unit is specifically used for:
  • the preset multiple traction force distribution strategies include:
  • the first traction force distribution strategy is used to instruct the balanced distribution of traction force of each axle
  • the second traction force distribution strategy is used to instruct as many axles as possible to achieve optimal efficiency, and the remaining axles are equally distributed;
  • the third traction force distribution strategy is used to instruct as many axles as possible to be in a state of not consuming power, and the remaining axles are as efficient as possible;
  • the fourth traction force distribution strategy is used to instruct as many axles as possible to be in a state of no power consumption, and the remaining axles are evenly distributed.
  • control unit is specifically used for:
  • a train automatic driving system control device comprising a memory and a processor
  • the memory for storing programs
  • the processor is configured to execute the program to implement the various steps of the above-mentioned control method for an automatic train driving system.
  • the present application discloses an energy-saving control method, related equipment and readable storage medium for automatic driving of a train. , determine the performance index of the traction force distribution strategy; and determine the optimal traction force allocation strategy based on the performance indicators of each traction force allocation strategy; finally, control the train automatic driving system based on the optimal traction force allocation strategy.
  • the above scheme provides a variety of traction force distribution strategies, and controls the train automatic driving system based on the optimal traction force allocation strategy, which can ensure the optimal energy consumption of the traction motor, thereby improving the energy-saving effect of the train.
  • FIG. 1 is a schematic flowchart of a method for controlling a train automatic driving system disclosed in an embodiment of the application;
  • FIG. 2 is a schematic flowchart of a method for determining a performance index of a traction force distribution strategy disclosed in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for calculating a performance index of a traction force distribution strategy disclosed in an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a control device for a train automatic driving system disclosed in an embodiment of the application;
  • FIG. 5 is a block diagram of a hardware structure of a control device for a train automatic driving system provided by an embodiment of the present application.
  • the inventor of this case conducted research and found that there are many on-board equipment on the train.
  • the traction motor is the source of train power, and its energy consumption accounts for a huge proportion of the total energy consumption of the train. Therefore, reducing the energy consumption of traction motors plays a crucial role in reducing the energy consumption of trains.
  • the inventor of the present case has conducted in-depth research, and finally proposed a control method for an automatic driving system of a train, which can improve the energy-saving effect of the train.
  • FIG. 1 is a schematic flowchart of a method for controlling a train automatic driving system disclosed in an embodiment of the present application.
  • the method may include:
  • Step S101 Acquire preset multiple traction force distribution strategies.
  • the preset multiple traction force distribution strategies include: any one of the first traction force distribution strategy, the second traction force distribution strategy, the third traction force distribution strategy, and the fourth traction force distribution strategy.
  • the first traction force distribution strategy is used to instruct the balanced distribution of the traction force of each axle; the second traction force distribution strategy is used to instruct as many axles as possible to achieve optimal efficiency, and the remaining axles are equally distributed;
  • the three traction force distribution strategies are used to instruct as many axles as possible to be in a state of no power consumption, and the remaining axles are used to achieve optimal efficiency;
  • the fourth traction force distribution strategy is used to instruct as many axes as possible to be in a state of no power consumption, The remaining axes are evenly distributed.
  • Step S102 For each traction force distribution strategy, determine the performance index of the traction force allocation strategy.
  • the performance index of the traction force distribution strategy is an index used to measure the traction energy consumption of the train and/or the degree of balance of the traction force of each axle of the train.
  • Step S103 Determine the optimal traction force distribution strategy based on the performance index of each traction force distribution strategy.
  • the tractive force distribution strategy with the smallest performance index can be determined as the optimal tractive force allocation strategy.
  • Step S104 Control the train automatic driving system based on the optimal traction force distribution strategy.
  • the traction force curves of each axle corresponding to the optimal traction force distribution strategy are provided to the automatic train driving system, so that the automatic train driving system is based on the traction force curves of each axle corresponding to the optimal traction force allocation strategy Allocate motor power to each axis.
  • the present embodiment discloses an energy-saving control method for automatic driving of a train. Based on the above method, multiple preset traction force distribution strategies are first obtained, and then, for each traction force allocation strategy, the performance index of the traction force allocation strategy is determined; The performance index of the traction force distribution strategy determines the optimal traction force allocation strategy; finally, the train automatic driving system is controlled based on the optimal traction force allocation strategy.
  • the above scheme provides a variety of traction force distribution strategies, and controls the train automatic driving system based on the optimal traction force allocation strategy, which can ensure the optimal energy consumption of the traction motor, thereby improving the energy-saving effect of the train.
  • FIG. 2 is a schematic flowchart of a method for determining a performance index of a traction force distribution strategy disclosed in an embodiment of the present application. As shown in FIG. 2, the method may include the following steps:
  • Step S201 Acquire the speed curve and the total traction curve planned by the train automatic driving system.
  • the speed curve is used to indicate the speed of each position in the section planned by the automatic train driving system
  • the total traction force curve is used to indicate the total traction force of the train at each position in the section planned by the automatic train driving system.
  • Step S202 Based on the total traction force curve, calculate and obtain each axle traction force curve corresponding to the traction force distribution strategy.
  • the traction force curve of each axle corresponding to the traction force distribution strategy is used to indicate the traction force of the axle at each position within the interval planned by the automatic train driving system under the traction force allocation strategy.
