WO2022050508A1 - Method for constructing snow-melting pavement for roads by using planar heating composite sheet - Google Patents

Method for constructing snow-melting pavement for roads by using planar heating composite sheet Download PDF

Info

Publication number
WO2022050508A1
WO2022050508A1 PCT/KR2020/017725 KR2020017725W WO2022050508A1 WO 2022050508 A1 WO2022050508 A1 WO 2022050508A1 KR 2020017725 W KR2020017725 W KR 2020017725W WO 2022050508 A1 WO2022050508 A1 WO 2022050508A1
Authority
WO
WIPO (PCT)
Prior art keywords
planar heating
composite sheet
heating composite
sheet
road
Prior art date
Application number
PCT/KR2020/017725
Other languages
French (fr)
Korean (ko)
Inventor
옥창권
Original Assignee
(주)이노로드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이노로드 filed Critical (주)이노로드
Publication of WO2022050508A1 publication Critical patent/WO2022050508A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/24Methods or arrangements for preventing slipperiness or protecting against influences of the weather
    • E01C11/26Permanently installed heating or blowing devices ; Mounting thereof
    • E01C11/265Embedded electrical heating elements ; Mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • C08L1/286Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/52Apparatus for laying individual preformed surfacing elements, e.g. kerbstones
    • E01C19/522Apparatus for laying the elements by rolling or unfolding, e.g. for temporary pavings
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/12Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/35Toppings or surface dressings; Methods of mixing, impregnating, or spreading them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing

Definitions

  • the present invention relates to a snow melting pavement construction method for a road using a planar heating composite sheet, and more particularly, faster construction through a construction method in which a composite sheet in which a planar heating sheet and an insulating sheet are bonded is unwound from a roll and installed on the road. It relates to a snow-melting pavement construction method for roads using a planar heating composite sheet that makes this possible.
  • Calcium chloride spraying which is a snow removal agent using a snow removal vehicle, is widely used as the easiest means to prevent this, but it is pointed out as a serious problem by environmental groups and road officials due to corrosion damage to road facilities and various negative effects on the environment. am.
  • a heating medium in the form of a heating network in which a heating cable is arranged in a zigzag form on a mesh-shaped metal frame is buried in the surface of the road to melt the road using the heat emitted from the heating cable.
  • the reason for the above problem is that the general thickness of the asphalt concrete pavement layer of the road is 20-40 cm, but since the heating cable is buried 5-10 cm from the surface of the asphalt concrete pavement layer, the heat generated from the heating cable is greater than the upper part of the lower part because they are trying to move to
  • the heating network as above has a problem in that the maintenance cost due to frequent re-construction increases as the heating cable is damaged by the asphalt concrete or equipment load applied during construction and the wheel load applied after construction and loses its function.
  • a groove 200 having a predetermined depth and length is formed from the surface of the road, and an insulating material 300 for preventing heat loss to the bottom inside the groove 200,
  • a linear heating method in which the heat conductive layer 700 is formed by filling a heat conductive resin solution on the accommodating member 400 is mainly used.
  • the operation of forming a plurality of grooves 200 having a predetermined depth and length on the road, the operation of removing dust inside the groove 200, and the installation of the insulating material 300 in the groove 200 Operation, installation of the accommodating member 400 on the upper portion of the insulating material 300 , the operation of installing the heating cable 500 in the interior of the accommodating member 400 , and a fixing member for fixing the upper portion of the accommodating member 400 .
  • the installation work is cumbersome as well as the installation work because a number of tasks including the operation of installing the 600 and the operation of filling the thermal conductive resin solution for forming the thermal conductive layer 700 on the upper portion of the receiving member 400 must be performed There is a problem in that it takes a lot of time to work.
  • the heat dissipated from the heating cable 500 through the thermally conductive accommodating member 40 and the thermally conductive layer 70 is installed to prevent heat loss underground by installing the insulating material 300 on the bottom surface of the groove 200 .
  • the heat emitted from the heating cable 500 is lost downward through both sides of the accommodating member 400 and the heat conductive layer 700 in the process of being transferred to the road surface, so that the heat transfer efficiency There is a very low problem with this.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to manufacture a planar heating composite sheet of a structure that is not damaged by asphalt concrete or equipment load applied during construction, and install a sheet wound on a roll
  • An object of the present invention is to provide a snow melting pavement construction method for a road using a surface heating composite sheet that enables faster construction through the construction method of laying on the surface.
  • a planar heating composite sheet preparation step to prepare a composite sheet and a planar heating composite sheet winding step of winding the prepared planar heating composite sheet to an installation equipment and a planar heating composite sheet wound on the installation equipment Laying the planar heating composite sheet on the installation surface
  • a snow melting pavement construction method of a road using a planar heating composite sheet comprising the step of installing a heating composite sheet and an asphalt concrete repaving step of repaving asphalt on the upper part of the flat heating composite sheet.
  • planar heating composite sheet is applied along the width direction of the base sheet to the base sheet of a synthetic resin material having a certain width and length and the upper surface of the base sheet, and different polarities are spaced apart along the longitudinal direction of the base sheet
  • Planar heating comprising a conductive paste that is applied as a whole between a plurality of electrodes arranged alternately and the plurality of electrodes among the upper surfaces of the base sheet and generates heat by electrical resistance and an insulating sheet made of a synthetic resin material attached to the top of the conductive paste It is characterized in that it comprises a layer, and a heat insulating layer comprising a protective sheet of synthetic resin material attached to the lower portion of the planar heating layer and the insulating sheet is impregnated with airgel in the nonwoven fabric of the synthetic resin material and the insulating sheet is attached to the lower portion of the planar heating layer.
  • the thickness of the heat insulating layer is characterized in that 1 ⁇ 5mm.
  • the conductive paste contains 20 to 40 parts by weight of an amorphous co-polyester resin, 2.5 to 7.5 parts by weight of carbon nanotubes, 2.5 to 7.5 parts by weight of carbon nanoplates, and the remaining amount is graphene (graphene). ), silver (Ag) powder, carbon dispersant and solvent.
  • the carbon dispersant is characterized in that at least two or more of carboxymethyl cellulose, polystyrene sulfonate, chondroitin sulfate, and hyaluronic acid are used in combination.
  • the planar heating layer is attached to the upper portion of the planar heating layer and the lower portion of the heat insulating layer, it characterized in that it further comprises a protective layer impregnated with asphalt and rubber in the synthetic resin material.
  • planar heating composite sheet installation step at least two planar heating composite sheets are installed to be spaced apart along the width direction of the road, and the electrodes of the same polarity of each adjacent planar heating composite sheet are directly connected with a conductive line. characterized.
  • the construction period is significantly shortened, and thus the construction cost can be greatly reduced.
  • Figure 8 is a view for explaining the installation step of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention.
  • 9a and 9b are views for explaining the connection structure between the electrodes of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention.
  • Figure 10 shows in detail the connection structure between the electrodes of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention.
  • FIG. 11 is a view for explaining the asphalt concrete repaving step of the snow melting pavement construction method according to an embodiment of the present invention.
  • FIG. 12 is a graph comparing the temperature increase rate of the conventional snowmelting pavement of the onboard heating method and the snowmelting pavement constructed by the snowmelting pavement construction method according to an embodiment of the present invention.
  • FIG. 2 shows the process sequence of the snow-melting pavement construction method of the road using the planar heating composite sheet according to an embodiment of the present invention
  • Figure 3 is the road pavement cutting of the snow-melting pavement construction method according to an embodiment of the present invention
  • 4 is a perspective view of a planar heating composite sheet used in a snowmelting pavement construction method according to an embodiment of the present invention
  • FIG. 5 is a snowmelting pavement construction method according to an embodiment of the present invention.
  • An exploded perspective view of the planar heating composite sheet used FIG. 6 is a cross-sectional view AA' of FIG. 3
  • FIG. 7 is a view for explaining the winding step of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention.
  • FIG. 1 shows the process sequence of the snow-melting pavement construction method of the road using the planar heating composite sheet according to an embodiment of the present invention
  • FIG. 5 is a snowmelting pavement construction method according to an embodiment of the present invention.
  • FIGS. 9a and 9b are plane views of a snow melting pavement construction method according to an embodiment of the present invention It is a view for explaining the connection structure between the electrodes of the heating composite sheet, and FIG. 10 shows in detail the connection structure between the electrodes of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention, FIG. It is a view for explaining the asphalt concrete repaving step of the snow melting pavement construction method according to an embodiment of the present invention.
  • the snow-melting pavement construction method of the road using the planar heating composite sheet is a road pavement cutting step (S1), a planar heating composite sheet preparation step (S2), winding a planar heating composite sheet It includes a step (S3), a planar heating composite sheet installation step (S4), an asphalt concrete repacking step (S5).
  • the road pavement cutting step as shown in FIG. 3 using a rod cutter, the road pavement is cut to a predetermined thickness d to form the installation surface (B) of the planar heating composite sheet.
  • the thickness d is 5 to 10 cm, more preferably about 7 to 8 cm.
  • planar heating composite sheet preparation step a planar heating composite sheet having a certain width and length is prepared.
  • the planar heating composite sheet used in the present invention is wound in the form of a roll and can be installed on the road surface while being unwound from the roll during construction. It is characterized by a structure.
  • the planar heating composite sheet 1 includes a planar heating layer 10 , a heat insulating layer 20 and a protective layer 30 .
  • the planar heating layer 10 generates heat by electrical resistance when power is supplied, and includes a base sheet 11 , an electrode 12 , a conductive paste 13 , and an insulating sheet 14 .
  • the base sheet 11 is a synthetic resin material that provides an area to which the electrode 12 and the conductive paste 13 are applied, and prevents the current applied to the electrode 12 or the conductive paste 13 from leaking downward. It performs an insulating function.
  • the electrodes 12 are provided along the width direction of the base sheet 11 and are alternately arranged with different polarities spaced apart from each other at regular intervals along the length direction of the base sheet 11 as providing an input/exit path of the supplied current. .
  • the electrode 12 is formed by applying and curing a paste containing silver (Ag) powder on the upper surface of the base sheet 11 .
  • the conductive paste 13 generates heat due to electrical resistance when a current is applied, and is entirely applied between the plurality of electrodes 12 among the upper surfaces of the base sheet 11 .
  • the conductive paste 13 includes 20-40 parts by weight of an amorphous co-polyester resin as a binder, 2.5-7.5 parts by weight of carbon nanotubes, 2.5-7.5 parts by weight of carbon nanoplates, and the remainder as graphene, silver (Ag) powder, carbon dispersant and solvent.
  • the amorphous co-polyester resin as a binder allows the conductive paste 13 to have uniform dispersibility and excellent applicability, and to maintain binding force to the base sheet 11 .
  • the amorphous co-polyester resin applies a tensile stress to the conductive paste 13, and if it is less than 20 parts by weight, sufficient tensile stress is not applied to the conductive paste 13, and exceeds 40 parts by weight. If the conductive paste 13 does not properly develop the conductive function, it is preferable to use between 20 and 40 parts by weight.
  • Carbon nanotubes and carbon nanoplates are conductive materials, and when less than 2.5 parts by weight, the conductive function is not properly expressed, and when it exceeds 7.5 parts by weight, conductive paste provided through an amorphous co-polyester resin (13) It is preferable to contain 2.5 to 7.5 parts by weight, respectively, since it may damage the tensile stress of the.
  • the solvent is to dissolve the amorphous co-polyester resin, alpha-terpineol, butyl cellosolve, ethyl cellosolve, ethyl carbitol, butyl carbitol, ethoxyethyl acetate, butyl acetate, propylene glycol monomethyl ether, r-gamma butyrolactone ( ⁇ -butyrolactone), methyl ethyl ketone (methyl ethyl ketone) or a combination thereof.
  • the conductive paste 13 of the present invention has the above composition ratio, tensile stress is applied to the conductive thin film formed by the conductive paste 13, so that the asphalt concrete or equipment load applied during the snow melting pavement construction of the road and the applied after construction Since it can resist the shear force generated by the wheel load, it is possible to minimize the damage of the conductive thin film by the shear force.
  • the insulating sheet 14 is made of a synthetic resin material and is attached to the upper portions of the electrode 12 and the conductive paste 13, and performs an insulating function to prevent current applied to the electrode or conductive paste from leaking upward.
  • the heat insulating layer 20 is to prevent the heat emitted from the planar heating layer 10 from being lost to the ground, and to the lower part of the heat insulating sheet 21 and the heat insulating sheet 21 attached to the lower part of the planar heating layer 10 and a protective sheet 22 to which it is attached.
  • planar heating composite sheet 1 of the present invention is constructed at a shallow depth of about 7 to 8 cm from the road surface, the material, structure and thickness of the heat insulating layer 20 are very important. That is, in the case of a generally used thick insulator, it can be easily damaged or damaged by asphalt concrete or equipment load during the construction process.
  • the insulation sheet 21 of the present invention for simultaneously satisfying the conditions of thickness and insulation efficiency is made of a structure in which airgel is impregnated in a nonwoven sheet made of a synthetic resin material, and the insulation layer 20 including the protective sheet 22 is 1 to It is made to have a thickness of between 5 mm.
  • the airgel is composed of a structure containing more than 90% of fine air inside and has excellent thermal insulation performance to block heat through convection, conduction, and radiation, so that the heat emitted from the planar heating layer 10 is lost to the ground. will definitely prevent it.
  • the nonwoven sheet made of synthetic resin serves as a frame that can distribute the airgel in the form of a sheet, and is manufactured to have a tensile stress of 2 to 20 MPa, so that asphalt concrete or equipment load applied during snow melting pavement construction of roads and applied after construction Since it can resist the shear stress generated by the wheel load, it is desirable to prevent the airgel from being damaged by the shear stress.
  • the thickness of the insulation layer 20 is less than 1mm, the insulation effect is insufficient, and if the thickness is 5mm or more, the risk of damage due to asphalt concrete or equipment load increases during construction.
  • the protective sheet 22 is a synthetic resin material and is attached to the lower portion of the heat insulating sheet 21, and serves to prevent the fine air contained in the airgel from being separated to the outside, and the asphalt is used for the insulation sheet 21 during construction. It plays a role in preventing penetration into the micropores of the airgel.
  • the protective layer 30 serves to prevent the planar heating layer 20 and the heat insulation layer 30 from being damaged by shear stress generated by asphalt concrete or equipment load applied during snowmelting pavement construction, and wheel load applied after construction. As to do, it is attached to the upper part of the planar heating layer 20 and the lower part of the heat insulating layer 30, respectively.
  • the protective layer 30 has a structure in which asphalt and rubber are impregnated in a nonwoven fabric made of synthetic resin.
  • the reason for using the nonwoven fabric made of synthetic resin is to resist shear stress generated by asphalt concrete or equipment load during construction and wheel load after construction through tensile stress, as described above.
  • planar heating composite sheet winding step the planar heating composite sheet (1) prepared as above is wound on the roll (R) of the installation equipment (A) as shown in FIG. 7 . (S3)
  • planar heating composite sheet installation step as shown in FIG. 8, while moving the installation equipment (A) along the installation surface (B), the planar heating composite sheet wound on the roll (R) of the installation equipment (A) (1) is installed on the installation surface (B).
  • planar heating composite sheet 1 can be disposed in the area corresponding to the wheel, at least two planar heating composite sheets 1 are spaced apart along the width direction of the road. placed in parallel
  • the electrodes 12 of different polarities disposed along the longitudinal direction of each of the planar heating composite sheet 1 are connected to the power supply means through the conductive wire.
  • the power supply structure of a general road snowmelting device connects each electrode 12 of each planar heating composite sheet 1 to a power supply means through a conductive wire 40, respectively.
  • each electrode 12 since each electrode 12 must be individually connected to the power supply means through the conductive wire 40, the installation work is cumbersome and the number of conductive wires 40 is large, so it takes a bit of time to align them. It takes
  • each conductive wire 40 is installed across the area where the planar heating composite sheet 1 is disposed, that is, the area in which the wheel is in contact, a problem in that the conductive wire 40 is disconnected by the wheel load may occur. there is.
  • the electrodes 12 of the same polarity of each adjacent planar heating composite sheet 1 are directly connected through a conductive line 40, and the same A method of connecting only one of the polarized electrodes to the power supply was adopted.
  • a through hole (h) penetrating the insulating sheet and the protective layer disposed on the edge of each electrode 12 of the adjacent planar heating composite sheet (1) between each electrode 12 of the adjacent planar heating composite sheet 1 by spot welding both ends of the strip-shaped conductive wire 40 to each electrode 12 exposed through the through hole h were interconnected.
  • the length of the conductive wire 40 is significantly reduced compared to the prior art, and the installation work is easy in a way that connects the adjacent electrodes 12, and the conductive wire 40 does not overlap each other. A separate sorting operation is not required.
  • asphalt concrete is laid to a certain thickness using a finisher on the upper portion of the planar heating composite sheet (1), and then the installed asphalt concrete is compacted using a compactor (C). Repave the asphalt concrete on top of the planar heating composite sheet (1). (S5)
  • FIG. 12 is a graph comparing the temperature increase rate of the conventional snow-melting pavement of the linear heating method and the snow-melting pavement constructed by the snow-melting pavement construction method according to an embodiment of the present invention.
  • the time it takes to reach the surface temperature from -5°C to 2°C is 358 minutes at 300W/m 2 of calorific value per unit area, and 125 minutes at 600W/m 2 , 82 minutes at 900 W/m 2 and 63 minutes at 1200 W/m 2 .
  • the time it takes to reach from -5°C to 2°C is 300W/m 2 of calorific value per unit area 141 minutes, 600W/m 2 at 67 minutes, 900W/m 2 at 48 minutes, and 1200W/m 2 at 39 minutes
  • the snowmelting efficiency of the snowmelting pavement constructed according to the snowmelting pavement construction method according to an embodiment of the present invention is It can be seen that not only is remarkably excellent, but also power consumption can be significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Road Paving Structures (AREA)

Abstract

The present invention relates to a method for constructing snow-melting pavement for roads by using a planar heating composite sheet, the method comprising: a road pavement cutting step of cutting the surface of road pavement to a certain thickness to form an installation surface; a planar heating composite sheet preparation step of preparing a planar heating composite sheet including a planar heating layer and a thermal insulation layer attached to the lower side of the planar heating layer; a planar heating composite sheet winding step of winding the prepared planar heating composite sheet on installation equipment; a planar heating composite sheet installation step of installing the planar heating composite sheet wound on the installation equipment, on the installation surface; and an asphalt concrete repaving step of repaving asphalt concrete on the upper side of the planar heating composite sheet. According to the present invention as described above, more rapid construction is enabled through a construction method in which a sheet wound on a roll is installed on an installation surface, and thus the construction period is remarkably shortened, and accordingly, construction costs can be greatly reduced. In addition, there is the effect of remarkably enhancing the snow-melting efficiency of snow-melting pavement by more reliably preventing downward heat loss.

