WO2022051885A1 - 一种电池在位检测电路、方法、电池、设备及系统 - Google Patents

一种电池在位检测电路、方法、电池、设备及系统 Download PDF

Info

Publication number
WO2022051885A1
WO2022051885A1 PCT/CN2020/113922 CN2020113922W WO2022051885A1 WO 2022051885 A1 WO2022051885 A1 WO 2022051885A1 CN 2020113922 W CN2020113922 W CN 2020113922W WO 2022051885 A1 WO2022051885 A1 WO 2022051885A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
unit
energy storage
sampling
storage unit
Prior art date
Application number
PCT/CN2020/113922
Other languages
English (en)
French (fr)
Inventor
邓书豪
潘灯海
庹鸿
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202080028818.8A priority Critical patent/CN114467240A/zh
Priority to EP20952674.8A priority patent/EP4207535A4/en
Priority to PCT/CN2020/113922 priority patent/WO2022051885A1/zh
Publication of WO2022051885A1 publication Critical patent/WO2022051885A1/zh
Priority to US18/180,649 priority patent/US20230223767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits

Definitions

  • the present application relates to the technical field of power electronics, and in particular, to a battery presence detection circuit, method, battery, device and system.
  • lithium batteries are widely used because of their high energy density and long battery cycle life.
  • the battery management system (BMS) of the lithium battery needs to obtain the information of the lithium battery accurately and timely, so as to control the lithium battery to enter the sleep state in time when the lithium battery is in an island state.
  • the island state means that the current battery has no communication with the outside world, and the battery is in a state of not being charged or discharged at the same time.
  • the voltage value range of the external charging module overlaps with the discharge voltage value range of the lithium battery, and it is difficult to distinguish whether the port voltage is formed by the discharge of the lithium battery itself or maintained by other external power sources, that is, When the battery is in an islanded state but the external charging module is normally connected, or when the battery is in place but the external charging module is powered down, it is difficult to determine whether the lithium battery is in an islanded state using the port voltage.
  • the present application provides a battery presence detection circuit, method, battery, device and system for determining whether the battery is in place.
  • the present application provides a battery in-position detection circuit, which is arranged in a battery, the battery includes a battery pack, and the detection circuit includes: a first switch unit, a second switch unit, a discharge unit, a sampling unit, a storage unit energy unit and controller.
  • the first end of the first switch unit is connected to the first end of the battery pack, the second end of the first switch unit is connected in series with the energy storage unit and then connected to the second end of the battery pack; the second switch unit and the discharge unit are connected in series first and then It is connected in parallel with the energy storage unit; the discharge unit is used for discharging the energy storage unit; the sampling unit is connected in parallel with the energy storage unit, and the sampling unit is used for sending the sampling signal to the controller.
  • the controller is used to control the first switch unit and the second switch unit, and determine whether the battery is in place according to the acquired sampling signal.
  • the controller can make the discharge unit discharge the energy storage unit by controlling the working states of the first switch unit and the second switch unit.
  • the energy storage unit When the battery is in the in-place state (connected to the system), the energy storage unit is connected to the discharge unit and the external power supply unit, so the voltage drops slowly.
  • the battery When the battery is in the island state (not connected to the system), the energy storage unit discharges through the discharge unit , the voltage of the energy storage unit drops rapidly. Therefore, the voltage changes at both ends of the energy storage unit are different in different connection states, and the sampling unit and the energy storage unit are connected in parallel, and the change of the voltage signal obtained by the sampling unit can represent the change of the voltage across the energy storage unit.
  • the sampled signal of the cell determines the current status of the battery.
  • the detection circuit can be controlled by the controller to actively perform detection, and the first switch unit and the second switch unit can be disconnected when the detection is not required, so no additional loss will be brought.
  • the controller first controls both the first switch unit and the second switch unit to be closed, and then controls the first switch unit to be disconnected for a preset time period, and according to the preset time
  • the sampling signal obtained before and after the segment is used to determine whether the battery is in place.
  • the energy storage unit is connected to the discharge unit and the external power supply unit, so the voltage drops slowly.
  • the voltages at both ends of the energy storage unit change differently before and after the preset time period.
  • the preset time period can be adjusted according to actual needs, for example, it can be set to a time length of microsecond level to realize fast battery presence detection.
  • the sampling signal is the voltage across the energy storage unit
  • the controller is specifically configured to determine whether the battery is in place according to the difference between the voltages obtained before and after a preset time period. Specifically, when the voltage difference is greater than or equal to the preset voltage difference, it is determined that the battery is not in place. When the voltage difference is greater than or equal to the preset voltage difference, it means that the energy storage unit is not connected to an external power supply unit at this time, and only discharges through the discharge unit, so the voltage changes faster.
  • the controller is used to determine the detection value of the electrical parameter of the energy storage unit according to the sampling signal obtained before and after the preset time period, and compare the detected value with the preset electrical parameter. values are compared to determine if the battery is present.
  • the detected value of the electrical parameters obtained by the controller at this time corresponds to the whole formed by the energy storage unit and other power supply units.
  • the detected value of the electrical parameter only corresponds to the electrical parameter of the energy storage unit, so the controller can use the detected value of the electrical parameter of the energy storage unit to determine the connection state of the battery.
  • the energy storage unit includes an energy storage capacitor, and the electrical parameter is a capacitance value.
  • the other power supply units connected in the circuit also include bus capacitors.
  • the detection value of the capacitance value obtained by the controller at this time is the equivalent value of the capacitance of the energy storage unit and the bus capacitance of the power supply unit.
  • the detected value of the electrical parameter only corresponds to the capacitance value of the energy storage unit, so the controller can use the detected value of the capacitance value to determine the connection state of the battery.
  • the discharge unit includes a heating film circuit, and the heating film circuit is used to heat the battery, so as to improve the working performance of the battery in a low temperature environment.
  • the energy storage unit is discharged through the heating film circuit, the consumed electric energy will not be completely wasted and can be converted into heat energy to improve the working performance of the battery.
  • the discharge unit includes a resistor.
  • the resistor can be a single resistor or a resistor network formed by multiple resistors.
  • the first switch unit includes a switch tube and a relay connected in parallel.
  • the switch tube can be turned on and off quickly, with high control sensitivity and low delay.
  • the relay has a strong current withstand capability, so after connecting the switch tube and the relay in parallel, the first switch unit has a strong current withstand capability while achieving low-latency control, and can match the battery pack with a large output current. .
  • the sampling unit includes a sampling resistor, and the sampling signal is the voltage across the sampling resistor or the current flowing through the sampling resistor.
  • the present application also provides a battery in-place detection method, which is applied to the battery-in-place detection circuit described in any of the above implementation manners.
  • the battery-in-place detection circuit is arranged in the battery, and the battery includes a battery cell pack. .
  • the method includes: controlling the first switching unit and the second switching unit, and determining whether the battery is in place according to the sampling signal obtained from the sampling unit.
  • the controlling the first switch unit and the second switch unit, and determining whether the battery is in place according to the sampling signal obtained from the sampling unit specifically includes :
  • both the first switch unit and the second switch unit are controlled to be closed, then the first switch unit is controlled to be disconnected for a preset time period, and whether the battery is in place is determined according to the sampling signals obtained from the sampling unit before and after the preset time period.
  • the sampling signal is the voltage at both ends of the energy storage unit, and according to the sampling signal obtained from the sampling unit before and after the preset time period, determine Whether the battery is in place specifically includes: determining whether the battery is in place according to the difference between the voltages obtained before and after the preset time period.
  • determining whether the battery is in place according to the sampling signal obtained from the sampling unit before and after the preset time period specifically includes: using the The sampling signal obtained before and after a preset time period determines the detection value of the electrical parameter of the energy storage unit; and the detected value is compared with the preset electrical parameter value to determine whether the battery is in place.
  • the electrical parameter is a capacitance value.
  • the present application further provides a battery, including the battery presence detection circuit described in any of the above implementation manners, and a battery cell package.
  • the first end of the battery pack is connected to the first end of the first switch unit, and the second end of the battery pack is connected to the second end of the first switch unit through the energy storage unit.
  • Cell packs are used to provide electrical energy.
  • the battery provided by the present application can be used in communication energy systems of indoor communication energy systems, outdoor communication energy systems, computer room communication energy systems, hybrid power supply communication energy systems and other types of communication energy systems.
  • the type of the battery can be a lithium battery or a lead acid battery.
  • the present application further provides an electronic device, including the battery presence detection circuit described in any of the above implementation manners, and further including a battery pack and a load circuit, where the battery pack is used to provide electrical energy to the load circuit.
  • the electronic device may be a mobile phone, a laptop computer, a wearable electronic device (such as a smart watch), a tablet computer, an augmented reality (AR) device, a virtual reality (VR) device, and the like.
  • the present application also provides an energy system, including at least one battery and at least one power supply unit PSU described in the above implementation manner; the battery and the power supply unit are connected in parallel to the DC bus of the energy system, and each power supply unit is also connected to the power supply unit.
  • An energy storage unit is connected in parallel; the power supply unit is used to convert the AC power provided by the external power source into DC power and then transmit it to the DC bus of the energy system.
  • the controller is further configured to determine, according to the difference between the voltages at both ends of the energy storage unit acquired before and after the preset time period, the difference between the battery and the PSU connected in parallel to the DC bus. sum of numbers.
  • the difference between the voltages before and after the corresponding preset time period can be pre-calibrated, that is, the calibration value is obtained in advance, and then the controller determines the detection of the difference between the voltages before and after the preset time period value, and compare the detected value with the calibration value to determine the number of connected power supply units.
  • the controller is further configured to determine the equivalent value of the electrical parameters of all the energy storage units in parallel according to the sampling signals obtained before and after the preset time period, and according to the The effective value determines the sum of the number of batteries and PSUs connected in parallel to the DC bus.
  • the equivalent values of the electrical parameters of the corresponding energy storage units can be pre-calibrated, that is, the calibration values are obtained, and then the current detected values of electrical parameters are determined by the controller, and the detected values are compared with The calibration values are compared to determine the number of power supply units connected.
  • FIG. 1 is a schematic diagram of a battery in-position detection circuit provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of another battery presence detection circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a signal waveform provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another battery presence detection circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of still another battery presence detection circuit provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a battery in-position detection method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a battery according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an energy system provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another energy system provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the communication energy system may be an indoor communication energy system, an outdoor communication energy system, a computer room communication energy system, a hybrid power supply communication energy system, and the like.
  • lithium batteries are also widely used. This application does not specifically limit the type of electronic devices.
  • Electronic devices can be mobile phones, notebook computers, wearable electronic devices (such as smart watches), tablet computers, etc. Augmented reality devices and virtual reality devices, etc.
  • the DC bus of the site equipment is usually connected in parallel with an energy storage system and a power supply unit (PSU), which is used to convert the AC power provided by the external power supply into DC power to provide
  • the power supply unit can also charge the lithium battery of the energy storage system.
  • the ports of the energy storage system and the power supply unit are connected in parallel, making it difficult to distinguish whether the port voltage is maintained by the discharge of the lithium battery itself or maintained by the power supply unit.
  • the present application provides a battery in-position detection circuit, method, power supply device and electronic device, firstly controlling the battery pack to supply power to the energy storage unit, then controlling the battery pack to stop power supply, and then controlling the energy storage unit
  • the discharge is carried out through the discharge cell.
  • the voltage drop speed of the energy storage unit is different when the battery is in the connected state and the island state. Therefore, the current connection state of the battery is determined according to the sampling result of the voltage across the energy storage unit.
  • the detection circuit can be controlled by the controller to actively perform detection, and is turned off when detection is not required, so it will not bring additional losses.
  • connection should be understood in a broad sense.
  • connection may be a fixed connection, a detachable connection, or an integral body; it may be a direct connection, or a Indirect connections can be made through an intermediary.
  • the embodiment of the present application provides a battery presence detection circuit, and the device can be applied to a battery energy storage system such as a communication site, or an electronic device powered by a battery, which is described in detail below with reference to the accompanying drawings.
  • FIG. 1 this figure is a schematic diagram of a battery presence detection circuit provided by an embodiment of the present application.
  • the detection circuit 20 is arranged in the battery, and the detection circuit 20 includes: a first switch unit 201 , a second switch unit 202 , a discharge unit 203 , a sampling unit 204 , an energy storage unit 205 and a controller (shown in the figure).
  • the first end of the first switch unit 201 is connected to the first end of the cell pack 10 , and the second end of the first switch unit 201 is connected to the second end of the cell pack 10 in series with the energy storage unit 205 .
  • the second end of the battery pack 10 is the negative output end; when the first end of the battery pack 10 is the negative output end, the The second terminal is the positive output terminal.
  • the battery 30 includes a battery pack 10 and a battery presence detection circuit 20 .
  • the second switch unit 202 and the discharge unit 203 are connected in series first and then connected in parallel with the energy storage unit 205 .
  • the discharge unit 203 is used to discharge the energy storage unit 205 .
  • the sampling unit 204 is connected in parallel with the energy storage unit 205, and the sampling unit 204 sends the acquired sampling signal to the controller.
  • the controller is used to control the working states of the first switch unit 201 and the second switch unit 202, and determine the in-position state of the battery according to the acquired sampling signal.
  • the first switch unit 201 and the second switch unit 202 may include a controllable switch tube, and the embodiment of the present application does not specifically limit the type of the controllable switch tube, for example, it may be an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor, IGBT) , Metal Oxide Semiconductor Field Effect Transistor (Metal Oxide Semiconductor Field Effect Transistor, MOSFET, hereinafter referred to as MOS tube), SiC MOSFET (Silicon Carbide Metal Oxide Semiconductor, silicon carbide field effect transistor) and relays.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • MOS tube Metal Oxide Semiconductor Field Effect Transistor
