WO2021187006A1 - 基板の処理方法 - Google Patents

基板の処理方法 Download PDF

Info

Publication number
WO2021187006A1
WO2021187006A1 PCT/JP2021/006391 JP2021006391W WO2021187006A1 WO 2021187006 A1 WO2021187006 A1 WO 2021187006A1 JP 2021006391 W JP2021006391 W JP 2021006391W WO 2021187006 A1 WO2021187006 A1 WO 2021187006A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment liquid
compound
substrate
treating
etching
Prior art date
Application number
PCT/JP2021/006391
Other languages
English (en)
French (fr)
Inventor
萌 成田
宣明 杉村
徹 土橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2021187006A1 publication Critical patent/WO2021187006A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/10Other heavy metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/20Other heavy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a substrate processing method.
  • Patent Document 1 describes "a step of dry etching a semiconductor substrate including a ferromagnetic layer containing CoFeB and / or CoFe and an insulator layer containing MgO, and an MRAM containing a strong oxidizing agent and water.
  • An invention relating to "a method for producing a magnetoresistive memory, which comprises a step of removing a dry etching residue with a dry etching residue removing composition” is described (see claims 1 and 10).
  • the gas is an oxygen gas or a mixed gas containing oxygen and a chlorine-based compound
  • the treatment liquid is at least one specific selected from the group consisting of a periodic acid compound, a hypochlorous acid compound and a cerium compound.
  • the treatment liquid contains a hypochlorous acid compound as a specific oxidizing agent, and the hypochlorous acid compound is hypochlorous acid, sodium hypochlorite, or a quaternary ammonium salt of hypochlorous acid.
  • the substrate processing method according to any one of [1] to [5].
  • [7] The method for treating a substrate according to any one of [1] to [6], wherein the treatment liquid contains a cerium compound as a specific oxidizing agent, and the cerium compound is cerium (IV) ammonium nitrate.
  • the method for treating a substrate according to any one of [1] to [7] wherein the content of the specific oxidizing agent is 3% by mass or less with respect to the total mass of the treatment liquid.
  • the treatment liquid contains a periodic acid compound, the content of the periodic acid compound is 3% by mass or less with respect to the total mass of the treatment liquid, and the volume fraction of the oxygen gas in the etching gas is , 50% by volume or more, according to any one of [1] to [13].
  • the etching gas is a mixed gas containing oxygen and a chlorine-based compound, and the volume ratio of the oxygen to the chlorine-based compound is 80/20 to 99/1, according to any one of [1] to [14].
  • the etching gas is a mixed gas containing oxygen and a chlorine-based compound, and the volume ratio of the oxygen to the chlorine-based compound is 90/10 to 99/1, according to any one of [1] to [15].
  • exposure refers to not only exposure to the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, X-rays, and exposure to EUV (Extreme ultraviolet) light, but also electron beams. , And drawing with particle beams such as ion beams is also included in the exposure.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the “content” of the component means the total content of the two or more kinds of components.
  • the components of the treatment liquid referred to in the present specification may be ionized (ionized) in the treatment liquid.
  • ppm means “parts-per-million ( 10-6 )
  • ppb means “parts-per-billion ( 10-9 )
  • ppt means “ppt”. It means “parts-per-trillion ( 10-12 )”.
  • the pH is a value measured with a pH meter (manufactured by HORIBA, Ltd., F-51 (trade name)) at room temperature (25 ° C.).
  • the etching residue is intended as a by-product produced by performing dry etching (for example, plasma etching).
  • dry etching for example, plasma etching
  • the etching residue include Si-containing residue, metal-containing residue (particularly Ru-containing residue), and photoresist-derived organic residue.
  • the substrate processing method of the present invention includes a dry etching step and a cleaning step.
  • the dry etching step (hereinafter, also referred to as “step A”) is a step of dry etching a substrate having a ruthenium-containing substance (Ru-containing substance) using an etching gas.
  • the etching gas is an oxygen gas or a mixed gas of oxygen and a chlorine-based compound.
  • the cleaning step (hereinafter, also referred to as “step B”) is a step of treating the substrate subjected to the dry etching step with a treatment liquid.
  • the treatment liquid contains at least one oxidizing agent (hereinafter, also referred to as “specific oxidizing agent”) selected from the group consisting of a periodic acid compound, a hypochlorous acid compound and a cerium compound.
  • the substrate having the Ru-containing material is subjected to a dry etching treatment using the above-mentioned specific etching gas, and then a cleaning treatment is performed using the above-mentioned specific treatment liquid to improve the etching efficiency and remove the etching residue.
  • a dry etching treatment using the above-mentioned specific etching gas By performing the dry etching treatment using the above-mentioned specific etching gas, the etching efficiency of the Ru-containing material on the substrate is further improved. However, this dry etching treatment is carried out together with the Ru-containing residue derived from the Ru-containing wiring. Further, it is considered that a RuO 2- containing residue formed by being oxidized by the etching gas was generated.
  • the above-mentioned specific treatment liquid has excellent dissolution performance for dissolving a compound containing Ru atom, particularly, dissolution performance for dissolving RuO 2 .
  • the above-mentioned dry treatment using the above-mentioned specific treatment liquid is performed. It is considered that the removability of the Ru-containing residue and / or the RuO 2-containing residue generated by the etching treatment is improved.
  • This processing method includes a step A of dry etching a substrate having a Ru-containing substance with an etching gas.
  • the substrate having the Ru-containing substance which is the target of this treatment method is also referred to as “object to be treated”.
  • the object to be treated applied to this treatment method is a substrate having a Ru-containing material. That is, the object to be processed includes at least the substrate and the Ru-containing material on the substrate. Examples of the object to be processed include a substrate having a Ru-containing layer used in a manufacturing process of a semiconductor device.
  • the term "on the substrate” includes, for example, the front and back surfaces of the substrate, the side surfaces, the inside of the groove, and the like.
  • the Ru-containing material on the substrate includes not only the case where the Ru-containing material is directly attached to the surface of the substrate, but also the case where the Ru-containing material is present on the substrate via another layer.
  • the type of substrate is not particularly limited, but a semiconductor substrate is preferable.
  • the semiconductor substrate includes a semiconductor substrate composed of a single layer and a semiconductor substrate composed of multiple layers.
  • the material constituting the substrate is not particularly limited, and examples thereof include group III-V compounds such as silicon, silicon germanium, and GaAs, and any combination thereof.
  • Examples of the substrate include semiconductor wafers, photomask glass substrates, liquid crystal display glass substrates, plasma display glass substrates, FED (Field Emission Display) substrates, optical disk substrates, magnetic disk substrates, and magneto-optical substrates. Examples include a disk substrate.
  • the size, thickness, shape, layer structure, and the like of the substrate are not particularly limited and can be appropriately selected as desired.
  • the Ru-containing material need only be a substance containing ruthenium (Ru atom), and examples thereof include elemental Ru, alloys containing Ru, oxides of Ru, nitrides of Ru, and acid nitrides of Ru. Be done. Further, the Ru-containing substance may be a mixture containing two or more of these compounds. The content of Ru atoms in the Ru-containing material is preferably 10% by mass or more, more preferably 30% by mass or more, still more preferably 50% by mass or more, based on the total mass of the Ru-containing material. The upper limit is not particularly limited, and since the Ru-containing substance may be Ru alone, it is 100% by mass.
  • the Ru-containing material may contain a transition metal other than Ru.
  • transition metals other than Ru include Ti (tungsten), Ta (tantalum), Co (cobalt), Cr (chromium), Hf (hafnium), Os (osmium), Pt (platinum), Ni (nickel), and the like.
  • transition metals other than Ru include Ti (tungsten), Ta (tantalum), Co (cobalt), Cr (chromium), Hf (hafnium), Os (osmium), Pt (platinum), Ni (nickel), and the like.
  • Mn mangaganese
  • Cu copper
  • Zr zirconium
  • Mo mobdenum
  • La lanthanum
  • W tungsten
  • Ir iridium
  • the form of the Ru-containing material on the substrate is not particularly limited, but a film-like form (Ru-containing film) or a wiring-like form (Ru-containing wiring) is preferable.
  • the thickness of the Ru-containing film and the Ru-containing wiring may be appropriately selected depending on the intended use, and is not particularly limited, but is preferably 50 nm or less, and more preferably 30 nm or less.
  • the Ru-containing film and the Ru-containing wiring may be arranged only on one main surface of the substrate, or may be arranged on both main surfaces. Further, the Ru-containing film may be arranged on the entire main surface of the substrate, or may be arranged on a part of the main surface of the substrate.
  • the substrate may have various layers and / or structures as desired.
  • the substrate may have a metal wiring, a gate electrode, a source electrode, a drain electrode, an insulating layer, a ferromagnetic layer, and / or a non-magnetic layer and the like.
  • the substrate may have an exposed integrated circuit structure. Examples of such integrated circuit structures include interconnect features such as metal wiring and dielectric materials. Examples of the metal and alloy used in the interconnection mechanism include aluminum, copper-aluminum alloy, copper, titanium, tantalum, cobalt, silicon, titanium nitride, tantalum nitride, and tungsten. Further, the substrate may have a layer such as an interlayer dielectric layer, silicon oxide, silicon nitride, silicon carbide, and / or carbon-doped silicon oxide.
  • the method for producing a substrate having a Ru-containing material to be treated is not particularly limited.
  • the substrate having the Ru-containing film is, for example, a sputtering method, a physical vapor deposition (PVD) method, an atomic layer deposition (ALD) method, or a chemical vapor deposition (CVD) method.
  • PVD physical vapor deposition
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • it can be produced by forming a Ru-containing film on a substrate by a known method such as a molecular beam epitaxy (MBE) method.
  • MBE molecular beam epitaxy
  • the above method can be carried out through a predetermined mask to form Ru-containing wiring on the substrate, and a substrate having Ru-containing wiring can be manufactured.
  • the substrate may be further subjected to a different step or treatment, and then used as an object to be treated in this treatment method.
  • a Ru-containing film is formed by a sputtering method, a PVD method, an ALD method, a CVD method, or the like
  • the back surface of the substrate having the Ru-containing film contains particulate Ru. Objects may adhere.
  • FIG. 1 is a schematic cross-sectional view showing an example of an object to be processed applied to this processing method.
  • the object 10 shown in FIG. 1 includes a substrate (not shown), an interlayer insulating film 12 arranged on the substrate, a metal hard mask 14 arranged on the interlayer insulating film 12, an interlayer insulating film 12, and a metal hard mask. It has a Ru-containing wiring 16 filled inside the groove formed in 14. Each of the substrate and the Ru-containing wiring 16 is as described above.
  • the interlayer insulating film 12 is not particularly limited, but is preferably made of a material having a dielectric constant k of 3.0 or less, and more preferably made of a material having a dielectric constant k of 2.6 or less. More specific materials for the interlayer insulating film 12 include SiO 2 , SiOC-based materials, and organic polymers such as polyimide.
  • the metal hard mask 14 is a patterned metal film and is used to remove the Ru-containing wiring 16 by a dry etching process.
  • the material constituting the metal hard mask 14 is not particularly limited, and includes at least one selected from the group consisting of Cu, Co, W, AlOx, AlN, AlOxNy, WOx, Ti, TiN, ZrOx, HfOx, and TaOx. Materials can be mentioned.
  • the method for producing the object 10 to be processed is not particularly limited, and for example, the step of forming the interlayer insulating film 12 on the substrate, the step of forming the metal film on the interlayer insulating film 12, and the interlayer insulating film 12 and the metal film.
  • the configuration of the object to be processed applied to this processing method is not limited to the configuration of the object 10 to be processed shown in FIG.
  • the object to be processed may have a substrate, an interlayer insulating film, and a layer other than the Ru-containing film (Ru-containing wiring).
  • Ru-containing wiring examples include a barrier metal layer, an etching stop layer, and an antireflection layer.
  • the object to be treated may have a barrier metal layer arranged along the inner wall of the groove between the interlayer insulating film and the Ru-containing wiring.
  • the material constituting the barrier metal layer is not particularly limited, and examples thereof include TiN and TaN.
  • the object to be processed may have an etching stop layer between the substrate and the interlayer insulating film.
  • the material of the etching stop layer is not particularly limited, and examples thereof include SiN, SiON and SiOCN-based materials, and metal oxides such as AlOx.
  • a resist mask formed by using a known photoresist material may be used instead of the metal hard mask.
  • the dry etching method performed as the step A is not particularly limited except that an oxygen gas or a mixed gas of oxygen and a chlorine-based compound is used as the etching gas, and a known method can be used.
  • step A dry etching is performed using oxygen gas or a mixed gas of oxygen and a chlorine-based compound (hereinafter, also referred to as “O 2 / Cl mixed gas”) as the etching gas.
  • Oxygen gas is a gas containing 90% by volume or more of gaseous oxygen (O 2).
  • the volume fraction of O 2 in oxygen gas is preferably 95% by volume or more.
  • the rest of the oxygen gas other than O 2 is a gas component such as N 2 , H 2, Ar and He.
  • the O 2 / Cl mixed gas is not included in the oxygen gas.
  • the chlorine-based compound contained in the O 2 / Cl mixed gas is not particularly limited as long as it contains a chlorine atom and is a gas under dry etching conditions.
  • the chlorine-based compound include Cl 2 , BCl 3 , and SiCl 4 , with Cl 2 or BCl 3 being preferred, and Cl 2 being more preferred.
  • the chlorine-based gas may be used alone or in combination of two or more.
  • the contents of O 2 and chlorine compounds contained in the O 2 / Cl mixed gas are not particularly limited.
  • the volume fraction of O 2 in the O 2 / Cl mixed gas is preferably 50% by volume or more, preferably 75% by volume, in that the effect of the present invention is more excellent and the flatness of the substrate surface after treatment is more excellent.
  • the above is more preferable, and 90% by volume or more is further preferable.
  • the upper limit is not particularly limited, but 99% by volume or less is preferable, and 98% by volume or less is more preferable.
  • the content of the chlorine-based compound contained in the O 2 / Cl mixed gas is preferably 50% by volume or less in that the effect of the present invention is more excellent and the flatness of the substrate surface after treatment is more excellent.
  • the volume ratio of O 2 to the chlorine-based compound (O 2 / chlorine-based gas) is preferably 50/50 or more, and 75/25 or more. It is more preferably 80/20 or more, and particularly preferably 90/10 or more.
  • the upper limit is not particularly limited, but the volume ratio of O 2 to the chlorine-based compound (O 2 / chlorine-based gas) is preferably 99/1 or less.
  • the O 2 / Cl mixed gas may contain gas components other than O 2 and chlorine-based compounds.
  • gas components other than O 2 and chlorine-based compounds include N 2 , H 2 , Ar and He.
  • the volume fraction of the gas components other than O 2 and the chlorine-based compound in the O 2 / Cl mixed gas is preferably 1% by volume or less, more preferably 0.1% by volume or less.
  • an oxygen gas or O 2 / Cl mixed gas As an etching gas used in the step A, an oxygen gas or O 2 / Cl mixed gas, the volume fraction of oxygen gas preferably is at least 50% by volume in the etching gas, oxygen gas or O 2 / Cl mixed gas A gas having a body integration ratio of oxygen in the etching gas of 75% by volume or more is more preferable. Above all, it is more preferable that the etching gas is an O 2 / Cl mixed gas in which the volume ratio of O 2 to the chlorine-based compound is 90/10 to 99/1.
  • the dry etching apparatus used in the step A is not particularly limited, but a reactive ion etching (RIE) apparatus is preferable.
  • the mechanism for generating plasma in RIE is not particularly limited, and is limited to Inductive Coupled Plasma (ICP) -RIE, Capacitive Coupled Plasma (CCP) -RIE, and electron cyclotron resonance type (ICT).
  • ICP Inductive Coupled Plasma
  • CCP Capacitive Coupled Plasma
  • ICT electron cyclotron resonance type
  • ECR Electron Cyclotron Resonance
  • ICP-RIE inductively coupled plasma-reactive ion etching
  • the conditions for dry etching in step A are not particularly limited, and examples thereof include the following conditions.
  • the flow rate of the etching gas is preferably 10 to 200 sccm (Standard Cubic Centimeter per Minute), more preferably 20 to 50 sccm.
  • the unit of gas flow rate, "sccm" means the gas flow rate expressed in cubic centimeters (cm 3 / min) per minute when converted under standard conditions (0 ° C. and 1 atm).
  • the pressure of the etching gas is preferably 0.1 to 50 Pa, more preferably 0.5 to 20 Pa.
  • the RF (Radio Frequency) output on the antenna side is preferably 50 to 500 W, more preferably 100 to 300 W.
  • the RF output on the bias side is preferably 10 to 300 W, more preferably 10 to 100 W.
  • the temperature inside the dry etching apparatus is preferably 200 ° C. or lower.
  • the treatment time of step A is preferably 10 seconds or more and 20 minutes or less, and more preferably 30 seconds or more and 10 minutes or less.
  • step A of dry etching the object to be processed by the above method By performing the step A of dry etching the object to be processed by the above method, at least a part of the Ru-containing substance contained in the object to be processed is removed.
  • the configuration of the object to be processed subjected to the step A will be described with reference to FIG.
  • FIG. 2 is a schematic cross-sectional view showing an example of the object to be processed to which the step A has been applied.
  • the object to be processed 20 shown in FIG. 2 is an example of a configuration after the object 10 to be processed shown in FIG. 1 is subjected to the step A, and includes an interlayer insulating film 12 arranged on a substrate (not shown). It has a metal hard mask 14, a Ru-containing wiring 16, and a hole 22. Further, the inner wall 24 of the hole 22 is composed of a side surface of the metal hard mask 14 and the interlayer insulating film 12 and a bottom surface formed of the surface of the Ru-containing wiring 16, and the etching residue 26 adheres to the inner wall 24. ing.
  • step A the object to be processed 10 is dry-etched using the metal hard mask 14 as a mask.
  • the Ru-containing wiring 16 is etched from the opening side where the metal hard mask 14 is not arranged toward the substrate to form the hole 22, and the etching residue 26 adheres to the inner wall 24 of the hole 22.
  • the etching residue 26 includes Ru derived from the Ru-containing wiring 16 and / or a residue containing Ru oxide obtained by oxidizing this Ru with an etching gas.
  • step B such a residue containing Ru and / or Ru oxide is removed by using a specific treatment liquid.
  • the thickness of the Ru-containing film or the Ru-containing wiring removed in the step A is not particularly limited, but is preferably 5 to 500 nm, more preferably 10 to 20 nm. Further, although the object to be processed 20 shown in FIG. 2 has the Ru-containing wiring 16, all the Ru-containing substances exposed on the surface may be removed by the step A.
  • This treatment method includes a step B of treating an object to be treated (a substrate having a Ru-containing substance) subjected to the step A with a treatment liquid containing a specific oxidizing agent described later.
  • the object to be processed to be subjected to the step A is the object to be processed 20 shown in FIG.
  • the etching residue 26 adhering to the surface of the object 20 to be treated is removed.
  • step B the treatment liquid used in step B and the method (cleaning method) for treating the object to be purified using the treatment liquid will be described in detail.
  • the treatment liquid used in step B contains at least one specific oxidizing agent selected from the group consisting of periodic acid compounds, hypochlorous acid compounds and cerium compounds.
  • the topic compound means a compound selected from the group consisting of periodic acid and salts thereof.
  • the periodic acid compounds for example, orthoperiodic acid (H 5 IO 6), salts of orthoperiodic acid, metaperiodate (HIO 4), and, salts of metaperiodate.
  • Examples of the above-mentioned salts include salts with alkali metal elements (sodium, potassium, etc.), salts with alkaline earth metal elements (magnesium, calcium, etc.), and salts with other metal elements.
  • ortho-periodic acid or metaperiodic acid is preferable, and ortho-periodic acid is more preferable in that the stability of the compound is excellent.
  • the periodic acid compound may be used alone or in combination of two or more.
  • the hypochlorous acid compound means a compound selected from the group consisting of hypochlorous acid and salts thereof.
  • the salt of hypochlorous acid include a salt of hypochlorous acid and an alkali metal element (sodium and potassium, etc.), a salt of hypochlorous acid and an alkaline earth metal element (magnesium, calcium, etc.), and the following. Examples thereof include salts of chloric acid and other metal elements, and salts of hypochlorous acid and quaternary ammonium cations.
  • Examples of the quaternary ammonium cation that forms a salt with hypochlorous acid include a tetramethylammonium cation, an ethyltrimethylammonium cation, a tetraethylammonium cation, a tetrabutylammonium cation, and a dimethyldipropylammonium cation.
  • Examples of the hypochlorous acid compound include hypochlorous acid (HClO), sodium hypochlorite (NaClO), potassium hypochlorite (KClO), calcium hypochlorite (Ca (ClO) 2 ), or the following.
  • Hypochlorous acid quaternary ammonium salt is preferable, hypochlorous acid, sodium hypochlorite, or hypochlorous acid quaternary ammonium salt is more preferable, and sodium hypochlorite is further preferable.
  • hypochlorous acid tetramethylammonium hypochlorous acid, tetraethylammonium hypochlorous acid, or tetrabutylammonium hypochlorous acid is preferable.
  • One type of hypochlorous acid compound may be used alone, or two or more types may be used in combination.
  • cerium compound means a compound containing cerium.
  • the cerium compound is preferably water-soluble.
  • the water-soluble cerium compound is intended to be, for example, a cerium compound capable of dissolving 50 g or more in 1 L (25 ° C.) of pure water (pH 7.0). Further, a cerium compound capable of dissolving 50 g or more in 1 L (25 ° C.) of water containing a pH adjuster described later is also preferable.
  • cerium compound examples include cerium nitrate compounds (cerium (IV) ammonium nitrate and cerium (III) nitrate), cerium sulfate compounds (cerium (IV) ammonium sulfate, cerium (III) sulfate and cerium (IV) sulfate). Etc.), cerium oxide, and cerium hydroxide. Moreover, these compounds may be hydrates. Among them, cerium nitrate compound or cerium sulfate compound is preferable, cerium (IV) nitrate or cerium (IV) ammonium sulfate is more preferable, and cerium (IV) ammonium nitrate is further preferable.
  • cerium compound may be used alone, or two or more types may be used in combination.
  • the treatment liquid preferably contains a periodic acid compound, and more preferably ortho-periodic acid, as a specific oxidizing agent, in that the effects of the present invention and the flatness of the substrate surface after treatment are more excellent.
  • the content of the specific oxidizing agent in the treatment liquid is not particularly limited, but is preferably 0.005% by mass or more, preferably 0.1% by mass or more, based on the total mass of the treatment liquid, in that the effect of the present invention is more excellent. Is more preferable, and 0.2% by mass or more is further preferable. Further, at least one specific oxidizing agent selected from the group consisting of a periodic acid compound, a hypochlorous acid compound and a cerium compound in that the effect of the present invention and / or the flatness of the substrate surface after treatment is more excellent.
  • the content of is preferably 15% by mass or less, more preferably 8% by mass or less, further preferably 4% by mass or less, and particularly preferably 3% by mass or less, based on the total mass of the treatment liquid.
  • the treatment liquid may contain an amine compound.
  • the amine compound is not particularly limited as long as it is an organic compound having an amino group in the molecule, for example, a primary amine having a primary amino group (-NH 2 ) in the molecule and a secondary amino in the molecule. Examples thereof include secondary amines having a group (> NH), tertiary amines having a tertiary amino group (> N-) in the molecule, and salts thereof. Examples of the salts of the primary to tertiary amines include hydrochlorides, sulfates and nitrates.
  • the treatment liquid more preferably contains an amine compound in that the effect of the present invention is more excellent.
  • step A The detailed mechanism by which the effect of the present invention (particularly the removability of etching residues) is further improved by containing the amine compound in the treatment solution is unknown, but it is formed by step A because the treatment solution contains the amine compound. It is presumed that this is because the solubility of the RuO 2-containing residue is improved.
  • R-NH 2 formula (1) R represents an aliphatic hydrocarbon group which may have a substituent.
  • the aliphatic hydrocarbon group may have at least one linking group selected from the group consisting of -O-, -S- and -NR 1- in the carbon chain.
  • R 1 represents an aliphatic hydrocarbon group which may have a hydrogen atom or a substituent.
  • the aliphatic hydrocarbon group represented by R may be linear, branched or cyclic, or may have an unsaturated carbon bond.
  • a linear or branched alkyl group or cycloalkyl group is preferable, a linear or branched alkyl group is more preferable, and a linear alkyl group is further preferable.