  • F ij represents the traction force setting curve of the j-th axle under the i-th traction force distribution strategy
  • D represents the number of axles of a single locomotive.
  • Step S203 Calculate the performance index of the traction force distribution strategy based on the traction force curve of each axle corresponding to the traction force distribution strategy and the speed curve.
  • FIG. 3 is a schematic flowchart of a method for calculating a performance index of a traction force distribution strategy disclosed in an embodiment of the present application. As shown in FIG. 3, the method may include the following steps:
  • Step S301 Calculate the first performance index of the traction force distribution strategy based on the traction force curve of each axis corresponding to the traction force distribution strategy and the speed curve.
  • the first performance index is used to measure the traction energy consumption of the traction force distribution strategy.
  • the calculation method of the first performance index in this application may be:
  • ⁇ (F ij (s), v(s)) is the efficiency fitting curve of the full traction force range under different speed conditions.
  • Step S302 Calculate and obtain a second performance index of the traction force distribution strategy based on the traction force curves of each axis corresponding to the traction force allocation strategy.
  • the second performance index is used to measure the degree of balance of the traction force of each axle under the traction force distribution strategy.
  • calculation method of the second performance index in this application may be:
  • Step S303 Obtain the weight coefficient of the first performance index and the weight coefficient of the second performance index.
  • the weight coefficient of the first performance index is k 1
  • the weight coefficient of the second performance index is k 2 .
  • Step S304 Calculate the performance index of the traction force distribution strategy based on the first performance index, the second performance index, the weight coefficient of the first performance index, and the weight coefficient of the second performance index.
  • the performance indicators of the traction allocation strategy can be specifically as follows:
  • control device for the automatic train driving system disclosed in the embodiments of the present application.
  • the control device for the automatic train driving system described below and the control method for the automatic train driving system described above may refer to each other correspondingly.
  • FIG. 4 is a schematic structural diagram of a control device for a train automatic driving system disclosed in an embodiment of the present application.
  • the control device of the train automatic driving system may include:
  • an acquisition unit 11 configured to acquire multiple preset traction force distribution strategies
  • a calculation unit 12 configured to calculate the performance index of the traction force distribution strategy for each traction force distribution strategy
  • a determination unit 13 configured to determine an optimal traction force distribution strategy based on the performance index of each traction force distribution strategy
  • the control unit 14 is configured to control the automatic driving system based on the optimal traction force distribution strategy.
  • the computing unit includes:
  • a speed curve and total traction curve acquisition unit used for acquiring the speed curve and the total traction curve planned by the train automatic driving system, wherein the speed curve is used to indicate the speed of each position in the interval planned by the train automatic driving system, and the total traction force
  • the curve is used to indicate the total tractive force of the train at each position in the section planned by the automatic train driving system;
  • Each axle traction force curve calculation unit is configured to calculate, based on the total traction force curve, each axle traction force curve corresponding to the traction force distribution strategy, wherein the traction force curve of each axis corresponding to the traction force distribution strategy is used to indicate the Under the traction force distribution strategy, the traction force of the axle at each position in the interval planned by the automatic driving system of the train;
  • the performance index calculation unit is configured to calculate and obtain the performance index of the traction force distribution strategy based on the traction force curve of each axle corresponding to the traction force distribution strategy and the speed curve.
  • the performance index calculation unit includes:
  • a first performance index calculation unit configured to calculate a first performance index of the traction force distribution strategy based on the traction force curve of each axle corresponding to the traction force distribution strategy, and the speed curve, and the first performance index is used for measuring the traction energy consumption of the traction distribution strategy;
  • the second performance index calculation unit is configured to calculate and obtain a second performance index of the traction force distribution strategy based on the traction force curves of each axle corresponding to the traction force distribution strategy, and the second performance index is used to measure the traction force distribution strategy under the traction force distribution strategy. Balanced degree of traction force of each axle;
  • a weight coefficient obtaining unit configured to obtain the weight coefficient of the first performance index and the weight coefficient of the second performance index
  • a performance index calculation subunit configured to calculate the traction force distribution strategy based on the first performance index, the second performance index, the weight coefficient of the first performance index, and the weight coefficient of the second performance index performance indicators.
  • the determining unit is specifically used for:
  • the preset multiple traction force distribution strategies include:
  • the first traction force distribution strategy is used to instruct the balanced distribution of traction force of each axle
  • the second traction force distribution strategy is used to instruct as many axles as possible to achieve optimal efficiency, and the remaining axles are equally distributed;
  • the third traction force distribution strategy is used to instruct as many axles as possible to be in a state of not consuming power, and the remaining axles are as efficient as possible;
  • the fourth traction force distribution strategy is used to instruct as many axles as possible to be in a state of no power consumption, and the remaining axles are evenly distributed.
  • control unit is specifically used for:
  • FIG. 5 is a block diagram of a hardware structure of a control device for a train automatic driving system provided by an embodiment of the application.