  • SiC MOSFET Silicon Carbide Metal Oxide Semiconductor, silicon carbide field effect transistor
  • the controller can send a PWM (Pulse Width Modulation, pulse width modulation) signal to the switch tube to control the working state of the controllable switch tube.
  • PWM Pulse Width Modulation, pulse width modulation
  • the controller may be an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Digital Signal Processor (DSP) or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • DSP Digital Signal Processor
  • the above-mentioned PLD can be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field-programmable gate array (Field-programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL) or any combination thereof.
  • CPLD Complex Programmable Logic Device
  • FPGA Field-programmable Gate Array
  • GAL General array logic
  • the controller can be provided independently; in other embodiments, the controller can be integrated with the controller of the BMS.
  • the controller of the detection circuit can make the discharge unit discharge the energy storage unit by controlling the working states of the first switch unit and the second switch unit.
  • the energy storage unit When the battery is in the in-place state (connected to the system), the energy storage unit is connected to the discharge unit and the external power supply unit, so the voltage drops slowly.
  • the battery When the battery is in the island state (not connected to the system), the energy storage unit discharges through the discharge unit , the voltage of the energy storage unit drops rapidly. Therefore, the voltage changes at both ends of the energy storage unit are different in different connection states, and the sampling unit and the energy storage unit are connected in parallel, and the change of the voltage signal obtained by the sampling unit can represent the change of the voltage across the energy storage unit.
  • the sampled signal of the cell determines the current status of the battery.
  • the detection circuit can be controlled by the controller to actively perform detection, and the first switch unit and the second switch unit can be disconnected when the detection is not required, so no additional loss will be brought.
  • the controller first controls both the first switch unit 201 and the second switch unit 202 to be closed. At this time, the cell pack 10 charges the energy storage unit 205 . When the battery is in place, the energy storage unit 205 is also connected to other power supply units of the system, so the voltage of the energy storage unit 205 is jointly maintained by the battery pack and other power supply units.
  • the energy storage unit 205 may be formed by one capacitor, or a plurality of capacitors connected in series or in parallel.
  • the controller then controls the first switch unit 201 to be turned off for a preset time period, and the discharge unit 203 discharges the energy storage unit 205 within the preset time period.
  • the preset time may be set according to the actual situation, which is not specifically limited in this embodiment of the present application.
  • the length of the preset time period can be set to a short time period, for example, it can be set to a microsecond level, so as to realize fast in-situ detection.
  • the controller acquires the sampling signal of the sampling unit 204 and determines the connection state of the battery 30 according to the sampling result of the sampling unit 204 before and after the preset time period, which will be described in detail below.
  • the energy storage unit 205 discharges energy through the discharge unit 203 after normal energy storage.
  • the energy storage unit 205 is also connected to an external power supply unit (such as a PSU, etc.)
  • the external power supply unit can maintain energy storage. Therefore, the voltage at both ends of the energy storage unit 205 drops slowly, so that the voltage at both ends of the energy storage unit 205 does not change significantly before and after discharge, and the sampling unit 204 is connected in parallel with the energy storage unit 205, so the sampling unit 204 can be used to collect
  • the change of the voltage signal of represents the change of the voltage of the energy storage unit 205 .
  • the energy storage unit 205 When the battery 30 is not in place, since the energy storage unit 205 is only discharged through the discharge unit 203 and is not connected to an external power supply unit, after the discharge for a preset period of time, the two ends of the energy storage unit 205 change slowly, that is, the storage unit 205 changes slowly.
  • the voltage at both ends of the energy unit 205 has a fast drop speed and a large drop amount before and after the preset time period.
  • the battery pack 10 may be a lithium battery, and when the controller determines that the lithium battery is not connected, it may further control the lithium battery to be connected to a dormant state to avoid loss of self-consumption power.
  • the battery pack 10 may also be other types of batteries, such as lead-acid batteries, etc., which are not specifically limited in the embodiments of the present application.
  • the controller of the battery presence detection circuit first controls both the first switch unit and the second switch unit to be closed, and then the controller controls the first switch unit to be disconnected for a preset period of time, so that the discharge unit is connected to the battery.
  • the energy unit is discharged.
  • the preset time period can be adjusted according to actual needs, for example, it can be set to a time length of microsecond level to realize fast battery presence detection.
  • FIG. 2 is a schematic diagram of another battery presence detection circuit provided by an embodiment of the present application.
  • the first switch unit 201 of the detection circuit 20 provided by the embodiment of the present application includes a switch tube Q1 and a relay T connected in parallel.
  • the switch Q1 is a MOS transistor, and is specifically an NMOS transistor for illustration. The principle is similar when the switch Q1 is another type of controllable switch.
  • the drain of the switch tube Q1 is the first end of the first switch unit 201 for connecting to the first end of the battery pack 10
  • the source of the switch tube Q1 is the second end of the first switch unit 201 for connecting to the battery pack 10 .
  • energy unit 205 The gate of the switch tube Q1 is the control terminal, and the controller controls the working state of the switch tube Q1 by sending a PWM signal to the control terminal of the switch tube Q1.
  • the switch tube Q1 in the first switch unit 201 can be turned on and off quickly, with high control sensitivity and low delay.
  • the relay T has a strong current withstand capability, so after the switch tube Q1 is connected in parallel with the relay T, the first switch unit 201 has a strong current withstand capability while realizing low-latency control, and can match a larger output current
  • the battery pack 10 10.
  • the second switch unit 202 in the embodiment of the present application may include a switch transistor Q2.
  • the embodiment of the present application uses an example that the switch transistor Q2 is also an NMOS transistor. The principle is similar when the switch transistor Q2 is another type of controllable switch transistor.
  • the drain of the switch transistor Q2 is the first end of the second switch unit 202, which is used to connect to the second end of the first switch unit 201, and the source of the switch transistor Q2 is the second end of the second switch unit 202, which is used to connect the discharge unit. 203.
  • the gate of the switch tube Q2 is the control terminal, and the controller controls the working state of the switch tube Q2 by sending a PWM signal to the control terminal of the switch tube Q2.
  • the discharge unit 203 in the embodiment of the present application is a load circuit, and is used for consuming electric energy to discharge the energy storage unit 205 .
  • the energy storage unit 205 includes a resistor, and the resistor may be a single resistor or a resistor network (that is, a plurality of resistors are connected in series or in parallel), which is not specifically described in this embodiment of the present application. limited.
  • the energy storage unit 205 includes a heating film circuit, and the heating film circuit is used to convert electrical energy into heat energy to heat the battery, thereby improving the working performance of the battery in a low temperature environment.
  • the heating film circuit in the energy storage unit 205 can be set independently, and the heating film in the current battery system can also be reused, so as to reduce the number of components used and simplify the circuit structure.
  • the sampling unit 204 in this embodiment of the present application includes a sampling resistor, and the sampling signal is the voltage across the sampling resistor or the current flowing through the sampling resistor.
  • the sampling unit 204 shown in the figure includes resistors R1 and R2 connected in series. Taking the resistor R1 as the sampling resistor as an example, the resistor R1 can be a separate resistor, or it can be an equivalent resistor after multiple resistors are connected in series and parallel, and the resistor R2 can be a separate resistor or multiple resistors.
  • the equivalent resistance after the resistors are connected in series or in parallel is not specifically limited in this embodiment of the present application.
  • the resistor R2 is used to limit the current of the sampling unit 204 to protect the circuit, and is also used to divide the voltage to limit the voltage across the sampling resistor R1 from being too high.
  • the voltage across the sampling resistor R1 can be acquired through a voltage sensor, and the acquired voltage signal can be sent to the controller; in other embodiments, the current flowing through the sampling resistor R1 can be acquired through a current sensor, and Send the acquired current signal to the controller.
  • the energy storage unit 205 provided in the embodiment of the present application is used for energy storage, and the energy storage unit 205 may be formed by one energy storage capacitor, or a plurality of energy storage capacitors connected in series or in parallel.
  • the unit 205 is an energy storage capacitor C1 as an example for illustration, and when the energy storage unit 205 includes a plurality of energy storage capacitors, C1 can be understood as an equivalent capacitance of the plurality of energy storage capacitors.
  • the sampling circuit 204 is connected in parallel with both ends of the energy storage unit 205 , so the change of the partial voltage of the sampling resistor R1 represents the change of the voltage at both ends of the energy storage unit.
  • the detection principle of the controller will be specifically described below.
  • the sampling signal is a voltage signal as an example for illustration.
  • the controller can obtain the sampling signal according to the resistance value of the sampling resistor R1 and the current signal. Voltage across resistor R1.
  • the following first describes the principle that the controller determines the battery connection state according to the voltage difference between the two ends of the energy storage unit before and after the preset time period.
  • this figure is a schematic diagram of a signal waveform provided by an embodiment of the present application.
  • the switching transistors Q1 and Q2 as NMOS transistors as an example, when the control signal input by the controller to the gate of the NMOS transistor is at a high level, the NMOS transistor is turned on.
  • the waveform 31 in FIG. 3 is the waveform of the control signal of the controller to the second switch unit 202, that is, to the switch tube Q2.
  • the switch tube Q2 When the waveform 31 is at a high level, the switch tube Q2 is turned on, and when it is at a low level, the switch tube Q2 is turned off .
  • the waveform 32 in FIG. 3 is the waveform of the control signal of the controller to the first switch unit 201, that is, to the switch tube Q1 and the relay T.
  • the switch tube Q1 and the relay T are turned on, and when it is at a low level , the switch tube Q2 and the relay T are turned off.
  • the waveform 33 in FIG. 3 is the bus voltage Vbus of the detection circuit, that is, the voltage across the energy storage unit.
  • the controller controls the switch tube Q2 to be closed, so that the discharge unit 203 is connected to the circuit, and controls the switch tube Q1 and the relay T to be closed, so that the energy storage capacitor C1 is connected to the circuit.
  • the battery pack 10 When the battery 30 is in place, the battery pack 10 normally supplies power to the energy storage capacitor C1 after the time t shown in the figure, the energy storage capacitor C1 can be charged normally, and the voltage of the energy storage capacitor C1 is determined by the external connection between the battery pack 10 and the battery. The power supply unit is maintained together.
  • the resistance value of the sampling resistor R1 and the resistance value of the resistor R2 are known parameters, which can be acquired in advance and stored in the memory, and called when the controller is used.
  • the controller obtains the voltage U C1 across the energy storage unit 205 according to the obtained voltage U R1 across the sampling resistor R1 , the resistance value of the sampling resistor R1 and the resistance value of the resistor R2 , as shown in the following formula:
  • the controller controls the first switch unit 201 to turn off the preset time period ⁇ .
  • the discharge unit 203 discharges the energy storage unit 205.
  • the energy storage unit 205 has a voltage drop during the preset time period ⁇ , and after the preset time period ⁇
  • the voltage U' R1 across the sampling resistor R1 obtained by the controller, and the voltage across the energy storage unit 205 after the preset time period ⁇ is U' C1 , the drop voltage value can be determined by the following formula as ⁇ U:
  • ⁇ U is the drop voltage value when the battery is normally connected, and the drop voltage value can be used as a criterion for judging the connection state of the battery.
  • the first switch unit 201 When the battery is in the in-position state (connected to the system), the first switch unit 201 is disconnected for a preset time period ⁇ , and the energy storage capacitor C1 is connected to the discharge unit and the external power supply unit, so the voltage drops slowly, that is, the ⁇ U is small .
  • the energy storage capacitor C1 When the battery is not in place, the energy storage capacitor C1 is discharged through the discharge unit 203, the energy storage capacitor C1 is not connected in parallel with the external power supply unit, and the voltage across the energy storage capacitor C1 is only maintained by the battery pack, so when the first switch unit is disconnected After that, the energy storage capacitor C1 is only discharged through the discharge unit, and the voltage drop of the energy storage unit 205 after the same preset time period ⁇ is greater than or equal to the theoretical drop voltage value ⁇ U, and it can be determined that the current battery is disconnected.
  • the drop voltage value ⁇ U and the allowable error range may be calibrated in advance through test experiments.
  • the controller determines that the current voltage drop value is greater than or equal to ⁇ U and the deviation has exceeded the allowable error range, it is determined that the battery is in a disconnected state.
  • controller determines the battery connection state according to the electrical parameters of the energy storage unit obtained from the sampling signal.
  • the controller is configured to determine the detected value of the electrical parameter of the energy storage unit 205 according to the sampling signal acquired before and after the preset time period, and compare the detected value with the preset electrical parameter value to determine the connection state of the battery.
  • the capacitance value of the energy storage capacitor of the energy storage unit 205 is C1, that is, the electrical parameter at this time is the capacitance value, and the capacitance value C1 is the preset electrical parameter value, which is predetermined and Stored in memory and recalled for later use.
  • the resistance of the discharge unit 203 is represented by R h below.
  • R h is the resistance value of the resistor.
  • R h is the equivalent resistance of the heating film circuit.
  • ⁇ RC is the discharge time constant of the port RC
  • C 0 is the detection value of the electrical parameter.
  • the energy storage capacitor is connected in parallel with the bus capacitors of other power supply units, so the detected value C 0 of the electrical parameter is the equivalent value of all the capacitors connected in parallel.
  • the energy storage capacitor When the battery 30 is not in place, the energy storage capacitor is not connected in parallel with the bus capacitors of other power supply units, so the detected value C 0 of the electrical parameter corresponds to the capacitance value of the energy storage capacitor C1 .
  • the capacitance value of the energy storage capacitor of the energy storage unit 205 is known as C 1 .
  • C 0 satisfies C 1 - ⁇ C 0 ⁇ C 1 + ⁇ , it indicates that the battery 30 is not connected at this time, and the acquired detection value of the electrical parameter C 0 corresponds to the capacitance value of the storage capacitor C1.
  • is a preset error value. Otherwise, it means that the battery 30 is connected normally at this time.
  • the controller of the detection circuit provided by the embodiment of the present application can obtain the voltage difference of the energy storage unit before and after the preset time period according to the sampling signal obtained before and after the preset time period, when the voltage difference is greater than or equal to When the voltage difference is preset, it is determined that the battery is not connected; or the detected value of the electrical parameter of the energy storage unit can be determined according to the sampling signal obtained before and after the preset time period, and the detected value is compared with the preset electrical parameter value to obtain Determine the connection status of the battery.
  • the detection circuit can be actively detected by the controller, and can be turned on and off at any time, so it will not bring additional losses.
  • the preset time period can be adjusted according to actual needs, for example, it can be set to a time length of microsecond level to realize fast battery presence detection.
  • the discharge unit of the device is a heating film circuit
  • the resistance of the heating film circuit is small and the power is large, the power consumption is fast, resulting in a fast voltage drop of the energy storage unit, so the detection sensitivity can be improved.
  • the detection principle of the detection circuit will be described below in combination with specific application scenarios.
  • the embodiments of the present application will be described by taking the application of the detection circuit to an energy system of site equipment as an example.