  • the number of carbon atoms of the aliphatic hydrocarbon group represented by R is not particularly limited, but is preferably 1 to 15, more preferably 1 to 8, and even more preferably 2 to 6.
  • the substituent contained in the aliphatic hydrocarbon group represented by R is not particularly limited, and is, for example, at least one selected from the group consisting of a carboxy group, an amino group, an oxo group, a phosphonic acid group, a sulfo group and a mercapto group. Species functional groups are mentioned.
  • the aliphatic hydrocarbon group represented by R preferably further has at least one of the above functional groups.
  • As the functional group a carboxy group, an amino group, an oxo group, a phosphonic acid group or a sulfo group is preferable, and a carboxy group, an amino group or an oxo group is more preferable.
  • the number of the functional groups contained in the aliphatic hydrocarbon group represented by R is not particularly limited, but is preferably 1 to 5, and more preferably 1 to 3.
  • the aliphatic hydrocarbon group represented by R 1 may be linear, branched or cyclic, or may have an unsaturated carbon bond.
  • the aliphatic hydrocarbon group represented by R 1 is more preferably a linear or branched alkyl group, and further preferably a linear alkyl group.
  • the number of carbon atoms of the aliphatic hydrocarbon group represented by R 1 is not particularly limited, but is preferably 1 to 5, and more preferably 1 to 3.
  • R 1 a hydrogen atom or a linear alkyl group having 1 to 3 carbon atoms is preferable, and a hydrogen atom is more preferable.
  • the aliphatic hydrocarbon group represented by R does not have the above-mentioned linking group in the carbon chain, or preferably has -NH-, and does not have the above-mentioned linking group in the carbon chain. Is more preferable.
  • the salt of the compound represented by the formula (1) is not particularly limited, and examples thereof include hydrochlorides, sulfates, and nitrates.
  • the carbon number of the specific amine is not particularly limited, but is preferably 1 to 15, more preferably 1 to 8, and even more preferably 2 to 6.
  • Specific examples of specific amines are shown below.
  • Specific amines having no substituent include, for example, methylamine, ethylamine, propylamine, n-butylamine, tert-butylamine, n-hexylamine, cyclohexylamine, n-octylamine, and 2-ethylhexylamine. Be done.
  • Specific amines having a carboxy group include, for example, glycine, ⁇ -alanine (2-aminopropionic acid), ⁇ -alanine (3-aminopropionic acid), 4-aminobutyric acid, 5-. Included are aminovaleric acid, 7-aminoheptanic acid, lysine, cysteine, asparagine, glutamine, and salts thereof.
  • Specific amines in which the aliphatic hydrocarbon group represented by R has an amino group as a substituent include, for example, ethylenediamine, 1,3-propanediamine, and 1 , 2-Propane diamine, 1,3-butanediamine, 1,4-butanediamine, 1,5-pentanediamine, 2,2-dimethyl-1,3-propanediamine, 1,6-hexanediamine, 1,7 Examples thereof include alkylenediamines such as -heptanediamine and 1,8-octanediamine, and polyalkylpolyamines such as diethylenetriamine, bishexamethylenetriamine, triethylenetetramine, bis (aminopropyl) ethylenediamine and tetraethylenepentamine.
  • specific amines having an acid amide structure include, for example, succinic acid amide, malon amide, propanamide, butyramide, adipamide, methyl carbamate, and the like. And urea.
  • Specific amines other than the above include, for example, 2-aminoethylphosphonic acid, taurine, aminomethanesulfonic acid, aminomethanephosphonic acid, N-methyl-1,3-propanediamine, N-ethylethylenediamine, and N-(. 2-Aminoethyl) piperazin can be mentioned.
  • Examples of the amine compound include ⁇ -alanine, 4-aminobutyric acid, 5-aminovaleric acid, 1,3-propanediamine, 1,4-butanediamine, 1,6-hexanediamine, succinic acid amide, malonamide, and propaneamide.
  • Butylamide, adipamide, 2-aminoethylphosphonic acid, taurine, glycine, 7-aminoheptanoic acid, 1,8-octanediamine, aminomethanesulfonic acid, aminomethanephosphonic acid or methyl carbamate are preferred
  • ⁇ -alanine, 4- Aminobutyric acid, 1,3-propanediamine or 1,4-butanediamine are more preferred.
  • the amine compound one type may be used alone, or two or more types may be used in combination.
  • the content of the amine compound is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0.005% by mass or more, based on the total mass of the treatment liquid.
  • the upper limit of the content of the amine compound is not particularly limited, and is preferably 10% by mass or less, more preferably 1% by mass or less, based on the total mass of the treatment liquid.
  • the treatment liquid may contain a pH adjuster.
  • the pH adjuster include basic compounds and acidic compounds.
  • the type and content of the pH adjuster are appropriately selected according to the pH of the target treatment liquid.
  • the basic compound means a compound which is alkaline (pH is more than 7.0) in an aqueous solution.
  • the basic compound include an inorganic base and an organic base.
  • Examples of the organic base include a quaternary ammonium compound.
  • the quaternary ammonium compound is not particularly limited as long as it is a compound having a quaternary ammonium cation in which a nitrogen atom is substituted with four hydrocarbon groups (preferably an alkyl group) or a salt thereof.
  • Examples of the quaternary ammonium compound include a quaternary ammonium hydroxide, a quaternary ammonium fluoride, a quaternary ammonium bromide, a quaternary ammonium iodide, a quaternary ammonium acetate, and a quaternary ammonium compound. Examples include ammonium carbonate.
  • quaternary ammonium compound a quaternary ammonium hydroxide is preferable, and a compound represented by the following formula (2) is preferable.
  • R 4A to R 4D independently represent an alkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, a benzyl group, or an aryl group.
  • the alkyl group having 1 to 6 carbon atoms a methyl group, an ethyl group, a propyl group or a butyl group is preferable.
  • the hydroxyethyl group having 1 to 6 carbon atoms a hydroxymethyl group, a hydroxyethyl group or a hydroxybutyl group is preferable.
  • aryl group a phenyl group or a naphthyl group is preferable.
  • R 4A to R 4D an alkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms or a benzyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is more preferable.
  • Examples of the compound represented by the formula (2) include tetramethylammonium hydroxide (TMAH), ethyltrimethylammonium hydroxide (ETMAH), tetraethylammonium hydroxide (TEAH), and tetrabutylammonium hydroxide (TBAH).
  • TMAH tetramethylammonium hydroxide
  • ETMAH ethyltrimethylammonium hydroxide
  • TEAH tetraethylammonium hydroxide
  • TBAH tetrabutylammonium hydroxide
  • organic bases other than the above include quaternary phosphonium compounds, amine oxides, nitros, nitroso, oximes, ketooximes, aldoximes, lactams, and isocyanides.
  • Examples of the inorganic base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides, and ammonia. Among them, sodium hydroxide, potassium hydroxide or ammonia is preferable, and ammonia is more preferable.
  • a salt of the above compound may be used as long as it becomes a base or a nonion in an aqueous solution.
  • a compound showing alkalinity (pH exceeding 7.0) in an aqueous solution may be used as a basic compound.
  • the treatment liquid may contain the above-mentioned amine compound as a basic compound.
  • a quaternary ammonium compound is preferable in terms of the effect of removing metal-containing substances, a small amount of metal residue after use, economic efficiency, stability of the treatment liquid, and the like, and TMAH, ETMAH, and TEAH.
  • TMAH, ETMAH, and TEAH a quaternary ammonium compound is preferable in terms of the effect of removing metal-containing substances, a small amount of metal residue after use, economic efficiency, stability of the treatment liquid, and the like.
  • TMAH, ETMAH, and TEAH Alternatively, dimethyldipropylammonium hydroxide is more preferred, and ETMAH or TEAH is even more preferred.
  • an acidic compound means a compound that is alkaline (pH is less than 7.0) in an aqueous solution.
  • acidic compounds include inorganic acids and organic acids.
  • Examples of the inorganic acid include sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid and hydrofluoric acid, and hydrochloric acid, phosphoric acid or nitric acid is preferable.
  • Examples of organic acids include carboxylic acids and sulfonic acids.
  • Examples of the carboxylic acid include lower (1 to 4 carbon atoms) aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid and butyric acid.
  • Examples of the sulfonic acid include methanesulfonic acid (MSA), benzenesulfonic acid, and p-toluenesulfonic acid (tosilic acid).
  • a salt of the above compound may be used as long as it becomes an acid or an acid ion (anion) in an aqueous solution.
  • it is used as a compound or an acidic compound which has a coordinating group such as a carboxy group, a sulfo group and a phosphonic acid group and is acidic (pH is less than 7.0) in an aqueous solution. You may.
  • acidic compound sulfuric acid, hydrochloric acid, phosphoric acid, nitrate or sulfonic acid or a salt thereof is preferable, and hydrochloric acid, phosphoric acid or methanesulfonic acid is more preferable.
  • the pH adjuster one type may be used alone, or two or more types may be used in combination. Further, as the pH adjuster, a commercially available one may be used, or one appropriately synthesized by a known method may be used.
  • the content of the pH adjuster is not particularly limited as long as the pH of the treatment liquid is the target pH, and varies depending on the type of the pH adjuster and the type and content of the specific oxidizing agent, but the treatment It is preferably 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, based on the total mass of the liquid.
  • the treatment liquid may contain a solvent.
  • the solvent include water and an organic solvent, and water is preferable.
  • the water is not particularly limited, but distilled water, ion-exchanged water, or purified water such as ultrapure water is preferable, and ultrapure water used for semiconductor production is more preferable.
  • the water contained in the treatment liquid may contain an unavoidable trace mixture component.
  • the concentration of water in the treatment liquid is not particularly limited, but is preferably 50% by mass or more, more preferably 65% by mass or more, still more preferably 75% by mass or more.
  • the upper limit is not particularly limited, but is preferably 99.99% by mass or less, more preferably 99.5% by mass or less, and further preferably 98% by mass or less.
  • the treatment liquid may contain a water-soluble organic solvent.
  • the water-soluble organic solvent include ether solvents, alcohol solvents, ketone solvents, amide solvents, sulfur-containing solvents, and lactone solvents.
  • the water-soluble organic solvent is preferably an organic solvent that can be mixed with water in an arbitrary ratio.
  • the water-soluble organic solvent one type may be used alone, or two or more types may be used.
  • the content of the water-soluble organic solvent is not particularly limited, but is preferably 0.1 to 10% by mass.
  • the treatment liquid may contain components other than the above components.
  • the other components are not particularly limited, and examples thereof include surfactants and corrosion inhibitors.
  • the treatment liquid may contain a surfactant.
  • the surfactant is not particularly limited as long as it is a compound having a hydrophilic group and a hydrophobic group (lipophilic group) in one molecule, and for example, an anionic surfactant, a cationic surfactant and a nonionic surfactant. Agents can be mentioned.
  • As the surfactant each of the paragraphs 0026 of JP2014-093407, paragraphs 0024 to 0027 of JP2013-055087, and paragraphs 0024 to 0027 of JP2013-012614. Surfactants may be used.
  • the treatment liquid may contain a corrosion inhibitor.
  • the corrosion inhibitor include paragraphs 0017 to 0038 of JP-A-2014-107434, paragraphs 0033 to 0047 of JP-A-2014-103179, and paragraphs 0017 to 0049 of JP-A-2014-093407. The described additives are mentioned.
  • the pH of the treatment liquid is not particularly limited and is often 12.0 or less. Among them, 9.0 or less is preferable, 2.5 to 9.0 is preferable, and 3.0 to 3.0 to more, in terms of more excellent effect of the present invention and / or more excellent flatness of the substrate surface after treatment. 8.0 is more preferable.
  • the method for preparing the treatment liquid is not particularly limited, and examples thereof include a method in which a predetermined raw material is sufficiently mixed using a stirrer such as a mixing mixer.
  • a preparation method a method of preparing in advance to a set pH and then mixing, and a method of preparing to a set pH after mixing can also be mentioned.
  • a treatment liquid may be produced by producing a concentrated liquid and diluting it at the time of use to adjust the concentration to a predetermined value. Further, the treatment liquid may be produced by diluting the concentrated liquid and then adjusting the pH to a set pH. At the time of the above dilution, a set amount of pure water for dilution can be added to the concentrated solution, or a predetermined amount of concentrated solution can be added to the pure water for dilution.
  • the treatment liquid can be filled in any container for storage, transportation, and use.
  • the container preferably has a high degree of cleanliness and less elution of impurities.
  • Examples of the container filled with the treatment liquid include, but are not limited to, the "clean bottle” series manufactured by Aicello Chemical Corporation and the “pure bottle” manufactured by Kodama Resin Industry Co., Ltd.
  • Step B is a step of treating the object to be treated (the substrate having the Ru-containing material) subjected to the step A with the above-mentioned treatment liquid.
  • the etching residue on the substrate is removed.
  • the treatment liquid used in step B is as described above.
  • the treatment method in step B include a method in which the treatment liquid is brought into contact with a substrate having a Ru-containing substance to be treated.
  • the method of contact is not particularly limited, and for example, a method of immersing the object to be treated in the treatment liquid placed in the tank, a method of spraying the treatment liquid on the substrate, a method of flowing the treatment liquid on the substrate, and a method thereof. Any combination can be mentioned. Above all, a method of immersing the object to be treated in the treatment liquid is preferable.
  • a mechanical stirring method may be used.
  • the mechanical stirring method include a method of circulating the treatment liquid on the substrate, a method of flowing or spraying the treatment liquid on the substrate, and a method of stirring the treatment liquid by ultrasonic waves or megasonic. ..
  • the processing time in step B can be adjusted according to the method of bringing the processing liquid into contact with the substrate, the temperature of the processing liquid, and the like.
  • the treatment time (contact time between the treatment liquid and the object to be treated) is not particularly limited, but is preferably 0.25 to 10 minutes, more preferably 0.5 to 2 minutes.
  • the temperature of the treatment liquid in step B is not particularly limited, but is preferably 20 ° C. or higher, more preferably 35 ° C. or higher.
  • the temperature of the treatment liquid is preferably 75 ° C. or lower, more preferably 60 ° C. or lower.
  • the object of the step B to be treated with the above-mentioned treatment liquid is not particularly limited as long as it is a substrate containing a Ru-containing substance and the substrate to which the above-mentioned step A has been applied.
  • Other configurations of the object to be processed applied to the step B are as described above for the object to be processed applied to the present processing method.
  • the etching residue removed in step B is not limited to the etching residue 26 adhering to the inner wall 24 of the hole 22 of the object 20 to be treated shown in FIG. 2, and the above-mentioned treatment liquid comes into contact with the etching residue in step B.
  • the etching residue adhering to all the parts on the obtained substrate can be removed.
  • the pH of the treatment liquid filled in the tank or the like and the content of one or more of the specific oxidizing agent and other components are measured before, after, or during the step B.
  • the target range of the formulation adjusted in the above step is preferably a preferable range for the above-mentioned treatment liquid.
  • An ion chromatograph method can be mentioned as a method for measuring the content of a specific oxidizing agent and other components in the treatment liquid.
  • a specific device for example, Thermo Fisher's Dionex ICS-2100 can be mentioned.
  • step A in which a substrate having a Ru-containing substance is dry-etched with a specific etching gas and a step B in which the substrate subjected to the step A is treated with a specific treatment liquid are used.
  • step A it is preferable that step A is one of the above preferred embodiments and / or step B is one of the above preferred embodiments, and step A is one of the above preferred embodiments.
  • step B it is more preferable that the step B is one of the above-mentioned preferred embodiments.
  • the volume fraction of oxygen gas in the etching gas used is 50% by volume or more
  • step B the treatment liquid contains a periodic acid compound and is periodine.
  • An embodiment in which the content of the compound is 3% by mass or less with respect to the total mass of the treatment liquid can be mentioned.
  • the above aspect is preferable in that the effect of the present invention is more excellent.
  • a rinsing step (step C) may be performed in which the object to be treated which has been subjected to the step B is rinsed using a rinsing liquid.
  • the treatment liquid is brought into contact with the object to be treated, the compound derived from the treatment object may adhere to the surface of the object to be treated as a residue.
  • the residue can be removed from the surface of the object to be treated.
  • rinsing solution examples include hydrofluoric acid, hydrochloric acid, hydrogen peroxide solution, a mixed solution of hydrofluoric acid and hydrogen peroxide solution, a mixed solution of sulfuric acid and hydrogen peroxide solution, and a mixture of ammonia water and hydrogen peroxide solution.
  • These rinsing liquids may be mixed and used as long as the purpose of the rinsing step is not impaired.
  • hydrofluoric acid, nitric acid, perchloric acid, and hydrochloric acid are intended as aqueous solutions in which HF, HNO 3 , HClO 4 , and HCl are dissolved in water, respectively.
  • Sulfuric acid may be an aqueous solution in which H 2 SO 4 is dissolved in water.
  • Ozone water, carbon dioxide water, and hydrogen water are intended as aqueous solutions in which O 3 , CO 2 , and H 2 are dissolved in water, respectively.
  • the rinse liquid carbon dioxide water, ozone water, hydrogen water, hydrofluoric acid, citric acid aqueous solution, hydrochloric acid, sulfuric acid, ammonia water, etc.
  • Hydrogen peroxide solution, SPM, APM, HPM, IPA, hypochlorous acid aqueous solution, royal water, or FPM is preferable
  • hydrofluoric acid, hydrochloric acid, hydrogen peroxide solution, SPM, APM, HPM, or FPM is more preferable. ..
  • step C a method of bringing the rinsing liquid into contact with the substrate subjected to the step B, which is the object to be treated, can be mentioned.
  • the contacting method is carried out by immersing the substrate in the rinse liquid contained in the tank, spraying the rinse liquid on the substrate, flowing the rinse liquid on the substrate, or any combination thereof.
  • the treatment time (contact time between the rinsing liquid and the object to be treated) is not particularly limited, but is 5 seconds or more and 5 minutes or less.
  • the temperature of the rinsing liquid during the treatment is not particularly limited, but is preferably 16 to 60 ° C, more preferably 18 to 40 ° C.
  • This treatment method may include a step D of carrying out a drying treatment, if necessary, after the step C.
  • the method of drying treatment is not particularly limited, but spin drying, flow of dry gas on the substrate, heating by heating means of the substrate (for example, hot plate and infrared lamp, etc.), IPA (isopropyl alcohol) steam drying, marangoni drying, Examples include rotagoni drying and combinations thereof.
  • the drying time varies depending on the drying method, but is often 30 seconds or more and several minutes or less.
  • This processing method may be carried out in combination before or after other steps performed on the substrate.
  • the treatment method of the present invention may be incorporated into other steps during the implementation of the present treatment method.
  • Other steps include, for example, a step of forming each structure such as a metal wiring, a gate structure, a source structure, a drain structure, an insulating layer, a ferromagnetic layer and / or a non-magnetic layer (layer formation, etching, chemical mechanical polishing, modification). Etc.), resist forming step, exposure step and removal step, heat treatment step, cleaning step, inspection step and the like.
  • This processing method may be performed at any stage of the back end process (BOOL: Back end of the line), the middle process (MOL: Middle of the line), and (FEOL: Front end of the line). From the viewpoint that the effects of the present invention can be more exerted, it is preferable to carry out the process in a front-end process or a middle process.
  • the application of the object to be processed to which this processing method is applied is not particularly limited, and examples thereof include logic circuits, memories, and processors.
  • Examples of the logic circuit include an MPU (micro processor unit), an MCU (micro controller unit), and a DSP (Digital Signal Processor).
  • Examples of the memory include DRAM (Dynamic Random Access Memory), FRAM (registered trademark) (Ferroelectric Random Access Memory), and MRAM. (Magnetoresistive Random Access Memory) and PRAM (Phase change Random Access Memory).
  • step A a dry etching process was performed on the produced object to be processed using an inductively coupled plasma-reactive ion etching (ICP-RIE) apparatus (“RIE-101iPH” manufactured by SUMCO Corporation).
  • ICP-RIE inductively coupled plasma-reactive ion etching
  • Table 1 shows the etching gas (composition and flow rate) used in the dry etching steps A-1 to A-10 performed in each example and each comparative example, and the conditions for the dry etching process (internal pressure, ICP side RF). Output, bias side RF output and processing time) are shown.
  • the dry etching step A-2 chlorine (Cl 2 ) and oxygen (O 2 ) are injected at an amount such that the gas flow rates are 2 sccm and 38 sccm, respectively, while the internal pressure is 2 Pa and the RF output on the ICP side is 150 W.
  • the dry etching process was performed under the conditions of an RF output of 50 W on the bias side and a processing time of 1 minute. That is, in the dry etching step A-2, a mixed gas composed of Cl 2 and O 2 having a volume fraction of 5% by volume and 95% by volume, respectively, was injected at a flow rate of 40 sccm.
  • methane tetrafluoride (CF 4 ) is injected as an etching gas at a flow rate of 50 sccm
  • argon (A4) is injected as an etching gas at a flow rate of 50 sccm. bottom.
  • the dry etching process was performed under a temperature condition of 200 ° C. or lower.
  • step B ⁇ Preparation of treatment liquid>
  • a treatment liquid having the composition shown in Table 2 below was prepared.
  • the specific oxidizing agent, amine compound, pH adjuster and water used for the preparation of the treatment liquid are described below. All of the following components used in the preparation of the treatment liquid were products obtained from the market and classified into semiconductor grades or high-purity grades equivalent thereto. ..
  • the treatment liquids used in each Example and each Comparative Example were prepared by mixing each of the above components according to the composition shown in Table 2.
  • the content of the "pH adjuster" shown in Table 2 was adjusted so that the pH of the treatment liquid would be the value shown in the "Treatment liquid pH” column of Table 2. ..
  • the balance of the treatment liquid other than the specific oxidizing agent, the additive and the pH adjusting agent is water.
  • the object to be treated subjected to the above step A was placed in a container filled with the treatment liquid prepared by the above method.
  • the cleaning treatment was performed by immersing the object to be treated in the treatment liquid while stirring the treatment liquid.
  • the temperature of the treatment liquid at this time was 25 ° C.
  • the object to be treated was taken out, and the object to be treated was immediately washed with ultrapure water and dried by spraying nitrogen (N 2).
  • the etching rate is 150 ⁇ / min or more.
  • the etching rate is 100 ⁇ / min or more and less than 150 ⁇ / min.
  • the etching rate is 30 ⁇ / min or more and less than 100 ⁇ / min.
  • the etching rate is 10 ⁇ / min or more and less than 30 ⁇ / min.
  • the etching rate is less than 10 ⁇ / min.
  • a Ru-containing layer at an arbitrary position is selected, and the direction along the surface of the Ru-containing layer is selected.
  • the difference (unit: ⁇ ) between the maximum value and the minimum value of the thickness of the Ru-containing layer was calculated in the section having a length of 1 mm.
  • the above difference was calculated for any three Ru-containing layers, and the average value (hereinafter, also referred to as “film thickness difference”) was obtained. From the obtained film thickness difference, the flatness of the surface of the Ru-containing layer after the treatment methods of each Example and each Comparative Example were carried out was evaluated based on the following evaluation criteria.
  • the film thickness difference is 10 ⁇ or less.
  • the film thickness difference is more than 10 ⁇ and 30 ⁇ or less.
  • the film thickness difference is more than 30 ⁇ and 45 ⁇ or less.
  • the film thickness difference is more than 45 ⁇ and 50 ⁇ or less.
  • the film thickness difference is more than 50 ⁇ .
  • Table 2 shows the processing methods of each Example and each Comparative Example and their evaluation results.
  • the “Step A” column shows the steps performed as the step A (dry etching step) in each Example and each Comparative Example among the steps A-1 to A-10 shown in Table 1.
  • the “Amount (%)” column indicates the content (unit: mass%) of the corresponding compound with respect to the total mass of the treatment liquid.
  • the “treatment liquid pH” column indicates the pH of each treatment liquid at 25 ° C.
  • step A when an etching gas having a volume fraction of oxygen of 50% by volume or more was used, it was confirmed that the etching efficiency was more excellent (comparison between Examples 18 to 24 and Examples 25 to 29), and chlorine. It was confirmed that the etching efficiency was further excellent when the O 2 / Cl mixed gas having a volume ratio of O 2 to the system compound of 90/10 to 99/1 was used (Examples 4 to 10 and Examples 1 to 1 to 1). Comparison with 3 and 11-17).
  • the treatment liquid contained a periodic acid compound as a specific oxidizing agent, it was confirmed that the removability of the etching residue and the flatness of the substrate surface after the treatment were more excellent (Examples 5 and 6 and Examples 49 to 52). Comparison with).
  • Processed object 12 Interlayer insulating film 14
  • Metal hard mask 16 Ru-containing wiring 20
  • Processed object 22 Hole 24
  • Inner wall 26 Etching residue