Description

면상 발열 복합시트를 이용한 도로의 융설포장 시공방법Construction method of snow melting pavement of road using surface heating composite sheet
본 발명은 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법에 관한 것으로서, 보다 상세하게는 면상 발열시트와 단열시트가 접합된 복합시트를 롤에서 권출하여 도로에 포설하는 시공방식을 통해 보다 신속한 시공이 가능하도록 한 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법에 관한 것이다.The present invention relates to a snow melting pavement construction method for a road using a planar heating composite sheet, and more particularly, faster construction through a construction method in which a composite sheet in which a planar heating sheet and an insulating sheet are bonded is unwound from a roll and installed on the road. It relates to a snow-melting pavement construction method for roads using a planar heating composite sheet that makes this possible.
일반적으로 도로에서 발생하는 교통사고 중 겨울철 도로결빙에 의한 미끄러짐 사고비율이 높으며, 특히 상습 결빙지역인 급경사부, 고가도로, 터널 입출구부에서 사고 발생빈도가 높게 나타난다.In general, among traffic accidents occurring on roads, the ratio of slip accidents due to road icing in winter is high.
그러므로 겨울철 노면 결빙에 의한 크고 작은 교통사고로 인한 인명피해 및 막대한 재산피해 발생은 해마다 증가하고 있다.Therefore, the occurrence of human casualties and enormous property damage due to large and small traffic accidents caused by icing on the road surface in winter is increasing year by year.
또한, 강설로 인한 제설작업은 초기작업이 매우 중요하나, 이미 결빙으로 현장접근이 어렵게 되면 상대적으로 제설작업이 지연되어 극심한 교통정체 및 교통사고의 위험성을 대폭 증가시키고 있다.In addition, although the initial work is very important for snow removal due to snowfall, if it is already difficult to access the site due to freezing, the snow removal operation is relatively delayed, greatly increasing the risk of severe traffic congestion and traffic accidents.
한편, 약설에 대한 융설 효과는 시간이 지남으로서 해결되지만 강설에 따른 융설 과정의 과도기 및 심야 최저기온 급 강하시 도로 표면의 적설과 결빙에 대한 근본적인 대책은 대부분 수립되어 있지 않은 상태이다.On the other hand, although the effect of snowmelt on weak snow is resolved over time, fundamental measures for snow accumulation and icing on the road surface during the transitional period of the snowmelting process and a sharp drop in the minimum temperature at night have not been established in most cases.
이를 예방하기 위한 가장 손쉬운 수단으로 제설작업 차량을 이용한 제설제인 염화칼슘 살포가 많이 사용되고 있지만, 도로시설물의 부식피해 및 환경에 미치는 여러가지 부정적인 영향이 있어 환경단체 및 도로관계자에 의해 심각한 문제로 지적되고 있는 실정이다.Calcium chloride spraying, which is a snow removal agent using a snow removal vehicle, is widely used as the easiest means to prevent this, but it is pointed out as a serious problem by environmental groups and road officials due to corrosion damage to road facilities and various negative effects on the environment. am.
따라서 겨울철 적설과 결빙에 취약한 급경사부, 고가도로, 터널 입출구부 등의 초기적인 적설대응과 함께 보다 즉각적으로 효율적인 제설방법을 적용하여 겨울철 통행도로를 주행하는 운전자들의 혼란스런 교통재해로 인한 생명 위협과 해마다 증가하는 막대한 경제적 손실을 예방하기 위한 친환경적인 제설공법이 요구되고 있다.Therefore, by applying a more immediate and efficient snow removal method along with an initial response to snow accumulation on steep slopes, overpasses, and tunnel entrances and exits, which are vulnerable to snow and ice in winter, the dangers of life due to chaotic traffic accidents of drivers traveling in winter and yearly There is a demand for an eco-friendly snow removal method to prevent a huge economic loss.
위와 같은 요구에 따라 종래에는 메쉬 형태의 금속 프레임 상에 히팅 케이블을 지그재그로 배치한 발열망 형태의 발열매체를 도로의 표면에 매설하는 방식을 통해 히팅 케이블로부터 방출되는 열을 이용하여 도로를 융설하는 방법이 제안되었다.In accordance with the above requirements, conventionally, a heating medium in the form of a heating network in which a heating cable is arranged in a zigzag form on a mesh-shaped metal frame is buried in the surface of the road to melt the road using the heat emitted from the heating cable. A method has been proposed.
그러나 위와 같은 방법은 히팅 케이블로부터 방출되는 열의 대부분이 하부로 전달되어 지중으로 손실됨에 따라 도로의 표면으로의 열전달 시간이 다소 많이 소요될 뿐 아니라 전달되는 열의 양이 많지 않아 도로의 융설 작업이 제대로 이루어지지 않은 문제점이 있다.However, in the above method, most of the heat emitted from the heating cable is transferred to the lower part and lost to the ground, so the heat transfer time to the surface of the road is rather long, and the amount of heat transferred is not large, so the snow melting operation of the road is not performed properly. There is no problem.
상기와 같은 문제점이 발생되는 이유는 도로의 아스콘 포장층의 일반적인 두께가 20~40cm 인데 히팅케이블이 아스콘 포장층의 표면에서 5~10cm에 매설되므로 히팅케이블에서 발생된 열이 상부보다 열용량이 큰 하부로 이동하려 하기 때문이다.The reason for the above problem is that the general thickness of the asphalt concrete pavement layer of the road is 20-40 cm, but since the heating cable is buried 5-10 cm from the surface of the asphalt concrete pavement layer, the heat generated from the heating cable is greater than the upper part of the lower part because they are trying to move to
또한, 위와 같은 발열망은 시공 중 인가되는 아스콘 또는 장비 하중과 시공 후 인가되는 차륜 하중에 의해 히팅 케이블이 파손되어 그 기능을 상실함에 따라 잦은 재시공으로 인한 유지보수 비용이 증가하는 문제점이 있다.In addition, the heating network as above has a problem in that the maintenance cost due to frequent re-construction increases as the heating cable is damaged by the asphalt concrete or equipment load applied during construction and the wheel load applied after construction and loses its function.
이에 따라 최근에는 도 1에 도시된 바와 같이, 도로의 표면으로부터 소정 깊이 및 길이를 갖는 홈(200)을 형성하고, 홈(200) 내부에 하부로의 열손실을 방지하기 위한 단열재(300), 히팅 케이블(500)을 수용하기 위한 열전도성이 우수한 금속재질의 수용부재(400), 히팅케이블(500) 및 수용부재(400)의 상단을 고정하기 위한 고정부재(600)를 순차적으로 설치한 후, 수용부재(400) 상부에 열전도성 수지액을 충진하여 열전도층(700)을 형성한 선상 발열 방식이 주로 사용되고 있다.Accordingly, recently, as shown in FIG. 1, a groove 200 having a predetermined depth and length is formed from the surface of the road, and an insulating material 300 for preventing heat loss to the bottom inside the groove 200, After sequentially installing the accommodating member 400 of a metal material having excellent thermal conductivity for accommodating the heating cable 500, the heating cable 500 and the fixing member 600 for fixing the upper end of the accommodating member 400 , a linear heating method in which the heat conductive layer 700 is formed by filling a heat conductive resin solution on the accommodating member 400 is mainly used.
위와 같은 선상 발열 방식은 하부에 배치되는 단열재(300)를 통해 지중으로의 열손실이 방지되고, 열전도성의 수용부재(400) 및 열전도층(700)을 통해 히팅케이블(500)로부터 방출되는 열의 대부분이 도로 표면으로 빠르게 전달되므로 도로의 융설 효율이 크게 향상된다.In the above-mentioned linear heating method, heat loss to the ground is prevented through the insulating material 300 disposed below, and most of the heat emitted from the heating cable 500 through the thermally conductive accommodating member 400 and the heat conductive layer 700 As it is transferred to the road surface quickly, the snow melting efficiency of the road is greatly improved.
그러나, 상기한 방식은 도로에 소정 깊이 및 길이를 갖는 다수개의 홈(200)을 형성하는 작업, 홈(200) 내부에 분진을 제거하는 작업, 홈(200) 내부에 단열재(300)를 설치하는 작업, 단열재(300)의 상부에 수용부재(400)를 설치하는 작업, 수용부재(400)의 내부에 히팅케이블(500)을 설치하는 작업, 수용부재(400)의 상부를 고정하기 위한 고정부재(600)를 설치하는 작업, 수용부재(400)의 상부에 열전도층(700)을 형성하기 위한 열전도성 수지액을 충진하는 작업을 포함하는 다수의 작업을 수행해야 하므로 설치 작업이 번거로울 뿐 아니라 설치 작업에 상당히 많은 시간이 소요되는 문제점이 있다.However, in the above method, the operation of forming a plurality of grooves 200 having a predetermined depth and length on the road, the operation of removing dust inside the groove 200, and the installation of the insulating material 300 in the groove 200 Operation, installation of the accommodating member 400 on the upper portion of the insulating material 300 , the operation of installing the heating cable 500 in the interior of the accommodating member 400 , and a fixing member for fixing the upper portion of the accommodating member 400 . The installation work is cumbersome as well as the installation work because a number of tasks including the operation of installing the 600 and the operation of filling the thermal conductive resin solution for forming the thermal conductive layer 700 on the upper portion of the receiving member 400 must be performed There is a problem in that it takes a lot of time to work.
또한, 상기 방식은 홈(200) 바닥면에 단열재(300)를 설치하여 지중으로 열 손실을 방지하고 열전도성의 수용부재(40)와 열전도층(70)을 통해 히팅케이블(500)로부터 방출되는 열을 도로 표면으로 빠르게 전달시키고자 하였으나, 실제로는 히팅케이블(500)로부터 방출되는 열이 도로 표면으로 전달되는 과정에서 수용부재(400) 및 열전도층(700)의 양측을 통해 하부로 손실되어 열전달 효율이 매우 낮은 문제점이 있다.In addition, in this method, the heat dissipated from the heating cable 500 through the thermally conductive accommodating member 40 and the thermally conductive layer 70 is installed to prevent heat loss underground by installing the insulating material 300 on the bottom surface of the groove 200 . was intended to be rapidly transferred to the road surface, but in reality, the heat emitted from the heating cable 500 is lost downward through both sides of the accommodating member 400 and the heat conductive layer 700 in the process of being transferred to the road surface, so that the heat transfer efficiency There is a very low problem with this.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 시공 중 인가되는 아스콘 또는 장비 하중에 의해 파손되지 않는 구조의 면상 발열 복합시트를 제조하고, 롤에 권취된 시트를 설치면에 포설하는 시공방식을 통해 보다 신속한 시공이 가능하도록 한 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법을 제공함에 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to manufacture a planar heating composite sheet of a structure that is not damaged by asphalt concrete or equipment load applied during construction, and install a sheet wound on a roll An object of the present invention is to provide a snow melting pavement construction method for a road using a surface heating composite sheet that enables faster construction through the construction method of laying on the surface.