  • the site device may be an indoor communication site device, an outdoor communication site device, a computer room communication site device, or a hybrid power supply communication site device.
  • this figure is a schematic diagram of another battery in-position detection circuit provided by an embodiment of the present application.
  • the battery 30 is connected in parallel with at least one PSU module 40 and then connected to the DC bus of the site equipment.
  • the battery 30 includes the battery pack 10 and the battery presence detection circuit 20 .
  • the PSU module 40 includes a parallel connected PSU 401 and an energy storage unit C PSU connected in parallel.
  • the energy storage unit C PSU of the PSU module 40 may adopt the same implementation manner as the energy storage unit 205 of the detection circuit, and the embodiment of the present application uses the C PSU as an energy storage capacitor as an example for description.
  • the PSU module 40 of the station equipment can convert the alternating current into direct current and transmit it to the direct current bus.
  • the battery 30 can supply power to the DC bus.
  • the following describes a method for detecting the number of modules connected to the DC bus by using the detection circuit.
  • the controller may determine the number of modules connected to the DC bus according to the voltage difference between the two ends of the energy storage unit before and after the preset time period.
  • the corresponding ⁇ U under different numbers of access modules can be calibrated through test experiments in advance, for example, when the number of modules connected to the DC bus is 2 (battery and one PSU module are connected to the DC bus) , the corresponding drop voltage value is ⁇ U 1 ; when the number of modules connected to the DC bus is 3 (battery and two PSU modules are connected to the DC bus), the corresponding drop voltage value is ⁇ U 2 ... and so on. Then, the allowable error range is determined respectively, that is, multiple intervals of the voltage drop value can be obtained in advance, and the obtained multiple intervals can be stored in the memory and called when the controller is used.
  • the controller performs detection to obtain the detection value of the voltage drop value before and after the preset time period ⁇ , and then determines the interval in which the detection value is located, and then determines the corresponding number of modules connected to the DC bus.
  • the controller can determine the equivalent capacitance of each energy storage unit in parallel according to the sampling signal, and then determine the number of modules connected to the DC bus.
  • Different numbers of access modules correspond to different numbers of energy storage capacitors connected in parallel, so the equivalent capacitance values of the corresponding energy storage capacitors are different. It can be calibrated in advance through test experiments. For example, when the number of modules connected to the DC bus is 2 (battery and one PSU module are connected to the DC bus), the equivalent capacitance value of the corresponding energy storage capacitor is C 11 ; When the number of modules is 3 (battery and two PSU modules are connected to the DC bus), the equivalent capacitance value of the corresponding energy storage capacitor is C 12 , etc. Then, the allowable error range is determined respectively, that is, multiple intervals of the equivalent capacitance value can be obtained in advance, and the obtained multiple intervals are stored in the memory and called when the controller is used.
  • this figure is a schematic diagram of still another battery in-position detection circuit provided by an embodiment of the present application.
  • FIG. 5 The difference between FIG. 5 and FIG. 4 is that a plurality of batteries 30 are connected to the DC bus in parallel with at least one of the PSUs.
  • the controller can determine the sum of the number of batteries and PSUs connected in parallel according to the voltage difference; or determine the equivalent capacitance of each energy storage unit in parallel according to the sampling signal obtained by the sampling unit before and after the preset time period value, and determine the sum of the number of batteries and PSUs connected in parallel according to the equivalent capacitance.
  • the specific implementation manner is similar to the above description, and the embodiment of the present application will not be repeated here.
  • the controller of the detection circuit can store the energy storage units before and after the preset time period.
  • the voltage difference at both ends determines the number of modules connected to the DC bus, or determines the equivalent capacitance of each energy storage unit in parallel according to the sampling signal, and then determines the number of modules connected to the DC bus, realizing functional multiplexing.
  • the embodiment of the present application also provides a battery in-position detection method, which can be applied to the detection circuit provided by the above embodiment.
  • a battery in-position detection method which can be applied to the detection circuit provided by the above embodiment.
  • the detection circuit please refer to the above embodiment.
  • the embodiments of the present application will not be repeated here.
  • the method provided by the embodiment of the present application includes: controlling the first switch unit and the second switch unit, and determining whether the battery is in place according to the sampling signal obtained from the sampling unit.
  • FIG. 6 is a flowchart of a battery in-position detection method provided by an embodiment of the present application.
  • S501 Control both the first switch unit and the second switch unit to be closed.
  • S502 Control the first switch unit to turn off the preset time period, and determine whether the battery is in place by using the sampling signals obtained before and after the preset time period.
  • the energy storage unit discharges energy through the discharge unit after normal energy storage.
  • the voltage across the energy storage unit can also be maintained by the external power supply unit, so the voltage drop is slow.
  • the sampling unit is connected in parallel with the energy storage unit. The change of the voltage signal collected by the unit represents the change of the voltage of the energy storage unit.
  • the connection state of the battery can be determined according to the sampling results of the sampling unit before and after the preset time period.
  • S502 can be implemented in the following two ways:
  • S502 specifically includes the following steps:
  • the voltage drop of the energy storage unit after the preset time period is greater than or equal to the theoretical drop voltage value.
  • the drop voltage value and the allowable error range may be calibrated in advance through test experiments. When the controller determines that the current voltage drop value is greater than or equal to the calibrated drop voltage value and the deviation has exceeded the allowable error range, it is determined that the battery is in a disconnected state.
  • the The voltage difference between the two ends of the energy storage unit before and after the time period determines the number of modules connected to the DC bus.
  • S502 specifically includes the following steps:
  • the detected value is compared with a preset electrical parameter value to determine whether the battery is present.
  • the capacitance value of the energy storage capacitor of the energy storage unit is a known parameter, that is, the preset electrical parameter value, through the above formula (7)
  • each power supply unit is also connected in parallel with an energy storage unit, and the sampling unit can also be used in The sampling signals obtained before and after the preset time period determine the equivalent capacitance value of each energy storage unit connected in parallel. And use the equivalent capacitance to determine the number of power supply units connected in parallel.
  • the in-position detection method of the battery provided by the embodiment of the present application first controls both the first switch unit and the second switch unit to be closed, and then controls the first switch unit to be disconnected for a preset period of time, so that the discharge unit can The energy storage unit is discharged.
  • the energy storage unit When the battery is in the in-place state (connected to the system), the energy storage unit is connected to the discharge unit and the external power supply unit, so the voltage drops slowly.
  • the battery is in the island state, the energy storage unit only discharges through the discharge unit, and the voltage of the energy storage unit decline faster.
  • the controller can determine the current status of the battery according to the sampling result.
  • the detection can be carried out actively, and the first switch unit and the second switch unit can be disconnected when the detection is not required, so no additional loss will be brought.
  • the preset time period can be adjusted according to actual needs, for example, it can be set to a time length of microsecond level to realize fast battery presence detection.
  • an embodiment of the present application further provides a battery, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 7 is a schematic diagram of a battery provided by an embodiment of the present application.
  • the battery 30 includes a battery pack 10 , a battery presence detection circuit 20 and a BMS 30 .
  • the first end of the battery pack 10 is connected to the first end of the first switch unit, and the second end of the battery pack 10 is connected to the second end of the first switch unit through the energy storage unit.
  • the battery pack 10 is used to provide electrical energy, and the electrical energy is used to supply power to a load circuit of the battery 30 .
  • the BMS 30 is used to timely control the lithium battery to access the sleep state when the detection circuit 20 determines that the battery is not in place.
  • the controller of the detection circuit and the controller of the BMS can be integrated together, or set up independently.
  • the battery 30 in the embodiment of the present application can be used for indoor communication power supply, outdoor communication power supply, computer room communication power supply, hybrid power supply communication power supply, etc., and is suitable for low-power sites such as video surveillance and transmission sites.
  • the power supply device includes an in-position detection circuit of the battery.
  • the controller of the detection circuit first controls the first switch unit and the second switch unit to be closed, and then the controller The first switch unit is then controlled to be turned off for a preset period of time, so that the discharge unit discharges the energy storage unit.
  • the battery is in place (connected to the system)
  • the energy storage unit is connected to the discharge unit and the external power supply unit, so the voltage drops slowly.
  • the energy storage unit discharges through the discharge unit, and the voltage drop of the energy storage unit is relatively quick.
  • the voltage changes at both ends of the energy storage unit are different before and after the preset time period in different connection states, and the sampling unit and the energy storage unit are connected in parallel.
  • the change of the voltage signal obtained by the sampling unit can represent the change of the voltage of the energy storage unit.
  • Whether the current battery is in place can be determined according to the sampling signal of the sampling unit before and after the preset time period.
  • the detection circuit can be controlled by the controller to actively perform detection, and the first switch unit and the second switch unit can be disconnected when the detection is not required, so that the power of the battery will not be consumed additionally.
  • the preset time period can be adjusted according to actual needs, for example, it can be set to a time length of microsecond level to realize fast battery presence detection.
  • the embodiment of the present application further provides an energy system, the energy system includes the battery provided by the above embodiment, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 8 this figure is a schematic diagram of an energy system provided by an embodiment of the present application.
  • the energy system 70 provided in this embodiment of the present application includes: a battery 30 and at least one PSU 401 .
  • the battery 30 includes the battery cell pack 10 and the battery in-position detection circuit 20 .
  • the battery pack 10 is used to provide electrical energy to site equipment.
  • the battery 30 is connected in parallel with the PSU 401 to the DC bus of the site equipment, and each power supply unit is also connected in parallel with an energy storage unit (not shown in the figure).
  • the PSU401 is used to convert the AC power provided by the external power supply into DC power and then supply it to the site equipment.
  • the presence detection circuit 20 of the battery is used to detect the presence state of the battery, and can also determine the number of PSUs connected in parallel to the DC bus.
  • the specific implementation and working principle of the battery presence detection circuit 20 please refer to the above The descriptions in the embodiments are not repeated in the embodiments of the present application.
  • the battery 30 is a lithium battery.
  • the BMS of the battery can further control the lithium battery to be connected to a dormant state to avoid loss of self-consumption power.
  • the battery 30 may also be other types of batteries, such as lead-acid batteries.
  • the difference from the energy system shown in FIG. 8 is that it includes multiple batteries connected in parallel to the DC bus.
  • the controller is further configured to determine the sum of the number of batteries and PSUs connected in parallel to the DC bus according to the difference between the voltages across the energy storage unit acquired before and after a preset time period.
  • the controller is further configured to determine the equivalent value of the electrical parameters of all the energy storage units connected in parallel according to the sampling signals obtained before and after the preset time period, and determine the parallel connection according to the equivalent value. Sum of the number of batteries and PSUs for the DC bus.
  • the embodiments of the present application do not specifically limit the number of batteries and PSUs connected in parallel to the DC bus.
  • the energy system provided by the embodiments of the present application includes an in-position detection circuit of the battery, and the controller of the detection circuit first controls the first switch unit and the second switch unit to be closed; and then controls the first switch unit to be disconnected A preset time period for the discharge unit to discharge the energy storage unit.
  • the controller may determine whether the current battery is in place according to the sampling results of the sampling unit before and after the preset time period.
  • the detection circuit can be controlled by the controller to actively perform detection, and the first switch unit and the second switch unit can be disconnected when the detection is not required, so that the power of the battery will not be consumed additionally.
  • the preset time period can be adjusted according to actual needs, for example, it can be set to a time length of microsecond level to realize fast battery presence detection.
  • the embodiment of the present application further provides an electronic device, the electronic device includes the detection circuit provided by the above embodiment, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 10 this figure is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 80 provided in this embodiment of the present application includes: a battery 30 and a load circuit 801 .
  • the battery 30 includes the battery pack 10 and the battery presence detection circuit 20 .
  • the cell pack 10 is used to provide electrical energy to the load circuit 801 .
  • the electronic device further includes at least one PSU.
  • the battery 30 is connected to the DC bus of the electronic equipment in parallel with the PSU, and each PSU is also connected in parallel with an energy storage unit.
  • the PSU is used to convert the alternating current provided by the external power source into direct current and then provide it to the load circuit 801 .
  • the presence detection circuit 20 of the battery is used to detect the presence state of the battery, and can also determine the number of PSUs connected in parallel to the DC bus.
  • the specific implementation and working principle of the battery presence detection circuit 20 please refer to the above The descriptions in the embodiments are not repeated in the embodiments of the present application.
  • the electronic device may be a mobile phone, a laptop computer, a wearable electronic device (eg, a smart watch), a tablet computer, an augmented reality device, a virtual reality device, and the like.
  • the PSU when the notebook computer is not connected to an external power supply, the PSU does not work, and the notebook computer is powered by a battery.
  • the PSU When the notebook computer is connected to an external power supply, that is, when the mains power is connected, the PSU can convert the mains power into DC power to provide the notebook computer, and the in-position detection circuit 20 can detect whether the battery is normally connected.
  • the electronic device provided by the embodiment of the present application includes a battery in-position detection circuit, and the controller of the detection circuit first controls the first switch unit and the second switch unit to be closed; and then controls the first switch unit to be disconnected A preset time period for the discharge unit to discharge the energy storage unit.
  • the controller may determine the current status of the battery according to the sampling results of the sampling unit before and after the preset time period.
  • the detection circuit can be controlled by the controller to actively perform detection, and the first switch unit and the second switch unit can be disconnected when the detection is not required, so that the power of the battery will not be consumed additionally.
  • the preset time period can be adjusted according to actual needs, for example, it can be set to a time length of microsecond level to realize fast battery presence detection.
  • the memory in the above embodiments of the present application may be a separately set memory, or may be a memory integrated inside the controller, which is not specifically limited in the embodiment of the present application.
  • At least one (item) refers to one or more, and "a plurality” refers to two or more.
  • “And/or” is used to describe the relationship between related objects, indicating that there can be three kinds of relationships, for example, “A and/or B” can mean: only A, only B, and both A and B exist , where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.

