WO2022050109A1 - 画像処理装置、画像処理方法及び画像処理システム - Google Patents
画像処理装置、画像処理方法及び画像処理システム Download PDFInfo
- Publication number
- WO2022050109A1 WO2022050109A1 PCT/JP2021/030811 JP2021030811W WO2022050109A1 WO 2022050109 A1 WO2022050109 A1 WO 2022050109A1 JP 2021030811 W JP2021030811 W JP 2021030811W WO 2022050109 A1 WO2022050109 A1 WO 2022050109A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- image processing
- correction
- unit
- image data
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 174
- 238000003672 processing method Methods 0.000 title claims description 37
- 238000012937 correction Methods 0.000 claims abstract description 154
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 9
- 239000002131 composite material Substances 0.000 claims description 66
- 230000003287 optical effect Effects 0.000 claims description 43
- 238000005286 illumination Methods 0.000 claims description 29
- 230000006870 function Effects 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 9
- 239000003086 colorant Substances 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 239000012472 biological sample Substances 0.000 abstract description 12
- 238000002360 preparation method Methods 0.000 description 51
- 238000000034 method Methods 0.000 description 40
- 239000000428 dust Substances 0.000 description 32
- 230000001575 pathological effect Effects 0.000 description 24
- 238000003384 imaging method Methods 0.000 description 22
- 230000004048 modification Effects 0.000 description 20
- 238000012986 modification Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 238000004891 communication Methods 0.000 description 18
- 238000000605 extraction Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000003860 storage Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 15
- 239000000284 extract Substances 0.000 description 13
- 238000010186 staining Methods 0.000 description 13
- 239000000203 mixture Substances 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 238000010827 pathological analysis Methods 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 238000009795 derivation Methods 0.000 description 7
- 230000010365 information processing Effects 0.000 description 7
- 238000003745 diagnosis Methods 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010801 machine learning Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000003902 lesion Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 208000035473 Communicable disease Diseases 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000252212 Danio rerio Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003702 image correction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 239000000955 prescription drug Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
Definitions
- the present disclosure relates to an image processing device, an image processing method, and an image processing system.
- a microscope system has been developed that can perform digital imaging on slides carrying biological specimens (for example, cell tissues).
- biological specimens for example, cell tissues.
- a microscope system for example, in a stitching image obtained by stitching images of a plurality of biological specimens, it is easy to avoid discontinuity of the stitches and make them unnatural, or based on an image of very fine bacteria or the like.
- it is required to appropriately correct the obtained image.
- the present disclosure proposes an image processing device, an image processing method, and an image processing system capable of further improving the quality of image correction.
- the correction substrate is subjected to the predetermined correction.
- An image acquisition unit that sequentially moves along the direction to sequentially acquire image data taken, and a plurality of the image data are combined to acquire a correction composite image used for correction when taking an image of a biological specimen.
- An image processing apparatus including an image compositing unit is provided.
- the image processing apparatus controls a stage that supports the correction substrate and can move the correction substrate in a predetermined direction, and the image sensor unit provides the correction.
- a composite image for correction used for correction at the time of image shooting of a biological specimen by sequentially acquiring image data taken by sequentially moving the substrate along the predetermined direction and synthesizing a plurality of the image data.
- Image processing methods are provided, including the acquisition of.
- an image processing system including an image processing apparatus and a program for causing the image processing apparatus to execute image processing, wherein the image processing apparatus is a correction substrate according to the program.
- the correction board is sequentially moved along the predetermined direction from the stage control unit and the image sensor unit that support the stage and control the stage capable of moving the correction board in a predetermined direction. It functions as an image acquisition unit that sequentially acquires the image data, and an image composition unit that synthesizes a plurality of the image data and acquires a correction composite image used for correction when taking an image of a biological specimen.
- a completely transparent specimen for example, a biological specimen
- An all-white image obtained by photographing a slide that is not mounted may be used.
- the joints may be discontinuous, resulting in an unnatural image as a whole.
- a completely transparent specimen does not actually exist, and the all-white image always contains foreign matter. It will be mixed.
- the image does not contain an image of a foreign substance because the pathological diagnosis may be made based on a very fine image of an infectious disease such as a bacterium or a structure in a cell nucleus.
- a foreign substance means an object other than a biological specimen, such as dust and dirt, which is not a subject at the time of observation.
- the present inventor has come to create the embodiment of the present disclosure in view of such a situation.
- the correction is performed using such an all-white image, the quality of the correction of the image of the biological specimen can be further improved.
- a slide on which a biological specimen is not mounted is sequentially moved along a predetermined direction by a stage to perform imaging, and a plurality of image data of the slide are acquired. Then, in the present embodiment, it is possible to obtain an all-white image from which the image of the foreign matter (dust) 900 is removed by performing the composition using a plurality of image data.
- the present embodiment by making corrections based on such an all-white image, it is possible to make corrections by reflecting the light transmittance and the refractive index of the slide, so that the correction of the image of the biological specimen can be performed.
- the quality can be further improved.
- according to the present embodiment for example, even in a stitching image obtained by stitching together images of a plurality of biological specimens, distortion, uneven brightness, etc. of each image are preliminarily used by using the all-white image. Since the images can be corrected and stitched together, it is possible to obtain a natural stitching image in which the images are continuous even if there are joints.
- a tissue section or cell that is a part of a tissue (for example, an organ or an epithelial tissue) acquired from a living body (for example, a human body, a plant, etc.) is referred to as a biological specimen (sample).
- a biological specimen for example, an organ or an epithelial tissue acquired from a living body (for example, a human body, a plant, etc.)
- the biological specimen described below may be stained in various ways as needed. In other words, in each of the embodiments described below, the biological specimen may or may not be stained with various stains, unless otherwise specified.
- the staining includes not only general staining represented by HE (hematoxylin / eosin) staining, gymza staining, papanicolou staining, etc., but also periodic acid shift (PAS) staining used when focusing on a specific tissue.
- fluorescent staining such as FISH (Fluorescense In-Situ Hybridization) and enzyme antibody method is included.
- the biological specimen is mounted on a slide (correction substrate) made of a glass substrate capable of transmitting illumination light, and a composite image for correction for correcting the captured image of the biological specimen is acquired.
- a case will be described as an example.
- the influence of the optical system (lens, etc.) (for example, distortion, uneven brightness, etc.) is removed from the image of the biological specimen. From, a clear image of a biological specimen can be obtained.
- FIG. 1 is a block diagram showing a configuration example of the image processing system 10 according to the first embodiment of the present disclosure.
- the image processing system 10 according to the present embodiment is a microscope system that digitally photographs a slide 300 on which a biological specimen (for example, a cell tissue or the like) is mounted.
- a biological specimen for example, a cell tissue or the like
- the image processing system 10 can include a microscope 100 and an image processing device 200.
- the microscope 100 and the image processing device 200 may be connected to each other so as to be able to communicate with each other via various wired or wireless communication networks.
- the microscope 100 and the image processing apparatus 200 included in the image processing system 10 according to the present embodiment are not limited to the numbers shown in FIG. 1, and may include more.
- the image processing system 10 according to the present embodiment may include other servers, devices, and the like (not shown). The outline of each apparatus included in the image processing system 10 according to this embodiment will be described below.
- the microscope 100 irradiates the preparation 300 placed on the stage 108 of the microscope 100 with a predetermined illumination light, and photographs the light transmitted through the preparation 300, the light emitted from the preparation 300, and the like. be able to.
- the microscope 100 includes a magnifying glass (not shown), a digital camera (not shown), and the like that can magnify and photograph a biological specimen mounted on the slide 300.
- the microscope 100 may be realized by any device having a photographing function, such as a smartphone, a tablet, a game machine, or a wearable device. Further, the microscope 100 is driven and controlled by an image processing device 200 described later, and the image data taken by the microscope 100 is stored in, for example, the image processing device 200. The detailed configuration of the microscope 100 will be described later.
- the image processing device 200 is a device having a function of controlling the microscope 100 and processing image data captured by the microscope 100. Specifically, the image processing apparatus 200 can control the microscope 100 to take a digital image of a biological specimen and perform predetermined image processing on the obtained digital image data.
- the image processing device 200 is realized by any device having a control function and an image processing function, such as a PC (Personal Computer), a tablet, and a smartphone. The detailed configuration of the image processing device 200 will be described later.
- the microscope 100 and the image processing device 200 may be an integrated device, that is, they may not be realized by a single device. Further, in the present embodiment, each of the above-mentioned microscope 100 and the image processing device 200 may be realized by a plurality of devices connected to each other via various wired or wireless communication networks and cooperate with each other. Further, the image processing device 200 described above can be realized, for example, by the hardware configuration of the computer 1000 described later.
- FIG. 2 is an explanatory diagram for explaining an example of the arrangement of the pixels of the sensor unit 104.
- the microscope 100 can mainly include a light source unit (illumination unit) 102, a sensor unit (image sensor unit) 104, a control unit 106, a stage 108, and an objective lens 110. ..
- each functional block of the microscope 100 will be sequentially described.
- the light source unit 102 is provided on the side of the stage 108 opposite to the surface on which the slide 300 can be arranged, and irradiates the preparation 300 of the biological specimen with illumination light according to the control of the control unit 106 described later. It is a lighting device that can be used. In other words, as shown in FIG. 1, the light source unit 102 faces the sensor unit 104 with the stage 108 interposed therebetween.
- the illumination light emitted by the light source unit 102 is not limited to visible light, and is, for example, light including a wavelength capable of exciting the fluorescence marker used in special dyeing. You may.
- the illumination light emitted from the light source unit 102 is collected and guided to the preparation 300 on the stage 108, for example, a condenser lens (not shown). ) Etc. may be possessed.
- a condensing optical system that collects the illumination light emitted from the light source unit 102 and a condensing optical system that collects the illumination light emitted from the light source unit 102 are provided between the light source unit 102 and the condenser lens.
- a field diaphragm or the like may be provided.
- the sensor unit 104 is provided, for example, on the preparation arrangement surface side of the stage 108 when the microscope 100 is an upright microscope, and is, for example, red (R), green (G), and blue, which are the three primary colors of the color. It is a color sensor that detects the light of (B).
- the sensor unit 104 is provided on the side opposite to the slide arrangement surface of the stage 108. More specifically, the sensor unit 104 can be formed from, for example, a plurality of image pickup elements (pixels) (not shown). Then, the sensor unit 104 can digitally photograph the biological specimen and output the obtained digital image data to the image processing device 200 under the control of the control unit 106 described later.
- the sensor unit 104 is not limited to acquiring a color digital image as described above, and may acquire a monochrome digital image.
- an image of a shooting range having a predetermined horizontal width and vertical width on the slide arrangement surface of the stage 108 is formed according to the pixel size of the image sensor and the magnification of the objective lens 110. Be imaged.
- the image pickup device can be realized by, for example, an image pickup device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
- the sensor unit 104 has a configuration in which a plurality of pixels 120 for detecting red, green, and blue light are arranged in a matrix on a plane by using a color filter.
- a plurality of pixels 120b, 120g, and 120r for detecting blue, green, and red light are arranged according to a predetermined arrangement (Bayer arrangement in FIG. 2).
- An application example of is shown can be used.
- the sequence is not limited to the Bayer sequence, and other sequences may be used.
- the sensor unit 104 splits the light from the preparation 300 into red, green, and blue light by a prism (not shown), and divides the light of each color into three different sensors (not shown). ) May be a three-plate sensor.
- the control unit 106 can comprehensively control the operation of the microscope 100, and includes, for example, a processing circuit realized by a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. ..
- the control unit 106 can control the light source unit 102 described above, the sensor unit 104, and the stage 108 described later.
- control unit 106 may control the number of times of shooting, the shooting time, and the like of the sensor unit 104 according to the command output from the image processing device 200. Further, the control unit 106 may control the wavelength, irradiation intensity, irradiation time, etc. of the illumination light emitted from the light source unit 102. Further, the control unit 106 controls a stage drive mechanism (not shown) that moves the stage 108 in various directions according to the region of interest so that a preset region of interest (ROI: Region of Interest) is photographed. May be good.
- ROI Region of Interest
- the region of interest here means a region (target region) of the biological specimen that the user pays attention to for analysis or the like. Further, in the present embodiment, the control unit 106 may sequentially move the stage 108 in a predetermined direction in order to obtain a composite image for correction described later.
- the stage 108 is a mounting table on which the preparation 300 is mounted and supports the preparation 300. Further, the stage 108 is provided with a stage drive mechanism (not shown) for moving the stage 108 in various directions. For example, by controlling the stage drive mechanism, the stage 108 is positioned in a direction parallel to the mounting surface of the preparation 300 (X-axis located on a plane perpendicular to the optical axis of the irradiation light of the light source unit 102). It can be freely moved in the ⁇ Y-axis direction) and in the direction orthogonal to the above-mentioned mounting surface (optical axis / Z-axis direction of the irradiation light of the light source unit 102) (particularly, the third embodiment described later).
- the stage 108 is moved along the Z-axis direction). Further, in the present embodiment, the stage 108 may be provided with a sample transfer device (not shown) for transporting the slide 300 to the stage 108. By providing such a transfer device, the preparation 300 to be photographed is automatically placed on the stage 108, and the replacement of the preparation 300 can be automated.
- a sample transfer device not shown
- the objective lens 110 is provided on the slide arrangement surface side of the stage 108, and enables the biological specimen to be magnified and photographed. That is, the transmitted light transmitted through the preparation 300 arranged on the stage 108 is collected by the objective lens and is collected by the sensor unit 104 provided behind the objective lens (in other words, the traveling direction of the illumination light). An image will be formed.
- the sensor unit 104 may directly capture the biological specimen without the objective lens 110 or the like, or may capture the biological specimen through the objective lens 100 or the like, and is particularly limited. It's not a thing.
- the microscope 100 is not limited to the configuration shown in FIG. 1, and may include other functional blocks.
- FIG. 3 is a block diagram showing a configuration example of the image processing apparatus 200 according to the present embodiment.
- the image processing device 200 is a device having a function of controlling the microscope 100 and processing digital image data captured by the microscope 100.
- the image processing device 200 includes a shooting control unit 210, a stage control unit 220, a lighting control unit 230, an integrated control unit 240, a storage unit 270, a communication unit 280, and a display unit 290. And can mainly have.
- each functional block of the image processing apparatus 200 will be sequentially described.
- the imaging control unit 210 can control the number of imaging times, the imaging time, and the like of the sensor unit 104 of the microscope 100 according to a command output from the integrated control unit 240 described later.
- the shooting control unit 210 may be composed of computer hardware elements including a CPU, ROM, RAM, etc., or may be configured by a dedicated IC (Integrated Circuit) such as FPGA (Field-Programmable Gate Array). You may.
- the stage control unit 220 drives a stage drive mechanism (not shown) according to a command output from the integrated control unit 240 described later, so that the stage 108 is parallel to the mounting surface of the preparation 300 (light source).
- the X-axis-Y-axis direction located on a plane perpendicular to the optical axis of the irradiation light of the unit 102 and the direction orthogonal to the above-mentioned mounting surface (optical axis / Z-axis direction of the irradiation light of the light source unit 102).
- the stage control unit 220 may be composed of computer hardware elements including a CPU, ROM, RAM, etc., or may be configured by a dedicated IC such as FPGA.
- the illumination control unit 230 can control the wavelength, irradiation intensity, irradiation time, and the like of the illumination light emitted from the light source unit 102 according to a command output from the integrated control unit 240 described later.
- the lighting control unit 230 may be composed of computer hardware elements including a CPU, ROM, RAM, etc., or may be configured by a dedicated IC such as FPGA.
- the integrated control unit 240 exchanges various signals between the above-mentioned imaging control unit 210, stage control unit 220, and lighting control unit 230, and the storage unit 270 and communication unit 280, which will be described later, to obtain image data of a biological specimen. It is possible to execute various arithmetic processes and controls for acquiring image data for a composite image for correction, which will be described later.
- the integrated control unit 240 supplies commands to the photographing control unit 210, the stage control unit 220, and the lighting control unit 230 according to a program stored in the ROM or the like, acquires image data from the microscope 100, and acquires the acquired image. Data can be processed.
- the integrated control unit 240 can be configured with computer hardware elements including, for example, a CPU, a ROM, and a RAM. More specifically, various programs and data are stored in the RAM, and the CPU executes the programs stored in the RAM. The ROM stores programs and data loaded in the RAM. The detailed configuration of the integrated control unit 240 will be described later.
- the storage unit 270 stores programs, information, and the like for the integrated control unit 240 to execute various processes. Further, the storage unit 270 can store, for example, image data from the microscope 100 and image data processed by the integrated control unit 240. Specifically, the storage unit 270 is realized by, for example, a storage device such as a non-volatile memory (nonvolatile memory) such as a flash memory (flash memory) or an HDD (Hard Disk Drive).
- non-volatile memory nonvolatile memory
- flash memory flash memory
- HDD Hard Disk Drive
- the communication unit 280 can send and receive information to and from an external device such as the microscope 100, and for example, can send a command for controlling the microscope 100 to the microscope 100.
- the communication unit 280 can be said to be a communication interface having a function of transmitting and receiving data.
- the communication unit 280 is realized by, for example, a communication device (not shown) such as a communication antenna, a transmission / reception circuit, and a port.
- the display unit 290 can display various images.
- the display unit 290 comprises, for example, an LCD (Liquid Crystal Display), an organic EL (Electroluminescence) display, or the like, and can display image data obtained via the integrated control unit 240.
- the display unit 290 may be provided so as to be fixed to the image processing device 200, or may be provided to be detachably provided to the image processing device 200.
- each functional block included in the image processing apparatus 200 is not limited to the functional block shown in FIG.
- FIG. 4 is a block diagram showing a configuration example of the integrated control unit 240 according to the present embodiment
- FIG. 5 is an explanatory diagram for explaining an operation example of the image synthesis unit 244 according to the present embodiment.
- the integrated control unit 240 can execute various arithmetic processes and controls for acquiring image data of a biological specimen and image data for a correction composite image described later.
- the integrated control unit 240 can mainly include an image acquisition unit 242, 246, an image composition unit 244, and a correction unit 248.
- each functional block of the integrated control unit 240 will be sequentially described.
- the image acquisition unit 242 sets the stage 108 in a direction parallel to the mounting surface of the slide 300 (X-axis-Y-axis direction located on a plane perpendicular to the optical axis of the irradiation light of the light source unit 102) (.
- the image data of the slide 300 (correction substrate) on which the biological specimen is not mounted, which is sequentially moved along a predetermined direction) and photographed, can be sequentially acquired from the microscope 100. Then, the image acquisition unit 242 can output the acquired plurality of image data to the image composition unit 244 described later.
- the image acquisition unit 246 can acquire the image data of the preparation 300 on which the biological specimen is mounted from the microscope 100. Then, the image acquisition unit 246 can output the acquired image data to the correction unit 248 described later.
- the preparation 300 on which the biological specimen is not mounted and the preparation 300 on which the biological specimen is mounted are the preparation 300 having the same or the same shape / size.
- the image synthesizing unit 244 synthesizes a plurality of (two or more) image data of the preparation 300 on which the biological specimen is not mounted, which is acquired from the image acquisition unit 242, and is used for correction at the time of taking an image of the biological specimen. A composite image can be acquired. Further, the image composition unit 244 outputs the combined correction composite image to the correction unit 248 described later.
- the image synthesizing unit 244 divides the image data 800a and 800b into a plurality of divided areas 700 according to, for example, the pixel arrangement of the sensor unit 104 described above, and each divided area 700 ( For example, the luminance value (luminance value of red light, luminance value of green light, luminance value of blue light) of RGB (RGB signal) of each pixel) is acquired. Then, the image synthesizing unit 244 extracts the median value, the maximum value, and the like of the luminance values for each of the divided regions 700 at the same position in the set of the plurality of image data 800a and 800b.
- the image synthesis unit 244 can acquire the correction composite image 810 by arranging the median value, the maximum value, etc. of the extracted luminance values in the corresponding divided region 700.
- the value to be extracted is not limited to the median value or the maximum value.
- the luminance value for each divided region 700 at the same position in the set of a plurality of image data 800a and 800b. May be arranged in descending order, and the values located in a predetermined order may be extracted from the maximum value among them.
- the brightness value of the image of the foreign matter (dust) 900 adhering to the slide 300 is low (that is, dark).
- the preparation 300 (correction substrate) on which the biological specimen is not mounted is sequentially moved along a predetermined direction by the stage 108, and a plurality of image data 800a and 800b of the preparation 300 are acquired. is doing. Therefore, as shown in FIG. 5, the image of the foreign matter 900 does not stay in the same divided region 700 in the plurality of image data 800a and 800b all the time. In other words, in each divided region 700, the image of the foreign matter 900 is not contained through all the image data 800a and 800b.
- the correction composite image 810 is generated by using the median value, the maximum value, etc. of the same divided region 700 in the plurality of image data 800a and 800b, as shown in FIG. It is possible to obtain a so-called all-white image in which the image of the foreign matter 900 is removed.