  • the hardware structure of the control device for a train automatic driving system may include: at least one processor 1, at least one communication interface 2, at least one memory 3 and at least one communication bus 4;
  • the number of the processor 1, the communication interface 2, the memory 3, and the communication bus 4 is at least one, and the processor 1, the communication interface 2, and the memory 3 complete the communication with each other through the communication bus 4;
  • the processor 1 may be a central processing unit CPU, or a specific integrated circuit ASIC (Application Specific Integrated Circuit), or one or more integrated circuits configured to implement embodiments of the present invention, etc.;
  • the memory 3 may include high-speed RAM memory, and may also include non-volatile memory (non-volatile memory), etc., such as at least one disk memory;
  • the memory stores a program
  • the processor can call the program stored in the memory, and the program is used for:
  • the automatic train driving system is controlled based on the optimal tractive force distribution strategy.
  • refinement function and extension function of the program may refer to the above description.
  • Embodiments of the present application further provide a readable storage medium, where the readable storage medium can store a program suitable for execution by a processor, and the program is used for:
  • the automatic train driving system is controlled based on the optimal tractive force distribution strategy.
  • refinement function and extension function of the program may refer to the above description.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种列车自动驾驶节能控制方法、相关设备及可读存储介质,该方法包括:获取预设的多种牵引力分配策略(S101),然后,针对每种牵引力分配策略,确定该牵引力分配策略的性能指标(S102);并基于各牵引力分配策略的性能指标,确定最优牵引力分配策略(S103);最后,基于最优牵引力分配策略对列车自动驾驶系统进行控制(S104)。该方法提供了多种牵引力分配策略,并基于最优牵引力分配策略对列车自动驾驶系统进行控制,能够保证牵引电机的能耗最优,进而提升列车的节能效果。

Description

列车自动驾驶节能控制方法、相关设备及可读存储介质 技术领域
本申请涉及列车自动驾驶技术领域,更具体的说,是涉及一种列车自动驾驶节能控制方法、相关设备及可读存储介质。
背景技术
近年来,随着轨道交通的快速发展,列车自动驾驶系统(Automatic Train Operation,简称:ATO)也得到了广泛应用,在城市轨道交通以及铁路轨道交通领域中各种列车(如,地铁列车、轻轨列车、动车列车、高铁列车、重载列车等)中已经逐渐成为必备的配置。通过列车自动驾驶系统降低列车运行过程中的能耗,是列车自动驾驶系统设计的目标之一。
目前,通常先计算得到一系列速度曲线模型,再预估每一条速度曲线模型的能耗,最后选出最优的速度曲线模型,并利用最优的速度曲线模型作为列车自动驾驶系统的目标速度曲线,以降低列车运行过程中的能耗。但是,该方式在选最优的速度曲线模型时,往往考虑列车能耗模型,而列车能耗模型与列车实际能耗往往偏差较大,导致最优的速度曲线模型选取出现偏差,从而影响列车的节能效果,而且,该方式选出的最优的速度曲线模型并不适用于对列车的运行速度有严格要求的线路区段,这对列车的节能效果也有影响。
因此,如何提升列车的节能效果,成为本领域技术人员亟待解决的技术问题。
发明内容
鉴于上述问题,本申请提出了一种列车自动驾驶系统控制方法、相关设备及可读存储介质。具体方案如下:
一种列车自动驾驶系统控制方法,包括:
获取预设的多种牵引力分配策略;
针对每种牵引力分配策略,确定所述牵引力分配策略的性能指标;
基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;
基于所述最优牵引力分配策略对所述列车自动驾驶系统进行控制。
可选地,所述针对每种牵引力分配策略,计算所述牵引力分配策略的性能指标,包括:
获取列车自动驾驶系统规划的速度曲线和总牵引力曲线,其中,速度曲线用于指示所述列车自动驾驶系统规划的区间内每个位置的速度,总牵引力曲线用于指示所述列车自动驾驶系统规划的区间内每个位置处列车的总牵引力;
基于所述总牵引力曲线,计算得到所述牵引力分配策略对应的各轴牵引力曲线,其中,所述牵引力分配策略对应的每个轴的牵引力曲线用于指示在所述牵引力分配策略下,所述列车自动驾驶系统规划的区间内每个位置处该轴的牵引力;