상기 목적을 달성하기 위한 본 발명에 따르면, 도로 포장의 표면을 일정 두께로 절삭하여 설치면을 형성하는 도로 포장 절삭단계 및 면상 발열층과 상기 면상 발열층의 하부에 부착되는 단열층을 포함하는 면상 발열 복합시트를 준비하는 면상 발열 복합시트 준비단계 및 준비된 상기 면상 발열 복합시트를 포설장비에 권취하는 면상 발열 복합시트 권취단계 및 상기 포설장비에 권취된 상기 면상 발열 복합시트를 상기 설치면에 포설하는 면상 발열 복합시트 포설단계 및 상기 면상 발열 복합시트의 상부에 아스콘을 재포장하는 아스콘 재포장단계를 포함하는 것을 특징으로 하는 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법이 제공된다.According to the present invention for achieving the above object, a road pavement cutting step of cutting the surface of the road pavement to a certain thickness to form an installation surface, and a planar heating layer comprising a planar heating layer and a heat insulating layer attached to the lower portion of the planar heating layer A planar heating composite sheet preparation step to prepare a composite sheet and a planar heating composite sheet winding step of winding the prepared planar heating composite sheet to an installation equipment and a planar heating composite sheet wound on the installation equipment Laying the planar heating composite sheet on the installation surface There is provided a snow melting pavement construction method of a road using a planar heating composite sheet, comprising the step of installing a heating composite sheet and an asphalt concrete repaving step of repaving asphalt on the upper part of the flat heating composite sheet.
여기서, 상기 면상 발열 복합시트는 일정 폭과 길이를 갖는 합성수지 재질의 베이스 시트와 상기 베이스 시트의 상면에 상기 베이스 시트의 폭방향을 따라 도포되고 서로 다른 극성이 상기 베이스 시트의 길이 방향을 따라 이격되게 교대로 배치되는 다수의 전극과 상기 베이스 시트의 상면 중 상기 다수의 전극 사이에 전체적으로 도포되고 전기저항에 의해 발열하는 전도성 페이스트와 상기 전도성 페이스트의 상부에 부착되는 합성수지 재질의 절연시트를 포함하는 면상 발열층과, 상기 면상 발열층의 하부에 부착되고 합성수지 재질의 부직포에 에어로젤이 함침된 단열 시트와 상기 단열 시트의 하부에 부착되는 합성수지 재질의 보호시트를 포함하는 단열층을 포함하는 것을 특징으로 한다.Here, the planar heating composite sheet is applied along the width direction of the base sheet to the base sheet of a synthetic resin material having a certain width and length and the upper surface of the base sheet, and different polarities are spaced apart along the longitudinal direction of the base sheet Planar heating comprising a conductive paste that is applied as a whole between a plurality of electrodes arranged alternately and the plurality of electrodes among the upper surfaces of the base sheet and generates heat by electrical resistance and an insulating sheet made of a synthetic resin material attached to the top of the conductive paste It is characterized in that it comprises a layer, and a heat insulating layer comprising a protective sheet of synthetic resin material attached to the lower portion of the planar heating layer and the insulating sheet is impregnated with airgel in the nonwoven fabric of the synthetic resin material and the insulating sheet is attached to the lower portion of the planar heating layer.
그리고, 상기 단열층의 두께는 1~5mm 인 것을 특징으로 한다.And, the thickness of the heat insulating layer is characterized in that 1 ~ 5mm.
한편, 상기 전도성 페이스트는 비정질 코폴리에스터(amorphous co-polyester) 수지 20~40 중량부와, 카본나노튜브 2.5~7.5 중량부와, 카본나노플레이트 2.5~7.5 중량부와, 잔량으로서 그래핀(graphene), 은(Ag) 파우더, 카본 분산제 및 용매를 포함하는 것을 특징으로 한다.On the other hand, the conductive paste contains 20 to 40 parts by weight of an amorphous co-polyester resin, 2.5 to 7.5 parts by weight of carbon nanotubes, 2.5 to 7.5 parts by weight of carbon nanoplates, and the remaining amount is graphene (graphene). ), silver (Ag) powder, carbon dispersant and solvent.
그리고, 상기 카본 분산제는 카르복시메틸 셀룰로오스(carboxymethyl cellulose), 폴리스티렌 술폰산(polystyrene sulfonate), 콘드로이틴황산(chondroitin sulfate), 히알루론산(hyaluronic acid) 중 적어도 둘 이상을 조합하여 사용하는 것을 특징으로 한다.In addition, the carbon dispersant is characterized in that at least two or more of carboxymethyl cellulose, polystyrene sulfonate, chondroitin sulfate, and hyaluronic acid are used in combination.
또한, 상기 면상발열층의 상부와, 상기 단열층의 하부에 부착되고, 합성수지 재질의 부칙포에 아스팔트와 고무가 함침된 보호층을 더 포함하는 것을 특징으로 한다.In addition, it is attached to the upper portion of the planar heating layer and the lower portion of the heat insulating layer, it characterized in that it further comprises a protective layer impregnated with asphalt and rubber in the synthetic resin material.
아울러, 면상 발열 복합시트 포설단계에서는 적어도 2개의 면상 발열 복합시트를 도로의 폭방향을 따라 이격되게 포설하고, 인접하는 각각의 면상 발열 복합시트의 동일 극성의 전극 간을 도전선으로 직접 연결하는 것을 특징으로 한다.In addition, in the planar heating composite sheet installation step, at least two planar heating composite sheets are installed to be spaced apart along the width direction of the road, and the electrodes of the same polarity of each adjacent planar heating composite sheet are directly connected with a conductive line. characterized.
상기와 같은 본 발명에 의하면, 롤에 권취된 시트를 설치면에 포설하는 시공방식을 통해 보다 신속한 시공이 가능함에 따라 공기가 현저하게 단축되므로 이에 따른 공사비용을 크게 절감할 수 있다.According to the present invention as described above, since faster construction is possible through the construction method of installing the sheet wound on the roll on the installation surface, the construction period is significantly shortened, and thus the construction cost can be greatly reduced.
또한, 하방으로의 열손실을 보다 확실하게 방지하여 융설포장의 융설효율이 현저하게 향상되는 효과가 있다.In addition, there is an effect that the snow melting efficiency of the snow melting pavement is remarkably improved by more reliably preventing the heat loss downward.
예에 따른 융설포장 시공방법의 면상 발열 복합시트 권취단계를 설명하기 위한 도면.A drawing for explaining the step of winding a planar heating composite sheet of a snow melting pavement construction method according to an example.
도 8은 본 발명의 일 실시예에 따른 융설포장 시공방법의 면상 발열 복합시트 포설단계를 설명하기 위한 도면.Figure 8 is a view for explaining the installation step of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention.
도 9a 및 도 9b는 본 발명의 일 실시예에 따른 융설포장 시공방법의 면상 발열 복합시트의 전극 간 연결구조를 설명하기 위한 도면.9a and 9b are views for explaining the connection structure between the electrodes of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 융설포장 시공방법의 면상 발열 복합시트의 전극 간 연결구조를 구체적으로 도시한 것.Figure 10 shows in detail the connection structure between the electrodes of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 융설포장 시공방법의 아스콘 재포장 단계를 설명하기 위한 도면.11 is a view for explaining the asphalt concrete repaving step of the snow melting pavement construction method according to an embodiment of the present invention.
도 12은 종래 선상 발열 방식의 융설 포장과 본 발명의 일 실시예에 따른 융설포장 시공방법으로 시공한 융설 포장의 승온 속도를 비교한 그래프.12 is a graph comparing the temperature increase rate of the conventional snowmelting pavement of the onboard heating method and the snowmelting pavement constructed by the snowmelting pavement construction method according to an embodiment of the present invention.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다. 도면들 중 동일한 구성요소들은 가능한 어느 곳에서든지 동일한 부호들로 나타내고 있음에 유의해야 한다. 또한 발명의 요지를 불필요하게 흐릴 수 있는 공지기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, the present invention will be described in more detail with reference to the drawings. It should be noted that the same components in the drawings are denoted by the same reference numerals wherever possible. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted.
도 2는 본 발명의 일 실시예에 따른 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법의 공정순서를 도시한 것이고, 도 3은 본 발명의 일 실시예에 따른 융설포장 시공방법의 도로 포장 절삭단계를 설명하기 위한 도면이고, 도 4는 본 발명의 일 실시예에 따른 융설포장 시공방법에 사용되는 면상 발열 복합시트의 사시도이고, 도 5는 본 발명의 일 실시예에 따른 융설포장 시공방법에 사용되는 면상 발열 복합시트의 분해사시도이고, 도 6은 도 3의 A-A' 단면도이고, 도 7은 본 발명의 일 실시예에 따른 융설포장 시공방법의 면상 발열 복합시트 권취단계를 설명하기 위한 도면이고, 도 8은 본 발명의 일 실시예에 따른 융설포장 시공방법의 면상 발열 복합시트 포설단계를 설명하기 위한 도면이고, 도 9a 및 도 9b는 본 발명의 일 실시예에 따른 융설포장 시공방법의 면상 발열 복합시트의 전극 간 연결구조를 설명하기 위한 도면이고, 도 10은 본 발명의 일 실시예에 따른 융설포장 시공방법의 면상 발열 복합시트의 전극 간 연결구조를 구체적으로 도시한 것이고, 도 11은 본 발명의 일 실시예에 따른 융설포장 시공방법의 아스콘 재포장 단계를 설명하기 위한 도면이다.Figure 2 shows the process sequence of the snow-melting pavement construction method of the road using the planar heating composite sheet according to an embodiment of the present invention, Figure 3 is the road pavement cutting of the snow-melting pavement construction method according to an embodiment of the present invention 4 is a perspective view of a planar heating composite sheet used in a snowmelting pavement construction method according to an embodiment of the present invention, and FIG. 5 is a snowmelting pavement construction method according to an embodiment of the present invention. An exploded perspective view of the planar heating composite sheet used, FIG. 6 is a cross-sectional view AA' of FIG. 3, and FIG. 7 is a view for explaining the winding step of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention. , FIG. 8 is a view for explaining the step of installing a surface heating composite sheet of a snow melting pavement construction method according to an embodiment of the present invention, and FIGS. 9a and 9b are plane views of a snow melting pavement construction method according to an embodiment of the present invention It is a view for explaining the connection structure between the electrodes of the heating composite sheet, and FIG. 10 shows in detail the connection structure between the electrodes of the planar heating composite sheet of the snow melting pavement construction method according to an embodiment of the present invention, FIG. It is a view for explaining the asphalt concrete repaving step of the snow melting pavement construction method according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시예에 따른 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법은 도로 포장 절삭단계(S1), 면상 발열 복합시트 준비단계(S2), 면상 발열 복합시트 권취단계(S3), 면상 발열 복합시트 포설단계(S4), 아스콘 재포장단계(S5)를 포함한다.2, the snow-melting pavement construction method of the road using the planar heating composite sheet according to an embodiment of the present invention is a road pavement cutting step (S1), a planar heating composite sheet preparation step (S2), winding a planar heating composite sheet It includes a step (S3), a planar heating composite sheet installation step (S4), an asphalt concrete repacking step (S5).