Abstract

本申请公开了一种电池的在位检测电路、方法、电池、设备及系统,涉及电子电力技术领域。该检测电路设置于电池内,电池包括电芯包,检测电路包括第一开关单元、第二开关单元、放电单元、采样单元、储能单元和控制器。第一开关单元的第一端连接电芯包的第一端,第一开关单元的第二端与储能单元串联后连接电芯包的第二端;第二开关单元与放电单元先串联后再与储能单元并联;放电单元为储能单元进行放电;采样单元与储能单元并联,采样单元将获取的采样信号发送至控制器;控制器用于控制第一开关单元和第二开关单元,并根据获取的采样信号确定电池的连接状态。利用该检测电路能够检测电池的连接状态。

Description

一种电池在位检测电路、方法、电池、设备及系统 技术领域
本申请涉及电力电子技术领域,尤其涉及一种电池在位检测电路、方法、电池、设备及系统。
背景技术
目前,随着各类用电设备对储能系统的要求的日渐提高,锂电池因为其具备能量密度高、电池循环寿命长等特点,被广泛应用。
锂电池的电池管理系统(Battery Management System,BMS)需要准确及时的获取锂电池的在位信息,进而能够在锂电池处于孤岛状态时,及时控制锂电池进入休眠状态。其中,孤岛状态指当前电池与外部无通信,同时电池处于不充不放状态。但是,由于锂电池的充电和放电使用同一端口,外部充电模块电压值范围与锂电池放电电压值范围区间重合,难以区分该端口电压是锂电池本身放电形成的,还是外部其它电源维持的,即当电池处于孤岛状态但外部充电模块正常连接时,或者当电池在位但外部充电模块掉电时,利用端口电压难以确定锂电池是否处于孤岛状态。
发明内容
本申请提供了一种电池的在位检测电路、方法、电池、设备及系统,用于确定电池是否在位。
第一方面,本申请提供了一种电池在位检测电路,其设置于电池内,该电池包括电芯包,检测电路包括:第一开关单元、第二开关单元、放电单元、采样单元、储能单元和控制器。第一开关单元的第一端连接电芯包的第一端,第一开关单元的第二端与储能单元串联后连接电芯包的第二端;第二开关单元与放电单元先串联后再与储能单元并联;放电单元用于为储能单元进行放电;采样单元与储能单元并联,采样单元用于将采样信号发送至控制器。控制器用于控制第一开关单元和第二开关单元,并根据获取的采样信号确定电池是否在位。
控制器可以通过控制第一开关单元和第二开关单元的工作状态,使放电单元对储能单元进行放电。当电池处于在位状态时(接入系统),储能单元连接放电单元以及外部的供电单元,因此电压下降慢,当电池处于孤岛状态时(未接入系统),储能单元通过放电单元放电,储能单元的电压下降较快。因此不同连接状态下储能单元的两端电压变化速度不同,而采样单元和储能单元并联,采样单元获取的电压信号的变化可以表征储能单元两端的电压的变化,因此控制器可以根据采样单元的采样信号确定当前电池的在位状态。该检测电路可以由控制器控制主动进行检测,在不需检测时断开第一开关单元和第二开关单元即可,因此不会带来额外的损耗。
结合第一方面,在第一种可能的实现方式中,控制器首先控制第一开关单元和第二开关单元均闭合,然后控制第一开关单元断开预设时间段,并根据在预设时间段前后获取的采样信号,确定电池是否在位。电池处于在位状态时(接入系统),储能单元连接放电单元以及外部供电单元,因此电压下降慢,当电池处于孤岛状态时,通过放电单元放电,储能单元的电压下降较快,因此不同连接状态下在预设时间段前后储能单元的两端电压变化不 同。该预设时间段可以根据实际需要进行调整,例如可以设置为微秒级的时间长度以实现快速的电池在位检测。
结合第一方面,在第二种可能的实现方式中,采样信号为储能单元两端的电压,控制器具体用于根据在预设时间段前后获取的电压的差值确定电池是否在位。具体的,当电压差大于或等于预设电压差时,确定电池不在位。当电压差大于或等于预设电压差时,表征此时储能单元未连接外部的供电单元,仅通过放电单元进行放电,因此电压变化更快。结合第一方面,在第三种可能的实现方式中,控制器用于根据在预设时间段前后获取的采样信号,确定储能单元的电参数的检测值,并将检测值与预设电参数值进行比较以确定电池是否在位。
当电池正常接入系统时,由于系统中同时并联接入了其他的供电单元,因此此时控制器获取的电参数的检测值对应储能单元以及其他的供电单元形成的整体。而当电池未接入系统时,电参数的检测值仅对应储能单元的电参数,因此控制器可以利用储能单元的电参数的检测值确定电池的连接状态。
结合第一方面,在第四种可能的实现方式中,储能单元包括储能电容,电参数为电容值。而电路中连接的其他供电单元对应也包括母线电容。当电池正常接入系统时,由于系统中同时并联接入了其他的供电单元,此时控制器获取的电容值的检测值为储能单元的电容以及供电单元的母线电容的等效值。而当电池未接入系统时,电参数的检测值仅对应储能单元的电容值,因此控制器可以利用电容值的检测值确定电池的连接状态。
结合第一方面,在第五种可能的实现方式中,放电单元包括加热膜电路,加热膜电路用于为电池进行加热,以提升电池在低温环境下的工作性能。当通过加热膜电路对储能单元进行放电时,消耗的电能不会完全浪费,可以转换为热能以提升电池的工作性能。
结合第一方面,在第六种可能的实现方式中,放电单元包括电阻。该电阻可以为单个电阻,也可以为多个电阻形成的电阻网络。
结合第一方面,在第七种可能的实现方式中,第一开关单元包括并联连接的开关管和继电器。开关管能够实现快速的开通与关断,控制的灵敏性高,延时较低。而继电器具备的耐流能力强,因此使开关管与继电器并联后,使得第一开关单元在实现低延时控制的同时还具备较强的耐流能力,能够匹配输出电流较大的电芯包。
结合第一方面,在第八种可能的实现方式中,采样单元包括采样电阻,采样信号为所述采样电阻两端的电压,或流过所述采样电阻的电流。
第二方面,本申请还提供了一种电池的在位检测方法,应用于以上任意实现方式所述的电池在位检测电路,电池在位检测电路设置于电池内,所述电池包括电芯包。该方法包括:控制所述第一开关单元和第二开关单元,并根据从所述采样单元获取的采样信号确定所述电池是否在位。
结合第二方面,在一种可能的实现方式中,所述控制所述第一开关单元和第二开关单元,并根据从所述采样单元获取的采样信号确定所述电池是否在位,具体包括:
首先控制第一开关单元和第二开关单元均闭合,然后控制第一开关单元断开预设时间段,并根据在预设时间段前后从采样单元获取的采样信号,确定电池是否在位。
结合第二方面,在第二种可能的实现方式中,采样信号为所述储能单元两端的电压,所述并根据在所述预设时间段前后从所述采样单元获取的采样信号,确定所述电池是否在位,具体包括:根据所述预设时间段前后获取的所述电压的差值,确定所述电池是否在位。
结合第二方面,在第三种可能的实现方式中,并根据在所述预设时间段前后从所述采样单元获取的采样信号,确定所述电池是否在位,具体包括:利用在所述预设时间段前后获取的所述采样信号,确定所述储能单元的电参数的检测值;将所述检测值与预设电参数值进行比较以确定所述电池是否在位。
结合第二方面,在第四种可能的实现方式中,电参数为电容值。
第三方面,本申请还提供了一种电池,包括以上任意实现方式所述的电池在位检测电路,还包括电芯包。电芯包的第一端连接第一开关单元的第一端,电芯包的第二端通过储能单元连接第一开关单元的第二端。电芯包用于提供电能。本申请提供的电池可以使用于室内通信能源系统、室外通信能源系统、机房通信能源系统、混合供电通信能源系统等类型的通信能源系统。该电池的类型可以为锂电池或者铅酸电池。
第四方面,本申请还提供了一种电子设备,包括以上任意实现方式所述的电池在位检测电路,还包括电芯包和负载电路,电芯包用于向负载电路提供电能。电子设备可以为手机、笔记本电脑、可穿戴电子设备(例如智能手表)、平板电脑、增强现实(augmented reality,AR)设备以及虚拟现实(virtual reality,VR)设备等。
第五方面,本申请还提供了一种能源系统,包括至少一个以上实现方式所述的电池和至少一个供电单元PSU;电池与供电单元并联接入能源系统的直流母线,每个供电单元还与一个储能单元并联;供电单元用于将外部电源提供的交流电转换为直流电后传输至能源系统的直流母线。
结合第五方面,在第一种可能的实现方式中,控制器还用于根据在预设时间段前后获取的储能单元两端的电压的差值,确定并联接入直流母线的电池和PSU的数量之和。
接入不同数量的电池以及供电单元时,对应的预设时间段前后的电压的差值可以预先标定,即预先获取标定值,然后通过控制器确定预设时间段前后的电压的差值的检测值,并将检测值与标定值进行比较以确定接入的供电单元的数量。
结合第五方面,在第二种可能的实现方式中,控制器还用于根据在预设时间段前后获取的采样信号,确定所有储能单元并联后的电参数的等效值,并根据等效值确定并联接入直流母线的电池和PSU的数量之和。
接入不同数量的电池和供电单元时,对应的储能单元的电参数的等效值可以预先标定,即获取标定值,然后通过控制器确定当前的电参数的检测值,并将检测值与标定值进行比较以确定接入的供电单元的数量。
附图说明
图1为本申请实施例提供的一种电池在位检测电路的示意图;
图2为本申请实施例提供的另一种电池在位检测电路的示意图;
图3为本申请实施例提供的信号波形示意图;
图4为本申请实施例提供的又一种电池在位检测电路的示意图;
图5为本申请实施例提供的再一种电池在位检测电路的示意图;
图6为本申请实施例提供的一种电池在位检测方法的流程图;
图7为本申请实施例提供的一种电池的示意图;
图8为本申请实施例提供的一种能源系统的示意图;
图9为本申请实施例提供的另一种能源系统的示意图;
图10为本申请实施例提供的一种电子设备的示意图。
具体实施方式
为了使本领域技术人员更好地理解本申请实施例提供的技术方案,下面先介绍本申请提供的技术方案的应用场景。
目前,随着5G快速发展,通信站点的功耗倍增,需要能量密度更高的储能系统,由于锂电池的循环寿命是铅酸电池的5倍,浮充寿命是铅酸电池的2倍,生命周期成本已经低于铅酸电池,锂电池逐步广泛应用在通信能源系统中。其中,通信能源系统可以为室内通信能源系统、室外通信能源系统、机房通信能源系统、混合供电通信能源系统等。
此外,目前的各类电子设备中,锂电池的应用也较为广泛,本申请不具体限定电子设备的类型,电子设备可以为手机、笔记本电脑、可穿戴电子设备(例如智能手表)、平板电脑、增强现实设备以及虚拟现实设备等。
例如当锂电池应用于站点的能源系统时,对于站点设备的直流母线,通常并联有储能系统以及供电单元(Power Supply Unit,PSU),供电单元用于将外部电源提供的交流电转换为直流电提供给站点设备,该供电单元还可以为储能系统的锂电池充电。但是储能系统和供电单元的端口并联,导致难以区分端口电压是锂电池本身放电维持的,还是供电单元维持的。
为了解决以上技术问题,本申请提供了一种电池在位检测电路、方法、供电设备及电子设备,先控制电芯包给储能单元供电,然后控制电芯包停止供电,再控制储能单元通过放电单元进行放电。电池在处于连接状态与孤岛状态这两种状态下储能单元的电压下降速度不同,因此根据对储能单元两端电压的采样结果的确定出当前电池的连接状态。该检测电路可以由控制器控制主动进行检测,在不需检测时关闭,因此不会带来额外的损耗。
技术领域的人员更清楚地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接连接,也可以通过中间媒介间接连接。
装置实施例一:
本申请实施例提供了一种电池在位检测电路,该装置可以应用在通信的站点等的电池储能系统,或者使用电池进行供电的电子设备,下面结合附图具体说明。
参见图1,该图为本申请实施例提供的一种电池在位检测电路的示意图。
检测电路20设置于电池内,该检测电路20包括:第一开关单元201、第二开关单元202、放电单元203、采样单元204、储能单元205和控制器(图中为示出)。
其中,第一开关单元201的第一端连接电芯包10的第一端,第一开关单元201的第二端与储能单元205串联后连接电芯包10的第二端。其中,当电芯包10的第一端为正输出端时,电芯包10的第二端为负输出端;当电芯包10的第一端为负输出端时,电芯包10的第二端为正输出端。
电池30包括电芯包10以及电池在位检测电路20。
第二开关单元202与放电单元203先串联后再与储能单元205并联。
放电单元203用于为储能单元205进行放电。
采样单元204与储能单元205并联,采样单元204将获取的采样信号发送至控制器。
控制器用于控制第一开关单元201和第二开关单元202的工作状态,并根据获取的采样信号确定电池的在位状态。
第一开关单元201和第二开关单元202中可以包括可控开关管,本申请实施例不具体限定可控开关管的类型,例如可以为绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Filed Effect Transistor,MOSFET,以下简称MOS管)、SiC MOSFET(Silicon Carbide Metal Oxide Semiconductor,碳化硅场效应管)以及继电器等。
控制器可以向开关管发送PWM(Pulse Width Modulation,脉冲宽度调制)信号控制可控开关管的工作状态。
该控制器可以为专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)、数字信号处理器(Digital Signal Processor,DSP)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合,本申请实施例不作具体限定。
在一些实施例中,该控制器可以独立设置;在另一些实施例中,该控制器可以与BMS的控制器集成在一起。
综上所述,本申请实施例提供的检测电路的控制器可以通过控制第一开关单元和第二开关单元的工作状态,使放电单元对储能单元进行放电。当电池处于在位状态时(接入系统),储能单元连接放电单元以及外部的供电单元,因此电压下降慢,当电池处于孤岛状态时(未接入系统),储能单元通过放电单元放电,储能单元的电压下降较快。因此不同连接状态下储能单元的两端电压变化速度不同,而采样单元和储能单元并联,采样单元获取的电压信号的变化可以表征储能单元两端的电压的变化,因此控制器可以根据采样单元的采样信号确定当前电池的在位状态。该检测电路可以由控制器控制主动进行检测,在不需检测时断开第一开关单元和第二开关单元即可,因此不会带来额外的损耗。
下面具体说明控制器的工作方式。
控制器先控制第一开关单元201和第二开关单元202均闭合。此时电芯包10向储能单元205充电。当电池在位时,储能单元205还连接系统的其他供电单元,因此储能单元205 的电压由电芯包和其他供电单元共同维持。
本申请实施例对储能单元205的具体实现方式不作限定。在一些实施例中,储能单元205可以由一个电容,或者多个电容进行串、并联形成。
控制器然后控制第一开关单元201断开预设时间段,则在该预设时间段内放电单元203对储能单元205进行放电。预设时间可以根据实际情况设定,本申请实施例不作具体限定。在一种较优的实施例中,预设时间段的长度可以设置为较短的时间段,例如可以设置为微秒级别,以实现快速的在位检测。
控制器获取采样单元204的采样信号并根据采样单元204在预设时间段前后的采样结果确定电池30的连接状态,下面具体说明。
当电池30处于在位状态时,储能单元205正常储能后通过放电单元203进行放电,但由于储能单元205还连接外部供电单元(例如PSU等),而外部的供电单元可以维持储能单元205两端的电压,因此储能单元205两端电压下降慢,使得储能单元205两端的电压在放电前后变化不明显,而采样单元204与储能单元205并联,因此可以利用采样单元204采集的电压信号的变化表征储能单元205的电压的变化。
而当电池30不在位时,由于储能单元205仅通过放电单元203放电,未连接外部的供电单元,因此在经过预设时间段的放电后,储能单元205两端变化较慢,即储能单元205两端的电压在预设时间段前后的下降速度快,下降量较大。
在一些实施例中,电芯包10可以为锂电池,当控制器确定锂电池未接入时,可以进一步控制锂电池接入休眠状态以避免自耗电的损失。在另一些实施例中,电芯包10还可以为其它类型的电池,例如铅酸电池等,本申请实施例对此不作具体限定。
综上所述,该电池在位检测电路的控制器先控制第一开关单元和第二开关单元均闭合,然后控制器再控制第一开关单元断开预设时间段,以使放电单元对储能单元进行放电。电池在位以及不在位时,在预设时间段前后储能单元的两端电压变化速度不同,进而控制器可以根据获取的采样信号确定出当前电池的在位状态。此外,该预设时间段可以根据实际需要进行调整,例如可以设置为微秒级的时间长度以实现快速的电池在位检测。
装置实施例二:
下面结合在位检测电路的具体实现方式说明其工作原理。
参见图2,该图为本申请实施例提供的另一种电池在位检测电路的示意图。
本申请实施例提供的检测电路20的第一开关单元201包括并联连接的开关管Q1和继电器T。本申请实施例中以开关管Q1为MOS管,且具体为NMOS管为例进行说明,开关管Q1为其他类型的可控开关管时的原理类似。其中,开关管Q1的漏极为第一开关单元201的第一端,用于连接电芯包10的第一端,开关管Q1的源极为第一开关单元201的第二端,用于连接储能单元205。开关管Q1的栅极为控制端,控制器通过向开关管Q1的控制端发送PWM信号以控制开关管Q1工作状态。
第一开关单元201中的开关管Q1能够实现快速的开通与关断,控制的灵敏性高,延时较低。而继电器T具备的耐流能力强,因此使开关管Q1与继电器T并联后,使得第一开关单元201在实现低延时控制的同时还具备较强的耐流能力,能够匹配输出电流较大的电 芯包10。
本申请实施例的第二开关单元202可以包括开关管Q2,本申请实施例以开关管Q2同样为NMOS管为例进行说明,开关管Q2为其他类型的可控开关管时的原理类似。开关管Q2的漏极为第二开关单元202的第一端,用于连接第一开关单元201的第二端,开关管Q2的源极为第二开关单元202的第二端,用于连接放电单元203。开关管Q2的栅极为控制端,控制器通过向开关管Q2的控制端发送PWM信号以控制开关管Q2工作状态。
本申请实施例中的放电单元203为负载电路,用于消耗电能以对储能单元205进行放电。
在一些实施例中,储能单元205中包括电阻,电阻可以为一个单独设置的电阻,或者为电阻网络(即多个电阻通过串联、并联的形式连接),本申请实施例对此不做具体限定。
在另一些实施例中,储能单元205中包括加热膜电路,该加热膜电路用于将电能转化为热能,以为电池加热,进而提升电池在低温环境下的工作性能,通过加热膜电路对储能单元205进行放电时,消耗的电能不会完全浪费,可以转换为热能以提升电池的工作性能。储能单元205中的加热膜电路可以单独设置,还可以复用当前的电池系统中的加热膜,以减少使用的元器件的数量,简化电路结构。
本申请实施例的采样单元204包括采样电阻,采样信号为采样电阻两端的电压,或流过采样电阻的电流。图中所示采样单元204包括串联连接的电阻R1以及R2。以电阻R1为采样电阻为例,电阻R1可以为单独设置的一个电阻,也可以为多个电阻进行串联、并联后的等效电阻,电阻R2可以为单独设置的一个电阻,也可以为多个电阻进行串联、并联后的等效电阻,本申请实施例对此不做具体限定。
电阻R2用于限制采样单元204的电流以保护电路,还用于分压以限制采样电阻R1两端的电压不会过高。在一些实施例中,可以通过电压传感器获取采样电阻R1两端的电压,并将获取的电压信号发送给控制器;在另一些实施例中,可以通过电流传感器获取流经采样电阻R1的电流,并将获取的电流信号发送给控制器。
本申请实施例提供的储能单元205用于储能,该储能单元205可以由一个储能电容,或者多个储能电容串联、并联后形成,为了方便说明,以下实施例中以储能单元205为储能电容C1为例进行说明,而当储能单元205中包括多个储能电容时,C1可以理解为多个储能电容的等效电容。
采样电路204并联在储能单元205的两端,因此采样电阻R1的分压的变化表征储能单元两端的电压的变化,下面具体说明控制器的检测原理。以下说明中均以采样信号为电压信号为例进行说明,当采样信号为电流信号时,由于采样电阻R1的电阻值为已知参数,控制器可以根据采样电阻R1的电阻值以及电流信号获取采样电阻R1两端的电压。
下面首先说明控制器根据预设时间段前后储能单元两端的电压差确定电池连接状态的原理。
参见图3,该图为本申请实施例提供的信号波形示意图。
继续以开关管Q1和Q2为NMOS管为例进行说明,当控制器向NMOS管的栅极输入的控制信号为高电平时,NMOS管导通。
图3中的波形31为控制器对第二开关单元202,即对开关管Q2的控制信号的波形,波形31处于高电平时,开关管Q2导通,处于低电平时,开关管Q2关断。
图3中的波形32为控制器对第一开关单元201,即对开关管Q1和继电器T的控制信号的波形,波形32处于高电平时,开关管Q1和继电器T导通,处于低电平时,开关管Q2和继电器T关断。
图3中的波形33为检测电路的母线电压Vbus,即储能单元两端的电压。
控制器控制开关管Q2闭合,使放电单元203接入电路,并控制开关管Q1和继电器T闭合,使得储能电容C1接入电路。
当电池30在位时,电芯包10在图示的t时刻后向储能电容C1正常供电,储能电容C1能够正常充电,储能电容C1的电压由电芯包10和电池连接的外部供电单元共同维持。
采样电阻R1的电阻值和电阻R2的电阻值为已知参数,可以预先获取并保存在存储器中,待控制器使用时进行调用。
控制器根据获取的采样电阻R1两端的电压U R1、采样电阻R1的电阻值和电阻R2的电阻值,获取储能单元205两端的电压U C1,具体参见下式:
U C1=U R1×(1+R2/R1)     (1)
然后控制器控制第一开关单元201断开预设时间段τ,此时放电单元203为储能单元205进行放电,储能单元205在预设时间段τ出现电压跌落,预设时间段τ之后控制器获取的采样电阻R1两端的电压U’ R1,预设时间段τ之后的储能单元205的两端电压为U’ C1,则可以通过下式确定跌落电压值为△U:
U’ C1=U’ R1×(1+R2/R1)    (2)
△U=U C1-U’ C1    (3)
△U为电池正常连接时的跌落电压值,该跌落电压值可以用于作为判断电池连接状态的标准。
当电池处于在位状态时(接入系统)时,第一开关单元201断开预设时间段τ内,储能电容C1连接放电单元以及外部供电单元,因此电压下降慢,即△U较小。
当电池不在位时,储能电容C1通过放电单元203进行放电,储能电容C1未与外部供电单元并联,储能电容C1两端的电压仅由电芯包维持,因此当第一开关单元断开后,储能电容C1仅通过放电单元进行放电,相同的预设时间段τ之后的储能单元205的电压跌落大于或等于理论的跌落电压值△U,即可确定当前电池处于断开状态。
考虑到实际应用中,存在测量误差等因素的影响,在一些实施例中,可以预先通过测试实验标定出跌落电压值△U以及允许的误差范围。当控制器确定当前的电压跌落值大于或等于△U且偏差已经超过允许的误差范围时,则确定电池处于断开状态。
下面说明控制器根据由采样信号获取的储能单元的电参数确定电池连接状态的原理。
控制器用于根据在预设时间段前后获取的采样信号,确定储能单元205的电参数的检测值,并将检测值与预设电参数值进行比较以确定电池的连接状态。
继续以采样信号为电压信号为例进行说明,储能单元205的储能电容的电容值为C1,即此时的电参数为电容值,电容值C1即为预设电参数值,预先确定并保存在存储器中,待 使用时进行调用。
控制器对于第一开关单元201和第二开关单元202的控制过程同上,本申请实施例在此不再赘述。为了方便说明,下面以R h表征放电单元203的电阻,当放电单元为电阻时,R h为电阻的阻值,当放电单元为加热膜电路时,R h为加热膜电路的等效电阻。
当电池30在位时,储能单元205的两端电压在放电前后分别为U C1和U’ C1,则根据RC电路的放电原理,满足下式:
Figure PCTCN2020113922-appb-000001
τ RC=R h×C 0      (5)
其中,τ RC为端口RC放电时间常数,C 0为电参数的检测值。
对于控制器,U C1、U’ C1、R h和τ均为已知常数,因此有上式可得:
Figure PCTCN2020113922-appb-000002
C 0=-τ/[R hln(1-U’ C1/U C1)]  (7)
电池30在位时,储能电容与其他供电单元的母线电容并联,因此电参数的检测值C 0为所有的并联的电容的等效值。
当电池30不在位时,储能电容未与其他供电单元的母线电容并联,因此电参数的检测值C 0对应储能电容C1的电容值。
储能单元205的储能电容的电容值为C 1已知,当C 0满足C 1-δ≤C 0≤C 1+δ时,表征此时电池30未连接,获取的电参数的检测值C 0对应储能电容C1的电容值。其中,δ为预设的误差值。否则,表征此时电池30连接正常。
综上所述,本申请实施例提供的检测电路的控制器可以根据在预设时间段前后获取的采样信号获取储能单元在所述预设时间段前后的电压差,当电压差大于或等于预设电压差时,确定电池未接入;或者可以根据在预设时间段前后获取的采样信号,确定储能单元的电参数的检测值,并将检测值与预设电参数值进行比较以确定电池的连接状态。该检测电路可以由控制器控制主动进行检测,能够实现随开随停,因此不会带来额外的损耗。此外,该预设时间段可以根据实际需要进行调整,例如可以设置为微秒级的时间长度以实现快速的电池在位检测。而当该装置的放电单元为加热膜电路时,由于加热膜电路的电阻小功率大,因此耗电快,导致储能单元的电压跌落速度快,因此还能提升检测的灵敏度。
装置实施例三:
下面结合具体的应用场景继续说明该检测电路的检测原理,本申请实施例以该检测电路应用于站点设备的能源系统为例进行说明。其中,站点设备可以为室内通信站点设备、室外通信站点设备、机房通信站点设备或混合供电通信站点设备等。
参见图4,该图为本申请实施例提供的又一种电池的在位检测电路的示意图。
电池30与至少一个PSU模块40并联后接入站点设备的直流母线。
电池30包括电芯包10以及电池的在位检测电路20。
PSU模块40包括并联连接的PSU401和储能单元C PSU并联。PSU模块40的储能单元C PSU可以采用与检测电路的储能单元205相同的实现方式,本申请实施例以C PSU为储能电容为例进行说明。
该站点设备的PSU模块40可以将交流电转换为直流电后传输给直流母线。PSU模块40不工作时,可以由电池30向直流母线供电。
下面说明利用该检测电路对接入直流母线的模块数量进行检测的方法。
控制器可以根据预设时间段前后储能单元两端的电压差确定接入直流母线的模块的数量。
可以继续参见以上的式(3),不同接入模块数目下对应的△U可以预先通过测试实验标定,例如当接入直流母线的模块数量为2时(电池以及一个PSU模块接入直流母线),对应的跌落电压值为△U 1;当接入直流母线的模块数量为3时(电池以及两个PSU模块接入直流母线),对应的跌落电压值为△U 2…等等。然后分别确定允许的误差范围,即可以预先得到电压跌落值的多个区间,将得到的多个区间保存在存储器中,待控制器使用时调用。
然后控制器进行检测以获取预设时间段τ前后的电压跌落值的检测值,再确定该检测值所在的区间,进而确定对应的接入直流母线的模块的数量。
控制器可以根据采样信号确定各储能单元并联后的等效电容,进而确定接入直流母线的模块的数量。
不同接入模块数目下对应的并联的储能电容的数量不同,因此对应的储能电容的等效电容值不同。可以预先通过测试实验标定,例如当接入直流母线的模块数量为2时(电池以及一个PSU模块接入直流母线),对应的储能电容的等效电容值为C 11;当接入直流母线的模块数量为3时(电池以及两个PSU模块接入直流母线),对应的储能电容的等效电容值为C 12,…等等。然后分别确定允许的误差范围,即可以预先得到等效电容值的多个区间,将得到的多个区间保存在存储器中,待控制器使用时调用。
继续参见以上的式(7),确定等效电容值的检测值C 0所处的等效电容值的区间,进而确定对应的接入直流母线的模块的数量。
参见图5,该图为本申请实施例提供的再一种电池的在位检测电路的示意图。
图5与图4的区别在于,多个电池30与至少一个所述PSU并联接入直流母线。此时控制器可以根据电压差确定并联接入的电池与PSU的数量之和;或者根据所述采样单元在所述预设时间段前后获取的采样信号确定各储能单元并联后的等效电容值,并根据所述等效电容确定并联接入的电池与PSU的数量之和。具体实现方式与以上的说明类似,本申请实施例在此不再赘述。
综上所述,当电池与至少一个供电单元并联接入直流母线,或者多个电池与至少一个供电单元并联接入直流母线时,该检测电路的控制器可以根据预设时间段前后储能单元两端的电压差确定接入直流母线的模块的数量,或根据采样信号确定各储能单元并联后的等效电容,进而确定接入直流母线的模块的数量,实现了功能上的复用。
方法实施例:
基于以上实施例提供的电池的在位检测电路,本申请实施例还提供了一种电池的在位检测方法,可以应用于以上实施例提供的检测电路,关于检测电路的说明可以参见以上实施例,本申请实施例在此不再赘述。
本申请实施例提供的方法包括:控制第一开关单元和第二开关单元,并根据从采样单 元获取的采样信号确定所述电池是否在位。下面结合附图具体说明。
参见图6,该图为本申请实施例提供的一种电池的在位检测方法的流程图。
本申请实施例提供的方法包括以下步骤:
S501:控制第一开关单元和第二开关单元均闭合。
S502:控制第一开关单元断开预设时间段,并利用在预设时间段前后获取的采样信号确定电池是否在位。
当电池在位时,储能单元正常储能后通过放电单元进行放电,储能单元两端的电压还可以由外部供电单元维持,因此电压下降较慢,采样单元与储能单元并联,可以利用采样单元采集的电压信号的变化表征储能单元的电压的变化。
而当电池不在位时,由于储能单元未连接外部供电单元,仅通过放电单元放电,因此在经过预设时间段的放电后,储能单元两端电压下降较快,即储能单元两端的电压在预设时间段前后的下降量较大。因此可以根据采样单元在预设时间段前后的采样结果确定电池的连接状态。
具体的,S502可以有以下的两种实现方式:
在一种可能的实现方式中,S502具体包括以下步骤:
根据在预设时间段前后获取的采样信号获取储能单元在预设时间段前后的电压差;
当电压差大于或等于预设电压差时,确定电池未接入。
当电池不在位时,预设时间段之后的储能单元的电压跌落大于或者等于理论的跌落电压值。考虑到实际应用中,存在测量误差等因素的影响,在一些实施例中,可以预先通过测试实验标定出跌落电压值以及允许的误差范围。当控制器确定当前的电压跌落值大于或者等于标定的跌落电压值且偏差已经超过允许的误差范围时,则确定电池处于断开状态。
进一步的,当电池与至少一个供电单元并联接入直流母线,或者多个电池与至少一个供电单元并联接入直流母线时(每个供电单元还与一个储能单元并联),还可以根据预设时间段前后储能单元两端的电压差确定接入直流母线的模块的数量,具体说明可以参见以上的装置实施例三,本申请实施例在此不再赘述。
在另一种可能的实现方式中,S502具体包括以下步骤:
根据在预设时间段前后获取的采样信号,确定储能单元的电参数的检测值;
将检测值与预设电参数值进行比较以确定电池是否在位。
以采样信号为电压信号、储能单元包括储能电容,即电参数为电容值为例,储能单元的储能电容的电容值为已知参数,即预设电参数值,通过以上的式(7)确定出当前的电参数的检测值,当电参数的检测值与预设电参数值的误差在允许的范围内时,表征此时电池处于孤岛状态,否则表征此时电池连接正常。
进一步的,当电池与多个供电单元并联接入直流母线,或者多个电池与至少一个供电单元并联接入直流母线时,每个供电单元还与一个储能单元并联,还可以利用采样单元在预设时间段前后获取的采样信号确定各储能单元并联后的等效电容值。并利用等效电容确定并联接入的供电单元的数量。具体说明可以参见以上的装置实施例三,本申请实施例在此不再赘述。
综上所述,本申请实施例提供的电池的在位检测方法,先控制第一开关单元和第二开关单元均闭合,然后控制第一开关单元断开预设时间段,以使放电单元对储能单元进行放电。当电池处于在位状态时(接入系统),储能单元连接放电单元以及外部供电单元,因此电压下降慢,当电池处于孤岛状态时,储能单元仅通过放电单元放电,储能单元的电压下降较快。因此不同连接状态下在预设时间段前后储能单元的两端电压变化不同,而采样单元和储能单元并联,采样单元获取的电压信号的变化可以表征储能单元的电压的变化,因此控制器可以根据采样结果确定当前电池的在位状态。该检测方法可以由主动进行检测,在不需检测时断开第一开关单元和第二开关单元即可,因此不会带来额外的损耗。此外,该预设时间段可以根据实际需要进行调整,例如可以设置为微秒级的时间长度以实现快速的电池在位检测。
电池实施例:
基于以上实施例提供的检测电路,本申请实施例还提供了一种电池,下面结合附图具体说明。
参见图7,该图为本申请实施例提供的一种电池的示意图。
该电池30包括电芯包10、电池的在位检测电路20以及BMS30。
其中,电芯包10的第一端连接第一开关单元的第一端,电芯包10的第二端通过储能单元连接第一开关单元的第二端。
电芯包10用于提供电能,电能用于为电池30的负载电路供电,该负载可以为后级电路、用电器件或电子设备等,本申请实施例不做具体限定。
关于电池的在位检测电路20的具体实现方式以及工作原理可以参见以上实施例中的相关说明,本申请实施例在此不再赘述。
BMS30用于当检测电路20确定电池不在位时,及时控制锂电池接入休眠状态。
检测电路的控制器与BMS的控制器可以集成在一起,或者分别独立设置。
本申请实施例的电池30可以用于室内通信电源、室外通信电源、机房通信电源、混合供电通信电源等,并且适用于视频监控、传输站点等小功率站点。
综上所述,本申请实施例提供的供电设备包括了电池的在位检测电路,在进行检测时,该检测电路的控制器先控制第一开关单元和第二开关单元均闭合,然后控制器再控制第一开关单元断开预设时间段,以使放电单元对储能单元进行放电。当电池处于在位状态时(接入系统),储能单元连接放电单元以及外部供电单元,因此电压下降慢,当电池不在位时,储能单元通过放电单元放电,储能单元的电压下降较快。因此不同连接状态下在预设时间段前后储能单元的两端电压变化不同,而采样单元和储能单元并联,采样单元获取的电压信号的变化可以表征储能单元的电压的变化,控制器可以根据采样单元在预设时间段前后的采样信号确定当前电池是否在位。该检测电路可以由控制器控制主动进行检测,在不需检测时断开第一开关单元和第二开关单元即可,因此不会额外损耗电池的电量。此外,该预设时间段可以根据实际需要进行调整,例如可以设置为微秒级的时间长度以实现快速的电池在位检测。
能源系统实施例:
基于以上实施例提供的电池,本申请实施例还提供了一种能源系统,该能源系统包括以上实施例提供的电池,下面结合附图具体说明。
参见图8,该图为本申请实施例提供的一种能源系统的示意图。
本申请实施例提供的能源系统70包括:电池30以及至少一个PSU401。
其中,电池30包括电芯包10以及电池的在位检测电路20。
电芯包10用于向站点设备提供电能。
电池30与PSU401并联接入站点设备的直流母线,每个供电单元还与一个储能单元(图中未示出)并联。
PSU401用于将外部电源提供的交流电转换为直流电后提供给站点设备。
该电池的在位检测电路20用于对电池的在位状态进行检测,还能够确定并联接入直流母线的PSU的数量,关于电池的在位检测电路20的具体实现方式以及工作原理可以参见以上实施例中的说明,本申请实施例在此不再赘述。
在一些实施例中,电池30为锂电池,当控制器确定锂电池未接入时,电池的BMS可以进一步控制锂电池接入休眠状态以避免自耗电的损失。在另一些实施例中,电池30还可以为其它类型的电池,例如铅酸电池等。
进一步的,还可以参见图9所示的另一种能源系统,与图8所示的能源系统的区别在于,包括多个电池并联接入直流母线。
在一些实施例中,控制器还用于根据在预设时间段前后获取的储能单元两端的电压的差值,确定并联接入所述直流母线的电池和PSU的数量之和。
在另一些实施例中,控制器还用于根据在预设时间段前后获取的采样信号,确定所有储能单元并联后的电参数的等效值,并根据等效值确定并联接入所述直流母线的电池和PSU的数量之和。
本申请实施例对并联接入直流母线的电池以及PSU的数量不做具体限定。
综上所述,本申请实施例提供的能源系统包括了电池的在位检测电路,该检测电路的控制器先控制第一开关单元和第二开关单元均闭合;再控制第一开关单元断开预设时间段,以使放电单元对储能单元进行放电。当电池处于在位状态时(接入系统),储能单元连接放电单元以及外部供电单元,因此电压下降慢,当电池不在位时,储能单元仅通过放电单元放电,储能单元的电压下降较快。控制器可以根据采样单元在预设时间段前后的采样结果确定出当前电池是否在位。该检测电路可以由控制器控制主动进行检测,在不需检测时断开第一开关单元和第二开关单元即可,因此不会额外损耗电池的电量。此外,该预设时间段可以根据实际需要进行调整,例如可以设置为微秒级的时间长度以实现快速的电池在位检测。
电子设备实施例:
基于以上实施例提供的检测电路,本申请实施例还提供了一种电子设备,该电子设备包括以上实施例提供的检测电路,下面结合附图具体说明。
参见图10,该图为本申请实施例提供的一种电子设备的示意图。
本申请实施例提供的电子设备80包括:电池30和负载电路801。
电池30包括电芯包10和电池的在位检测电路20。
其中,电芯包10用于向负载电路801提供电能。
在一些实施例中,电子设备还包括至少一个PSU。电池30与PSU并联接入电子设备的直流母线,每个PSU还与一个储能单元并联。
PSU用于将外部电源提供的交流电转换为直流电后提供给负载电路801。
该电池的在位检测电路20用于对电池的在位状态进行检测,还能够确定并联接入直流母线的PSU的数量,关于电池的在位检测电路20的具体实现方式以及工作原理可以参见以上实施例中的说明,本申请实施例在此不再赘述。
本申请实施例不具体限定电子设备的类型,电子设备可以为手机、笔记本电脑、可穿戴电子设备(例如智能手表)、平板电脑、增强现实设备以及虚拟现实设备等。
以电子设备为笔记本电脑为例进行说明,笔记本电脑未连接外部电源时,PSU不工作,笔记本电脑通过电池供电。当笔记本电脑连接外部电源时,即连接市电时,PSU可以将市电转换为直流电提供给笔记本电脑,该在位检测电路20能够检测电池是否正常连接。
综上所述,本申请实施例提供的电子设备包括了电池的在位检测电路,该检测电路的控制器先控制第一开关单元和第二开关单元均闭合;再控制第一开关单元断开预设时间段,以使放电单元对储能单元进行放电。当电池处于在位状态时(接入系统),储能单元连接放电单元以及外部供电单元,因此电压下降慢,当电池不在位时,储能单元仅通过放电单元放电,储能单元的电压下降较快。控制器可以根据采样单元在预设时间段前后的采样结果确定出当前电池的在位状态。该检测电路可以由控制器控制主动进行检测,在不需检测时断开第一开关单元和第二开关单元即可,因此不会额外损耗电池的电量。此外,该预设时间段可以根据实际需要进行调整,例如可以设置为微秒级的时间长度以实现快速的电池在位检测。
本申请以上实施例中的存储器可以为单独设置的存储器,也可以为控制器内部集成的存储器,本申请实施例对此不做具体限定。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (19)

  1. 一种电池在位检测电路,其设置于电池内,所述电池包括电芯包,其特征在于,所述电池在位检测电路包括:第一开关单元、第二开关单元、放电单元、采样单元、储能单元和控制器;其中,
    所述第一开关单元的第一端连接所述电芯包的第一端,所述第一开关单元的第二端与所述储能单元串联后连接所述电芯包的第二端;
    所述第二开关单元与所述放电单元先串联后再与所述储能单元并联;
    所述放电单元用于为所述储能单元进行放电;
    所述采样单元与所述储能单元并联,所述采样单元用于将采样信号发送至所述控制器;
    所述控制器,用于控制所述第一开关单元和第二开关单元,并根据获取的所述采样信号确定所述电池是否在位。
  2. 根据权利要求1所述的检测电路,其特征在于,所述控制器通过首先控制所述第一开关单元和所述第二开关单元均闭合,然后控制所述第一开关单元断开预设时间段,并根据在所述预设时间段前后获取的采样信号,确定所述电池是否在位。
  3. 根据权利要求2所述的检测电路,其特征在于,所述采样信号为所述储能单元两端的电压,所述控制器根据所述预设时间段前后获取的所述电压的差值,确定所述电池是否在位。
  4. 根据权利要求2所述的检测电路,其特征在于,所述控制器利用在所述预设时间段前后获取的采样信号,确定所述储能单元的电参数的检测值,并将所述检测值与预设电参数值进行比较,以确定所述电池是否在位。
  5. 根据权利要求4所述的检测电路,其特征在于,所述储能单元包括储能电容,所述电参数为电容值。
  6. 根据权利要求1-5中任意一项所述的检测电路,其特征在于,所述放电单元包括加热膜电路,所述加热膜电路用于为所述电池加热。
  7. 根据权利要求1-5中任意一项所述的检测电路,其特征在于,所述放电单元包括电阻。
  8. 根据权利要求1-7中任意一项所述的检测电路,其特征在于,所述第一开关单元包括并联连接的开关管和继电器。
  9. 根据权利要求1-8中任意一项所述的检测电路,其特征在于,所述采样单元包括采样电阻,所述采样信号为所述采样电阻两端的电压,或流过所述采样电阻的电流。
  10. 一种电池在位检测方法,其特征在于,应用于权利要求1所述的电池在位检测电路,所述方法包括:
    控制所述第一开关单元和第二开关单元,并根据从所述采样单元获取的采样信号确定所述电池是否在位。
  11. 根据权利要求10所述的检测方法,其特征在于,所述控制所述第一开关单元和第二开关单元,并根据从所述采样单元获取的采样信号确定所述电池是否在位,具体包括:
    首先控制所述第一开关单元和所述第二开关单元均闭合,然后控制所述第一开关单元 断开预设时间段,并根据在所述预设时间段前后从所述采样单元获取的采样信号,确定所述电池是否在位。
  12. 根据权利要求11所述的检测方法,其特征在于,所述采样信号为所述储能单元两端的电压,所述并根据在所述预设时间段前后从所述采样单元获取的采样信号,确定所述电池是否在位,具体包括:
    根据所述预设时间段前后获取的所述电压的差值,确定所述电池是否在位。
  13. 根据权利要求11所述的检测方法,其特征在于,所述并根据在所述预设时间段前后从所述采样单元获取的采样信号,确定所述电池是否在位,具体包括:
    利用在所述预设时间段前后获取的所述采样信号,确定所述储能单元的电参数的检测值;
    将所述检测值与预设电参数值进行比较,以确定所述电池是否在位。
  14. 根据权利要求13所述的检测方法,其特征在于,所述电参数为电容值。
  15. 一种电池,其特征在于,包括电芯包,以及如权利要求1-9中任意一项所述的电池在位检测电路;
    所述电芯包的第一端连接所述第一开关单元的第一端,所述电芯包的第二端通过所述储能单元连接所述第一开关单元的第二端;
    所述电芯包用于提供电能。
  16. 一种电子设备,其特征在于,包括至少一个权利要求15所述的电池,还包括负载电路;
    所述电池用于向所述负载电路提供电能。
  17. 一种能源系统,其特征在于,包括直流母线、至少一个权利要求15所述的电池和至少一个供电单元PSU;
    至少一个所述电池与至少一个所述PSU并联接入所述能源系统的直流母线,每个所述供电单元还与一个所述储能单元并联;
    所述供电单元用于将外部电源提供的交流电转换为直流电后传输至所述直流母线。
  18. 根据权利要求17所述的能源系统,其特征在于,所述控制器还用于根据在预设时间段前后获取的所述储能单元两端的电压的差值,确定并联接入所述直流母线的电池和PSU的数量之和。
  19. 根据权利要求17所述的能源系统,其特征在于,所述控制器还用于根据在预设时间段前后获取的采样信号,确定所有所述储能单元并联后的电参数的等效值,并根据所述等效值确定并联接入所述直流母线的电池和PSU的数量之和。
PCT/CN2020/113922 2020-09-08 2020-09-08 一种电池在位检测电路、方法、电池、设备及系统 WO2022051885A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080028818.8A CN114467240A (zh) 2020-09-08 2020-09-08 一种电池在位检测电路、方法、电池、设备及系统
EP20952674.8A EP4207535A4 (en) 2020-09-08 2020-09-08 CIRCUIT FOR DETECTING THE POSITION OF A BATTERY AND METHOD, BATTERY, APPARATUS AND SYSTEM
PCT/CN2020/113922 WO2022051885A1 (zh) 2020-09-08 2020-09-08 一种电池在位检测电路、方法、电池、设备及系统
US18/180,649 US20230223767A1 (en) 2020-09-08 2023-03-08 Battery connection status detection circuit and method, battery, device, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113922 WO2022051885A1 (zh) 2020-09-08 2020-09-08 一种电池在位检测电路、方法、电池、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/180,649 Continuation US20230223767A1 (en) 2020-09-08 2023-03-08 Battery connection status detection circuit and method, battery, device, and system