基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标。
可选地,所述基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标,包括:
基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的第一性能指标,所述第一性能指标用于衡量所述牵引力分配策略的牵引能耗;
基于所述牵引力分配策略对应的各轴牵引力曲线,计算得到所述牵引力分配策略的第二性能指标,所述第二性能指标用于衡量所述牵引力分配策略下各轴牵引力均衡程度;
获取所述第一性能指标的权重系数和所述第二性能指标的权重系数;
基于所述第一性能指标、所述第二性能指标、所述第一性能指标的权重系数和所述第二性能指标的权重系数,计算得到所述牵引力分配策略的性能指标。
可选地,所述基于各牵引力分配策略的性能指标,确定最优牵引力分配策 略,包括:
确定性能指标最小的牵引力分配策略,为最优牵引力分配策略。
可选地,所述预设的多种牵引力分配策略,包括:
第一牵引力分配策略、第二牵引力分配策略、第三牵引力分配策略和第四牵引力分配策略中的任意多种;
其中,所述第一牵引力分配策略用于指示各轴牵引力均衡分配;
所述第二牵引力分配策略用于指示使尽可能多的轴达到效率最优,其余轴均衡分配;
所述第三牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴尽可能达到效率最优;
所述第四牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴均衡分配。
可选地,所述基于所述最优牵引力分配策略对所述列车自动驾驶系统进行控制,包括:
将所述最优牵引力分配策略对应的各轴牵引力曲线提供给所述列车自动驾驶系统,以使所述列车自动驾驶系统基于所述最优牵引力分配策略对应的各轴牵引力曲线为各轴分配电机功率。
一种列车自动驾驶系统控制装置,包括:
获取单元,用于获取预设的多种牵引力分配策略;
计算单元,用于针对每种牵引力分配策略,计算所述牵引力分配策略的性能指标;
确定单元,用于基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;
控制单元,用于基于所述最优牵引力分配策略对所述自动驾驶系统进行控制。
可选地,所述计算单元,包括:
速度曲线和总牵引力曲线获取单元,用于获取列车自动驾驶系统规划的速度曲线和总牵引力曲线,其中,速度曲线用于指示所述列车自动驾驶系统规划 的区间内每个位置的速度,总牵引力曲线用于指示所述列车自动驾驶系统规划的区间内每个位置处列车的总牵引力;
各轴牵引力曲线计算单元,用于基于所述总牵引力曲线,计算得到所述牵引力分配策略对应的各轴牵引力曲线,其中,所述牵引力分配策略对应的每个轴的牵引力曲线用于指示在所述牵引力分配策略下,所述列车自动驾驶系统规划的区间内每个位置处该轴的牵引力;
性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标。
可选地,所述性能指标计算单元,包括:
第一性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的第一性能指标,所述第一性能指标用于衡量所述牵引力分配策略的牵引能耗;
第二性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,计算得到所述牵引力分配策略的第二性能指标,所述第二性能指标用于衡量所述牵引力分配策略下各轴牵引力均衡程度;
权重系数获取单元,用于获取所述第一性能指标的权重系数和所述第二性能指标的权重系数;
性能指标计算子单元,用于基于所述第一性能指标、所述第二性能指标、所述第一性能指标的权重系数和所述第二性能指标的权重系数,计算得到所述牵引力分配策略的性能指标。
可选地,所述确定单元,具体用于:
确定性能指标最小的牵引力分配策略,为最优牵引力分配策略。
可选地,所述预设的多种牵引力分配策略,包括:
第一牵引力分配策略、第二牵引力分配策略、第三牵引力分配策略和第四牵引力分配策略中的任意多种;
其中,所述第一牵引力分配策略用于指示各轴牵引力均衡分配;
所述第二牵引力分配策略用于指示使尽可能多的轴达到效率最优,其余轴均衡分配;
所述第三牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴尽可能达到效率最优;
所述第四牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴均衡分配。
可选地,所述控制单元,具体用于:
将所述最优牵引力分配策略对应的各轴牵引力曲线提供给所述列车自动驾驶系统,以使所述列车自动驾驶系统基于所述最优牵引力分配策略对应的各轴牵引力曲线为各轴分配电机功率。
一种列车自动驾驶系统控制设备,包括存储器和处理器;
所述存储器,用于存储程序;
所述处理器,用于执行所述程序,实现如上所述的列车自动驾驶系统控制方法的各个步骤。
一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现如上所述的列车自动驾驶系统控制方法的各个步骤。
借由上述技术方案,本申请公开了一种列车自动驾驶节能控制方法、相关设备及可读存储介质,基于上述方案,首先获取预设的多种牵引力分配策略,然后,针对每种牵引力分配策略,确定该牵引力分配策略的性能指标;并基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;最后,基于最优牵引力分配策略对列车自动驾驶系统进行控制。上述方案中提供了多种牵引力分配策略,并基于最优牵引力分配策略对列车自动驾驶系统进行控制,能够保证牵引电机的能耗最优,进而提升列车的节能效果。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请实施例公开的列车自动驾驶系统控制方法的流程示意图;
图2为本申请实施例公开的一种确定牵引力分配策略的性能指标的方法流程示意图;
图3为本申请实施例公开的一种计算牵引力分配策略的性能指标的方法流程示意图;
图4为本申请实施例公开的一种列车自动驾驶系统控制装置结构示意图;
图5为本申请实施例提供的列车自动驾驶系统控制设备的硬件结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了提升列车的节能效果,本案发明人进行研究发现,列车的车载设备较多,在列车的车载设备中,牵引电机是列车动力的来源,它的能耗在列车总能耗中占比巨大,因此,降低牵引电机的能耗对降低列车的能耗起着至关重要的作用。
基于上述思路,本案发明人进行了深入研究,最终提出了一种列车自动驾驶系统控制方法,该方法能够提升列车的节能效果。
接下来,通过下述实施例对本申请提供的列车自动驾驶系统控制方法进行介绍。
参照图1,图1为本申请实施例公开的列车自动驾驶系统控制方法的流程示意图,该方法可以包括:
步骤S101:获取预设的多种牵引力分配策略。
在本申请中,预设的多种牵引力分配策略,包括:第一牵引力分配策略、第二牵引力分配策略、第三牵引力分配策略和第四牵引力分配策略中的任意多种。
需要说明的是,所述第一牵引力分配策略用于指示各轴牵引力均衡分配; 所述第二牵引力分配策略用于指示使尽可能多的轴达到效率最优,其余轴均衡分配;所述第三牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴尽可能达到效率最优;所述第四牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴均衡分配。
步骤S102:针对每种牵引力分配策略,确定所述牵引力分配策略的性能指标。
在本申请中,牵引力分配策略的性能指标为用于衡量列车牵引能耗,和/或,列车各轴牵引力均衡程度的指标。
需要说明的是,针对每种牵引力分配策略,确定该牵引力分配策略的性能指标的具体实现方式将通过后面的实施例详细说明,此处不再展开。
步骤S103:基于各牵引力分配策略的性能指标,确定最优牵引力分配策略。
在本申请中,可以确定性能指标最小的牵引力分配策略,为最优牵引力分配策略。
步骤S104:基于所述最优牵引力分配策略对所述列车自动驾驶系统进行控制。
在本申请中,将所述最优牵引力分配策略对应的各轴牵引力曲线提供给所述列车自动驾驶系统,以使所述列车自动驾驶系统基于所述最优牵引力分配策略对应的各轴牵引力曲线为各轴分配电机功率。
本实施例公开了一种列车自动驾驶节能控制方法,基于上述方法,首先获取预设的多种牵引力分配策略,然后,针对每种牵引力分配策略,确定该牵引力分配策略的性能指标;并基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;最后,基于最优牵引力分配策略对列车自动驾驶系统进行控制。上述方案中提供了多种牵引力分配策略,并基于最优牵引力分配策略对列车自动驾驶系统进行控制,能够保证牵引电机的能耗最优,进而提升列车的节能效果。
在本申请的另一个实施例中,对上述步骤S102针对每种牵引力分配策略, 确定所述牵引力分配策略的性能指标的具体实现方式进行了介绍。请参阅附图2,图2为本申请实施例公开的一种确定牵引力分配策略的性能指标的方法流程示意图,如图2所示,该方法可以包括以下步骤:
步骤S201:获取列车自动驾驶系统规划的速度曲线和总牵引力曲线。
需要说明的是,速度曲线用于指示所述列车自动驾驶系统规划的区间内每个位置的速度,总牵引力曲线用于指示所述列车自动驾驶系统规划的区间内每个位置处列车的总牵引力。
为便于理解,假设列车自动驾驶系统规划的区间长度为S N,则,列车自动驾驶系统规划的速度曲线为v=v(s),0<s≤S N,列车自动驾驶系统规划的总牵引力曲线为F=F(s),0<s≤S N,其中s为列车自动驾驶系统规划的区间内的任一位置。
步骤S202:基于所述总牵引力曲线,计算得到所述牵引力分配策略对应的各轴牵引力曲线。
需要说明的是,所述牵引力分配策略对应的每个轴的牵引力曲线用于指示在所述牵引力分配策略下,所述列车自动驾驶系统规划的区间内每个位置处该轴的牵引力。
为便于理解,各牵引力分配策略对应的各轴牵引力曲线为:
F ij(s),i=1、2、3、4,j=1,2...,D。
其中,F ij表示第i种牵引力分配策略下的第j轴牵引力设定曲线,D表示单节机车的轴数。
步骤S203:基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标。
需要说明的是,基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标的具体实现方式将通过后面的实施例详细说明,本实施例不再展开。
在本申请的另一个实施例中,对上述步骤S203基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略 的性能指标的具体实现方式进行了介绍。请参阅附图3,图3为本申请实施例公开的一种计算牵引力分配策略的性能指标的方法流程示意图,如图3所示,该方法可以包括以下步骤:
步骤S301:基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的第一性能指标。
需要说明的是,所述第一性能指标用于衡量所述牵引力分配策略的牵引能耗。
为便于理解,在本申请中第一性能指标的计算方式可以为:
Figure PCTCN2020114146-appb-000001
其中,η(F ij(s),v(s))为不同速度条件下全牵引力范围的效率拟合曲线。
步骤S302:基于所述牵引力分配策略对应的各轴牵引力曲线,计算得到所述牵引力分配策略的第二性能指标。
需要说明的是,所述第二性能指标用于衡量所述牵引力分配策略下各轴牵引力均衡程度。
为便于理解,在本申请中第二性能指标的计算方式可以为:
Figure PCTCN2020114146-appb-000002
其中,j>k,j、k=1,2...,D。
步骤S303:获取所述第一性能指标的权重系数和所述第二性能指标的权重系数。
在本申请中,可以假设第一性能指标的权重系数为k 1,第二性能指标的权重系数为k 2
步骤S304:基于所述第一性能指标、所述第二性能指标、所述第一性能指标的权重系数和所述第二性能指标的权重系数,计算得到所述牵引力分配策略的性能指标。
基于以上,牵引力分配策略的性能指标具体可以如下:
J=k 1·J +k 2·J iB
下面对本申请实施例公开的列车自动驾驶系统控制装置进行描述,下文描述的列车自动驾驶系统控制装置与上文描述的列车自动驾驶系统控制方法可相互对应参照。
参照图4,图4为本申请实施例公开的一种列车自动驾驶系统控制装置结构示意图。如图4所示,该列车自动驾驶系统控制装置可以包括:
获取单元11,用于获取预设的多种牵引力分配策略;
计算单元12,用于针对每种牵引力分配策略,计算所述牵引力分配策略的性能指标;
确定单元13,用于基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;
控制单元14,用于基于所述最优牵引力分配策略对所述自动驾驶系统进行控制。
可选地,所述计算单元,包括:
速度曲线和总牵引力曲线获取单元,用于获取列车自动驾驶系统规划的速度曲线和总牵引力曲线,其中,速度曲线用于指示所述列车自动驾驶系统规划的区间内每个位置的速度,总牵引力曲线用于指示所述列车自动驾驶系统规划的区间内每个位置处列车的总牵引力;
各轴牵引力曲线计算单元,用于基于所述总牵引力曲线,计算得到所述牵引力分配策略对应的各轴牵引力曲线,其中,所述牵引力分配策略对应的每个轴的牵引力曲线用于指示在所述牵引力分配策略下,所述列车自动驾驶系统规划的区间内每个位置处该轴的牵引力;
性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标。
可选地,所述性能指标计算单元,包括:
第一性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的第一性能指标,所述第一性能指标用于衡量所述牵引力分配策略的牵引能耗;
第二性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,计算得到所述牵引力分配策略的第二性能指标,所述第二性能指标用于衡量所述牵引力分配策略下各轴牵引力均衡程度;
权重系数获取单元,用于获取所述第一性能指标的权重系数和所述第二性能指标的权重系数;
性能指标计算子单元,用于基于所述第一性能指标、所述第二性能指标、所述第一性能指标的权重系数和所述第二性能指标的权重系数,计算得到所述牵引力分配策略的性能指标。
可选地,所述确定单元,具体用于:
确定性能指标最小的牵引力分配策略,为最优牵引力分配策略。
可选地,所述预设的多种牵引力分配策略,包括:
第一牵引力分配策略、第二牵引力分配策略、第三牵引力分配策略和第四牵引力分配策略中的任意多种;
其中,所述第一牵引力分配策略用于指示各轴牵引力均衡分配;
所述第二牵引力分配策略用于指示使尽可能多的轴达到效率最优,其余轴均衡分配;
所述第三牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴尽可能达到效率最优;
所述第四牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴均衡分配。
可选地,所述控制单元,具体用于:
将所述最优牵引力分配策略对应的各轴牵引力曲线提供给所述列车自动驾驶系统,以使所述列车自动驾驶系统基于所述最优牵引力分配策略对应的各轴牵引力曲线为各轴分配电机功率。
参照图5,图5为本申请实施例提供的列车自动驾驶系统控制设备的硬件结构框图,参照图5,列车自动驾驶系统控制设备的硬件结构可以包括:至少一个处理器1,至少一个通信接口2,至少一个存储器3和至少一个通信总线 4;
在本申请实施例中,处理器1、通信接口2、存储器3、通信总线4的数量为至少一个,且处理器1、通信接口2、存储器3通过通信总线4完成相互间的通信;
处理器1可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路等;
存储器3可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory)等,例如至少一个磁盘存储器;
其中,存储器存储有程序,处理器可调用存储器存储的程序,所述程序用于:
获取预设的多种牵引力分配策略;
针对每种牵引力分配策略,确定所述牵引力分配策略的性能指标;
基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;
基于所述最优牵引力分配策略对所述列车自动驾驶系统进行控制。
可选的,所述程序的细化功能和扩展功能可参照上文描述。
本申请实施例还提供一种可读存储介质,该可读存储介质可存储有适于处理器执行的程序,所述程序用于:
获取预设的多种牵引力分配策略;
针对每种牵引力分配策略,确定所述牵引力分配策略的性能指标;
基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;
基于所述最优牵引力分配策略对所述列车自动驾驶系统进行控制。
可选的,所述程序的细化功能和扩展功能可参照上文描述。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不 排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种列车自动驾驶系统控制方法,其特征在于,包括:
    获取预设的多种牵引力分配策略;
    针对每种牵引力分配策略,确定所述牵引力分配策略的性能指标;
    基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;
    基于所述最优牵引力分配策略对所述列车自动驾驶系统进行控制。
  2. 根据权利要求1所述的方法,其特征在于,所述针对每种牵引力分配策略,计算所述牵引力分配策略的性能指标,包括:
    获取列车自动驾驶系统规划的速度曲线和总牵引力曲线,其中,速度曲线用于指示所述列车自动驾驶系统规划的区间内每个位置的速度,总牵引力曲线用于指示所述列车自动驾驶系统规划的区间内每个位置处列车的总牵引力;
    基于所述总牵引力曲线,计算得到所述牵引力分配策略对应的各轴牵引力曲线,其中,所述牵引力分配策略对应的每个轴的牵引力曲线用于指示在所述牵引力分配策略下,所述列车自动驾驶系统规划的区间内每个位置处该轴的牵引力;
    基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标,包括:
    基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的第一性能指标,所述第一性能指标用于衡量所述牵引力分配策略的牵引能耗;
    基于所述牵引力分配策略对应的各轴牵引力曲线,计算得到所述牵引力分配策略的第二性能指标,所述第二性能指标用于衡量所述牵引力分配策略下各轴牵引力均衡程度;
    获取所述第一性能指标的权重系数和所述第二性能指标的权重系数;
    基于所述第一性能指标、所述第二性能指标、所述第一性能指标的权重系 数和所述第二性能指标的权重系数,计算得到所述牵引力分配策略的性能指标。
  4. 根据权利要求3所述的方法,其特征在于,所述基于各牵引力分配策略的性能指标,确定最优牵引力分配策略,包括:
    确定性能指标最小的牵引力分配策略,为最优牵引力分配策略。
  5. 根据权利要求1所述的方法,其特征在于,所述预设的多种牵引力分配策略,包括:
    第一牵引力分配策略、第二牵引力分配策略、第三牵引力分配策略和第四牵引力分配策略中的任意多种;
    其中,所述第一牵引力分配策略用于指示各轴牵引力均衡分配;
    所述第二牵引力分配策略用于指示使尽可能多的轴达到效率最优,其余轴均衡分配;
    所述第三牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴尽可能达到效率最优;
    所述第四牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴均衡分配。
