WO2022050273A1 - 組成物、基板の処理方法 - Google Patents

組成物、基板の処理方法 Download PDF

Info

Publication number
WO2022050273A1
WO2022050273A1 PCT/JP2021/031941 JP2021031941W WO2022050273A1 WO 2022050273 A1 WO2022050273 A1 WO 2022050273A1 JP 2021031941 W JP2021031941 W JP 2021031941W WO 2022050273 A1 WO2022050273 A1 WO 2022050273A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
substrate
salt
acid
group
Prior art date
Application number
PCT/JP2021/031941
Other languages
English (en)
French (fr)
Inventor
萌 成田
宣明 杉村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020237006900A priority Critical patent/KR20230047416A/ko
Priority to JP2022546925A priority patent/JP7553577B2/ja
Publication of WO2022050273A1 publication Critical patent/WO2022050273A1/ja
Priority to US18/174,208 priority patent/US20230223272A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/30Acidic compositions for etching other metallic material
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/40Alkaline compositions for etching other metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02074Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a planarization of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/02087Cleaning of wafer edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/0209Cleaning of wafer backside
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a composition and a method for treating a substrate.
  • Patent Document 1 discloses a treatment liquid containing hypochlorous acids and a predetermined amount of a quaternary ammonium salt.
  • the present inventor examined a transition metal-containing substance (particularly, Ru-containing substance) using the composition disclosed in Patent Document 1, and found that the dissolving ability for the transition metal-containing substance (particularly Ru-containing substance) is not sufficient. It was found that there is room for further improvement.
  • At least one oxohaloic acid compound selected from the group consisting of hypochlorous acid, chloric acid, chloric acid, bromic acid, and salts thereof, and a compound represented by the formula (1) described later.
  • the composition comprises the above, and the content of the compound represented by the formula (1) is 1.0 to 25.0% by mass with respect to the total mass of the composition.
  • the composition according to [1] further comprising chloride ions.
  • the composition according to [2], wherein the content of chloride ions is 0.001 to 1.00% by mass with respect to the total mass of the composition.
  • R 1 to R 4 is an alkyl group having 1 carbon number which may have a substituent, and at least one of R 1 to R 4 has a substituent.
  • the compound represented by the formula (1) is ethyltrimethylammonium salt, diethyldimethylammonium salt, methyltriethylammonium salt, trimethyl (hydroxyethyl) ammonium salt, dimethylbis (2-hydroxyethyl) ammonium salt, methyltris ( It is selected from the group consisting of 2-hydroxyethyl) ammonium salt, methyltributylammonium salt, methyltributylammonium salt, dimethyldipropylammonium salt, benzyltrimethylammonium salt, benzyltriethylammonium salt, and triethyl (hydroxyethyl) ammonium salt.
  • Step A is the step A1 in which the composition is placed on the substrate and the ruthenium-containing wiring is recess-etched, and the outer edge of the substrate on which the ruthenium-containing film is placed using the composition.
  • Step A2 to remove the film of the part
  • step A3 to remove the metal-containing material adhering to the back surface of the substrate on which the film composed of ruthenium-containing material is arranged using the composition, on the substrate after dry etching using the composition.
  • the method for treating a substrate according to [15] which is a step A4 for removing the ruthenium-containing substance of the above, or a step A5 for removing the ruthenium-containing substance on the substrate after a chemical mechanical etching treatment using a composition.
  • the present invention it is possible to provide a composition having excellent dissolving ability for a transition metal-containing substance (particularly, Ru-containing substance). Further, according to the present invention, it is possible to provide a method for treating a substrate using a composition.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-” as the lower limit value and the upper limit value.
  • the “content” of the component means the total content of the two or more kinds of components.
  • exposure means exposure to ultraviolet rays typified by a mercury lamp, excimer laser, X-rays, exposure to EUV (Extreme ultraviolet) light, and electron beams and ion beams, unless otherwise specified. Includes drawing with particle beams such as.
  • the described compounds may contain structural isomers (compounds having the same number of atoms but different structures), optical isomers, and isotopes, unless otherwise specified. Further, the isomers and isotopes may contain one or more kinds.
  • the dry etching residue is a by-product produced by performing dry etching (for example, plasma etching), and is, for example, an organic residue derived from a photoresist, a Si-containing residue, and a residue. Refers to a metal-containing residue (for example, a transition metal-containing residue).
  • composition of the present invention is at least one oxohaloic acid compound selected from the group consisting of hypochlorous acid, chloric acid, chloric acid, bromic acid, and salts thereof (hereinafter, simply "oxohaloic acid compound”). ”) And the compound represented by the formula (1) (hereinafter, also referred to as“ specific compound ”), and the content of the compound represented by the formula (1) is the total mass of the composition. On the other hand, it is 1.0 to 25.0% by mass.
  • the mechanism by which the problem of the present invention is solved by using the composition of the present invention is not always clear, but the present inventor speculates as follows. It is speculated that the composition contains an oxohaloic acid compound and a predetermined amount of a specific compound, and the synergistic effect of these compounds can realize excellent dissolving ability for transition metal-containing substances (particularly Ru-containing substances). Will be done. Hereinafter, a more excellent dissolving ability of the composition in a transition metal-containing substance (particularly, a Ru-containing substance) is also referred to as a more excellent effect of the present invention.
  • the composition comprises an oxohalogen acid compound.
  • the oxohaloic acid compound means at least one compound selected from the group consisting of hypochlorous acid, chloric acid, chloric acid, bromic acid, and salts thereof.
  • the salt of hypochlorite, chloric acid, chloric acid and bromine include salts of alkali metal elements (sodium and potassium, etc.), salts of alkaline earth metal elements (magnesium, calcium, etc.), and the like. Examples thereof include salts of other metal elements and quaternary ammonium salts, and salts of alkali metal elements are preferable, and sodium salts are more preferable.
  • hypochlorous acid As the oxohalogen acid compound, at least one selected from the group consisting of hypochlorous acid, chlorous acid, and salts thereof is preferable, and hypochlorous acid and them are preferable, because the effect of the present invention is excellent. At least one selected from the group consisting of salts of is more preferred.
  • One type of oxohalogen acid compound may be used alone, or two or more types may be used in combination.
  • the content of the oxohaloic acid compound is often 0.001 to 50.0% by mass, and 0.01 to 30.0% by mass, based on the total mass of the composition, in that the effect of the present invention is more excellent.
  • % Is preferable 0.05 to 30.0% by mass is more preferable, 0.05 to 28.0% by mass is further preferable, 0.5 to 28.0% by mass is particularly preferable, and 1.0 to 10.0 is particularly preferable. Is the most preferable.
  • the composition contains a compound represented by the formula (1) (specific compound).
  • the content of the specific compound is 1.0 to 25.0% by mass, preferably 3.0 to 25.0% by mass, preferably 1.0 to 10.0% by mass, based on the total mass of the composition. More preferably, 3.0 to 10.0% by mass is further preferable.
  • R 1 to R 4 each independently represent an alkyl group which may have a substituent.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear.
  • As the number of carbon atoms of the alkyl group 1 to 20 is preferable, 1 to 15 is more preferable, 1 to 10 is more preferable, 1 to 5 is particularly preferable, and 1 to 2 is particularly preferable, because the effect of the present invention is more excellent. Most preferred.
  • As the total number of carbon atoms of R 1 to R 4 , 4 to 20 is preferable, 4 to 15 is more preferable, and 4 to 7 is further preferable, because the effect of the present invention is more excellent.
  • the total carbon number of R 1 to R 4 means the total value of the carbon numbers of R 1 , R 2 , R 3 , and R 4 .
  • Examples of the substituent contained in the alkyl group include a hydroxy group, a carboxy group, an amino group, an oxo group, a phosphonic acid group, a sulfo group, an aryl group, a heteroaryl group, and a mercapto group. Of these, as the substituent, a hydroxy group or an aryl group is preferable.
  • the number of substituents of the alkyl group is preferably 0 to 5, more preferably 0 to 3, and even more preferably 0 to 1.
  • n represents an integer of 1 to 3. As n, an integer of 1 to 2 is preferable, and 1 is more preferable.
  • R 1 to R 4 do not represent the same group.
  • R 1 to R 4 represent a methyl group, since these groups are the same group, the above requirement that "all of R 1 to R 4 do not represent the same group". Does not meet.
  • R 1 to R 3 are all methyl groups and R 4 is an ethyl group, all of R 1 to R 4 are not the same group, so that all of the above "R 1 to R 4 " are present. , Do not represent the same group. " If at least one of the type of the substituent and the type of the alkyl group is different, they do not correspond to the same group.
  • R 1 to R 4 can take, for example, among the four groups represented by R 1 to R 4 , the three groups represented by R 1 to R 3 are the same group, and R 4 An embodiment in which one group represented by the above three groups is different from the above three groups can be mentioned. Further, of the four groups represented by R 1 to R 4 , the two groups represented by R 1 to R 2 are the same group, and the two groups represented by R 3 to R 4 are the same group. Is the same group, but the group represented by R 1 to R 2 and the group represented by R 3 to R 4 are different groups. Further, all four groups represented by R 1 to R 4 may be different groups.
  • R 1 to R 4 are alkyl groups selected from the group consisting of an alkyl group having 1 carbon atom which may have a substituent and an alkyl group having 2 carbon atoms which may have a substituent. Yes, at least one of R 1 to R 4 is an alkyl group having 1 carbon number which may have a substituent, and at least one of R 1 to R 4 is a carbon which may have a substituent. It is preferably an alkyl group of number 2.
  • R 1 to R 4 examples include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, dodecyl group and tetradodecyl group; hydroxymethyl group, hydroxyethyl group, hydroxybutyl group and the like.
  • Hydroxyalkyl groups alkyl groups having a hydroxy group
  • examples thereof include benzyl groups and arylalkyl groups such as phenethyl groups (alkyl groups having an aryl group).
  • an alkyl group, a hydroxyalkyl group, or an arylalkyl group is preferable, and an alkyl group or a hydroxyalkyl group is more preferable as R1 to R4 in that the effect of the present invention is more excellent.
  • X n- represents an n-valent anion.
  • n has the same meaning as n described above, and the preferred embodiment is also the same.
  • the n-valent anion is not particularly limited, and is, for example, hydroxide ion, halide ion, cyanide ion, acetate ion, trifluoroacetate ion, hydrogen sulfate ion, sulfate ion, sulfite ion, sulfonate ion, thio. Examples thereof include sulfate ion, carbonate ion, oxalate ion, hydrogen phosphate ion, and phosphate ion.
  • hydroxide ion or halide ion is preferable as Xn- in that the effect of the present invention is more excellent, and hydroxide ion, chloride ion, fluoride ion or bromide ion is preferable. More preferably, hydroxide ion or chloride ion is further preferable.
  • Specific compounds include, for example, ethyltrimethylammonium salt, diethyldimethylammonium salt, methyltriethylammonium salt, trimethyl (hydroxyethyl) ammonium salt, methyltributylammonium salt, dimethyldipropylammonium salt, benzyltrimethylammonium salt, and benzyltriethylammonium salt.
  • Triethyl (hydroxyethyl) ammonium salt Triethyl (hydroxyethyl) ammonium salt, dodecyltrimethylammonium salt, tetradecyltrimethylammonium salt, hexadecyltrimethylammonium salt, methyltri (hydroxyethyl) ammonium salt, benzyltrimethylammonium salt, triethyl (hydroxyethyl) ammonium salt, bishydroxyethyl Dimethylammonium salt, trimethylpropylammonium salt, isopropyltrimethylammonium salt, butyltrimethylammonium salt, triethylpropylammonium salt, isopropyltriethylammonium salt, butyltriethylammonium salt, methyltripropylammonium salt, ethyltripropylammonium salt, butyltripropylammonium Salt, ethyltributylammonium salt,
  • the specific compounds are ethyltrimethylammonium salt, diethyldimethylammonium salt, methyltriethylammonium salt, trimethyl (hydroxyethyl) ammonium salt, dimethylbis (2-hydroxyethyl) ammonium salt, and methyltris (2-hydroxyethyl) ammonium salt.
  • the salt include the above-mentioned salt with Xn ⁇ .
  • one kind may be used alone, or two or more kinds may be used in combination.
  • the composition may contain an arbitrary component in addition to the components contained in the above composition.
  • Optional components include, for example, chloride ions, solvents, pH regulators, and surfactants.
  • the optional components will be described.
  • the composition may contain chloride ions.
  • the chloride ion content is preferably 0.0001 to 20.00% by mass, preferably 0.0001 to 10.00% by mass, based on the total mass of the composition, in that the ability to remove metal residues is improved. More preferably, 0.001 to 5.00% by mass is further preferable, and 0.001 to 1.00% by mass is particularly preferable.
  • the mass ratio of the content of the specific compound to the content of the chloride ion is preferably 10,000 or less, more preferably 1000 or less, in terms of excellent metal residue removing ability. It is preferably 500 or less, more preferably 100 or less, and particularly preferably 100 or less.
  • the lower limit is not particularly limited, and is preferably 0.1 or more, more preferably 1 or more, and even more preferably 10 or more.
  • the chloride ion content of the composition is determined by an ion chromatograph method. Specifically, Thermo Fisher's Dionex ICS-2100 can be mentioned. When the chloride ion content is low, the chloride ion content may be measured after concentration using a concentration column. If the composition of the raw material is known, the chloride ion content may be calculated from the amount of the raw material added.
  • a compound containing chloride ions may be added to the composition immediately before the preparation of the composition or the treatment of the substrate. Further, a raw material containing a trace amount of impurities may be used in the preparation of the composition, and chloride ions may be contained in the composition.
  • the compound containing chloride ions include compounds that dissociate in the composition to produce chloride ions and cations. Examples of the compound that produces the chloride ion and the cation include a specific compound and hydrochloric acid or a salt thereof (for example, a salt with an alkali metal and a salt with an alkaline earth metal).
  • the composition may contain a solvent.
  • the solvent include water and an organic solvent, and water is preferable.
  • the water contained in the composition may contain an unavoidable trace mixture component.
  • the water content is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 70% by mass or more, based on the total mass of the composition.
  • the upper limit is not particularly limited, and is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, based on the total mass of the composition.
  • a water-soluble organic solvent is preferable.
  • the water-soluble organic solvent include ether-based solvents, alcohol-based solvents, ketone-based solvents, amide-based solvents, sulfur-containing solvents, and lactone-based solvents.
  • the water-soluble organic solvent an organic solvent that can be mixed with water at an arbitrary ratio is preferable.
  • the ether-based solvent is not particularly limited as long as it is a compound having an ether bond (—O—), and is, for example, diethyl ether, diisopropyl ether, dibutyl ether, t-butylmethyl ether, cyclohexylmethyl ether, tetrahydrofuran, diethylene glycol, diethylene.
  • the number of carbon atoms in the ether solvent is preferably 3 to 16, more preferably 4 to 14, and even more preferably 6
  • the alcohol solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, and the like.
  • Examples thereof include 2-methyl-2,4-pentanediol, 1,3-butanediol, and 1,4-butanediol.
  • the number of carbon atoms in the alcohol solvent is preferably 1 to 8, and more preferably 1 to 4.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • amide solvent examples include formamide, monomethylformamide, dimethylformamide, acetamide, monomethylacetamide, dimethylacetamide, monoethylacetamide, diethylacetamide, and N-methylpyrrolidone.
  • sulfur-containing solvent examples include dimethyl sulfone, dimethyl sulfoxide, and sulfolane.
  • lactone-based solvent examples include ⁇ -butyrolactone and ⁇ -valerolactone.
  • One type of organic solvent may be used alone, or two or more types may be used. When two or more kinds of organic solvents are used, it is preferable that the total content of the two or more kinds of organic solvents is within the following range.
  • the content of the organic solvent is preferably 0.1 to 10% by mass with respect to the total mass of the composition.
  • the composition may include a pH regulator.
  • the pH adjusting agent include basic compounds and acidic compounds, which are appropriately selected according to the pH of the target composition.
  • the basic compound is a compound that is alkaline (pH is over 7.0) in an aqueous solution.
  • Examples of the basic compound include organic bases, inorganic bases, and salts thereof.
  • Examples of the organic base include a quaternary ammonium salt, a salt of an alkylamine compound and its derivative, an alkanolamine compound and a salt thereof, an amine oxide compound, a nitro compound, a nitroso compound, an oxime compound, a ketooxime compound, an aldoxime compound, and a lactam. Examples thereof include compounds and isocyanide compounds.
  • the quaternary ammonium salt as a pH adjuster is a compound different from the specific compound.
  • the quaternary ammonium salt is a salt having a quaternary ammonium cation in which four of the same hydrocarbon group (preferably an alkyl group) are substituted on the nitrogen atom.
  • Examples of the quaternary ammonium salt include hydroxides, fluorides, bromides, iodides, acetates, and carbonates.
  • quaternary ammonium salt examples include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), or tetra.
  • TMAH tetramethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • TPAH tetrapropylammonium hydroxide
  • TBAH tetrabutylammonium hydroxide
  • TMAH, TEAH, TPAH, or TBAH is more preferred.
  • Examples of the inorganic base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides, and ammonia or salts thereof.
  • quaternary ammonium hydroxide is preferable, and TMAH or TEAH is more preferable, in terms of less metal residue after use, economy, stability of composition and the like.
  • TEAH is even more preferred.
  • the acidic compound is an acidic compound that is acidic (pH is less than 7.0) in an aqueous solution.
  • the acidic compound include inorganic acids, organic acids, and salts thereof.
  • Examples of the inorganic acid include sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, hydrofluoric acid, perchloric acid, and salts thereof, and sulfuric acid, hydrochloric acid, phosphoric acid, or nitric acid is preferable, and nitric acid, sulfuric acid, or nitric acid is preferable.
  • Hydrochloric acid is more preferred.
  • organic acids include carboxylic acids, sulfonic acids, and salts thereof.
  • carboxylic acid include lower (1 to 4 carbon atoms) aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, and butyric acid, and salts thereof.
  • sulfonic acid include methanesulfonic acid (MSA), benzenesulfonic acid, p-toluenesulfonic acid (tosilic acid), and salts thereof.
  • sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, sulfonic acid, or salts thereof are preferable, and sulfuric acid, hydrochloric acid, phosphoric acid, methanesulfonic acid, or p-toluenesulfonic acid is more preferable.
  • the pH adjuster one type may be used alone, or two or more types may be used in combination.
  • a commercially available one may be used, or one appropriately synthesized by a known method may be used.
  • the content of the pH adjuster is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the total mass of the composition.
  • the upper limit is not particularly limited, but is preferably 20.0% by mass or less based on the total mass of the composition. It is also preferable to adjust the content of the pH adjuster within the above-mentioned suitable range so as to be within the suitable pH range of the composition described later.
  • the composition may contain a surfactant.
  • the surfactant is not particularly limited as long as it is a compound having a hydrophilic group and a hydrophobic group (lipophilic group) in one molecule, and for example, an anionic surfactant, a cationic surfactant, and a nonionic surfactant. Examples include surfactants.
  • the quaternary ammonium salt as a surfactant is a compound different from the specific compound.
  • the hydrophobic group contained in the surfactant is not particularly limited, and examples thereof include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and a combination thereof.
  • the number of carbon atoms of the hydrophobic group is preferably 6 or more, more preferably 10 or more.
  • the hydrophobic group does not contain an aromatic hydrocarbon group and is composed only of an aliphatic hydrocarbon group, the number of carbon atoms of the hydrophobic group is preferably 8 or more, more preferably 10 or more.
  • the upper limit of the number of carbon atoms of the hydrophobic group is not particularly limited, but is preferably 24 or less, and more preferably 20 or less.
  • anionic surfactant for example, an anionic surfactant having at least one hydrophilic group selected from the group consisting of a sulfonic acid group, a carboxy group, a sulfate ester group, and a phosphonic acid group in the molecule. Can be mentioned.
  • anionic surfactant having a sulfonic acid group examples include alkyl sulfonic acid, alkyl benzene sulfonic acid, alkyl naphthalene sulfonic acid, alkyl diphenyl ether sulfonic acid, fatty acid amide sulfonic acid, and salts thereof.
  • examples of the anionic surfactant having a carboxy group include polyoxyethylene alkyl ether carboxylic acid, polyoxyethylene alkyl ether acetic acid, polyoxyethylene alkyl ether propionic acid, fatty acid, and salts thereof.
  • salt of the anionic surfactant include an ammonium salt, a sodium salt, a potassium salt, and a tetramethylammonium salt.
  • the cationic surfactant is not particularly limited as long as it is a compound having a cationic hydrophilic group and the above-mentioned hydrophobic group, and for example, a quaternary ammonium salt-based surfactant and an alkylpyridium-based interface. Activators can be mentioned.
  • the surfactant one type may be used alone or two or more types may be used.
  • the content of the surfactant is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, based on the total mass of the composition.
  • the upper limit is not particularly limited, it is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total mass of the composition, in terms of suppressing foaming of the composition.
  • the composition preferably contains substantially no abrasive particles.
  • the polishing particles mean particles contained in a polishing liquid used for polishing a semiconductor substrate and having an average primary particle diameter of 5 nm or more. Further, the fact that the composition does not substantially contain abrasive particles means that the average primary particle diameter contained in 1 mL of the composition when the composition is measured using a commercially available measuring device in a light scattering type in-liquid particle measuring method. It means that the number of abrasive particles having a value of 5 nm or more is 10 or less.
  • Abrasive particles include, for example, inorganic abrasive grains such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; polystyrene, polyacrylic acid, and poly. Examples thereof include organic abrasive grains such as vinyl chloride.
  • inorganic abrasive grains such as silica (including colloidal silica and fumed silica), alumina, zirconia, ceria, titania, germania, manganese oxide, and silicon carbide; polystyrene, polyacrylic acid, and poly.
  • organic abrasive grains such as vinyl chloride.
  • the content of the abrasive particles is measured by using a commercially available measuring device in a light scattering type submerged particle measuring method using a laser as a light source.
  • the average primary particle diameter of particles such as abrasive particles is 1000 primary particles arbitrarily selected from images taken with a transmission electron microscope TEM2010 (pressurized voltage 200 kV) manufactured by JEOL Ltd. Measure the particle size (equivalent to a circle) and calculate them by arithmetic averaging.
  • the equivalent circle diameter is the diameter of the circle assuming a perfect circle having the same projected area as the projected area of the particles at the time of observation. Examples of the method for removing the abrasive particles from the composition include purification treatment such as filtering.
  • the pH of the composition is not particularly limited, and examples thereof include the range of 1.0 to 14.0.
  • the pH of the composition is preferably 4.0 to 14.0, more preferably 7.0 to 12.0, because the effect of the present invention is more excellent.
  • the pH of the composition is obtained by measuring at 25 ° C. using a pH meter (F-51 (trade name) manufactured by HORIBA, Ltd.).
  • the composition can be filled in any container for storage, transportation and use.
  • a container having a high degree of cleanliness and less elution of impurities is preferable.
  • Examples of the container filled with the composition include a "clean bottle” series manufactured by Aicello Chemical Corporation and a "pure bottle” manufactured by Kodama Resin Industry Co., Ltd.
  • the method for producing the composition is not particularly limited, and for example, the composition can be produced by mixing each of the above components.
  • the order and / or timing of mixing each of the above components is not particularly limited.
  • an oxohaloic acid compound, a specific compound, and any necessary components are sequentially added to a stirrer such as a mixing mixer containing purified pure water, and then sufficiently stirred to mix the components.
  • a stirrer such as a mixing mixer containing purified pure water
  • Examples thereof include a method for producing a composition.
  • a method for producing the composition there are also a method of adjusting the pH of the cleaning solution in advance using a pH adjuster and then mixing each component, and a method of adjusting the pH to a set pH using a pH adjuster after mixing each component. Can be mentioned.
  • the composition is prepared by producing a concentrated solution having a lower water content than that at the time of use and diluting with a diluted solution (preferably water) at the time of use to adjust the content of each component to a predetermined content. May be manufactured.
  • the composition may be produced by diluting the concentrated solution with a diluted solution and then adjusting the pH to a set pH using a pH adjuster. When diluting the concentrated solution, a predetermined amount of the diluted solution may be added to the concentrated solution, or a predetermined amount of the concentrated solution may be added to the diluted solution.
  • the composition is used to remove transition metal inclusions (particularly Ru inclusions) on the substrate.
  • the term "on the substrate” as used herein includes, for example, the front and back surfaces of the substrate, the side surfaces, the inside of the groove, and the like. Further, the transition metal-containing material on the substrate includes not only the case where the transition metal-containing material is directly on the surface of the substrate but also the case where the transition metal-containing material is present on the substrate via another layer.
  • the transition metal-containing substance is not particularly limited as long as it is a substance containing a transition metal (transition metal atom).
  • the transition metal include Ru (ruthenium), Rh (zirconium), Ti (tungsten), Ta (tantal), Co (cobalt), Cr (chromium), Hf (hafnium), Os (osmium), Pt (platinum). ), Ni (nickel), Mn (manganese), Cu (copper), Zr (zirconium), Mo (molybdenum), La (lantern), W (tungsten), and Ir (iridium). Can be mentioned.
  • a Ru (ruthenium) -containing substance is preferable.
  • the content of Ru atoms in the Ru-containing material is preferably 10% by mass or more, more preferably 30% by mass or more, further preferably 50% by mass or more, and more preferably 90% by mass or more, based on the total mass of the Ru-containing material. Especially preferable.
  • the upper limit is not particularly limited, and is preferably 100% by mass or less with respect to the total mass of the Ru-containing material.
  • the Ru-containing substance is not particularly limited as long as it is a substance containing Ru (Ru atom), and is, for example, a simple substance of Ru, an alloy containing Ru, an oxide of Ru, a nitride of Ru, and an acid nitride of Ru. Can be mentioned.
  • the oxide, the nitride, and the oxynitride may be a composite oxide, a composite nitride, and a composite oxynitride containing Ru.
  • the object to be treated is a substrate having a transition metal-containing substance (particularly, Ru-containing substance). That is, the object to be treated includes at least a substrate and a transition metal-containing substance (particularly, Ru-containing substance) on the substrate.
  • the type of substrate is not particularly limited, but a semiconductor substrate is preferable.
  • the substrates include a semiconductor wafer, a glass substrate for a photomask, a glass substrate for a liquid crystal display, a glass substrate for a plasma display, a substrate for a FED (Field Emission Display), an optical disk substrate, a magnetic disk substrate, and a magneto-optical disk.
  • the substrate can be mentioned. Examples of the material constituting the semiconductor substrate include group III-V compounds such as silicon, silicon germanium, and GaAs, and combinations thereof.
  • the application of the object to be treated with the composition of the present invention is not particularly limited, and for example, DRAM (Dynamic Random Access Memory), FRAM (registered trademark) (Ferroelectric Random Access Memory), MRAM (Magnetoric RAM) ) And PRAM (Phase change Random Access Memory), or may be used for a logic circuit, a processor, or the like.
  • DRAM Dynamic Random Access Memory
  • FRAM Registered trademark
  • MRAM Magnetic RAM
  • PRAM Phase change Random Access Memory
  • the form of the transition metal-containing material (particularly Ru-containing material) on the substrate is not particularly limited, and is, for example, a form arranged in a film shape (particularly, a Ru-containing film) or a form arranged in a wiring shape (particularly). It may be either Ru-containing wiring) or a form arranged in the form of particles.
  • the transition metal preferably contains Ru
  • the object to be treated includes a substrate and a Ru-containing film, Ru-containing wiring, or particulate Ru-containing material arranged on the substrate.
  • the object to be treated containing is preferable.
  • the Ru-containing material in the form of particles is used as a residue.
  • the Ru-containing material in the form of particles includes a substrate to which the Ru-containing film is adhered and a substrate to which the particulate Ru-containing substance is adhered as a residue after CMP (chemical mechanical polishing, chemical mechanical polishing treatment) is applied to the Ru-containing film.
  • CMP chemical mechanical polishing, chemical mechanical polishing treatment
  • the thickness of the Ru-containing film is not particularly limited and may be appropriately selected depending on the intended use. For example, 200 nm or less is preferable, 100 nm or less is more preferable, and 50 nm or less is further preferable.
  • the lower limit is not particularly limited, and is preferably 0.1 nm or more.
  • the Ru-containing film may be arranged only on one main surface of the substrate, or may be arranged on both main surfaces. Further, the Ru-containing film may be arranged on the entire main surface of the substrate, or may be arranged on a part of the main surface of the substrate.
  • the object to be treated may contain various layers and / or structures as desired, in addition to the transition metal-containing substance (particularly, Ru-containing substance).
  • a metal wiring, a gate electrode, a source electrode, a drain electrode, an insulating layer, a ferromagnetic layer, and / or a non-magnetic layer may be arranged on the substrate.
  • the substrate may include exposed integrated circuit structures. Examples of the integrated circuit structure include an interconnection mechanism such as metal wiring and a dielectric material. Examples of the metal and alloy used for the interconnection mechanism include aluminum, copper-aluminum alloy, copper, titanium, tantalum, cobalt, silicon, titanium nitride, tantalum nitride, and tungsten.
  • the substrate may include layers of silicon oxide, silicon nitride, silicon carbide, and / or carbon-doped silicon oxide.
  • the size, thickness, shape, layer structure, etc. of the substrate are not particularly limited and can be appropriately selected as desired.
  • the method for producing the object to be treated is not particularly limited, and a known production method can be used.
  • Examples of the method for producing the object to be treated include a sputtering method, a chemical vapor deposition (CVD) method, a molecular beam epitaxy (MBE) method, and an atomic layer deposition method (ALD). Deposition) can be used to form a transition metal-containing film (particularly a Ru-containing film) on a substrate.
  • transition metal-containing film particularly, Ru-containing film
  • the back surface of the substrate on which the transition metal-containing film (particularly Ru-containing film) is arranged transition metal-containing film (particularly, Ru-containing film)
  • the transition metal-containing film may also adhere to the surface on the side opposite to the Ru-containing film) side.
  • the transition metal-containing wiring may be formed on the substrate by carrying out the above method via a predetermined mask.
  • a substrate on which a transition metal-containing film (particularly Ru-containing film) or a transition metal-containing wiring (particularly Ru-containing wiring) is arranged is subjected to a predetermined treatment to be used as a object to be treated by the treatment method of the present invention. You may use it.
  • a substrate on which a transition metal-containing film (particularly Ru-containing film) or a transition metal-containing wiring (particularly Ru-containing wiring) is arranged is subjected to dry etching, and dry etching containing the transition metal (particularly Ru) is performed.
  • a substrate having a residue may be manufactured.
  • a substrate on which a transition metal-containing film (particularly Ru-containing film) or a transition metal-containing wiring (particularly Ru-containing wiring) is arranged is subjected to CMP, and a substrate having a transition metal-containing material (particularly Ru-containing material) is provided. May be manufactured.
  • the substrate treatment method of the present invention includes a step A for removing a transition metal-containing substance (particularly, Ru-containing substance) on the substrate by using the above-mentioned composition. Further, the same applies to the substrate on which the transition metal-containing material (particularly, Ru-containing material), which is the object to be treated in this treatment method, is arranged.
  • the step A there is a method of bringing the composition into contact with the substrate on which the transition metal-containing material (particularly, Ru-containing material) to be treated is arranged.
  • the method of contact is not particularly limited, and for example, a method of immersing the object to be treated in the composition placed in the tank, a method of spraying the composition on the object to be treated, a method of flowing the composition on the object to be treated, a method of flowing the composition onto the object to be treated, and the like. And a combination thereof. Of these, a method of immersing the object to be treated in the composition is preferable.
  • a mechanical stirring method may be used to further enhance the cleaning capacity of the composition.
  • Mechanical stirring methods include, for example, a method of circulating the composition on the object to be treated, a method of flowing or spraying the composition on the object to be treated, and stirring the composition by ultrasonic waves or megasonics. The method can be mentioned.
  • the processing time of step A can be adjusted as appropriate.
  • the treatment time contact time between the composition and the object to be treated
  • the temperature of the composition during the treatment is not particularly limited, but is preferably 20 to 75 ° C, more preferably 20 to 65 ° C, still more preferably 40 to 65 ° C, and particularly preferably 50 to 65 ° C.
  • step A a treatment of adding a solvent (preferably water) to the composition is carried out while measuring the concentration of the oxohaloic acid compound and / or the specific compound in the composition, if necessary. May be good. By carrying out this treatment, the concentration of the components in the composition can be stably maintained within a predetermined range.
  • a solvent preferably water
  • step A include, for example, step A1 of recess etching the Ru-containing wiring arranged on the substrate using the composition, and the outer edge of the substrate on which the Ru-containing film is arranged using the composition.
  • Step A2 for removing the Ru-containing film in the portion step A3 for removing the Ru-containing substance adhering to the back surface of the substrate on which the Ru-containing film is arranged using the composition, and on the substrate after dry etching using the composition.
  • Examples thereof include a step A4 for removing the Ru-containing material and a step A5 for removing the Ru-containing material on the substrate after the chemical and mechanical etching treatment using the composition.
  • the step A2 or the step A3 is preferable.
  • the present processing method used for each of the above processings will be described.
  • FIG. 1 shows a schematic view of the upper part of a cross section showing an example of a substrate having Ru-containing wiring (hereinafter, also referred to as “wiring substrate”) which is an object to be processed by the recess etching process of step A1.
  • the wiring board 10a shown in FIG. 1 includes a substrate (not shown), an insulating film 12 having a groove arranged on the substrate, a barrier metal layer 14 arranged along the inner wall of the groove, and Ru filled in the groove. It has a contained wiring 16.
  • the substrate in the wiring board and the Ru-containing wiring are as described above.
  • the Ru-containing wiring preferably contains a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an acid nitride of Ru.
  • the material constituting the barrier metal layer in the wiring board is not particularly limited, and examples thereof include TiN and TaN. Although the aspect in which the wiring board has a barrier metal layer is described in FIG. 1, the wiring board may be a wiring board having no barrier metal layer.
  • the method for manufacturing the wiring substrate is not particularly limited, and for example, a step of forming an insulating film on the substrate, a step of forming a groove in the insulating film, a step of forming a barrier metal layer on the insulating film, and the above steps.
  • Examples thereof include a method having a step of forming a Ru-containing film so as to fill the groove and a step of applying a flattening treatment to the Ru-containing film.
  • step A1 by using the composition described above to perform recess etching treatment on the Ru-containing wiring in the wiring board, a part of the Ru-containing wiring can be removed to form a recess. More specifically, when step A1 is carried out, as shown in the wiring board 10b of FIG. 2, a part of the barrier metal layer 14 and the Ru-containing wiring 16 is removed, and the recess 18 is formed.
  • step A1 a method of bringing the composition into contact with the wiring board can be mentioned.
  • the contact method between the composition and the wiring board is as described above.
  • the optimum range of the contact time between the composition and the wiring board and the temperature of the composition is as described above.
  • Step B A step B of processing the substrate obtained in the step A1 is carried out by using a predetermined solution (hereinafter, also referred to as “specific solution”) as necessary before the step A1 or after the step A1.
  • a predetermined solution hereinafter, also referred to as “specific solution”.
  • the specific solution is preferably a solution having poor dissolving ability for Ru-containing wiring and excellent dissolving ability for substances constituting the barrier metal layer.
  • Examples of the specific solution include a mixed solution of hydrofluoric acid and hydrogen peroxide solution (FPM), a mixed solution of sulfuric acid and hydrogen peroxide solution (SPM), and a mixed solution of ammonia water and hydrogen peroxide solution (APM). , And a solution selected from the group consisting of a mixed solution (HPM) of hydrochloric acid and hydrogen peroxide solution.
  • FPM hydrofluoric acid and hydrogen peroxide solution
  • SPM sulfuric acid and hydrogen peroxide solution
  • APIAM ammonia water and hydrogen peroxide solution
  • HPM mixed solution selected from the group consisting of a mixed solution (HPM) of hydrochloric acid and hydrogen peroxide solution.
  • composition ratios is 49% by mass of hydrofluoric acid, 98% by mass of sulfuric acid, 28% by mass of ammonia water for ammonia water, 37% by mass of hydrochloric acid, and 31% by mass of hydrogen peroxide solution.
  • the composition ratio in the case of hydrogen peroxide solution is intended.
  • SPM, APM, or HPM is preferable as the specific solution from the viewpoint of the dissolving ability of the barrier metal layer.
  • APM, HPM, or FPM is preferable, and APM is more preferable, from the viewpoint of reducing roughness.
  • APM or HPM is preferable from the viewpoint of excellent performance balance.
  • step B as a method for treating the substrate obtained in step A1 using the specific solution, a method in which the specific solution and the substrate obtained in step A1 are brought into contact with each other is preferable.
  • the method of contacting the specific solution with the substrate obtained in step A1 is not particularly limited, and examples thereof include the same method as in contacting the composition with the substrate.
  • the contact time between the specific solution and the substrate obtained in step A1 is preferably, for example, 0.25 to 10 minutes, more preferably 0.5 to 5 minutes.
  • step A1 and step B may be alternately and repeatedly carried out.
  • steps A1 and B it is preferable that the steps A1 and B are each performed 1 to 10 times.
  • the first step and the last step may be either step A1 or step B.
  • the step A includes a step A2 of removing the Ru-containing film at the outer edge of the substrate on which the Ru-containing film is arranged by using the composition.
  • FIG. 3 shows a schematic view (top view) showing an example of a substrate on which the Ru-containing film, which is the object to be treated in step A2, is arranged.
  • the object 20 to be processed in step A2 shown in FIG. 3 is a laminate having a substrate 22 and a Ru-containing film 24 arranged on one main surface of the substrate 22 (the entire area surrounded by a solid line). As will be described later, in step A2, the Ru-containing film 24 located at the outer edge portion 26 (the region outside the broken line) of the object to be processed 20 is removed.
  • the substrate and the Ru-containing film in the object to be treated are as described above.
  • the Ru-containing film preferably contains a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an acid nitride of Ru.
  • the specific method of the step A2 is not particularly limited, and examples thereof include a method of supplying the composition from a nozzle so that the composition comes into contact with only the Ru-containing film on the outer edge of the substrate.
  • the treatment method can be preferably applied.
  • the contact method between the composition and the object to be treated is as described above.
  • the optimum range of the contact time between the composition and the object to be treated and the temperature of the composition is as described above.
  • the step A includes a step A3 of removing the Ru-containing substance adhering to the back surface of the substrate on which the Ru-containing film is arranged by using the composition.
  • the object to be processed in step A3 include the object to be processed used in step A2.
  • the Ru-containing film is formed by sputtering, CVD or the like. At that time, the Ru-containing substance may adhere to the surface (on the back surface) on the side opposite to the Ru-containing film side of the substrate.
  • Step A3 is carried out in order to remove Ru-containing substances in such an object to be treated.
  • step A3 is not particularly limited, and examples thereof include a method of spraying the composition so that the composition comes into contact with only the back surface of the substrate.
  • the contact method between the composition and the object to be treated is as described above.
  • the optimum range of the contact time between the composition and the object to be treated and the temperature of the composition is as described above.
  • FIG. 4 shows a schematic diagram showing an example of the object to be processed in step A4.
  • the object to be processed 30 shown in FIG. 4 is provided with a Ru-containing film 34, an etching stop layer 36, an interlayer insulating film 38, and a metal hard mask 40 in this order on a substrate 32, and is in a predetermined position after undergoing a dry etching step or the like.
  • a hole 42 is formed in which the Ru-containing film 34 is exposed. That is, the object to be treated shown in FIG.
  • the 4 includes a substrate 32, a Ru-containing film 34, an etching stop layer 36, an interlayer insulating film 38, and a metal hard mask 40 in this order, and an opening of the metal hard mask 40. It is a laminate having holes 42 penetrating from the surface of the Ru-containing film 34 to the surface of the Ru-containing film 34 at the position of the portion.
  • the inner wall 44 of the hole 42 is composed of a cross-sectional wall 44a made of an etching stop layer 36, an interlayer insulating film 38, and a metal hard mask 40, and a bottom wall 44b made of an exposed Ru-containing film 34, and is a dry etching residue. 46 is attached. The dry etching residue contains Ru-containing substances.
  • the Ru-containing film preferably contains a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an acid nitride of Ru.
  • the Ru-containing substance preferably contains a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an acid nitride of Ru.
  • Known materials are selected as the interlayer insulating film and the metal hard mask. Although the aspect of using the metal hard mask has been described in FIG. 4, a resist mask formed by using a known photoresist material may be used.
  • step A4 include a method of bringing the composition into contact with the object to be treated.
  • the contact method between the composition and the wiring board is as described above.
  • the optimum range of the contact time between the composition and the wiring board and the temperature of the composition is as described above.
  • the step A includes a step A5 of removing Ru-containing substances on the substrate after a chemical mechanical polishing (CMP) using the composition.
  • CMP technology has been introduced into manufacturing processes such as flattening of insulating films, flattening of connection holes, and damascene wiring.
  • the substrate after CMP may be contaminated with a large amount of particles used for polishing particles, metal impurities, and the like. Therefore, it is necessary to remove and clean these contaminants before entering the next processing step. Therefore, by carrying out step A5, it is possible to remove the Ru-containing substance generated when the object to be treated of CMP has Ru-containing wiring or when it has a Ru-containing film and adheres to the substrate.
  • examples of the object to be treated in step A5 include a substrate having a Ru-containing substance after CMP.
  • the Ru-containing substance preferably contains a simple substance of Ru, an alloy of Ru, an oxide of Ru, a nitride of Ru, or an acid nitride of Ru.
  • Specific examples of the step A5 include a method of bringing the composition into contact with the object to be treated.
  • the contact method between the composition and the wiring board is as described above.
  • the optimum range of the contact time between the composition and the wiring board and the temperature of the composition is as described above.
  • This treatment step may include, if necessary, a step C of rinsing the substrate obtained in step A with a rinsing solution after the step A.
  • the rinsing solution examples include hydrofluoric acid (preferably 0.001 to 1% by mass), hydrochloric acid (preferably 0.001 to 1% by mass), and hydrogen peroxide solution (preferably 0.5 to 31% by mass). Hydrogen oxide water is preferable, 3 to 15% by mass hydrogen peroxide solution is more preferable), a mixed solution of hydrofluoric acid and hydrogen peroxide solution (FPM), a mixed solution of sulfuric acid and hydrogen peroxide solution (SPM), and ammonia.
  • hydrofluoric acid preferably 0.001 to 1% by mass
  • hydrochloric acid preferably 0.001 to 1% by mass
  • hydrogen peroxide solution preferably 0.5 to 31% by mass
  • Hydrogen oxide water is preferable, 3 to 15% by mass hydrogen peroxide solution is more preferable
  • FPM hydrofluoric acid and hydrogen peroxide solution
  • SPM sulfuric acid and hydrogen peroxide solution
  • nitric acid preferably 0.001 to 1% by mass of nitric acid
  • perchloric acid preferably 0.001 to 1% by mass% perchloric acid
  • An acid aqueous solution preferably a 0.01 to 10% by mass aqueous solution
  • a periodic acid aqueous solution preferably a 0.5 to 10% by mass% periodic acid aqueous solution
  • the periodic acid includes ortho-perioic acid and meta-periodide. Acids
  • the preferred conditions for FPM, SPM, APM, and HPM are, for example, the same as the preferred embodiments for FPM, SPM, APM, and HPM used as the specific solution described above.
  • hydrofluoric acid, nitric acid, perchloric acid, and hydrochloric acid are intended to be an aqueous solution in which HF, HNO 3 , HClO 4 , and HCl are dissolved in water, respectively.
  • Ozone water, carbon dioxide water, and hydrogen water are intended as aqueous solutions in which O 3 , CO 2 , and H 2 are dissolved in water, respectively.
  • rinsing solution carbon dioxide water, ozone water, hydrogen water, hydrofluoric acid, aqueous citric acid solution, hydrochloric acid, sulfuric acid, ammonia water, and peroxidation are used because the residual chlorine on the substrate surface after the rinsing process is further reduced.
  • Hydrogen water, SPM, APM, HPM, IPA, hypochlorite aqueous solution, royal water, or FPM is preferable, and hydrofluoric acid, hydrochloric acid, hydrogen peroxide solution, SPM, APM, HPM, or FPM is more preferable.
  • a method of bringing the rinsing liquid into contact with the substrate obtained in the step A which is the object to be treated can be mentioned.
  • the contact method include a method of immersing the substrate in a rinse liquid placed in a tank, a method of spraying the rinse liquid on the substrate, a method of flowing the rinse liquid on the substrate, and an arbitrary combination method thereof. Can be mentioned.
  • the treatment time is not particularly limited, and is, for example, 5 seconds to 5 minutes.
  • the temperature of the rinsing liquid during the treatment is not particularly limited, but is generally preferably 16 to 60 ° C, more preferably 18 to 40 ° C. When SPM is used as the rinsing liquid, the temperature is preferably 90 to 250 ° C.
  • This treatment method may include a step D for carrying out a drying treatment, if necessary, after the step C.
  • the method of the drying treatment is not particularly limited, for example, spin drying, flow of dry gas on the substrate, heating means of the substrate (for example, heating with a hot plate or an infrared lamp), IPA (isopropyl alcohol) steam drying, marangoni. Drying, rotagoni drying, and combinations thereof can be mentioned.
  • the drying time can be appropriately changed depending on the specific method used, and is, for example, about 30 seconds to several minutes.
  • This treatment method may include a step D for carrying out a drying treatment, if necessary, after the step C.
  • the method of drying treatment is not particularly limited, but is limited to spin drying, flow of dry gas on the substrate, heating means of the substrate (for example, heating with a hot plate or an infrared lamp), IPA (isopropyl alcohol) steam drying, marangoni drying, rotagoni. Drying and combinations thereof can be mentioned.
  • the drying time can be appropriately changed depending on the specific method used, and is, for example, about 30 seconds to several minutes.
  • This processing method may be carried out in combination before or after other steps performed on the substrate.
  • the treatment method of the present invention may be incorporated into other steps while the present treatment method is being carried out.
  • Other steps include, for example, a step of forming each structure such as a metal wiring, a gate structure, a source structure, a drain structure, an insulating layer, a ferromagnetic layer, and / or a non-magnetic layer (for example, layer formation, etching, chemistry).
  • Mechanical polishing and modification resist forming process, exposure process and removal process, heat treatment process, cleaning process, and inspection process can be mentioned.
  • This processing method is performed at any stage of the back-end process (BOOL: Back end of the line), the middle process (MOL: Middle of the line), and the front-end process (FEOL: Front end of the line). It may be done in a front-end process or a middle process.
  • composition having the composition described in the table described later was prepared, and the following test was performed using the prepared composition.
  • all of the following components used in the preparation of the composition were products obtained from the market and classified into semiconductor grades or high-purity grades equivalent thereto. ..
  • Examples and Comparative Examples Hypochlorous acid, a specific compound, and chloride ion are added to ultrapure water at the contents shown in the table described later to prepare a mixed solution, and then the mixed solution is sufficiently stirred with a stirrer. The composition of Example 1 was obtained.
  • the compositions of Examples and Comparative Examples other than Example 1 were prepared by the same procedure as in Example 1 except that each component and the like were changed according to the table described later.
  • the chloride ion concentration in the composition having a low chloride ion concentration was measured using a concentrated column, if necessary.
  • the chloride ion contained in the composition is derived from hydrochloric acid or a salt thereof, a specific compound, a decomposition product of an oxohaloic acid compound, and an impurity mixed in the synthesis process of the specific compound.
  • a substrate on which a Ru layer (a layer composed of Ru alone) was formed by the PVD method was prepared on one surface of a commercially available silicon wafer (diameter: 12 inches). The obtained substrate was placed in a container filled with the composition of each Example or Comparative Example, and the composition was stirred to carry out the Ru layer removal treatment for 1 minute. The temperature of the composition was 25 ° C.
  • the thickness of the Ru layer before and after the treatment was measured with a fluorescent X-ray analyzer for thin film evaluation (XRF AZX-400, manufactured by Rigaku Co., Ltd.), and the etching rate of the Ru layer (from the difference in the thickness of the Ru layer before and after the treatment (XRF AZX-400, manufactured by Rigaku Co., Ltd.) ⁇ / min) was calculated.
  • the calculated etching rate of the Ru layer was evaluated according to the following evaluation criteria.
  • Etching rate is 250 ⁇ / min or more 4: Etching rate is 200 ⁇ / min or more and less than 250 ⁇ / min 3: Etching rate is 150 ⁇ / min or more and less than 200 ⁇ / min 2: Etching rate is 100 ⁇ / min or more and 150 ⁇ / min Less than 1: Etching rate less than 100 ⁇ / min
  • Metal residue ratio (%) 100 ⁇ [metal residue amount after treatment (atoms / cm 2 )] / [metal residue amount before treatment (atoms / cm 2 )) as compared with before and after treatment with the composition. )] was calculated and evaluated according to the following evaluation criteria. (Evaluation criteria) 5: Metal residue ratio is 25% or less 4: Metal residue ratio is more than 25%, 50% or less 3: Metal residue ratio is more than 50%, 75% or less 2: Metal residue ratio is more than 75%
  • the evaluation results are shown in Tables 1 and 2.
  • the "total carbon number” in the “specific compound” column indicates the total number of carbon atoms of the specific compound.
  • the column “(A) / (B)” shows the mass ratio of the content of the specific compound to the content of chloride ion.
  • the column of "pH” shows the value measured by the method according to JIS Z8802-1984 using a known pH meter when the composition is at 25 ° C.
  • the “residue” in the “water” column means that the balance other than the oxohalogen acid compound, the specific compound, and the chloride ion contained in the composition is water.
  • Example 2 to 3 and Examples 1 and 4 comparison between Examples 15 and 18 and Examples 16 to 17, comparison between Example 21 and Example 22, Examples 24 and From the comparison between 26 and Examples 25 and 27 to 28, and the comparison between Example 38 and Examples 37 and 40
  • the content of the specific compound is 3.0 with respect to the total mass of the composition. It was confirmed that the metal residue removing ability was more excellent when the content was ⁇ 25.0% by mass. From the comparison between Example 1 and the like and Example 43, it was confirmed that when the composition further contains chloride ions, the metal residue removing ability is more excellent. From the comparison between Examples 1 and the like and Examples 39 to 40, when the chloride ion content is 0.001 to 5.00% by mass with respect to the total mass of the composition, the metal residue is removed.
  • the effect of the present invention is more excellent when it contains at least one selected from the group consisting of a dipropylammonium salt, a benzyltrimethylammonium salt, a benzyltriethylammonium salt, and a triethyl (hydroxyethyl) ammonium salt. .. Further, from the comparison between Examples 2 to 3 and Examples 5 to 9, the specific compound is a group consisting of ethyltrimethylammonium salt, diethyldimethylammonium salt, methyltriethylammonium salt, and trimethyl (hydroxyethyl) ammonium salt. It was confirmed that the effect of the present invention is further excellent when at least one selected from the above is contained.
  • R 1 to R 4 are a group consisting of an alkyl group having 1 carbon number which may have a substituent and an alkyl group having 2 carbon atoms which may have a substituent.
  • the content of the oxohalogen acid compound is 0.05 to 28.0% by mass with respect to the total mass of the composition. If so, it was confirmed that the effect of the present invention is more excellent. From the comparison between Examples 1 to 10 and Example 11, it was confirmed that the effect of the present invention is more excellent when the total carbon number of R1 to R4 in the formula (1) is 4 to 15. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

本発明は、遷移金属含有物に対する溶解能に優れる組成物、及び、基板の処理方法を提供する。本発明の組成物は、次亜塩素酸、亜塩素酸、塩素酸、臭素酸、及び、それらの塩からなる群から選択される少なくとも1つのオキソハロゲン酸化合物と、式(1)で表される化合物とを含み、式(1)で表される化合物の含有量が、組成物の全質量に対して、1.0~25.0質量%である。

Description

組成物、基板の処理方法
 本発明は、組成物、及び、基板の処理方法に関する。
 半導体製品の微細化に伴って、半導体製品製造プロセスにおける、基板上の不要な遷移金属含有物を除去する工程を、高効率かつ精度よく実施する需要が高まっている。
 一般に、基板上の不要な遷移金属含有物を除去工程において、不要な遷移金属含有物を溶解する組成物(エッチング液)を用いて、エッチング又は固体表面に付着した異物を除去する方法が広く知られている。
 例えば、特許文献1には、次亜塩素酸類と、所定量の第4級アンモニウム塩とを含む処理液が開示されている。
国際公開第2020/049955号
 近年、基板上の不要な遷移金属含有物を除去する際、組成物の不要な遷移金属含有物(特に、ルテニウム含有物(Ru含有物))に対する溶解能のより一層の向上が求められている。
 本発明者は、特許文献1に開示された組成物を用いて遷移金属含有物(特に、Ru含有物)について検討したところ、遷移金属含有物(特に、Ru含有物)に対する溶解能が十分ではなく、更なる改善の余地があることを知見した。
 そこで、本発明は、遷移金属含有物(特に、Ru含有物)に対する溶解能に優れる組成物を提供することを課題とする。
 また、本発明は、組成物を用いた基板の処理方法を提供することも課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
 〔1〕 次亜塩素酸、亜塩素酸、塩素酸、臭素酸、及び、それらの塩からなる群から選択される少なくとも1つのオキソハロゲン酸化合物と、後述する式(1)で表される化合物とを含み、式(1)で表される化合物の含有量が、組成物の全質量に対して、1.0~25.0質量%である、組成物。
 〔2〕 更に、塩化物イオンを含む、〔1〕に記載の組成物。
 〔3〕 塩化物イオンの含有量が、組成物の全質量に対して、0.001~1.00質量%である、〔2〕に記載の組成物。
 〔4〕 塩化物イオンの含有量に対する式(1)で表される化合物の含有量の質量比が、100以下である、〔2〕又は〔3〕に記載の組成物。
 〔5〕 アルキル基の炭素数が1~10である、〔1〕~〔4〕のいずれか1つに記載の組成物。
 〔6〕 式(1)中、R~Rの合計炭素数が、4~15である、〔1〕~〔5〕のいずれか1つに記載の組成物。
 〔7〕 R~Rは、置換基を有していてもよい炭素数1のアルキル基、及び、置換基を有していてもよい炭素数2のアルキル基からなる群から選択されるアルキル基であり、R~Rの少なくとも1つは置換基を有していてもよい炭素数1のアルキル基であり、R~Rの少なくとも1つは置換基を有していてもよい炭素数2のアルキル基である、〔1〕~〔6〕のいずれか1つに記載の組成物。
 〔8〕 式(1)で表される化合物が、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、メチルトリエチルアンモニウム塩、トリメチル(ヒドロキシエチル)アンモニウム塩、ジメチルビス(2-ヒドロキシエチル)アンモニウム塩、メチルトリス(2-ヒドロキシエチル)アンモニウム塩、メチルトリブチルアンモニウム塩、メチルトリブチルアンモニウム塩、ジメチルジプロピルアンモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニウム塩、及び、トリエチル(ヒドロキシエチル)アンモニウム塩からなる群から選択される少なくとも1つを含む、〔1〕~〔6〕のいずれか1つに記載の組成物。
 〔9〕 式(1)中、nが1である、〔1〕~〔8〕のいずれか1つに記載の組成物。
 〔10〕 式(1)中、Xn-が、水酸化物イオン、塩化物イオン、フッ化物イオン、又は、臭化物イオンである、〔1〕~〔9〕のいずれか1つに記載の組成物。
 〔11〕 オキソハロゲン酸化合物の含有量が、組成物の全質量に対して、0.05~28.0質量%である、〔1〕~〔10〕のいずれか1つに記載の組成物。
 〔12〕 組成物のpHが、4.0~14.0である、〔1〕~〔11〕のいずれか1つに記載の組成物。
 〔13〕 組成物のpHが、7.0~12.0である、〔1〕~〔12〕のいずれか1つに記載の組成物。
 〔14〕 基板上のルテニウム含有物を除去するために用いられる、〔1〕~〔13〕のいずれか1つに記載の組成物。
 〔15〕 〔1〕~〔14〕のいずれか1つに記載の組成物を用いて、基板上のルテニウム含有物を除去する工程Aを有する、基板の処理方法。
 〔16〕 工程Aが、組成物を用いて基板上に配置され、ルテニウム含有物からなる配線をリセスエッチング処理する工程A1、組成物を用いてルテニウム含有物からなる膜が配置された基板の外縁部の膜を除去する工程A2、組成物を用いてルテニウム含有物からなる膜が配置された基板の裏面に付着する金属含有物を除去する工程A3、組成物を用いてドライエッチング後の基板上のルテニウム含有物を除去する工程A4、又は、組成物を用いて化学的機械的研磨処理後の基板上のルテニウム含有物を除去する工程A5である、〔15〕に記載の基板の処理方法。
 本発明によれば、遷移金属含有物(特に、Ru含有物)に対する溶解能に優れる組成物を提供できる。
 また、本発明によれば、組成物を用いた基板の処理方法を提供できる。
工程A1で用いられる被処理物の一例を示す断面上部の模式図である。 工程A1を実施した後の被処理物の一例を示す断面上部の模式図である。 工程A2で用いられる被処理物の一例を示す模式図である。 工程A4で用いられる被処理物の一例を示す断面模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様であり、本発明はそのような実施態様に制限されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
 本明細書において、「露光」とは、特に制限がない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、及び、EUV(Extreme ultraviolet)光等による露光、並びに、電子線及びイオンビーム等の粒子線による描画を含む。
 本明細書において、記載の化合物は、特に制限がない限り、構造異性体(原子数が同じであるが構造が異なる化合物)、光学異性体、及び、同位体を含んでいてもよい。また、異性体及び同位体は、1種又は複数種を含んでいてもよい。
 本明細書において、ドライエッチング残渣とは、ドライエッチング(例えば、プラズマエッチング)を行うことで生じた副生成物のことであり、例えば、フォトレジスト由来の有機物残渣物、Si含有残渣物、及び、金属含有残渣物(例えば、遷移金属含有残渣物)をいう。
[組成物]
 本発明の組成物は、次亜塩素酸、亜塩素酸、塩素酸、臭素酸、及び、それらの塩からなる群から選択される少なくとも1つのオキソハロゲン酸化合物(以下、単に「オキソハロゲン酸化合物」ともいう。)と、式(1)で表される化合物(以下「特定化合物」ともいう。)とを含み、式(1)で表される化合物の含有量が、組成物の全質量に対して、1.0~25.0質量%である。
 本発明の組成物を用いることで本発明の課題が解決されるメカニズムは必ずしも定かではないが、本発明者は、以下のように推測している。
 組成物が、オキソハロゲン酸化合物と、所定量の特定化合物とを含むことによって、それらの化合物の相乗効果によって、遷移金属含有物(特に、Ru含有物)に対する優れた溶解能を実現できると推測される。
 以下、組成物の遷移金属含有物(特に、Ru含有物)に対する溶解能がより優れることを、本発明の効果がより優れるともいう。
<オキソハロゲン酸化合物>
 組成物は、オキソハロゲン酸化合物を含む。
 オキソハロゲン酸化合物とは、次亜塩素酸、亜塩素酸、塩素酸、臭素酸、及び、それらの塩からなる群から選択される少なくとも1つの化合物を意味する。
 次亜塩素酸、亜塩素酸、塩素酸及び臭素酸のいずれかの塩としては、例えば、アルカリ金属元素(ナトリウム及びカリウム等)の塩、アルカリ土類金属元素(マグネシウム及びカルシウム等)の塩、その他の金属元素の塩、及び、第4級アンモニウム塩が挙げられ、アルカリ金属元素の塩が好ましく、ナトリウム塩がより好ましい。
 オキソハロゲン酸化合物としては、本発明の効果が優れる点から、次亜塩素酸、亜塩素酸、及び、それらの塩からなる群から選択される少なくとも1つが好ましく、次亜塩素酸、及び、それらの塩からなる群から選択される少なくとも1つがより好ましい。
 オキソハロゲン酸化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 オキソハロゲン酸化合物の含有量は、本発明の効果がより優れる点で、組成物の全質量に対して、0.001~50.0質量%の場合が多く、0.01~30.0質量%が好ましく、0.05~30.0質量%がより好ましく、0.05~28.0質量%が更に好ましく、0.5~28.0質量%が特に好ましく、1.0~10.0が最も好ましい。
<式(1)で表される化合物>
 組成物は、式(1)で表される化合物(特定化合物)を含む。
 特定化合物の含有量は、組成物の全質量に対して、1.0~25.0質量%であり、3.0~25.0質量%が好ましく、1.0~10.0質量%がより好ましく、3.0~10.0質量%が更に好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(1)中、R~Rは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。
 上記アルキル基としては、直鎖状、分岐鎖状、又は、環状であってもよく、直鎖状が好ましい。
 上記アルキル基の炭素数としては、本発明の効果がより優れる点で、1~20が好ましく、1~15がより好ましく、1~10が更に好ましく、1~5が特に好ましく、1~2が最も好ましい。
 R~Rの合計炭素数としては、本発明の効果がより優れる点で、4~20が好ましく、4~15がより好ましく、4~7が更に好ましい。なお、R~Rの合計炭素数とは、R、R、R、及び、Rの炭素数の合計の値を意味する。
 上記アルキル基が有する置換基としては、例えば、ヒドロキシ基、カルボキシ基、アミノ基、オキソ基、ホスホン酸基、スルホ基、アリール基、ヘテロアリール基、及び、メルカプト基が挙げられる。なかでも、上記置換基としては、ヒドロキシ基、又は、アリール基が好ましい。
 上記アルキル基が有する置換基の数としては、0~5が好ましく、0~3がより好ましく、0~1が更に好ましい。
 nは、1~3の整数を表す。
 nとしては、1~2の整数が好ましく、1がより好ましい。
 ただし、R~Rの全てが、同一の基を表すことはない。例えば、R~Rがいずれもメチル基を表す場合は、これらの基は同一の基であるため、上記「R~Rの全てが、同一の基を表すことはない」という要件を満たしていない。それに対して、R~Rがいずれもメチル基で、Rがエチル基である場合、R~Rの全てが同一の基ではないため、上記「R~Rの全てが、同一の基を表すことはない」という要件を満たしている。なお、置換基の種類、及び、アルキル基の種類の少なくとも一方が異なっていれば、同一の基には該当しない。つまり、2つの基を比較した際に、置換基の種類、及び、アルキル基の種類の少なくとも一方が異なっていれば、両者は異なる基に該当するといえる。例えば、エチル基と、ヒドロキシエチル基とは、基全体としては構造が異なるため、両者は同一の基には該当しない。
 上記「R~Rの全てが、同一の基を表すことはない。」とは、言い換えれば、R~Rで表される4つの基が、少なくとも2種の基を表すことを意味する。例えば、上述した、R~Rがいずれもメチル基で、Rがエチル基である場合、R~Rで表される4つの基が、メチル基とエチル基という2種の基を表している。
 R~Rが取り得る態様としては、例えば、R~Rで表される4つの基のうち、R~Rで表される3つの基が同一の基であり、Rで表される1つの基が上記3つ基とは異なる基である態様が挙げられる。また、R~Rで表される4つの基のうち、R~Rで表される2つの基同士は同一の基であり、R~Rで表される2つの基同士は同一の基であるが、R~Rで表される基とR~Rで表される基とが異なる基である態様が挙げられる。また、R~Rで表される4つの基が全て異なる基であってもよい。
 R~Rは、置換基を有していてもよい炭素数1のアルキル基、及び、置換基を有していてもよい炭素数2のアルキル基からなる群から選択されるアルキル基であり、R~Rの少なくとも1つは置換基を有していてもよい炭素数1のアルキル基であり、R~Rの少なくとも1つは置換基を有していてもよい炭素数2のアルキル基であることが好ましい。
 R~Rとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ドデシル基、及び、テトラドデシル基等のアルキル基;ヒドロキシメチル基、ヒドロキシエチル基、及び、ヒドロキシブチル基等のヒドロキシアルキル基(ヒドロキシ基を有するアルキル基);ベンジル基、及び、フェネチル基等のアリールアルキル基(アリール基を有するアルキル基)が挙げられる。
 なかでも、本発明の効果がより優れる点で、R~Rとしては、アルキル基、ヒドロキシアルキル基、又は、アリールアルキル基が好ましく、アルキル基、又は、ヒドロキシアルキル基がより好ましい。
 Xn-は、n価のアニオンを表す。
 nは、上述したnと同義であり、好適態様も同じである。
 n価のアニオンとしては、特に制限されないが、例えば、水酸化物イオン、ハロゲン化物イオン、シアン化物イオン、酢酸イオン、トリフルオロ酢酸イオン、硫酸水素イオン、硫酸イオン、亜硫酸イオン、スルホン酸イオン、チオ硫酸イオン、炭酸イオン、シュウ酸イオン、リン酸水素イオン、及び、リン酸イオンが挙げられる。
 なかでも、本発明の効果がより優れる点で、Xn-としては、水酸化物イオン、又は、ハロゲン化物イオンが好ましく、水酸化物イオン、塩化物イオン、フッ化物イオン、又は、臭化物イオンがより好ましく、水酸化物イオン、又は、塩化物イオンが更に好ましい。
 特定化合物としては、例えば、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、メチルトリエチルアンモニウム塩、トリメチル(ヒドロキシエチル)アンモニウム塩、メチルトリブチルアンモニウム塩、ジメチルジプロピルアンモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニウム塩、トリエチル(ヒドロキシエチル)アンモニウム塩、ドデシルトリメチルアンモニウム塩、テトラデシルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウム塩、メチルトリ(ヒドロキシエチル)アンモニウム塩、ベンジルトリメチルアンモニウム塩、トリエチル(ヒドロキシエチル)アンモニウム塩、ビスヒドロキシエチルジメチルアンモニウム塩、トリメチルプロピルアンモニウム塩、イソプロピルトリメチルアンモニウム塩、ブチルトリメチルアンモニウム塩、トリエチルプロピルアンモニウム塩、イソプロピルトリエチルアンモニウム塩、ブチルトリエチルアンモニウム塩、メチルトリプロピルアンモニウム塩、エチルトリプロピルアンモニウム塩、ブチルトリプロピルアンモニウム塩、エチルトリブチルアンモニウム塩、プロピルトリブチルアンモニウム塩、ジイソプロピルジメチルアンモニウム塩、ジブチルジメチルアンモニウム塩、ジエチルジプロピルアンモニウム塩、ジエチルジイソプロピルアンモニウム塩、ジエチルジブチルアンモニウム塩、エチルメチルプロピルブチルアンモニウム塩、エチルメチルイソプロピルブチルアンモニウム塩、エチルメチルジプロピルアンモニウム塩、エチルメチルジイソプロピルアンモニウム塩、ジメチルビス(2-ヒドロキシエチル)アンモニウム塩、メチルトリス(2-ヒドロキシエチル)アンモニウム塩、及び、エチルメチルジブチルアンモニウム塩が挙げられる。
 なかでも、特定化合物は、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、メチルトリエチルアンモニウム塩、トリメチル(ヒドロキシエチル)アンモニウム塩、ジメチルビス(2-ヒドロキシエチル)アンモニウム塩、メチルトリス(2-ヒドロキシエチル)アンモニウム塩、メチルトリブチルアンモニウム塩、ジメチルジプロピルアンモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニウム塩、及び、トリエチル(ヒドロキシエチル)アンモニウム塩からなる群から選択される少なくとも1つを含むことが好ましく、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、メチルトリエチルアンモニウム塩、トリメチル(ヒドロキシエチル)アンモニウム塩、ジメチルビス(2-ヒドロキシエチル)アンモニウム塩、及び、メチルトリス(2-ヒドロキシエチル)アンモニウム塩からなる群から選択される少なくとも1つを含むことがより好ましく、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、メチルトリエチルアンモニウム塩、及び、トリメチル(ヒドロキシエチル)アンモニウム塩からなる群から選択される少なくとも1つを含むことが更に好ましい。
 上記塩としては、上述したXn-との塩が挙げられる。
 特定化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
<任意成分>
 組成物は、上記組成物に含まれる成分以外に、任意成分を含んでいてもよい。
 任意成分としては、例えば、塩化物イオン、溶媒、pH調整剤、及び、界面活性剤が挙げられる。
 以下、任意成分について説明する。
(塩化物イオン)
 組成物は、塩化物イオンを含んでいてもよい。
 組成物が塩化物イオンを含む場合、組成物の金属残渣物除去能を向上できる。
 塩化物イオンの含有量は、金属残渣物除去能が向上する点で、組成物の全質量に対して、0.0001~20.00質量%が好ましく、0.0001~10.00質量%がより好ましく、0.001~5.00質量%が更に好ましく、0.001~1.00質量%が特に好ましい。
 塩化物イオンの含有量に対する特定化合物の含有量の質量比(特定化合物の含有量/塩化物イオンの含有量)は、金属残渣物除去能が優れる点で、10000以下が好ましく、1000以下がより好ましく、500以下が更に好ましく、100以下が特に好ましい。下限は特に制限されず、0.1以上が好ましく、1以上がより好ましく、10以上が更に好ましい。
 組成物の塩化物イオンの含有量は、イオンクロマトグラフ法で求められる。具体的には、サーモフィッシャー社のDionex ICS-2100が挙げられる。また、塩化物イオンの含有量が低い場合、濃縮カラムを用いて濃縮した後、塩化物イオンの含有量を測定してもよい。また、原料の組成が既知である場合、原料の添加量から塩化物イオンの含有量を計算して求めてもよい。
 塩化物イオンを含ませる方法としては、例えば、組成物の調製又は基板の処理直前等に、塩化物イオンを含む化合物を組成物に添加してもよい。また、不純物として微量に含む原料を組成物の調製に用いて、塩化物イオンを組成物に含ませてもよい。
 塩化物イオンを含む化合物としては、例えば、組成物中で解離して塩化物イオンとカチオンとを生じる化合物が挙げられる。
 上記塩化物イオンとカチオンとを生じる化合物としては、例えば、特定化合物、及び、塩酸又はその塩(例えば、アルカリ金属との塩、及び、アルカリ土類金属との塩)が挙げられる。
(溶媒)
 組成物は、溶媒を含んでいてもよい。
 溶媒としては、例えば、水、及び、有機溶媒が挙げられ、水が好ましい。
 水としては、蒸留水、イオン交換水、及び、超純水等の浄化処理を施された水が好ましく、半導体製造に使用される超純水がより好ましい。組成物に含まれる水は、不可避的な微量混合成分を含んでいてもよい。
 水の含有量は、組成物の全質量に対して、50質量%以上が好ましく、65質量%以上がより好ましく、70質量%以上が更に好ましい。上限は特に制限されず、組成物の全質量に対して、99.99質量%以下が好ましく、99.9質量%以下がより好ましい。
 有機溶媒としては、水溶性有機溶媒が好ましい。
 水溶性有機溶媒としては、例えば、エーテル系溶媒、アルコール系溶媒、ケトン系溶媒、アミド系溶媒、含硫黄系溶媒、及び、ラクトン系溶媒が挙げられる。水溶性有機溶媒としては、水と任意の割合で混合できる有機溶媒が好ましい。
 エーテル系溶媒としては、エーテル結合(-O-)を有する化合物であれば特に制限されず、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、テトラヒドロフラン、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール、アルキレングリコールモノアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル)、アルキレングリコールジアルキルエーテル(ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、及び、トリエチレングリコールジメチルエーテル)が挙げられる。
 エーテル系溶媒の炭素数としては、3~16が好ましく、4~14がより好ましく、6~12が更に好ましい。
 アルコール系溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、及び、1,4-ブタンジオールが挙げられる。
 アルコール系溶媒の炭素数としては、1~8が好ましく、1~4がより好ましい。
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、及び、シクロヘキサノンが挙げられる。
 アミド系溶媒としては、例えば、ホルムアミド、モノメチルホルムアミド、ジメチルホルムアミド、アセトアミド、モノメチルアセトアミド、ジメチルアセトアミド、モノエチルアセトアミド、ジエチルアセトアミド、及び、N-メチルピロリドンが挙げられる。
 含硫黄系溶媒としては、例えば、ジメチルスルホン、ジメチルスルホキシド、及び、スルホランが挙げられる。
 ラクトン系溶媒としては、例えば、γ-ブチロラクトン、及び、δ-バレロラクトンが挙げられる。
 有機溶媒は1種を単独で用いても、2種以上を使用してもよい。2種以上の有機溶媒を使用する場合、2種以上の有機溶媒の合計含有量が下記範囲内であることが好ましい。
 有機溶媒の含有量は、組成物の全質量に対して、0.1~10質量%が好ましい。
(pH調整剤)
 組成物は、pH調整剤を含んでいてもよい。
 pH調整剤としては、塩基性化合物及び酸性化合物が挙げられ、目的とする組成物のpHに応じて適宜選択される。
-塩基性化合物-
 塩基性化合物とは、水溶液中でアルカリ性(pHが7.0超)を示す化合物である。
 塩基性化合物としては、例えば、有機塩基、無機塩基、及び、それらの塩が挙げられる。
 有機塩基としては、例えば、第4級アンモニウム塩、アルキルアミン化合物及びその誘導体の塩、アルカノールアミン化合物及びその塩、アミンオキシド化合物、ニトロ化合物、ニトロソ化合物、オキシム化合物、ケトオキシム化合物、アルドオキシム化合物、ラクタム化合物、並びに、イソシアニド化合物が挙げられる。
 pH調整剤としての上記第4級アンモニウム塩は、特定化合物とは異なる化合物である。
 上記第4級アンモニウム塩は、窒素原子に、同一の炭化水素基(アルキル基が好ましい)が4つ置換してなる第4級アンモニウムカチオンを有する塩である。
 第4級アンモニウム塩としては、例えば、水酸化物、フッ化物、臭化物、ヨウ化物、酢酸塩、及び、炭酸塩が挙げられる。
 第4級アンモニウム塩としては、テトラメチルアンモニウム水酸化物(TMAH)、テトラエチルアンモニウム水酸化物(TEAH)、テトラプロピルアンモニウム水酸化物(TPAH)、テトラブチルアンモニウム水酸化物(TBAH)、又は、テトラ(ヒドロキシエチル)アンモニウム水酸化物が好ましく、TMAH、TEAH、TPAH、又は、TBAHがより好ましい。
 無機塩基としては、例えば、水酸化ナトリウム、及び、水酸化カリウム等のアルカリ金属水酸化物、アルカリ土類金属水酸化物、並びに、アンモニア又はその塩が挙げられる。
 なかでも、塩基性化合物としては、使用後の金属残留の少なさ、経済性、及び、組成物の安定性等の点で、第4級アンモニウム水酸化物が好ましく、TMAH、又は、TEAHがより好ましく、TEAHが更に好ましい。
-酸性化合物-
 酸性化合物とは、水溶液中で酸性(pHが7.0未満)を示す酸性化合物である。
 酸性化合物としては、無機酸、有機酸、及び、それらの塩が挙げられる。
 無機酸としては、例えば、硫酸、塩酸、リン酸、硝酸、フッ酸、過塩素酸、及び、それらの塩が挙げられ、硫酸、塩酸、リン酸、又は、硝酸が好ましく、硝酸、硫酸、又は、塩酸がより好ましい。
 有機酸としては、例えば、カルボン酸、スルホン酸、及び、それらの塩が挙げられる。
 カルボン酸としては、例えば、ギ酸、酢酸、プロピオン酸、及び、酪酸等の低級(炭素数1~4)脂肪族モノカルボン酸、並びに、それらの塩が挙げられる。
 スルホン酸としては、例えば、メタンスルホン酸(MSA)、ベンゼンスルホン酸、p-トルエンスルホン酸(トシル酸)、及び、それらの塩が挙げられる。
 酸性化合物としては、硫酸、塩酸、リン酸、硝酸、スルホン酸、又は、それらの塩が好ましく、硫酸、塩酸、リン酸、メタンスルホン酸、又は、p-トルエンスルホン酸がより好ましい。
 pH調整剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 pH調整剤は、市販のものを用いてもよいし、公知の方法によって適宜合成したものを用いてもよい。
 pH調整剤の含有量は、組成物の全質量に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましい。上限は特に制限されないが、組成物の全質量に対して、20.0質量%以下が好ましい。
 pH調整剤の含有量を、上記の好適な範囲内において、後述する組成物の好適なpHの範囲になるように調整することも好ましい。
(界面活性剤)
 組成物は、界面活性剤を含んでいてもよい。
 界面活性剤としては、1分子中に親水基と疎水基(親油基)とを有する化合物であれば特に制限されず、例えば、アニオン性界面活性剤、カチオン性界面活性剤、及び、ノニオン性界面活性剤が挙げられる。界面活性剤としての第4級アンモニウム塩は、特定化合物とは異なる化合物である。
 界面活性剤が有する疎水基としては特に制限されないが、例えば、脂肪族炭化水素基、芳香族炭化水素基、及び、それらの組合せが挙げられる。
 疎水基が芳香族炭化水素基を含む場合、疎水基の炭素数は、6以上が好ましく、10以上がより好ましい。
 疎水基が芳香族炭化水素基を含まず、脂肪族炭化水素基のみから構成される場合、疎水基の炭素数は、8以上が好ましく、10以上がより好ましい。疎水基の炭素数の上限は特に制限されないが、24以下が好ましく、20以下がより好ましい。
 アニオン性界面活性剤としては、例えば、分子内に、スルホン酸基、カルボキシ基、硫酸エステル基、及び、ホスホン酸基からなる群より選択される少なくとも1種の親水基を有するアニオン性界面活性剤が挙げられる。
 スルホン酸基を有するアニオン性界面活性剤としては、アルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルスルホン酸、脂肪酸アミドスルホン酸、及び、それらの塩が挙げられる。
 カルボキシ基を有するアニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテルカルボン酸、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキルエーテルプロピオン酸、脂肪酸、及び、それらの塩が挙げられる。
 上記アニオン性界面活性剤の塩としては、例えば、アンモニウム塩、ナトリウム塩、カリウム塩、及び、テトラメチルアンモニウム塩が挙げられる。
 カチオン性界面活性剤としては、カチオン性の親水基、及び、上記の疎水基を有する化合物であれば特に制限されず、例えば、第4級アンモニウム塩系界面活性剤、及び、アルキルピリジウム系界面活性剤が挙げられる。
 界面活性剤は、1種を単独で用いても、2種以上を使用してもよい。
 界面活性剤の含有量は、組成物の全質量に対して、0.01質量%以上が好ましく、0.03質量%以上がより好ましい。上限は特に制限されないが、組成物の泡立ちを抑制する点で、組成物の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましい。
(研磨粒子)
 組成物は、研磨粒子を実質的に含まないことが好ましい。
 研磨粒子とは、半導体基板の研磨処理に使用する研磨液に含まれる粒子であって、その平均一次粒子径が5nm以上である粒子を意味する。
 また、組成物が研磨粒子を実質的に含まないとは、光散乱式液中粒子測定方式における市販の測定装置を用いて組成物を測定した際に、組成物1mLに含まれる平均一次粒子径が5nm以上である研磨粒子が10個以下であることを意味する。
 研磨粒子としては、例えば、シリカ(コロイダルシリカ及びヒュームドシリカを含む)、アルミナ、ジルコニア、セリア、チタニア、ゲルマニア、酸化マンガン、及び、炭化珪素等の無機物砥粒;ポリスチレン、ポリアクリル、及び、ポリ塩化ビニル等の有機物砥粒が挙げられる。
 研磨粒子の含有量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して測定される。
 また、研磨粒子等の粒子の平均一次粒子径は、日本電子(株)社製の透過型電子顕微鏡TEM2010(加圧電圧200kV)を用いて撮影された画像から任意に選択した一次粒子1000個の粒子径(円相当径)を測定し、それらを算術平均して求める。なお、円相当径とは、観察時の粒子の投影面積と同じ投影面積をもつ真円を想定したときの当該円の直径である。
 組成物から研磨粒子を除去する方法としては、例えば、フィルタリング等の精製処理が挙げられる。
<pH>
 組成物のpHは、特に制限されず、例えば、1.0~14.0の範囲内が挙げられる。
 組成物のpHとしては、本発明の効果がより優れる点で、4.0~14.0が好ましく、7.0~12.0がより好ましい。
 本明細書において、組成物のpHは、25℃において、pHメーター(株式会社堀場製作所製、F-51(商品名))を用いて測定することにより得られる。
<容器>
 組成物は、任意の容器に充填して保管、運搬、及び、使用することができる。
 容器としては、容器のクリーン度が高く、不純物の溶出が少ないものが好ましい。組成物が充填される容器としては、例えば、アイセロ化学社製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業社製の「ピュアボトル」が挙げられる。
<製造方法>
 組成物の製造方法は、特に制限されず、例えば、上記の各成分を混合することにより、組成物を製造できる。
 上記の各成分を混合する順序及び/又はタイミングは特に制限されない。例えば、精製した純水を入れた混合ミキサー等の攪拌機に、オキソハロゲン酸化合物、特定化合物、及び、必要な任意成分を順次添加した後、十分に攪拌することにより、各成分を混合して、組成物を製造する方法が挙げられる。
 組成物の製造方法としては、pH調整剤を用いて洗浄液のpHを予め調整した後に各成分を混合する方法、及び、各成分の混合後にpH調整剤を用いて設定したpHに調整する方法も挙げられる。
 また、使用時よりも水の含有量が少ない濃縮液を製造して、使用時に希釈液(好ましくは水)により希釈して各成分の含有量を所定の含有量に調整することにより、組成物を製造してもよい。上記濃縮液を希釈液により希釈した後、pH調整剤を用いて設定したpHに調整することにより、組成物を製造してもよい。濃縮液を希釈する際は、濃縮液に対して所定量の希釈液を添加してもよく、希釈液に所定量の濃縮液を添加してもよい。
[被処理物]
 組成物は、基板上の遷移金属含有物(特に、Ru含有物)を除去するために用いられる。
 なお、本明細書における「基板上」とは、例えば、基板の表裏、側面、及び、溝内等のいずれも含む。また、基板上の遷移金属含有物とは、基板の表面上に直接遷移金属含有物がある場合のみならず、基板上に他の層を介して遷移金属含有物がある場合も含む。
 遷移金属含有物は、遷移金属(遷移金属原子)を含む物質であれば特に制限されない。
 遷移金属としては、例えば、Ru(ルテニウム)、Rh(ロジウム)、Ti(チタン)、Ta(タンタル)、Co(コバルト)、Cr(クロム)、Hf(ハフニウム)、Os(オスミウム)、Pt(白金)、Ni(ニッケル)、Mn(マンガン)、Cu(銅)、Zr(ジルコニウム)、Mo(モリブデン)、La(ランタン)、W(タングステン)、及び、Ir(イリジウム)から選択される金属Mが挙げられる。
 なかでも、遷移金属含有物としては、Ru(ルテニウム)含有物が好ましい。
 Ru含有物中のRu原子の含有量は、Ru含有物の全質量に対して、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上が更に好ましく、90質量%以上が特に好ましい。上限は特に制限されず、Ru含有物の全質量に対して、100質量%以下が好ましい。
 Ru含有物としては、Ru(Ru原子)を含む物質であれば特に制限されず、例えば、Ruの単体、Ruを含む合金、Ruの酸化物、Ruの窒化物、及び、Ruの酸窒化物が挙げられる。
 なお、上記酸化物、窒化物、及び、酸窒化物は、Ruを含む、複合酸化物、複合窒化物、及び、複合酸窒化物であってもよい。
 被処理物は、遷移金属含有物(特に、Ru含有物)を有する基板である。
 つまり、被処理物は、基板と、基板上にある遷移金属含有物(特に、Ru含有物)とを少なくとも含む。
 基板の種類は特に制限はないが、半導体基板が好ましい。
 上記基板には、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、及び、光磁気ディスク用基板が挙げられる。
 半導体基板を構成する材料としては、ケイ素、ケイ素ゲルマニウム、及び、GaAs等の第III-V族化合物、並びに、それらの組合せが挙げられる。
 本発明の組成物による処理がなされた被処理物の用途は、特に制限されず、例えば、DRAM(Dynamic Random Access Memory)、FRAM(登録商標)(Ferroelectric Random Access Memory)、MRAM(Magnetoresistive Random Access Memory)、及び、PRAM(Phase change Random Access Memory)に使用してもよいし、ロジック回路、及び、プロセッサ等に使用してもよい。
 基板上の遷移金属含有物(特に、Ru含有物)の形態は、特に制限されず、例えば、膜状に配置された形態(特に、Ru含有膜)、配線状に配置された形態(特に、Ru含有配線)、及び、粒子状に配置された形態のいずれであってもよい。
 上述したように、遷移金属としては、Ruを含むことが好ましく、被処理物としては、基板と、基板上に配置されたRu含有膜、Ru含有配線、又は、粒子状のRu含有物とを含む被処理物が好ましい。
 なお、Ru含有物が粒子状に配置された形態としては、例えば、後述するように、Ru含有膜が配置された基板に対してドライエッチングを施した後に、残渣として粒子状のRu含有物が付着している基板、及び、Ru含有膜に対してCMP(chemical mechanical polishing、化学的機械的研磨処理)を施した後に、残渣として粒子状のRu含有物が付着している基板が挙げられる。
 Ru含有膜の厚みは、特に制限されず、用途に応じて適宜選択すればよく、例えば、200nm以下が好ましく、100nm以下がより好ましく、50nm以下が更に好ましい。下限は特に制限されず、0.1nm以上が好ましい。
 Ru含有膜は、基板の片側の主面上にのみに配置されていてもよいし、両側の主面上に配置されていてもよい。また、Ru含有膜は、基板の主面全面に配置されていてもよいし、基板の主面の一部に配置されていてもよい。
 また、上記被処理物は、遷移金属含有物(特に、Ru含有物)以外に、所望に応じた種々の層、及び/又は、構造を含んでいてもよい。例えば、基板上には、金属配線、ゲート電極、ソース電極、ドレイン電極、絶縁層、強磁性層、及び/又は、非磁性層等が配置されていてもよい。
 基板は、曝露された集積回路構造を含んでいてもよい。上記集積回路構造としては、例えば、金属配線及び誘電材料等の相互接続機構が挙げられる。相互接続機構に使用する金属及び合金としては、例えば、アルミニウム、銅アルミニウム合金、銅、チタン、タンタル、コバルト、ケイ素、窒化チタン、窒化タンタル、及び、タングステンが挙げられる。基板は、酸化ケイ素、窒化ケイ素、炭化ケイ素、及び/又は、炭素ドープ酸化ケイ素の層を含んでいてもよい。
 基板の大きさ、厚さ、形状、及び、層構造等は、特に制限はなく、所望に応じ適宜選択できる。
<被処理物の製造方法>
被処理物の製造方法は、特に制限されず、公知の製造方法を用いることができる。
 被処理物の製造方法としては、例えば、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、及び、原子層堆積法(ALD:Atomic layer deposition)を用いて、基板上に遷移金属含有膜(特に、Ru含有膜)を形成できる。なお、スパッタリング法及びCVD法により遷移金属含有膜(特に、Ru含有膜)を形成した場合、遷移金属含有膜(特に、Ru含有膜)が配置された基板の裏面(遷移金属含有膜(特に、Ru含有膜)側とは反対側の表面)にも、遷移金属含有膜(特に、Ru含有膜)が付着する場合がある。
 また、所定のマスクを介して上記方法を実施して、基板上に遷移金属含有配線(特に、Ru含有配線)を形成してもよい。
 また、遷移金属含有膜(特に、Ru含有膜)又は遷移金属含有配線(特に、Ru含有配線)が配置された基板に対して所定の処理を施して、本発明の処理方法の被処理物として用いてもよい。
 例えば、遷移金属含有膜(特に、Ru含有膜)、又は、遷移金属含有配線(特に、Ru含有配線)が配置された基板をドライエッチングに供して、遷移金属(特に、Ru)を含むドライエッチング残渣を有する基板を製造してもよい。また、遷移金属含有膜(特に、Ru含有膜)又は遷移金属含有配線(特に、Ru含有配線)が配置された基板をCMPに供して、遷移金属含有物(特に、Ru含有物)を有する基板を製造してもよい。
[基板の処理方法]
 本発明の基板の処理方法(以下「本処理方法」ともいう。)は、上述した組成物を用いて、基板上の遷移金属含有物(特に、Ru含有物)を除去する工程Aを有する。
 また、本処理方法の被処理物である、遷移金属含有物(特に、Ru含有物)が配置された基板に関しても、上述した通りである。
 工程Aの具体的な方法としては、組成物と、被処理物である遷移金属含有物(特に、Ru含有物)が配置された基板とを接触させる方法が挙げられる。
 接触させる方法は特に制限されず、例えば、タンクに入れた組成物中に被処理物を浸漬する方法、被処理物上に組成物を噴霧する方法、被処理物上に組成物を流す方法、及び、それらの組み合わせが挙げられる。なかでも、被処理物を組成物に浸漬する方法が好ましい。
 更に、組成物の洗浄能力をより増進するために、機械式撹拌方法を用いてもよい。
 機械式撹拌方法としては、例えば、被処理物上で組成物を循環させる方法、被処理物上で組成物を流過又は噴霧させる方法、及び、超音波又はメガソニックにて組成物を撹拌する方法が挙げられる。
 工程Aの処理時間は、適宜調整できる。処理時間(組成物と被処理物との接触時間)は特に制限されないが、0.25~10分間が好ましく、0.5~2分間がより好ましい。
 処理の際の組成物の温度は特に制限されないが、20~75℃が好ましく、20~65℃がより好ましく、40~65℃が更に好ましく、50~65℃が特に好ましい。
 工程Aにおいては、組成物中のオキソハロゲン酸化合物、及び/又は、特定化合物の濃度を測定しながら、必要に応じて、組成物中に溶媒(水が好ましい)を添加する処理を実施してもよい。本処理を実施することにより、組成物中の成分濃度を所定の範囲に安定的に保つことができる。
 工程Aの具体的な好適態様としては、例えば、組成物を用いて基板上に配置されたRu含有配線をリセスエッチング処理する工程A1、組成物を用いてRu含有膜が配置された基板の外縁部のRu含有膜を除去する工程A2、組成物を用いてRu含有膜が配置された基板の裏面に付着するRu含有物を除去する工程A3、組成物を用いてドライエッチング後の基板上のRu含有物を除去する工程A4、及び、組成物を用いて化学的機械的研磨処理後の基板上のRu含有物を除去する工程A5が挙げられる。
 なかでも、工程Aとしては、工程A2、又は、工程A3が好ましい。
 以下、上記各処理に用いられる本処理方法について説明する。
<工程A1>
 工程Aとしては、組成物を用いて基板上に配置されたRu有配線をリセスエッチング処理する工程A1が挙げられる。
 図1に、工程A1のリセスエッチング処理の被処理物であるRu含有配線を有する基板(以下「配線基板」ともいう。)の一例を示す断面上部の模式図を示す。
 図1に示す配線基板10aは、図示しない基板と、基板上に配置された溝を有する絶縁膜12と、溝の内壁に沿って配置されたバリアメタル層14と、溝内部に充填されたRu含有配線16とを有する。
 配線基板中の基板、及び、Ru含有配線は、上述した通りである。
 Ru含有配線は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 配線基板中のバリアメタル層を構成する材料は特に制限されず、例えば、TiN、及び、TaNが挙げられる。
 なお、図1においては、配線基板がバリアメタル層を有する態様について述べたが、バリアメタル層を有さない配線基板であってもよい。
 配線基板の製造方法は、特に制限されず、例えば、基板上に絶縁膜を形成する工程と、上記絶縁膜に溝を形成する工程と、絶縁膜上にバリアメタル層を形成する工程と、上記溝を充填するようにRu含有膜を形成する工程と、Ru含有膜に対して平坦化処理を施す工程と、を有する方法が挙げられる。
 工程A1においては、上述した組成物を用いて、配線基板中のRu含有配線に対してリセスエッチング処理を行うことで、Ru含有配線の一部を除去して、凹部を形成することができる。
 より具体的には、工程A1を実施すると、図2の配線基板10bに示すように、バリアメタル層14、及び、Ru含有配線16の一部が除去されて、凹部18が形成される。
 工程A1の具体的な方法としては、組成物と、配線基板とを接触させる方法が挙げられる。
 組成物と配線基板との接触方法は、上述した通りである。
 組成物と配線基板との接触時間、及び、組成物の温度の好適範囲は、上述した通りである。
(工程B)
 なお、工程A1の前、又は、工程A1の後に、必要に応じて、所定の溶液(以下「特定溶液」ともいう。)を用いて、工程A1で得られた基板を処理する工程Bを実施してもよい。
 特に、上述したように、基板上にバリアメタル層が配置されている場合、Ru含有配線を構成する成分とバリアメタル層を構成する成分とでは、その種類によって本発明の組成物に対する溶解能が異なる場合がある。そのような場合、バリアメタル層に対してより溶解能が優れる溶液を用いて、Ru含有配線とバリアメタル層との溶解の程度を調整することが好ましい。
 このような点から、特定溶液は、Ru含有配線に対する溶解能が乏しく、バリアメタル層を構成する物質に対して溶解能が優れる溶液が好ましい。
 特定溶液としては、例えば、フッ酸と過酸化水素水との混合液(FPM)、硫酸と過酸化水素水との混合液(SPM)、アンモニア水と過酸化水素水との混合液(APM)、及び、塩酸と過酸化水素水との混合液(HPM)からなる群から選択される溶液が挙げられる。
 FPMの組成は、例えば、「フッ酸:過酸化水素水:水=1:1:1」~「フッ酸:過酸化水素水:水=1:1:200」の範囲内(体積比)が好ましい。
 SPMの組成は、例えば、「硫酸:過酸化水素水:水=3:1:0」~「硫酸:過酸化水素水:水=1:1:10」の範囲内(体積比)が好ましい。
 APMの組成は、例えば、「アンモニア水:過酸化水素水:水=1:1:1」~「アンモニア水:過酸化水素水:水=1:1:30」の範囲内(体積比)が好ましい。
 HPMの組成は、例えば、「塩酸:過酸化水素水:水=1:1:1」~「塩酸:過酸化水素水:水=1:1:30」の範囲内(体積比)が好ましい。
 なお、これらの好ましい組成比の記載は、フッ酸は49質量%フッ酸、硫酸は98質量%硫酸、アンモニア水は28質量%アンモニア水、塩酸は37質量%塩酸、過酸化水素水は31質量%過酸化水素水である場合における組成比を意図する。
 なかでも、特定溶液としては、バリアメタル層の溶解能の点から、SPM、APM、又は、HPMが好ましい。
 特定溶液としては、ラフネスの低減の点から、APM、HPM、又は、FPMが好ましく、APMがより好ましい。
 特定溶液としては、性能バランスが優れる点から、APM、又は、HPMが好ましい。
 工程Bにおいて、特定溶液を用いて、工程A1で得られた基板を処理する方法としては、特定溶液と工程A1で得られた基板とを接触させる方法が好ましい。
 特定溶液と工程A1で得られた基板とを接触させる方法は特に制限されず、例えば、組成物を基板に接触させるのと同様の方法が挙げられる。
 特定溶液と工程A1で得られた基板との接触時間は、例えば、0.25~10分間が好ましく、0.5~5分間がより好ましい。
 本処理方法においては、工程A1と工程Bとを交互に繰り返し実施してもよい。
 交互に繰り返し行う場合は、工程A1及び工程Bはそれぞれ1~10回実施されることが好ましい。また、工程A1と工程Bとを交互に繰り返し行う場合、最初に行う工程及び最後に行う工程は、工程A1及び工程Bのいずれであってもよい。
<工程A2>
 工程Aとしては、組成物を用いてRu含有膜が配置された基板の外縁部のRu含有膜を除去する工程A2が挙げられる。
 図3に、工程A2の被処理物であるRu含有膜が配置された基板の一例を示す模式図(上面図)を示す。
 図3に示す、工程A2の被処理物20は、基板22と、基板22の片側の主面上(実線で囲まれた全域)に配置されたRu含有膜24とを有する積層体である。後述するように、工程A2では、被処理物20の外縁部26(破線の外側の領域)に位置するRu含有膜24が除去される。
 被処理物中の基板、及び、Ru含有膜は、上述した通りである。
 なお、Ru含有膜は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 工程A2の具体的な方法は、特に制限されず、例えば、上記基板の外縁部のRu含有膜にのみ組成物が接触するように、ノズルから組成物を供給する方法が挙げられる。
 工程A2の処理の際には、特開2010-267690号公報、特開2008-080288号公報、特開2006-100368号公報、及び、特開2002-299305号公報に記載の基板処理装置及び基板処理方法を好ましく適用できる。
 組成物と被処理物との接触方法は、上述した通りである。
 組成物と被処理物との接触時間、及び、組成物の温度の好適範囲は、上述した通りである。
<工程A3>
 工程Aとしては、組成物を用いてRu含有膜が配置された基板の裏面に付着するRu含有物を除去する工程A3が挙げられる。
 工程A3の被処理物としては、工程A2で用いられた被処理物が挙げられる。工程A2で用いられる、基板と、基板の片側の主面上にRu含有膜が配置された被処理物を形成する際には、スパッタリング及びCVD等でRu含有膜を形成される。その際、基板のRu含有膜側とは反対側の表面上(裏面上)には、Ru含有物が付着する場合がある。このような被処理物中のRu含有物を除去するために、工程A3が実施される。
 工程A3の具体的な方法は、特に制限されず、例えば、上記基板の裏面にのみ組成物が接触するように、組成物を吹き付ける方法が挙げられる。
 組成物と被処理物との接触方法は、上述した通りである。
 組成物と被処理物との接触時間、及び、組成物の温度の好適範囲は、上述した通りである。
<工程A4>
 工程Aとしては、組成物を用いてドライエッチング後の基板上のRu含有物を除去する工程A4が挙げられる。
 図4に、工程A4の被処理物の一例を示す模式図を示す。
 図4に示す被処理物30は、基板32上に、Ru含有膜34、エッチング停止層36、層間絶縁膜38、メタルハードマスク40をこの順に備え、ドライエッチング工程等を経たことで所定位置にRu含有膜34が露出するホール42が形成されている。つまり、図4に示す被処理物は、基板32と、Ru含有膜34と、エッチング停止層36と、層間絶縁膜38と、メタルハードマスク40とをこの順で備え、メタルハードマスク40の開口部の位置において、その表面からRu含有膜34の表面まで貫通するホール42を備える積層物である。ホール42の内壁44は、エッチング停止層36、層間絶縁膜38、及び、メタルハードマスク40からなる断面壁44aと、露出されたRu含有膜34からなる底壁44bとで構成され、ドライエッチング残渣46が付着している。
 ドライエッチング残渣は、Ru含有物を含む。
 Ru含有膜は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 Ru含有物は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 層間絶縁膜及びメタルハードマスクとしては、公知の材料が選択される。
 なお、図4においては、メタルハードマスクを用いる態様について述べたが、公知のフォトレジスト材料を用いて形成されるレジストマスクを用いてもよい。
 工程A4の具体的な方法としては、組成物と、上記被処理物とを接触させる方法が挙げられる。
 組成物と配線基板との接触方法は、上述した通りである。
 組成物と配線基板との接触時間、及び、組成物の温度の好適範囲は、上述した通りである。
<工程A5>
 工程Aとしては、組成物を用いて化学的機械的研磨処理(CMP:chemical mechanical polishing)後の基板上のRu含有物を除去する工程A5が挙げられる。
 絶縁膜の平坦化、接続孔の平坦化、及び、ダマシン配線等の製造工程にCMP技術が導入されている。CMP後の基板は、多量に研磨粒子に用いられる粒子、及び、金属不純物等により汚染される場合がある。そのため、次の加工段階に入る前にこれらの汚染物を除去し、洗浄する必要がある。そこで、工程A5を実施することにより、CMPの被処理物がRu含有配線を有する場合、又は、Ru含有膜を有する場合に発生して基板上に付着するRu含有物を除去できる。
 工程A5の被処理物は、上述したように、CMP後の、Ru含有物を有する基板が挙げられる。
 Ru含有物は、Ruの単体、Ruの合金、Ruの酸化物、Ruの窒化物、又は、Ruの酸窒化物を含むことが好ましい。
 工程A5の具体的な方法としては、組成物と、上記被処理物とを接触させる方法が挙げられる。
 組成物と配線基板との接触方法は、上述した通りである。
 組成物と配線基板との接触時間、及び、組成物の温度の好適範囲は、上述した通りである。
<工程C>
 本処理工程は、上記工程Aの後に、必要に応じて、リンス液を用いて、工程Aで得られた基板に対してリンス処理を行う工程Cを有していてもよい。
 リンス液としては、例えば、フッ酸(0.001~1質量%フッ酸が好ましい)、塩酸(0.001~1質量%塩酸が好ましい)、過酸化水素水(0.5~31質量%過酸化水素水が好ましく、3~15質量%過酸化水素水がより好ましい)、フッ酸と過酸化水素水との混合液(FPM)、硫酸と過酸化水素水との混合液(SPM)、アンモニア水と過酸化水素水との混合液(APM)、塩酸と過酸化水素水との混合液(HPM)、二酸化炭素水(10~60質量ppm二酸化炭素水が好ましい)、オゾン水(10~60質量ppmオゾン水が好ましい)、水素水(10~20質量ppm水素水が好ましい)、クエン酸水溶液(0.01~10質量%クエン酸水溶液が好ましい)、酢酸(酢酸原液、又は、0.01~10質量%酢酸水溶液が好ましい)、硫酸(1~10質量%硫酸水溶液が好ましい)、アンモニア水(0.01~10質量%アンモニア水が好ましい)、イソプロピルアルコール(IPA)、次亜塩素酸水溶液(1~10質量%次亜塩素酸水溶液が好ましい)、王水(「37質量%塩酸:60質量%硝酸」の体積比として「2.6:1.4」~「3.4:0.6」の配合に相当する王水が好ましい)、超純水、硝酸(0.001~1質量%硝酸が好ましい)、過塩素酸(0.001~1質量%過塩素酸が好ましい)、シュウ酸水溶液(0.01~10質量%水溶液が好ましい)、又は、過ヨウ素酸水溶液(0.5~10質量%過ヨウ素酸水溶液が好ましく、過ヨウ素酸としては、オルト過ヨウ素酸及びメタ過ヨウ素酸が挙げられる)が好ましい。
 FPM、SPM、APM、及び、HPMとして好ましい条件は、例えば、上述の特定溶液として使用される、FPM、SPM、APM、及び、HPMとしての好適態様と同様である。
 なお、フッ酸、硝酸、過塩素酸、及び、塩酸は、それぞれ、HF、HNO、HClO、及び、HClが、水に溶解した水溶液を意図する。
 オゾン水、二酸化炭素水、及び、水素水は、それぞれ、O、CO、及び、Hを水に溶解させた水溶液を意図する。
 リンス工程の目的を損なわない範囲で、これらのリンス液を混合して使用してもよい。
 なかでも、リンス液としては、リンス工程後の基板表面における残存塩素をより減少させる点から、二酸化炭素水、オゾン水、水素水、フッ酸、クエン酸水溶液、塩酸、硫酸、アンモニア水、過酸化水素水、SPM、APM、HPM、IPA、次亜塩素酸水溶液、王水、又は、FPMが好ましく、フッ酸、塩酸、過酸化水素水、SPM、APM、HPM、又は、FPMがより好ましい。
 工程Cの具体的な方法としては、例えば、リンス液と、被処理物である工程Aで得られた基板とを接触させる方法が挙げられる。
 接触させる方法としては、例えば、タンクに入れたリンス液中に基板を浸漬する方法、基板上にリンス液を噴霧する方法、基板上にリンス液を流す方法、及び、それらの任意の組み合わせた方法が挙げられる。
 処理時間(リンス液と被処理物との接触時間)は、特に制限されず、例えば、5秒間~5分間である。
 処理の際のリンス液の温度は、特に制限されないが、一般に、16~60℃が好ましく、18~40℃がより好ましい。リンス液として、SPMを用いる場合、その温度は90~250℃が好ましい。
 本処理方法は、工程Cの後に、必要に応じて、乾燥処理を実施する工程Dを有していてもよい。乾燥処理の方法は、特に制限されず、例えば、スピン乾燥、基板上での乾燥ガスの流動、基板の加熱手段(例えば、ホットプレート又は赤外線ランプによる加熱)、IPA(イソプロピルアルコール)蒸気乾燥、マランゴニ乾燥、ロタゴニ乾燥、及び、それらの組合せが挙げられる。
 乾燥時間は、用いる特定の方法に応じて適宜変更でき、例えば、30秒~数分程度である。
<工程D>
 本処理方法は、工程Cの後に、必要に応じて、乾燥処理を実施する工程Dを有していてもよい。
 乾燥処理の方法は特に制限されないが、スピン乾燥、基板上での乾燥ガスの流動、基板の加熱手段(例えば、ホットプレート又は赤外線ランプによる加熱)、IPA(イソプロピルアルコール)蒸気乾燥、マランゴニ乾燥、ロタゴニ乾燥、及び、それらの組合せが挙げられる。
 乾燥時間は、用いる特定の方法に応じて適宜変更でき、例えば、30秒~数分程度である。
<その他工程>
 本処理方法は、基板について行われるその他の工程の前又は後に組み合わせて実施してもよい。本処理方法を実施する中にその他の工程に組み込んでもよいし、その他の工程の中に本発明の処理方法を組み込んで実施してもよい。
 その他の工程としては、例えば、金属配線、ゲート構造、ソース構造、ドレイン構造、絶縁層、強磁性層、及び/又は、非磁性層等の各構造の形成工程(例えば、層形成、エッチング、化学機械研磨、及び、変成等)、レジストの形成工程、露光工程及び除去工程、熱処理工程、洗浄工程、並びに、検査工程が挙げられる。
 本処理方法は、バックエンドプロセス(BEOL:Back end of the line)、ミドルプロセス(MOL:Middle of the line)、及び、フロントエンドプロセス(FEOL:Front end of the line)中のいずれの段階で行ってもよく、フロントエンドプロセス又はミドルプロセス中で行うことが好ましい。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により制限的に解釈されるべきものではない。
[組成物の調製]
 後述する表に記載の組成を有する組成物を調製し、調製した組成物を使用して以下の試験を行った。
 なお、組成物の調製に使用した以下の成分はいずれも、市場から入手した製品であって、かつ、半導体グレードに分類されるもの、又は、それに準ずる高純度グレードに分類されるものであった。
<オキソハロゲン酸化合物>
 ・次亜塩素酸
 ・次亜塩素酸ナトリウム
 ・亜塩素酸
 ・亜塩素酸ナトリウム
 ・塩素酸
 ・塩素酸ナトリウム
 ・臭素酸
 ・臭素酸ナトリウム
<特定化合物>
 ・D-1:エチルトリメチルアンモニウムヒドロキシド
 ・D-2:エチルトリメチルアンモニウムクロリド
 ・D-3:エチルトリメチルアンモニウムブロミド
 ・D-4:エチルトリメチルアンモニウムフロリド
 ・E-1:ジエチルジメチルアンモニウムヒドロキシド
 ・E-2:ジエチルジメチルアンモニウムクロリド
 ・E-3:ジエチルジメチルアンモニウムブロミド
 ・E-4:ジエチルジメチルアンモニウムフロリド
 ・F-1:メチルトリエチルアンモニウムヒドロキシド
 ・F-2:メチルトリエチルアンモニウムクロリド
 ・F-3:メチルトリエチルアンモニウムブロミド
 ・F-4:メチルトリエチルアンモニウムフロリド
 ・G-1:トリメチル(ヒドロキシエチル)アンモニウムヒドロキシド
 ・H-1:メチルトリブチルアンモニウムヒドロキシド
 ・I-1:ジメチルジプロピルアンモニウムヒドロキシド
 ・J-1:ベンジルトリメチルアンモニウムヒドロキシド
 ・K-1:ベンジルトリエチルアンモニウムヒドロキシド
 ・L-1:トリエチル(ヒドロキシエチル)アンモニウムヒドロキシド
 ・N-1:テトラデシルトリメチルアンモニウムヒドロキシド
 ・M-1:ドデシルトリメチルアンモニウムヒドロキシド
<比較用化合物>
 ・A-2:テトラメチルアンモニウムクロリド
 ・B-1:テトラエチルアンモニウムヒドロキシド
<水>
 ・超純水
[実施例及び比較例]
 超純水に、次亜塩素酸、特定化合物、及び、塩化物イオンを後述する表に記載の含有量で、それぞれを添加して、混合液を調製した後、混合液を攪拌機によって十分に攪拌することにより、実施例1の組成物を得た。
 後述する表に従って各成分等を変更した以外は、実施例1と同様の手順で、実施例1以外の実施例及び比較例の組成物を調製した。
 なお、塩化物イオン濃度が低い組成物中における塩化物イオン濃度の測定は、必要に応じて、濃縮カラムを用いて実施した。組成物に含まれる塩化物イオンは、塩酸又はその塩由来、特定化合物由来、オキソハロゲン酸化合物の分解物由来、及び、特定化合物の合成過程において混入する不純物由来である。
[試験]
<Ru溶解能>
 市販のシリコンウエハ(直径:12インチ)の一方の表面上に、PVD法によりRu層(Ru単体で構成された層)を形成した基板を準備した。
 得られた基板を、各実施例又は各比較例の組成物を満たした容器に入れ、組成物を撹拌してRu層の除去処理を1分間実施した。組成物の温度は25℃であった。
 処理前と処理後のRu層の厚みを薄膜評価用蛍光X線分析装置(XRF AZX-400、リガク社製)で測定し、処理前後のRu層の厚みの差から、Ru層のエッチングレート(Å/min)を算出した。算出されたRu層のエッチングレートを、下記評価基準で評価した。
(評価基準)
 5:エッチングレートが250Å/min以上
 4:エッチングレートが200Å/min以上、250Å/min未満
 3:エッチングレートが150Å/min以上、200Å/min未満
 2:エッチングレートが100Å/min以上、150Å/min未満
 1:エッチングレートが100Å/min未満
<金属残渣物除去能>
 上述した<Ru溶解能>後の基板表面上の金属残渣量(Ru層を構成するRu以外の金属残渣)を全反射蛍光X線分析装置(TXRF-V310、リガク社製)で定量した。組成物での処理前と処理後と比較して、金属残渣率(%)=100×〔処理後の金属残渣量(atoms/cm)〕/〔処理前の金属残渣量(atoms/cm)〕を算出し、下記評価基準で評価した。
(評価基準)
 5:金属残渣率が25%以下
 4:金属残渣率が25%超、50%以下
 3:金属残渣率が50%超、75%以下
 2:金属残渣率が75%超
 表1~2に評価結果を示す。
 表中、各記載は、以下を示す。
 「特定化合物」欄の「合計炭素数」は、特定化合物が有する炭素数の合計数を示す。
 「(A)/(B)」欄は、塩化物イオンの含有量に対する特定化合物の含有量の質量比を示す。
 「pH」の欄は、組成物が25℃時に、公知のpHメーターを用いて、JIS Z8802-1984に準拠した方法により測定した値を示す。
 「水」欄の「残部」は、組成物に含まれるオキソハロゲン酸化合物、特定化合物、及び、塩化物イオン以外の残部が、水であることを意味する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表に示す結果から、本発明の組成物を用いた場合、所望の効果が得られることが確認された。
 実施例1~4、12及び15~20と、実施例21~22及び41~43との比較から、オキソハロゲン酸化合物が、次亜塩素酸、亜塩素酸、及び、それらの塩からなる群から選択される少なくとも1つである場合、本発明の効果がより優れることが確認された。
 実施例1~4等と、実施例35~36との比較から、特定化合物の含有量が、組成物の全質量に対して、1.0~10.0質量%である場合、本発明の効果がより優れることが確認された。
 また、実施例2~3と、実施例1及び4との比較、実施例15及び18と、実施例16~17との比較、実施例21と、実施例22との比較、実施例24及び26と、実施例25及び27~28との比較、並びに、実施例38と、実施例37及び40との比較から、特定化合物の含有量が、組成物の全質量に対して、3.0~25.0質量%である場合、金属残渣物除去能がより優れることが確認された。
 実施例1等と、実施例43との比較から、組成物が更に、塩化物イオンを含む場合、金属残渣物除去能がより優れることが確認された。
 実施例1等と、実施例39~40との比較から、塩化物イオンの含有量が、組成物の全質量に対して、0.001~5.00質量%である場合、金属残渣物除去能がより優れることが確認された。
 また、実施例1等と、実施例37~40との比較から、塩化物イオンの含有量が、組成物の全質量に対して、0.001~1.00質量%である場合、更に金属残渣物除去能が優れることが確認された。
 実施例2~3、6~11、15、18、21、24、26、29~32及び41と、実施例4~5、23、33、35~36、40及び42との比較から、塩化物イオンの含有量に対する、特定化合物の含有量の質量比〔(A)/(B)〕が、100以下である場合、金属残渣物除去能がより優れることが確認された。
 実施例1~4及び23~26と、実施例27~28との比較から、組成物のpHが4.0~14.0である場合、本発明の効果がより優れることが確認された。
 また、実施例2~3等と、実施例23~28との比較から、組成物のpHが7.0~12.0である場合、Ru溶解性が更に優れることが確認された。
 実施例1~9と、実施例10~11との比較から、特定化合物が、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、メチルトリエチルアンモニウム塩、トリメチル(ヒドロキシエチル)アンモニウム塩、メチルトリブチルアンモニウム塩、ジメチルジプロピルアンモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニウム塩、及び、トリエチル(ヒドロキシエチル)アンモニウム塩からなる群から選択される少なくとも1つを含む場合、本発明の効果がより優れることが確認された。
 また、実施例2~3と、実施例5~9との比較から、特定化合物が、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、メチルトリエチルアンモニウム塩、及び、トリメチル(ヒドロキシエチル)アンモニウム塩からなる群から選択される少なくとも1つを含む場合、本発明の効果が更に優れることが確認された。
 実施例1~9と、実施例10~11との比較から、R~Rで表されるアルキル基の炭素数が1~10である場合、本発明の効果がより効果が優れることが確認された。
 また、同様の比較から、R~Rは、置換基を有していてもよい炭素数1のアルキル基、及び、置換基を有していてもよい炭素数2のアルキル基からなる群から選択されるアルキル基であり、R~Rの少なくとも1つは置換基を有していてもよい炭素数1のアルキル基であり、R~Rの少なくとも1つは置換基を有していてもよい炭素数2のアルキル基である場合、本発明の効果がより効果が優れることが確認された。
 実施例1~4、29~31及び33と、実施例32及び34との比較から、オキソハロゲン酸化合物の含有量が、組成物の全質量に対して、0.05~28.0質量%である場合、本発明の効果がより優れることが確認された。
 実施例1~10と、実施例11との比較から、式(1)中、R~Rの合計炭素数が、4~15である場合、本発明の効果がより優れることが確認された。
10a 配線のリセスエッチング処理前の配線基板
10b 配線のリセスエッチング処理後の配線基板
12 層間絶縁膜
14 バリアメタル層
16 除去対象配線
18 凹部
20,30 被処理物
22 基板
24 除去対象膜
26 外縁部
32 基板
34 除去対象膜
36 エッチング停止層
38 層間絶縁膜
40 メタルハードマスク
42 ホール
44 内壁
44a 断面壁
44b 底壁
46 ドライエッチング残渣

Claims (16)

  1.  次亜塩素酸、亜塩素酸、塩素酸、臭素酸、及び、それらの塩からなる群から選択される少なくとも1つのオキソハロゲン酸化合物と、式(1)で表される化合物とを含み、
     前記式(1)で表される化合物の含有量が、組成物の全質量に対して、1.0~25.0質量%である、組成物。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、R~Rは、それぞれ独立に、置換基を有していてもよいアルキル基を表す。ただし、R~Rの全てが、同一の基を表すことはない。Xn-は、n価のアニオンを表す。nは、1~3の整数を表す。
  2.  更に、塩化物イオンを含む、請求項1に記載の組成物。
  3.  前記塩化物イオンの含有量が、前記組成物の全質量に対して、0.001~1.00質量%である、請求項2に記載の組成物。
  4.  前記塩化物イオンの含有量に対する前記式(1)で表される化合物の含有量の質量比が、100以下である、請求項2又は3に記載の組成物。
  5.  前記アルキル基の炭素数が1~10である、請求項1~4のいずれか1項に記載の組成物。
  6.  前記式(1)中、R~Rの合計炭素数が、4~15である、請求項1~5のいずれか1項に記載の組成物。
  7.  R~Rは、置換基を有していてもよい炭素数1のアルキル基、及び、置換基を有していてもよい炭素数2のアルキル基からなる群から選択されるアルキル基であり、R~Rの少なくとも1つは置換基を有していてもよい炭素数1のアルキル基であり、R~Rの少なくとも1つは置換基を有していてもよい炭素数2のアルキル基である、請求項1~6のいずれか1項に記載の組成物。
  8.  前記式(1)で表される化合物が、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、メチルトリエチルアンモニウム塩、トリメチル(ヒドロキシエチル)アンモニウム塩、ジメチルビス(2-ヒドロキシエチル)アンモニウム塩、メチルトリス(2-ヒドロキシエチル)アンモニウム塩、メチルトリブチルアンモニウム塩、ジメチルジプロピルアンモニウム塩、ベンジルトリメチルアンモニウム塩、ベンジルトリエチルアンモニウム塩、及び、トリエチル(ヒドロキシエチル)アンモニウム塩からなる群から選択される少なくとも1つを含む、請求項1~6のいずれか1項に記載の組成物。
  9.  前記式(1)中、nが1である、請求項1~8のいずれか1項に記載の組成物。
  10.  前記式(1)中、Xn-が、水酸化物イオン、塩化物イオン、フッ化物イオン、又は、臭化物イオンである、請求項1~9のいずれか1項に記載の組成物。
  11.  前記オキソハロゲン酸化合物の含有量が、前記組成物の全質量に対して、0.05~28.0質量%である、請求項1~10のいずれか1項に記載の組成物。
  12.  前記組成物のpHが、4.0~14.0である、請求項1~11のいずれか1項に記載の組成物。
  13.  前記組成物のpHが、7.0~12.0である、請求項1~12のいずれか1項に記載の組成物。
  14.  基板上のルテニウム含有物を除去するために用いられる、請求項1~13のいずれか1項に記載の組成物。
  15.  請求項1~14のいずれか1項に記載の組成物を用いて、基板上のルテニウム含有物を除去する工程Aを有する、基板の処理方法。
  16.  前記工程Aが、前記組成物を用いて基板上に配置され、ルテニウム含有物からなる配線をリセスエッチング処理する工程A1、前記組成物を用いてルテニウム含有物からなる膜が配置された基板の外縁部の前記膜を除去する工程A2、前記組成物を用いてルテニウム含有物からなる膜が配置された基板の裏面に付着する金属含有物を除去する工程A3、前記組成物を用いてドライエッチング後の基板上のルテニウム含有物を除去する工程A4、又は、前記組成物を用いて化学的機械的研磨処理後の基板上のルテニウム含有物を除去する工程A5である、請求項15に記載の基板の処理方法。
PCT/JP2021/031941 2020-09-03 2021-08-31 組成物、基板の処理方法 WO2022050273A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237006900A KR20230047416A (ko) 2020-09-03 2021-08-31 조성물, 기판의 처리 방법
JP2022546925A JP7553577B2 (ja) 2020-09-03 2021-08-31 組成物、基板の処理方法
US18/174,208 US20230223272A1 (en) 2020-09-03 2023-02-24 Composition and method for treating substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-148417 2020-09-03
JP2020148417 2020-09-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/174,208 Continuation US20230223272A1 (en) 2020-09-03 2023-02-24 Composition and method for treating substrate

Publications (1)

Publication Number Publication Date
WO2022050273A1 true WO2022050273A1 (ja) 2022-03-10

Family

ID=80490933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031941 WO2022050273A1 (ja) 2020-09-03 2021-08-31 組成物、基板の処理方法

Country Status (5)

Country Link
US (1) US20230223272A1 (ja)
JP (1) JP7553577B2 (ja)
KR (1) KR20230047416A (ja)
TW (1) TW202212555A (ja)
WO (1) WO2022050273A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142788A1 (ja) * 2018-01-16 2019-07-25 株式会社トクヤマ 次亜塩素酸イオンを含む半導体ウェハの処理液
WO2020166677A1 (ja) * 2019-02-13 2020-08-20 株式会社トクヤマ オニウム塩を含む半導体ウェハの処理液

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049955A1 (ja) 2018-09-06 2020-03-12 富士フイルム株式会社 薬液、基板の処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142788A1 (ja) * 2018-01-16 2019-07-25 株式会社トクヤマ 次亜塩素酸イオンを含む半導体ウェハの処理液
WO2020166677A1 (ja) * 2019-02-13 2020-08-20 株式会社トクヤマ オニウム塩を含む半導体ウェハの処理液

Also Published As

Publication number Publication date
TW202212555A (zh) 2022-04-01
JP7553577B2 (ja) 2024-09-18
KR20230047416A (ko) 2023-04-07
JPWO2022050273A1 (ja) 2022-03-10
US20230223272A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
JP7247277B2 (ja) 薬液、基板の処理方法
US20230279294A1 (en) Composition and method for treating substrate
WO2021005980A1 (ja) 組成物、キット、基板の処理方法
WO2022049973A1 (ja) 組成物、基板の処理方法
JP7301055B2 (ja) 薬液、基板の処理方法
JP7513665B2 (ja) 薬液、基板の処理方法
JP6992095B2 (ja) 基板の処理方法、半導体装置の製造方法、基板処理用キット
US20220282156A1 (en) Composition and method for treating substrate
WO2022050273A1 (ja) 組成物、基板の処理方法
JP7573626B2 (ja) 組成物、基板の処理方法
WO2021187006A1 (ja) 基板の処理方法
WO2023054233A1 (ja) 組成物および被処理物の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237006900

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022546925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864331

Country of ref document: EP

Kind code of ref document: A1