Publications (1)

Publication Number Publication Date
WO2022051885A1 true WO2022051885A1 (zh) 2022-03-17

Family

ID=80630180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113922 WO2022051885A1 (zh) 2020-09-08 2020-09-08 一种电池在位检测电路、方法、电池、设备及系统

Country Status (4)

Country Link
US (1) US20230223767A1 (zh)
EP (1) EP4207535A4 (zh)
CN (1) CN114467240A (zh)
WO (1) WO2022051885A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043841A1 (en) * 2011-08-17 2013-02-21 Pei-Lun Wei Circuit and method of measuring voltage of the battery
CN103545882A (zh) * 2013-10-11 2014-01-29 华为技术有限公司 电池在位检测方法、装置及充电系统
CN105699904A (zh) * 2016-01-19 2016-06-22 北京华大信安科技有限公司 一种电池电压的检测电路及电压检测方法
CN207339307U (zh) * 2017-06-23 2018-05-08 宝沃汽车(中国)有限公司 用于电动车辆静态检测的设备
CN109490789A (zh) * 2018-12-21 2019-03-19 歌尔科技有限公司 电池在位检测电路、方法及智能穿戴设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577144A (en) * 1984-10-11 1986-03-18 General Electric Company Battery charging system including means for distinguishing between rechargeable and non-rechargeable batteries
US7701177B2 (en) * 2006-12-21 2010-04-20 O2Micro International Limited Battery pre-charging circuit comprising normal voltage and low voltage pre-charging circuits
JP6390682B2 (ja) * 2016-09-21 2018-09-19 トヨタ自動車株式会社 充電システム
CN109510278A (zh) * 2018-12-17 2019-03-22 深圳市富海微电子科技有限公司 一种移动电源的充放电控制方法
CN110504503B (zh) * 2019-08-30 2022-05-27 苏州妙益科技股份有限公司 一种汽车用启动电池控制系统及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130043841A1 (en) * 2011-08-17 2013-02-21 Pei-Lun Wei Circuit and method of measuring voltage of the battery
CN103545882A (zh) * 2013-10-11 2014-01-29 华为技术有限公司 电池在位检测方法、装置及充电系统
CN105699904A (zh) * 2016-01-19 2016-06-22 北京华大信安科技有限公司 一种电池电压的检测电路及电压检测方法
CN207339307U (zh) * 2017-06-23 2018-05-08 宝沃汽车(中国)有限公司 用于电动车辆静态检测的设备
CN109490789A (zh) * 2018-12-21 2019-03-19 歌尔科技有限公司 电池在位检测电路、方法及智能穿戴设备

Also Published As

Publication number Publication date
US20230223767A1 (en) 2023-07-13
EP4207535A4 (en) 2023-10-25
EP4207535A1 (en) 2023-07-05
CN114467240A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
EP3561940B1 (en) Master battery management unit and battery pack including same
WO2020244588A1 (zh) 电池管理系统、电池管理方法、电源模块及无人机
US8330421B2 (en) Battery pack manager
TWI399905B (zh) 電池管理系統及於電池管理系統中致能通信之方法
EP2204874B1 (en) Vertical bus circuits
JP5618393B2 (ja) 蓄電システム及び二次電池制御方法
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
JP2001309568A (ja) 充電システム、充電制御装置、充電制御方法及びコンピュータ
CN104659866A (zh) 充电电池温度检测方法、电源管理装置及电子系统
WO2019109951A1 (zh) 便携式电能系统及电池包剩余电量测量方法
CN113253134A (zh) 便携式电能系统及其测量方法
CN104054232A (zh) 用于控制蓄电池组的电力存储系统、方法以及蓄电池组
US9281698B2 (en) Battery pack
US20220376316A1 (en) Electric quantity measuring apparatus, method, and electronic device
JP2022519073A (ja) バッテリー管理システム、バッテリー管理方法、バッテリーパック及び電気車両
US9455580B2 (en) Battery management system and method
US20220314832A1 (en) Battery control system, battery pack, electric vehicle, and id setting method for the battery control system
TW201308823A (zh) 電池電源管理系統與方法
JP7214002B2 (ja) バッテリー診断装置、バッテリー診断方法及びエネルギー貯蔵システム
KR20220001364A (ko) 배터리 관리 장치, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
WO2022051885A1 (zh) 一种电池在位检测电路、方法、电池、设备及系统
KR20220015790A (ko) 배터리 관리 장치, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법
KR20210050991A (ko) 온도 측정 장치 및 이를 포함하는 배터리 장치
US20130234652A1 (en) Charging a battery based on stored battery characteristics
KR20220101322A (ko) 배터리 제어 장치, 배터리 시스템, 전원 공급 시스템 및 배터리 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020952674

Country of ref document: EP

Effective date: 20230327

NENP Non-entry into the national phase

Ref country code: DE