  6. 根据权利要求1所述的方法,其特征在于,所述基于所述最优牵引力分配策略对所述列车自动驾驶系统进行控制,包括:
    将所述最优牵引力分配策略对应的各轴牵引力曲线提供给所述列车自动驾驶系统,以使所述列车自动驾驶系统基于所述最优牵引力分配策略对应的各轴牵引力曲线为各轴分配电机功率。
  7. 一种列车自动驾驶系统控制装置,其特征在于,包括:
    获取单元,用于获取预设的多种牵引力分配策略;
    计算单元,用于针对每种牵引力分配策略,计算所述牵引力分配策略的性能指标;
    确定单元,用于基于各牵引力分配策略的性能指标,确定最优牵引力分配策略;
    控制单元,用于基于所述最优牵引力分配策略对所述自动驾驶系统进行控 制。
  8. 根据权利要求7所述的装置,其特征在于,所述计算单元,包括:
    速度曲线和总牵引力曲线获取单元,用于获取列车自动驾驶系统规划的速度曲线和总牵引力曲线,其中,速度曲线用于指示所述列车自动驾驶系统规划的区间内每个位置的速度,总牵引力曲线用于指示所述列车自动驾驶系统规划的区间内每个位置处列车的总牵引力;
    各轴牵引力曲线计算单元,用于基于所述总牵引力曲线,计算得到所述牵引力分配策略对应的各轴牵引力曲线,其中,所述牵引力分配策略对应的每个轴的牵引力曲线用于指示在所述牵引力分配策略下,所述列车自动驾驶系统规划的区间内每个位置处该轴的牵引力;
    性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的性能指标。
  9. 根据权利要求8所述的装置,其特征在于,所述性能指标计算单元,包括:
    第一性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,以及,所述速度曲线,计算得到所述牵引力分配策略的第一性能指标,所述第一性能指标用于衡量所述牵引力分配策略的牵引能耗;
    第二性能指标计算单元,用于基于所述牵引力分配策略对应的各轴牵引力曲线,计算得到所述牵引力分配策略的第二性能指标,所述第二性能指标用于衡量所述牵引力分配策略下各轴牵引力均衡程度;
    权重系数获取单元,用于获取所述第一性能指标的权重系数和所述第二性能指标的权重系数;
    性能指标计算子单元,用于基于所述第一性能指标、所述第二性能指标、所述第一性能指标的权重系数和所述第二性能指标的权重系数,计算得到所述牵引力分配策略的性能指标。
  10. 根据权利要求9所述的装置,其特征在于,所述确定单元,具体用于:
    确定性能指标最小的牵引力分配策略,为最优牵引力分配策略。
  11. 根据权利要求7所述的装置,其特征在于,所述预设的多种牵引力分 配策略,包括:
    第一牵引力分配策略、第二牵引力分配策略、第三牵引力分配策略和第四牵引力分配策略中的任意多种;
    其中,所述第一牵引力分配策略用于指示各轴牵引力均衡分配;
    所述第二牵引力分配策略用于指示使尽可能多的轴达到效率最优,其余轴均衡分配;
    所述第三牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴尽可能达到效率最优;
    所述第四牵引力分配策略用于指示使尽可能多的轴处于不耗功状态,其余轴均衡分配。
  12. 根据权利要求7所述的装置,其特征在于,所述控制单元,具体用于:
    将所述最优牵引力分配策略对应的各轴牵引力曲线提供给所述列车自动驾驶系统,以使所述列车自动驾驶系统基于所述最优牵引力分配策略对应的各轴牵引力曲线为各轴分配电机功率。
  13. 一种列车自动驾驶系统控制设备,其特征在于,包括存储器和处理器;
    所述存储器,用于存储程序;
    所述处理器,用于执行所述程序,实现如权利要求1至6中任一项所述的列车自动驾驶系统控制方法的各个步骤。
  14. 一种可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,实现如权利要求1至6中任一项所述的列车自动驾驶系统控制方法的各个步骤。
PCT/CN2020/114146 2020-09-09 2020-09-09 列车自动驾驶节能控制方法、相关设备及可读存储介质 WO2022051922A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/114146 WO2022051922A1 (zh) 2020-09-09 2020-09-09 列车自动驾驶节能控制方法、相关设备及可读存储介质
AU2020467390A AU2020467390B2 (en) 2020-09-09 2020-09-09 Energy-saving control method for automatic train operation, and related device and readable storage medium
US17/924,148 US20230174125A1 (en) 2020-09-09 2020-09-09 Energy-saving control method for automatic train operation, and related device and readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114146 WO2022051922A1 (zh) 2020-09-09 2020-09-09 列车自动驾驶节能控制方法、相关设备及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022051922A1 true WO2022051922A1 (zh) 2022-03-17

Family

ID=80630177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114146 WO2022051922A1 (zh) 2020-09-09 2020-09-09 列车自动驾驶节能控制方法、相关设备及可读存储介质

Country Status (3)

Country Link
US (1) US20230174125A1 (zh)
AU (1) AU2020467390B2 (zh)
WO (1) WO2022051922A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065818A1 (en) * 2009-04-23 2012-03-15 Siemens Aktiengesellschaft Method for operating a rail vehicle
US20160075357A1 (en) * 2014-09-15 2016-03-17 Lsis Co., Ltd. Automatic train operation system in railway vehicles
CN109978350A (zh) * 2019-03-13 2019-07-05 北京工业大学 一种基于工况分解动态规划算法的地铁列车节能优化方法
CN110533242A (zh) * 2019-08-26 2019-12-03 北京交通大学 列车互联互通跨线运行下的节能优化方法
CN111311017A (zh) * 2020-03-04 2020-06-19 广西大学 城市轨道交通列车运营时刻表和速度运行曲线优化方法
CN111409673A (zh) * 2019-09-04 2020-07-14 南京理工大学 基于动态规划算法的列车准点节能运行方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065818A1 (en) * 2009-04-23 2012-03-15 Siemens Aktiengesellschaft Method for operating a rail vehicle
US20160075357A1 (en) * 2014-09-15 2016-03-17 Lsis Co., Ltd. Automatic train operation system in railway vehicles
CN109978350A (zh) * 2019-03-13 2019-07-05 北京工业大学 一种基于工况分解动态规划算法的地铁列车节能优化方法
CN110533242A (zh) * 2019-08-26 2019-12-03 北京交通大学 列车互联互通跨线运行下的节能优化方法
CN111409673A (zh) * 2019-09-04 2020-07-14 南京理工大学 基于动态规划算法的列车准点节能运行方法
CN111311017A (zh) * 2020-03-04 2020-06-19 广西大学 城市轨道交通列车运营时刻表和速度运行曲线优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JING FEIYAO: "Study on Optimization of Longitudinal Dynamics of Coupler Force on Urban Rail Transit", CHINESE MASTER'S THESES FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY II, 15 July 2019 (2019-07-15), XP055911265 *
TIAN, ZHONGBEI ET AL.: "SmartDrive: Traction Energy Optimization and Applications in Rail Systems", IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, vol. 20, no. 7, 31 July 2019 (2019-07-31), XP011732341, DOI: 10.1109/TITS.2019.2897279 *

Also Published As

Publication number Publication date
AU2020467390B2 (en) 2023-12-14
AU2020467390A1 (en) 2022-12-08
US20230174125A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
CN107239336A (zh) 一种实现任务调度的方法及装置
WO2021159660A1 (zh) 一种混合动力汽车能量管理方法和系统
CN105677000B (zh) 动态电压频率调整的系统及方法
CN102403767A (zh) 电池放电控制方法及设备
CN111483331B (zh) 一种基于调度指令的充电负荷聚合调度控制方法及系统
WO2017133455A1 (zh) 液冷设备的控制方法、装置以及系统
CN112297883B (zh) 一种城市轨道交通车载储能系统的控制方法及控制装置
CN113536209B (zh) 换电站定容分析方法、系统、计算机设备及存储介质
WO2024001715A1 (zh) 电动汽车动力系统扭矩确定方法、装置、控制器和介质
WO2022051922A1 (zh) 列车自动驾驶节能控制方法、相关设备及可读存储介质
CN116090646A (zh) 一种用于室内停车场的最佳泊位求解方法及停车引导系统
EP3367536A1 (en) Method and device for allocating active power of wind farm
CN113320520B (zh) 增程式汽车的能量控制方法和控制系统
CN112488358B (zh) 一种电动汽车充电路径规划方法和存储介质
CN114228790B (zh) 列车自动驾驶节能控制方法、相关设备及可读存储介质
CN106779179A (zh) 一种空调机组的负荷预测方法及设备
JP2003113739A (ja) エネルギ供給設備の運転計画システム
JP2014204479A (ja) 充電制御装置、充電制御方法及び充電制御システム
CN116777234A (zh) 一种两阶段鲁棒优化模型的构建、策略制定方法及系统
CN105843364A (zh) 异构并行系统下时间能耗权衡优化的任务调度算法
CN116110559A (zh) 智能化医疗应急指挥调度方法及其系统
US20220388404A1 (en) Vehicle drive control method and device, and vehicle
CN113752919A (zh) 一种燃料电池汽车能量分配方法及系统
CN111688697A (zh) 一种车辆控制的方法、装置、设备及存储介质
WO2023230858A1 (zh) 充电控制方法、充电控制装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020467390

Country of ref document: AU

Date of ref document: 20200909

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952710

Country of ref document: EP

Kind code of ref document: A1