도로 포장 절삭단계에서는 로드 커터를 이용하여 도 3에 도시된 바와 같이, 도로 포장을 일정 두께 d로 절삭하여 면상 발열 복합시트의 설치면(B)을 형성한다. 여기서, 두께 d는 5~10cm, 보다 바람직하게는 7~8cm 정도가 되도록 한다.(S1)In the road pavement cutting step, as shown in FIG. 3 using a rod cutter, the road pavement is cut to a predetermined thickness d to form the installation surface (B) of the planar heating composite sheet. Here, the thickness d is 5 to 10 cm, more preferably about 7 to 8 cm. (S1)
면상 발열 복합시트 준비단계에서는 일정 폭과 길이를 갖는 면상 발열 복합시트를 준비한다. 본 발명에 사용되는 면상 발열 복합시트는 롤 형태로 권취하여 시공 시 롤로부터 권출되면서 도로면에 포설될 수 있고 포설과 동시에 포장 장비를 이용하여 포장을 할 때 포장장비의 하중에 의해 파손이 되지 않는 구조를 갖는 것이 특징이다.In the planar heating composite sheet preparation step, a planar heating composite sheet having a certain width and length is prepared. The planar heating composite sheet used in the present invention is wound in the form of a roll and can be installed on the road surface while being unwound from the roll during construction. It is characterized by a structure.
이러한 면상 발열 복합시트(1)는 도 4 내지 도 6에 도시된 바와 같이, 면상 발열층(10), 단열층(20) 및 보호층(30)을 포함한다.As shown in FIGS. 4 to 6 , the planar heating composite sheet 1 includes a planar heating layer 10 , a heat insulating layer 20 and a protective layer 30 .
면상 발열층(10)은 전원 공급시 전기저항에 의해 발열하는 것으로서, 베이스 시트(11), 전극(12), 전도성 페이스트(13) 및 절연 시트(14)를 포함한다.The planar heating layer 10 generates heat by electrical resistance when power is supplied, and includes a base sheet 11 , an electrode 12 , a conductive paste 13 , and an insulating sheet 14 .
베이스 시트(11)는 합성수지 재질로서 전극(12) 및 전도성 페이스트(13)가 도포되는 영역을 제공함과 아울러, 전극(12) 또는 전도성 페이스트(13)에 인가되는 전류가 하부로 누수되는 것을 방지하는 절연 기능을 수행한다.The base sheet 11 is a synthetic resin material that provides an area to which the electrode 12 and the conductive paste 13 are applied, and prevents the current applied to the electrode 12 or the conductive paste 13 from leaking downward. It performs an insulating function.
전극(12)은 공급되는 전류의 입출로를 제공하는 것으로서, 베이스 시트(11)의 폭방향을 따라 도포되고 서로 다른 극성이 베이스 시트(11)의 길이 방향을 따라 일정 간격 이격되게 교대로 배치된다.The electrodes 12 are provided along the width direction of the base sheet 11 and are alternately arranged with different polarities spaced apart from each other at regular intervals along the length direction of the base sheet 11 as providing an input/exit path of the supplied current. .
이러한 전극(12)은 베이스 시트(11)의 상면에 은(Ag) 파우더가 포함된 페이스트를 도포 및 경화하여 형성된다.The electrode 12 is formed by applying and curing a paste containing silver (Ag) powder on the upper surface of the base sheet 11 .
전도성 페이스트(13)는 전류의 인가 시 전기저항에 의해 발열하는 것으로서 베이스 시트(11)의 상면 중 다수의 전극(12) 사이에 전체적으로 도포된다.The conductive paste 13 generates heat due to electrical resistance when a current is applied, and is entirely applied between the plurality of electrodes 12 among the upper surfaces of the base sheet 11 .
여기서, 전도성 페이스트(13)는 바인더로 비정질 코폴리에스터(amorphous co-polyester) 수지 20~40 중량부와, 카본나노튜브 2.5~7.5 중량부와, 카본나노플레이트 2.5~7.5 중량부와, 잔량으로서 그래핀(graphene), 은(Ag) 파우더, 카본 분산제 및 용매를 포함한다.Here, the conductive paste 13 includes 20-40 parts by weight of an amorphous co-polyester resin as a binder, 2.5-7.5 parts by weight of carbon nanotubes, 2.5-7.5 parts by weight of carbon nanoplates, and the remainder as graphene, silver (Ag) powder, carbon dispersant and solvent.
비정질 코폴리에스터(amorphous co-polyester) 수지는 바인더로서 전도성 페이스트(13)가 균일한 분산성, 우수한 도포성을 가지도록 하고, 베이스 시트(11)에 대한 결착력을 유지할 수 있도록 한다.The amorphous co-polyester resin as a binder allows the conductive paste 13 to have uniform dispersibility and excellent applicability, and to maintain binding force to the base sheet 11 .
특히, 비정질 코폴리에스터(amorphous co-polyester) 수지는 전도성 페이스트(13)에 인장응력을 부여하는 것으로서, 20 중량부 미만이면 전도성 페이스트(13)에 충분한 인장응력이 부여되지 않고, 40 중량부를 초과하면 전도성 페이스트(13)의 전도 기능이 제대로 발현되지 않을 수 있으므로 20~40 중량부 사이를 사용하는 것이 바람직하다.In particular, the amorphous co-polyester resin applies a tensile stress to the conductive paste 13, and if it is less than 20 parts by weight, sufficient tensile stress is not applied to the conductive paste 13, and exceeds 40 parts by weight. If the conductive paste 13 does not properly develop the conductive function, it is preferable to use between 20 and 40 parts by weight.
카본나노튜브 및 카본나노플레이트는 전도성 물질로서, 2.5 중량부 미만이면 전도 기능이 제대로 발현되지 않고, 7.5 중량부를 초과하면 비정질 코폴리에스터(amorphous co-polyester) 수지를 통해 부여되는 전도성 페이스트(13)의 인장응력을 해칠 수 있으므로 각각 2.5~7.5 중량부가 포함되는 것이 바람직하다.Carbon nanotubes and carbon nanoplates are conductive materials, and when less than 2.5 parts by weight, the conductive function is not properly expressed, and when it exceeds 7.5 parts by weight, conductive paste provided through an amorphous co-polyester resin (13) It is preferable to contain 2.5 to 7.5 parts by weight, respectively, since it may damage the tensile stress of the.
용매는 비정질 코폴리에스터(amorphous co-polyester) 수지를 녹이는 것으로서, 알파 테르핀올(alpha-terpineol), 부틸 셀로솔브(butyl cellosolve), 에틸 셀로솔브(ethyl cellosolve), 에틸 카비톨(ethyl carbitol), 부틸 카비톨(butyl carbitol), 에톡시 에틸 아세테이트(ethoxyethyl acetate), 부틸 아세테이트(butyl acetate), 프로필렌글리콜 모노메틸에테르(propylene glycol monomehtyl ether), r감마 부티로락톤(γ-butyrolactone), 메틸에틸케톤(methyl ethyl ketone) 또는 이들의 조합을 포함할 수 있다.The solvent is to dissolve the amorphous co-polyester resin, alpha-terpineol, butyl cellosolve, ethyl cellosolve, ethyl carbitol, butyl carbitol, ethoxyethyl acetate, butyl acetate, propylene glycol monomethyl ether, r-gamma butyrolactone (γ-butyrolactone), methyl ethyl ketone (methyl ethyl ketone) or a combination thereof.
본 발명의 전도성 페이스트(13)은 위와 같은 조성비로 이루어짐에 따라 전도성 페이스트(13)에 의해 형성되는 전도성 박막에 인장 응력이 부여되어 도로의 융설 포장 시공 중 인가되는 아스콘 또는 장비 하중과 시공 후 인가되는 차륜 하중에 의해 발생되는 전단력에 저항할 수 있으므로 전단력에 의해 전도성 박막이 파손되는 것을 최소화할 수 있게 된다.As the conductive paste 13 of the present invention has the above composition ratio, tensile stress is applied to the conductive thin film formed by the conductive paste 13, so that the asphalt concrete or equipment load applied during the snow melting pavement construction of the road and the applied after construction Since it can resist the shear force generated by the wheel load, it is possible to minimize the damage of the conductive thin film by the shear force.
절연 시트(14)는 합성수지 재질로서 전극(12)과 전도성 페이스트(13)의 상부에 부착되고, 전극 또는 전도성 페이스트에 인가되는 전류가 상부로 누수되는 것을 방지하는 절연 기능을 수행한다.The insulating sheet 14 is made of a synthetic resin material and is attached to the upper portions of the electrode 12 and the conductive paste 13, and performs an insulating function to prevent current applied to the electrode or conductive paste from leaking upward.
단열층(20)은 면상 발열층(10)으로부터 방출되는 열이 지중으로 손실되는 것을 방지하는 것으로서, 면상 발열층(10)의 하부에 부착되는 단열 시트(21) 및 단열 시트(21)의 하부에 부착되는 보호 시트(22)를 포함한다.The heat insulating layer 20 is to prevent the heat emitted from the planar heating layer 10 from being lost to the ground, and to the lower part of the heat insulating sheet 21 and the heat insulating sheet 21 attached to the lower part of the planar heating layer 10 and a protective sheet 22 to which it is attached.
본 발명의 면상 발열 복합시트(1)는 도로 표면으로부터 약 7~8cm의 얕은 깊이에서 시공되므로 단열층(20)의 재질, 구조 및 두께가 매우 중요하다. 즉, 일반적으로 사용되는 두꺼운 단열재의 경우 시공과정에서 아스콘 또는 장비 하중에 의해 쉽게 손상되거나 파손될 수 있으므로 매우 얇으면서도 단열 효율이 높아야 하는 매우 어려운 조건을 충족하여야 한다.Since the planar heating composite sheet 1 of the present invention is constructed at a shallow depth of about 7 to 8 cm from the road surface, the material, structure and thickness of the heat insulating layer 20 are very important. That is, in the case of a generally used thick insulator, it can be easily damaged or damaged by asphalt concrete or equipment load during the construction process.
두께와 단열 효율의 조건을 동시에 충족시키기 위한 본 발명의 단열 시트(21)는 합성수지 재질의 부직포 시트에 에어로젤이 함침된 구조로 이루어지고, 보호 시트(22)를 포함하는 단열층(20)은 1 ~ 5mm 사이의 두께를 갖도록 이루어진다.The insulation sheet 21 of the present invention for simultaneously satisfying the conditions of thickness and insulation efficiency is made of a structure in which airgel is impregnated in a nonwoven sheet made of a synthetic resin material, and the insulation layer 20 including the protective sheet 22 is 1 to It is made to have a thickness of between 5 mm.
여기서, 에어로젤은 내부에 90% 이상의 미세공기가 포함된 구조로 이루어져 대류, 전도 및 복사를 통한 열을 차단하는 단열 성능이 우수하여 면상 발열층(10)으로부터 방출되는 열이 지중으로 손실되는 것을 보다 확실하게 방지하게 된다.Here, the airgel is composed of a structure containing more than 90% of fine air inside and has excellent thermal insulation performance to block heat through convection, conduction, and radiation, so that the heat emitted from the planar heating layer 10 is lost to the ground. will definitely prevent it.
그리고, 합성수지 재질의 부직포 시트는 에어로젤을 시트 형태로 분포시킬 수 있는 틀의 역할을 하며, 2 ~ 20MPa의 인장응력을 갖도록 제작하여 도로의 융설 포장 시공 중 인가되는 아스콘 또는 장비 하중 및 시공 후 인가되는 차륜 하중에 의해 발생되는 전단응력에 저항할 수 있으므로 전단응력에 의해 에어로젤이 파손되는 것을 방지할 수 있도록 하는 것이 바람직하다.In addition, the nonwoven sheet made of synthetic resin serves as a frame that can distribute the airgel in the form of a sheet, and is manufactured to have a tensile stress of 2 to 20 MPa, so that asphalt concrete or equipment load applied during snow melting pavement construction of roads and applied after construction Since it can resist the shear stress generated by the wheel load, it is desirable to prevent the airgel from being damaged by the shear stress.