- the correction composite image 810 includes the influence of the optical system (lens or the like) (for example, distortion, luminance unevenness, etc.).
- the optical system for example, distortion, luminance unevenness, etc.
- the divided region 700 is not limited to the region divided according to the arrangement of pixels, and can be appropriately selected as needed. Further, in FIG. 5, only two image data 800a and 800b are shown, but the present embodiment is not limited to two, and may be two or more. Further, in the present embodiment, the shape and size of the divided region 700 are not limited to those shown in FIG. 5, and can be appropriately selected.
- the luminance value of RGB RGB signal
- RGB signal RGB signal
- a color image is used as a hue.
- the luminance value in the HLS color space expressed by the three values of (Hue), luminance (Lightness), and saturation (Saturation) may be acquired.
- the brightness of the HLS color space is not limited to be used, and the color image is divided into the brightness (Y), the blue hue and the saturation (Cb), and the red hue.
- the brightness value in the YCC color space expressed by the saturation (Cr) may be acquired.
- the correction unit 248 corrects the image data of the preparation 300 on which the biological specimen is mounted, which is acquired from the image acquisition unit 246, by using the correction composite image 810 (all-white image) acquired from the image synthesis unit 244. For example, it is output to the above-mentioned storage unit 270.
- the correction unit 248 uses the image data of the biological specimen including the influence of the optical system (lens, etc.) (for example, distortion, uneven brightness) and the correction composite image 810 including the influence of the optical system. By performing the processing, it is possible to obtain clear image data of a biological specimen from which the influence of the optical system has been removed.
- the optical system (lens, etc.) is corrected by correcting the image data of the biological specimen by using the correction composite image 810 from which the image of the foreign matter (dust) 900 is removed. It is possible to obtain clear image data of a biological sample from which the influence of (for example, distortion, uneven brightness, etc.) is removed.
- the integrated control unit 240 is not limited to the configuration shown in FIG. 4, and may further include other functional blocks.
- FIG. 6 is a flowchart showing an example of the image processing method according to the present embodiment
- FIGS. 7 and 8 are explanatory views for explaining the image processing method according to the present embodiment.
- the image processing method according to the present embodiment can include steps from step S101 to step S106. The details of each of these steps according to the present embodiment will be described below.
- the user prepares a slide (correction substrate) 300 on which the biological specimen 910 is not mounted and has as little foreign matter (dust) 900 as possible, and mounts the slide on the stage 108 (step S101). As described above, it is difficult to prepare the slide 300 to which the foreign matter 900 is not attached at all due to the generation of static electricity or the like.
- the microscope 100 takes a picture of the preparation 300 in a state of focusing on the foreign matter 900 adhering to the preparation 300, and acquires the image data 800 (step S102).
- the image data 800a in which the image of the foreign matter 900 is reflected can be acquired.
- the image processing device 200 moves the stage 108 along the X-axis-Y-axis direction located on a plane perpendicular to the optical axis of the irradiation light (step S103).
- the microscope 100 adjusts the objective lens 110, takes a picture of the preparation 300 in a state of focusing on the foreign matter (dust) 900 adhering to the preparation 300, and acquires the second image data 800.
- Step S104 For example, as shown in FIG. 7, it is possible to acquire image data 800b in which an image of a foreign object 900 is reflected.
- the image processing apparatus 200 determines whether or not the stage 108 has been moved and the preparation 300 has been photographed a predetermined number of times set in advance (step S105). Then, when the image processing apparatus 200 determines that the movement of the stage 108 and the shooting of the preparation 300 have been performed a predetermined number of times set in advance (step S105: Yes), the process proceeds to the process of step S106. .. Further, when it is determined that the image processing apparatus 200 has not moved the stage 108 and photographed the slide 300 by a predetermined number of preset times (step S105: No), the process of step S103 is performed. Return to. In this way, in the present embodiment, it is possible to acquire a predetermined number (2 or more) of image data 800 of the preparation 300 on which the biological specimen 910 is not mounted.
- the image processing device 200 divides each image data 800 into a plurality of divided regions 700, acquires the luminance value for each RGB of each divided region 700, and obtains the luminance value for each divided region 700 in the set of the plurality of image data 800. Extract the median of. Further, the image processing apparatus 200 acquires the correction composite image (all-white image) 810 by arranging the median value of the extracted luminance values in the corresponding divided region 700 (step S106). By doing so, in the present embodiment, as shown in FIG. 7, it is possible to obtain a so-called all-white image in which the image of the foreign matter (dust) 900 is removed as the correction composite image 810. ..
- the correction composite image 810 includes the influence of the optical system (lens, etc.) (for example, distortion, luminance unevenness, etc.).
- the optical system for example, distortion, luminance unevenness, etc.
- a ring-shaped luminance unevenness exists on the outer peripheral portion of the correction composite image 810.
- the image processing apparatus 200 corrects the image data of the biological specimen by using the correction composite image 810 obtained as described above.
- the white image 810 By performing image processing using the white image 810, it is possible to obtain clear image data 830 of the biological specimen 910 from which the influence of the optical system has been removed.
- the preparation 300 (correction substrate) on which the biological specimen 910 is not mounted is sequentially moved along a predetermined direction by the stage 108 to perform imaging, and the plurality of preparations 300 are photographed.
- Image data 800 is acquired.
- the image of the foreign matter (dust) 900 is obtained by acquiring the composite image 810 for correction using the median value, the maximum value, etc. of the same divided region 700 in the plurality of image data 800.
- a removed all-white image can be obtained.
- the image data 830 of the biological sample 910 including the influence of the optical system for example, distortion and uneven brightness
- the correction composite image (all-white image) including the influence of the optical system is combined with the correction composite image (all-white image) including the influence of the optical system.
- the correction can be performed by reflecting the light transmittance and the refractive index of the preparation 300.
- the accuracy of correction for the image data 830 of the biological sample 910 can be further improved.
- the distortion of each image is distorted by using the above-mentioned composite image for correction (all-white image) 810. Since it is possible to correct the unevenness of brightness and the like in advance and join them together, it is possible to obtain a natural stitching image in which the images are continuous even if there are joints. Further, according to the present embodiment, since the correction can be performed more accurately, it is possible to easily perform the pathological diagnosis based on the image of a very fine bacterium or the like contained in the image.
- a plurality of image data 800 of the preparation 300 on which the biological specimen 910 is not mounted are acquired, and they are combined to obtain a corrected composite image in which the foreign matter (dust) 900 is not reflected. It was producing 810.
- the object is not limited to the preparation 300, and a color chart (color filter) for correcting color and a neutral density filter (ND (Neutral)) for correcting brightness are used. It can be applied to a Density filter) and a pattern chart (pattern substrate) for adjusting the resolution.
- ND neutral density filter
- FIGS. 9 to 11 9 to 11 are explanatory views for explaining a modified example of the image processing method according to the present embodiment.
- the color chart is a filter capable of selectively transmitting light having a predetermined wavelength among the illumination lights, and serves as a reference for a predetermined color. Therefore, by using the image data of the color chart, the color of the image data 830 of the biological specimen 910 can be corrected.
- the preparation 300 it is difficult to avoid the adhesion of the foreign matter (dust) 900 in the color chart, so that the image of the foreign matter 900 inevitably remains in the image data of the color chart. Therefore, by applying the first embodiment described above to the color chart, it becomes possible to obtain image data of the color chart from which the image of the foreign matter 900 is removed.
- a color chart is mounted on the stage 108, and the images are sequentially moved along a predetermined direction for shooting, and a plurality of color chart image data 800c. Get 800d.
- the foreign matter (dust) 900 is obtained by acquiring the correction composite image 810a using the median value, the maximum value, etc. of the same divided region 700 in the plurality of image data 800c and 800d. It is possible to obtain image data of a color chart from which an image has been removed.
- the image data 830 of the biological sample 910 including the influence of the optical system (for example, distortion and uneven brightness) is corrected by the composite image 810 for correction of the color chart including the influence of the optical system.
- image data 800c and 800d are shown in FIG. 9, the present modification is not limited to two, and may be two or more. Further, in FIG. 9, for the sake of clarity, the illustration of luminance unevenness due to the influence of the optical system is omitted.
- the application is not limited to the color chart, but can also be applied to the dimming filter.
- the dimming filter is a filter capable of selectively transmitting a part of illumination light, and has a fixed transmittance of, for example, 10%, 20%, 30%, etc., and can be used as a reference for brightness. Therefore, by using the image data of the dimming filter, the brightness of the image data 830 of the biological specimen 910 can be corrected.
- the preparation 300 it is difficult to avoid the adhesion of foreign matter (dust) 900 with respect to the dimming filter, so that the image of the foreign matter 900 inevitably remains in the image data of the dimming filter. Therefore, by applying the first embodiment described above to the dimming filter, it becomes possible to obtain image data of the dimming filter from which the image of the foreign matter 900 is removed.
- the pattern chart is configured by arranging a filter capable of transmitting illumination light (first filter) and a filter opaque to illumination light (second filter) in a checkered pattern (predetermined pattern). It is a filter that serves as a reference for resolution. Therefore, by using the image data of the pattern chart, the color of the image data 830 of the biological specimen 910 can be corrected.
- the preparation 300 it is difficult to avoid the adhesion of the foreign matter (dust) 900 in the pattern chart, so that the image of the foreign matter 900 inevitably remains in the image data of the pattern chart.
- the pattern chart is not limited to the checkered pattern, but may be a circular pattern, a spiral pattern, or a linear pattern (for example, a USAF test target).
- a pattern chart is mounted on the stage 108, and the pattern chart is sequentially moved along a predetermined direction for shooting, and a plurality of image data 800e of the pattern chart. Acquire 800f.
- the pattern chart it is preferable to move the pattern chart based on the direction and the distance according to the phase in the repetition of the pattern of the pattern chart.
- the foreign matter (dust) 900 is obtained by acquiring the correction composite image 810b using the median value, the maximum value, etc. of the same divided region 700 in the plurality of image data 800e and 800f. It is possible to obtain image data of a pattern chart from which an image has been removed.
- the correction composite image 810b including the influence of the optical system includes the influence of the optical system of the first embodiment.
- the correction composite image 810 of the preparation 300 By performing correction with the correction composite image 810 of the preparation 300, it is possible to obtain image data 810c of a clear pattern chart from which the influence of the optical system is removed.
- the obtained image data 810c can be used as a reference for resolution.
- the number is not limited to two, and any two or more image data may be used.
- the pattern chart is not limited to the checkered pattern, and may be another pattern.
- Second embodiment >> In the first embodiment of the present disclosure described above, the stage 108 is moved by a preset number of times to acquire the image data 800 of the preparation 300. In such a case, the acquired plurality of image data 800 are acquired. For example, a plurality of image data 800 without an image of foreign matter (dust) 900 may be included in a part of the image. In this case, no matter how many new image data 800 are acquired, there is no change in the correction composite image 810 that is finally combined, so that the useless image data 800 is acquired. That is, the image processing system 10 has wasted processing time for acquiring useless new image data 800. Therefore, in the second embodiment of the present disclosure described below, the above-mentioned waste of time is avoided as follows.
- the stage 108 is moved, the image data 800 of the preparation 300 is acquired, the composite image 810 for correction is acquired, and the difference from the composite image 810 for correction acquired before this is different. If not, the acquisition of the new image data 800 is stopped. By doing so, according to the present embodiment, the number of acquisitions of the image data 800 can be reduced, and it is possible to avoid wasting time for acquiring new image data 800.
- FIG. 12 is a block diagram showing a configuration example of the integrated control unit 240a according to the present embodiment.
- the integrated control unit 240a can mainly include an image acquisition unit 242, 246, an image composition unit 244, a correction unit 248, a detection unit 250, and a determination unit 252.
- each functional block of the integrated control unit 240a will be sequentially described.
- the common functions are used here. The description of the block is omitted.
- the detection unit 250 uses a correction composite image (first correction composite image) 810 acquired from the storage unit 270 and image data 800 newly acquired from the image acquisition unit 242 using a known image analysis technique. It is possible to detect the difference from the newly synthesized correction composite image (second correction composite image) 810.
- the detection unit 250 may convert the image into gray scale and detect the difference by the gradation difference, or may detect the difference in the image by detecting the difference in the color information of the image. In the form, the method for detecting the difference is not particularly limited. Further, the detection unit 250 outputs the detection result to the determination unit 252, which will be described later.
- the determination unit 252 can further determine whether or not to acquire the image data 800 according to the detection result of the detection unit 250. Specifically, the determination unit 252 determines that the image data 800 will not be further acquired if the difference is not detected by the detection unit 250. On the other hand, when the difference is detected, the determination unit 252 determines that the image data 800 will be further acquired, and the imaging control unit 210, the stage control unit 220, and the lighting control unit 230 are set so as to acquire the image data 800. Control.
- the integrated control unit 240a is not limited to the configuration shown in FIG. 12, and may further include other functional blocks.
- FIG. 13 is a flowchart showing an example of the image processing method according to the present embodiment. Specifically, as shown in FIG. 13, the image processing method according to the present embodiment can include steps from step S201 to step S208. The details of each of these steps according to the present embodiment will be described below.
- steps S201 to S204 shown in FIG. 13 are the same as steps S101 to S104 of the image processing method according to the first embodiment shown in FIG. 6, these steps will be described here. Omit.
- the image processing device 200 divides each image data 800 into a plurality of divided regions 700, acquires the luminance value for each RGB of each divided region 700, and obtains the luminance value for each divided region 700 in the set of the plurality of image data 800. Extract the median of. Further, the image processing apparatus 200 acquires the correction composite image 810 by arranging the median value of the extracted luminance values in the corresponding divided region 700 (step S205).
- the image processing apparatus 200 takes a picture twice or more and synthesizes a composite image for correction using the t-1 image data 800 acquired from the storage unit 270 (first composite image for correction). Between the 810 and the correction composite image (second correction composite image) 810, which is a composite of t image data 800 newly synthesized using the image data 800 newly acquired from the image acquisition unit 242. It is determined whether or not there is a difference in (step S206). Then, when the image processing apparatus 200 has taken two or more shots and determined that there is no difference (step S206: Yes), the process proceeds to step S208, and the image processing apparatus 200 has not taken two or more shots, or If it is determined that there is a difference (step S206: No), the process proceeds to step S207.
- the image processing device 200 moves the stage 108 along the X-axis-Y-axis direction located on a plane perpendicular to the optical axis of the irradiation light (step S207). Then, the image processing apparatus 200 returns to the processing of step S204.
- the image processing apparatus 200 acquires the correction composite image (second correction composite image) 810, which is a composite of t pieces of image data 800 in step S206, as the final correction composite image 810 (step S208). ..
- the number of acquisitions of the image data 800 can be reduced, and it is possible to avoid wasting time for acquiring new image data 800.
- the image of the foreign substance (dust) 900 is removed from the image data of the biological specimen 910, and a clear image data of the biological specimen 910 is obtained. May be good. According to such an embodiment, the image of the foreign matter 900 can be easily removed from the image data of the biological specimen 910, so that the quality of the correction of the image data of the biological specimen 910 can be further improved.
- the third embodiment of the present disclosure will be described below.
- the following embodiment will be described by exemplifying a case where the biological specimen 910 is mounted on the preparation (board) 300 and is applied when observing the biological specimen.
- the details of the third embodiment of the present disclosure will be described, but the functional configuration examples of the image processing system 10, the microscope 100, and the image processing apparatus 200 according to the present embodiment are the same as those of the first embodiment. Since they are common, these explanations are omitted here.
- FIG. 14 is a block diagram showing a configuration example of the integrated control unit 240b according to the present embodiment.
- the integrated control unit 240b can mainly include an image acquisition unit 242b, 246b, a correction unit 248b, an extraction unit 254, an alarm unit 256, and a stop control unit 258.
- each functional block of the integrated control unit 240b will be sequentially described.
- the image acquisition unit 242b (second image acquisition unit) moves the stage 108 along a direction perpendicular to the mounting surface (Z-axis along the optical axis of the irradiation light of the light source unit 102).
- the image data (second image data) of the foreign matter 900 acquired by focusing on the foreign matter (dust) 900 attached to the preparation 300 can be obtained from the microscope 100.
- the image acquisition unit 242b can output the acquired image data to the extraction unit 254, which will be described later.
- the image acquisition unit 246b moves the stage 108 along a direction perpendicular to the mounting surface (Z-axis along the optical axis of the irradiation light of the light source unit 102).
- the image data (first image data) of the biological sample 910 acquired by focusing on the biological sample 910 mounted on the slide 300 can be acquired from the microscope 100.
- the image acquisition unit 246b can output the acquired image data to the correction unit 248b, which will be described later. That is, in the present embodiment, the image data of the biological specimen 910 and the image data of the foreign matter 900 are acquired by moving along the Z axis of the stage 108 without replacing the slide 300 on which the biological specimen 910 is mounted.
- the correction unit 248b performs image processing on the image data of the biological sample 910 output from the image acquisition unit 246b by using the image data of the image of the foreign matter (dust) 900 extracted by the extraction unit 254 described later. It is possible to obtain clear image data of the biological specimen 910 that does not include the image of the foreign matter 900.
- the extraction unit 254 extracts an image of the foreign matter 900 from the image data of the foreign matter 900 acquired by focusing on the foreign matter (dust) 900 adhering to the preparation 300 output from the image acquisition unit 242b, and the image data of the foreign matter 900. Can be generated. Specifically, for example, the extraction unit 254 uses the image data of the foreign matter 900 acquired by focusing on the foreign matter 900 attached to the foreign matter 900 output from the image acquisition unit 242b in the same manner as in the first embodiment described above.
- the extraction unit 254 can extract the image of the foreign matter 900 by comparing the luminance value with a predetermined threshold value and extracting a portion having a luminance value lower than the predetermined threshold value, that is, a dark luminance value.
- the extraction unit 254 may extract an image of the foreign matter 900 by extracting a contour having a predetermined feature using a model obtained by machine learning.
- the luminance value of RGB RGB signal
- the present embodiment is not limited to this, and for example, the first embodiment is used. Similar to the form, the luminance value in the HLS color space may be acquired. Further, also in this embodiment, as in the first embodiment, the luminance value in the HLS color space is not limited to be used, and the luminance value in the YCC color space may be acquired.
- the alarm unit (presentation unit) 256 can present an alarm (warning) to the user when the extraction unit 254 extracts images of a predetermined number or more of foreign substances (dust) 900.
- the stop control unit 258 When the extraction unit 254 extracts images of a predetermined number or more of foreign substances (dust) 900, the stop control unit 258 has an image acquisition unit 242b, 246b, an extraction unit 254, a correction unit 248b, and the like. Operation can be stopped.
- the integrated control unit 240b is not limited to the configuration shown in FIG. 14, and may further include other functional blocks.
- FIG. 15 is a flowchart showing an example of the image processing method according to the present embodiment
- FIGS. 16 and 17 are explanatory views for explaining the image processing method according to the present embodiment.
- the image processing method according to the present embodiment can include steps from step S301 to step S306. The details of each of these steps according to the present embodiment will be described below.
- the user prepares the preparation 300 with less adhesion of foreign matter (dust) 900 as much as possible, and mounts the biological specimen 910. Then, the user mounts the preparation 300 on which the biological specimen is mounted on the stage 108 (step S301). Next, the microscope 100 takes an image of the biological specimen 910 in a state of focusing on the biological specimen 910 on the slide 300, and acquires image data 820a (step S302). For example, as shown in FIG. 16, it is possible to acquire image data 820a in which an image of a blurred foreign matter 900 is reflected.
- the image processing device 200 moves the stage 108 along the optical axis (Z axis) (step S303).
- the microscope 100 takes an image in a state of focusing on the foreign matter (dust) 900 adhering to the preparation 300, and acquires the image data 820b (step S304). For example, as shown in FIG. 16, it is possible to acquire image data 820b in which a clear image of the foreign matter 900 is reflected.
- the image processing apparatus 200 extracts the image data 840 of the image of the foreign matter (dust) 900 from the image data 820b acquired in step S304 (step S305). Then, the image processing apparatus 200 removes the image data 840 acquired in step S305 from the image data 820a acquired in step S302, so that the image data of the corrected clear biological specimen 910 as shown in FIG. 16 is obtained. Generate 830 (step S306).
- the threshold value for comparison with the luminance value may be determined as follows.
- the image processing apparatus 200 focuses on the foreign matter (dust) 900 adhering to the slide 300, and obtains the image data 820b of the foreign matter (dust) 900, as shown in FIG. 17, a distribution of luminance values (histogram). To get. Then, the image processing apparatus 200 sets a value determined to be sufficiently dark from the distribution, that is, a value of the luminance value at the tail of the highest peak in the distribution of the luminance value as a threshold value.
- a model (database) for extracting feature points and feature quantities of an image of a foreign substance (dust) 900 and extracting an image of the foreign substance 900 by using machine learning by a recurrent neural network or the like. May be generated in advance.
- supervised learning, semi-supervised learning, unsupervised learning, and the like can be used.
- the extraction unit 254 can extract an image of the foreign matter 900 by using the model generated in this way.
- the image of the foreign matter 900 is removed from the image data 820a of the biological specimen 910, and the clear image data 830 of the biological specimen 910 is removed. Can be obtained.
- the image of the foreign matter (dust) 900 can be easily removed from the image data 820a of the biological specimen 910. Therefore, the quality of the correction of the image data 820a of the biological specimen 910 can be improved. It can be improved further.
- the quality of correction of the image data of the biological specimen 910 can be further improved.
- a stitched image obtained by stitching together image data of a plurality of biological specimens 910 can obtain a natural image, and a very fine infectious disease bacterium or the like can be obtained.
- a pathological diagnosis can be easily made based on an image or the like.
- the imaging target is not limited to the biological specimen 910, and may be a fine mechanical structure or the like, and is not particularly limited. Further, the above-described embodiment of the present disclosure is not limited to application to medical or research applications, and is not limited to applications that require high-precision analysis or extraction using images. It is not particularly limited.
- the image processing system 10 having the microscope 100 and the image processing device 200 has been mainly described. However, an information processing system having some of these may also be provided. For example, an information processing system having a part or all of the microscope 100 and the image processing device 200 may be provided. At this time, the information processing system does not have to be a combination of the entire device (combination of hardware and software).
- an information processing system having a first device (a combination of hardware and software) and software of the second device can also be provided.
- an information processing system having a microscope 100 (a combination of hardware and software) and software of an image processing device 200 may also be provided.
- an image processing system including a plurality of configurations arbitrarily selected from the microscope 100 and the image processing device 200 can also be provided.
- the technology according to the present disclosure can be applied to various products. For example, even if the technique according to the present disclosure is applied to a pathological diagnosis system or a support system thereof (hereinafter referred to as a diagnosis support system) in which a doctor or the like observes cells or tissues collected from a patient to diagnose a lesion. good.
- This diagnostic support system may be a WSI (Whole Slide Imaging) system that diagnoses or supports a lesion based on an image acquired by using digital pathology technology.
- FIG. 18 is a diagram showing an example of a schematic configuration of a diagnostic support system 5500 to which the technique according to the present disclosure is applied.
- the diagnostic support system 5500 includes one or more pathological systems 5510. Further, the diagnostic support system 5500 may include a medical information system 5530 and a derivation device 5540.
- Each of the one or more pathological systems 5510 is a system mainly used by pathologists, and is introduced into, for example, a laboratory or a hospital.
- Each pathological system 5510 may be introduced in different hospitals, and may be installed in various networks such as WAN (Wide Area Network) (including the Internet), LAN (Local Area Network), public line network, and mobile communication network, respectively. It is connected to the medical information system 5530 and the out-licensing device 5540 via the system.
- WAN Wide Area Network
- LAN Local Area Network
- public line network public line network
- mobile communication network mobile communication network
- Each pathological system 5510 includes a microscope (specifically, a microscope used in combination with digital imaging technology) 5511, a server 5512, a display control device 5513, and a display device 5514.
- a microscope specifically, a microscope used in combination with digital imaging technology
- server 5512 a server 5512
- display control device 5513 a display device 5514.
- the microscope 5511 has the function of an optical microscope, photographs an observation object housed in a glass slide, and acquires a pathological image which is a digital image.
- the observation object is, for example, a tissue or cell collected from a patient, and may be a piece of meat, saliva, blood, or the like of an organ.
- the microscope 5511 functions as the microscope 100 shown in FIG.
- the server 5512 stores and stores the pathological image acquired by the microscope 5511 in a storage unit (not shown). Further, when the server 5512 receives a viewing request from the display control device 5513, the server 5512 searches for a pathological image from a storage unit (not shown) and sends the searched pathological image to the display control device 5513.
- the server 5512 functions as the image processing device 200 according to the embodiment of the present disclosure.
- the display control device 5513 sends a viewing request for the pathological image received from the user to the server 5512. Then, the display control device 5513 displays the pathological image received from the server 5512 on the display device 5514 using a liquid crystal display, EL (Electro-Luminence), CRT (Cathode Ray Tube), or the like.
- the display device 5514 may be compatible with 4K or 8K, and is not limited to one, and may be a plurality of display devices.
- the object to be observed when the object to be observed is a solid substance such as a piece of meat of an organ, the object to be observed may be, for example, a stained thin section.
- the thin section may be prepared, for example, by slicing a block piece cut out from a sample such as an organ. Further, when slicing, the block pieces may be fixed with paraffin or the like.
- Staining of thin sections includes general staining showing the morphology of the tissue such as HE (Hematoxylin-Eosin) staining, special staining, immunostaining showing the immune status of the tissue such as IHC (Immunohistochemistry) staining, and fluorescent immunostaining. Staining may be applied. At that time, one thin section may be stained with a plurality of different reagents, or two or more thin sections (also referred to as adjacent thin sections) continuously cut out from the same block piece may be different reagents from each other. It may be stained using.
- the microscope 5511 may include a low-resolution photographing unit for photographing at a low resolution and a high-resolution photographing unit for photographing at a high resolution.
- the low-resolution photographing unit and the high-resolution photographing unit may have different optical systems or may be the same optical system. When the optical system is the same, the resolution of the microscope 5511 may be changed according to the object to be photographed.
- the glass slide containing the observation object is placed on a stage located within the angle of view of the microscope 5511.
- the microscope 5511 acquires an entire image within the angle of view using a low-resolution photographing unit, and identifies a region of an observation object from the acquired overall image.
- the microscope 5511 divides the area where the observation object exists into a plurality of divided areas of a predetermined size, and sequentially photographs each divided area by the high-resolution photographing unit to acquire a high-resolution image of each divided area. do.
- the stage may be moved, the photographing optical system may be moved, or both of them may be moved.
- each divided region may overlap with the adjacent divided region in order to prevent the occurrence of a shooting omission region due to an unintended slip of the glass slide.
- the whole image may include identification information for associating the whole image with the patient. This identification information may be, for example, a character string, a QR code (registered trademark), or the like.
- the high resolution image acquired by the microscope 5511 is input to the server 5512.
- the server 5512 divides each high-resolution image into smaller-sized partial images (hereinafter referred to as tile images). For example, the server 5512 divides one high-resolution image into a total of 100 tile images of 10 ⁇ 10 vertically and horizontally. At that time, if the adjacent divided regions overlap, the server 5512 may perform stitching processing on the high-resolution images adjacent to each other by using a technique such as template matching. In that case, the server 5512 may generate a tile image by dividing the entire high-resolution image bonded by the stitching process. However, the tile image may be generated from the high resolution image before the stitching process.
- the server 5512 can generate a tile image of a smaller size by further dividing the tile image. The generation of such a tile image may be repeated until a tile image having a size set as a minimum unit is generated.
- the server 5512 executes a tile composition process for generating one tile image by synthesizing a predetermined number of adjacent tile images for all the tile images. This tile composition process can be repeated until one tile image is finally generated.
- a tile image group having a pyramid structure in which each layer is composed of one or more tile images is generated.
- the tile image of one layer and the tile image of a different layer have the same number of pixels, but their resolutions are different. For example, when a total of four tile images of 2 ⁇ 2 are combined to generate one tile image in the upper layer, the resolution of the tile image in the upper layer is 1/2 times the resolution of the tile image in the lower layer used for composition. It has become.
- a tile image group having such a pyramid structure By constructing a tile image group having such a pyramid structure, it is possible to switch the degree of detail of the observation object displayed on the display device depending on the hierarchy to which the tile image to be displayed belongs. For example, when the tile image of the lowest layer is used, the narrow area of the observation object may be displayed in detail, and the wider area of the observation object may be displayed coarser as the tile image of the upper layer is used. can.
- the generated tile image group of the pyramid structure is stored in a storage unit (not shown) together with identification information (referred to as tile identification information) that can uniquely identify each tile image, for example.
- the server 5512 receives a request for acquiring a tile image including tile identification information from another device (for example, a display control device 5513 or a derivation device 5540), the server 5512 transmits the tile image corresponding to the tile identification information to the other device. do.
- the tile image which is a pathological image
- a specific pathological image and another pathological image corresponding to an imaging condition different from the specific imaging condition, which is another pathological image in the same region as the specific pathological image are displayed. It may be displayed side by side.
- Specific shooting conditions may be specified by the viewer. Further, when a plurality of imaging conditions are specified for the viewer, pathological images of the same region corresponding to each imaging condition may be displayed side by side.
- the server 5512 may store the tile image group having a pyramid structure in a storage device other than the server 5512, for example, a cloud server. Further, a part or all of the tile image generation process as described above may be executed by a cloud server or the like.
- the display control device 5513 extracts a desired tile image from the tile image group having a pyramid structure in response to an input operation from the user, and outputs this to the display device 5514.
- the user can obtain the feeling of observing the observation object while changing the observation magnification. That is, the display control device 5513 functions as a virtual microscope.
- the virtual observation magnification here actually corresponds to the resolution.
- any method may be used for shooting a high-resolution image.
- the divided area may be photographed while repeatedly stopping and moving the stage to acquire a high-resolution image, or the divided area may be photographed while moving the stage at a predetermined speed to acquire a high-resolution image on the strip. May be good.
- the process of generating a tile image from a high-resolution image is not an indispensable configuration, and by gradually changing the resolution of the entire high-resolution image bonded by the stitching process, an image whose resolution changes stepwise can be created. It may be generated. Even in this case, it is possible to gradually present the user from a low-resolution image in a wide area to a high-resolution image in a narrow area.
- the medical information system 5530 is a so-called electronic medical record system, and stores information related to diagnosis such as patient identification information, patient disease information, test information and image information used for diagnosis, diagnosis results, and prescription drugs.
- a pathological image obtained by photographing an observation object of a patient can be once stored via the server 5512 and then displayed on the display device 5514 by the display control device 5513.
- the pathologist using the pathological system 5510 makes a pathological diagnosis based on the pathological image displayed on the display device 5514.
- the results of the pathological diagnosis made by the pathologist are stored in the medical information system 5530.
- the derivation device 5540 can perform analysis on the pathological image.
- a learning model created by machine learning can be used for this analysis.
- the derivation device 5540 may derive a classification result of a specific region, an organization identification result, or the like as the analysis result. Further, the derivation device 5540 may derive identification results such as cell information, number, position, and luminance information, and scoring information for them. These information derived by the derivation device 5540 may be displayed on the display device 5514 of the pathological system 5510 as diagnostic support information.
- the out-licensing device 5540 may be a server system composed of one or more servers (including a cloud server) and the like. Further, the derivation device 5540 may be configured to be incorporated in, for example, a display control device 5513 or a server 5512 in the pathology system 5510. That is, various analyzes on the pathological image may be performed within the pathological system 5510.
- the technique according to the present disclosure can be suitably applied to the server 5512 as described above among the configurations described above.
- the technique according to the present disclosure may be publicly applied to image processing in the server 5512.
- a clearer pathological image can be obtained, so that the diagnosis of the lesion can be performed more accurately.
- the configuration described above can be applied not only to the diagnostic support system but also to general biological microscopes such as confocal microscopes, fluorescence microscopes, and video microscopes that use digital imaging technology.
- the observation target may be a biological sample such as cultured cells, a fertilized egg, or a sperm, a biomaterial such as a cell sheet or a three-dimensional cell tissue, or a living body such as a zebrafish or a mouse.
- the observation object is not limited to the glass slide, and can be observed in a state of being stored in a well plate, a petri dish, or the like.
- a moving image may be generated from a still image of an observation object acquired by using a microscope using a digital photographing technique.
- a moving image may be generated from still images taken continuously for a predetermined period, or an image sequence may be generated from still images taken at predetermined intervals.
- the observation target such as the beat and elongation of cancer cells, nerve cells, myocardial tissue, sperm, movement such as migration, and the division process of cultured cells and fertilized eggs. It is possible to analyze the dynamic characteristics of objects using machine learning.
- FIG. 19 is a hardware configuration diagram showing an example of a computer 1000 that realizes the functions of the image processing device 200.
- the computer 1000 includes a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
- the CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands a program stored in the ROM 1300 or the HDD 1400 into the RAM 1200, and executes processing corresponding to various programs.
- the ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program depending on the hardware of the computer 1000, and the like.
- BIOS Basic Input Output System
- the HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by such a program.
- the HDD 1400 is a recording medium for recording an image processing program according to the present disclosure, which is an example of program data 1450.
- the communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet).
- the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
- the input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000.
- the CPU 1100 receives data from an input device such as a keyboard or mouse via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600. Further, the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined computer-readable recording medium (media).
- the media includes, for example, an optical recording medium such as a DVD (Digital Versaille Disc), a PD (Phase change rewritable Disc), a magneto-optical recording medium such as MO (Magnet-Optical disk), a tape medium, a magnetic recording medium, a semiconductor memory, or the like.
- an optical recording medium such as a DVD (Digital Versaille Disc), a PD (Phase change rewritable Disc), a magneto-optical recording medium such as MO (Magnet-Optical disk), a tape medium, a magnetic recording medium, a semiconductor memory, or the like.
- the CPU 1100 of the computer 1000 executes the image processing program loaded on the RAM 1200 to perform the functions of the integrated control unit 240 and the like. Realize. Further, the information processing program according to the present disclosure and the data in the storage unit 270 may be stored in the HDD 1400. The CPU 1100 reads the program data 1450 from the HDD 1400 and executes it, but as another example, an information processing program may be acquired from another device via the external network 1550.
- the image processing device 200 according to the present embodiment may be applied to a system including a plurality of devices, which is premised on connection to a network (or communication between each device), such as cloud computing. good. That is, the image processing device 200 according to the present embodiment described above can be realized as the image processing system 10 according to the present embodiment by, for example, a plurality of devices.
- Each of the above-mentioned components may be configured by using general-purpose members, or may be configured by hardware specialized for the function of each component. Such a configuration may be appropriately modified depending on the technical level at the time of implementation.
- an image processing method executed by an image processing device or an information photographing system as described above a program for operating the image processing device, and a program are recorded.
- a program for operating the image processing device can include non-temporary tangible media that have been processed.
- the program may be distributed via a communication line (including wireless communication) such as the Internet.
- each step in the image processing method of the embodiment of the present disclosure described above does not necessarily have to be processed in the order described.
- each step may be processed in an appropriately reordered manner.
- each step may be partially processed in parallel or individually instead of being processed in chronological order.
- the processing of each step does not necessarily have to be processed according to the described method, and may be processed by another method, for example, by another functional unit.
- each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of them may be functionally or physically distributed / physically in any unit according to various loads and usage conditions. Can be integrated and configured.
- the present technology can also have the following configurations.
- a stage control unit that supports a correction board and controls a stage capable of moving the correction board in a predetermined direction.
- An image acquisition unit for sequentially acquiring image data taken by sequentially moving the correction substrate along the predetermined direction from the image sensor unit.
- An image compositing unit that synthesizes a plurality of the above image data and acquires a compensating composite image used for correction when taking an image of a biological specimen, and an image compositing unit.
- An image processing device An image processing device.
- the image compositing unit Each of the image data is divided into a plurality of divided areas, and the image data is divided into a plurality of divided areas. The pixel value of each division area is acquired, and the pixel value is obtained.
- the correction composite image is synthesized by extracting the median value or the maximum value of the pixel values of the same divided region in the plurality of image data.
- the image sensor unit having a plurality of pixels arranged in a matrix is further provided.
- the image synthesizing unit divides each of the image data into the plurality of divided regions according to the arrangement of the plurality of pixels.
- the plurality of pixels acquire pixel signals of corresponding colors, respectively.
- the image processing apparatus according to (3) above.
- (7) The image processing apparatus according to (3) above, wherein the image sensor unit has a plurality of sensor units for acquiring the image data of the corresponding colors.
- (8) Further equipped with the stage The image processing apparatus according to any one of (3) to (7) above.
- the image processing apparatus according to (8) above.
- (11) The image processing device according to (9) or (10) above, wherein the lighting unit faces the image sensor unit with the stage interposed therebetween.
- the image processing apparatus according to any one of (9) to (11) above, wherein the correction substrate is a glass substrate capable of transmitting the illumination light. (13) The image processing apparatus according to (12) above, wherein the correction substrate is a slide on which the biological specimen can be mounted. (14) The image processing apparatus according to any one of (9) to (11) above, wherein the correction substrate is a filter capable of selectively transmitting the illumination light. (15) The image processing apparatus according to (14) above, wherein the filter is a dimming filter or a color filter. (16) The image processing apparatus according to any one of (9) to (11) above, wherein the correction substrate is a pattern substrate having a predetermined pattern.
- the pattern substrate has a pattern formed by arranging a first filter capable of transmitting the illumination light and a second filter opaque to the illumination light in a checkered pattern.
- the image processing apparatus according to 16).
- a detection unit that detects the difference between the first correction composite image acquired last time and the second correction composite image newly synthesized using the newly acquired image data.
- a determination unit that determines whether or not to acquire the image data according to the detection result of the detection unit.
- the image processing apparatus according to (1) above. (20) The image processing device To control a stage that supports the correction board and can move the correction board in a predetermined direction.
- the correction board is sequentially moved along the predetermined direction to sequentially acquire image data taken.
- Image processing methods including. (21) Image processing equipment and A program for causing the image processing device to execute image processing, Is an image processing system that includes The image processing device according to the program.
- a stage control unit that supports a correction board and controls a stage capable of moving the correction board in a predetermined direction.
- An image acquisition unit for sequentially acquiring image data taken by sequentially moving the correction substrate along the predetermined direction from the image sensor unit.
- An image compositing unit that synthesizes a plurality of the above image data and acquires a compensating composite image used for correction when taking an image of a biological specimen, and an image compositing unit.
- An image processing system that functions as. (22) From the image sensor unit, the first image acquisition unit that acquires the first image data in a state of focusing on the biological specimen mounted on the substrate, and the first image acquisition unit.
- a second image acquisition unit that acquires second image data in a state of focusing on a foreign substance adhering to the substrate from the image sensor unit, and a second image acquisition unit.
- An extraction unit that extracts an image of the foreign substance from the second image data and generates image data of the foreign substance.
- a correction unit that corrects the first image data by removing the image data of the foreign matter from the first image data.
- An image processing device (23) The image processing apparatus according to (22) above, further comprising an illumination unit that irradiates the substrate with illumination light.
- the extraction unit The second image data is divided into a plurality of divided areas, and the second image data is divided into a plurality of divided areas. The pixel value of each division area is acquired, and the pixel value is obtained.
- An image of the foreign substance is extracted by comparing the pixel values of the divided regions with predetermined threshold values.
- the image processing apparatus according to any one of (22) to (24) above.
- the image sensor unit having a plurality of pixels arranged in a matrix is further provided.
- the extraction unit divides the second image data into the plurality of divided regions according to the arrangement of the plurality of pixels.
- the image processing apparatus according to (25) above.
- the image processing apparatus according to (25) or (26) above, wherein the pixel value is a luminance value of each color.
- the extraction unit extracts an image of the foreign substance from the second image data using a model obtained by machine learning. ..
- the image processing apparatus according to any one of (22) to (28) above, wherein the substrate is a slide.
- Image processing system 100 Microscope 102 Light source unit 104 Sensor unit 106 Control unit 108 Stage 110 Objective lens 120b, 120g, 120r pixel 200 Image processing device 210 Imaging control unit 220 Stage control unit 230 Lighting control unit 240, 240a, 240b Integrated control unit 242, 242b, 246b, 246b Image acquisition unit 244 Image composition unit 248, 248b Correction unit 250 Detection unit 252 Judgment unit 254 Extraction unit 256 Alarm unit 258 Stop control unit 270 Storage unit 280 Communication unit 290 Display unit 300 Preparation 700 Divided area 800a , 800b, 800c, 800d, 800e, 800f, 810c, 820, 820a, 820b, 830, 840 Image data 810, 810a, 810b Synthetic image for correction 900 Foreign matter 910 Biological specimen
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
- Image Processing (AREA)
Abstract
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージ(108)を制御するステージ制御部(220)と、画像センサ部(104)から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部(242)と、複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部(244)と、を備える、画像処理装置(200)を提供する。
Description
本開示は、画像処理装置、画像処理方法及び画像処理システムに関する。
生体標本(例えば、細胞組織等)を搭載するプレパラートに対して、デジタル撮影を行うことができる顕微鏡システムが開発されている。顕微鏡システムにおいては、例えば、複数の生体標本の画像をつなぎ合わせて得られるステッチング画像で、つなぎ目が不連続となり不自然になることを避けたり、非常に細かい細菌等の像に基づいて、容易に病理診断できるようにするために、得られた画像を適切に補正することが求められる。
例えば、輝度ムラ(シェーディング)補正を行うために用いる全白画像を得る方法として、下記の特許文献1に開示の技術を挙げることができる。
しかしながら、本発明者の検討によると、従来技術においては、生体標本の画像の補正の質の向上には限界があった。
そこで、以上のような状況に鑑み、本開示では、画像の補正の質をより向上させることができる画像処理装置、画像処理方法及び画像処理システムを提案する。
本開示によれば、補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御するステージ制御部と、画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部と、複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部とを備える、画像処理装置が提供される。
また、本開示によれば、画像処理装置が、補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御することと、画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得することと、複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得することとを含む、画像処理方法が提供される。
さらに、本開示によれば、画像処理装置と、画像処理を前記画像処理装置に実行させるためのプログラムとを含む、画像処理システムであって、前記画像処理装置は、前記プログラムに従って、補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御するステージ制御部と、画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部と、複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部と、として機能する、画像処理システムが提供される。
以下に、添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。また、本明細書及び図面において、実質的に同一又は類似の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合がある。ただし、実質的に同一又は類似の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。
なお、説明は以下の順序で行うものとする。
1. 本開示の実施形態の概要について
1.1 背景
1.2 本開示の実施形態の概要
2. 第1の実施形態
2.1 画像処理システムの機能構成例
2.2 顕微鏡の機能構成例
2.3 画像処理装置の機能構成例
2.4 統合制御部の機能構成例
2.5 画像処理方法
2.6 変形例
3. 第2の実施形態
3.1 統合制御部の機能構成例
3.2 画像処理方法
4. 第3の実施形態
4.1 統合制御部の機能構成例
4.2 画像処理方法
5. まとめ
6. 応用例
7. ハードウェア構成
8. 補足
1. 本開示の実施形態の概要について
1.1 背景
1.2 本開示の実施形態の概要
2. 第1の実施形態
2.1 画像処理システムの機能構成例
2.2 顕微鏡の機能構成例
2.3 画像処理装置の機能構成例
2.4 統合制御部の機能構成例
2.5 画像処理方法
2.6 変形例
3. 第2の実施形態
3.1 統合制御部の機能構成例
3.2 画像処理方法
4. 第3の実施形態
4.1 統合制御部の機能構成例
4.2 画像処理方法
5. まとめ
6. 応用例
7. ハードウェア構成
8. 補足
<<1. 本開示の実施形態の概要について>>
<1.1 背景>
まずは、本開示の実施形態の概要を説明する前に、本発明者が本開示の実施形態を創作するに至る背景について説明する。
<1.1 背景>
まずは、本開示の実施形態の概要を説明する前に、本発明者が本開示の実施形態を創作するに至る背景について説明する。
生体標本を搭載するプレパラートに対して、デジタル撮影を行う顕微鏡システムにおいては、光学系(レンズ等)の影響による歪や輝度ムラ等を補正するために、完全に透明な標本(例えば、生体標本が搭載されていないプレパラート等)を撮影して得られた全白画像を用いる場合がある。例えば、複数の生体標本の画像をつなぎ合わせたステッチング画像では、つなぎ目が不連続となり、全体として不自然な画像になる場合があるが、上記全白画像を用いて各画像の歪や輝度ムラ等を事前に補正してつなぎ合わせることにより、つなぎ目があっても画像が連続している、自然なステッチング画像を得ることができる。
しかしながら、例えば、ガラス基板からなるプレパラートに異物(例えば、ゴミ)が付着することを避けることが難しいことから、実際には完全に透明な標本は存在せず、上記全白画像には必ず異物が混入してしまう。例えば、病理診断においては、非常に細かい感染症の細菌等の像や細胞核の中の構造により病理診断することがあるため、画像に異物の像が含まれていないことが好ましい。なお、本明細書においては、異物とは、観察時の被写体とはならない、ゴミ、ちり等の、生体標本以外の物体を意味するものとする。
また、全白画像への異物(ゴミ)の像の混入を避けるために、例えば、プレパラートを用いずに全白画像を得ることも考えられるが、プレパラート無しでは、焦点を合わせることが難しい。さらに、このような手法を用いた場合、プレパラートの光透過率や屈折率を完全に反映させた全白画像を得ることができないことから、全白画像による補正の質の向上に限界があった。
そこで、本発明者は、このような状況を鑑みて、本開示の実施形態を創作するに至った。本開示の一実施形態においては、異物(ゴミ)の像が含まれていない全白画像を得ることができる。そして、本実施形態によれば、このような全白画像を用いて補正を行うことから、生体標本の画像の補正の質をより向上させることができる。
<1.2 本開示の実施形態の概要>
次に、本発明者の創作した本開示の一実施形態の概要を説明する。本開示の一実施形態においては、生体標本が搭載されていないプレパラートをステージにより所定の方向に沿って順次移動させて撮影を行い、複数の、上記プレパラートの画像データを取得する。そして、本実施形態においては、複数の画像データを用いて合成を行うことにより、異物(ゴミ)900の像が除去された全白画像を得ることが可能となる。
次に、本発明者の創作した本開示の一実施形態の概要を説明する。本開示の一実施形態においては、生体標本が搭載されていないプレパラートをステージにより所定の方向に沿って順次移動させて撮影を行い、複数の、上記プレパラートの画像データを取得する。そして、本実施形態においては、複数の画像データを用いて合成を行うことにより、異物(ゴミ)900の像が除去された全白画像を得ることが可能となる。
本実施形態によれば、このような全白画像により補正を行うことにより、プレパラートの光透過率や屈折率を反映させて補正を行うことが可能になることから、生体標本の画像の補正の質をより向上させることができる。その結果、本実施形態によれば、例えば、複数の生体標本の画像をつなぎ合わせて得られるステッチング画像であっても、上記全白画像を用いて各画像の歪や輝度ムラ等を事前に補正してつなぎ合わせることができることから、つなぎ目があっても画像が連続している、自然なステッチング画像を得ることができる。また、本実施形態によれば、より精度よく補正を行うことができることから、画像に含まれる非常に細かい細菌等の像等に基づいて、容易に病理診断することも可能となる。以下、このような本開示の実施形態の詳細を順次説明する。
なお、以下の説明においては、生体(例えば、人体、植物等)から取得された、組織(例えば、臓器や上皮組織)の一部である組織切片や細胞のことを生体標本(sample)と呼ぶ。なお、以下に説明する生体標本は、必要に応じて各種の染色が施されていてもよい。言い換えると、以下に説明する各実施形態においては、特に断りがない限りは、生体標本に各種の染色が施されていても、又は、施されていなくてもよい。さらに、例えば、染色には、HE(ヘマトキシリン・エオシン)染色、ギムザ染色又はパパニコロウ染色等に代表される一般染色のみならず、特定の組織に着目する場合に用いる過ヨウ素酸シッフ(PAS)染色等や、FISH(Fluorescence In-Situ Hybridization)や酵素抗体法等の蛍光染色が含まれる。
<<2. 第1の実施形態>>
以下に、本開示の第1の実施形態について説明する。以下の実施形態においては、照明光を透過可能なガラス基板からなるプレパラート(補正用基板)に生体標本を搭載して、撮影された生体標本の画像を補正するための補正用合成画像を取得する場合を例に説明する。本実施形態に係る補正用合成画像を全白画像として用いて補正を行うことにより、生体標本の画像から、光学系(レンズ等)の影響(例えば、歪や輝度ムラ等)が除去されることから、クリアな生体標本の画像を得ることができる。
以下に、本開示の第1の実施形態について説明する。以下の実施形態においては、照明光を透過可能なガラス基板からなるプレパラート(補正用基板)に生体標本を搭載して、撮影された生体標本の画像を補正するための補正用合成画像を取得する場合を例に説明する。本実施形態に係る補正用合成画像を全白画像として用いて補正を行うことにより、生体標本の画像から、光学系(レンズ等)の影響(例えば、歪や輝度ムラ等)が除去されることから、クリアな生体標本の画像を得ることができる。
<2.1 画像処理システムの機能構成例>
まずは、図1を参照して、本開示の第1の実施形態に係る画像処理システム10の機能構成例を説明する。図1は、本開示の第1の実施形態に係る画像処理システム10の構成例を示すブロック図である。本実施形態に係る画像処理システム10は、生体標本(例えば、細胞組織等)を搭載するプレパラート300に対して、デジタル撮影を行う顕微鏡システムである。
まずは、図1を参照して、本開示の第1の実施形態に係る画像処理システム10の機能構成例を説明する。図1は、本開示の第1の実施形態に係る画像処理システム10の構成例を示すブロック図である。本実施形態に係る画像処理システム10は、生体標本(例えば、細胞組織等)を搭載するプレパラート300に対して、デジタル撮影を行う顕微鏡システムである。
詳細には、図1に示すように、本実施形態に係る画像処理システム10は、顕微鏡100と、画像処理装置200とを含むことができる。なお、顕微鏡100と画像処理装置200との間は、互いに有線又は無線の各種の通信ネットワークを介して通信可能に接続してもよい。また、本実施形態に係る画像処理システム10に含まれる顕微鏡100及び画像処理装置200は、図1に図示された数に限定されるものではなく、さらに多く含んでいてもよい。さらに、本実施形態に係る画像処理システム10は、図示しない他のサーバや装置等を含んでいてもよい。以下に、本実施形態に係る画像処理システム10に含まれる各装置の概要について説明する。
(顕微鏡100)
顕微鏡100は、顕微鏡100のステージ108上に載置された、プレパラート300に対して所定の照明光を照射して、当該プレパラート300を透過した光、又は、当該プレパラート300からの発光等を撮影することができる。例えば、顕微鏡100は、プレパラート300に搭載された生体標本を拡大して撮影することができる、拡大鏡(図示省略)及びデジタルカメラ(図示省略)等からなる。なお、顕微鏡100は、例えば、スマートフォン、タブレット、ゲーム機、又は、ウェアラブル装置等、撮影機能を有するあらゆる装置によって実現されてもよい。さらに、顕微鏡100は、後述する画像処理装置200によって駆動制御されており、顕微鏡100が撮影した画像データは、例えば、上記画像処理装置200に格納される。また、顕微鏡100の詳細構成については、後述する。
顕微鏡100は、顕微鏡100のステージ108上に載置された、プレパラート300に対して所定の照明光を照射して、当該プレパラート300を透過した光、又は、当該プレパラート300からの発光等を撮影することができる。例えば、顕微鏡100は、プレパラート300に搭載された生体標本を拡大して撮影することができる、拡大鏡(図示省略)及びデジタルカメラ(図示省略)等からなる。なお、顕微鏡100は、例えば、スマートフォン、タブレット、ゲーム機、又は、ウェアラブル装置等、撮影機能を有するあらゆる装置によって実現されてもよい。さらに、顕微鏡100は、後述する画像処理装置200によって駆動制御されており、顕微鏡100が撮影した画像データは、例えば、上記画像処理装置200に格納される。また、顕微鏡100の詳細構成については、後述する。
(画像処理装置200)
画像処理装置200は、顕微鏡100を制御し、且つ、顕微鏡100が撮影した画像データを処理する機能を有する装置である。詳細には、画像処理装置200は、顕微鏡100を制御して、生体標本のデジタル画像を撮影するとともに、得られたデジタル画像データに対して、所定の画像処理を実施することができる。画像処理装置200は、PC(Personal Computer)、タブレット、スマートフォン等、制御機能及び画像処理機能を有するあらゆる装置により実現される。なお、画像処理装置200の詳細構成については、後述する。
画像処理装置200は、顕微鏡100を制御し、且つ、顕微鏡100が撮影した画像データを処理する機能を有する装置である。詳細には、画像処理装置200は、顕微鏡100を制御して、生体標本のデジタル画像を撮影するとともに、得られたデジタル画像データに対して、所定の画像処理を実施することができる。画像処理装置200は、PC(Personal Computer)、タブレット、スマートフォン等、制御機能及び画像処理機能を有するあらゆる装置により実現される。なお、画像処理装置200の詳細構成については、後述する。
なお、本実施形態においては、顕微鏡100及び画像処理装置200は、一体の装置であってもよく、すなわち、それぞれ単一の装置によって実現されていなくてもよい。また、本実施形態においては、上述の顕微鏡100及び画像処理装置200のそれぞれは、有線又は無線の各種の通信ネットワークを介して接続され、互いに協働する複数の装置によって実現されてもよい。さらに、上述した画像処理装置200は、例えば後述するコンピュータ1000のハードウェア構成によって実現することができる。
<2.2 顕微鏡の機能構成例>
次に、図1及び図2を参照して、本実施形態に係る顕微鏡100の詳細な機能構成例を説明する。図2は、センサ部104の画素の配列の一例を説明するための説明図である。図1に示すように、顕微鏡100は、光源部(照明部)102と、センサ部(画像センサ部)104と、制御部106と、ステージ108と、対物レンズ110とを主に有することができる。以下に、顕微鏡100の各機能ブロックについて順次説明する。
次に、図1及び図2を参照して、本実施形態に係る顕微鏡100の詳細な機能構成例を説明する。図2は、センサ部104の画素の配列の一例を説明するための説明図である。図1に示すように、顕微鏡100は、光源部(照明部)102と、センサ部(画像センサ部)104と、制御部106と、ステージ108と、対物レンズ110とを主に有することができる。以下に、顕微鏡100の各機能ブロックについて順次説明する。
(光源部102)
光源部102は、ステージ108の、プレパラート300が配置され得るプレパラート配置面とは逆の面側に設けられ、後述する制御部106の制御に従って、生体標本のプレパラート300に対して照明光を照射することができる照明装置である。言い換えると、図1に示すように、光源部102は、ステージ108を挟んで、センサ部104と対向する。なお、本実施形態においては、光源部102が照射する照明光は、可視光であることに限定されるものではなく、例えば、特殊染色で用いられる蛍光マーカを励起可能な波長を含む光であってもよい。
光源部102は、ステージ108の、プレパラート300が配置され得るプレパラート配置面とは逆の面側に設けられ、後述する制御部106の制御に従って、生体標本のプレパラート300に対して照明光を照射することができる照明装置である。言い換えると、図1に示すように、光源部102は、ステージ108を挟んで、センサ部104と対向する。なお、本実施形態においては、光源部102が照射する照明光は、可視光であることに限定されるものではなく、例えば、特殊染色で用いられる蛍光マーカを励起可能な波長を含む光であってもよい。
また、本実施形態においては、光源部102とステージ108との間には、光源部102から照射された照明光を集光して、ステージ108上のプレパラート300に導く、例えばコンデンサレンズ(図示省略)等を有していてもよい。さらに、本実施形態においては、図1では図示を省略しているが、光源部102と上記コンデンサレンズとの間には、光源部102から出射した照明光を集光する集光光学系や、視野絞り等(図示省略)が設けられていてもよい。
(センサ部104)
センサ部104は、例えば、顕微鏡100が正立顕微鏡である場合には、ステージ108のプレパラート配置面側に設けられ、例えば、色の3原色である、赤色(R)、緑色(G)、青色(B)の光を検知するカラーセンサである。なお、顕微鏡100が倒立顕微鏡である場合には、センサ部104は、ステージ108のプレパラート配置面とは反対側に設けられることとなる。より具体的には、センサ部104は、例えば、複数の撮像素子(画素)(図示省略)から形成することができる。そして、センサ部104は、後述する制御部106の制御に従って、生体標本をデジタル撮影し、得られたデジタル画像データを画像処理装置200へ出力することができる。なお、本実施形態においては、センサ部104は、上述したようにカラーのデジタル画像を取得することに限定されるものではなく、モノクロのデジタル画像を取得してもよい。
センサ部104は、例えば、顕微鏡100が正立顕微鏡である場合には、ステージ108のプレパラート配置面側に設けられ、例えば、色の3原色である、赤色(R)、緑色(G)、青色(B)の光を検知するカラーセンサである。なお、顕微鏡100が倒立顕微鏡である場合には、センサ部104は、ステージ108のプレパラート配置面とは反対側に設けられることとなる。より具体的には、センサ部104は、例えば、複数の撮像素子(画素)(図示省略)から形成することができる。そして、センサ部104は、後述する制御部106の制御に従って、生体標本をデジタル撮影し、得られたデジタル画像データを画像処理装置200へ出力することができる。なお、本実施形態においては、センサ部104は、上述したようにカラーのデジタル画像を取得することに限定されるものではなく、モノクロのデジタル画像を取得してもよい。
そして、上記撮像素子(図示省略)には、当該撮像素子の画素サイズ及び対物レンズ110の倍率に応じて、ステージ108のプレパラート配置面上における所定の横幅及び縦幅からなる撮影範囲の像が結像される。なお、上記対物レンズ110により生体標本の一部が拡大される場合には、上述の撮影範囲は、撮像素子の撮影範囲に比べて十分に狭い範囲となる。より具体的には、上記撮像素子は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子により実現することができる。
さらに具体的には、上記センサ部104は、カラーフィルタを用いて、赤色、緑色及び青色の光をそれぞれ検出する複数の画素120を平面上にマトリックス状に配列させた構成を持つ。例えば、図2に示すように、センサ部104においては、青色、緑色及び赤色の光をそれぞれ検出する複数の画素120b、120g、120rを所定の配列に従って配列させた構成(図2では、ベイヤー配列の適用例が示されている)を用いることができる。なお、本実施形態においては、ベイヤー配列に限定されるものではなく、他の配列であってもよい。
また、本実施形態においては、センサ部104は、プレパラート300からの光をプリズム(図示省略)で、赤色、緑色及び青色の光に分光して、各色の光をそれぞれ異なる3つのセンサ(図示省略)で検出する3板式センサであってもよい。
(制御部106)
制御部106は、顕微鏡100の動作を統括的に制御することができ、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等により実現される処理回路を含む。例えば、制御部106は、上述した光源部102、センサ部104及び後述するステージ108を制御することができる。
制御部106は、顕微鏡100の動作を統括的に制御することができ、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等により実現される処理回路を含む。例えば、制御部106は、上述した光源部102、センサ部104及び後述するステージ108を制御することができる。
例えば、制御部106は、画像処理装置200から出力されたコマンドに従って、センサ部104の撮影回数や撮影時間等を制御してもよい。また、制御部106は、光源部102から照射される照明光の波長、照射強度又は照射時間等を制御してもよい。また、制御部106は、予め設定された関心領域(ROI:Region of Interest)が撮影されるよう、関心領域に従って、ステージ108を様々な方向に移動させるステージ駆動機構(図示省略)を制御してもよい。なお、ここでいう関心領域とは、生体標本のうち、ユーザが解析等のために注目する領域(対象となる領域)のことを意味する。さらに、本実施形態においては、制御部106は、後述する補正用合成画像を得るために、ステージ108を所定の方向に順次移動させてもよい。
(ステージ108)
ステージ108は、プレパラート300が載置され、プレパラート300を支持する載置台である。さらに、ステージ108には、ステージ108を様々な方向に移動させるためのステージ駆動機構(図示省略)が設けられている。例えば、当該ステージ駆動機構を制御することにより、ステージ108を、プレパラート300の載置面に対して平行となる方向(光源部102の照射光の光軸と垂直に交わる平面上に位置するX軸-Y軸方向)と、上記載置面に対して直交する方向(光源部102の照射光の光軸/Z軸方向)とに自由に移動させることができる(特に、後述する第3の実施形態では、ステージ108をZ軸方向に沿って移動させる)。また、本実施形態においては、ステージ108には、プレパラート300をステージ108に搬送するサンプル搬送装置(図示省略)が設けられていてもよい。かかる搬送装置を設けることで、ステージ108に、撮影予定のプレパラート300が自動的に載置されるようになり、プレパラート300の入れ替えを自動化することが可能となる。
ステージ108は、プレパラート300が載置され、プレパラート300を支持する載置台である。さらに、ステージ108には、ステージ108を様々な方向に移動させるためのステージ駆動機構(図示省略)が設けられている。例えば、当該ステージ駆動機構を制御することにより、ステージ108を、プレパラート300の載置面に対して平行となる方向(光源部102の照射光の光軸と垂直に交わる平面上に位置するX軸-Y軸方向)と、上記載置面に対して直交する方向(光源部102の照射光の光軸/Z軸方向)とに自由に移動させることができる(特に、後述する第3の実施形態では、ステージ108をZ軸方向に沿って移動させる)。また、本実施形態においては、ステージ108には、プレパラート300をステージ108に搬送するサンプル搬送装置(図示省略)が設けられていてもよい。かかる搬送装置を設けることで、ステージ108に、撮影予定のプレパラート300が自動的に載置されるようになり、プレパラート300の入れ替えを自動化することが可能となる。
(対物レンズ110)
対物レンズ110は、ステージ108のプレパラート配置面側に設けられ、生体標本を拡大して撮影することを可能にする。すなわち、ステージ108上に配設されたプレパラート300を透過した透過光は、当該対物レンズによって集光されて、対物レンズの後方(言い換えると、照明光の進行方向)に設けられたセンサ部104に結像することとなる。なお、本実施形態においては、センサ部104は、生体標本を、対物レンズ110等を介さずに直接撮影してもよいし、対物レンズ100等を介して撮影してもよく、特に限定されるものではない。
対物レンズ110は、ステージ108のプレパラート配置面側に設けられ、生体標本を拡大して撮影することを可能にする。すなわち、ステージ108上に配設されたプレパラート300を透過した透過光は、当該対物レンズによって集光されて、対物レンズの後方(言い換えると、照明光の進行方向)に設けられたセンサ部104に結像することとなる。なお、本実施形態においては、センサ部104は、生体標本を、対物レンズ110等を介さずに直接撮影してもよいし、対物レンズ100等を介して撮影してもよく、特に限定されるものではない。
なお、本実施形態においては、顕微鏡100は、図1に示される構成に限定されるものではなく、他の機能ブロックを含んでいてもよい。
<2.3 画像処理装置の機能構成例>
次に、図3を参照して、本実施形態に係る画像処理装置200の機能構成を詳細に説明する。図3は、本実施形態に係る画像処理装置200の構成例を示すブロック図である。先に説明したように、画像処理装置200は、顕微鏡100を制御し、且つ、顕微鏡100が撮影したデジタル画像データを処理する機能を有する装置である。図3に示すように、画像処理装置200は、撮影制御部210と、ステージ制御部220と、照明制御部230と、統合制御部240と、記憶部270と、通信部280と、表示部290とを主に有することができる。以下に、画像処理装置200の各機能ブロックについて順次説明する。
次に、図3を参照して、本実施形態に係る画像処理装置200の機能構成を詳細に説明する。図3は、本実施形態に係る画像処理装置200の構成例を示すブロック図である。先に説明したように、画像処理装置200は、顕微鏡100を制御し、且つ、顕微鏡100が撮影したデジタル画像データを処理する機能を有する装置である。図3に示すように、画像処理装置200は、撮影制御部210と、ステージ制御部220と、照明制御部230と、統合制御部240と、記憶部270と、通信部280と、表示部290とを主に有することができる。以下に、画像処理装置200の各機能ブロックについて順次説明する。
(撮影制御部210)
撮影制御部210は、後述する統合制御部240から出力されたコマンドに従って、顕微鏡100のセンサ部104の撮影回数や撮影時間等を制御することができる。例えば、撮影制御部210は、CPU、ROM、RAMなどを含むコンピュータのハードウェア要素で構成されてもよいし、もしくは、FPGA(Field-Programmable Gate Array)等の専用IC(Integrated Circuit)によって構成されてもよい。
撮影制御部210は、後述する統合制御部240から出力されたコマンドに従って、顕微鏡100のセンサ部104の撮影回数や撮影時間等を制御することができる。例えば、撮影制御部210は、CPU、ROM、RAMなどを含むコンピュータのハードウェア要素で構成されてもよいし、もしくは、FPGA(Field-Programmable Gate Array)等の専用IC(Integrated Circuit)によって構成されてもよい。
(ステージ制御部220)
ステージ制御部220は、後述する統合制御部240から出力されたコマンドに従って、ステージ駆動機構(図示省略)を駆動して、ステージ108を、プレパラート300の載置面に対して平行となる方向(光源部102の照射光の光軸と垂直に交わる平面上に位置するX軸-Y軸方向)と、上記載置面に対して直交する方向(光源部102の照射光の光軸/Z軸方向)とに自由に移動させることができる。例えば、ステージ制御部220は、CPU、ROM、RAMなどを含むコンピュータのハードウェア要素で構成されてもよいし、もしくは、FPGA等の専用ICによって構成されてもよい。
ステージ制御部220は、後述する統合制御部240から出力されたコマンドに従って、ステージ駆動機構(図示省略)を駆動して、ステージ108を、プレパラート300の載置面に対して平行となる方向(光源部102の照射光の光軸と垂直に交わる平面上に位置するX軸-Y軸方向)と、上記載置面に対して直交する方向(光源部102の照射光の光軸/Z軸方向)とに自由に移動させることができる。例えば、ステージ制御部220は、CPU、ROM、RAMなどを含むコンピュータのハードウェア要素で構成されてもよいし、もしくは、FPGA等の専用ICによって構成されてもよい。
(照明制御部230)
照明制御部230は、後述する統合制御部240から出力されたコマンドに従って、光源部102から照射される照明光の波長、照射強度又は照射時間等を制御することができる。例えば、照明制御部230は、CPU、ROM、RAMなどを含むコンピュータのハードウェア要素で構成されてもよいし、もしくは、FPGA等の専用ICによって構成されてもよい。
照明制御部230は、後述する統合制御部240から出力されたコマンドに従って、光源部102から照射される照明光の波長、照射強度又は照射時間等を制御することができる。例えば、照明制御部230は、CPU、ROM、RAMなどを含むコンピュータのハードウェア要素で構成されてもよいし、もしくは、FPGA等の専用ICによって構成されてもよい。
(統合制御部240)
統合制御部240は、上述した撮影制御部210、ステージ制御部220及び照明制御部230と、後述する記憶部270及び通信部280との間で各種信号をやりとりして、生体標本の画像データや後述する補正用合成画像のための画像データを取得するための様々な演算処理および制御を実行することができる。例えば、統合制御部240は、ROM等に格納されたプログラムに従い、撮影制御部210、ステージ制御部220及び照明制御部230に対するコマンドを供給し、顕微鏡100からの画像データを取得し、取得した画像データに対して処理を行うことができる。詳細には、統合制御部240は、例えば、CPUと、ROMと、RAMと、を含むコンピュータのハードウェア要素で構成されることができる。より具体的には、RAMには、各種のプログラムおよびデータが格納され、CPUは、RAMに格納されたプログラムを実行する。ROMには、RAMにロードされるプログラムやデータなどが格納される。なお、統合制御部240の詳細構成については、後述する。
統合制御部240は、上述した撮影制御部210、ステージ制御部220及び照明制御部230と、後述する記憶部270及び通信部280との間で各種信号をやりとりして、生体標本の画像データや後述する補正用合成画像のための画像データを取得するための様々な演算処理および制御を実行することができる。例えば、統合制御部240は、ROM等に格納されたプログラムに従い、撮影制御部210、ステージ制御部220及び照明制御部230に対するコマンドを供給し、顕微鏡100からの画像データを取得し、取得した画像データに対して処理を行うことができる。詳細には、統合制御部240は、例えば、CPUと、ROMと、RAMと、を含むコンピュータのハードウェア要素で構成されることができる。より具体的には、RAMには、各種のプログラムおよびデータが格納され、CPUは、RAMに格納されたプログラムを実行する。ROMには、RAMにロードされるプログラムやデータなどが格納される。なお、統合制御部240の詳細構成については、後述する。
(記憶部270)
記憶部270は、統合制御部240が各種処理を実行するためのプログラム、情報等を保存する。さらに、記憶部270は、例えば、顕微鏡100からの画像データや、統合制御部240によって処理された画像データを格納することができる。具体的には、記憶部270は、例えば、フラッシュメモリ(flash memory)等の不揮発性メモリ(nonvolatile memory)等や、HDD(Hard Disk Drive)等の記憶装置により実現される。
記憶部270は、統合制御部240が各種処理を実行するためのプログラム、情報等を保存する。さらに、記憶部270は、例えば、顕微鏡100からの画像データや、統合制御部240によって処理された画像データを格納することができる。具体的には、記憶部270は、例えば、フラッシュメモリ(flash memory)等の不揮発性メモリ(nonvolatile memory)等や、HDD(Hard Disk Drive)等の記憶装置により実現される。
(通信部280)
通信部280は、顕微鏡100等の外部装置との間で情報の送受信を行うことができ、例えば、顕微鏡100を制御するためのコマンドを、顕微鏡100に送信することができる。言い換えると、通信部280は、データの送受信を行う機能を有する通信インターフェイスと言える。本実施形態においては、通信部280は、例えば、通信アンテナ、送受信回路やポート等の通信デバイス(図示省略)により実現される。
通信部280は、顕微鏡100等の外部装置との間で情報の送受信を行うことができ、例えば、顕微鏡100を制御するためのコマンドを、顕微鏡100に送信することができる。言い換えると、通信部280は、データの送受信を行う機能を有する通信インターフェイスと言える。本実施形態においては、通信部280は、例えば、通信アンテナ、送受信回路やポート等の通信デバイス(図示省略)により実現される。
(表示部290)
表示部290は、各種画像を表示することができる。詳細には、表示部290は、例えばLCD(Liquid Crystal Display)、有機EL(Electro Luminescence)ディスプレイ等からなり、統合制御部240を介して得られた画像データを表示することができる。なお、本実施形態においては、表示部290は、画像処理装置200に固定されるように設けられていてもよく、もしくは、画像処理装置200に脱着可能に設けられていてもよい。
表示部290は、各種画像を表示することができる。詳細には、表示部290は、例えばLCD(Liquid Crystal Display)、有機EL(Electro Luminescence)ディスプレイ等からなり、統合制御部240を介して得られた画像データを表示することができる。なお、本実施形態においては、表示部290は、画像処理装置200に固定されるように設けられていてもよく、もしくは、画像処理装置200に脱着可能に設けられていてもよい。
なお、本実施形態においては、画像処理装置200に含まれる各機能ブロックは、図3に示される機能ブロックに限定されるものではない。
<2.4 統合制御部の機能構成例>
次に、図4及び図5を参照して、本実施形態に係る統合制御部240の機能構成例を詳細に説明する。図4は、本実施形態に係る統合制御部240の構成例を示すブロック図であり、図5は、本実施形態に係る画像合成部244の動作例を説明するための説明図である。先に説明したように、統合制御部240は、生体標本の画像データや後述する補正用合成画像のための画像データを取得するための様々な演算処理および制御を実行することができる。図4に示すように、統合制御部240は、画像取得部242、246と、画像合成部244と、補正部248とを主に有することができる。以下に、統合制御部240の各機能ブロックについて順次説明する。
次に、図4及び図5を参照して、本実施形態に係る統合制御部240の機能構成例を詳細に説明する。図4は、本実施形態に係る統合制御部240の構成例を示すブロック図であり、図5は、本実施形態に係る画像合成部244の動作例を説明するための説明図である。先に説明したように、統合制御部240は、生体標本の画像データや後述する補正用合成画像のための画像データを取得するための様々な演算処理および制御を実行することができる。図4に示すように、統合制御部240は、画像取得部242、246と、画像合成部244と、補正部248とを主に有することができる。以下に、統合制御部240の各機能ブロックについて順次説明する。
(画像取得部242、246)
画像取得部242は、ステージ108を、プレパラート300の載置面に対して平行となる方向(光源部102の照射光の光軸と垂直に交わる平面上に位置するX軸-Y軸方向)(所定の方向)に沿って順次移動させて撮影した、生体標本が搭載されていないプレパラート300(補正用基板)の画像データを、顕微鏡100から、順次取得することができる。そして、画像取得部242は、取得した複数の画像データを、後述する画像合成部244に出力することができる。
画像取得部242は、ステージ108を、プレパラート300の載置面に対して平行となる方向(光源部102の照射光の光軸と垂直に交わる平面上に位置するX軸-Y軸方向)(所定の方向)に沿って順次移動させて撮影した、生体標本が搭載されていないプレパラート300(補正用基板)の画像データを、顕微鏡100から、順次取得することができる。そして、画像取得部242は、取得した複数の画像データを、後述する画像合成部244に出力することができる。
また、画像取得部246は、生体標本が搭載されているプレパラート300の画像データを、顕微鏡100から取得することができる。そして、画像取得部246は、取得した画像データを、後述する補正部248に出力することができる。なお、本実施形態においては、生体標本が搭載されていないプレパラート300と、生体標本が搭載されているプレパラート300とは、同一又は同一形状/サイズのプレパラート300であることが好ましい。
(画像合成部244)
画像合成部244は、画像取得部242から取得した複数(2以上)の、生体標本が搭載されていないプレパラート300の画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得することができる。さらに、画像合成部244は、合成した補正用合成画像を後述する補正部248へ出力する。
画像合成部244は、画像取得部242から取得した複数(2以上)の、生体標本が搭載されていないプレパラート300の画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得することができる。さらに、画像合成部244は、合成した補正用合成画像を後述する補正部248へ出力する。
詳細には、図5に示すように、画像合成部244は、各画像データ800a、800bを、例えば上述のセンサ部104の画素の配列に従って複数の分割領域700に分割し、各分割領域700(例えば、各画素)のRGB(RGB信号)の輝度値(赤色の光の輝度値、緑色の光の輝度値、青色の光の輝度値)を取得する。そして、画像合成部244は、複数の画像データ800a、800bの集合における、同一の位置にある分割領域700ごとの輝度値の中央値(median)、最大値等を抽出する。さらに、画像合成部244は、抽出した輝度値の中央値、最大値等を、対応する分割領域700に配置することにより、上記補正用合成画像810を取得することができる。なお、本実施形態においては、抽出する値は、中央値や最大値に限定するものではなく、例えば、複数の画像データ800a、800bの集合における、同一の位置にある分割領域700ごとの輝度値を大きい順に並べ、そのうちの最大値から所定の順番に位置する値を抽出してもよい。
画像データ800a、800b上では、プレパラート300に付着する異物(ゴミ)900の像の輝度値は低い(すなわち、暗い)。また、本実施形態においては、生体標本が搭載されていないプレパラート300(補正用基板)をステージ108により所定の方向に沿って順次移動させて、複数の、プレパラート300の画像データ800a、800bを取得している。従って、図5に示すように、異物900の像は、複数の画像データ800a、800bにおける同一の分割領域700にずっと留まっているわけではない。言い換えると、各分割領域700において、全ての画像データ800a、800bを通じて異物900の像が入っているわけではない。そこで、本実施形態においては、複数の画像データ800a、800bにおける同一の分割領域700の中央値、最大値等を用いて、補正用合成画像810を生成することにより、図5に示すような、異物900の像が除去された、いわゆる全白画像を得ることが可能となる。ただし、図5に示すように、補正用合成画像810では、光学系(レンズ等)の影響(例えば、歪や輝度ムラ等)が含まれることとなる。(例えば、図5では、画像データ800a、800b、及び、補正用合成画像810の外周部に、リング状の輝度ムラが存在している。)
そして、本実施形態においては、このような補正用合成画像810(全白画像)を用いて、生体標本の画像データの補正を行うことにより、最終的には、光学系(レンズ等)の影響(例えば、歪や輝度ムラ等)が除去された、クリアな生体標本の画像を得ることができる。
なお、本実施形態においては、上記分割領域700は、画素の配列に従って分割された領域であることに限定されるものではなく、必要に応じて、適宜選択することができる。また、図5では、画像データ800a、800bは、2つしか図示されていないが、本実施形態においては、2つであることに限定されるものではなく、2つ以上であればよい。また、本実施形態においては、分割領域700の形状やサイズも、図5に示されるもの限定されるものではなく、適宜選択することができる。
さらに、本実施形態においては、輝度値として、RGB(RGB信号)の輝度値を取得するものとして説明したが、本実施形態においては、これに限定されるものではなく、例えば、カラー画像を色相(Hue)、輝度(Lightness)、彩度(Saturation)の3つの値で表現するHLS色空間における輝度値を取得してもよい。また、本実施形態においては、HLS色空間の輝度を用いることに限定されるものではなく、カラー画像を、輝度(Y)と、青系統の色相及び彩度(Cb)と、赤系統の色相及び彩度(Cr)とで表現するYCC色空間における輝度値を取得してもよい。
(補正部248)
補正部248は、画像取得部246から取得した、生体標本が搭載されているプレパラート300の画像データを、画像合成部244から取得した補正用合成画像810(全白画像)を用いて補正を行い、例えば、上述した記憶部270へ出力する。詳細には、補正部248は、光学系(レンズ等)の影響(例えば、歪、輝度ムラ)を含む生体標本の画像データと、光学系の影響を含む補正用合成画像810とを用いて画像処理を行うことにより、光学系の影響が除去された、クリアな生体標本の画像データを得ることができる。
補正部248は、画像取得部246から取得した、生体標本が搭載されているプレパラート300の画像データを、画像合成部244から取得した補正用合成画像810(全白画像)を用いて補正を行い、例えば、上述した記憶部270へ出力する。詳細には、補正部248は、光学系(レンズ等)の影響(例えば、歪、輝度ムラ)を含む生体標本の画像データと、光学系の影響を含む補正用合成画像810とを用いて画像処理を行うことにより、光学系の影響が除去された、クリアな生体標本の画像データを得ることができる。
以上のように、本実施形態によれば、異物(ゴミ)900の像が除去された補正用合成画像810を用いて、生体標本の画像データの補正を行うことにより、光学系(レンズ等)の影響(例えば、歪や輝度ムラ等)を除去した、クリアな生体標本の画像データを得ることができる。
なお、本実施形態においては、統合制御部240は、図4に示される構成に限定されるものではなく、他の機能ブロックをさらに含んでもよい。
<2.5 画像処理方法>
次に、図6から図8を参照して、本実施形態に係る画像処理方法について説明する。図6は、本実施形態に係る画像処理方法の一例を示すフローチャートであり、図7及び図8は、本実施形態に係る画像処理方法を説明するための説明図である。詳細には、図6に示すように、本実施形態に係る画像処理方法は、ステップS101からステップS106までのステップを含むことができる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。
次に、図6から図8を参照して、本実施形態に係る画像処理方法について説明する。図6は、本実施形態に係る画像処理方法の一例を示すフローチャートであり、図7及び図8は、本実施形態に係る画像処理方法を説明するための説明図である。詳細には、図6に示すように、本実施形態に係る画像処理方法は、ステップS101からステップS106までのステップを含むことができる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。
まず、ユーザは、生体標本910が搭載されていなく、且つ、なるべく異物(ゴミ)900の付着が少ないプレパラート(補正用基板)300を準備し、ステージ108に搭載する(ステップS101)。なお、先に説明したように、静電気等の発生により、異物900がまったく付着していないプレパラート300を準備することが難しい。
次に、顕微鏡100は、プレパラート300に付着した異物900に焦点を合わせた状態で、プレパラート300の撮影を行い、画像データ800を取得する(ステップS102)。例えば、図7に示すような、異物900の像が映り込んだ画像データ800aを取得することができる。
そして、画像処理装置200は、ステージ108を照射光の光軸と垂直に交わる平面上に位置するX軸-Y軸方向に沿って移動させる(ステップS103)。次に、顕微鏡100は、対物レンズ110を調整して、プレパラート300に付着した異物(ゴミ)900に焦点を合わせた状態で、プレパラート300の撮影を行い、2枚目の画像データ800を取得する(ステップS104)。例えば、図7に示すような、異物900の像が映り込んだ画像データ800bを取得することができる。
次に、画像処理装置200は、あらかじめ設定された所定の回数分だけ、ステージ108の移動と、プレパラート300の撮影とを行ったかどうかの判定を行う(ステップS105)。そして、画像処理装置200は、あらかじめ設定された所定の回数分だけ、ステージ108の移動と、プレパラート300の撮影とを行ったと判定した場合(ステップS105:Yes)には、ステップS106の処理へ進む。また、画像処理装置200は、あらかじめ設定された所定の回数分だけ、ステージ108の移動と、プレパラート300の撮影とを行っていないと判定した場合(ステップS105:No)には、ステップS103の処理へ戻る。このようにして、本実施形態においては、所定の数(2以上)の、生体標本910が搭載されていないプレパラート300の画像データ800を取得することができる。
画像処理装置200は、各画像データ800を複数の分割領域700に分割し、各分割領域700のRGBごとの輝度値を取得し、複数の画像データ800の集合における、分割領域700ごとの輝度値の中央値(median)を抽出する。さらに、画像処理装置200は、抽出した輝度値の中央値を、対応する分割領域700に配置することにより、上記補正用合成画像(全白画像)810を取得する(ステップS106)。このようにすることにより、本実施形態においては、図7に示すように、補正用合成画像810として、異物(ゴミ)900の像が除去された、いわゆる全白画像を得ることが可能となる。ただし、当該補正用合成画像810では、光学系(レンズ等)の影響(例えば、歪や輝度ムラ等)が含まれることとなる。例えば、図7では、補正用合成画像810の外周部に、リング状の輝度ムラが存在している。
その後、画像処理装置200は、上述したようにして得られた補正用合成画像810を用いて、生体標本の画像データの補正を行う。例えば、図8に示すように、当該補正では、光学系の影響(例えば、歪、輝度ムラ)が含まれる生体標本910の画像データ820と、光学系の影響が含まれる補正用合成画像(全白画像)810とを用いて画像処理を行うことにより、光学系の影響が除去された、クリアな生体標本910の画像データ830を得ることができる。
以上のように、本実施形態においては、生体標本910が搭載されていないプレパラート300(補正用基板)をステージ108により所定の方向に沿って順次移動させて撮影を行い、複数の、プレパラート300の画像データ800を取得する。次に、本実施形態においては、複数の画像データ800における同一の分割領域700の中央値、最大値等を用いて、補正用合成画像810を取得することにより、異物(ゴミ)900の像が除去された全白画像を得ることができる。さらに、本実施形態によれば、光学系の影響(例えば、歪、輝度ムラ)が含まれる生体標本910の画像データ830を、同様に光学系の影響が含まれる補正用合成画像(全白画像)810で補正を行うことにより、光学系の影響が除去された、クリアな生体標本910の画像データ830を得ることができる。
すなわち、本実施形態によれば、このような補正用合成画像(全白画像)810で補正を行うことにより、プレパラート300の光透過率や屈折率を反映させて補正を行うことができることから、生体標本910の画像データ830に対する補正の精度をより向上させることができる。その結果、本実施形態によれば、例えば、複数の生体標本の画像をつなぎ合わせて得られるステッチング画像であっても、上記補正用合成画像(全白画像)810を用いて各画像の歪や輝度ムラ等を事前に補正してつなぎ合わせることができることから、つなぎ目があっても画像が連続している、自然なステッチング画像を得ることができる。また、本実施形態によれば、より精度よく補正を行うことができることから、画像に含まれる非常に細かい細菌等の像等に基づいて、容易に病理診断することも可能となる。
<2.6 変形例>
上述した第1の実施形態においては、生体標本910が搭載されていないプレパラート300の複数の画像データ800を取得し、それらを合成して、異物(ゴミ)900が映り込んでいない補正用合成画像810を生成していた。しかしながら、本実施形態は、対象となるものはプレパラート300に限定されるものではなく、色彩を補正するためのカラーチャート(カラーフィルタ)や、明るさを補正するための減光フィルタ(ND(Neutral Density)フィルタ)や、解像度を調整するためのパターンチャート(パターン基板)に対して適用することができる。これらも、プレパラート300と同様に、静電気等のために、異物900の付着を避けることが難しい。そこで、このような変形例を、図9から図11を参照して説明する。図9から図11は、本実施形態に係る画像処理方法の変形例を説明するための説明図である。
上述した第1の実施形態においては、生体標本910が搭載されていないプレパラート300の複数の画像データ800を取得し、それらを合成して、異物(ゴミ)900が映り込んでいない補正用合成画像810を生成していた。しかしながら、本実施形態は、対象となるものはプレパラート300に限定されるものではなく、色彩を補正するためのカラーチャート(カラーフィルタ)や、明るさを補正するための減光フィルタ(ND(Neutral Density)フィルタ)や、解像度を調整するためのパターンチャート(パターン基板)に対して適用することができる。これらも、プレパラート300と同様に、静電気等のために、異物900の付着を避けることが難しい。そこで、このような変形例を、図9から図11を参照して説明する。図9から図11は、本実施形態に係る画像処理方法の変形例を説明するための説明図である。
まずは、図9を参照して、色彩を補正するためのカラーチャート(カラーフィルタ)の変形例を説明する。カラーチャートは、照明光のうち所定の波長の光を選択的に透過可能なフィルタであって、所定の色彩の基準となる。従って、カラーチャートの画像データを用いることにより、生体標本910の画像データ830の色彩を補正することができる。しかしながら、カラーチャートに関しても、プレパラート300と同様に、異物(ゴミ)900の付着を避けることが難しいことから、カラーチャートの画像データにも、異物900の像がどうしても残ってしまう。そこで、上述した第1の実施形態をカラーチャートに適用することにより、異物900の像が除去された、カラーチャートの画像データを得ることができるようになる。
詳細には、本変形例においては、図9に示すように、ステージ108にカラーチャートを搭載し、所定の方向に沿って順次移動させて撮影を行い、複数の、カラーチャートの画像データ800c、800dを取得する。次に、本変形例においては、複数の画像データ800c、800dにおける同一の分割領域700の中央値、最大値等を用いて、補正用合成画像810aを取得することにより、異物(ゴミ)900の像が除去されたカラーチャートの画像データを得ることが可能となる。さらに、本変形例においては、光学系の影響(例えば、歪、輝度ムラ)が含まれる生体標本910の画像データ830を、光学系の影響が含まれる、カラーチャートの補正用合成画像810で補正を行うことにより、光学系の影響が除去された、クリアな生体標本910の画像データ830を得ることができる。
なお、図9では、画像データ800c、800dは、2つしか図示されていないが、本変形例においては、2つであることに限定されるものではなく、2つ以上であればよい。また、図9においては、わかりやすくするために、光学系の影響による輝度ムラの図示を省略している。
また、本変形例においては、カラーチャートへの適用に限定されるものではなく、減光フィルタにも適用することができる。減光フィルタは、照明光の一部を選択的に透過可能なフィルタであって、例えば、10%、20%、30%等の決まった透過率を持ち、輝度の基準とすることができる。従って、減光フィルタの画像データを用いることにより、生体標本910の画像データ830の輝度を補正することができる。しかしながら、減光フィルタに関しても、プレパラート300と同様に、異物(ゴミ)900の付着を避けることが難しいことから、減光フィルタの画像データにも、異物900の像がどうしても残ってしまう。そこで、上述した第1の実施形態を減光フィルタに適用することにより、異物900の像が除去された、減光フィルタの画像データを得ることができるようになる。
次に、図10及び図11を参照して、解像度を補正するためのパターンチャート(パターン基板)の変形例を説明する。パターンチャートは、照明光を透過可能なフィルタ(第1のフィルタ)と照明光に対して不透過なフィルタ(第2のフィルタ)とを市松模様状(所定のパターン)に配置することにより構成されたフィルタであって、解像度の基準となる。従って、パターンチャートの画像データを用いることにより、生体標本910の画像データ830の色を補正することができる。しかしながら、パターンチャートに関しても、プレパラート300と同様に、異物(ゴミ)900の付着を避けることが難しいことから、パターンチャートの画像データにも、異物900の像がどうしても残ってしまう。そこで、上述した第1の実施形態をパターンチャートに適用することにより、異物900の像が除去された、パターンチャートの画像データを得ることができるようになる。なお、本変形例においては、パターンチャートは、市松模様状であることに限定されるものではなく、円形状、螺旋状、線状パターン(例えば、USAFテストターゲット)であってもよい。
詳細には、本変形例においては、図10に示すように、ステージ108にパターンチャートを搭載し、所定の方向に沿って順次移動させて撮影を行い、複数の、パターンチャートの画像データ800e、800fを取得する。この際、本変形例においては、パターンチャートのパターンの繰り返しにおける位相に従った方向及び距離に基づき、パターンチャートを移動させることが好ましい。次に、本変形例においては、複数の画像データ800e、800fにおける同一の分割領域700の中央値、最大値等を用いて、補正用合成画像810bを取得することにより、異物(ゴミ)900の像が除去されたパターンチャートの画像データを得ることが可能となる。この際、本変形例においては、複数の画像データ800e、800f間で、上記位相がそろうようにして、補正用合成画像810bを生成することが好ましい。
さらに、本変形例においては、図11に示すように、光学系の影響(例えば、歪、輝度ムラ)が含まれる補正用合成画像810bを、第1の実施形態の、光学系の影響が含まれる、プレパラート300の補正用合成画像810で補正を行うことにより、光学系の影響が除去された、クリアなパターンチャートの画像データ810cを得ることができる。得られた画像データ810cは、解像度の基準として用いることができる。
なお、図10では、画像データ800e、800fは、2つしか図示されていないが、本変形例においては、2つであることに限定されるものではなく、2つ以上であればよい。また、本実施形態においては、パターンチャートは、市松模様であることに限定されるものではなく、他のパターンであってもよい。
<<3. 第2の実施形態>>
上述の本開示の第1の実施形態においては予め設定した回数だけ、ステージ108を移動させて、プレパラート300の画像データ800を取得していたが、このような場合、取得した複数の画像データ800の一部に、例えば、異物(ゴミ)900の像がない画像データ800が複数枚含まれることがある。そして、この場合、何枚新たに画像データ800を取得しても、最終的に合成される補正用合成画像810には変化がないため、無駄な画像データ800の取得を行ったこととなる。すなわち、画像処理システム10は、無駄な新たな画像データ800の取得のために、処理時間を浪費してしまったこととなる。そこで、以下に説明する本開示の第2の実施形態においては、以下のようにして、上述のような時間の浪費を避ける。詳細には、本実施形態においては、ステージ108を移動させて、プレパラート300の画像データ800を取得し、補正用合成画像810を取得し、この前に取得された補正用合成画像810と差分がない場合には、新たな画像データ800の取得を停止する。このようにすることで、本実施形態によれば、画像データ800の取得回数を減らすことができ、新たな画像データ800の取得のために、時間を浪費することを避けることができる。
上述の本開示の第1の実施形態においては予め設定した回数だけ、ステージ108を移動させて、プレパラート300の画像データ800を取得していたが、このような場合、取得した複数の画像データ800の一部に、例えば、異物(ゴミ)900の像がない画像データ800が複数枚含まれることがある。そして、この場合、何枚新たに画像データ800を取得しても、最終的に合成される補正用合成画像810には変化がないため、無駄な画像データ800の取得を行ったこととなる。すなわち、画像処理システム10は、無駄な新たな画像データ800の取得のために、処理時間を浪費してしまったこととなる。そこで、以下に説明する本開示の第2の実施形態においては、以下のようにして、上述のような時間の浪費を避ける。詳細には、本実施形態においては、ステージ108を移動させて、プレパラート300の画像データ800を取得し、補正用合成画像810を取得し、この前に取得された補正用合成画像810と差分がない場合には、新たな画像データ800の取得を停止する。このようにすることで、本実施形態によれば、画像データ800の取得回数を減らすことができ、新たな画像データ800の取得のために、時間を浪費することを避けることができる。
以下に、本開示の第2の実施形態の詳細を説明するが、本実施形態に係る、画像処理システム10、顕微鏡100、及び、画像処理装置200の機能構成例については、第1の実施形態と共通するため、ここではこれらの説明を省略する。
<3.1 統合制御部の機能構成例>
まずは、図12を参照して、本実施形態に係る統合制御部240aの機能構成例を詳細に説明する。図12は、本実施形態に係る統合制御部240aの構成例を示すブロック図である。図12に示すように、統合制御部240aは、画像取得部242、246、画像合成部244及び補正部248と、検出部250と、判定部252とを主に有することができる。以下に、統合制御部240aの各機能ブロックについて順次説明する。なお、以下においては、本実施形態に係る統合制御部240aの一部の機能ブロックは、既に説明した第1の実施形態に係る統合制御部240の構成と共通するため、ここでは、共通する機能ブロックについての説明を省略する。
まずは、図12を参照して、本実施形態に係る統合制御部240aの機能構成例を詳細に説明する。図12は、本実施形態に係る統合制御部240aの構成例を示すブロック図である。図12に示すように、統合制御部240aは、画像取得部242、246、画像合成部244及び補正部248と、検出部250と、判定部252とを主に有することができる。以下に、統合制御部240aの各機能ブロックについて順次説明する。なお、以下においては、本実施形態に係る統合制御部240aの一部の機能ブロックは、既に説明した第1の実施形態に係る統合制御部240の構成と共通するため、ここでは、共通する機能ブロックについての説明を省略する。
(検出部250)
検出部250は、既知の画像解析技術を用いて、記憶部270から取得した補正用合成画像(第1の補正用合成画像)810と、画像取得部242から新たに取得した画像データ800を用いて新たに合成した補正用合成画像(第2の補正用合成画像)810との差分を検出することができる。例えば、検出部250は、画像をグレースケールに変換して階調差によって差分を検出してもよく、画像の色情報の差分を検出することにより画像の差分を検出してもよく、本実施形態においては、差分を検出する手法が特に限定されるものではない。さらに、検出部250は、検出結果を後述する判定部252へ出力する。
検出部250は、既知の画像解析技術を用いて、記憶部270から取得した補正用合成画像(第1の補正用合成画像)810と、画像取得部242から新たに取得した画像データ800を用いて新たに合成した補正用合成画像(第2の補正用合成画像)810との差分を検出することができる。例えば、検出部250は、画像をグレースケールに変換して階調差によって差分を検出してもよく、画像の色情報の差分を検出することにより画像の差分を検出してもよく、本実施形態においては、差分を検出する手法が特に限定されるものではない。さらに、検出部250は、検出結果を後述する判定部252へ出力する。
(判定部252)
判定部252は、検出部250の検出結果に応じて、さらに画像データ800を取得するかどうかを判定することができる。詳細には、判定部252は、検出部250により差分が検出されなかった場合には、さらに画像データ800を取得しないと判定する。一方、判定部252は、差分が検出された場合には、さらに画像データ800を取得すると判定し、画像データ800を取得するように、撮影制御部210、ステージ制御部220及び照明制御部230を制御する。
判定部252は、検出部250の検出結果に応じて、さらに画像データ800を取得するかどうかを判定することができる。詳細には、判定部252は、検出部250により差分が検出されなかった場合には、さらに画像データ800を取得しないと判定する。一方、判定部252は、差分が検出された場合には、さらに画像データ800を取得すると判定し、画像データ800を取得するように、撮影制御部210、ステージ制御部220及び照明制御部230を制御する。
なお、本実施形態においては、統合制御部240aは、図12に示される構成に限定されるものではなく、他の機能ブロックをさらに含んでもよい。
<3.2 画像処理方法>
次に、図13を参照して、本実施形態に係る画像処理方法について説明する。図13は、本実施形態に係る画像処理方法の一例を示すフローチャートである。詳細には、図13に示すように、本実施形態に係る画像処理方法は、ステップS201からステップS208までのステップを含むことができる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。
次に、図13を参照して、本実施形態に係る画像処理方法について説明する。図13は、本実施形態に係る画像処理方法の一例を示すフローチャートである。詳細には、図13に示すように、本実施形態に係る画像処理方法は、ステップS201からステップS208までのステップを含むことができる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。
なお、図13に示されるステップS201からステップS204は、図6に示される、第1の実施形態に係る画像処理方法のステップS101からステップS104と同様であるため、ここでは、これらステップの説明を省略する。
画像処理装置200は、各画像データ800を複数の分割領域700に分割し、各分割領域700のRGBごとの輝度値を取得し、複数の画像データ800の集合における、分割領域700ごとの輝度値の中央値(median)を抽出する。さらに、画像処理装置200は、抽出した輝度値の中央値を、対応する分割領域700に配置することにより、上記補正用合成画像810を取得する(ステップS205)。
次に、画像処理装置200は、2回以上を撮影し、且つ、記憶部270から取得したt-1枚の画像データ800を用いて合成した補正用合成画像(第1の補正用合成画像)810と、画像取得部242から新たに取得した画像データ800を用いて新たに合成した、t枚の画像データ800の合成である補正用合成画像(第2の補正用合成画像)810との間に差分があるかどうかを判定する(ステップS206)。そして、画像処理装置200は、2回以上を撮影し、且つ、差分がないと判定した場合(ステップS206:Yes)には、ステップS208の処理へ進み、2回以上を撮影していない、又は、差分があると判定した場合(ステップS206:No)には、ステップS207の処理へ進む。
そして、画像処理装置200は、ステージ108を照射光の光軸と垂直に交わる平面上に位置するX軸-Y軸方向に沿って移動させる(ステップS207)。そして、画像処理装置200は、ステップS204の処理へ戻る。
画像処理装置200は、ステップS206における、t枚の画像データ800の合成である補正用合成画像(第2の補正用合成画像)810を最終的な補正用合成画像810として取得する(ステップS208)。
以上のように、本実施形態によれば、画像データ800の取得回数を減らすことができ、新たな画像データ800の取得のために、時間を浪費することを避けることができる。
<<4. 第3の実施形態>>
また、本開示においては、直接的に異物(ゴミ)900の像を抽出することにより、生体標本910の画像データから異物900の像を除去して、クリアな生体標本910の画像データを得てもよい。このような実施形態によれば、生体標本910の画像データから、容易に異物900の像を除去することができることから、生体標本910の画像データの補正の質をより向上させることができる。
また、本開示においては、直接的に異物(ゴミ)900の像を抽出することにより、生体標本910の画像データから異物900の像を除去して、クリアな生体標本910の画像データを得てもよい。このような実施形態によれば、生体標本910の画像データから、容易に異物900の像を除去することができることから、生体標本910の画像データの補正の質をより向上させることができる。
以下に、このような本開示の第3の実施形態について説明する。以下の実施形態は、プレパラート(基板)300に生体標本910を搭載して、当該生体標本を観察する際に適用される場合を例に説明する。なお、本開示の第3の実施形態の詳細を説明するが、本実施形態に係る、画像処理システム10、顕微鏡100、及び、画像処理装置200の機能構成例については、第1の実施形態と共通するため、ここではこれらの説明を省略する。
<4.1 統合制御部の機能構成例>
まずは、図14を参照して、本実施形態に係る統合制御部240bの機能構成例を詳細に説明する。図14は、本実施形態に係る統合制御部240bの構成例を示すブロック図である。図14に示すように、統合制御部240bは、画像取得部242b、246bと、補正部248bと、抽出部254と、アラーム部256と、停止制御部258とを主に有することができる。以下に、統合制御部240bの各機能ブロックについて順次説明する。
まずは、図14を参照して、本実施形態に係る統合制御部240bの機能構成例を詳細に説明する。図14は、本実施形態に係る統合制御部240bの構成例を示すブロック図である。図14に示すように、統合制御部240bは、画像取得部242b、246bと、補正部248bと、抽出部254と、アラーム部256と、停止制御部258とを主に有することができる。以下に、統合制御部240bの各機能ブロックについて順次説明する。
(画像取得部242b、246b)
画像取得部242b(第2の画像取得部)は、ステージ108を、載置面に対して垂直となる方向(光源部102の照射光の光軸の沿ったZ軸)に沿って移動させて撮影した、プレパラート300に付着した異物(ゴミ)900に焦点を合わせて取得した異物900の画像データ(第2の画像データ)を、顕微鏡100から取得することができる。そして、画像取得部242bは、取得した画像データを、後述する抽出部254に出力することができる。
画像取得部242b(第2の画像取得部)は、ステージ108を、載置面に対して垂直となる方向(光源部102の照射光の光軸の沿ったZ軸)に沿って移動させて撮影した、プレパラート300に付着した異物(ゴミ)900に焦点を合わせて取得した異物900の画像データ(第2の画像データ)を、顕微鏡100から取得することができる。そして、画像取得部242bは、取得した画像データを、後述する抽出部254に出力することができる。
また、画像取得部246b(第1の画像取得部)は、ステージ108を、載置面に対して垂直となる方向(光源部102の照射光の光軸の沿ったZ軸)に沿って移動させて撮影した、プレパラート300に搭載された生体標本910に焦点を合わせて取得した生体標本910の画像データ(第1の画像データ)を、顕微鏡100から取得することができる。そして、画像取得部246bは、取得した画像データを、後述する補正部248bに出力することができる。すなわち、本実施形態においては、生体標本910が搭載されたプレパラート300を載せ替えることなく、ステージ108のZ軸に沿った移動により、生体標本910の画像データ及び異物900の画像データを取得する。
(補正部248b)
補正部248bは、画像取得部246bから出力された生体標本910の画像データを、後述する抽出部254で抽出された異物(ゴミ)900の像の画像データを用いて画像処理を行うことにより、異物900の像を含まない、クリアな生体標本910の画像データを得ることができる。
補正部248bは、画像取得部246bから出力された生体標本910の画像データを、後述する抽出部254で抽出された異物(ゴミ)900の像の画像データを用いて画像処理を行うことにより、異物900の像を含まない、クリアな生体標本910の画像データを得ることができる。
(抽出部254)
抽出部254は、画像取得部242bから出力されたプレパラート300に付着した異物(ゴミ)900に焦点を合わせて取得した異物900の画像データから、異物900の像を抽出し、異物900の画像データを生成することができる。詳細には、例えば、抽出部254は、画像取得部242bから出力されたプレパラート300に付着した異物900に焦点を合わせて取得した異物900の画像データを、上述した第1の実施形態と同様に、上述のセンサ部104の画素の配列に従って複数の分割領域700に分割し、各分割領域700のRGB(RGB信号)ごとの輝度値(赤色の光の輝度値、緑色の光の輝度値、青色の光の輝度値)を取得する。そして、先に説明したように、画像データ上では、プレパラート300に付着する異物900の像の輝度値は低い(すなわち、暗い)。そこで、抽出部254は、輝度値を所定の閾値と比較して、所定の閾値よりも低い、すなわち、暗い輝度値を持つ部分を抽出することにより異物900の像を抽出することができる。なお、本実施形態においては、抽出部254は、機械学習によって得られたモデルを用いて、所定の特徴を持つ輪郭を抽出することにより、異物900の像を抽出してもよい。
抽出部254は、画像取得部242bから出力されたプレパラート300に付着した異物(ゴミ)900に焦点を合わせて取得した異物900の画像データから、異物900の像を抽出し、異物900の画像データを生成することができる。詳細には、例えば、抽出部254は、画像取得部242bから出力されたプレパラート300に付着した異物900に焦点を合わせて取得した異物900の画像データを、上述した第1の実施形態と同様に、上述のセンサ部104の画素の配列に従って複数の分割領域700に分割し、各分割領域700のRGB(RGB信号)ごとの輝度値(赤色の光の輝度値、緑色の光の輝度値、青色の光の輝度値)を取得する。そして、先に説明したように、画像データ上では、プレパラート300に付着する異物900の像の輝度値は低い(すなわち、暗い)。そこで、抽出部254は、輝度値を所定の閾値と比較して、所定の閾値よりも低い、すなわち、暗い輝度値を持つ部分を抽出することにより異物900の像を抽出することができる。なお、本実施形態においては、抽出部254は、機械学習によって得られたモデルを用いて、所定の特徴を持つ輪郭を抽出することにより、異物900の像を抽出してもよい。
なお、本実施形態においては、輝度値として、RGB(RGB信号)の輝度値を取得するものとして説明したが、本実施形態においては、これに限定されるものではなく、例えば、第1の実施形態と同様に、HLS色空間における輝度値を取得してもよい。さらに、本実施形態においても、第1の実施形態と同様に、HLS色空間の輝度を用いることに限定されるものではなく、YCC色空間における輝度値を取得してもよい。
(アラーム部256)
アラーム部(提示部)256は、抽出部254により、予め設定された所定の数以上の異物(ゴミ)900の像が抽出された場合に、ユーザにアラーム(警告)を提示することができる。
アラーム部(提示部)256は、抽出部254により、予め設定された所定の数以上の異物(ゴミ)900の像が抽出された場合に、ユーザにアラーム(警告)を提示することができる。
(停止制御部258)
停止制御部258は、抽出部254により、予め設定された所定の数以上の異物(ゴミ)900の像が抽出された場合に、画像取得部242b、246b、抽出部254、及び補正部248b等の動作を停止させることができる。
停止制御部258は、抽出部254により、予め設定された所定の数以上の異物(ゴミ)900の像が抽出された場合に、画像取得部242b、246b、抽出部254、及び補正部248b等の動作を停止させることができる。
なお、本実施形態においては、統合制御部240bは、図14に示される構成に限定されるものではなく、他の機能ブロックをさらに含んでもよい。
<4.2 画像処理方法>
次に、図15から図17を参照して、本実施形態に係る画像処理方法について説明する。図15は、本実施形態に係る画像処理方法の一例を示すフローチャートであり、図16及び図17は、本実施形態に係る画像処理方法を説明するための説明図である。詳細には、図15に示すように、本実施形態に係る画像処理方法は、ステップS301からステップS306までのステップを含むことができる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。
次に、図15から図17を参照して、本実施形態に係る画像処理方法について説明する。図15は、本実施形態に係る画像処理方法の一例を示すフローチャートであり、図16及び図17は、本実施形態に係る画像処理方法を説明するための説明図である。詳細には、図15に示すように、本実施形態に係る画像処理方法は、ステップS301からステップS306までのステップを含むことができる。以下に、本実施形態に係るこれら各ステップの詳細について説明する。
ユーザは、なるべく、異物(ゴミ)900の付着が少ないプレパラート300を準備し、生体標本910を搭載する。そして、ユーザは、生体標本の搭載されたプレパラート300をステージ108に搭載する(ステップS301)。次に、顕微鏡100は、プレパラート300上の生体標本910に焦点を合わせた状態で、生体標本910の撮影を行い、画像データ820aを取得する(ステップS302)。例えば、図16に示すような、ぼやけた異物900の像が映り込んだ画像データ820aを取得することができる。
そして、画像処理装置200は、ステージ108を光軸(Z軸)に沿って移動させる(ステップS303)。次に、顕微鏡100は、プレパラート300に付着した異物(ゴミ)900に焦点を合わせた状態で撮影を行い、画像データ820bを取得する(ステップS304)。例えば、図16に示すような、鮮明な異物900の像が映り込んだ画像データ820bを取得することができる。
次に、画像処理装置200は、図16に示すように、ステップS304で取得した画像データ820bから、異物(ゴミ)900の像の画像データ840を抽出する(ステップS305)。そして、画像処理装置200は、ステップS302で取得した画像データ820aから、ステップS305で取得した画像データ840を除去することにより、図16に示すような、補正済みのクリアな生体標本910の画像データ830を生成する(ステップS306)。
なお、本実施形態においては、輝度値と比較を行う閾値は、以下のようにして決定してもよい。例えば、画像処理装置200は、プレパラート300に付着した異物(ゴミ)900に焦点を合わせて取得した異物(ゴミ)900の画像データ820bから、図17に示すような、輝度値の分布(ヒストグラム)を取得する。そして、画像処理装置200は、当該分布から、十分に暗いと判断される値、すなわち、輝度値の分布における一番高いピークの裾にある輝度値の値を閾値として設定する。
また、本実施形態においては、リカレントニューラルネットワーク等による機械学習を利用して、異物(ゴミ)900の像の特徴点、特徴量を抽出し、異物900の像を抽出するためのモデル(データベース)を予め生成してもよい。例えば、教師付き学習、半教師付き学習、教師無し学習等を利用することができる。そして、抽出部254は、このように生成されたモデルを用いて、異物900の像を抽出することができる。
また、本実施形態においては、直接的に異物(ゴミ)900の像を抽出することにより、生体標本910の画像データ820aから異物900の像を除去して、クリアな生体標本910の画像データ830を得ることができる。
以上のように、本実施形態によれば、生体標本910の画像データ820aから、容易に異物(ゴミ)900の像を除去することができることから、生体標本910の画像データ820aの補正の質をより向上させることができる。
<<5. まとめ>>
以上のように、本開示の各実施形態によれば、生体標本910の画像データの補正の質をより向上させることができる。その結果、各実施形態によれば、複数の生体標本910の画像データをつなぎ合わせたステッチング画像であっても、自然な画像を得ることができ、また、非常に細かい感染症の細菌等の像等に基づいて、容易に病理診断することもできる。
以上のように、本開示の各実施形態によれば、生体標本910の画像データの補正の質をより向上させることができる。その結果、各実施形態によれば、複数の生体標本910の画像データをつなぎ合わせたステッチング画像であっても、自然な画像を得ることができ、また、非常に細かい感染症の細菌等の像等に基づいて、容易に病理診断することもできる。
なお、上述した本開示の実施形態においては、撮影対象は、生体標本910に限定されるものではなく、細かな機械的構造等であってもよく、特に限定されるものではない。また、上述した本開示の実施形態は、医療又は研究等の用途へ適用することに限定されるものではなく、画像を用いて高精度の解析や抽出を行うことが求められる用途であれば、特に限定されるものではない。
例えば、上記では、顕微鏡100及び画像処理装置200を有する画像処理システム10について主に説明した。しかし、これらの一部を有する情報処理システムも提供され得る。例えば、顕微鏡100及び画像処理装置200の一部または全部を有する情報処理システムも提供され得る。このとき、情報処理システムは、装置全体(ハードウェアとソフトウェアとの組み合わせ)同士の組み合わせでなくてもよい。
例えば、顕微鏡100及び画像処理装置200のうち、第1の装置(ハードウェアとソフトウェアとの組み合わせ)と、第2の装置のソフトウェアとを有する情報処理システムも提供され得る。一例として、顕微鏡100(ハードウェアとソフトウェアとの組み合わせ)と、画像処理装置200のソフトウェアとを有する情報処理システムも提供され得る。このように、本開示の実施形態によれば、顕微鏡100及び画像処理装置200から任意に選択された複数の構成を含んだ画像処理システムも提供され得る。
<<6. 応用例>>
本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、医師等が患者から採取された細胞や組織を観察して病変を診断する病理診断システムやその支援システム等(以下、診断支援システムと称する)に適用されてもよい。この診断支援システムは、デジタルパソロジー技術を利用して取得された画像に基づいて病変を診断又はその支援をするWSI(Whole Slide Imaging)システムであってもよい。
本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、医師等が患者から採取された細胞や組織を観察して病変を診断する病理診断システムやその支援システム等(以下、診断支援システムと称する)に適用されてもよい。この診断支援システムは、デジタルパソロジー技術を利用して取得された画像に基づいて病変を診断又はその支援をするWSI(Whole Slide Imaging)システムであってもよい。
図18は、本開示に係る技術が適用される診断支援システム5500の概略的な構成の一例を示す図である。図18に示すように、診断支援システム5500は、1以上の病理システム5510を含む。さらに、診断支援システム5500は、医療情報システム5530と、導出装置5540とを含んでもよい。
1以上の病理システム5510それぞれは、主に病理医が使用するシステムであり、例えば研究所や病院に導入される。各病理システム5510は、互いに異なる病院に導入されてもよく、それぞれWAN(Wide Area Network)(インターネットを含む)やLAN(Local Area Network)や公衆回線網や移動体通信網などの種々のネットワークを介して医療情報システム5530及び導出装置5540に接続される。
各病理システム5510は、顕微鏡(詳細には、デジタル撮影技術と組み合わされて用いられる顕微鏡)5511と、サーバ5512と、表示制御装置5513と、表示装置5514とを含む。
顕微鏡5511は、光学顕微鏡の機能を有し、ガラススライドに収められた観察対象物を撮影し、デジタル画像である病理画像を取得する。観察対象物とは、例えば、患者から採取された組織や細胞であり、臓器の肉片、唾液、血液等であってよい。例えば、顕微鏡5511が図1に示される顕微鏡100として機能する。
サーバ5512は、顕微鏡5511によって取得された病理画像を図示しない記憶部に記憶、保存する。また、サーバ5512は、表示制御装置5513から閲覧要求を受け付けた場合に、図示しない記憶部から病理画像を検索し、検索された病理画像を表示制御装置5513に送る。例えば、サーバ5512が本開示の実施形態に係る画像処理装置200として機能する。
表示制御装置5513は、ユーザから受け付けた病理画像の閲覧要求をサーバ5512に送る。そして、表示制御装置5513は、サーバ5512から受け付けた病理画像を、液晶、EL(Electro‐Luminescence)、CRT(Cathode Ray Tube)などを用いた表示装置5514に表示させる。なお、表示装置5514は、4Kや8Kに対応していてもよく、また、1台に限られず、複数台であってもよい。
ここで、観察対象物が臓器の肉片等の固形物である場合、この観察対象物は、例えば、染色された薄切片であってよい。薄切片は、例えば、臓器等の検体から切出されたブロック片を薄切りすることで作製されてもよい。また、薄切りの際には、ブロック片がパラフィン等で固定されてもよい。
薄切片の染色には、HE(Hematoxylin-Eosin)染色などの組織の形態を示す一般染色や、特殊染色、IHC(Immunohistochemistry)染色などの組織の免疫状態を示す免疫染色や蛍光免疫染色など、種々の染色が適用されてよい。その際、1つの薄切片が複数の異なる試薬を用いて染色されてもよいし、同じブロック片から連続して切り出された2以上の薄切片(隣接する薄切片ともいう)が互いに異なる試薬を用いて染色されてもよい。
顕微鏡5511は、低解像度で撮影するための低解像度撮影部と、高解像度で撮影するための高解像度撮影部とを含み得る。低解像度撮影部と高解像度撮影部とは、異なる光学系であってもよいし、同一の光学系であってもよい。同一の光学系である場合には、顕微鏡5511は、撮影対象に応じて解像度が変更されてもよい。
観察対象物が収容されたガラススライドは、顕微鏡5511の画角内に位置するステージ上に載置される。顕微鏡5511は、まず、低解像度撮影部を用いて画角内の全体画像を取得し、取得した全体画像から観察対象物の領域を特定する。続いて、顕微鏡5511は、観察対象物が存在する領域を所定サイズの複数の分割領域に分割し、各分割領域を高解像度撮影部により順次撮影することで、各分割領域の高解像度画像を取得する。対象とする分割領域の切替えでは、ステージを移動させてもよいし、撮影光学系を移動させてもよいし、それら両方を移動させてもよい。また、各分割領域は、ガラススライドの意図しない滑りによる撮影漏れ領域の発生等を防止するために、隣接する分割領域との間で重複していてもよい。さらに、全体画像には、全体画像と患者とを対応付けておくための識別情報が含まれていてもよい。この識別情報は、例えば、文字列やQRコード(登録商標)等であってよい。
顕微鏡5511で取得された高解像度画像は、サーバ5512に入力される。サーバ5512は、各高解像度画像をより小さいサイズの部分画像(以下、タイル画像と称する)に分割する。例えば、サーバ5512は、1つの高解像度画像を縦横10×10個の計100個のタイル画像に分割する。その際、隣接する分割領域が重複していれば、サーバ5512は、テンプレートマッチング等の技法を用いて互いに隣り合う高解像度画像にステッチング処理を施してもよい。その場合、サーバ5512は、ステッチング処理により貼り合わされた高解像度画像全体を分割してタイル画像を生成してもよい。ただし、高解像度画像からのタイル画像の生成は、上記ステッチング処理の前であってもよい。
また、サーバ5512は、タイル画像をさらに分割することで、より小さいサイズのタイル画像を生成し得る。このようなタイル画像の生成は、最小単位として設定されたサイズのタイル画像が生成されるまで繰り返されてよい。
このように最小単位のタイル画像を生成すると、サーバ5512は、隣り合う所定数のタイル画像を合成することで1つのタイル画像を生成するタイル合成処理を、全てのタイル画像に対して実行する。このタイル合成処理は、最終的に1つのタイル画像が生成されるまで繰り返され得る。このような処理により、各階層が1つ以上のタイル画像で構成されたピラミッド構造のタイル画像群が生成される。このピラミッド構造では、ある層のタイル画像とこの層とは異なる層のタイル画像との画素数は同じであるが、その解像度が異なっている。例えば、2×2個の計4つのタイル画像を合成して上層の1つのタイル画像を生成する場合、上層のタイル画像の解像度は、合成に用いた下層のタイル画像の解像度の1/2倍となっている。
このようなピラミッド構造のタイル画像群を構築することによって、表示対象のタイル画像が属する階層次第で、表示装置に表示される観察対象物の詳細度を切り替えることが可能となる。例えば、最下層のタイル画像が用いられる場合には、観察対象物の狭い領域を詳細に表示し、上層のタイル画像が用いられるほど観察対象物の広い領域が粗く表示されるようにすることができる。
生成されたピラミッド構造のタイル画像群は、例えば、各タイル画像を一意に識別可能な識別情報(タイル識別情報と称する)とともに、不図示の記憶部に記憶される。サーバ5512は、他の装置(例えば、表示制御装置5513や導出装置5540)からタイル識別情報を含むタイル画像の取得要求を受け付けた場合に、タイル識別情報に対応するタイル画像を他の装置へ送信する。
なお、病理画像であるタイル画像は、焦点距離や染色条件等の撮影条件毎に生成されてもよい。撮影条件毎にタイル画像が生成される場合、特定の病理画像とともに、特定の撮影条件と異なる撮影条件に対応する他の病理画像であって、特定の病理画像と同一領域の他の病理画像を並べて表示してもよい。特定の撮影条件は、閲覧者によって指定されてもよい。また、閲覧者に複数の撮影条件が指定された場合には、各撮影条件に対応する同一領域の病理画像が並べて表示されてもよい。
また、サーバ5512は、ピラミッド構造のタイル画像群をサーバ5512以外の他の記憶装置、例えば、クラウドサーバ等に記憶してもよい。さらに、以上のようなタイル画像の生成処理の一部又は全部は、クラウドサーバ等で実行されてもよい。
表示制御装置5513は、ユーザからの入力操作に応じて、ピラミッド構造のタイル画像群から所望のタイル画像を抽出し、これを表示装置5514に出力する。このような処理により、ユーザは、観察倍率を変えながら観察対象物を観察しているような感覚を得ることができる。すなわち、表示制御装置5513は仮想顕微鏡として機能する。ここでの仮想的な観察倍率は、実際には解像度に相当する。
なお、高解像度画像の撮影方法は、どの様な方法を用いてもよい。ステージの停止、移動を繰り返しながら分割領域を撮影して高解像度画像を取得してもよいし、所定の速度でステージを移動しながら分割領域を撮影してストリップ上の高解像度画像を取得してもよい。また、高解像度画像からタイル画像を生成する処理は必須の構成ではなく、ステッチング処理により貼り合わされた高解像度画像全体の解像度を段階的に変化させることで、解像度が段階的に変化する画像を生成してもよい。この場合でも、広いエリア域の低解像度画像から狭いエリアの高解像度画像までを段階的にユーザに提示することが可能である。
医療情報システム5530は、いわゆる電子カルテシステムであり、患者を識別する情報、患者の疾患情報、診断に用いた検査情報や画像情報、診断結果、処方薬などの診断に関する情報を記憶する。例えば、ある患者の観察対象物を撮影することで得られる病理画像は、一旦、サーバ5512を介して保存された後、表示制御装置5513によって表示装置5514に表示され得る。病理システム5510を利用する病理医は、表示装置5514に表示された病理画像に基づいて病理診断を行う。病理医によって行われた病理診断結果は、医療情報システム5530に記憶される。
導出装置5540は、病理画像に対する解析を実行し得る。この解析には、機械学習によって作成された学習モデルを用いることができる。導出装置5540は、当該解析結果として、特定領域の分類結果や組織の識別結果等を導出してもよい。さらに、導出装置5540は、細胞情報、数、位置、輝度情報等の識別結果やそれらに対するスコアリング情報等を導出してもよい。導出装置5540によって導出されたこれらの情報は、診断支援情報として、病理システム5510の表示装置5514に表示されてもよい。
なお、導出装置5540は、1台以上のサーバ(クラウドサーバを含む)等で構成されたサーバシステムであってもよい。また、導出装置5540は、病理システム5510内の例えば表示制御装置5513又はサーバ5512に組み込まれた構成であってもよい。すなわち、病理画像に対する各種解析は、病理システム5510内で実行されてもよい。
本開示に係る技術は、以上説明した構成のうち、先に説明したように、サーバ5512に好適に適用され得る。具体的には、本開示に係る技術は、サーバ5512での画像処理に公的に適用され得る。サーバ5512に本開示に係る技術を適用することにより、より鮮明な病理画像を得ることができるため、病変の診断をより正確に行うことが可能になる。
なお、上記で説明した構成は、診断支援システムに限らず、デジタル撮影技術を利用する、共焦点顕微鏡や蛍光顕微鏡、ビデオ顕微鏡等の生物顕微鏡全般にも適用され得る。ここで、観察対象物は、培養細胞や受精卵、精子等の生体試料、細胞シート、三次元細胞組織等の生体材料、ゼブラフィッシュやマウス等の生体であってもよい。また、観察対象物は、ガラススライドに限らず、ウェルプレートやシャーレ等に保存された状態で観察されることもできる。
さらに、デジタル撮影技術を利用する顕微鏡を用いて取得した観察対象物の静止画像から動画像が生成されてもよい。例えば、所定期間連続的に撮影した静止画像から動画像を生成してもよいし、所定の間隔を空けて撮影した静止画像から画像シーケンスを生成してもよい。このように、静止画像から動画像を生成することで、がん細胞や神経細胞、心筋組織、精子等の拍動や伸長、遊走等の動きや培養細胞や受精卵の分裂過程など、観察対象物の動的な特徴を、機械学習を用いて解析することが可能となる。
<<7. ハードウェア構成>>
上述してきた各実施形態に係る画像処理装置200等の情報機器は、例えば図19に示すような構成のコンピュータ1000によって実現される。以下、本開示の実施形態に係る画像処理装置200を例に挙げて説明する。図19は、画像処理装置200の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
上述してきた各実施形態に係る画像処理装置200等の情報機器は、例えば図19に示すような構成のコンピュータ1000によって実現される。以下、本開示の実施形態に係る画像処理装置200を例に挙げて説明する。図19は、画像処理装置200の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
CPU1100は、ROM1300又はHDD1400に保存されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に保存されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。
ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を保存する。
HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る画像処理プログラムを記録する記録媒体である。
通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。
入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、コンピュータ読み取り可能な所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
例えば、コンピュータ1000が本開示の実施形態に係る画像処理装置200として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた画像処理プログラムを実行することにより、統合制御部240等の機能を実現する。また、HDD1400には、本開示に係る情報処理プログラムや、記憶部270内のデータが保存されてもよい。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置から情報処理プログラムを取得してもよい。
また、本実施形態に係る画像処理装置200は、例えばクラウドコンピューティング等のように、ネットワークへの接続(または各装置間の通信)を前提とした、複数の装置からなるシステムに適用されてもよい。つまり、上述した本実施形態に係る画像処理装置200は、例えば、複数の装置により本実施形態に係る画像処理システム10として実現することも可能である。
以上、画像処理装置200のハードウェア構成の一例を示した。上記の各構成要素は、汎用的な部材を用いて構成されていてもよいし、各構成要素の機能に特化したハードウェアにより構成されていてもよい。かかる構成は、実施する時々の技術レベルに応じて適宜変更され得る。
<<8. 補足>>
なお、先に説明した本開示の実施形態は、例えば、上記で説明したような画像処理装置又は情報撮影システムで実行される画像処理方法、画像処理装置を機能させるためのプログラム、及びプログラムが記録された一時的でない有形の媒体を含みうる。また、当該プログラムをインターネット等の通信回線(無線通信も含む)を介して頒布してもよい。
なお、先に説明した本開示の実施形態は、例えば、上記で説明したような画像処理装置又は情報撮影システムで実行される画像処理方法、画像処理装置を機能させるためのプログラム、及びプログラムが記録された一時的でない有形の媒体を含みうる。また、当該プログラムをインターネット等の通信回線(無線通信も含む)を介して頒布してもよい。
また、上述した本開示の実施形態の画像処理方法における各ステップは、必ずしも記載された順序に沿って処理されなくてもよい。例えば、各ステップは、適宜順序が変更されて処理されてもよい。また、各ステップは、時系列的に処理される代わりに、一部並列的に又は個別的に処理されてもよい。さらに、各ステップの処理についても、必ずしも記載された方法に沿って処理されなくてもよく、例えば、他の機能部によって他の方法により処理されていてもよい。
上記各実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、本技術は以下のような構成も取ることができる。
(1)
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御するステージ制御部と、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部と、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部と、
を備える、画像処理装置。
(2)
前記画像合成部は、
前記各画像データを複数の分割領域に分割し、
前記各分割領域の画素値を取得し、
前記複数の画像データにおける同一の前記分割領域の前記画素値の中央値又は最大値を抽出することにより、前記補正用合成画像を合成する、
上記(1)に記載の画像処理装置。
(3)
マトリックス状に配置された複数の画素を有する前記画像センサ部をさらに備え、
前記画像合成部は、前記複数の画素の配置に従って、前記各画像データを前記複数の分割領域に分割する、
上記(2)に記載の画像処理装置。
(4)
前記画素値は、各画素の輝度値である、上記(3)に記載の画像処理装置。
(5)
前記画素値は、HLS信号又はYCC信号の輝度値である、上記(3)に記載の画像処理装置。
(6)
前記複数の画素は、対応する色の画素信号をそれぞれ取得する、
上記(3)に記載の画像処理装置。
(7)
前記画像センサ部は、対応する色の前記画像データをそれぞれ取得する複数のセンサ部を有する、上記(3)に記載の画像処理装置。
(8)
前記ステージをさらに備える、
上記(3)~(7)のいずれか1つに記載の画像処理装置。
(9)
前記補正用基板に向かって照明光を照射する照明部をさらに備える、
上記(8)に記載の画像処理装置。
(10)
前記ステージは、前記補正用基板を、前記照明光の光軸と垂直に交わる平面上で移動させる、上記(9)に記載の画像処理装置。
(11)
前記照明部は、前記ステージを挟んで、前記画像センサ部と対向する、上記(9)又は(10)に記載の画像処理装置。
(12)
前記補正用基板は、前記照明光を透過可能なガラス基板である、上記(9)~(11)のいずれか1つに記載の画像処理装置。
(13)
前記補正用基板は、前記生体標本を搭載可能なプレパラートである、上記(12)に記載の画像処理装置。
(14)
前記補正用基板は、前記照明光を選択的に透過可能なフィルタである、上記(9)~(11)のいずれか1つに記載の画像処理装置。
(15)
前記フィルタは、減光フィルタ又はカラーフィルタである、上記(14)に記載の画像処理装置。
(16)
前記補正用基板は、所定のパターンを有するパターン基板である、上記(9)~(11)のいずれか1つに記載の画像処理装置。
(17)
前記パターン基板は、前記照明光を透過可能な第1のフィルタと前記照明光に対して不透過な第2のフィルタとが市松模様状に配置されることから形成されるパターンを有する、上記(16)に記載の画像処理装置。
(18)
前記補正用合成画像を用いて、前記生体標本の画像を補正する補正部をさらに備える、上記(1)~(17)のいずれか1つに記載の画像処理装置。
(19)
前回取得した第1の補正用合成画像と、新たに取得した前記画像データを用いて新たに合成した第2の補正用合成画像との差分を検出する検出部と、
前記検出部の検出結果に応じて、さらに前記画像データを取得するかどうかを判定する判定部と、
をさらに備える、上記(1)に記載の画像処理装置。
(20)
画像処理装置が、
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御することと、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得することと、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得することと、
を含む、画像処理方法。
(21)
画像処理装置と、
画像処理を前記画像処理装置に実行させるためのプログラムと、
を含む、画像処理システムであって、
前記画像処理装置は、前記プログラムに従って、
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御するステージ制御部と、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部と、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部と、
として機能する、画像処理システム。
(22)
画像センサ部から、基板に搭載された生体標本に焦点を合わせた状態での第1の画像データを取得する第1の画像取得部と、
前記画像センサ部から、前記基板に付着した異物に焦点を合わせた状態での第2の画像データを取得する第2の画像取得部と、
前記第2の画像データから前記異物の像を抽出し、前記異物の画像データを生成する抽出部と、
前記第1の画像データから前記異物の画像データを除去することより、前記第1の画像データを補正する補正部と、
を備える、画像処理装置。
(23)
前記基板に向かって照明光を照射する照明部をさらに備える、上記(22)に記載の画像処理装置。
(24)
前記基板を支持し、且つ、前記前記基板を前記照明光の光軸に沿って移動させるステージを制御するステージ制御部をさらに備える、上記(23)に記載の画像処理装置。
(25)
前記抽出部は、
前記第2の画像データを複数の分割領域に分割し、
前記各分割領域の画素値を取得し、
前記各分割領域の画素値を所定の閾値を比較することにより、前記異物の像を抽出する、
上記(22)~(24)のいずれか1つに記載の画像処理装置。
(26)
マトリックス状に配置された複数の画素を有する前記画像センサ部をさらに備え、
前記抽出部は、前記複数の画素の配置に従って、前記第2の画像データを前記複数の分割領域に分割する、
上記(25)に記載の画像処理装置。
(27)
前記画素値は、各色の輝度値である、上記(25)又は(26)に記載の画像処理装置。
(28)
前記抽出部は、機械学習によって得られたモデルを用いて、前記第2の画像データから前記異物の像を抽出する、上記(22)~(24)のいずれか1つに記載の画像処理装置。
(29)
前記基板は、プレパラートである、上記(22)~(28)のいずれか1つに記載の画像処理装置。
(1)
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御するステージ制御部と、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部と、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部と、
を備える、画像処理装置。
(2)
前記画像合成部は、
前記各画像データを複数の分割領域に分割し、
前記各分割領域の画素値を取得し、
前記複数の画像データにおける同一の前記分割領域の前記画素値の中央値又は最大値を抽出することにより、前記補正用合成画像を合成する、
上記(1)に記載の画像処理装置。
(3)
マトリックス状に配置された複数の画素を有する前記画像センサ部をさらに備え、
前記画像合成部は、前記複数の画素の配置に従って、前記各画像データを前記複数の分割領域に分割する、
上記(2)に記載の画像処理装置。
(4)
前記画素値は、各画素の輝度値である、上記(3)に記載の画像処理装置。
(5)
前記画素値は、HLS信号又はYCC信号の輝度値である、上記(3)に記載の画像処理装置。
(6)
前記複数の画素は、対応する色の画素信号をそれぞれ取得する、
上記(3)に記載の画像処理装置。
(7)
前記画像センサ部は、対応する色の前記画像データをそれぞれ取得する複数のセンサ部を有する、上記(3)に記載の画像処理装置。
(8)
前記ステージをさらに備える、
上記(3)~(7)のいずれか1つに記載の画像処理装置。
(9)
前記補正用基板に向かって照明光を照射する照明部をさらに備える、
上記(8)に記載の画像処理装置。
(10)
前記ステージは、前記補正用基板を、前記照明光の光軸と垂直に交わる平面上で移動させる、上記(9)に記載の画像処理装置。
(11)
前記照明部は、前記ステージを挟んで、前記画像センサ部と対向する、上記(9)又は(10)に記載の画像処理装置。
(12)
前記補正用基板は、前記照明光を透過可能なガラス基板である、上記(9)~(11)のいずれか1つに記載の画像処理装置。
(13)
前記補正用基板は、前記生体標本を搭載可能なプレパラートである、上記(12)に記載の画像処理装置。
(14)
前記補正用基板は、前記照明光を選択的に透過可能なフィルタである、上記(9)~(11)のいずれか1つに記載の画像処理装置。
(15)
前記フィルタは、減光フィルタ又はカラーフィルタである、上記(14)に記載の画像処理装置。
(16)
前記補正用基板は、所定のパターンを有するパターン基板である、上記(9)~(11)のいずれか1つに記載の画像処理装置。
(17)
前記パターン基板は、前記照明光を透過可能な第1のフィルタと前記照明光に対して不透過な第2のフィルタとが市松模様状に配置されることから形成されるパターンを有する、上記(16)に記載の画像処理装置。
(18)
前記補正用合成画像を用いて、前記生体標本の画像を補正する補正部をさらに備える、上記(1)~(17)のいずれか1つに記載の画像処理装置。
(19)
前回取得した第1の補正用合成画像と、新たに取得した前記画像データを用いて新たに合成した第2の補正用合成画像との差分を検出する検出部と、
前記検出部の検出結果に応じて、さらに前記画像データを取得するかどうかを判定する判定部と、
をさらに備える、上記(1)に記載の画像処理装置。
(20)
画像処理装置が、
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御することと、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得することと、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得することと、
を含む、画像処理方法。
(21)
画像処理装置と、
画像処理を前記画像処理装置に実行させるためのプログラムと、
を含む、画像処理システムであって、
前記画像処理装置は、前記プログラムに従って、
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御するステージ制御部と、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部と、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部と、
として機能する、画像処理システム。
(22)
画像センサ部から、基板に搭載された生体標本に焦点を合わせた状態での第1の画像データを取得する第1の画像取得部と、
前記画像センサ部から、前記基板に付着した異物に焦点を合わせた状態での第2の画像データを取得する第2の画像取得部と、
前記第2の画像データから前記異物の像を抽出し、前記異物の画像データを生成する抽出部と、
前記第1の画像データから前記異物の画像データを除去することより、前記第1の画像データを補正する補正部と、
を備える、画像処理装置。
(23)
前記基板に向かって照明光を照射する照明部をさらに備える、上記(22)に記載の画像処理装置。
(24)
前記基板を支持し、且つ、前記前記基板を前記照明光の光軸に沿って移動させるステージを制御するステージ制御部をさらに備える、上記(23)に記載の画像処理装置。
(25)
前記抽出部は、
前記第2の画像データを複数の分割領域に分割し、
前記各分割領域の画素値を取得し、
前記各分割領域の画素値を所定の閾値を比較することにより、前記異物の像を抽出する、
上記(22)~(24)のいずれか1つに記載の画像処理装置。
(26)
マトリックス状に配置された複数の画素を有する前記画像センサ部をさらに備え、
前記抽出部は、前記複数の画素の配置に従って、前記第2の画像データを前記複数の分割領域に分割する、
上記(25)に記載の画像処理装置。
(27)
前記画素値は、各色の輝度値である、上記(25)又は(26)に記載の画像処理装置。
(28)
前記抽出部は、機械学習によって得られたモデルを用いて、前記第2の画像データから前記異物の像を抽出する、上記(22)~(24)のいずれか1つに記載の画像処理装置。
(29)
前記基板は、プレパラートである、上記(22)~(28)のいずれか1つに記載の画像処理装置。
10 画像処理システム
100 顕微鏡
102 光源部
104 センサ部
106 制御部
108 ステージ
110 対物レンズ
120b、120g、120r 画素
200 画像処理装置
210 撮影制御部
220 ステージ制御部
230 照明制御部
240、240a、240b 統合制御部
242、242b、246、246b 画像取得部
244 画像合成部
248、248b 補正部
250 検出部
252 判定部
254 抽出部
256 アラーム部
258 停止制御部
270 記憶部
280 通信部
290 表示部
300 プレパラート
700 分割領域
800a、800b、800c、800d、800e、800f、810c、820、820a、820b、830、840 画像データ
810、810a、810b 補正用合成画像
900 異物
910 生体標本
100 顕微鏡
102 光源部
104 センサ部
106 制御部
108 ステージ
110 対物レンズ
120b、120g、120r 画素
200 画像処理装置
210 撮影制御部
220 ステージ制御部
230 照明制御部
240、240a、240b 統合制御部
242、242b、246、246b 画像取得部
244 画像合成部
248、248b 補正部
250 検出部
252 判定部
254 抽出部
256 アラーム部
258 停止制御部
270 記憶部
280 通信部
290 表示部
300 プレパラート
700 分割領域
800a、800b、800c、800d、800e、800f、810c、820、820a、820b、830、840 画像データ
810、810a、810b 補正用合成画像
900 異物
910 生体標本
Claims (21)
- 補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御するステージ制御部と、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部と、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部と、
を備える、画像処理装置。 - 前記画像合成部は、
前記各画像データを複数の分割領域に分割し、
前記各分割領域の画素値を取得し、
前記複数の画像データにおける同一の前記分割領域の前記画素値の中央値又は最大値を抽出することにより、前記補正用合成画像を合成する、
請求項1に記載の画像処理装置。 - マトリックス状に配置された複数の画素を有する前記画像センサ部をさらに備え、
前記画像合成部は、前記複数の画素の配置に従って、前記各画像データを前記複数の分割領域に分割する、
請求項2に記載の画像処理装置。 - 前記画素値は、各画素の輝度値である、請求項3に記載の画像処理装置。
- 前記画素値は、HLS信号又はYCC信号の輝度値である、請求項3に記載の画像処理装置。
- 前記複数の画素は、対応する色の画素信号をそれぞれ取得する、
請求項3に記載の画像処理装置。 - 前記画像センサ部は、対応する色の前記画像データをそれぞれ取得する複数のセンサ部を有する、請求項3に記載の画像処理装置。
- 前記ステージをさらに備える、
請求項3に記載の画像処理装置。 - 前記補正用基板に向かって照明光を照射する照明部をさらに備える、
請求項8に記載の画像処理装置。 - 前記ステージは、前記補正用基板を、前記照明光の光軸と垂直に交わる平面上で移動させる、請求項9に記載の画像処理装置。
- 前記照明部は、前記ステージを挟んで、前記画像センサ部と対向する、請求項9に記載の画像処理装置。
- 前記補正用基板は、前記照明光を透過可能なガラス基板である、請求項9に記載の画像処理装置。
- 前記補正用基板は、前記生体標本を搭載可能なプレパラートである、請求項12に記載の画像処理装置。
- 前記補正用基板は、前記照明光を選択的に透過可能なフィルタである、請求項9に記載の画像処理装置。
- 前記フィルタは、減光フィルタ又はカラーフィルタである、請求項14に記載の画像処理装置。
- 前記補正用基板は、所定のパターンを有するパターン基板である、請求項9に記載の画像処理装置。
- 前記パターン基板は、前記照明光を透過可能な第1のフィルタと前記照明光に対して不透過な第2のフィルタとが市松模様状に配置されることから形成されるパターンを有する、請求項16に記載の画像処理装置。
- 前記補正用合成画像を用いて、前記生体標本の画像を補正する補正部をさらに備える、請求項1に記載の画像処理装置。
- 前回取得した第1の補正用合成画像と、新たに取得した前記画像データを用いて新たに合成した第2の補正用合成画像との差分を検出する検出部と、
前記検出部の検出結果に応じて、さらに前記画像データを取得するかどうかを判定する判定部と、
をさらに備える、請求項1に記載の画像処理装置。 - 画像処理装置が、
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御することと、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得することと、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得することと、
を含む、画像処理方法。 - 画像処理装置と、
画像処理を前記画像処理装置に実行させるためのプログラムと、
を含む、画像処理システムであって、
前記画像処理装置は、前記プログラムに従って、
補正用基板を支持し、且つ、前記補正用基板を所定の方向に動かすことのできるステージを制御するステージ制御部と、
画像センサ部から、前記補正用基板を前記所定の方向に沿って順次移動させて撮影された画像データを順次取得する画像取得部と、
複数の前記画像データを合成して、生体標本の画像撮影の際の補正で用いる補正用合成画像を取得する画像合成部と、
として機能する、画像処理システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-150085 | 2020-09-07 | ||
JP2020150085 | 2020-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022050109A1 true WO2022050109A1 (ja) | 2022-03-10 |
Family
ID=80490904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/030811 WO2022050109A1 (ja) | 2020-09-07 | 2021-08-23 | 画像処理装置、画像処理方法及び画像処理システム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022050109A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115372986A (zh) * | 2022-10-21 | 2022-11-22 | 武汉大学 | 基于ICESat-2高分辨率数据的树高制图方法、装置及设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005066144A (ja) * | 2003-08-27 | 2005-03-17 | Canon Inc | X線画像撮影装置 |
JP2011030698A (ja) * | 2009-07-31 | 2011-02-17 | Fujifilm Corp | 校正方法および装置 |
JP2013229706A (ja) * | 2012-04-25 | 2013-11-07 | Sony Corp | 画像取得装置、画像取得方法、および画像取得プログラム |
-
2021
- 2021-08-23 WO PCT/JP2021/030811 patent/WO2022050109A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005066144A (ja) * | 2003-08-27 | 2005-03-17 | Canon Inc | X線画像撮影装置 |
JP2011030698A (ja) * | 2009-07-31 | 2011-02-17 | Fujifilm Corp | 校正方法および装置 |
JP2013229706A (ja) * | 2012-04-25 | 2013-11-07 | Sony Corp | 画像取得装置、画像取得方法、および画像取得プログラム |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115372986A (zh) * | 2022-10-21 | 2022-11-22 | 武汉大学 | 基于ICESat-2高分辨率数据的树高制图方法、装置及设备 |
CN115372986B (zh) * | 2022-10-21 | 2023-03-24 | 武汉大学 | 基于ICESat-2高分辨率数据的树高制图方法、装置及设备 |
US12094142B2 (en) | 2022-10-21 | 2024-09-17 | Wuhan University | Tree height mapping method, device and equipment based on ICESat-2 high-resolution data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6053327B2 (ja) | 顕微鏡システム、標本画像生成方法及びプログラム | |
JP5963009B2 (ja) | デジタル標本作製装置、デジタル標本作製方法およびデジタル標本作製サーバ | |
JP5996334B2 (ja) | 顕微鏡システム、標本画像生成方法及びプログラム | |
JP5826561B2 (ja) | 顕微鏡システム、標本画像生成方法及びプログラム | |
JP6120675B2 (ja) | 顕微鏡システム、画像生成方法及びプログラム | |
JP5075648B2 (ja) | 画像処理装置、画像処理プログラムおよび画像処理方法 | |
JP2004101871A (ja) | 顕微鏡画像撮影装置 | |
JP2013152454A (ja) | 画像処理装置、画像処理システム、画像処理方法および画像処理プログラム | |
CN102147523B (zh) | 双ccd感光元件生物数字显微镜及其摄影图像处理方法 | |
JP2016125913A (ja) | 画像取得装置及び画像取得装置の制御方法 | |
JP4878815B2 (ja) | 顕微鏡装置 | |
JP2018000102A (ja) | 撮影装置および方法並びに撮影制御プログラム | |
JP5055120B2 (ja) | リニア・アレイを用いたマイクロスコープ・スライド・スキャナにおけるデータ管理システムおよび方法 | |
WO2022050109A1 (ja) | 画像処理装置、画像処理方法及び画像処理システム | |
JP2013153429A (ja) | 画像処理装置、画像表示システム、画像処理方法および画像処理プログラム | |
CN101947101B (zh) | 一种舌色还原色卡的制作方法 | |
WO2021261323A1 (ja) | 情報処理装置、情報処理方法、プログラム及び情報処理システム | |
Piccinini et al. | Colour vignetting correction for microscopy image mosaics used for quantitative analyses | |
JP2012117844A (ja) | 画像処理装置、画像処理方法、画像処理プログラムおよびバーチャル顕微鏡システム | |
US20200074628A1 (en) | Image processing apparatus, imaging system, image processing method and computer readable recoding medium | |
WO2022202233A1 (ja) | 情報処理装置、情報処理方法、情報処理システム、及び、変換モデル | |
JP6499506B2 (ja) | 撮像装置および方法並びに撮像制御プログラム | |
CN112241953B (zh) | 基于多聚焦图像融合和hdr算法的样本图像融合方法及装置 | |
WO2021220857A1 (ja) | 画像処理装置、画像処理方法及び画像処理システム | |
WO2022209349A1 (ja) | 観察装置用照明装置、観察装置及び観察システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21864167 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21864167 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |