WO2023095960A1 - Ptc constant temperature heating element containing silver particle-graphene composite - Google Patents

Ptc constant temperature heating element containing silver particle-graphene composite Download PDF

Info

Publication number
WO2023095960A1
WO2023095960A1 PCT/KR2021/017609 KR2021017609W WO2023095960A1 WO 2023095960 A1 WO2023095960 A1 WO 2023095960A1 KR 2021017609 W KR2021017609 W KR 2021017609W WO 2023095960 A1 WO2023095960 A1 WO 2023095960A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
graphene composite
silver particle
ptc
coating
Prior art date
Application number
PCT/KR2021/017609
Other languages
French (fr)
Korean (ko)
Inventor
임기현
노치우
Original Assignee
엔디티엔지니어링㈜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔디티엔지니어링㈜ filed Critical 엔디티엔지니어링㈜
Publication of WO2023095960A1 publication Critical patent/WO2023095960A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/40Inking units
    • B41F15/42Inking units comprising squeegees or doctors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/10Intaglio printing ; Gravure printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/02Heaters using heating elements having a positive temperature coefficient

Definitions

  • the present invention relates to a method for manufacturing a silver particle-graphene composite, a method for manufacturing a high-efficiency PTC constant temperature heating element including a silver-particle graphene composite-based polymer nanocomposite with improved PTC (Positive Temperature Coefficient) strength by adding the same, and a method for manufacturing a high-efficiency PTC constant temperature heating element It relates to a PTC constant temperature heating element and a plane heating element having self-temperature control characteristics manufactured through
  • wire heaters have been mainly used as heating elements for heating in a wet construction method.
  • the onboard heating element is made of heating materials such as Ni-Cr and Fe-Ni-Cr, the thermal efficiency is relatively low due to the on-board heating, so the power consumption is relatively high, and one circuit is open due to the series circuit configuration. If it is, there is difficulty in maintenance, such as the entire heating element does not heat up. In addition, there is a high risk of damage to the heating element and fire due to an abnormal heating phenomenon such as local overheating such as collecting heat, and the product lacks stability.
  • the carbon-based planar heating element has superior thermal efficiency compared to the linear heating element, but since conductive particles such as carbon black are applied as a resistance heating source, this also greatly changes the resistance value due to repeated use and causes abnormalities such as local overheating such as collecting heat. There is a high risk of damage to the heating element and fire due to the heat generation phenomenon, and the product lacks stability.
  • a temperature control system such as an overheating prevention sensor for a linear heating element and a plane heating element is being devised, but it causes abnormal heating phenomena such as local overheating such as collecting heat.
  • the main path of the abnormal heating phenomenon occurs from keeping warm, heat storage, or overheating.
  • local overheating of the heating element damages the finishing material and causes an electrical fire.
  • planar heating elements are mostly made of PET film for electrical insulation and flame retardant purposes and have been mainly used for dry construction.
  • weak points such as moisture or condensation due to strong alkalinity in contact with the cement mortar floor during wet construction and interfacial contact with the PET film of the planar heating element having a wider construction floor than the linear heating element.
  • Patent Document 1 Republic of Korea Patent Registration No. 10-1168906
  • Patent Document 2 Republic of Korea Patent Registration No. 10-1593983
  • the present invention prepares a silver particle-graphene-based PTC constant-temperature heating paste by mixing a silver particle-graphene composite prepared by a mechanical exfoliation/dispersion method and a polymer binder, and then printing or coating the silver particle-graphene-based polymer It is intended to provide a method for manufacturing a high-efficiency PTC constant temperature heating element using a nanocomposite material, a high-efficiency PTC constant temperature heating element and a plane heating element.
  • a method for preparing a silver particle-graphene composite is provided.
  • Another aspect of the present invention includes preparing a silver particle-graphene composite by the method described above;
  • a method for manufacturing a high-efficiency PTC constant temperature heating element including a silver particle-graphene composite-based polymer nanocomposite material.
  • Another aspect of the present invention includes a silver particle-graphene composite and a polymer binder
  • the PTC intensity (Intensity) calculated by Equation 1 below is 10,000% or more
  • a PTC constant temperature heating element is provided.
  • R 20 ° C and R 100 ° C are the resistance values ( ⁇ ) of the graphene PTC composition measured at 20 ° C and 100 ° C, respectively.
  • planar heating layer including a PTC constant temperature heating element including a silver particle-graphene composite and a polymer binder;
  • a planar heating element is provided.
  • a heating device is provided.
  • the high-efficiency PTC constant-temperature heating element using the silver-graphene composite-based polymer nanocomposite material according to the present invention secures excellent PTC characteristics and has excellent heating characteristics, while reducing power consumption, preventing damage to the heating element due to heat collection, and significantly reducing the risk of fire. There is an effect that can reduce it.
  • the high-efficiency PTC constant temperature heating element using the graphene-based polymer nanocomposite material according to the present invention can be used as a flexible planar heating element included in automobile seats in the future, or a nanostructure that requires precise temperature control. It is possible to manufacture a heating device of excellent quality that can be applied in various fields such as a heating device of
  • 1 is a schematic diagram of a planar heating element manufactured by Production Example 3.
  • TEM 2 is a transmission electron microscope (TEM) image of graphene prepared by mechanically exfoliating and dispersing graphite in Preparation Example 1;
  • EDS 3 is a TEM image and an energy dispersive X-ray spectroscopy (EDS) image of the silver nanoparticle-graphene composite prepared in Preparation Example 1.
  • Figure 4 is a schematic diagram of a planar heating element manufactured by Preparation Example 3 in which a temperature sensor is installed to analyze the heating performance of the planar heating element.
  • NMP normal methyl-2-pyrrolidone
  • the graphite is impression graphite, and the average particle size may be 10 ⁇ m to 30 ⁇ m, and the average particle size of the silver particles may be 1 ⁇ m to 5 ⁇ m.
  • the size of the silver particles may become nano-sized while passing through steps of exfoliation and dispersion after being introduced.
  • the graphene may be graphene in which two or more layers and 45 or less layers are stacked.
  • the wet treatment may be performed for 12 hours or more and 36 hours or less
  • the temperature of the wet treatment may be 200 ° C. or more and 210 ° C. or less
  • the peeling and dispersion may be performed for 5 hours or more and 24 hours or less.
  • the mechanical separation and dispersion may include mechanical separation and dispersion at a speed of 100 to 2,000 rpm using a bead mill, a wet ball mill, a dry stirrer, and a complex stirrer using one or more of them. .
  • a cooling step of cooling the graphite at a temperature of 0 to -100 °C for 20 to 30 hours may be further included.
  • the interlayer/molecular attraction of graphene inside the graphite may be weakened, and as a result, NMP having the closest surface energy to graphite may easily intercalate graphite.
  • NMP intercalated between the graphite layers through such a single or multi-stage thermal shock step further weakens the intermolecular attraction between the graphene layers inside the graphite, so that graphene can be easily prepared through subsequent mechanical exfoliation and dispersion steps.
  • Another aspect of the present invention includes preparing a silver particle-graphene composite by the method described above; mixing the silver particle-graphene composite with a polymer binder to prepare a PTC constant-temperature heating paste based on the silver particle-graphene composite; and printing or coating a silver particle-graphene composite-based PTC constant-temperature heating paste to prepare a high-efficiency PTC constant-temperature heating element using a silver particle-graphene composite-based polymer nanocomposite; Provides a method for manufacturing a high-efficiency PTC constant temperature heating element including a polymer-based nanocomposite material.
  • the polymer binder is polyethylene, polypropylene, polybutadiene, polyolefin, polyester, polyvinyl chloride, polyvinyl acetate, polyethylene vinyl acetate, polyester-polyethylene vinyl acetate copolymer, polyethylene terephthalate, polystyrene, polyethylene It includes any one selected from the group consisting of ketone, polyethylene terephthalate glycol, polyethyleneimide, and a composite polymer in which one or more of these are mixed, and the silver particle-graphene composite and the polymer binder are in a weight ratio of 1:100 to 40:100. including mixing
  • the polymeric binder may be used by mixing a polyester-based binder and a polyolefin-based binder in a weight ratio of 0.1:10 to 10:0.1, and more preferably, a weight ratio of 1:5 to 5:1. there is.
  • the polyester binder is a polyester resin having excellent compatibility and adhesiveness with other component layers of a planar heating element such as a polyester plastic film (PET film) or nonwoven fabric, and good chemical resistance, bending resistance and printability (workability). as the main component. More specifically, 5-11 wt% of vinyl-based synthetic resin, 20-35 wt% of polyester-based synthetic resin, 20-50 wt% of aromatic hydrocarbon-based solvent, 20-40 wt% of ketone-based solvent, 0.5-1.5 wt% of antifoaming agent, leveling It can be prepared by mechanically stirring a composition containing 0.5 to 1.5 wt% in a reactor capable of heating.
  • Vinyl-based synthetic resins include polyvinyl chloride and polyvinyl acetate
  • polyester-based synthetic resins include polyester and the like.
  • Aromatic hydrocarbon-based solvents include toluene and xylene
  • ketone-based solvents include methyl ethyl ketone and acetone.
  • the polyester binder includes 5.03wt% of polyvinyl chloride as a vinyl-based synthetic resin, 5.03wt% of polyvinyl acetate, 30.15wt% of polyester as a polyester-based synthetic resin, and an aromatic hydrocarbon solvent.
  • a composition containing 24.12 wt% of toluene, 6.03 wt% of methyl ethyl ketone as a ketone solvent, 28.1 wt% of acetone, 0.5 wt% of an antifoaming agent, and 1 wt% of a leveling agent can be heated. It can be prepared by mechanical stirring in a reactor.
  • the polyolefin binder is a mixture of crystalline polymers such as polyethylene (PE), polypropylene (PP) and/or ethylene vinyl acetate (EVA), and more specifically, 1 to 10 wt% of polyethylene, A composition containing 1 to 5 wt% of polypropylene, 5 to 30 wt% of polyethylene vinyl acetate copolymer, 10 to 90 wt% of an aromatic hydrocarbon solvent, 0.5 to 1.5 wt% of an antifoaming agent, and 0.5 to 1.5 wt% of a leveling agent is heated. It can be prepared by mechanical stirring in a possible reactor.
  • PE polyethylene
  • PP polypropylene
  • EVA ethylene vinyl acetate
  • the polyolefin binder contains 2.84 wt% of polyethylene, 0.95 wt% of polypropylene, 9.48 wt% of polyethylene vinyl acetate copolymer, 56.87 wt% of toluene as an aromatic hydrocarbon solvent, 28.44 wt% of xylene, and 0.47 wt% of antifoaming agent. %, it can be prepared by mechanically stirring a composition containing 0.95wt% of a leveling agent in a reactor capable of heating.
  • a mixture of a polyester-based binder and a polyolefin-based binder in a weight ratio of 1:1 may be used.
  • the printing or coating method includes gravure printing, comma coating, silk screen printing, spray coating, dip coating, roll coating, Meyer bar coating, blade coating, microgravure coating, slot die coating, slide coating, curtain It includes any one method selected from the group consisting of coating and printing or coating methods in which one or more of these are mixed.
  • PTC constant-temperature heating element including a silver particle-graphene composite and a polymer binder and having a PTC intensity of 10,000% or more as calculated by Equation 1 below.
  • R 20 ° C and R 100 ° C are the resistance values ( ⁇ ) of the graphene PTC composition measured at 20 ° C and 100 ° C, respectively.
  • planar heating layer including a PTC constant temperature heating element including a silver particle-graphene composite and a polymer binder; insulation layer; It provides a planar heating element comprising a; and a foamed adhesive layer between the planar heating layer and the heat insulating layer.
  • the foamed adhesive layer may be a foamed polyurethane layer containing silica airgel powder.
  • the polyurethane layer may include 1 wt% or more and 5 wt% or less of silica airgel powder.
  • the silica airgel powder has a particle size of 2-40 ⁇ m, a pore diameter of 20 nm or less, a particle density of 120-150 kg/m 3 , a surface area of 600-800 m 2 /g, and a thermal conductivity of 0.012 W/m K. @ 25°C or less.
  • the heat insulating layer may be a polymer foam heat insulating sheet layer or a silica airgel heat insulating sheet layer composed of closed cells.
  • the thermal conductivity of the polymer foam insulation sheet composed of the closed cell may be 0.05 W/m K or more and 0.07 W/m K or less, and the thermal conductivity of the silica airgel insulation sheet may be 0.02 W/m K or more and 0.04 W/m Can be less than or equal to K.
  • the thermal conductivity of the planar heating element is 0.07 W / m K or less, the leakage current is 0.3 mA or less, and the power consumption reduction rate at a heating temperature of 40 ° C. compared to the power consumption at ambient temperature may be 40% or more.
  • the foamed adhesive layer and the heat insulating layer of the planar heating element can improve the heating efficiency by reducing the thermal conductivity, leakage current and power consumption of the planar heating element.
  • the planar heating element may further add a configuration commonly used in a planar heating element. More specifically, there may be an electrode layer, an electrically conductive layer, a waterproof film layer, other heating layers, a metal or non-metal film layer, a non-woven fabric layer, and the like, but the present invention is not limited thereto.
  • the electrode layers are formed with a certain width on both sides of the PTC constant temperature heating element to control the flow of current between the electrodes and maintain the heating temperature of the heating element.
  • Materials of the electrodes of the electrode layer include conductive polymers such as polyaniline, polypyrrole, and polythiophene; conductive components such as carbon; At least one selected from the group consisting of metals such as silver, gold, platinum, palladium, copper, aluminum, tin, iron and nickel may be used.
  • metals such as silver, gold, platinum, palladium, copper, aluminum, tin, iron and nickel may be used.
  • copper having excellent thermal conductivity and electrical conductivity is used.
  • heating layers may be stacked together with a PTC constant temperature heating element on top of the electrode layer, and generate heat when electricity flows.
  • the material is preferably any one or a mixture of two or more of conductive carbon, carbon black, graphene, carbon nanotube (CNT), and graphite, and a heating layer woven of carbon fiber, CNT or graphene on nonwoven fabric.
  • An impregnated heating layer, a nonwoven fabric impregnated with conductive carbon, a heating layer prepared by coating CNT, graphene paste, or ink on a base film may be further included and used.
  • one or more layers selected from metal, non-metal, or metal-non-metal mixture films may be additionally attached.
  • An air layer may be formed in the metal, non-metal or metal-non-metal mixed film.
  • Aluminum, copper, etc. may be included as the metal film, polymer or ceramic may be selectively used as the non-metal film, and aluminum-polymer or aluminum-ceramic may be selectively used as the metal-nonmetal mixed film.
  • the polymer film is polyethylene terephthalate
  • the metal-non-metal mixed film is preferably aluminum-polyethylene terephthalate, but is not limited thereto.
  • the metal, non-metal, or metal-non-metal mixed film may be attached to one or both surfaces of the outermost surface of the heating element, but is not limited thereto and may be added in one or more layers between various layers of the heating element.
  • a waterproof film layer and a nonwoven fabric layer interposed between the heating element and the waterproof film layer may be further included on both sides of the heating element.
  • the waterproof film layer is used for the purpose of minimizing the leakage current generated according to the increase in the large area during wet construction and providing waterproofness during wet construction.
  • Any material capable of imparting insulation and waterproofness may be used without limitation, and specifically, polyethylene terephthalate, polypropylene, polyester, polystyrene, polyether ether ketone, polyethylene terephthalate glycol, and polyethyleneimide.
  • One selected from the group consisting of can be used.
  • the non-woven fabric layer is formed of fibers, and a plurality of pores formed between the fibers and irregularities may be further formed on the surface. Leakage current can be prevented through air pockets caused by pores and irregularities of the nonwoven fabric.
  • the fibers forming the nonwoven substrate may have an average diameter of 0.1 ⁇ m to 10 ⁇ m.
  • Fibers include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as aramids, polyacetals, polycarbonates, polyimides, polyether ether ketones, polyether sulfones, and polyethers. It may be formed of phenylene oxide, polyphenylene sulfide, polyethylene naphthalene, etc., but is not limited thereto.
  • Each structure layer is T-die method, inflation method, extrusion lamination, co-extrusion lamination; It can be laminated using an adhesive method such as dry lamination, sandwich lamination or thermal lamination using an adhesive such as polyurethane, unsaturated polyester, or epoxy resin, and more preferably dry lamination using a polyurethane adhesive and an isocyanate curing agent.
  • an adhesive method such as dry lamination, sandwich lamination or thermal lamination using an adhesive such as polyurethane, unsaturated polyester, or epoxy resin, and more preferably dry lamination using a polyurethane adhesive and an isocyanate curing agent.
  • Another aspect of the present invention provides a heating device including the planar heating element.
  • impression graphite 100 g was added to 1,000 g of NMP (N-Methyl-2-pyrrolidone, boiling point (bp): 204 ° C) and mechanically stirred for 24 hours. while wet.
  • NMP N-Methyl-2-pyrrolidone, boiling point (bp): 204 ° C
  • the processed impression graphite is a counter rotating bead mill equipped with a disk coupled to a zirconia ceramic bead and a rotating shaft, processing capacity: maximum 1.8L / bead: zirconia (ZrO 2 ), ⁇ 0.8mm,
  • a graphene composition was prepared by mechanical exfoliation and dispersion for 12 hours with centrifugal force by rotation of the disk (Mixer 100-200 rpm / Agitator 1,000-2,000 rpm) at a filling amount of 950 g).
  • polyester As shown in Table 1 below, 25 wt% of polyester as a polyester binder in 12 wt% of the silver particle-graphene composite prepared in Preparation Example 1, a polyolefin binder (polyethylene vinyl acetate copolymer, polyethylene vinylacetate copolymer ) at 25 wt%, solvent (using a mixture of toluene and xylene) at 45 wt%, Fatty acid modified polyester was added as a dispersant in an amount of 1 phr (parts per hundred rubber) compared to the total polymer binder content, and additional dispersion and exfoliation were performed in a counter rotating bead mill for 1 hour.
  • a polyolefin binder polyethylene vinyl acetate copolymer, polyethylene vinylacetate copolymer
  • solvent using a mixture of toluene and xylene
  • TDI Toluene Diisocyanate
  • DCP Dicumyl Peroxide
  • composition [wt%] additive Silver particle-graphene composite 5 * Dispersant 1phr (added when mixing components) * Curing agent 3.5 phr (added after mixing the components) * Cross-linking agent 3.5 phr (added after mixing the components) polyester binder 25 Polyolefin Binder 25 solvent 45 Sum 100
  • the prepared silver particle-graphene composite-based PTC ink (paste) was applied to a substrate and treated at 130 ° C. for 15 minutes to silk-screen print to prepare a graphene-based PTC heating element (coating film) having a thickness of 1 ⁇ m.
  • composition [wt%] additive acetylene carbon black 9 * Dispersant 1phr (added when mixing components) * Curing agent 5 phr (added after mixing the components) * Cross-linking agent 2phr (added after mixing the components) carbon nanotube 3 polyester binder 22 Polyolefin Binder 22 solvent 44 Sum 100
  • the PTC inks (paste) of Examples and Comparative Examples were applied to a substrate and treated at 130 ° C. for 15 minutes, and silk screen printing was performed to prepare a PTC constant temperature heating element (coating film) having a thickness of 1 ⁇ m.
  • the heat insulating material After spray-coating the foamed adhesive material on one side of the silver particle-graphene composite-based PTC constant temperature heating element prepared in Preparation Example 2 using the silver particle-graphene composite-based PTC ink (paste) of Example, the heat insulating material After bonding (laminating) by thermal compression (80 ⁇ 120 °C / 6 kgf / cm 2 ), heat treatment at a temperature of 40 ⁇ 50 °C for 24 hours to foam and harden the adhesive material, Planar heating element of the structure shown in Figure 1 was manufactured.
  • foamed adhesive material 21 wt% of liquid polyurethane, 59 wt% of methyl propyl ketone (MPK), 1 wt% of silica airgel powder, and 1.5 phr of a dispersant were added/mixed, followed by vigorous stirring for 30 minutes, and liquid polyisocyanate It was prepared by adding/mixing 15 wt% and further stirring for 10 minutes. Thereafter, 4 wt% of water as a foaming agent was prepared by adding/mixing and stirring immediately before spray coating.
  • MPK methyl propyl ketone
  • the silica airgel powder has a particle size of 2-40 ⁇ m, a pore diameter of 20 nm or less, a particle density of 120-150 kg/m 3 , a surface area of 600-800 m 2 /g, and a thermal conductivity of 0.012 W/m K. @ 25 °C or less.
  • thermo conductivity 0.05 to 0.07 W/m K
  • silica airgel insulating sheet thermo conductivity: 0.02 to 0.04 W/m K
  • FIG. 2 A TEM image of graphene prepared by mechanically exfoliating and dispersing graphite in Preparation Example 1 is shown in FIG. 2 .
  • FIG. 3A a TEM image of the silver nanoparticle-graphene composite prepared in Preparation Example 1 is shown in FIG. 3A.
  • the graphene layer was reduced to have 2 to 15 layers, and silver nanoparticles were attached to the graphene surface.
  • the silver nanoparticle-graphene composite contained carbon, oxygen, and silver, and the carbon content was 84.6 atom%, and the oxygen content It was confirmed that the silver content was 14.6 atomic% (atom%) and the silver content was 0.8 atomic% (atom%).
  • Powder resistance was measured using a powder resistance meter (Hantech, HPRM-FA). The thickness and density of a powder as a unit of measurement pressure changes. Resistance, sheet resistance, specific resistance and electrical conductivity were measured.
  • Electrodes are installed on the PTC constant-temperature heating element manufactured according to Preparation Example 2, and wires connected to the electrodes are pulled out to the outside of the oven, and the digital multimeter instrument placed outside the oven connected.
  • R 20 ° C and R 100 ° C are resistance values ( ⁇ ) measured at 20 ° C and 100 ° C, respectively.
  • Thermal conductivity was measured using a thermal conductivity meter (model name : TCI-2-A).
  • leakage current is measured by spraying 20g of water on the lower iron plate among the two iron plates, installing the PTC constant temperature heating element and plane heating element on the lower iron plate, and spraying 20g of water on the upper surface of the PTC constant temperature heating element and plane heating element, then on the PTC constant temperature heating element and plane heating element. After placing another iron plate on the , leakage current was measured using a leakage current meter (MI 2094 (METREL)).
  • MI 2094 MITREL
  • the plane heating element of Preparation Example 3 had reduced heat loss and leakage current, and improved heating efficiency.
  • the heating temperature was adjusted to 40° C. over 1 hour, and power energy, voltage, and current were measured, and are shown in Table 7 below.
  • the exothermic temperature in Table 7 is the temperature measured by each of the four installed sensors.
  • the plane heating element manufactured by Preparation Example 3 had a power consumption reduction rate of 41.7% at a heating temperature of 40 ° C. compared to power consumption at ambient temperature.
  • the PTC constant temperature heating element of the present invention includes a silver particle-graphene composite, so that the PTC effect is improved compared to the conventional PTC constant temperature heating element using carbon black, CNT or graphite. It can be efficiently manufactured, and due to these excellent characteristics, it is expected to be used as a heating device such as a heating sheet and a nano heating element requiring temperature control in the future, and can be applied to various other fields.
  • the high-efficiency PTC constant-temperature heating element using the silver-graphene composite-based polymer nanocomposite material according to the present invention secures excellent PTC characteristics and has excellent heating characteristics, while reducing power consumption, preventing damage to the heating element due to heat collection, and significantly reducing the risk of fire. There is an effect that can reduce it.
  • the high-efficiency PTC constant temperature heating element using the graphene-based polymer nanocomposite material according to the present invention can be used as a flexible planar heating element included in automobile seats in the future, or a nanostructure that requires precise temperature control. It is possible to manufacture a heating device of excellent quality that can be applied in various fields such as a heating device of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Resistance Heating (AREA)

Abstract

The present invention relates to a PTC constant temperature heating element and a planar heating element comprising a silver-graphene composite, and a manufacturing method thereof.

Description

은 입자-그래핀 복합체를 포함하는PTC 정온발열체PTC constant temperature heating element containing silver particle-graphene composite
본 발명은 은 입자-그래핀 복합체의 제조방법 및 이를 첨가하여 PTC(Positive Temperature Coefficient) 강도를 향상시킨 은-입자 그래핀 복합체 기반 고분자 나노복합소재를 포함하는 고효율 PTC 정온발열체의 제조방법, 그리고 이를 통해 제조한 자기온도제어 특성을 가지는 PTC 정온발열체 및 면상 발열체에 관한 것이다.The present invention relates to a method for manufacturing a silver particle-graphene composite, a method for manufacturing a high-efficiency PTC constant temperature heating element including a silver-particle graphene composite-based polymer nanocomposite with improved PTC (Positive Temperature Coefficient) strength by adding the same, and a method for manufacturing a high-efficiency PTC constant temperature heating element It relates to a PTC constant temperature heating element and a plane heating element having self-temperature control characteristics manufactured through
최근, 에너지 절약형 난방용 발열소재 및 이를 이용한 발열체의 연구개발이 가속화되면서 습식 시공에 따른 누설전류를 최소화시키는 새로운 기술의 개발이 대두되고 있다.Recently, as the research and development of energy-saving heating materials and heating elements using them is accelerated, the development of new technologies for minimizing leakage current due to wet construction has emerged.
현재까지 습식 시공 방식의 난방용 발열체로는 선상발열체(Wire Heater)가 주로 사용되어 오고 있었다. 하지만, 선상발열체는 Ni-Cr계 및 Fe-Ni-Cr계와 같은 발열소재로 제조되기 때문에 선상발열로 인해 열효율이 낮아 상대적으로 소비전력이 높고, 직렬회로 구성으로 인해 어느 한 곳의 회로가 오픈될 경우 발열체 전체가 열이 나지 않는 등 유지 보수의 어려움이 있다. 또한, 집열 등 국부과열과 같은 이상발열현상으로 발열체의 손상 및 화재의 위험성이 크고, 제품의 안정성이 결여되어 있다.Until now, wire heaters have been mainly used as heating elements for heating in a wet construction method. However, since the onboard heating element is made of heating materials such as Ni-Cr and Fe-Ni-Cr, the thermal efficiency is relatively low due to the on-board heating, so the power consumption is relatively high, and one circuit is open due to the series circuit configuration. If it is, there is difficulty in maintenance, such as the entire heating element does not heat up. In addition, there is a high risk of damage to the heating element and fire due to an abnormal heating phenomenon such as local overheating such as collecting heat, and the product lacks stability.
이에 반해, 카본계 면성발열체는 선상발열체 대비 열효율이 우수하지만, 카본블랙과 같은 전도성 입자를 저항 발열원으로 적용하기 때문에, 이 또한 반복적인 사용으로 인해 저항값이 크게 변화하고 집열 등 국부과열과 같은 이상발열현상으로 발열체의 손상 및 화재의 위험성이 크고, 제품의 안정성이 결여되어 있다.On the other hand, the carbon-based planar heating element has superior thermal efficiency compared to the linear heating element, but since conductive particles such as carbon black are applied as a resistance heating source, this also greatly changes the resistance value due to repeated use and causes abnormalities such as local overheating such as collecting heat. There is a high risk of damage to the heating element and fire due to the heat generation phenomenon, and the product lacks stability.
안정성 확보를 위해, 선상발열체와 면상발열체에 과열방지 센서 등 온도제어 시스템이 강구되고 있으나, 집열 등 국부과열과 같은 이상발열현상을 유발시키고 있다. 이상발열현상의 주요 경로는 보온이나 축열, 과열로부터 발생하며, 특히 축열부의 온도가 급격하게 상승되면서 발열체의 국부과열이 마감재에 손상을 입혀 전기화재의 원인이 되고 있다.In order to secure stability, a temperature control system such as an overheating prevention sensor for a linear heating element and a plane heating element is being devised, but it causes abnormal heating phenomena such as local overheating such as collecting heat. The main path of the abnormal heating phenomenon occurs from keeping warm, heat storage, or overheating. In particular, as the temperature of the heat storage part rises rapidly, local overheating of the heating element damages the finishing material and causes an electrical fire.
특히, 현재 습식용으로 시공되고 있는 선상발열체의 문제점을 극복하고 상대적으로 열효율이 우수한 면상발열체를 습식 시공용 발열체로 사용할 경우, 선상발열체보다 누설전류의 급격한 증가로 누전차단기가 작동하는 문제점이 발생한다.In particular, when a surface heating element with relatively excellent thermal efficiency is used as a heating element for wet construction, overcoming the problems of the onboard heating element currently being used for wet construction, the leakage current is rapidly increased compared to the onboard heating element, resulting in the operation of the circuit breaker. .
이러한 이유는, 기존의 면상발열체는 전기절연 및 난연 목적으로 대부분 PET 필름으로 제조되어 건식용 시공에 주로 사용되어 왔기 때문이다. 또한, 습식 시공 시 시멘트 몰탈 바닥과 접촉되는 강알칼리성과 면상발열체의 PET 필름이 선상발열체에 비해 보다 넓은 시공 바닥면을 갖는 계면접촉성에 의한 방수성으로 습기나 결로 발생 등의 취약한 단점이 있었다.This is because conventional planar heating elements are mostly made of PET film for electrical insulation and flame retardant purposes and have been mainly used for dry construction. In addition, there were weak points such as moisture or condensation due to strong alkalinity in contact with the cement mortar floor during wet construction and interfacial contact with the PET film of the planar heating element having a wider construction floor than the linear heating element.
또한, 에너지 효율 및 발열에 의한 안정성에 대한 요구조건이 확대되고 있는 만큼, 차세대 고효율 PTC 정온발열체 및 이를 이용한 발열체에 대한 개발이 요구되고 있다.In addition, as requirements for energy efficiency and stability due to heat generation are expanding, development of a next-generation high-efficiency PTC constant-temperature heating element and a heating element using the same is required.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록특허 제10-1168906호(Patent Document 1) Republic of Korea Patent Registration No. 10-1168906
(특허문헌 2) 대한민국 등록특허 제10-1593983호(Patent Document 2) Republic of Korea Patent Registration No. 10-1593983
이에 본 발명은 기계적 박리/분산 방법으로 제조한 은 입자-그래핀 복합체와 고분자 바인더를 혼합하여 은 입자-그래핀 기반 PTC 정온발열 페이스트를 제조하고, 이를 인쇄 또는 코팅하여 은 입자-그래핀 기반 고분자 나노복합소재를 활용한 고효율 PTC 정온발열체를 제조하는 방법, 고효율 PTC 정온발열체 및 면상 발열체를 제공하고자 한다.Accordingly, the present invention prepares a silver particle-graphene-based PTC constant-temperature heating paste by mixing a silver particle-graphene composite prepared by a mechanical exfoliation/dispersion method and a polymer binder, and then printing or coating the silver particle-graphene-based polymer It is intended to provide a method for manufacturing a high-efficiency PTC constant temperature heating element using a nanocomposite material, a high-efficiency PTC constant temperature heating element and a plane heating element.
특히 우수한 PTC 특성을 확보하여 발열특성이 우수한 동시에 소비전력 절감효과, 집열에 의한 발열체 손상방지 및 화재의 위험성을 방지하는 효과가 증대된 고효율 PTC 정온발열체 및 이의 제조방법을 제공하는 것을 목적으로 한다.In particular, it is an object of the present invention to provide a high-efficiency PTC constant-temperature heating element and a method for manufacturing the same, which have excellent heat generation characteristics by securing excellent PTC characteristics, reduce power consumption, prevent damage to the heating element due to heat collection, and increase the effect of preventing the risk of fire.
그러나 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본원의 일 측면은, 흑연을 노말메틸-2-피롤리돈(N-Methyl-2-pyrolidone, NMP)에 투입하고 교반하는 습윤 처리 단계; One aspect of the present application, a wet treatment step of adding graphite to normal methyl-2-pyrrolidone (N-Methyl-2-pyrolidone, NMP) and stirring;
상기 습윤 처리된 흑연을 기계적으로 박리하고 분산시켜서 그래핀(graphene) 포함 조성물을 제조하는 단계; 및preparing a graphene-containing composition by mechanically exfoliating and dispersing the wet graphite; and
상기 그래핀 포함 조성물에 은 입자를 투입한 후, 추가로 기계적으로 박리하고 분산시켜서 은 입자-그래핀 복합체를 제조하는 단계;를 포함하는, After adding silver particles to the graphene-containing composition, further mechanically exfoliating and dispersing them to prepare a silver particle-graphene composite,
은 입자-그래핀 복합체의 제조 방법을 제공한다.A method for preparing a silver particle-graphene composite is provided.
본 발명의 다른 일 측면은, 상술한 방법으로 은 입자-그래핀 복합체를 제조하는 단계; Another aspect of the present invention includes preparing a silver particle-graphene composite by the method described above;
상기 은 입자-그래핀 복합체와 고분자 바인더를 혼합하여 은 입자-그래핀 복합체 기반 PTC 정온발열 페이스트를 제조하는 단계; 및mixing the silver particle-graphene composite with a polymer binder to prepare a PTC constant-temperature heating paste based on the silver particle-graphene composite; and
상기 은 입자-그래핀 복합체 기반 PTC 정온발열 페이스트를 인쇄 또는 코팅하여 은 입자-그래핀 복합체 기반 고분자 나노복합소재를 활용한 PTC 정온발열체를 제조하는 단계;를 포함하는, Printing or coating the silver particle-graphene composite-based PTC constant temperature heating paste to prepare a PTC constant temperature heating element using a silver particle-graphene composite-based polymer nanocomposite material; including,
은 입자-그래핀 복합체 기반 고분자 나노복합소재를 포함하는 고효율 PTC 정온발열체 제조방법을 제공한다.Provided is a method for manufacturing a high-efficiency PTC constant temperature heating element including a silver particle-graphene composite-based polymer nanocomposite material.
본 발명의 또 다른 일 측면은, 은 입자-그래핀 복합체와 고분자 바인더를 포함하고, Another aspect of the present invention includes a silver particle-graphene composite and a polymer binder,
하기 식 1로 계산한 PTC 강도(Intensity)가 10,000% 이상인,The PTC intensity (Intensity) calculated by Equation 1 below is 10,000% or more,
PTC 정온 발열체를 제공한다. A PTC constant temperature heating element is provided.
[식 1][Equation 1]
PTC Intensity [%] = (R100℃ / R20℃)x100PTC Intensity [%] = (R 100℃ / R 20℃ )x100
(상기 식 1에서, R20℃ 및 R100℃는 각각 20 ℃ 및 100 ℃에서 측정한 그래핀 PTC 조성물의 저항값(Ω)이다.)(In Equation 1, R 20 ° C and R 100 ° C are the resistance values (Ω) of the graphene PTC composition measured at 20 ° C and 100 ° C, respectively.)
본 발명의 또 다른 일 측면은, 은 입자-그래핀 복합체와 고분자 바인더를 포함하는 PTC 정온발열체를 포함하는 면상 발열층;Another aspect of the present invention is a planar heating layer including a PTC constant temperature heating element including a silver particle-graphene composite and a polymer binder;
단열층; 및insulation layer; and
상기 면상 발열층과 상기 단열층 사이의 발포 접착층;을 포함하는,Including, a foamed adhesive layer between the planar heating layer and the heat insulating layer
면상 발열체를 제공한다.A planar heating element is provided.
본 발명의 또 다른 일 측면은, 상기 면상 발열체를 포함하는, Another aspect of the present invention, including the planar heating element,
발열장치를 제공한다.A heating device is provided.
본 발명에 따른 은-그래핀 복합체 기반 고분자 나노복합소재를 활용한 고효율 PTC 정온발열체는 우수한 PTC 특성을 확보하여 발열특성이 우수한 동시에 소비전력 절감효과, 집열에 의한 발열체 손상방지 및 화재의 위험성을 현저하게 저감할 수 있는 효과가 있다. The high-efficiency PTC constant-temperature heating element using the silver-graphene composite-based polymer nanocomposite material according to the present invention secures excellent PTC characteristics and has excellent heating characteristics, while reducing power consumption, preventing damage to the heating element due to heat collection, and significantly reducing the risk of fire. There is an effect that can reduce it.
또한, 본 발명에 따른 그래핀 기반 고분자 나노복합소재를 활용한 고효율 PTC 정온발열체의 우수한 특성들로 인하여 향후 자동차 시트 등에 포함되는 유연한(Flexible) 면상 발열체로의 활용이나, 정밀한 온도제어가 필요한 나노 구조체의 발열장치 등 다양한 분야에서 응용될 수 있는 우수한 품질의 발열장치를 제조할 수 있다.In addition, due to the excellent properties of the high-efficiency PTC constant temperature heating element using the graphene-based polymer nanocomposite material according to the present invention, it can be used as a flexible planar heating element included in automobile seats in the future, or a nanostructure that requires precise temperature control. It is possible to manufacture a heating device of excellent quality that can be applied in various fields such as a heating device of
도 1은 제조예 3에 의해서 제조된 면상 발열체의 모식도이다.1 is a schematic diagram of a planar heating element manufactured by Production Example 3.
도 2는 제조예 1에서 흑연을 기계적 박리 및 분산시켜서 제조한 그래핀의 투과전자 현미경(Transmission Electron Microscope, TEM) 이미지이다.2 is a transmission electron microscope (TEM) image of graphene prepared by mechanically exfoliating and dispersing graphite in Preparation Example 1;
도 3은 제조예 1에 의해서 제조된 은 나노입자-그래핀 복합체의 TEM 이미지 및 에너지분산형 분광분석법(Energy Dispersive X-ray Spectroscopy, EDS) 이미지이다.3 is a TEM image and an energy dispersive X-ray spectroscopy (EDS) image of the silver nanoparticle-graphene composite prepared in Preparation Example 1.
도 4는 면상 발열체의 발열 성능의 분석을 위하여 온도 센서를 설치한 제조예 3에 의해서 제조된 면상 발열체의 모식도이다.Figure 4 is a schematic diagram of a planar heating element manufactured by Preparation Example 3 in which a temperature sensor is installed to analyze the heating performance of the planar heating element.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예, 실시예 및 도면에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.Hereinafter, with reference to the accompanying drawings, embodiments and embodiments of the present application will be described in detail so that those skilled in the art can easily practice the present invention. However, this disclosure may be embodied in many different forms and is not limited to the implementations, examples, and drawings described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted.
명세서 전체에서, 어떤 부분이 어떠한 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a certain component is said to "include", it means that it may further include other components, not excluding other components unless otherwise stated.
본원의 일 측면은, 흑연을 노말메틸-2-피롤리돈(N-Methyl-2-pyrolidone, NMP)에 투입하고 교반하는 습윤 처리 단계; 상기 습윤 처리된 흑연을 기계적으로 박리하고 분산시켜서 그래핀 포함 조성물을 제조하는 단계; 및 상기 그래핀 포함 조성물에 은 입자를 투입한 후, 추가로 기계적으로 박리하고 분산시켜서 은 나노 입자-그래핀 복합체를 제조하는 단계;를 포함하는, 은 입자-그래핀 복합체의 제조 방법을 제공한다.One aspect of the present application, a wet treatment step of adding graphite to normal methyl-2-pyrrolidone (N-Methyl-2-pyrolidone, NMP) and stirring; preparing a graphene-containing composition by mechanically exfoliating and dispersing the wet graphite; and adding silver particles to the graphene-containing composition, then mechanically exfoliating and dispersing the silver particles to prepare a silver nanoparticle-graphene composite. .
상기 흑연은 인상 흑연으로 평균 입자 크기는 10~30 μm 일 수 있고, 상기 은 입자의 평균 입자 크기는 1~5 μm 일 수 있다. The graphite is impression graphite, and the average particle size may be 10 μm to 30 μm, and the average particle size of the silver particles may be 1 μm to 5 μm.
상기 은 입자는 투입 후 박리 및 분산 단계를 거치면서 그 크기가 나노 크기가 될 수 있다. The size of the silver particles may become nano-sized while passing through steps of exfoliation and dispersion after being introduced.
한편, 상기 그래핀은 2층 이상, 45층 이하의 층이 적층된 그래핀일 수 있다.Meanwhile, the graphene may be graphene in which two or more layers and 45 or less layers are stacked.
또한, 상기 습윤 처리는 12 시간 이상, 36 시간 이하로 수행될 수 있고, 상기 습윤 처리의 온도는 200 ℃ 이상, 210 ℃ 이하일 수 있으며, 상기 박리 및 분산은 5 시간 이상, 24 시간 이하로 수행될 수 있다.In addition, the wet treatment may be performed for 12 hours or more and 36 hours or less, the temperature of the wet treatment may be 200 ° C. or more and 210 ° C. or less, and the peeling and dispersion may be performed for 5 hours or more and 24 hours or less. can
일 구현예에 있어서, 상기 기계적인 박리 및 분산은, 비드밀, 습식볼밀, 건식교반기 및 이들을 하나 이상 사용하는 복합교반기를 사용하여 100 내지 2,000rpm의 속도로 기계적 박리 및 분산하는 것을 포함할 수 있다.In one embodiment, the mechanical separation and dispersion may include mechanical separation and dispersion at a speed of 100 to 2,000 rpm using a bead mill, a wet ball mill, a dry stirrer, and a complex stirrer using one or more of them. .
한편, 상기 습윤 처리 단계 이전 및/또는 이후에, 흑연을 0 내지 -100 ℃의 온도에서 20시간 내지 30시간 동안 냉각 처리하는 냉각 단계;를 더 포함할 수 있다.Meanwhile, before and/or after the wet treatment step, a cooling step of cooling the graphite at a temperature of 0 to -100 °C for 20 to 30 hours may be further included.
상기 냉각 단계를 통해서 흑연 내부의 그래핀 층간/분자간 인력이 약화될 수 있으며, 그로 인해 흑연과 표면에너지가 가장 가까운 NMP가 흑연의 층간 삽입이 쉬워진다. 이러한 단일 또는 다단 열충격 단계를 통해 흑연 층간에 삽입된 NMP는 흑연 내부의 그래핀 층간 분자간 인력을 더욱 약화시켜 이후 진행되는 기계적인 박리 및 분산 단계를 통해 그래핀을 용이하게 제조할 수 있다.Through the cooling step, the interlayer/molecular attraction of graphene inside the graphite may be weakened, and as a result, NMP having the closest surface energy to graphite may easily intercalate graphite. NMP intercalated between the graphite layers through such a single or multi-stage thermal shock step further weakens the intermolecular attraction between the graphene layers inside the graphite, so that graphene can be easily prepared through subsequent mechanical exfoliation and dispersion steps.
본 발명의 다른 일 측면은, 상술한 방법으로 은 입자-그래핀 복합체를 제조하는 단계; 상기 은 입자-그래핀 복합체와 고분자 바인더를 혼합하여 은 입자-그래핀 복합체 기반 PTC 정온발열 페이스트를 제조하는 단계; 및 은 입자-그래핀 복합체 기반 PTC 정온발열 페이스트를 인쇄 또는 코팅하여 은 입자-그래핀 복합체 기반 고분자 나노복합소재를 활용한 고효율 PTC 정온발열체를 제조하는 단계;를 포함하는, 은 입자-그래핀 복합체 기반 고분자 나노복합소재를 포함하는 고효율 PTC 정온발열체 제조방법을 제공한다.Another aspect of the present invention includes preparing a silver particle-graphene composite by the method described above; mixing the silver particle-graphene composite with a polymer binder to prepare a PTC constant-temperature heating paste based on the silver particle-graphene composite; and printing or coating a silver particle-graphene composite-based PTC constant-temperature heating paste to prepare a high-efficiency PTC constant-temperature heating element using a silver particle-graphene composite-based polymer nanocomposite; Provides a method for manufacturing a high-efficiency PTC constant temperature heating element including a polymer-based nanocomposite material.
본 발명의 일 측면에서 고분자 바인더는 폴리에틸렌, 폴리프로필렌, 폴리부타디엔, 폴리올레핀, 폴리에스테르, 폴리비닐클로라이드, 폴리비닐아세테이트, 폴리에틸렌비닐아세테이트, 폴리에스테르-폴리에틸렌비닐아세테이트 공중합체, 폴리에틸렌테레프탈레이트, 폴리스틸렌, 폴리에틸렌케톤, 폴리에틸렌테레프탈레이트글리콜, 폴리에틸렌이미드 및 이들이 하나 이상 혼합된 복합 고분자로 이루어진 군에서 선택되는 어느 하나를 포함하고, 은 입자-그래핀 복합체와 고분자 바인더는1:100 내지 40:100의 무게비로 혼합되는 것을 포함한다. In one aspect of the present invention, the polymer binder is polyethylene, polypropylene, polybutadiene, polyolefin, polyester, polyvinyl chloride, polyvinyl acetate, polyethylene vinyl acetate, polyester-polyethylene vinyl acetate copolymer, polyethylene terephthalate, polystyrene, polyethylene It includes any one selected from the group consisting of ketone, polyethylene terephthalate glycol, polyethyleneimide, and a composite polymer in which one or more of these are mixed, and the silver particle-graphene composite and the polymer binder are in a weight ratio of 1:100 to 40:100. including mixing
바람직하게, 고분자 바인더는 폴리에스테르계 바인더와 폴리올레핀계 바인더를 0.1:10 내지 10:0.1의 중량비로 혼합하여 사용할 수 있으며, 보다 더 바람직하게는 1:5 내지 5:1의 중량비로 혼합하여 사용할 수 있다.Preferably, the polymeric binder may be used by mixing a polyester-based binder and a polyolefin-based binder in a weight ratio of 0.1:10 to 10:0.1, and more preferably, a weight ratio of 1:5 to 5:1. there is.
폴리에스테르계 바인더는, 폴리에스테르계 플라스틱 필름(PET 필름) 또는 부직포 등 면상발열체의 다른 성분층과 상용성 및 접착력이 우수하고, 내약품성, 내굴곡성 및 인쇄성(작업성)이 양호한 폴리에스테르 수지를 주성분으로 한다. 보다 상세하게는 비닐계 합성수지 5~11 wt%, 폴리에스테르계 합성수지 20~35 wt%, 방향족 탄화수소계 용매 20~50 wt%, 케톤계 용매 20~40 wt%, 소포제 0.5~1.5 wt%, 레벨링제 0.5~1.5 wt%를 포함하는 조성물을 가열이 가능한 반응기 내에서 기계적 교반하여 제조할 수 있다. 비닐계 합성수지로는 폴리비닐클로라이드(Polyvinyl Chloride), 폴리비닐아세테이트(Polyvinyl Acetate) 등이 있고, 폴리에스테르계 합성수지는 폴리에스테르(Polyester) 등이 있다. 방향족 탄화수소계 용매는 톨루엔(Toluene), 자일렌(Xylene) 등이 있고, 케톤계 용매로는 메틸에틸케톤(Methyl ethyl ketone), 아세톤(Acetone) 등이 있다. 바람직하게 폴리에스테르계 바인더는 비닐계 합성수지로 폴리비닐클로라이드(polyvinyl chlororide) 5.03wt%, 폴리비닐아세테이트(polyvinyl acetate) 5.03wt%, 폴리에스테르계 합성수지로 폴리에스테르(polyester) 30.15wt%, 방향족 탄화수소 용매로 톨루엔(toluene) 24.12wt%, 케톤계 용매로 메틸에틸케톤(methyl ethyl ketone) 6.03wt%, 아세톤(acetone) 28.1wt%, 소포제 0.5 wt%, 레벨링제 1wt%를 포함하는 조성물을 가열이 가능한 반응기 내에서 기계적 교반하여 제조할 수 있다.The polyester binder is a polyester resin having excellent compatibility and adhesiveness with other component layers of a planar heating element such as a polyester plastic film (PET film) or nonwoven fabric, and good chemical resistance, bending resistance and printability (workability). as the main component. More specifically, 5-11 wt% of vinyl-based synthetic resin, 20-35 wt% of polyester-based synthetic resin, 20-50 wt% of aromatic hydrocarbon-based solvent, 20-40 wt% of ketone-based solvent, 0.5-1.5 wt% of antifoaming agent, leveling It can be prepared by mechanically stirring a composition containing 0.5 to 1.5 wt% in a reactor capable of heating. Vinyl-based synthetic resins include polyvinyl chloride and polyvinyl acetate, and polyester-based synthetic resins include polyester and the like. Aromatic hydrocarbon-based solvents include toluene and xylene, and ketone-based solvents include methyl ethyl ketone and acetone. Preferably, the polyester binder includes 5.03wt% of polyvinyl chloride as a vinyl-based synthetic resin, 5.03wt% of polyvinyl acetate, 30.15wt% of polyester as a polyester-based synthetic resin, and an aromatic hydrocarbon solvent. A composition containing 24.12 wt% of toluene, 6.03 wt% of methyl ethyl ketone as a ketone solvent, 28.1 wt% of acetone, 0.5 wt% of an antifoaming agent, and 1 wt% of a leveling agent can be heated. It can be prepared by mechanical stirring in a reactor.
폴리올레핀계 바인더는 결정성 고분자인 폴리에틸렌(Polyethylene, PE), 폴리프로필렌(Polypropylene, PP) 및/또는 에틸렌초산비닐(Etylene Vinyl Acetate, EVA)를 혼합하였으며, 보다 상세하게는 폴리에틸렌 1~10 wt%, 폴리프로필렌 1~5 wt%, 폴리에틸렌비닐아세테이트 코폴리머 5~30 wt%, 방향족 탄화수소계 용제 10~90 wt%, 소포제 0.5~1.5 wt%, 레벨링제 0.5~1.5 wt%를 포함하는 조성물을 가열이 가능한 반응기 내에서 기계적 교반하여 제조할 수 있다. 바람직하게 폴리올레핀계 바인더는 폴리에틸렌 2.84wt%, 폴리프로필렌 0.95wt%, 폴리에틸렌비닐아세테이트 코폴리머 9.48wt%, 방향족 탄화수소 용매로 톨루엔(toluene) 56.87wt%, 자일렌(xylene) 28.44wt%, 소포제 0.47 wt%, 레벨링제 0.95wt%를 포함하는 조성물을 가열이 가능한 반응기 내에서 기계적 교반하여 제조할 수 있다.The polyolefin binder is a mixture of crystalline polymers such as polyethylene (PE), polypropylene (PP) and/or ethylene vinyl acetate (EVA), and more specifically, 1 to 10 wt% of polyethylene, A composition containing 1 to 5 wt% of polypropylene, 5 to 30 wt% of polyethylene vinyl acetate copolymer, 10 to 90 wt% of an aromatic hydrocarbon solvent, 0.5 to 1.5 wt% of an antifoaming agent, and 0.5 to 1.5 wt% of a leveling agent is heated. It can be prepared by mechanical stirring in a possible reactor. Preferably, the polyolefin binder contains 2.84 wt% of polyethylene, 0.95 wt% of polypropylene, 9.48 wt% of polyethylene vinyl acetate copolymer, 56.87 wt% of toluene as an aromatic hydrocarbon solvent, 28.44 wt% of xylene, and 0.47 wt% of antifoaming agent. %, it can be prepared by mechanically stirring a composition containing 0.95wt% of a leveling agent in a reactor capable of heating.
보다 바람직하게 고분자 바인더는 폴리에스테르계 바인더 및 폴리올레핀계 바인더를 1:1 중량비로 혼합한 것을 사용할 수 있다.More preferably, as the polymeric binder, a mixture of a polyester-based binder and a polyolefin-based binder in a weight ratio of 1:1 may be used.
본 발명의 일 측면에서 인쇄 또는 코팅방법은, 그라비아 인쇄, 콤마 코팅, 실크스크린 인쇄, 스프레이 코팅, 침적코팅, 롤 코팅, 메이어바코팅, 블레이드 코팅, 마이크로그라비아 코팅, 슬롯다이코팅, 슬라이드 코팅, 커튼 코팅 및 이들이 하나 이상 혼합된 인쇄 또는 코팅법으로 이루어진 군에서 선택되는 어느 하나의 방법을 포함한다.In one aspect of the present invention, the printing or coating method includes gravure printing, comma coating, silk screen printing, spray coating, dip coating, roll coating, Meyer bar coating, blade coating, microgravure coating, slot die coating, slide coating, curtain It includes any one method selected from the group consisting of coating and printing or coating methods in which one or more of these are mixed.
본 발명의 다른 일 측면은, 은 입자-그래핀 복합체와 고분자 바인더를 포함하고, 하기 식 1로 계산한 PTC 강도(Intensity)가 10,000% 이상인 PTC 정온 발열체를 제공한다.Another aspect of the present invention provides a PTC constant-temperature heating element including a silver particle-graphene composite and a polymer binder and having a PTC intensity of 10,000% or more as calculated by Equation 1 below.
[식 1][Equation 1]
PTC Intensity [%] = (R100℃ / R20℃)x100PTC Intensity [%] = (R 100℃ / R 20℃ )x100
(상기 식 1에서, R20℃ 및 R100℃는 각각 20 ℃ 및 100 ℃에서 측정한 그래핀 PTC 조성물의 저항값(Ω)이다.)(In Equation 1, R 20 ° C and R 100 ° C are the resistance values (Ω) of the graphene PTC composition measured at 20 ° C and 100 ° C, respectively.)
본 발명의 또 다른 일 측면은, 은 입자-그래핀 복합체와 고분자 바인더를 포함하는 PTC 정온발열체를 포함하는 면상 발열층; 단열층; 및 상기 면상 발열층과 상기 단열층 사이의 발포 접착층;을 포함하는, 면상 발열체를 제공한다.Another aspect of the present invention is a planar heating layer including a PTC constant temperature heating element including a silver particle-graphene composite and a polymer binder; insulation layer; It provides a planar heating element comprising a; and a foamed adhesive layer between the planar heating layer and the heat insulating layer.
한편, 상기 발포 접착층은 실리카 에어로젤(aerogel) 분말을 포함하는 발포 폴리우레탄층일 수 있다.Meanwhile, the foamed adhesive layer may be a foamed polyurethane layer containing silica airgel powder.
상기 폴리우레탄층은 1 wt% 이상, 5 wt% 이하의 실리카 에어로젤 분말을 포함할 수 있다.The polyurethane layer may include 1 wt% or more and 5 wt% or less of silica airgel powder.
상기 실리카 에어로젤 분말은 입자 크기가 2-40μm이고, 기공 직경이 20 nm 이하이며, 입자 밀도가 120-150kg/m3이고, 표면적이 600-800m2/g이며, 열전도율이 0.012 W/m·K @ 25°C 이하일 수 있다.The silica airgel powder has a particle size of 2-40 μm, a pore diameter of 20 nm or less, a particle density of 120-150 kg/m 3 , a surface area of 600-800 m 2 /g, and a thermal conductivity of 0.012 W/m K. @ 25°C or less.
또한, 상기 단열층은 클로즈드 셀(closed cell)로 구성된 고분자 발포 단열 시트층 또는 실리카 에어로젤 단열 시트층일 수 있다.In addition, the heat insulating layer may be a polymer foam heat insulating sheet layer or a silica airgel heat insulating sheet layer composed of closed cells.
상기 클로즈드 셀로 구성된 고분자 발포단열시트의 열전도도는 0.05 W/m·K 이상, 0.07 W/m·K 이하일 수 있고, 실리카 에어로젤 단열시트의 열전도도는 0.02 W/m·K 이상, 0.04 W/m·K 이하일 수 있다.The thermal conductivity of the polymer foam insulation sheet composed of the closed cell may be 0.05 W/m K or more and 0.07 W/m K or less, and the thermal conductivity of the silica airgel insulation sheet may be 0.02 W/m K or more and 0.04 W/m Can be less than or equal to K.
상기 면상 발열체의 열전도도가 0.07 W/m·K 이하이고, 누설 전류가 0.3 mA 이하이며, 주변 온도에서의 소비전력 대비 발열 온도 40℃에서의 소비전력 감소율이 40% 이상일 수 있다.The thermal conductivity of the planar heating element is 0.07 W / m K or less, the leakage current is 0.3 mA or less, and the power consumption reduction rate at a heating temperature of 40 ° C. compared to the power consumption at ambient temperature may be 40% or more.
즉, 상기 면상 발열체의 발포 접착층 및 단열층은 상기 면상 발열체의 열전도도, 누설 전류 및 소비 전력을 감소시켜서 발열 효율을 향상시킬 수 있다.That is, the foamed adhesive layer and the heat insulating layer of the planar heating element can improve the heating efficiency by reducing the thermal conductivity, leakage current and power consumption of the planar heating element.
상기 면상 발열체는 면상 발열체에 통상적으로 사용되는 구성을 더 추가할 수 있다. 보다 상세하게는 전극층, 전기전도층, 방수필름층, 기타 발열층, 금속 또는 비금속 필름층, 부직포층 등이 있을 수 있으며, 본 발명은 이에 한정되지 않는다.The planar heating element may further add a configuration commonly used in a planar heating element. More specifically, there may be an electrode layer, an electrically conductive layer, a waterproof film layer, other heating layers, a metal or non-metal film layer, a non-woven fabric layer, and the like, but the present invention is not limited thereto.
전극층은 PTC 정온발열체의 양 옆에 일정폭으로 형성되어 전극 간의 전류의 흐름을 조절하여 발열체의 발열 온도를 상승 유지한다. 전극층의 전극의 재질은 폴리아닐린, 폴리피롤 및 폴리티오펜과 같은 전도성 고분자; 탄소와 같은 전도성 성분; 은, 금, 백금, 팔라듐, 구리, 알루미늄, 주석, 철 및 니켈과 같은 금속으로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있다. 바람직하게는 열전도성 및 전기전도성이 우수한 구리를 사용한다.The electrode layers are formed with a certain width on both sides of the PTC constant temperature heating element to control the flow of current between the electrodes and maintain the heating temperature of the heating element. Materials of the electrodes of the electrode layer include conductive polymers such as polyaniline, polypyrrole, and polythiophene; conductive components such as carbon; At least one selected from the group consisting of metals such as silver, gold, platinum, palladium, copper, aluminum, tin, iron and nickel may be used. Preferably, copper having excellent thermal conductivity and electrical conductivity is used.
기타 발열층은 전극층 상부에 PTC 정온발열체와 함께 적층될 수 있으며, 전기가 흐를 때 발열하게 된다. 그 재질은 도전성 카본, 카본블랙, 그래핀, 탄소나노튜브(CNT), 그래파이트(graphite) 중 어느 하나 또는 둘 이상 혼합된 것이 바람직하며, 카본섬유로 직조된 발열층, 부직포에 CNT나 그래핀을 함침시킨 발열층, 부직포에 전도성 카본을 함침시킨 발열층, 기재필름 상에 CNT나 그래핀 페이스트 또는 잉크를 코팅하여 제조한 발열층 등을 추가로 더 포함하여 사용할 수 있다.Other heating layers may be stacked together with a PTC constant temperature heating element on top of the electrode layer, and generate heat when electricity flows. The material is preferably any one or a mixture of two or more of conductive carbon, carbon black, graphene, carbon nanotube (CNT), and graphite, and a heating layer woven of carbon fiber, CNT or graphene on nonwoven fabric. An impregnated heating layer, a nonwoven fabric impregnated with conductive carbon, a heating layer prepared by coating CNT, graphene paste, or ink on a base film may be further included and used.
기타 필름층으로는 금속, 비금속 또는 금속-비금속 혼용 필름 중에 선택된 1종 이상이 1층 이상 추가로 부착될 수 있다. 금속, 비금속 또는 금속-비금속 혼용 필름에는 공기층이 형성될 수 있다. 금속 필름으로는 알루미늄, 구리 등이 포함될 수 있으며, 비금속 필름으로는 폴리머 또는 세라믹, 상기 금속-비금속 혼용 필름으로는 알루미늄-폴리머 또는 알루미늄-세라믹이 선택적으로 사용될 수 있다. 구체적으로 폴리머 필름은 폴리에틸렌테레프탈레이트, 금속-비금속 혼용 필름은 알루미늄-폴리에틸렌테레프탈레이트가 바람직하나, 이에 한정되는 것은 아니다. 금속, 비금속 또는 금속-비금속 혼용 필름은 발열체의 최외각의 일면 또는 양면에 부착될 수 있으나, 이에 한정되지 않고 발열체의 다양한 층 사이에 1층 이상 추가될 수 있다.As the other film layer, one or more layers selected from metal, non-metal, or metal-non-metal mixture films may be additionally attached. An air layer may be formed in the metal, non-metal or metal-non-metal mixed film. Aluminum, copper, etc. may be included as the metal film, polymer or ceramic may be selectively used as the non-metal film, and aluminum-polymer or aluminum-ceramic may be selectively used as the metal-nonmetal mixed film. Specifically, the polymer film is polyethylene terephthalate, and the metal-non-metal mixed film is preferably aluminum-polyethylene terephthalate, but is not limited thereto. The metal, non-metal, or metal-non-metal mixed film may be attached to one or both surfaces of the outermost surface of the heating element, but is not limited thereto and may be added in one or more layers between various layers of the heating element.
또한 발열체의 시공시 대면적 증가에 따른 누설전류를 최소화하기 위해, 발열체의 양면에 방수필름층 및 발열체와 방수필름층 사이에 개재되는 부직포층 등을 더 포함할 수 있다. In addition, in order to minimize the leakage current due to the increase in the large area during construction of the heating element, a waterproof film layer and a nonwoven fabric layer interposed between the heating element and the waterproof film layer may be further included on both sides of the heating element.
방수 필름층은 습식 시공 시 대면적 증가에 따라 발생되는 누설전류를 최소화하고, 습식 시공시 방수성을 갖게 할 목적으로 사용된다. 그 재질은 절연성 및 방수성을 부여할 수 있는 물질이라면 제한 없이 사용할 수 있으며, 구체적으로, 폴리에틸렌테레프탈레이트, 폴리프로필렌, 폴리에스테르, 폴리스틸렌, 폴리에테레테르케톤, 폴리에틸렌 테레프탈레이트 글리콜, 및 폴리에틸렌이미드로 이루어진 군에서 선택된 1종을 이용할 수 있다.The waterproof film layer is used for the purpose of minimizing the leakage current generated according to the increase in the large area during wet construction and providing waterproofness during wet construction. Any material capable of imparting insulation and waterproofness may be used without limitation, and specifically, polyethylene terephthalate, polypropylene, polyester, polystyrene, polyether ether ketone, polyethylene terephthalate glycol, and polyethyleneimide. One selected from the group consisting of can be used.
부직포층은 섬유들로 형성되며, 섬유 사이에 형성된 다수의 기공과 표면에 요철이 더 형성될 수 있다. 이러한 부직포의 기공 및 요철 등으로 인한 에어포켓을 통해 누설전류를 방지할 수 있다. 부직포 기재를 형성하는 섬유는 평균 직경이 0.1 ㎛ 내지 10 ㎛일 수 있다. 섬유는, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르, 아라미드와 같은 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌 등으로 형성할 수 있으며, 이에 한정되지 않는다.The non-woven fabric layer is formed of fibers, and a plurality of pores formed between the fibers and irregularities may be further formed on the surface. Leakage current can be prevented through air pockets caused by pores and irregularities of the nonwoven fabric. The fibers forming the nonwoven substrate may have an average diameter of 0.1 μm to 10 μm. Fibers include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamides such as aramids, polyacetals, polycarbonates, polyimides, polyether ether ketones, polyether sulfones, and polyethers. It may be formed of phenylene oxide, polyphenylene sulfide, polyethylene naphthalene, etc., but is not limited thereto.
각 구조물 층들은 T-다이법, 인플레이션법, 압출 라미네이션, 공압출 라미네이션; 폴리우레탄, 불포화폴리에스테르, 에폭시 수지 등의 접착제를 사용한 드라이 라미네이션, 샌드위치 라미네이션 또는 열 라미네이션 등의 접착방법을 사용하여 합지할 수 있으며, 보다 바람직하게는 폴리우레탄 접착제와 이소시아네이트 경화제에 의한 드라이 라미네이션을 사용할 수 있다.Each structure layer is T-die method, inflation method, extrusion lamination, co-extrusion lamination; It can be laminated using an adhesive method such as dry lamination, sandwich lamination or thermal lamination using an adhesive such as polyurethane, unsaturated polyester, or epoxy resin, and more preferably dry lamination using a polyurethane adhesive and an isocyanate curing agent. can
본 발명의 또 다른 일 측면은, 상기 면상 발열체를 포함하는, 발열장치를 제공한다.Another aspect of the present invention provides a heating device including the planar heating element.
이하, 실시예를 이용하여 본원을 좀 더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.Hereinafter, the present application will be described in more detail using examples, but the present application is not limited thereto.
[제조예 1] 그래핀 및 은 입자-그래핀 복합체 제조[Preparation Example 1] Preparation of graphene and silver particle-graphene composite
인상 흑연(d50: 20μm, 탄소함량(carbon content): 최소 99.5%) 100g을 NMP(N-Methyl-2-pyrrolidone, 끓는 점(bp): 204℃) 1,000g에 투입하고 24시간 동안 기계적으로 교반하면서 습윤시켰다.100 g of impression graphite (d50: 20 μm, carbon content: minimum 99.5%) was added to 1,000 g of NMP (N-Methyl-2-pyrrolidone, boiling point (bp): 204 ° C) and mechanically stirred for 24 hours. while wet.
처리된 인상 흑연을 지르코니아 세라믹 비드와 회전축에 결합된 원판(Disk)이 장착된 비드밀(counter rotating bead mill, 처리용량 : 최대 1.8L / 비드(bead) : 지르코니아 (ZrO2), φ 0.8mm, 충진량 950g)에서 원판의 회전(혼합(Mixer) 100~200rpm / 교반(Agitator) 1,000~2,000rpm)에 의한 원심력으로 12시간 동안 기계적 박리 및 분산 진행하여 그래핀 조성물을 제조하였다.The processed impression graphite is a counter rotating bead mill equipped with a disk coupled to a zirconia ceramic bead and a rotating shaft, processing capacity: maximum 1.8L / bead: zirconia (ZrO 2 ), φ 0.8mm, A graphene composition was prepared by mechanical exfoliation and dispersion for 12 hours with centrifugal force by rotation of the disk (Mixer 100-200 rpm / Agitator 1,000-2,000 rpm) at a filling amount of 950 g).
제조된 그래핀 조성물에 은 입자(구상, d50: 2.6μm) 3g을 투입하고, 추가로 지르코니아 세라믹 비드와 회전축에 결합된 원판(Disk)이 장착된 비드밀(counter rotating bead mill)에서 원판의 회전(혼합(Mixer) 100~200rpm / 교반(Agitator) 1,000~2,000rpm)에 의한 원심력으로 12시간 동안 기계적 박리 및 분산 진행하여 은 나노입자가 그래핀 표면에 코팅된 은 입자-그래핀 복합체를 제조하였다.3 g of silver particles (spherical, d50: 2.6 μm) were added to the prepared graphene composition, and the disk was rotated in a counter rotating bead mill equipped with a disk coupled to a zirconia ceramic bead and a rotating shaft. A silver particle-graphene composite coated with silver nanoparticles on the graphene surface was prepared by mechanical exfoliation and dispersion for 12 hours by centrifugal force by (Mixer 100-200 rpm / Agitator 1,000-2,000 rpm). .
[실시예][Example]
하기 표 1에 나타낸 바와 같이, 상기 제조예 1에 의해 제조된 은 입자-그래핀 복합체12 wt%에 폴리에스테르계 바인더로 폴리에스테르를 25wt%, 폴리올레핀계 바인더(폴리에틸렌비닐아세테이트 공중합체, polyethylene vinylacetate copolymer)를 25 wt%, 솔벤트(톨루엔 및 자일렌을 혼합하여 사용함)를 45 wt%, 분산제로 지방산 치환된 폴리에스테르(Fatty acid modified polyester계)를 전체 고분자 바인더 함량 대비 1phr(parts per hundred rubber)로 투입하고 비드밀(counter rotating bead mill)에서 1시간 동안 추가 분산 및 박리를 진행하였다.As shown in Table 1 below, 25 wt% of polyester as a polyester binder in 12 wt% of the silver particle-graphene composite prepared in Preparation Example 1, a polyolefin binder (polyethylene vinyl acetate copolymer, polyethylene vinylacetate copolymer ) at 25 wt%, solvent (using a mixture of toluene and xylene) at 45 wt%, Fatty acid modified polyester was added as a dispersant in an amount of 1 phr (parts per hundred rubber) compared to the total polymer binder content, and additional dispersion and exfoliation were performed in a counter rotating bead mill for 1 hour.
이후 경화제로 톨루엔 디이소시아네이트(TDI, Toluene Diisocianate)를 3. 5phr, 가교제로 다이큐밀 퍼옥사이드(DCP, Dicumyl Peroxide)를 3.5phr만큼 투입하여 은 입자-그래핀 복합체 기반 PTC 잉크(페이스트)를 제조하였다. 구성성분의 함량은 아래 표 1과 같다.Then, 3.5 phr of Toluene Diisocyanate (TDI) was added as a curing agent and 3.5 phr of Dicumyl Peroxide (DCP) as a crosslinking agent to prepare a PTC ink (paste) based on a silver particle-graphene composite. . The contents of the components are shown in Table 1 below.
구성성분Ingredients 조성 [wt%]Composition [wt%] 첨가제additive
은 입자-그래핀 복합체Silver particle-graphene composite 55 * 분산제 1phr(구성성분 배합 시 투입)
* 경화제 3.5phr(구성성분 배합 후 투입)
* 가교제 3.5phr(구성성분 배합 후 투입)
* Dispersant 1phr (added when mixing components)
* Curing agent 3.5 phr (added after mixing the components)
* Cross-linking agent 3.5 phr (added after mixing the components)
폴리에스테르계 바인더polyester binder 2525
폴리올레핀계 바인더Polyolefin Binder 2525
솔벤트solvent 4545
합계Sum 100100
제조된 은 입자-그래핀 복합체 기반 PTC 잉크(페이스트)를 기판에 도포하고, 130 ℃에서 15분 동안 처리하는 방식으로 실크스크린 인쇄하여 1 ㎛ 두께의 그래핀 기반 PTC 발열체(도막)를 제조하였다.The prepared silver particle-graphene composite-based PTC ink (paste) was applied to a substrate and treated at 130 ° C. for 15 minutes to silk-screen print to prepare a graphene-based PTC heating element (coating film) having a thickness of 1 μm.
[비교예][Comparative example]
실시예에서 은 입자-그래핀 복합체 5 wt% 대신 아세틸렌 카본블랙 9wt%와 카본나노튜브(CNT) 3wt%로 변경하고, 바인더, 솔벤트 및 첨가제의 함량을 조절하여 카본블랙/CNT 기반 PTC 잉크(페이스트)를 제조하였다. 구성성분의 함량은 아래 표 2와 같다.In the embodiment, instead of 5 wt% of the silver particle-graphene composite, 9 wt% of acetylene carbon black and 3 wt% of carbon nanotube (CNT) were changed, and the content of the binder, solvent, and additive was adjusted to obtain carbon black/CNT-based PTC ink (paste ) was prepared. The contents of the components are shown in Table 2 below.
구성성분Ingredients 조성 [wt%]Composition [wt%] 첨가제additive
아세틸렌 카본블랙acetylene carbon black 99 * 분산제 1phr(구성성분 배합 시 투입)
* 경화제 5phr(구성성분 배합 후 투입)
* 가교제 2phr(구성성분 배합 후 투입)
* Dispersant 1phr (added when mixing components)
* Curing agent 5 phr (added after mixing the components)
* Cross-linking agent 2phr (added after mixing the components)
카본나노튜브 carbon nanotube 33
폴리에스테르계 바인더polyester binder 2222
폴리올레핀계 바인더Polyolefin Binder 2222
솔벤트solvent 4444
합계Sum 100100
[제조예 2] 정온 발열체 제조[Production Example 2] Manufacturing constant temperature heating element
실시예 및 비교예의 PTC 잉크(페이스트)를 기판에 도포하고, 130 ℃에서 15분 동안 처리하는 방식으로 실크스크린 인쇄하여 1 ㎛ 두께의 PTC 정온 발열체(도막)를 제조하였다.The PTC inks (paste) of Examples and Comparative Examples were applied to a substrate and treated at 130 ° C. for 15 minutes, and silk screen printing was performed to prepare a PTC constant temperature heating element (coating film) having a thickness of 1 μm.
[제조예 3] 면상 발열체 제조[Production Example 3] Production of planar heating element
실시예의 은 입자-그래핀 복합체 기반 PTC 잉크(페이스트)를 사용하여 제조예 2에 의해서 제조된 은 입자-그래핀 복합체 기반 PTC 정온 발열체의 한 면에 발포 접착 소재를 스프레이 코팅한 후, 단열 소재를 열압착(80~120℃/ 6 kgf/cm2)하여 합지(라미네이팅)시킨 후, 40~50℃의 온도 하에서 24시간 동안 열처리하여 접착소재를 발포 및 경화하여, 도 1에 나타낸 구조의 면상 발열체를 제조하였다.After spray-coating the foamed adhesive material on one side of the silver particle-graphene composite-based PTC constant temperature heating element prepared in Preparation Example 2 using the silver particle-graphene composite-based PTC ink (paste) of Example, the heat insulating material After bonding (laminating) by thermal compression (80 ~ 120 ℃ / 6 kgf / cm 2 ), heat treatment at a temperature of 40 ~ 50 ℃ for 24 hours to foam and harden the adhesive material, Planar heating element of the structure shown in Figure 1 was manufactured.
상기 발포 접착 소재는 액상 폴리우레탄 21 wt%, 메틸프로필케톤(methyl propyl ketone, MPK) 59 wt%, 실리카 에어로젤 분말 1wt% 및 분산제 1.5phr을 투입/배합한 후 30분간 강하게 교반하고, 액상 폴리이소시아네이트 15wt%를 투입/배합하여 10분간 추가 교반하여 제조하였다. 이후, 발포제인 물 4wt%를 스프레이 코팅 직전 투입/배합 및 교반하여 제조하였다.For the foamed adhesive material, 21 wt% of liquid polyurethane, 59 wt% of methyl propyl ketone (MPK), 1 wt% of silica airgel powder, and 1.5 phr of a dispersant were added/mixed, followed by vigorous stirring for 30 minutes, and liquid polyisocyanate It was prepared by adding/mixing 15 wt% and further stirring for 10 minutes. Thereafter, 4 wt% of water as a foaming agent was prepared by adding/mixing and stirring immediately before spray coating.
상기 발포 접착 소재의 구성 성분 및 함량 범위는 아래 표 3과 같다.Components and content ranges of the foamed adhesive material are shown in Table 3 below.
구성성분Ingredients 조성 [wt%]Composition [wt%] 비고note
주제subject 폴리우레탄Polyurethane 20 ~ 2520 to 25 * 분산제 1.5phr* Dispersant 1.5phr
경화제curing agent 폴리이소시아네이트polyisocyanate 10 ~ 1510 to 15
유기용제organic solvent MPKMPK 55 ~ 6055 to 60
발포제 blowing agent water 1 ~ 51 to 5
첨가제 additive 실리카 에어로젤silica airgel 1 ~ 51 to 5
합계Sum 100100
상기 실리카 에어로젤 분말은 입자 크기가 2-40μm이고, 기공 직경이 20 nm 이하이며, 입자 밀도가 120-150kg/m3이고, 표면적이 600-800m2/g이며, 열전도율이 0.012 W/m·K @ 25℃ 이하였다.The silica airgel powder has a particle size of 2-40 μm, a pore diameter of 20 nm or less, a particle density of 120-150 kg/m 3 , a surface area of 600-800 m 2 /g, and a thermal conductivity of 0.012 W/m K. @ 25 ℃ or less.
또한, 상기 단열 소재로는 클로즈드 셀(closed cell)로 구성된 고분자 발포단열시트(열전도도: 0.05~0.07 W/m·K) 또는 실리카 에어로젤 단열시트(열전도도: 0.02~0.04 W/m·K)가 사용되었다.In addition, as the heat insulating material, a polymer foam insulating sheet composed of closed cells (thermal conductivity: 0.05 to 0.07 W/m K) or a silica airgel insulating sheet (thermal conductivity: 0.02 to 0.04 W/m K) was used
[실험예 1] [Experimental Example 1] 제조예 1의 그래핀 및 은 입자-그래핀 복합체의 투과전자 현미경(Transmission Electron Microscope, TEM) 및 EDS 분석Transmission electron microscope (TEM) and EDS analysis of graphene and silver particle-graphene composite of Preparation Example 1
제조예 1에서 흑연을 기계적 박리 및 분산시켜서 제조한 그래핀의 TEM 사진을 도 2에 도시하였다. A TEM image of graphene prepared by mechanically exfoliating and dispersing graphite in Preparation Example 1 is shown in FIG. 2 .
TEM을 통해서 그래핀은 2~23개의 층을 가지고 있는 것으로 확인되었다.Through TEM, graphene was confirmed to have 2 to 23 layers.
또한, EDS 분석을 통해서 탄소와 산소 원소를 포함하고 있음을 확인하였고, 탄소의 함량은 98.99 원자%(atom %), 산소의 함량은 1.01 원자%(atom%)로 확인되었다.In addition, it was confirmed through EDS analysis that it contained carbon and oxygen elements, and the content of carbon was 98.99 atomic % (atom %) and the oxygen content was confirmed to be 1.01 atomic % (atom %).
한편, 제조예 1에 의해서 제조된 은 나노입자-그래핀 복합체의 TEM 사진을 도 3a에 도시하였다.Meanwhile, a TEM image of the silver nanoparticle-graphene composite prepared in Preparation Example 1 is shown in FIG. 3A.
추가의 기계적 박리 및 분산 과정을 통하여 그래핀의 층이 줄어들어 2~15개의 층을 가지고, 은 나노입자가 그래핀의 표면에 부착되어 있음을 확인하였다.Through the additional mechanical exfoliation and dispersion process, it was confirmed that the graphene layer was reduced to have 2 to 15 layers, and silver nanoparticles were attached to the graphene surface.
또한, 도3b에 도시한 바와 같이, EDS 분석을 통해서 은 나노입자-그래핀 복합체가 탄소, 산소 및 은을 포함하고 있음을 확인하였고, 탄소의 함량은 84.6 원자%(atom%), 산소의 함량은 14.6 원자%(atom%), 은의 함량은 0.8 원자%(atom%)로 확인되었다.In addition, as shown in FIG. 3B, it was confirmed through EDS analysis that the silver nanoparticle-graphene composite contained carbon, oxygen, and silver, and the carbon content was 84.6 atom%, and the oxygen content It was confirmed that the silver content was 14.6 atomic% (atom%) and the silver content was 0.8 atomic% (atom%).
[실험예 2][Experimental Example 2] 제조예 1에 의해서 제조된 은 나노입자-그래핀 복합체의 분체 저항 분석Powder resistance analysis of the silver nanoparticle-graphene composite prepared in Preparation Example 1
제조예 1에 의해서 제조된 은 나노입자-그래핀 복합체의 분체 저항을 측정하여 그 결과값을 아래 표 4에 나타내었다.Powder resistance of the silver nanoparticle-graphene composite prepared in Preparation Example 1 was measured, and the resultant values are shown in Table 4 below.
분체 저항은 분체 저항 측정기(한테크, HPRM-FA)를 사용하여 측정되었다. 측정 단위 압력의 변화에 따른 분체의 두께, 밀도. 저항, 면저항, 비저항 및 전기 전도도가 측정되었다.Powder resistance was measured using a powder resistance meter (Hantech, HPRM-FA). The thickness and density of a powder as a unit of measurement pressure changes. Resistance, sheet resistance, specific resistance and electrical conductivity were measured.
LOAD
[kgf]
LOAD
[kgf]
두께
[mm]
thickness
[mm]
저항
(R)
[Ω]
resistance
(R)
[Ω]

저항
(SR)
[Ω/sq]
noodle
resistance
(SR)
[Ω/sq]
비저항
(VR)
[Ωcm]
resistivity
(VR)
[Ωcm]
전기 전도도
(Conductivity)
[S/cm]
electrical conductivity
(Conductivity)
[S/cm]
밀도
(Density)
[g/cc]
density
(Density)
[g/cc]
486.50486.50 1.9321.932 0.003630.00363 0.0160.016 0.0030.003 315.012315.012 1.3621.362
1027.501027.50 1.6911.691 0.003190.00319 0.0140.014 0.0020.002 408.920408.920 1.5561.556
1514.001514.00 1.5451.545 0.002970.00297 0.0130.013 0.0020.002 481.049481.049 1.7031.703
두께가 얇아짐에 따라서, 밀도가 감소하고 저항이 감소함(전기 전도도가 향상됨)을 확인할 수 있었다.As the thickness became thinner, it was confirmed that the density decreased and the resistance decreased (electrical conductivity improved).
[실험예 3][Experimental Example 3] PTC 정온 발열체의 PTC intensity 분석PTC intensity analysis of PTC constant temperature heating element
실시예 및 비교예의 PTC 잉크(페이스트)를 사용하여 제조예 2에 따라 제조된 PTC 정온 발열체에 전극을 설치하고 전극과 결선되어 있는 전선을 오븐 외부로 빼내어서 오븐 외부에 배치된 디지털멀티미터 계측기와 연결하였다. Using the PTC ink (paste) of Examples and Comparative Examples, electrodes are installed on the PTC constant-temperature heating element manufactured according to Preparation Example 2, and wires connected to the electrodes are pulled out to the outside of the oven, and the digital multimeter instrument placed outside the oven connected.
이후, 오븐 온도를 20~100℃까지 10℃씩 상승시키면서 PTC 정온발열체의 저항변화를 디지털멀티미터 기기를 이용하여 측정하여 PTC intensity를 측정하여 아래 표 5에 나타내었다.Thereafter, while increasing the oven temperature by 10 ° C from 20 to 100 ° C, the resistance change of the PTC constant temperature heating element was measured using a digital multimeter device to measure the PTC intensity and shown in Table 5 below.
온도
[℃]
temperature
[℃]
실시예 PTC 잉크(페이스트) 사용
PTC 정온 발열체
Example PTC ink (paste) use
PTC constant temperature heating element
비교예 PTC 잉크(페이스트) 사용
PTC 정온 발열체
Comparative Example Using PTC Ink (Paste)
PTC constant temperature heating element
PTC Intensity
[%]
PTC Intensity
[%]
11,000 %11,000% 781 %781%
☞ PTC Intensity [%] = (R100℃ / R20℃)x100☞ PTC Intensity [%] = (R 100℃ / R 20℃ )x100
상기 표 5에서 R20℃ 및 R100℃는 각각 20 ℃ 및 100 ℃에서 측정한 저항값(Ω)이다.In Table 5, R 20 ° C and R 100 ° C are resistance values (Ω) measured at 20 ° C and 100 ° C, respectively.
실시예의 은 입자-그래핀 기반 PTC 정온발열체가 비교예의 기존 PTC 정온발열체에 비하여 우수한 PTC 특성을 나타냄을 알 수 있었다.It was found that the silver particle-graphene-based PTC constant temperature heating element of Example exhibited superior PTC characteristics compared to the existing PTC constant temperature heating element of Comparative Example.
[실험예 4][Experimental Example 4] 면상 발열체의 열전도도 및 누설전류의 분석Analysis of thermal conductivity and leakage current of plane heating element
실시예의 PTC 잉크(페이스트)를 사용하여 제조한 PTC 정온 발열체 및 제조예 3에 의해서 제조된 면상 발열체의 열전도도 및 누설 전류를 분석하여 하기 표 6에 나타내었다.The thermal conductivity and leakage current of the PTC constant-temperature heating element prepared using the PTC ink (paste) of Example and the planar heating element prepared by Preparation Example 3 are analyzed and shown in Table 6 below.
열전도도는 열전도도 측정기(모델명: TCI-2-A)를 사용하여 측정되었다.Thermal conductivity was measured using a thermal conductivity meter (model name : TCI-2-A).
또한, 누설 전류는 2개의 철판 중 아래 철판에 물 20g을 뿌린 후 PTC 정온발열체 및 면상 발열체를 아래 철판 위에 설치하고 PTC 정온발열체 및 면상 발열체의 윗면에 물 20g을 뿌린 후 PTC 정온발열체 및 면상 발열체 상에 다른 철판을 위치시킨 후 누설 전류 측정기(MI 2094(METREL))를 사용하여 누설전류를 측정하였다.In addition, the leakage current is measured by spraying 20g of water on the lower iron plate among the two iron plates, installing the PTC constant temperature heating element and plane heating element on the lower iron plate, and spraying 20g of water on the upper surface of the PTC constant temperature heating element and plane heating element, then on the PTC constant temperature heating element and plane heating element. After placing another iron plate on the , leakage current was measured using a leakage current meter (MI 2094 (METREL)).
열전도도
[W/m·K]
thermal conductivity
[W/m K]
누설전류
[mA]
leakage current
[mA]
실시예의 PTC 잉크(페이스트)를 사용하여 제조예 2에 따라 제조한 PTC 정온발열체PTC constant temperature heating element prepared according to Preparation Example 2 using the PTC ink (paste) of Example 0.10.1 0.50.5
제조예 3의 면상 발열체Planar heating element of Production Example 3 0.050.05 0.20.2
실시예의 PTC 잉크(페이스트)를 사용하여 제조예 2에 따라 제조된 PTC 정온 발열체의 한 면에 발포 접착 소재로 단열 소재를 접착시킨 제조예 3의 면상 발열체는 실시예의 PTC 잉크(페이스트)를 사용하여 제조예 2에 따라 제조된 PTC 정온 발열체에 비하여 열전도도가 낮아지고 누설 전류가 감소함을 확인할 수 있었다.The planar heating element of Preparation Example 3 in which a heat insulating material is bonded to one side of the PTC constant temperature heating element manufactured according to Preparation Example 2 using the PTC ink (paste) of Example 3 using the PTC ink (paste) of Example Compared to the PTC constant temperature heating element manufactured according to Preparation Example 2, it was confirmed that the thermal conductivity was lowered and the leakage current was reduced.
즉, 제조예 3의 면상 발열체는 실시예의 PTC 잉크(페이스트)를 사용하여 제조예 2에 따라 제조된 PTC 정온 발열체에 비하여 열손실 및 누설전류가 감소하여, 발열 효율이 향상됨을 알 수 있었다.That is, compared to the PTC constant-temperature heating element prepared according to Preparation Example 2 using the PTC ink (paste) of Example 3, the plane heating element of Preparation Example 3 had reduced heat loss and leakage current, and improved heating efficiency.
[실험예 5][Experimental Example 5] 면상 발열체의 발열 성능의 분석Analysis of the heating performance of the plane heating element
도 4에 나타낸 바와 같이, 제조예 3에 의해서 제조된 면상 발열체의 한 면 위에 4개의 온도 센서를 설치하였다.As shown in Figure 4, four temperature sensors were installed on one side of the planar heating element manufactured by Preparation Example 3.
전원과 연결하여 1시간에 걸쳐서 발열 온도를 40℃로 조절하고, 전력 에너지, 전압 및 전류를 측정하여, 하기 표 7에 나타내었다.After connecting to a power source, the heating temperature was adjusted to 40° C. over 1 hour, and power energy, voltage, and current were measured, and are shown in Table 7 below.
시간
[분]
hour
[minute]
전력에너지
[W]
power energy
[W]
전압
[V]
Voltage
[V]
전류
[A]
electric current
[A]
발열 온도
[℃]
fever temperature
[℃]
주변
온도
[℃]
around
temperature
[℃]
00 14.414.4 1212 1.21.2 25.425.4 25.225.2 25.225.2 25.325.3 23.123.1
6060 8.48.4 1212 0.70.7 40.340.3 39.639.6 39.439.4 39.739.7 22.722.7
상기 표 7의 발열 온도는 설치된 4개의 센서에서 각각 측정된 온도이다.The exothermic temperature in Table 7 is the temperature measured by each of the four installed sensors.
발열 성능 분석을 통하여 제조예 3에 의해서 제조된 면상 발열체는 주변 온도에서의 소비 전력 대비 40℃의 발열 온도에서 소비 전력 감소율이 41.7%에 달함을 알 수 있었다.Through the heating performance analysis, it was found that the plane heating element manufactured by Preparation Example 3 had a power consumption reduction rate of 41.7% at a heating temperature of 40 ° C. compared to power consumption at ambient temperature.
이와 같이, 본 발명의 실시예의 PTC 잉크(페이스트)를 사용한 PTC 정온발열체 및 면상 발열체는 온도가 상승하는 조건 하에서 통전되었을 때, 전기저항이 증가하고, 전류량을 감소시키며, 이를 통해 발열량을 효과적으로 감소시킬 수 있었으며, 이러한 PTC 정온발열체 및 면상 발열체의 자기온도제어(또는 정온발열) 특성을 통해 과열 및 과전류에 의한 발열체 손상이나 화재위험을 예방할 수 있고, 소비전력 절감 효과를 가지는 고효율의 PTC 정온발열체 및 면상 발열체를 제조할 수 있다.In this way, when the PTC constant temperature heating element and the surface heating element using the PTC ink (paste) of the embodiment of the present invention are energized under conditions where the temperature rises, the electrical resistance increases and the amount of current decreases, thereby effectively reducing the amount of heat generated. Through the self-temperature control (or constant temperature heating) characteristics of these PTC constant temperature heating elements and flat heating elements, it is possible to prevent damage to heating elements or fire hazards due to overheating and overcurrent, and to reduce power consumption. A heating element can be manufactured.
이상 살펴본 바와 같이, 본 발명의 PTC 정온발열체는 은 입자-그래핀 복합체를 포함함으로써, 기존 카본블랙이나 CNT 또는 흑연을 사용한 PTC 정온발열체에 비해 PTC 효과가 향상된 자기온도제어성 정온발열체 및 면상 발열체를 효율적으로 제조할 수 있으며, 이러한 우수한 특성들로 인하여 향후 발열시트 등과 같은 발열장치 및 온도제어가 필요한 나노발열소자 등으로의 활용이 기대되고, 그밖에 다양한 분야에 응용 할 수 있다.As described above, the PTC constant temperature heating element of the present invention includes a silver particle-graphene composite, so that the PTC effect is improved compared to the conventional PTC constant temperature heating element using carbon black, CNT or graphite. It can be efficiently manufactured, and due to these excellent characteristics, it is expected to be used as a heating device such as a heating sheet and a nano heating element requiring temperature control in the future, and can be applied to various other fields.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 개시된 실시예에 한정되는 것이 아니며, 후술하는 특허청구범위에 의하여 해석되며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태의 기술 사상이 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an example of the technical idea of the present invention, and various modifications and variations can be made to those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the scope of the present invention is not limited to the disclosed embodiments, and is interpreted by the claims to be described later, and all changes or modified forms of technical ideas derived from the meaning and scope of the claims and equivalent concepts thereof It should be construed as being included in the scope of the present invention.
본 발명에 따른 은-그래핀 복합체 기반 고분자 나노복합소재를 활용한 고효율 PTC 정온발열체는 우수한 PTC 특성을 확보하여 발열특성이 우수한 동시에 소비전력 절감효과, 집열에 의한 발열체 손상방지 및 화재의 위험성을 현저하게 저감할 수 있는 효과가 있다. The high-efficiency PTC constant-temperature heating element using the silver-graphene composite-based polymer nanocomposite material according to the present invention secures excellent PTC characteristics and has excellent heating characteristics, while reducing power consumption, preventing damage to the heating element due to heat collection, and significantly reducing the risk of fire. There is an effect that can reduce it.
또한, 본 발명에 따른 그래핀 기반 고분자 나노복합소재를 활용한 고효율 PTC 정온발열체의 우수한 특성들로 인하여 향후 자동차 시트 등에 포함되는 유연한(Flexible) 면상 발열체로의 활용이나, 정밀한 온도제어가 필요한 나노 구조체의 발열장치 등 다양한 분야에서 응용될 수 있는 우수한 품질의 발열장치를 제조할 수 있다.In addition, due to the excellent properties of the high-efficiency PTC constant temperature heating element using the graphene-based polymer nanocomposite material according to the present invention, it can be used as a flexible planar heating element included in automobile seats in the future, or a nanostructure that requires precise temperature control. It is possible to manufacture a heating device of excellent quality that can be applied in various fields such as a heating device of

Claims (11)

  1. 흑연을 노말메틸-2-피롤리돈(N-Methyl-2-pyrolidone, NMP)에 투입하고 교반하는 습윤 처리 단계; A wet treatment step of adding graphite to normal methyl-2-pyrrolidone (N-Methyl-2-pyrolidone, NMP) and stirring;
    상기 습윤 처리된 흑연을 기계적으로 박리하고 분산시켜서 그래핀 포함 조성물을 제조하는 단계; 및preparing a graphene-containing composition by mechanically exfoliating and dispersing the wet graphite; and
    상기 그래핀 포함 조성물에 은 입자를 투입한 후, 추가로 기계적으로 박리하고 분산시켜서 은 입자-그래핀 복합체를 제조하는 단계;를 포함하는, After adding silver particles to the graphene-containing composition, further mechanically exfoliating and dispersing them to prepare a silver particle-graphene composite,
    은 입자-그래핀 복합체의 제조 방법.A method for producing a silver particle-graphene composite.
  2. 제1항에 있어서,According to claim 1,
    상기 기계적인 박리 및 분산은 비드밀, 습식볼밀, 건식교반기 및 이들을 하나 이상 사용하는 복합교반기를 사용하여 100 내지 2,000rpm의 속도로 기계적 박리 및 분산하는 것을 포함하는, The mechanical separation and dispersion comprises mechanical separation and dispersion at a speed of 100 to 2,000 rpm using a bead mill, a wet ball mill, a dry stirrer, and a composite stirrer using one or more of them,
    은 입자-그래핀 복합체의 제조 방법.A method for producing a silver particle-graphene composite.
  3. 제 1항 또는 제2항의 방법으로 은 입자-그래핀 복합체를 제조하는 단계; preparing a silver particle-graphene composite by the method of claim 1 or 2;
    상기 은 입자-그래핀 복합체와 고분자 바인더를 혼합하여 은 입자-그래핀 복합체 기반 PTC 정온발열 페이스트를 제조하는 단계; 및mixing the silver particle-graphene composite with a polymer binder to prepare a PTC constant-temperature heating paste based on the silver particle-graphene composite; and
    상기 은 입자-그래핀 복합체 기반 PTC 정온발열 페이스트를 인쇄 또는 코팅하여 은 입자-그래핀 복합체 기반 고분자 나노복합소재를 활용한 PTC 정온발열체를 제조하는 단계;를 포함하는, Printing or coating the silver particle-graphene composite-based PTC constant temperature heating paste to prepare a PTC constant temperature heating element using a silver particle-graphene composite-based polymer nanocomposite material; including,
    은 입자-그래핀 복합체 기반 고분자 나노복합소재를 포함하는 PTC 정온발열체 제조방법.Method for manufacturing a PTC constant temperature heating element including a silver particle-graphene composite-based polymer nanocomposite material.
  4. 제3항에 있어서,According to claim 3,
    상기 고분자 바인더는 폴리에스테르, 폴리에틸렌비닐아세테이트, 폴리에스테르-폴리에틸렌비닐아세테이트 공중합체, 폴리비닐클로라이드, 폴리에틸렌, 폴리프로필렌, 폴리부타디엔, 폴리올레핀, 폴리비닐클로라이드, 폴리비닐아세테이트, 폴리에틸렌테레프탈레이트, 폴리스틸렌, 폴리에틸렌케톤, 폴리에틸렌테레프탈레이트글리콜, 폴리에틸렌이미드 및 이들이 하나 이상 혼합된 복합 고분자로 이루어진 군에서 선택되는 어느 하나를 포함하고,The polymer binder is polyester, polyethylene vinyl acetate, polyester-polyethylene vinyl acetate copolymer, polyvinyl chloride, polyethylene, polypropylene, polybutadiene, polyolefin, polyvinyl chloride, polyvinyl acetate, polyethylene terephthalate, polystyrene, polyethylene ketone , Polyethylene terephthalate glycol, polyethyleneimide, and any one selected from the group consisting of a composite polymer in which one or more of them are mixed,
    상기 은 입자-그래핀 복합체와 고분자 바인더는 1:100 내지 40:100의 무게비로 혼합되는 것인, 은 입자-그래핀 복합체를 포함하는, Including a silver particle-graphene composite, wherein the silver particle-graphene composite and the polymer binder are mixed in a weight ratio of 1:100 to 40:100.
    PTC 정온발열체 제조방법.Manufacturing method of PTC constant temperature heating element.
  5. 제4항에 있어서, According to claim 4,
    상기 인쇄 또는 코팅방법은, 그라비아 인쇄, 콤마 코팅, 실크스크린 인쇄, 스프레이 코팅, 침적코팅, 롤 코팅, 메이어바코팅, 블레이드 코팅, 마이크로그라비아 코팅, 슬롯다이코팅, 슬라이드 코팅, 커튼 코팅 및 이들이 하나 이상 혼합된 인쇄 또는 코팅법으로 이루어진 군에서 선택되는 어느 하나의 방법을 포함하는, 은 입자-그래핀 복합체를 포함하는 PTC 정온발열체를 포함하는,The printing or coating method includes gravure printing, comma coating, silk screen printing, spray coating, dip coating, roll coating, Mayer bar coating, blade coating, microgravure coating, slot die coating, slide coating, curtain coating, and one or more of these Including a PTC constant temperature heating element including a silver particle-graphene composite, including any one method selected from the group consisting of mixed printing or coating methods,
    PTC 정온발열체 제조방법.Manufacturing method of PTC constant temperature heating element.
  6. 은 입자-그래핀 복합체와 고분자 바인더를 포함하고, A silver particle-graphene composite and a polymer binder,
    하기 식 1로 계산한 PTC 강도(Intensity)가 10,000% 이상인,The PTC intensity (Intensity) calculated by Equation 1 below is 10,000% or more,
    PTC 정온 발열체.PTC constant temperature heating element.
    [식 1][Equation 1]
    PTC Intensity [%] = (R100℃ / R20℃)x100PTC Intensity [%] = (R 100℃ / R 20℃ )x100
    (상기 식 1에서, R20℃ 및 R100℃는 각각 20 ℃ 및 100 ℃에서 측정한 그래핀 PTC 조성물의 저항값(Ω)이다.)(In Equation 1, R 20 ° C and R 100 ° C are the resistance values (Ω) of the graphene PTC composition measured at 20 ° C and 100 ° C, respectively.)
  7. 은 입자-그래핀 복합체와 고분자 바인더를 포함하는 PTC 정온발열체를 포함하는 면상 발열층;a planar heating layer including a PTC constant temperature heating element including a silver particle-graphene composite and a polymer binder;
    단열층; 및insulation layer; and
    상기 면상 발열층과 상기 단열층 사이의 발포 접착층;을 포함하는,Including, a foamed adhesive layer between the planar heating layer and the heat insulating layer
    면상 발열체.face heating element.
  8. 제7항에 있어서,According to claim 7,
    상기 발포 접착층은 실리카 에어로젤 분말을 포함하는 발포 폴리우레탄층인,The foamed adhesive layer is a foamed polyurethane layer containing silica airgel powder,
    면상 발열체.face heating element.
  9. 제7항에 있어서,According to claim 7,
    상기 단열층은 클로즈드 셀로 구성된 고분자 발포 단열 시트층 또는 실리카 에어로젤 단열 시트층인,The heat insulating layer is a polymer foam heat insulating sheet layer or a silica airgel heat insulating sheet layer composed of closed cells,
    면상 발열체.Face heating element.
  10. 제7항에 있어서,According to claim 7,
    상기 면상 발열체의 열전도도가 0.07 W/m·K 이하이고,The thermal conductivity of the planar heating element is 0.07 W / m K or less,
    누설 전류가 0.3 mA 이하인,Leakage current is less than 0.3 mA,
    면상 발열체.Face heating element.
  11. 제7항의 면상 발열체를 포함하는, Including the planar heating element of claim 7,
    발열장치.heating device.
PCT/KR2021/017609 2021-11-24 2021-11-26 Ptc constant temperature heating element containing silver particle-graphene composite WO2023095960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210163115 2021-11-24
KR10-2021-0163115 2021-11-24

Publications (1)

Publication Number Publication Date
WO2023095960A1 true WO2023095960A1 (en) 2023-06-01

Family

ID=86539759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017609 WO2023095960A1 (en) 2021-11-24 2021-11-26 Ptc constant temperature heating element containing silver particle-graphene composite

Country Status (2)

Country Link
KR (1) KR20230076774A (en)
WO (1) WO2023095960A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200106716A (en) * 2019-03-05 2020-09-15 엔디티엔지니어링(주) Method for manufacturing few layer graphene, and method for manufacturing ptc positive temperature heating element comprising graphene-containing polymer nanocomposite
CN111715889A (en) * 2020-06-22 2020-09-29 大连理工大学 Method for preparing defect-free graphene/silver nanoparticle composite material by one-step method and application of defect-free graphene/silver nanoparticle composite material
KR20200125032A (en) * 2019-04-25 2020-11-04 한국전자기술연구원 Flexible planar heater and manufacturing method thereof
KR102231955B1 (en) * 2020-09-04 2021-03-26 (주)이노로드 Structure method of snow melting pavement using planar heating complex sheet
KR20210095409A (en) * 2020-01-23 2021-08-02 율촌화학 주식회사 Transparent planar heating device and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101168906B1 (en) 2012-06-29 2012-08-02 엔디티엔지니어링(주) Constant heater using ptc-positive temperature coefficient constant heater-ink polymer
KR101593983B1 (en) 2015-07-03 2016-02-15 엔디티엔지니어링(주) Heating Surface for Wet using a Constant-temperature Polymer PTC Heating Ink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200106716A (en) * 2019-03-05 2020-09-15 엔디티엔지니어링(주) Method for manufacturing few layer graphene, and method for manufacturing ptc positive temperature heating element comprising graphene-containing polymer nanocomposite
KR20200125032A (en) * 2019-04-25 2020-11-04 한국전자기술연구원 Flexible planar heater and manufacturing method thereof
KR20210095409A (en) * 2020-01-23 2021-08-02 율촌화학 주식회사 Transparent planar heating device and preparation method thereof
CN111715889A (en) * 2020-06-22 2020-09-29 大连理工大学 Method for preparing defect-free graphene/silver nanoparticle composite material by one-step method and application of defect-free graphene/silver nanoparticle composite material
KR102231955B1 (en) * 2020-09-04 2021-03-26 (주)이노로드 Structure method of snow melting pavement using planar heating complex sheet

Also Published As

Publication number Publication date
KR20230076774A (en) 2023-05-31

Similar Documents

Publication Publication Date Title
WO2016108656A1 (en) Transparent sheet heater
WO2020096310A1 (en) Separator for electrochemical device and electrochemical device containing same
WO2013085126A1 (en) Preparation method of full coverage type plastic film carbon heating element
WO2014003257A1 (en) Constant heater using polymeric ptc constant heating ink
WO2018084518A1 (en) Epoxy paste composition including silver-coated copper nanowires having core-shell structure, and conductive film including same
WO2012036538A2 (en) Conductive polymer composition for ptc element with decreased ntc characteristics, using carbon nanotube
CZ323494A3 (en) Electrical insulation material and process for producing an electrically-insulated conductor
WO2019103545A1 (en) Separator fabrication method, separator fabricated thereby, and electrochemical element comprising same separator
EP1441001B1 (en) Flame-retardant polyester film and processed product including the same
WO2014209021A1 (en) Method for manufacturing porous separator for secondary battery by using nano vapor, separator manufactured using same, and secondary battery
WO2020171661A1 (en) Separator for lithium secondary battery and manufacturing method therefor
WO2017179879A1 (en) Battery heater, battery system comprising same, and manufacturing method therefor
WO2019132456A1 (en) Method for manufacturing separator, separator formed thereby, and electrochemical device including same
WO2019078650A1 (en) Separator and electrochemical device comprising same
WO2023095960A1 (en) Ptc constant temperature heating element containing silver particle-graphene composite
KR102575970B1 (en) Method for manufacturing few layer graphene, and method for manufacturing ptc positive temperature heating element comprising graphene-containing polymer nanocomposite
WO2020197102A1 (en) Method for manufacturing separator for electrochemical device
CN110563991B (en) Silicone rubber anti-electromagnetic interference insulating cloth and preparation method thereof
WO2017222192A1 (en) Heating element
WO2022050801A1 (en) Separator for electrochemical device and method for manufacturing same
WO2020251230A1 (en) Separator and electrochemical device comprising same
WO2020256394A1 (en) Method for manufacturing composite material, and composite material
WO2022086142A1 (en) Separator and lithium secondary battery comprising same
WO2019245202A1 (en) Separator for electrochemical device, method for manufacturing same, and electrochemical device comprising same
WO2017099403A1 (en) Composite separator plate and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965747

Country of ref document: EP

Kind code of ref document: A1