단열층(20)의 두께가 1mm 미만이면 단열 효과가 미비하고, 두께가 5mm 이상이면 시공 시 아스콘 또는 장비 하중에 의한 파손의 위험이 높아진다.If the thickness of the insulation layer 20 is less than 1mm, the insulation effect is insufficient, and if the thickness is 5mm or more, the risk of damage due to asphalt concrete or equipment load increases during construction.
보호 시트(22)는 합성수지 재질로서 단열 시트(21)의 하부에 부착되고, 에어로젤 내부에 포함된 미세공기가 외부로 이탈되는 것을 방지하는 역할을 함과 아울러, 시공 중 아스팔트가 단열 시트(21)로 유입되어 에어로젤의 미세기공으로 침투하는 것을 방지하는 역할을 한다.The protective sheet 22 is a synthetic resin material and is attached to the lower portion of the heat insulating sheet 21, and serves to prevent the fine air contained in the airgel from being separated to the outside, and the asphalt is used for the insulation sheet 21 during construction. It plays a role in preventing penetration into the micropores of the airgel.
보호층(30)은 도로의 융설 포장 시공 중 인가되는 아스콘 또는 장비 하중 및 시공 후 인가되는 차륜 하중으로 발생되는 전단응력에 의해 면상 발열층(20) 및 단열층(30)이 파손되는 것을 방지하는 역할을 하는 것으로서, 면상 발열층(20)의 상부와 단열층(30)의 하부에 각각 부착된다.The protective layer 30 serves to prevent the planar heating layer 20 and the heat insulation layer 30 from being damaged by shear stress generated by asphalt concrete or equipment load applied during snowmelting pavement construction, and wheel load applied after construction. As to do, it is attached to the upper part of the planar heating layer 20 and the lower part of the heat insulating layer 30, respectively.
이러한 보호층(30)은 합성수지 재질의 부직포에 아스팔트와 고무가 함침된 구조로 이루어진다.The protective layer 30 has a structure in which asphalt and rubber are impregnated in a nonwoven fabric made of synthetic resin.
여기서, 합성수지 재질의 부직포를 사용하는 이유는 앞서 설명한 바와 같이, 인장응력을 통해 시공 중 아스콘 또는 장비 하중 및 시공 후 차륜 하중에 의해 발생되는 전단응력에 저항할 수 있도록 하기 위함이다.Here, the reason for using the nonwoven fabric made of synthetic resin is to resist shear stress generated by asphalt concrete or equipment load during construction and wheel load after construction through tensile stress, as described above.
그리고, 아스팔트와 고무를 함침하는 이유는 시공 시 아스콘과의 충분한 부착력을 확보하기 위함이다.(S2)And, the reason for impregnating asphalt and rubber is to secure sufficient adhesion with asphalt concrete during construction. (S2)
면상 발열 복합시트 권취단계에서는 위와 같이 준비된 면상 발열 복합시트(1)를 도 7에 도시된 바와 같은 포설장비(A)의 롤(R)에 권취한다.(S3) In the planar heating composite sheet winding step, the planar heating composite sheet (1) prepared as above is wound on the roll (R) of the installation equipment (A) as shown in FIG. 7 . (S3)
면상 발열 복합시트 포설단계에서는 도 8에 도시된 바와 같이, 설치면(B)을 따라 포설장비(A)를 이동시키면서 포설장비(A)의 롤(R)에 권취된 면상 발열 복합시트(1)를 설치면(B)에 포설한다.In the planar heating composite sheet installation step, as shown in FIG. 8, while moving the installation equipment (A) along the installation surface (B), the planar heating composite sheet wound on the roll (R) of the installation equipment (A) (1) is installed on the installation surface (B).
이 때, 차륜과 대응되는 영역에 면상 발열 복합시트(1)가 배치될 수 있도록 도 9a 및 도 9b에 도시된 바와 같이, 적어도 2개의 면상 발열 복합시트(1)를 도로의 폭방향을 따라 이격되게 병렬 배치한다.At this time, as shown in FIGS. 9a and 9b so that the planar heating composite sheet 1 can be disposed in the area corresponding to the wheel, at least two planar heating composite sheets 1 are spaced apart along the width direction of the road. placed in parallel
그리고, 각각의 면상 발열 복합시트(1)의 길이 방향을 따라 배치되는 서로 다른 극성의 전극(12)은 도전선을 통해 전력 공급수단과 연결한다.And, the electrodes 12 of different polarities disposed along the longitudinal direction of each of the planar heating composite sheet 1 are connected to the power supply means through the conductive wire.
일반적인 도로 융설장치의 전력 공급구조는 도 9a에 도시된 바와 같이, 각각의 면상 발열 복합시트(1)의 각각의 전극(12)을 도전선(40)을 통해 전력 공급수단에 각각 연결하는 방식이 사용된다.As shown in Figure 9a, the power supply structure of a general road snowmelting device connects each electrode 12 of each planar heating composite sheet 1 to a power supply means through a conductive wire 40, respectively. used
그러나, 위와 같은 방식은 각각의 전극(12)을 도전선(40)을 통해 전력 공급수단에 일일이 연결해야 하므로 설치 작업이 번거로울 뿐 아니라 도전선(40)의 개수가 많아 이를 정렬하는데 다소 많은 시간이 소요된다.However, in the above method, since each electrode 12 must be individually connected to the power supply means through the conductive wire 40, the installation work is cumbersome and the number of conductive wires 40 is large, so it takes a bit of time to align them. It takes
또한, 각각의 도전선(40)이 면상 발열 복합시트(1)가 배치된 영역 즉, 차륜이 접촉되는 영역을 가로질러 설치되므로 차륜 하중에 의해 도전선(40)이 단선되는 문제가 발생될 수 있다.In addition, since each conductive wire 40 is installed across the area where the planar heating composite sheet 1 is disposed, that is, the area in which the wheel is in contact, a problem in that the conductive wire 40 is disconnected by the wheel load may occur. there is.
위와 같은 이유로 본 발명에서는 도 9b에 도시된 바와 같이, 인접하는 각각의 면상 발열 복합시트(1)의 동일 극성의 전극(12) 간을 도전선(40)을 통해 직접 연결하고, 상호 연결되는 동일 극성의 전극 중 어느 하나만을 전력 공급수단에 연결하는 방식을 채용하였다.For the above reasons, in the present invention, as shown in FIG. 9b , the electrodes 12 of the same polarity of each adjacent planar heating composite sheet 1 are directly connected through a conductive line 40, and the same A method of connecting only one of the polarized electrodes to the power supply was adopted.
보다 구체적으로 본 발명은 도 10에 도시된 바와 같이, 인접하는 면상 발열 복합시트(1)의 각각의 전극(12) 가장자리에 상부에 배치되는 절연 시트 및 보호층을 관통하는 관통홀(h)을 형성하고, 관통홀(h)을 통해 노출되는 각각의 전극(12)에 띠 형상의 도전선(40)의 양단을 스폿 용접하여 인접하는 면상 발열 복합시트(1)의 각각의 전극(12) 간을 상호 연결하였다.More specifically, the present invention, as shown in FIG. 10, a through hole (h) penetrating the insulating sheet and the protective layer disposed on the edge of each electrode 12 of the adjacent planar heating composite sheet (1) between each electrode 12 of the adjacent planar heating composite sheet 1 by spot welding both ends of the strip-shaped conductive wire 40 to each electrode 12 exposed through the through hole h were interconnected.
이를 통해 본 발명은 종래에 비해 도전선(40)의 길이가 현저하게 감소하고, 인접하는 전극(12) 간을 연결하는 방식으로 설치 작업이 용이할 뿐 아니라 도전선(40)이 서로 겹쳐지지 않으므로 별도의 정렬작업도 요구되지 않는다.Through this, in the present invention, the length of the conductive wire 40 is significantly reduced compared to the prior art, and the installation work is easy in a way that connects the adjacent electrodes 12, and the conductive wire 40 does not overlap each other. A separate sorting operation is not required.
또한, 도전선(40)이 차륜 하중이 인가되는 영역에 설치되지 않으므로 차륜 하중에 의해 도전선(40)이 단선되는 문제가 발생하지 않는다.(S4)In addition, since the conductive wire 40 is not installed in the area to which the wheel load is applied, the problem that the conductive wire 40 is disconnected by the wheel load does not occur (S4).
아스콘 재포장단계에서는 도 11에 도시된 바와 같이, 면상 발열 복합시트(1)의 상부에 피니셔를 이용하여 아스콘을 일정 두께로 포설한 후, 포설된 아스콘을 다짐장비(C)를 이용하여 다지므로써 면상 발열 복합시트(1)의 상부에 아스콘을 재포장한다.(S5)In the asphalt concrete resurfacing step, as shown in FIG. 11, asphalt concrete is laid to a certain thickness using a finisher on the upper portion of the planar heating composite sheet (1), and then the installed asphalt concrete is compacted using a compactor (C). Repave the asphalt concrete on top of the planar heating composite sheet (1). (S5)
도 12는 종래 선상 발열 방식의 융설 포장과 본 발명의 일 실시예에 따른 융설포장 시공방법으로 시공한 융설 포장의 승온 속도를 비교한 그래프이다.12 is a graph comparing the temperature increase rate of the conventional snow-melting pavement of the linear heating method and the snow-melting pavement constructed by the snow-melting pavement construction method according to an embodiment of the present invention.
도 12를 참조하면, 종래 선상 발열 방식의 융설 포장의 경우, 표면온도 -5℃ 에서 2℃ 까지 도달하는데 걸리는 시간이 단위면적 당 발열열량 300W/m2에서 358분, 600W/m2에서 125분, 900W/m2에서 82분, 1200W/m2에서 63분으로 나타났다.Referring to FIG. 12, in the case of the conventional snow melting pavement of the conventional shipboard heating method, the time it takes to reach the surface temperature from -5°C to 2°C is 358 minutes at 300W/m 2 of calorific value per unit area, and 125 minutes at 600W/m 2 , 82 minutes at 900 W/m 2 and 63 minutes at 1200 W/m 2 .
그에 반해 본 발명의 일 실시예에 따른 융설 포장 시공방법에 따라 면상 발열 복합시트를 매설하는 융설 포장의 경우, -5℃ 에서 2℃ 까지 도달하는데 걸리는 시간이 단위면적 당 발열열량 300W/m2에서 141분, 600W/m2에서 67분, 900W/m2에서 48분, 1200W/m2에서 39분으로 나타나, 본 발명의 일 실시예 따른 융설 포장 시공방법에 따라 시공된 융설 포장이 융설 효율이 현저하게 우수할 뿐 아니라 소비전력도 현저하게 절감할 수 있음을 알 수 있다.On the other hand, in the case of a snowmelting pavement in which a planar heating composite sheet is embedded according to the snowmelting pavement construction method according to an embodiment of the present invention, the time it takes to reach from -5℃ to 2℃ is 300W/m 2 of calorific value per unit area 141 minutes, 600W/m 2 at 67 minutes, 900W/m 2 at 48 minutes, and 1200W/m 2 at 39 minutes, the snowmelting efficiency of the snowmelting pavement constructed according to the snowmelting pavement construction method according to an embodiment of the present invention is It can be seen that not only is remarkably excellent, but also power consumption can be significantly reduced.
비록 본 발명이 상기 바람직한 실시 예들과 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서, 첨부된 특허 청구범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함할 것이다.Although the present invention has been described with reference to the above preferred embodiments, various modifications and variations can be made without departing from the spirit and scope of the invention. Accordingly, the appended claims are intended to cover such modifications and variations as fall within the subject matter of the present invention.