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Ru含有物を有する基板に対するエッチング効率に優れ、かつ、エッチング残渣物の除去性に優れる基板の処理方法を提供する。ルテニウム含有物を有する基板を、エッチングガスを用いてドライエッチングするドライエッチング工程と、上記ドライエッチング工程が施された上記基板を、処理液を用いて処理する洗浄工程と、を有し、上記エッチングガスが、酸素ガス、又は、酸素と塩素系化合物とを含む混合ガスであり、上記処理液は、過ヨウ素酸化合物、次亜塩素酸化合物及びセリウム化合物からなる群より選択される少なくとも1つの特定酸化剤を含む、基板の処理方法。

Description

基板の処理方法
 本発明は、基板の処理方法に関する。
 半導体製品の微細化が進む中で、半導体装置の製造プロセス中における、基板上の不要な遷移金属含有物を除去する工程を、高効率に実施する需要が高まっている。
 特許文献1には、「CoFeB及び/又はCoFeを含む強磁性体層と、MgOを含む絶縁体層とを含む半導体基板をドライエッチングする工程、並びに、強酸化剤、及び、水を含有するMRAMドライエッチング残渣除去組成物によりドライエッチング残渣を除去する工程を含む、磁気抵抗メモリの製造方法。」に関する発明が記載されている(請求項1及び10参照)。
国際公開第2016/068182号明細書
 近年、半導体装置の製造プロセスに使用される基板の中でも、ルテニウム(Ru)含有物を有する基板に対するエッチング効率の向上が、より一層求められている。本発明者らは、特許文献1に記載された方法に基づいて、基板上のRu含有物の除去処理方法について検討したところ、上記のエッチング効率の点で更なる改善の余地があることを見出した。
 また、近年、基板上に存在する不純物が、基板を用いて製造される半導体装置の性能に悪影響を与える問題が指摘されており、基板の表面におけるエッチング残渣物等の不純物の存在量を抑制することが求められている。
 本発明は、上記実情を鑑みて、Ru含有物を有する基板に対するエッチング効率に優れ、かつ、エッチング残渣物の除去性に優れる基板の処理方法を提供することを課題とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
 〔1〕
 ルテニウム含有物を有する基板を、エッチングガスを用いてドライエッチングするドライエッチング工程と、上記ドライエッチング工程が施された上記基板を、処理液を用いて処理する洗浄工程と、を有し、上記エッチングガスが、酸素ガス、又は、酸素と塩素系化合物とを含む混合ガスであり、上記処理液は、過ヨウ素酸化合物、次亜塩素酸化合物及びセリウム化合物からなる群より選択される少なくとも1つの特定酸化剤を含む、基板の処理方法。
 〔2〕
 上記ドライエッチング工程を、反応性イオンエッチング装置を用いて実施する、〔1〕に記載の基板の処理方法。
 〔3〕
 上記反応性イオンエッチング装置が、誘導結合型プラズマ-反応性イオンエッチング装置である、〔2〕に記載の基板の処理方法。
 〔4〕
 上記処理液が、特定酸化剤として過ヨウ素酸化合物を含む、〔1〕~〔3〕のいずれかに記載の基板の処理方法。
 〔5〕 上記処理液が、特定酸化剤として過ヨウ素酸化合物を含み、上記過ヨウ素酸化合物がオルト過ヨウ素酸である、〔1〕~〔4〕のいずれかに記載の基板の処理方法。
 〔6〕
 上記処理液が、特定酸化剤として次亜塩素酸化合物を含み、上記次亜塩素酸化合物が、次亜塩素酸、次亜塩素酸ナトリウム、又は、次亜塩素酸第4級アンモニウム塩である、〔1〕~〔5〕のいずれかに記載の基板の処理方法。
 〔7〕
 上記処理液が、特定酸化剤としてセリウム化合物を含み、上記セリウム化合物が硝酸セリウム(IV)アンモニウムである、〔1〕~〔6〕のいずれかに記載の基板の処理方法。

 〔8〕
 上記特定酸化剤の含有量が、上記処理液の全質量に対して3質量%以下である、〔1〕~〔7〕のいずれかに記載の基板の処理方法。
 〔9〕
 上記処理液が、アミン化合物を更に含む、〔1〕~〔8〕のいずれかに記載の基板の処理方法。
 〔10〕
 上記処理液が、第4級アンモニウム化合物を更に含む、〔1〕~〔9〕のいずれかに記載の基板の処理方法。
 〔11〕
 上記処理液のpHが9.0以下である、〔1〕~〔10〕のいずれかに記載の基板の処理方法。
 〔12〕
 上記処理液のpHが3.0~8.0である、〔1〕~〔11〕のいずれかに記載の基板の処理方法。
 〔13〕
 上記エッチングガスにおける酸素の体積分率が、50体積%以上である、〔1〕~〔12〕のいずれかに記載の基板の処理方法。
 〔14〕
 上記処理液が、過ヨウ素酸化合物を含み、上記過ヨウ素酸化合物の含有量が、上記処理液の全質量に対して3質量%以下であり、上記エッチングガスにおける上記酸素ガスの体積分率が、50体積%以上である、〔1〕~〔13〕のいずれかに記載の基板の処理方法。
 〔15〕
 上記エッチングガスが、酸素と塩素系化合物とを含み、上記塩素系化合物に対する上記酸素の体積比が80/20~99/1である混合ガスである、〔1〕~〔14〕のいずれかに記載の基板の処理方法。
 〔16〕
 上記エッチングガスが、酸素と塩素系化合物とを含み、上記塩素系化合物に対する上記酸素の体積比が90/10~99/1である混合ガスである、〔1〕~〔15〕のいずれかに記載の基板の処理方法。
 本発明によれば、Ru含有物を有する基板に対するエッチング効率に優れ、かつ、エッチング残渣物の除去性に優れる基板の処理方法を提供できる。
処理方法に適用される被処理物の一例を示す断面模式図である。 処理方法が適用された被処理物の一例を示す断面模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に制限されるものではない。
 本明細書中における「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、X線、及び、EUV(Extreme ultraviolet)光等による露光のみならず、電子線、及び、イオンビーム等の粒子線による描画も露光に含める。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
 なお、本明細書において言及する処理液の成分は、処理液中で電離(イオン化)していてもよい。
 本明細書において、「ppm」は「parts-per-million(10-6)」を意味し、「ppb」は「parts-per-billion(10-9)」を意味し、「ppt」は「parts-per-trillion(10-12)」を意味する。
 本明細書において、pHは、室温(25℃)において、pH計(株式会社堀場製作所製、F-51(商品名))で測定した値である。
 本明細書においてエッチング残渣物とは、ドライエッチング(例えば、プラズマエッチング)を行うことで生じた副生成物を意図する。エッチング残渣物としては、例えば、Si含有残渣物、金属含有残渣物(特にRu含有残渣物)、及び、フォトレジスト由来の有機物残渣物が挙げられる。
[基板の処理方法]
 本発明の基板の処理方法(以下、単に「本処理方法」ともいう)は、ドライエッチング工程と洗浄工程とを有する。
 ドライエッチング工程(以下「工程A」とも記載する)は、ルテニウム含有物(Ru含有物)を有する基板を、エッチングガスを用いてドライエッチングする工程である。
 上記エッチングガスは、酸素ガス、又は、酸素と塩素系化合物との混合ガスである。
 洗浄工程(以下「工程B」とも記載する)は、上記ドライエッチング工程を施された基板を、処理液を用いて処理する工程である。
 上記処理液は、過ヨウ素酸化合物、次亜塩素酸化合物及びセリウム化合物からなる群より選択される少なくとも1つの酸化剤(以下「特定酸化剤」とも記載する)を含む。
 Ru含有物を有する基板に対して、上記の特定のエッチングガスを用いてドライエッチング処理を行い、その後、上記の特定の処理液を用いて洗浄処理することによって、エッチング効率及びエッチング残渣物の除去性の両者が向上するメカニズムは定かではないが、本発明者らは以下のように推測している。
 上記の特定のエッチングガスを用いてドライエッチング処理を行うことにより、基板上のRu含有物のエッチング効率がより一層向上するが、このドライエッチング処理によって、Ru含有配線に由来するRu含有残渣物とともに、更にエッチングガスにより酸化されてなるRuO含有残渣物が生成したと考えられる。そして、上記の特定の処理液は、Ru原子を含む化合物を溶解する溶解性能、中でも、RuOを溶解する溶解性能が優れるために、上記の特定の処理液を用いる洗浄処理によって、上記のドライエッチング処理によって生じたRu含有残渣物及び/又はRuO含有残渣物の除去性が向上したものと考えている。
 本明細書において、Ru含有物を有する基板に対するエッチング効率に優れること、及び/又は、エッチング残渣物の除去性に優れることを、「本発明の効果が優れる」ともいう。
〔ドライエッチング工程(工程A)〕
 本処理方法は、Ru含有物を有する基板をエッチングガスを用いてドライエッチングする工程Aを有する。
 以下、本処理方法の対象であるRu含有物を有する基板を「被処理物」とも記載する。
<被処理物>
 本処理方法に適用される被処理物は、Ru含有物を有する基板である。つまり、被処理物は、基板と、基板上にあるRu含有物とを少なくとも含む。
 被処理物としては、例えば、半導体デバイスの製造プロセスに用いられるRu含有層を有する基板が挙げられる。
 本明細書における「基板上」とは、例えば、基板の表裏、側面、及び、溝内等のいずれも含む。また、基板上のRu含有物とは、基板の表面に直接Ru含有物が付着している場合のみならず、基板上に他の層を介してRu含有物が存在する場合も含む。
(基板)
 基板の種類は特に制限はないが、半導体基板が好ましい。半導体基板には、単層からなる半導体基板、及び、多層からなる半導体基板が含まれる。
 基板を構成する材料は、特に制限されず、シリコン、シリコンゲルマニウム、及び、GaAs等の第III-V族化合物、並びにそれらの任意の組合せが挙げられる。
 上記基板としては、例えば、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、及び、光磁気ディスク用基板が挙げられる。
 基板の大きさ、厚さ、形状、及び、層構造等は、特に制限されず、所望に応じ適宜選択できる。
(Ru含有物)
 Ru含有物は、ルテニウム(Ru原子)を含む物質でありさえすればよく、例えば、Ruの単体、Ruを含む合金、Ruの酸化物、Ruの窒化物、及び、Ruの酸窒化物が挙げられる。また、Ru含有物は、これらの化合物のうちの2種以上を含む混合物でもよい。
 Ru含有物中のRu原子の含有量は、Ru含有物の全質量に対して、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上が更に好ましい。上限は特に制限されず、Ru含有物がRu単体であってもよいことから、100質量%である。
 Ru含有物は、Ru以外の遷移金属を含んでいてもよい。Ru以外の遷移金属としては、例えば、Ti(チタン)、Ta(タンタル)、Co(コバルト)、Cr(クロム)、Hf(ハフニウム)、Os(オスミウム)、Pt(白金)、Ni(ニッケル)、Mn(マンガン)、Cu(銅)、Zr(ジルコニウム)、Mo(モリブデン)、La(ランタン)、W(タングステン)及びIr(イリジウム)が挙げられる。
 基板上のRu含有物の形態は特に制限されないが、膜状に配置された形態(Ru含有膜)、又は、配線状に配置された形態(Ru含有配線)が好ましい。
 Ru含有膜及びRu含有配線の厚みは用途に応じて適宜選択すればよく、特に制限されないが、50nm以下が好ましく、30nm以下がより好ましい。
 Ru含有膜及びRu含有配線は、基板の片側の主面上にのみに配置されていてもよいし、両側の主面上に配置されていてもよい。また、Ru含有膜は、基板の主面全面に配置されていてもよいし、基板の主面の一部に配置されていてもよい。
 また、基板は、Ru含有物以外に、所望に応じた種々の層、及び/又は、構造を有していてもよい。例えば、基板は、金属配線、ゲート電極、ソース電極、ドレイン電極、絶縁層、強磁性層、及び/又は、非磁性層等を有していてもよい。
 基板は、露出した集積回路構造を有していてもよい。そのような集積回路構造としては、例えば金属配線及び誘電材料等の相互接続構造(interconnect features)が挙げられる。相互接続機構に使用する金属及び合金としては、例えば、アルミニウム、銅アルミニウム合金、銅、チタン、タンタル、コバルト、ケイ素、窒化チタン、窒化タンタル、及び、タングステンが挙げられる。
 また、基板は、層間誘電体層、酸化ケイ素、窒化ケイ素、炭化ケイ素、及び/又は、炭素ドープ酸化ケイ素等の層を有していてもよい。
(被処理物の製造方法)
 被処理物であるRu含有物を有する基板の製造方法は、特に制限されない。
 Ru含有膜を有する基板は、例えば、スパッタリング法、物理気相成長(PVD:Physical vapor deposition)法、原子層堆積(ALD:Atomic layer deposition)法、化学気相成長(CVD:Chemical Vapor Deposition)法、及び、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法等の公知の方法で、基板上にRu含有膜を形成することにより製造できる。
 また、所定のマスクを介して上記方法を実施して、基板上にRu含有配線を形成し、Ru含有配線を有する基板を製造できる。
 基板上にRu含有膜又はRu含有配線を形成した後、更にこの基板を異なる工程又は処理に供してから、本処理方法の被処理物として用いてもよい。
 なお、スパッタリング法、PVD法、ALD法及びCVD法等によりRu含有膜を形成した場合、Ru含有膜を有する基板の裏面(Ru含有膜側とは反対側の表面)に、粒子状のRu含有物が付着する場合がある。
(被処理物の構成)
 図1は、本処理方法に適用される被処理物の一例を示す断面模式図である。
 図1に示す被処理物10は、図示しない基板と、基板上に配置された層間絶縁膜12と、層間絶縁膜12上に配置されたメタルハードマスク14と、層間絶縁膜12及びメタルハードマスク14に形成された溝の内部に充填されたRu含有配線16とを有する。
 基板及びRu含有配線16のそれぞれについては、上記の通りである。
 層間絶縁膜12は、特に制限されないが、誘電率kが3.0以下である材料で構成されることが好ましく、誘電率kが2.6以下である材料で構成されることがより好ましい。
 より具体的な層間絶縁膜12の材料としては、SiO、SiOC系材料、及び、ポリイミド等の有機系ポリマーが挙げられる。
 メタルハードマスク14は、パターン状の金属膜であり、ドライエッチング工程によりRu含有配線16を除去するために使用される。メタルハードマスク14を構成する材料は、特に制限されず、Cu、Co、W、AlOx、AlN、AlOxNy、WOx、Ti、TiN、ZrOx、HfOx及びTaOxからなる群より選択される少なくとも1種を含む材料が挙げられる。ここで、x、yは、それぞれ、x=1~3、y=1~2で表される数である。メタルハードマスク14を構成する材料としては、TiN、WO又はZrOが好ましい。
 被処理物10の製造方法は特に制限されず、例えば、基板上に層間絶縁膜12を形成する工程と、層間絶縁膜12上に金属膜を形成する工程と、層間絶縁膜12及び金属膜に溝を形成する工程と、層間絶縁膜12及び金属膜(メタルハードマスク14)に形成された溝を充填するRu含有膜を形成する工程と、Ru含有膜に対して平坦化処理を施してRu含有配線16を形成する工程と、を含む方法が挙げられる。
 本処理方法に適用される被処理物の構成は、図1に示す被処理物10が有する構成に制限されない。
 例えば、被処理物は、基板、層間絶縁膜及びRu含有膜(Ru含有配線)以外の他の層を有していてもよい。他の層としては、例えば、バリアメタル層、エッチング停止層、及び、反射防止層が挙げられる。
 被処理物は、層間絶縁膜とRu含有配線との間に、溝の内壁に沿って配置されたバリアメタル層を有していてもよい。バリアメタル層を構成する材料は特に制限されず、例えば、TiN及びTaNが挙げられる。
 被処理物は、基板と層間絶縁膜との間にエッチング停止層を有していてもよい。エッチング停止層の材料は、特に制限されず、例えば、SiN、SiON及びSiOCN系材料並びにAlOx等の金属酸化物が挙げられる。
 また、メタルハードマスクに代えて、公知のフォトレジスト材料を用いて形成されるレジストマスクを用いてもよい。
<ドライエッチング>
 工程Aとして行うドライエッチングの方法は、酸素ガス、又は、酸素と塩素系化合物との混合ガスをエッチングガスとして用いること以外、特に制限されず、公知の方法により行うことができる。
(エッチングガス)
 工程Aでは、エッチングガスとして、酸素ガス、又は、酸素と塩素系化合物との混合ガス(以下「O/Cl混合ガス」とも記載する)を用いてドライエッチングを行う。
 酸素ガスは、気体の酸素(O)を90体積%以上含むガスである。酸素ガスにおけるOの体積分率は、95体積%以上が好ましい。酸素ガスにおけるO以外の残部は、例えば、N、H、Ar及びHe等のガス成分である。
 なお、O/Cl混合ガスは、酸素ガスに含まれない。
 本明細書において、O/Cl混合ガスに含まれる塩素系化合物は、塩素原子を含み、ドライエッチング条件において気体である化合物であれば特に制限されない。上記塩素系化合物としては、例えば、Cl、BCl、及び、SiClが挙げられ、Cl又はBClが好ましく、Clがより好ましい。塩素系ガスは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 O/Cl混合ガスに含まれるO及び塩素系化合物の含有量は特に制限されない。
 O/Cl混合ガスにおけるOの体積分率は、本発明の効果がより優れる点、及び、処理後の基板表面の平坦性がより優れる点で、50体積%以上が好ましく、75体積%以上がより好ましく、90体積%以上が更に好ましい。上限は特に制限されないが、99体積%以下が好ましく、98体積%以下がより好ましい。
 また、O/Cl混合ガスに含まれる塩素系化合物の含有量は、本発明の効果がより優れる点、及び、処理後の基板表面の平坦性がより優れる点で、50体積%以下が好ましく、25体積%以下がより好ましく、10体積%以下が更に好ましい。下限は特に制限されないが、1体積%以上が好ましく、2体積%以上がより好ましい。
 O/Cl混合ガスにおけるO及び塩素系化合物の比率は、塩素系化合物に対するOの体積比(O/塩素系ガス)が、50/50以上であることが好ましく、75/25以上であることがより好ましく、80/20以上であることが更に好ましく、90/10以上であることが特に好ましい。上限は特に制限されないが、塩素系化合物に対するOの体積比(O/塩素系ガス)が99/1以下であることが好ましい。
 O/Cl混合ガスは、O及び塩素系化合物以外の他のガス成分を含んでいてもよい。O及び塩素系化合物以外の他のガス成分としては、例えば、N、H、Ar及びHeが挙げられる。O/Cl混合ガスにおけるO及び塩素系化合物以外のガス成分の体積分率は、1体積%以下が好ましく、0.1体積%以下がより好ましい。
 工程Aにおいて用いるエッチングガスとしては、酸素ガス又はO/Cl混合ガスであって、エッチングガスにおける酸素の体積分率が50体積%以上であるガスが好ましく、酸素ガス又はO/Cl混合ガスであって、エッチングガスにおける酸素の体積分率が75体積%以上であるガスがより好ましい。中でも、エッチングガスが、塩素系化合物に対するOの体積比が90/10~99/1であるO/Cl混合ガスであることが更に好ましい。
(ドライエッチング装置及び条件)
 工程Aに用いるドライエッチング装置は、特に制限されないが、反応性イオンエッチング(RIE:Reactive Ion Etching)装置が好ましい。RIEにおいてプラズマを発生させるための機構としては、特に制限されず、誘導結合型プラズマ(ICP:Inductive Coupled Plasma)-RIE、容量結合型プラズマ(CCP:Capacitive Coupled Plasma)-RIE及び電子サイクロトロン共鳴型(ECR:Electron Cyclotron Resonance)-RIEが挙げられ、ICP-RIEが好ましい。即ち、工程Aに用いるドライエッチング装置としては、誘導結合型プラズマ-反応性イオンエッチング(ICP-RIE)装置がより好ましい。
 工程Aにおけるドライエッチングの条件は、特に制限されないが、例えば以下の条件が挙げられる。
 エッチングガスの流量は、10~200sccm(Standard Cubic Centimeter per Minute)が好ましく20~50sccmがより好ましい。なお、ガスの流量の単位である「sccm」は、標準条件(0℃及び1気圧)下で換算した場合の毎分あたり立方センチメートル(cm/分)で表されるガスの流量を意味する。
 エッチングガスの圧力は、0.1~50Paが好ましく、0.5~20Paがより好ましい。
 アンテナ側(ICP側)のRF(Radio Frequency、高周波)出力は、50~500Wが好ましく、100~300Wがより好ましい。また、バイアス側のRF出力は、10~300Wが好ましく、10~100Wがより好ましい。
 ドライエッチング装置内の温度は、200℃以下であることが好ましい。
 工程Aの処理時間は、10秒間以上20分間以下が好ましく、30秒間以上10分間以下がより好ましい。
 上記の方法により被処理物をドライエッチングする工程Aを行うことにより、被処理物が有するRu含有物の少なくとも一部が除去される。
 以下、図2を使用して、工程Aが施された被処理物の構成を説明する。
 図2は、工程Aが施された被処理物の一例を示す断面模式図である。
 図2に示す被処理物20は、図1に示す被処理物10に対して工程Aを施した後の構成の一例であって、図示しない基板上に配置された、層間絶縁膜12と、メタルハードマスク14と、Ru含有配線16と、ホール22とを有する。
 また、ホール22の内壁24は、メタルハードマスク14及び層間絶縁膜12の側面と、Ru含有配線16の表面からなる底面とで構成されており、内壁24には、エッチング残渣物26が付着している。
 工程Aでは、被処理物10に対して、メタルハードマスク14をマスクとして用いてドライエッチングが施される。その結果、メタルハードマスク14が配置されていない開口部側から基板に向かってRu含有配線16がエッチングされ、ホール22が形成されるとともに、ホール22の内壁24にエッチング残渣物26が付着する。
 このエッチング残渣物26には、Ru含有配線16に由来するRu、及び/又は、このRuがエッチングガスにより酸化されてなるRu酸化物を含む残渣物が含まれる。後述する洗浄工程(工程B)では、特定の処理液を用いることにより、このようなRu及び/又はRu酸化物を含む残渣物が除去される。
 工程Aにより除去されるRu含有膜又はRu含有配線の厚みは特に制限されないが、5~500nmが好ましく、10~20nmがより好ましい。
 また、図2に示す被処理物20は、Ru含有配線16を有するが、工程Aにより表面に露出するRu含有物を全て除去してもよい。
〔洗浄工程(工程B)〕
 本処理方法は、工程Aが施された被処理物(Ru含有物を有する基板)を、後述する特定酸化剤を含む処理液を用いて処理する工程Bを有する。
 工程Aが施された被処理物が、既に説明した図2に示す被処理物20である場合、工程Bとして特定の処理液を用いた洗浄処理を行うことにより、ホール22の内壁24及びその他の被処理物20の表面に付着したエッチング残渣物26が、除去される。
 以下、工程Bに用いる処理液、及び、処理液を用いて被精製物を処理する方法(洗浄方法)について、詳細に説明する。
<処理液>
(特定酸化剤)
 工程Bに用いる処理液は、過ヨウ素酸化合物、次亜塩素酸化合物及びセリウム化合物からなる群より選択される少なくとも1つの特定酸化剤を含む。
-過ヨウ素酸化合物-
 本明細書において、過ヨウ素酸化合物とは、過ヨウ素酸及びその塩からなる群から選択される化合物を意味する。
 過ヨウ素酸化合物としては、例えば、オルト過ヨウ素酸(HIO)、オルト過ヨウ素酸の塩、メタ過ヨウ素酸(HIO)、及び、メタ過ヨウ素酸の塩が挙げられる。上記の塩としては、アルカリ金属元素(ナトリウム及びカリウム等)との塩、アルカリ土類金属元素(マグネシウム及びカルシウム等)との塩、並びに、その他の金属元素との塩が挙げられる。
 過ヨウ素酸化合物としては、オルト過ヨウ素酸又はメタ過ヨウ素酸が好ましく、化合物の安定性が優れる点で、オルト過ヨウ素酸がより好ましい。
 過ヨウ素酸化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-次亜塩素酸化合物-
 本明細書において、次亜塩素酸化合物とは、次亜塩素酸及びその塩からなる群から選択される化合物を意味する。
 次亜塩素酸の塩としては、例えば、次亜塩素酸とアルカリ金属元素(ナトリウム及びカリウム等)との塩、次亜塩素酸とアルカリ土類金属元素(マグネシウム及びカルシウム等)との塩、次亜塩素酸とその他の金属元素との塩、並びに、次亜塩素酸と第4級アンモニウムカチオンとの塩が挙げられる。
 次亜塩素酸と塩を形成する第4級アンモニウムカチオンとしては、例えば、テトラメチルアンモニウムカチオン、エチルトリメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラブチルアンモニウムカチオン、ジメチルジプロピルアンモニウムカチオンが挙げられる。
 次亜塩素酸化合物としては、次亜塩素酸(HClO)、次亜塩素酸ナトリウム(NaClO)、次亜塩素酸カリウム(KClO)、次亜塩素酸カルシウム(Ca(ClO))、又は、次亜塩素酸第4級アンモニウム塩が好ましく、次亜塩素酸、次亜塩素酸ナトリウム、又は、次亜塩素酸第4級アンモニウム塩がより好ましく、次亜塩素酸ナトリウムが更に好ましい。
 次亜塩素酸第4級アンモニウム塩としては、次亜塩素酸テトラメチルアンモニウム、次亜塩素酸テトラエチルアンモニウム、又は、次亜塩素酸テトラブチルアンモニウムが好ましい。
 次亜塩素酸化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-セリウム化合物-
 本明細書において、セリウム化合物とは、セリウムを含む化合物を意味する。
 セリウム化合物は水溶性であることが好ましい。なお、水溶性であるセリウム化合物とは、例えば、純水(pH7.0)1L(25℃)に50g以上溶解できるセリウム化合物を意図する。また、後述するpH調整剤を含む水1L(25℃)に50g以上溶解できるセリウム化合物も好ましい。
 セリウム化合物としては、例えば、硝酸セリウム塩化合物(硝酸セリウム(IV)アンモニウム及び硝酸セリウム(III)等)、硫酸セリウム塩化合物(硫酸セリウム(IV)アンモニウム、硫酸セリウム(III)及び硫酸セリウム(IV)等)、酸化セリウム、並びに、水酸化セリウムが挙げられる。また、これらの化合物は、水和物であってもよい。
 中でも、硝酸セリウム塩化合物又は硫酸セリウム塩化合物が好ましく、硝酸セリウム(IV)アンモニウム又は硫酸セリウム(IV)アンモニウムがより好ましく、硝酸セリウム(IV)アンモニウムが更に好ましい。
 セリウム化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 処理液に含まれる特定酸化剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 処理液は、特定酸化剤として、本発明の効果及び処理後の基板表面の平坦性がより優れる点で、過ヨウ素酸化合物を含むことが好ましく、オルト過ヨウ素酸を含むことがより好ましい。
 処理液中の特定酸化剤の含有量は、特に制限されないが、本発明の効果がより優れる点で、処理液の全質量に対して0.005質量%以上が好ましく、0.1質量%以上がより好ましく、0.2質量%以上が更に好ましい。
 また、本発明の効果及び/又は処理後の基板表面の平坦性がより優れる点で、過ヨウ素酸化合物、次亜塩素酸化合物及びセリウム化合物からなる群より選択される少なくとも1つの、特定酸化剤の含有量は、処理液の全質量に対して、15質量%以下が好ましく、8質量%以下がより好ましく、4質量%以下が更に好ましく、3質量%以下が特に好ましい。
(アミン化合物)
 処理液は、アミン化合物を含んでいてもよい。
 アミン化合物は、分子内にアミノ基を有する有機化合物であれば特に制限されず、例えば、分子内に第1級アミノ基(-NH)を有する第1級アミン、分子内に第2級アミノ基(>NH)を有する第2級アミン、分子内に第3級アミノ基(>N-)を有する第3級アミン、及びそれらの塩が挙げられる。
 第1級~第3級アミンの塩としては、塩酸塩、硫酸塩及び硝酸塩が挙げられる。
 処理液は、本発明の効果がより優れる点で、アミン化合物を含むことがより好ましい。処理液がアミン化合物を含むことにより、本発明の効果(特にエッチング残渣物の除去性)がより向上する詳細なメカニズムは不明であるが、処理液がアミン化合物を含むことにより、工程Aにより形成されるRuO含有残渣物の溶解性が向上するためと推測される。
 アミン化合物としては、下記式(1)で表される化合物又はその塩である化合物(以下「特定アミン」とも記載する)が好ましい。
  R-NH   式(1)
 式(1)中、Rは、置換基を有してもよい脂肪族炭化水素基を表す。脂肪族炭化水素基は、炭素鎖中に-O-、-S-及び-NR-からなる群より選択される少なくとも1つの連結基を有してもよい。Rは、水素原子又は置換基を有してもよい脂肪族炭化水素基を表す。
 Rで表される脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状のいずれであってもよく、また、不飽和炭素結合を有していてもよい。脂肪族炭化水素基としては、直鎖状もしくは分岐鎖状のアルキル基又はシクロアルキル基が好ましく、直鎖状又は分岐鎖状のアルキル基がより好ましく、直鎖状のアルキル基が更に好ましい。
 Rで表される脂肪族炭化水素基の炭素数は、特に制限されないが、1~15が好ましく、1~8がより好ましく、2~6が更に好ましい。
 Rで表される脂肪族炭化水素基が有する置換基は、特に制限されず、例えば、カルボキシ基、アミノ基、オキソ基、ホスホン酸基、スルホ基及びメルカプト基からなる群より選択される少なくとも1種の官能基が挙げられる。Rで表される脂肪族炭化水素基は、少なくとも1つの上記官能基を更に有することが好ましい。
 上記官能基としては、カルボキシ基、アミノ基、オキソ基、ホスホン酸基又はスルホ基が好ましく、カルボキシ基、アミノ基又はオキソ基がより好ましい。
 Rで表される脂肪族炭化水素基が有する上記官能基の個数は、特に制限されないが、1~5が好ましく、1~3がより好ましい。
 Rで表される脂肪族炭化水素基は、直鎖状、分岐鎖状及び環状のいずれであってもよく、また、不飽和炭素結合を有していてもよい。Rで表される脂肪族炭化水素基は、直鎖状又は分岐鎖状のアルキル基がより好ましく、直鎖状のアルキル基が更に好ましい。
 Rで表される脂肪族炭化水素基の炭素数は、特に制限されないが、1~5が好ましく、1~3がより好ましい。
 Rとしては、水素原子又は炭素数1~3の直鎖状のアルキル基が好ましく、水素原子がより好ましい。
 Rで表される脂肪族炭化水素基は、炭素鎖中に上記の連結基を有さないか、又は、-NH-を有することが好ましく、炭素鎖中に上記の連結基を有さないことがより好ましい。
 また、式(1)で表される化合物の塩としては、特に制限されず、塩酸塩、硫酸塩、及び、硝酸塩が挙げられる。
 特定アミンの炭素数は、特に制限されないが、1~15が好ましく、1~8がより好ましく、2~6が更に好ましい。
 特定アミンの具体例を以下に示す。
 置換基を有さない特定アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン、n-ブチルアミン、tert-ブチルアミン、n-ヘキシルアミン、シクロヘキシルアミン、n-オクチルアミン、及び、2-エチルヘキシルアミンが挙げられる。
 カルボキシ基を有する特定アミンとしては、例えば、グリシン、α-アラニン(2-アミノプロピオン酸)、β-アラニン(3-アミノプロピオン酸)、4-アミノ酪酸、5-
アミノ吉草酸、7-アミノヘプタン酸、リシン、システイン、アスパラギン、グルタミン、及びこれらの塩が挙げられる。
 Rで表される脂肪族炭化水素基が置換基としてアミノ基を有する特定アミン、即ち、化合物全体でアミノ基を2つ以上有する特定アミンとしては、例えば、エチレンジアミン、1,3-プロパンジアミン、1,2-プロパンジアミン、1,3-ブタンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、2,2-ジメチル-1,3-プロパンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン及び1,8-オクタンジアミン等のアルキレンジアミン、並びに、ジエチレントリアミン、ビスヘキサメチレントリアミン、トリエチレンテトラミン、ビス(アミノプロピル)エチレンジアミン及びテトラエチレンペンタミン等のポリアルキルポリアミンが挙げられる。
 Rで表される脂肪族炭化水素基が置換基としてオキソ基を有することにより、酸アミド構造を有する特定アミンとしては、例えば、コハク酸アミド、マロンアミド、プロパンアミド、ブチルアミド、アジポアミド、カルバミン酸メチル、及び、尿素が挙げられる。
 上記以外の特定アミンとしては、例えば、2-アミノエチルホスホン酸、タウリン、アミノメタンスルホン酸、アミノメタンホスホン酸、N-メチル-1,3-プロパンジアミン、N-エチルエチレンジアミン、及び、N-(2-アミノエチル)ピペラジンが挙げられる。
 アミン化合物としては、β-アラニン、4-アミノ酪酸、5-アミノ吉草酸、1,3-プロパンジアミン、1,4-ブタンジアミン、1,6-ヘキサンジアミン、コハク酸アミド、マロンアミド、プロパンアミド、ブチルアミド、アジポアミド、2-アミノエチルホスホン酸、タウリン、グリシン、7-アミノヘプタン酸、1,8-オクタンジアミン、アミノメタンスルホン酸、アミノメタンホスホン酸又はカルバミン酸メチルが好ましく、β-アラニン、4-アミノ酪酸、1,3-プロパンジアミン又は1,4-ブタンジアミンがより好ましい。
 アミン化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 処理液がアミン化合物を含む場合、アミン化合物の含有量は特に制限されないが、処理液の全質量に対して、0.001質量%以上が好ましく、0.005質量%以上がより好ましい。アミン化合物の含有量の上限も特に制限されず、処理液の全質量に対して、10質量%以下が好ましく、1質量%以下がより好ましい。
(pH調整剤)
 処理液は、pH調整剤を含んでいてもよい。
 pH調整剤としては、塩基性化合物及び酸性化合物が挙げられる。pH調整剤の種類及び含有量は、目的とする処理液のpHに応じて適宜選択される。
-塩基性化合物-
 本明細書において、塩基性化合物は、水溶液中でアルカリ性(pHが7.0超)を示す化合物を意味する。塩基性化合物としては、無機塩基及び有機塩基が挙げられる。
 有機塩基としては、例えば、第4級アンモニウム化合物が挙げられる。
 第4級アンモニウム化合物は、窒素原子に4つの炭化水素基(好ましくはアルキル基)が置換してなる第4級アンモニウムカチオンを有する化合物又はその塩であれば、特に制限されない。
 第4級アンモニウム化合物としては、例えば、第4級アンモニウム水酸化物、第4級アンモニウムフッ化物、第4級アンモニウム臭化物、第4級アンモニウムヨウ化物、第4級アンモニウムの酢酸塩、及び第4級アンモニウムの炭酸塩が挙げられる。
 第4級アンモニウム化合物としては、第4級アンモニウム水酸化物が好ましく、下記式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(2)中、R4A~R4Dは、それぞれ独立に、炭素数1~6のアルキル基、炭素数1~6のヒドロキシアルキル基、ベンジル基、又は、アリール基を表す。
 炭素数1~6のアルキル基としては、メチル基、エチル基、プロピル基又はブチル基が好ましい。炭素数1~6のヒドロキシエチル基としては、ヒドロキシメチル基、ヒドロキシエチル基又はヒドロキシブチル基が好ましい。アリール基としては、フェニル基又はナフチル基が好ましい。
 R4A~R4Dとしては、炭素数1~6のアルキル基、炭素数1~6のヒドロキシアルキル基又はベンジル基が好ましく、炭素数1~6のアルキル基がより好ましい。
 式(2)で表される化合物としては、テトラメチルアンモニウム水酸化物(TMAH)、エチルトリメチルアンモニウム水酸化物(ETMAH)、テトラエチルアンモニウム水酸化物(TEAH)、テトラブチルアンモニウム水酸化物(TBAH)、ジメチルジプロピルアンモニウム水酸化物、トリメチルヒドロキシエチルアンモニウム水酸化物、メチルトリ(ヒドロキシエチル)アンモニウム水酸化物、テトラ(ヒドロキシエチル)アンモニウム水酸化物、トリメチルベンジルアンモニウム水酸化物、ビスヒドロキシエチルジメチルアンモニウム水酸化物、又は、コリンが好ましく、TMAH、ETMAH、TEAH、又は、TBAHがより好ましい。
 また、第4級アンモニウム化合物として、特表2015-518068号公報に記載の第4級アンモニウムヒドロキシド化合物を使用してもよい。
 上記以外の有機塩基としては、例えば、第4級ホスホニウム化合物、アミンオキシド、ニトロ、ニトロソ、オキシム、ケトオキシム、アルドオキシム、ラクタム、及び、イソシアニド類が挙げられる。
 無機塩基としては、例えば、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、アルカリ土類金属水酸化物、並びに、アンモニアが挙げられる。
 中でも、水酸化ナトリウム、水酸化カリウム又はアンモニアが好ましく、アンモニアがより好ましい。
 塩基性化合物としては、水溶液中で塩基又はノニオンとなるものであれば、上記の化合物の塩を用いてもよい。
 また、上記のアミン化合物のうち、水溶液中でアルカリ性(pHが7.0超)を示す化合物を、塩基性化合物として使用してもよい。換言すれば、処理液は、塩基性化合物として、上記のアミン化合物を含んでいてもよい。
 塩基性化合物としては、金属含有物の除去効果、使用後の金属残留の少なさ、経済性、及び、処理液の安定性等の点で、第4級アンモニウム化合物が好ましく、TMAH、ETMAH、TEAH又はジメチルジプロピルアンモニウム水酸化物がより好ましく、ETMAH又はTEAHが更に好ましい。
-酸性化合物-
 本明細書において、酸性化合物は、水溶液中でアルカリ性(pHが7.0未満)を示す化合物を意味する。酸性化合物としては、無機酸及び有機酸が挙げられる。
 無機酸としては、硫酸、塩酸、リン酸、硝酸及びフッ酸が挙げられ、塩酸、リン酸又は硝酸が好ましい。
 有機酸としては、カルボン酸及びスルホン酸が挙げられる。
 カルボン酸としては、ギ酸、酢酸、プロピオン酸及び酪酸等の低級(炭素数1~4)脂肪族モノカルボン酸が挙げられる。
 スルホン酸としては、メタンスルホン酸(MSA)、ベンゼンスルホン酸、及び、p-トルエンスルホン酸(トシル酸)が挙げられる。
 酸性化合物としては、水溶液中で酸又は酸イオン(アニオン)となるものであれば、上記の化合物の塩を用いてもよい。
 また、上記のアミン化合物のうち、カルボキシ基、スルホ基及びホスホン酸基等の配位基を有しており、水溶液中で酸性(pHが7.0未満)を示す化合物、酸性化合物として使用してもよい。
 酸性化合物としては、硫酸、塩酸、リン酸、硝酸又はスルホン酸もしくはその塩が好ましく、塩酸、リン酸又はメタンスルホン酸がより好ましい。
 pH調整剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、pH調整剤は、市販のものを用いてもよいし、公知の方法によって適宜合成したものを用いてもよい。
 pH調整剤の含有量は、処理液のpHが目的のpHとなる量であれば特に制限されず、また、pH調整剤の種類、並びに、特定酸化剤の種類及び含有量によって異なるが、処理液の全質量に対して、0.1~30質量%が好ましく、0.5~20質量%がより好ましい。
(溶剤)
 処理液は、溶剤を含んでいてもよい。
 溶剤としては、水、及び、有機溶剤が挙げられ、水が好ましい。
 水としては、特に制限されないが、蒸留水、イオン交換水、又は、超純水といった浄化処理を施された水が好ましく、半導体製造に使用される超純水がより好ましい。処理液に含まれる水は、不可避的な微量混合成分を含んでいてもよい。
 処理液中の水の濃度は、特に制限されないが、50質量%以上が好ましく、65質量%以上がより好ましく、75質量%以上が更に好ましい。また、上限値は、特に制限されないが、99.99質量%以下が好ましく、99.5質量%以下がより好ましく、98質量%以下が更に好ましい。
 処理液は、水溶性有機溶剤を含んでいてもよい。
 水溶性有機溶剤としては、例えば、エーテル系溶剤、アルコール系溶剤、ケトン系溶剤、アミド系溶剤、含硫黄系溶剤、及びラクトン系溶剤が挙げられる。水溶性有機溶剤は、水と任意の割合で混合できる有機溶剤が好ましい。
 水溶性有機溶剤は1種を単独で用いても、2種以上を使用してもよい。
 処理液が水溶性有機溶剤を含む場合、水溶性有機溶剤の含有量は特に制限されないが、0.1~10質量%が好ましい。
(他の成分)
 処理液は、上記の成分以外の他の成分を含んでいてもよい。
 他の成分としては、特に制限されず、界面活性剤及び腐食防止剤が挙げられる。
 処理液は、界面活性剤を含んでいてもよい。
 界面活性剤としては、1分子中に親水基と疎水基(親油基)とを有する化合物であれば特に制限されず、例えば、アニオン性界面活性剤、カチオン性界面活性剤及びノニオン性界面活性剤が挙げられる。
 また、界面活性剤としては、特開2014-093407号公報の段落0026、特開2013-055087号公報の段落0024~0027、及び、特開2013-012614号公報の段落0024~0027に記載の各界面活性剤を使用してもよい。
 処理液は、腐食防止剤を含んでいてもよい。
 腐食防止剤としては、例えば、特開2014-107434号公報の段落0017~0038、特開2014-103179号公報の段落0033~0047、及び、特開2014-093407号公報の段落0017~0049等に記載の各添加剤が挙げられる。
(pH)
 処理液のpHは、特に制限されず、12.0以下の場合が多い。
 中でも、本発明の効果がより優れる点、及び/又は、処理後の基板表面の平坦性がより優れる点で、9.0以下が好ましく、2.5~9.0が好ましく、3.0~8.0がより好ましい。
(処理液の調製方法)
 処理液の調製方法は特に制限されず、例えば、所定の原料を混合ミキサー等の攪拌機を用いて十分に混合する方法が挙げられる。
 また、調製方法としては、設定pHに予め調製しておいてから混合する方法、及び、混合後に設定pHに調製する方法も挙げられる。更に、濃縮液を製造して、使用時に希釈して所定の濃度へと調整することにより、処理液を製造してもよい。また、濃縮液を希釈した後、設定pHに調整することにより、処理液を製造してもよい。上記の希釈の際、濃縮液に対して設定量の希釈用の純水を添加することもでき、また希釈用の純水に所定量の濃縮液を添加することもできる。
(容器)
 処理液は、任意の容器に充填して保管、運搬、及び使用することができる。容器としては、容器のクリーン度が高く、不純物の溶出が少ないものが好ましい。処理液が充填される容器としては、アイセロ化学(株)製の「クリーンボトル」シリーズ、及び、コダマ樹脂工業(株)製の「ピュアボトル」等が挙げられるが、これらに制限されない。
<洗浄方法>
 工程Bは、工程Aが施された被処理物(Ru含有物を有する基板)を、上記の処理液を用いて処理する工程である。これにより、基板上のエッチング残渣物が除去される。
 例えば、既に説明した図2に示す被処理物20を処理液を用いて処理することにより、工程Aにより形成されたホール22の内壁24等に付着したエッチング残渣物26を除去できる。
 工程Bで用いられる処理液については、上記の通りである。
 工程Bの具体的な処理方法としては、処理液と、被処理物であるRu含有物を有する基板とを接触させる方法が挙げられる。
 接触させる方法は特に制限されず、例えば、タンクに入れた処理液中に被処理物を浸漬する方法、基板上に処理液を噴霧する方法、基板上に処理液を流す方法、及び、それらの任意の組み合わせが挙げられる。中でも、被処理物を処理液に浸漬する方法が好ましい。
 更に、処理液の洗浄能力をより増進するために、機械式撹拌方法を用いてもよい。
 機械式撹拌方法としては、例えば、基板上で処理液を循環させる方法、基板上で処理液を流過又は噴霧させる方法、及び、超音波又はメガソニックにて処理液を撹拌する方法が挙げられる。
 工程Bの処理時間は、基板に処理液を接触させる方法及び処理液の温度等に応じて調整できる。処理時間(処理液と被処理物との接触時間)は特に制限されないが、0.25~10分間が好ましく、0.5~2分間がより好ましい。
 工程Bにおける処理液の温度は特に制限されないが、20℃以上が好ましく、35℃以上がより好ましい。また、処理液の温度は、75℃以下が好ましく、60℃以下がより好ましい。
 なお、上記の処理液を用いて処理する工程Bの対象物は、Ru含有物を含有する基板であって、上記工程Aが施された基板であれば、特に制限されない。工程Bに適用される被処理物の他の構成については、本処理方法に適用される被処理物について既に説明した通りである。
 また、工程Bにより除去されるエッチング残渣物は、図2に示す被処理物20のホール22の内壁24に付着したエッチング残渣物26に制限されず、工程Bにおいて、上記の処理液が接触し得る基板上の全ての箇所に付着したエッチング残渣物を除去できる。
 本処理方法は、工程Bの前、後、又は、実施中に、タンク等に充填されている処理液のpH、並びに、特定酸化剤及び他の成分の含有量の1つ以上を測定し、測定結果に応じて、水、特定酸化剤及び/又は他の成分を添加して、処理液の配合を調整する工程を有してもよい。
 上記工程において調整される配合の目標範囲は、上記の処理液として好ましい範囲であることが好ましい。
 処理液中の特定酸化剤及び他の成分の含有量を測定する方法としては、イオンクロマトグラフ法が挙げられる。具体的な装置としては、例えば、サーモフィッシャー社のDionex ICS-2100が挙げられる。
 上記の通り、本処理方法は、Ru含有物を有する基板を特定のエッチングガスを用いてドライエッチングする工程Aと、工程Aが施された基板を特定の処理液を用いて処理する工程Bとを有する。
 本処理方法は、工程Aが上記の好ましい態様のいずれかであり、かつ/又は、工程Bが上記の好ましい態様のいずれかである場合が好ましく、工程Aが上記の好ましい態様のいずれかであり、かつ、工程Bが上記の好ましい態様のいずれかである場合がより好ましい。
 本処理方法の好適な態様として、工程Aにおいて、使用するエッチングガスにおける酸素ガスの体積分率が50体積%以上であり、かつ、工程Bにおいて、処理液が過ヨウ素酸化合物を含み、過ヨウ素化合物の含有量が処理液の全質量に対して3質量%以下である態様が挙げられる。上記の態様は、本発明の効果がより優れる点で好ましい。
〔リンス工程(工程C)〕
 本処理方法は、上記工程Bの後に、必要に応じて、リンス液を用いて、工程Bが施された被処理物に対してリンス処理を行うリンス工程(工程C)を行ってもよい。
 本処理液を被処理物と接触させることで、本処理物に由来する化合物が被処理物の表面上に残渣物として付着する場合がある。リンス工程を行うことで、被処理物の表面から上記残渣物を除去できる。
 リンス液としては、例えば、フッ酸、塩酸、過酸化水素水、フッ酸と過酸化水素水との混合液、硫酸と過酸化水素水との混合液、アンモニア水と過酸化水素水との混合液、塩酸と過酸化水素水との混合液、二酸化炭素水、オゾン水、水素水、クエン酸水溶液、硫酸、アンモニア水、イソプロピルアルコール、次亜塩素酸水溶液、王水、超純水、硝酸、過塩素酸、シュウ酸水溶液、又は、オルト過ヨウ素酸水溶液が好ましい。リンス工程の目的を損なわない範囲で、これらのリンス液を混合して使用してもよい。
 なお、フッ酸、硝酸、過塩素酸、及び、塩酸は、それぞれ、HF、HNO、HClO、及び、HClが、水に溶解した水溶液を意図する。
 硫酸は、HSOが水に溶解した水溶液であってもよい。
 オゾン水、二酸化炭素水、及び、水素水は、それぞれ、O、CO、及び、Hを水に溶解させた水溶液を意図する。
 中でも、リンス液としては、リンス工程後の被処理物の表面における残渣物をより減少させる点から、二酸化炭素水、オゾン水、水素水、フッ酸、クエン酸水溶液、塩酸、硫酸、アンモニア水、過酸化水素水、SPM、APM、HPM、IPA、次亜塩素酸水溶液、王水、又は、FPMが好ましく、フッ酸、塩酸、過酸化水素水、SPM、APM、HPM、又は、FPMがより好ましい。
 工程Cの具体的な方法としては、リンス液と、被処理物である工程Bを施した基板とを接触させる方法が挙げられる。
 接触させる方法としては、タンクに入れたリンス液中に基板を浸漬する方法、基板上にリンス液を噴霧する方法、基板上にリンス液を流す方法、又はそれらの任意の組み合わせた方法で実施される。
 処理時間(リンス液と被処理物との接触時間)は特に制限されないが、5秒間以上5分間以下である。
 処理の際のリンス液の温度は特に制限されないが、16~60℃が好ましく、18~40℃がより好ましい。
(工程D)
 本処理方法は、工程Cの後に、必要に応じて、乾燥処理を実施する工程Dを有していてもよい。乾燥処理の方法は特に制限されないが、スピン乾燥、基板上での乾燥ガスの流動、基板の加熱手段(例えば、ホットプレート及び赤外線ランプ等)による加熱、IPA(イソプロピルアルコール)蒸気乾燥、マランゴニ乾燥、ロタゴニ乾燥、並びに、それらの組合せが挙げられる。
 乾燥時間は、乾燥方法に応じて変わるが、30秒間以上数分間以下であることが多い。
 本処理方法は、基板について行われるその他の工程の前又は後に組み合わせて実施してもよい。本処理方法を実施する中にその他の工程に組み込んでもよいし、その他の工程の中に本発明の処理方法を組み込んで実施してもよい。
 その他の工程としては、例えば、金属配線、ゲート構造、ソース構造、ドレイン構造、絶縁層、強磁性層及び/又は非磁性層等の各構造の形成工程(層形成、エッチング、化学機械研磨、変成等)、レジストの形成工程、露光工程及び除去工程、熱処理工程、洗浄工程、並びに、検査工程等が挙げられる。
 本処理方法は、バックエンドプロセス(BEOL:Back end of the line)、ミドルプロセス(MOL:Middle of the line)及び(FEOL:Front end of the line)中のいずれの段階で行ってもよいが、本発明の効果をより発揮できる観点から、フロントエンドプロセス又はミドルプロセス中で行うことが好ましい。
 本処理方法が施された被処理物の用途は、特に制限されず、例えば、ロジック回路、メモリー、及び、プロセッサが挙げられる。ロジック回路としては、例えば、MPU(micro processor unit)、MCU(micro controller unit)及びDSP(Digital Signal Processor)が挙げられる。メモリーとしては、例えば、DRAM(Dynamic Random Access Memory)、FRAM(登録商標)(Ferroelectric Random Access Memory)、MRAM
(Magnetoresistive Random Access Memory)及びPRAM(Phase change Random Access Memory)が挙げられる。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により制限的に解釈されるべきものではない。実施例で使用する化合物その他の材料は、特に断らない限り、半導体グレードの材料である。
[試験]
〔ドライエッチング工程(工程A)〕
 基板(シリコンウエハ(直径:12インチ))の一方の表面上に、PVD法によりルテニウム層(Ru層)を形成することにより、被処理物(Ru層付き基板)を作製した。形成されたルテニウム層の厚さは30nmとした。
 工程Aとして、作製された被処理物に対して、誘導結合型プラズマ-反応性イオンエッチング(ICP-RIE)装置(SUMCO社製「RIE-101iPH」)を用いて、ドライエッチング処理を実施した。
 下記表1に、各実施例及び各比較例で実施したドライエッチング工程A-1~A-10において使用したエッチングガス(組成及び流量)、並びに、ドライエッチング処理の条件(内部圧力、ICP側RF出力、バイアス側RF出力及び処理時間)を示す。
 例えば、ドライエッチング工程A-2では、塩素(Cl)及び酸素(O)を、それぞれのガス流量が2sccm及び38sccmとなる量で噴射しながら、内部圧力2Pa、ICP側のRF出力150W、バイアス側のRF出力50W、及び、処理時間1分間の条件で、ドライエッチング処理を実施した。即ち、ドライエッチング工程A-2では、Cl及びOからなり、それぞれの体積分率が5体積%及び95体積%である混合ガスを、40sccmの流量で噴射した。
 また、ドライエッチング工程A-8では、エッチングガスとして四フッ化メタン(CF)を50sccmの流量で噴射し、ドライエッチング工程A-10では、エッチングガスとしてアルゴン(A4)を50sccmの流量で噴射した。
 なお、ドライエッチング工程A-1~A-10では200℃以下の温度条件下でドライエッチング処理を実施した。
Figure JPOXMLDOC01-appb-T000002
〔洗浄工程(工程B)〕
<処理液の調製>
 洗浄工程に用いる処理液として、下記表2に記載の組成を有する処理液を調製した。
 以下に、処理液の調製に用いた特定酸化剤、アミン化合物、pH調整剤及び水を記載する。
 なお、処理液の調製に使用した以下の成分はいずれも、市場から入手した製品であって、且つ、半導体グレードに分類されるもの、又は、それに準ずる高純度グレードに分類されるものであった。
(特定酸化剤)
 ・O-1:オルト過ヨウ素酸
 ・O-2:次亜塩素酸ナトリウム
 ・O-3:硝酸セリウム(IV)アンモニウム(CAN)
 ・O-4:メタ過ヨウ素酸
(アミン化合物)
 ・1,4-ブタンジアミン
 ・1,3-プロパンジアミン
 ・4-アミノ酪酸
 ・β-アラニン
(pH調整剤)
 ・TEAH(テトラエチルアンモニウム水酸化物)
 ・ETMAH(エチルトリメチルアンモニウム水酸化物)
 ・塩酸
 ・リン酸
 ・硝酸
 ・MSA(メタンスルホン酸)
(水)
 ・超純水
 上記の各成分を表2に記載の組成に従って混合することにより、各実施例及び各比較例において使用する処理液を調製した。
 なお、各実施例及び各比較例では、処理液のpHが表2の「処理液pH」欄に記載の値となるように、表2に記載の「pH調整剤」の含有量を調整した。また、処理液に含まれる特定酸化剤、添加剤及びpH調整剤以外の残部は、水である。
 上記の方法で調製された処理液を満たした容器に、上記工程Aを施した被処理物を入れた。処理液を撹拌しながら、被処理物を処理液に浸漬させることにより、洗浄処理を行った。このときの処理液の温度は25℃であった。
 浸漬を開始して1分間が経過した直後に被処理物を取り出し、取り出した被処理物に対して、直ちに超純水を用いて洗浄し、窒素(N)を吹きつけて乾燥した。
[評価]
〔エッチング効率〕
 上記工程Aを実施する前及び後において、被処理物が有するRu層の厚み(nm)を、蛍光X線分析装置(株式会社リガク製「AZX400」)を用いて測定した。
 工程Aの前後におけるRu層の厚みの差分と、工程Aの処理時間とに基づいて、Ru層のエッチングレート(Å/分)を算出した。算出されたRu層のエッチングレートから、下記評価基準に基づいて、各処理方法のエッチング効率を評価した。評価結果を表2に示す。
(エッチング効率の評価基準)
 「5」:エッチングレートが150Å/分以上である。
 「4」:エッチングレートが100Å/分以上150Å/分未満である。
 「3」:エッチングレートが30Å/分以上100Å/分未満である。
 「2」:エッチングレートが10Å/分以上30Å/分未満である。
 「1」:エッチングレートが10Å/分未満である。
〔残渣除去性〕
 工程Aを実施した後、工程Bを実施する前の被処理物の表面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察した。得られた観察画像から、被処理物(ウエハ)あたりのドライエッチング残渣物の個数X1を数えた。同様に、工程Bを実施した後の被処理物に対しても、SEMを用いて得られた観察画像から、被処理物あたりのドライエッチング残渣物の個数X2を数えた。
 工程Bの前後において計測されたドライエッチング残渣物の個数X1及びX2から、(X1-X2)/X1の式を用いて工程Bで除去されたドライエッチング残渣物の割合を算出した。上記割合の算出結果から、下記評価基準に基づいて、各実施例及び各比較例の処理方法の残渣除去性を評価した。評価結果を表2に示す。
(残渣除去性の評価基準)
 「5」:工程Bで除去されたドライエッチング残渣物の割合が90%以上である。
 「4」:工程Bで除去されたドライエッチング残渣物の割合が80%以上90%未満である。
 「3」:工程Bで除去されたドライエッチング残渣物の割合が60%以上80%未満である。
 「2」:工程Bで除去されたドライエッチング残渣物の割合が30%以上60%未満である。
 「1」:工程Bで除去されたドライエッチング残渣物の割合が30%未満である。
〔平坦性〕
 各実施例及び各比較例の処理方法で処理された後(工程Bの後)の被処理物において、任意の位置にあるRu含有層を選択し、そのRu含有層の表面に沿った方向の長さ1mmの区間において、Ru含有層の厚みの最大値と最小値との差分(単位:Å)を算出した。任意の3箇所のRu含有層で上記の差分を算出し、それらの平均値(以下「膜厚差」とも記載する)を得た。得られた膜厚差から、各実施例及び各比較例の処理方法が実施された後のRu含有層の表面の平坦性を、下記の評価基準に基づいて評価した。
(平坦性の評価基準)
 「5」:膜厚差が10Å以下である。
 「4」:膜厚差が10Å超30Å以下である。
 「3」:膜厚差が30Å超45Å以下である。
 「2」:膜厚差が45Å超50Å以下である。
 「1」:膜厚差が50Å超である。
[結果]
 表2に、各実施例及び各比較例の処理方法及びその評価結果を示す。
 なお、「工程A」欄は、表1に記載の工程A-1~A-10のうち、各実施例及び各比較例における工程A(ドライエッチング工程)として実施した工程を示す。
 「量(%)」欄は、対応する化合物の処理液の全質量に対する含有量(単位:質量%)を示す。
 「処理液pH」欄は、各処理液の25℃におけるpHを示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の処理方法によれば、Ru含有物を有する基板に対して、Ru含有物のエッチング効率が向上し、かつ、残渣除去性に優れる処理方法を提供できることが確認された。
 工程Aにおいて、酸素の体積分率が50体積%以上であるエッチングガスを使用した場合、エッチング効率がより優れることが確認され(実施例18~24と実施例25~29との比較)、塩素系化合物に対するOの体積比が90/10~99/1であるO/Cl混合ガスを使用した場合、エッチング効率が更に優れることが確認された(実施例4~10と実施例1~3及び11~17との比較)。
 処理液が特定酸化剤として過ヨウ素酸化合物を含む場合、エッチング残渣物の除去性及び処理後の基板表面の平坦性がより優れることが確認された(実施例5及び6と実施例49~52との比較)。
 処理液のpHが9.0以下である場合、エッチング残渣物の除去性及び処理後の基板表面の平坦性がより優れることが確認され(実施例46と実施例47との比較)、処理液のpHが3.0~8.0である場合、エッチング残渣物の除去性がより優れることが確認され(実施例3と実施例44との比較、実施例45と実施例46との比較)。
10 被処理物
12 層間絶縁膜
14 メタルハードマスク
16 Ru含有配線
20 被処理物
22 ホール
24 内壁
26 エッチング残渣物

Claims (16)

  1.  ルテニウム含有物を有する基板を、エッチングガスを用いてドライエッチングするドライエッチング工程と、
     前記ドライエッチング工程が施された前記基板を、処理液を用いて処理する洗浄工程と、を有し、
     前記エッチングガスが、酸素ガス、又は、酸素と塩素系化合物とを含む混合ガスであり、
     前記処理液は、過ヨウ素酸化合物、次亜塩素酸化合物及びセリウム化合物からなる群より選択される少なくとも1つの特定酸化剤を含む、
     基板の処理方法。
  2.  前記ドライエッチング工程を、反応性イオンエッチング装置を用いて実施する、請求項1に記載の基板の処理方法。
  3.  前記反応性イオンエッチング装置が、誘導結合型プラズマ-反応性イオンエッチング装置である、請求項2に記載の基板の処理方法。
  4.  前記処理液が、特定酸化剤として過ヨウ素酸化合物を含む、請求項1~3のいずれか1項に記載の基板の処理方法。
  5.  前記処理液が、特定酸化剤として過ヨウ素酸化合物を含み、
     前記過ヨウ素酸化合物がオルト過ヨウ素酸である、請求項1~4のいずれか1項に記載の基板の処理方法。
  6.  前記処理液が、特定酸化剤として次亜塩素酸化合物を含み、
     前記次亜塩素酸化合物が、次亜塩素酸、次亜塩素酸ナトリウム、又は、次亜塩素酸第4級アンモニウム塩である、請求項1~5のいずれか1項に記載の基板の処理方法。
  7.  前記処理液が、特定酸化剤としてセリウム化合物を含み、
     前記セリウム化合物が硝酸セリウム(IV)アンモニウムである、請求項1~6のいずれか1項に記載の基板の処理方法。
  8.  前記特定酸化剤の含有量が、前記処理液の全質量に対して3質量%以下である、請求項1~7のいずれか1項に記載の基板の処理方法。
  9.  前記処理液が、アミン化合物を更に含む、請求項1~8のいずれか1項に記載の基板の処理方法。
  10.  前記処理液が、第4級アンモニウム化合物を更に含む、請求項1~9のいずれか1項に記載の基板の処理方法。
  11.  前記処理液のpHが9.0以下である、請求項1~10のいずれか1項に記載の基板の処理方法。
  12.  前記処理液のpHが3.0~8.0である、請求項1~11のいずれか1項に記載の基板の処理方法。
  13.  前記エッチングガスにおける酸素の体積分率が、50体積%以上である、請求項1~12のいずれか1項に記載の基板の処理方法。
  14.  前記処理液が、過ヨウ素酸化合物を含み、
     前記過ヨウ素酸化合物の含有量が、前記処理液の全質量に対して3質量%以下であり、
     前記エッチングガスにおける前記酸素ガスの体積分率が、50体積%以上である、請求項1~13のいずれか1項に記載の基板の処理方法。
  15.  前記エッチングガスが、酸素と塩素系化合物とを含み、
     前記塩素系化合物に対する前記酸素の体積比が80/20~99/1である混合ガスである、請求項1~14のいずれか1項に記載の基板の処理方法。
  16.  前記エッチングガスが、酸素と塩素系化合物とを含み、
     前記塩素系化合物に対する前記酸素の体積比が90/10~99/1である混合ガスである、請求項1~15のいずれか1項に記載の基板の処理方法。
PCT/JP2021/006391 2020-03-18 2021-02-19 基板の処理方法 WO2021187006A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-047891 2020-03-18
JP2020047891A JP2023078483A (ja) 2020-03-18 2020-03-18 基板の処理方法