Claims (7)

  1. 도로 포장의 표면을 일정 두께로 절삭하여 설치면을 형성하는 도로 포장 절삭단계와;A road pavement cutting step of cutting the surface of the road pavement to a predetermined thickness to form an installation surface;
    면상 발열층과 상기 면상 발열층의 하부에 부착되는 단열층을 포함하는 면상 발열 복합시트를 준비하는 면상 발열 복합시트 준비단계와;A planar heating composite sheet preparation step of preparing a planar heating composite sheet comprising a planar heating layer and a heat insulating layer attached to a lower portion of the planar heating layer;
    준비된 상기 면상 발열 복합시트를 포설장비에 권취하는 면상 발열 복합시트 권취단계와;A planar heating composite sheet winding step of winding the prepared planar heating composite sheet to installation equipment;
    상기 포설장비에 권취된 상기 면상 발열 복합시트를 상기 설치면에 포설하는 면상 발열 복합시트 포설단계와;A planar heating composite sheet installation step of installing the planar heating composite sheet wound on the installation equipment on the installation surface;
    상기 면상 발열 복합시트의 상부에 아스콘을 재포장하는 아스콘 재포장단계를 포함하는 것을 특징으로 하는 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법.Snow melting pavement construction method for roads using a planar heating composite sheet, characterized in that it comprises an asphalt concrete repaving step of repaving asphalt on the upper portion of the planar heating composite sheet.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 면상 발열 복합시트는The planar heating composite sheet is
    일정 폭과 길이를 갖는 합성수지 재질의 베이스 시트와 상기 베이스 시트의 상면에 상기 베이스 시트의 폭방향을 따라 도포되고 서로 다른 극성이 상기 베이스 시트의 길이 방향을 따라 이격되게 교대로 배치되는 다수의 전극과 상기 베이스 시트의 상면 중 상기 다수의 전극 사이에 전체적으로 도포되고 전기저항에 의해 발열하는 전도성 페이스트와 상기 전도성 페이스트의 상부에 부착되는 합성수지 재질의 절연시트를 포함하는 면상 발열층과,A base sheet made of a synthetic resin material having a predetermined width and length and a plurality of electrodes applied along the width direction of the base sheet on the upper surface of the base sheet and alternately arranged with different polarities spaced apart from each other along the length direction of the base sheet; A planar heating layer comprising a conductive paste which is applied as a whole between the plurality of electrodes on the upper surface of the base sheet and generates heat by electric resistance and an insulating sheet made of a synthetic resin material attached to the upper portion of the conductive paste;
    상기 면상 발열층의 하부에 부착되고 합성수지 재질의 부직포에 에어로젤이 함침된 단열 시트와 상기 단열 시트의 하부에 부착되는 합성수지 재질의 보호시트를 포함하는 단열층을 포함하는 것을 특징으로 하는 도로의 융설포장 시공방법.Snowmelting pavement construction of a road, characterized in that it includes an insulation layer attached to the lower portion of the planar heating layer and comprising an insulation sheet in which airgel is impregnated in a nonwoven fabric made of synthetic resin and a protective sheet made of a synthetic resin material attached to the lower portion of the insulation sheet method.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 단열층의 두께는 1~5mm 인 것을 특징으로 하는 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법.The thickness of the insulating layer is a snow melting pavement construction method using a planar heating composite sheet, characterized in that 1 ~ 5mm.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 전도성 페이스트는The conductive paste is
    비정질 코폴리에스터(amorphous co-polyester) 수지 20~40 중량부와, 카본나노튜브 2.5~7.5 중량부와, 카본나노플레이트 2.5~7.5 중량부와, 잔량으로서 그래핀(graphene), 은(Ag) 파우더, 카본 분산제 및 용매를 포함하는 것을 특징으로 하는 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법.20 to 40 parts by weight of amorphous co-polyester resin, 2.5 to 7.5 parts by weight of carbon nanotubes, 2.5 to 7.5 parts by weight of carbon nanoplates, and the remaining amount of graphene, silver (Ag) A method for snow-melting pavement construction using a planar heating composite sheet, characterized in that it contains powder, a carbon dispersant and a solvent.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 카본 분산제는 카르복시메틸 셀룰로오스(carboxymethyl cellulose), 폴리스티렌 술폰산(polystyrene sulfonate), 콘드로이틴황산(chondroitin sulfate), 히알루론산(hyaluronic acid) 중 적어도 둘 이상을 조합하여 사용하는 것을 특징으로 하는 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법.The carbon dispersing agent is carboxymethyl cellulose (carboxymethyl cellulose), polystyrene sulfonate (polystyrene sulfonate), chondroitin sulfate (chondroitin sulfate), hyaluronic acid (hyaluronic acid) at least two or more of a combination of two or more of a planar heating composite sheet, characterized in that it is used The construction method of snow melting pavement of the road used.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 면상발열층의 상부와, 상기 단열층의 하부에 부착되고, 합성수지 재질의 부칙포에 아스팔트와 고무가 함침된 보호층을 더 포함하는 것을 특징으로 하는 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법.The snow melting pavement construction method of the road using the planar heating composite sheet, which is attached to the upper part of the planar heating layer and the lower part of the insulating layer, and further comprises a protective layer impregnated with asphalt and rubber in a synthetic resin material. .
  7. 제 1 항에 있어서,The method of claim 1,
    면상 발열 복합시트 포설단계에서는 적어도 2개의 면상 발열 복합시트를 도로의 폭방향을 따라 이격되게 포설하고, 인접하는 각각의 면상 발열 복합시트의 동일 극성의 전극 간을 도전선으로 직접 연결하는 것을 특징으로 하는 면상 발열 복합시트를 이용한 도로의 융설포장 시공방법.In the planar heating composite sheet installation step, at least two planar heating composite sheets are installed to be spaced apart along the width direction of the road, and the electrodes of the same polarity of each adjacent planar heating composite sheet are directly connected with a conductive line. A snow melting pavement construction method using a surface heating composite sheet.
PCT/KR2020/017725 2020-09-04 2020-12-07 Method for constructing snow-melting pavement for roads by using planar heating composite sheet WO2022050508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0113169 2020-09-04
KR1020200113169A KR102231955B1 (en) 2020-09-04 2020-09-04 Structure method of snow melting pavement using planar heating complex sheet

Publications (1)

Publication Number Publication Date
WO2022050508A1 true WO2022050508A1 (en) 2022-03-10

Family

ID=75259225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/017725 WO2022050508A1 (en) 2020-09-04 2020-12-07 Method for constructing snow-melting pavement for roads by using planar heating composite sheet

Country Status (2)

Country Link
KR (1) KR102231955B1 (en)
WO (1) WO2022050508A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230045978A (en) 2021-09-29 2023-04-05 씨플러스원 주식회사 Folding type Snow Melting System
WO2023095960A1 (en) * 2021-11-24 2023-06-01 엔디티엔지니어링㈜ Ptc constant temperature heating element containing silver particle-graphene composite
KR102542932B1 (en) 2022-05-02 2023-06-16 씨플러스원 주식회사 Roll type heating complex sheet for snow melting pavement and construction method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065574A (en) * 1998-01-15 1999-08-05 이봉찬 Multilayer composite FRP waterproof sheet and its manufacturing method
KR200272964Y1 (en) * 2002-01-30 2002-04-20 주식회사 범우 Device for removing snow for the road
JP2009035999A (en) * 2007-08-01 2009-02-19 Kadoya:Kk Construction method for snow and ice melting road surface
KR20110029387A (en) * 2009-09-15 2011-03-23 (주)한국친환경 Construction structure of elastic plate having heat generating matter
KR102051762B1 (en) * 2018-11-30 2019-12-04 주식회사 누리비스타 Elastic paste composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150009795A (en) 2013-07-17 2015-01-27 이도열 Snow melting apparatus on paved road and installing mehod thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065574A (en) * 1998-01-15 1999-08-05 이봉찬 Multilayer composite FRP waterproof sheet and its manufacturing method
KR200272964Y1 (en) * 2002-01-30 2002-04-20 주식회사 범우 Device for removing snow for the road
JP2009035999A (en) * 2007-08-01 2009-02-19 Kadoya:Kk Construction method for snow and ice melting road surface
KR20110029387A (en) * 2009-09-15 2011-03-23 (주)한국친환경 Construction structure of elastic plate having heat generating matter
KR102051762B1 (en) * 2018-11-30 2019-12-04 주식회사 누리비스타 Elastic paste composition

Also Published As

Publication number Publication date
KR102231955B9 (en) 2023-11-13
KR102231955B1 (en) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022050508A1 (en) Method for constructing snow-melting pavement for roads by using planar heating composite sheet
US5550350A (en) Heated ice-melting blocks for steps
CA2854358C (en) Frost resistant surface
US20200341225A1 (en) Distribution cabling tape and system
CA2069238C (en) Road snow melting system using a surface heating element
CN111021180A (en) Pavement structure for snow melting and ice melting and use method
CN101413240A (en) Method for melting snow and ice based on carbon fiber-glass fiber composite braiding net
WO2009049544A1 (en) Ice-melting device for bundle conductor transmission line and thereof method
WO2016032161A1 (en) Snow-melting roof tile and roof snow-melting system including same
WO2022045473A1 (en) Planar heating composite sheet
DE19715213B4 (en) Method for laying optical or electrical cables in a fixed laying ground
US20200409011A1 (en) Outdoor pathway splice
CN219874894U (en) Cable bridge
CN114220591A (en) Capacity-increasable overhead insulated cable
CN210722532U (en) Beam-bearing aerial cable
EP1913210A1 (en) System for conducting away lightning currents and/or fault currents
US20210009861A1 (en) Splice for pavement tapes
WO2010107184A2 (en) Apparatus for melting snow on paved roads, and method for installing same
CN103669162A (en) Resistance network facility for removing snows and ices from road and laying and power-supplying method thereof
DE102019116443A1 (en) Power rail for a roadway
WO2017142216A1 (en) Iot-based electric heating system and method using graphene mixture
CN219450815U (en) Partitioned cable joint well
SU1715921A1 (en) Arrangement to heat highway pavement
CN217789247U (en) Splicing device for totally-enclosed fire-fighting bus duct
CN112681058A (en) Be applied to snow melt asphalt concrete pavement of town road's electricity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952606

Country of ref document: EP

Kind code of ref document: A1