Publications (1)

Publication Number Publication Date
WO2021187006A1 true WO2021187006A1 (ja) 2021-09-23

Family

ID=77768073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006391 WO2021187006A1 (ja) 2020-03-18 2021-02-19 基板の処理方法

Country Status (3)

Country Link
JP (1) JP2023078483A (ja)
TW (1) TW202136488A (ja)
WO (1) WO2021187006A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234373A (ja) * 2000-02-23 2001-08-31 Nec Corp ルテニウム系金属の除去液及びその使用方法
JP2002161381A (ja) * 2000-11-22 2002-06-04 Ebara Corp ルテニウム膜のエッチング方法
JP2009016854A (ja) * 2008-08-20 2009-01-22 Renesas Technology Corp 半導体集積回路装置の製造方法
JP2018121086A (ja) * 2018-05-10 2018-08-02 富士フイルム株式会社 ルテニウム含有膜が形成された基板におけるルテニウム付着物除去用除去液
WO2019151022A1 (ja) * 2018-02-02 2019-08-08 東京エレクトロン株式会社 半導体装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234373A (ja) * 2000-02-23 2001-08-31 Nec Corp ルテニウム系金属の除去液及びその使用方法
JP2002161381A (ja) * 2000-11-22 2002-06-04 Ebara Corp ルテニウム膜のエッチング方法
JP2009016854A (ja) * 2008-08-20 2009-01-22 Renesas Technology Corp 半導体集積回路装置の製造方法
WO2019151022A1 (ja) * 2018-02-02 2019-08-08 東京エレクトロン株式会社 半導体装置及びその製造方法
JP2018121086A (ja) * 2018-05-10 2018-08-02 富士フイルム株式会社 ルテニウム含有膜が形成された基板におけるルテニウム付着物除去用除去液

Also Published As

Publication number Publication date
TW202136488A (zh) 2021-10-01
JP2023078483A (ja) 2023-06-07

Similar Documents

Publication Publication Date Title
KR102541313B1 (ko) 약액, 기판의 처리 방법
WO2021005980A1 (ja) 組成物、キット、基板の処理方法
JP7301055B2 (ja) 薬液、基板の処理方法
TWI674486B (zh) 用以去除光阻殘渣及/或聚合物殘渣之組成物
US20230279294A1 (en) Composition and method for treating substrate
JP2022140501A (ja) 薬液、基板の処理方法
WO2022049973A1 (ja) 組成物、基板の処理方法
JP6992095B2 (ja) 基板の処理方法、半導体装置の製造方法、基板処理用キット
US20220282156A1 (en) Composition and method for treating substrate
WO2021187006A1 (ja) 基板の処理方法
JP7288511B2 (ja) 洗浄剤組成物
WO2022050273A1 (ja) 組成物、基板の処理方法
CN114364779B (zh) 处理液、被处理物的处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP