WO2022050030A1 - Aluminum alloy extruded tube and heat exchanger - Google Patents

Aluminum alloy extruded tube and heat exchanger Download PDF

Info

Publication number
WO2022050030A1
WO2022050030A1 PCT/JP2021/029860 JP2021029860W WO2022050030A1 WO 2022050030 A1 WO2022050030 A1 WO 2022050030A1 JP 2021029860 W JP2021029860 W JP 2021029860W WO 2022050030 A1 WO2022050030 A1 WO 2022050030A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
aluminum alloy
brazing
heat exchanger
tube body
Prior art date
Application number
PCT/JP2021/029860
Other languages
French (fr)
Japanese (ja)
Inventor
太一 鈴木
稜 東森
英敏 熊谷
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2022050030A1 publication Critical patent/WO2022050030A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to an aluminum alloy extruded tube used in an automobile heat exchanger and a heat exchanger using the same.
  • Aluminum alloys that are lightweight and have high thermal conductivity are often used in heat exchangers made of aluminum alloys for automobiles such as evaporators and capacitors.
  • the heat exchanger has a tube through which the refrigerant flows and fins for heat exchange between the refrigerant and the air outside the tube, and the tube and the fins are joined by brazing. Fluoride-based flux is often used for brazing between the tube and the fins.
  • the tube used in the heat exchanger for automobiles is joined to the fin by brazing in order to exchange heat as described above, it is necessary to provide a brazing material on the fin side or the tube side, so that the fin side or the tube A clad material in which a brazing material is clad on the side is often used, and there is a problem that the manufacturing cost and the material cost of the clad material are high.
  • the Zn-containing flux does not function as Zn and a flux component by itself, but by reacting with Al (aluminum) of the tube, Zn is precipitated and potassium fluoroaluminate, which is a flux component, is generated. , Zn and functions as a flux component. Therefore, when a Zn-containing flux is used, the above reaction proceeds at the interface between the flux layer and the tube, that is, near the outer surface of the tube.
  • Patent Document 2 also proposes a technique using an alloy powder containing Si as a brazing filler metal powder.
  • the pure Si powder contained in the paint is eutectic-melted with aluminum on the surface of the tube, and the liquid phase wax of the Al—Si alloy flows to the contact portion between the fin and the tube to form a fillet. ..
  • the liquid phase wax that is eutectic-melted with the aluminum on the surface of the coarse Si particles and the surface of the tube rapidly flows to the contact portion between the fin and the tube due to the capillary phenomenon.
  • the periphery of the reduced Si grains is separated from the tube surface, a dent is formed on the surface of the tube from which the liquid phase wax has flowed out, and further eutectic melting proceeds at the bottom of the dent in contact with the Si grains. Then, a deep melting hole is formed, and there is a possibility that a through hole may be generated in the tube body.
  • Patent Document 1 the content of coarse particles having a cumulative volume of particles having a particle size smaller than that, which is 5 times or more the particle size (99% particle size, D99), which is 99% of the total particles, is less than 1 ppm.
  • the generated liquid phase contains high-concentration Zn.
  • This Zn diffuses to the outer surface of the tube to form a Zn diffusion layer, which functions as a sacrificial anticorrosion layer to improve the corrosion resistance of the tube, while concentrating in the fillet formed between the fin and the tube.
  • the fillet since the potential of the fillet becomes the lowest, the fillet is preferentially corroded and consumed when exposed to a corrosive environment, causing the fins to fall off, resulting in early deterioration of heat exchange performance and fins. This means that the tube is no longer protected against corrosion, which can lead to premature penetration of the tube.
  • Al—Si alloy powder is mentioned as an example as an alloy containing Si among the brazing filler metal powders.
  • Al-Si alloy powder is used as the brazing material for the coated tube, there is a concern that erosion will occur on the tube surface and the wall thickness will be reduced during brazing, unlike the case of pure Si powder. It is hard to say that it is practical.
  • an object of the present invention is to eliminate the risk of forming through holes in the tube due to coarse Si particles during brazing, and to join the fins and the tube without reducing the tube wall thickness, and the brazing property is good.
  • Aluminum alloy extruded tubes for automobile heat exchangers which have excellent corrosion resistance mainly because the fins are hard to fall off for a long period of time and are mainly protected by the fins, and heat exchangers in which the aluminum alloy extruded tubes are used. Is to provide.
  • the present inventors have made a tube body, a Zn sprayed layer formed on the outer surface of the tube body, and a coating film applied to the surface of the Zn sprayed layer.
  • the average crystal grain size is measured to be 150 ⁇ m or more.
  • a brazing material made of an Al—Si alloy is adopted on the outer surface of the Zn sprayed layer by spraying Zn onto the tube body to form a Zn sprayed layer.
  • the tube surface is not melted during brazing, so that the tube wall thickness is not reduced during brazing and erosion is less likely to occur during brazing. Since the brazing property is good and it is difficult for Zn to concentrate in the fillet during brazing, it was found that Zn does not concentrate in the fillet after brazing, and the present invention has been completed.
  • the present invention (1) is an aluminum alloy extruded tube used in an automobile heat exchanger.
  • a tube body made of an aluminum alloy containing Mn, The Zn sprayed layer formed on the outer surface of the tube body and The coating film formed on the outer surface of the Zn sprayed layer and Have,
  • the coating film contains an Al—Si alloy brazing powder, a Zn-free fluoride-based flux powder, and a binder.
  • the average crystal grain size of the tube body after the heating test is 150 ⁇ m or more. It provides an aluminum alloy extruded tube for a heat exchanger.
  • the Mn-containing aluminum alloy contains 0.20 to 0.90% by mass of Mn, the Ti content is 0.10% by mass or less, and the balance Al and unavoidable.
  • the present invention provides the aluminum alloy extrusion tube for a heat exchanger according to (1), which is an aluminum alloy composed of impurities.
  • the present invention (3) is characterized in that the amount of Zn sprayed from the tube body is 3.0 to 8.0 g / m 2 , and the aluminum alloy extruded tube for the heat exchanger according to (1) or (2). ..
  • the coating amount of the Al—Si alloy brazing filler metal powder is 10.0 to 25.0 g / m 2
  • the coating amount of the Zn-free fluoride-based flux powder is 3.0.
  • the aluminum alloy extruded tubes for heat exchangers (1) to (3) wherein the amount is 12.0 g / m 2 and the coating amount of the binder is 1.0 to 13.0 g / m 2 . It is something to do.
  • the present invention (5) is a brazing joint of an aluminum alloy extrusion tube for a heat exchanger according to any one of (1) to (4), fins made of an aluminum alloy containing Zn, and a brazing joint.
  • the average crystal grain size of the aluminum alloy forming the tube body is 150 ⁇ m or more. It is intended to provide a heat exchanger characterized by.
  • the fins and the tube are joined without reducing the tube wall thickness at the time of brazing, the brazing property is good, the fins are hard to fall off for a long period of time, and the fins prevent corrosion. Therefore, it is possible to provide an aluminum alloy extruded tube for an automobile heat exchanger having excellent corrosion resistance and a heat exchanger in which the aluminum alloy extruded tube is used.
  • the aluminum alloy extrusion tube of the present invention is an aluminum alloy extrusion tube used in an automobile heat exchanger.
  • the coating film contains an Al—Si alloy brazing powder, a Zn-free fluoride-based flux powder, and a binder.
  • the average crystal grain size of the tube body after the heating test is 150 ⁇ m or more.
  • the aluminum alloy extrusion tube for a heat exchanger of the present invention is formed of an aluminum alloy, and is a tube made of an aluminum alloy manufactured by extrusion molding the aluminum alloy.
  • the aluminum alloy extruded tube of the present invention is used for a tube through which a refrigerant flows in a heat exchanger for automobiles by being brazed with fins or the like.
  • the aluminum alloy extruded tube of the present invention includes a tube body made of an aluminum alloy containing Mn, a Zn sprayed layer formed on the outer surface of the tube body, and a coating film formed on the outer surface of the Zn sprayed layer. , Have. That is, the Zn sprayed layer and the coating film are laminated in the order of the tube body-Zn spraying layer-coating film on the tube body formed of the aluminum alloy.
  • the tube body of the aluminum alloy extruded tube of the present invention is formed of an aluminum alloy containing Mn.
  • Mn has an effect of improving the strength by being dissolved in the aluminum matrix, and also has an effect of making the electric potential noble.
  • the Mn-containing aluminum alloy forming the tube body contains 0.20 to 0.90% by mass of Mn, has a Ti content of 0.10% by mass or less, and is an aluminum alloy composed of the balance Al and unavoidable impurities. Is preferable.
  • the Mn content in the Mn-containing aluminum alloy forming the tube body is preferably 0.20 to 0.90% by mass, more preferably 0.30 to 0.80% by mass.
  • the Mn content in the Mn-containing aluminum alloy is within the above range, a sufficient strength improving effect and a potential nourizing effect in the deep part of the tube can be obtained.
  • the Mn content in the aluminum alloy is less than the above range, it is difficult to obtain the above effect, and if it exceeds the above range, Al—Mn precipitates are deposited in the matrix in the step before hot working described later. By suppressing the movement of grain boundaries, the crystal structure after brazing becomes finer, which may cause the above-mentioned brazing defects, and further, the workability in extrusion processing becomes low, and the tube body May reduce productivity.
  • the Ti content in the Mn-containing aluminum alloy forming the tube body is preferably 0.10% by mass or less, more preferably 0.001 to 0.08% by mass.
  • the Ti content in the Mn-containing aluminum alloy is within the above range, the structure at the time of casting can be made finer.
  • the Ti content in the aluminum alloy exceeds the above range, huge crystals may be formed during casting, which may make it difficult to manufacture a sound tube body, and in the case of an extruded multi-hole tube. , Crystallized Ti may cause friction with the die, which may reduce productivity and tool life.
  • the tube body is an aluminum alloy ingot adjusted to the chemical composition of the above Mn-containing aluminum alloy and cast, that is, 0.20 to 0.90% by mass, preferably 0.30 to 0.80% by mass.
  • Mn is contained, the Ti content is 0.10% by mass or less, preferably 0.001 to 0.08% by mass, and the ingot of an aluminum alloy composed of the balance Al and unavoidable impurities is subjected to the following homogenization treatment. It is preferably hot-extruded using the aluminum alloy that has been subjected to the above.
  • homogenization treatment examples include the following homogenization treatment of the first form and the homogenization treatment of the second form.
  • the aluminum alloy ingot having a predetermined chemical composition is held at 400 to 650 ° C. for 2 hours or more.
  • the treatment temperature in the homogenization treatment of the first form is 400 to 650 ° C, preferably 430 to 620 ° C.
  • the treatment temperature of the homogenization treatment is within the above range, the coarse crystallized material formed during casting can be decomposed or granulated, and the non-uniform structure such as the segregated layer generated during casting can be homogenized. can.
  • the resistance during extrusion processing can be reduced to improve the extrudability, and the surface roughness of the product after extrusion can be reduced.
  • the treatment temperature of the homogenization treatment is lower than the above range, coarse crystallization and the above-mentioned non-uniform structure may remain, which may lead to a decrease in extrusion and an increase in surface roughness. Further, if it exceeds the above range, the ingot may be melted.
  • the treatment time of the homogenization treatment is 2 hours or more, preferably 5 hours or more. When the processing time of the homogenization treatment is within the above range, the homogenization is sufficient. Further, the treatment time of the homogenization treatment is preferably 24 hours or less because the effect of homogenization is saturated even if it exceeds 24 hours.
  • the aluminum alloy ingot having a predetermined chemical composition is held at 550 to 650 ° C. for 2 hours or more, and then the first homogenization treatment is performed, and then the first homogenization treatment is performed.
  • the aluminum alloy ingot is subjected to a second homogenization treatment in which it is held at 400 to 550 ° C. for 3 hours or more.
  • the treatment temperature in the first homogenization treatment according to the second form of homogenization treatment is 550 to 650 ° C, preferably 580 to 620 ° C.
  • the treatment temperature of the first homogenization treatment is in the above range, the coarse crystallized material formed during casting can be decomposed or granulated, and can be positively re-solidified.
  • the treatment temperature of the first homogenization treatment is lower than the above range, it becomes difficult for the solid solution to proceed, and if it exceeds the above range, the ingot may be melted.
  • the treatment time of the first homogenization treatment is 2 hours or more, preferably 5 hours or more. When the processing time of the homogenization treatment is within the above range, the above effect is sufficient. Further, the treatment time of the homogenization treatment is preferably 24 hours or less because the effect of homogenization is saturated even if it exceeds 24 hours.
  • the treatment temperature in the second homogenization treatment according to the second form of homogenization treatment is 400 to 550 ° C.
  • Mn that is solid-solved in the matrix can be precipitated and the solid solubility of Mn can be lowered.
  • the treatment temperature of the second homogenization treatment is less than the above range, the amount of Mn precipitated is small, so that the effect of lowering the deformation resistance may be insufficient, and if it exceeds the above range, the effect may be insufficient.
  • the treatment time of the second homogenization treatment is 3 hours or more, preferably 5 hours or more. If the treatment time of the second homogenization treatment is less than the above range, the precipitation of Mn becomes sufficient, and the effect of reducing the deformation resistance may be insufficient. Further, the treatment time of the homogenization treatment is effective because the reaction proceeds when it is long, but the effect is saturated even if it is too long, so that it is preferably 24 hours or less, and particularly preferably 15 hours or less.
  • the first homogenization treatment and the second homogenization treatment may be continuously performed, or after the first homogenization treatment, the ingot is once formed. After cooling, the second homogenization treatment may be performed.
  • the temperature of the ingot is set to a temperature lower than the treatment temperature of the second homogenization treatment after the first homogenization treatment is completed. It means that the second homogenization treatment is started when the treatment temperature of the second homogenization treatment is reached without cooling to.
  • the ingot is once cooled after the first homogenization treatment and then the second homogenization treatment is performed, for example, after the first homogenization treatment, the ingot is heated to 200 ° C. After cooling to the following, it is reheated to perform a second homogenization treatment.
  • the method of hot extrusion of the aluminum alloy ingot that has been subjected to the homogenization treatment of the first form or the homogenization treatment of the second form is not particularly limited.
  • the processing temperature for hot extrusion is, for example, 400 to 550 ° C.
  • the form of the tube body is not particularly limited, and is appropriately selected according to the application and required characteristics.
  • the tube main body include an extruded flat multi-hole tube which is formed by extrusion processing, has a plurality of refrigerant flow paths inside, and has a flat cross-sectional shape perpendicular to the extrusion direction.
  • the tube body may have a simple cylindrical shape or the like.
  • the tubular tube may be manufactured by extrusion.
  • the Zn sprayed layer according to the aluminum alloy extruded tube of the present invention is formed on the outer surface of the tube body. That is, in the aluminum alloy extruded tube of the present invention, the Zn sprayed layer is arranged between the tube body and the coating film. Zn sprayed on the outer surface of the tube body diffuses from the outer surface of the tube body to the deep part during brazing. Then, during brazing, the sprayed Zn diffuses from the outer surface of the tube body to the deep part to form a sacrificial layer, exerting a sacrificial anticorrosion effect as a single tube, and at the same time, Zn concentration in the molten wax is performed. It is reduced and has excellent corrosion resistance.
  • the amount of Zn sprayed is preferably 3.0 to 8.0 g / m 2 , and particularly preferably 3.0 to 7.0 g / m 2 . If an attempt is made to manufacture a product having a Zn sprayed amount less than the above range, stable arc discharge cannot be continued and manufacturing is difficult. If the Zn sprayed amount exceeds the above range, Zn is generated during brazing. However, the amount of Zn remaining on the outer surface increases without diffusing into the deep part of the tube body, so that Zn is concentrated in the fillet during brazing, and the corrosion resistance may be lowered.
  • the Zn spraying method for forming a Zn sprayed layer by spraying Zn on the outer surface of a tube body made of an aluminum alloy containing Mn is not particularly limited.
  • a conventional thermal spraying method can be appropriately used.
  • two Zn wires are brought close to each other, a high-voltage current is applied, and an arc is discharged between the Zn wires to melt the tip of the Zn wire and blow off Zn zinc by blowing a high-voltage inert gas.
  • This is a method of adhering molten Zn to the outer surface of the tube by passing the tube body through the tube body.
  • pure Zn wire is preferably used because it is easy to manufacture. Since the Zn wire is continuously sent as it melts, the arc discharge can be continued, so that a uniform Zn sprayed layer can be formed continuously in the longitudinal direction.
  • the coating film of the aluminum alloy extruded tube of the present invention is formed on the outer surface of the Zn sprayed layer. That is, in the aluminum alloy extruded tube of the present invention, the coating film is formed on the surface of the Zn sprayed layer opposite to the tube main body side.
  • the coating film contains Al—Si alloy brazing powder, Zn-free fluoride-based flux powder, and binder.
  • Al-Si alloy brazing material powder is a powdery alloy of Al and Si.
  • the Al—Si alloy brazing material powder is melted only by the Al—Si alloy brazing material powder itself by heating at the time of brazing, and liquid phase wax is generated on the outer surface of the tube. This allows the tube to be joined to the fins and headers. Since the Al—Si alloy brazing material powder contains Al, it is difficult for the brazing material to melt the outer surface of the tube during brazing.
  • the content of Si in the alloy of Al and Si constituting the Al—Si alloy brazing filler metal powder is preferably 5.0 to 20.0% by mass, and particularly preferably 7.0 to 15.0% by mass.
  • the Al content in the alloy of Al and Si is within the above range, the tube wall thickness is less likely to decrease due to melting of the outer surface of the tube during brazing, and the brazing property is improved.
  • the coating amount of the Al—Si alloy brazing filler metal powder is preferably 10.0 to 25.0 g / m 2 , and particularly preferably 12.0 to 20.0 g / m 2 .
  • the coating amount of the Al—Si alloy brazing material powder is within the above range, the brazing property is improved.
  • the coating amount of the Al—Si alloy brazing material powder is less than the above range, the amount of liquid phase brazing becomes insufficient and bonding failure is likely to occur, and if it exceeds the above range, the coating thickness becomes thick. It becomes excessively thick, the dimensional change of the core after brazing occurs, and the brazing property tends to be low.
  • the Zn-free fluoride-based flux powder functions as a flux during brazing and melts during brazing heat to destroy the Al—Si alloy brazing material powder and the oxide film on the outer surface of the tube. Allows immediate progress of brazing.
  • the Zn-free fluoride-based flux powder is a fluoride that is in the form of powder and does not contain Zn.
  • "Zn-free" and "Zn-free” mean that the amount of Zn is less than the lower limit of detection in the analysis by the electron probe microanalyzer.
  • Zn-free fluoride constituting the Zn-free fluoride-based flux powder
  • K-Al-F compounds such as KAlF 4 , K 2 AlF 5 , and K 3 AlF 6 .
  • fluxes such as CaF 2 and LiF can also be mentioned as Zn-free fluoride.
  • the coating amount of the Zn-free fluoride-based flux powder is preferably 3.0 to 12.0 g / m 2 , and particularly preferably 4.0 to 10.0 g / m 2 .
  • the coating amount of the Zn-free fluoride-based flux powder is within the above range, the effect of destroying the oxide film during brazing is sufficient.
  • the coating amount of the Zn-free fluoride-based flux powder is less than the above range, the flux component is insufficient, so that the oxide film is not sufficiently destroyed and the brazing property tends to be low. If it exceeds, the thickness of the coating film becomes excessively thick, the dimensional change of the core after brazing occurs, and the brazing property tends to be lowered.
  • the binder adheres Al—Si alloy brazing powder and Zn-free fluoride-based flux powder to the surface of the tube body.
  • the binder include an acrylic resin and a urethane resin.
  • the amount of the binder applied is preferably 1.0 to 13.0 g / m 2 .
  • the amount of the binder applied is within the above range, the Al—Si alloy brazing material powder and the Zn-free fluoride-based flux powder can be satisfactorily adhered to the surface of the tube body.
  • the coating amount of the binder is less than the above range, the coating film is likely to be peeled off, and if it exceeds the above range, the thermal decomposition of the binder becomes insufficient, and the undecomposed binder or the like is formed during brazing. May remain and the brazing property may decrease.
  • an Al—Si alloy brazing material powder, a Zn-free fluoride-based flux powder and a binder are mixed with a solvent. Then, a method of forming a coating film by applying the obtained paste to the surface of the Zn spraying layer and then drying and removing the solvent can be mentioned. Before mixing the Al—Si alloy brazing material powder and the Zn-free fluoride-based flux powder with the solvent, the Al—Si alloy brazing material powder and the Zn-free fluoride-based flux powder are mixed in advance.
  • Al—Si alloy brazing powder and Zn-free fluoride-based flux powder may be mixed, and then the obtained mixed powder may be mixed with a binder together with a binder.
  • a roll coating method or the like is used to apply the paste to the surface of the tube body.
  • the aluminum alloy extruded tube for a heat exchanger of the present invention is held at 600 ° C. ⁇ 10 ° C. for 3 minutes, and in a heating test for measuring the average crystal grain size after cooling to room temperature, the average crystal grain of the tube body after the heating test is performed.
  • the diameter is 150 ⁇ m or more. That is, the aluminum alloy extruded tube for a heat exchanger of the present invention has a crystal structure in which the average crystal grain size of the tube body becomes 150 ⁇ m or more by holding at 600 ° C. ⁇ 10 ° C. for 3 minutes and cooling to room temperature. Have.
  • the average crystal grain size of the tube body is 150 ⁇ m or more when the aluminum alloy extruded tube for a heat exchanger is held at 600 ° C.
  • the average crystal grain size before the brazing heat addition is less likely to cause erosion during the brazing heat addition. Since it is large enough, erosion is unlikely to occur during wax addition heat. Therefore, in the heating test in which the average crystal grain size is measured after holding at 600 ° C. ⁇ 10 ° C. for 3 minutes and cooling to room temperature, the heat of the present invention in which the average crystal grain size of the tube body after the heating test is 150 ⁇ m or more. Aluminum alloy extrusion tubes for exchangers are less prone to erosion during brazing heat addition.
  • the heating test of the aluminum alloy extrusion tube for a heat exchanger of the present invention first, the aluminum alloy extrusion tube for a heat exchanger of the present invention is heated to raise the temperature, and in the heating process, the holding temperature is 600 ° C. ⁇ 10 ° C. Heated to This is a test for measuring the particle size.
  • a method for measuring the average crystal grain size of the tube body a method of electrolytically polishing the test piece, obtaining a microscope image of each cross section with a polarizing microscope having a magnification of 50 to 100 times, and measuring the equivalent circle diameter is mentioned. Be done.
  • the temperature range up to 500 ° C is an average heating rate of 30 ⁇ 10 ° C / min, and the temperature range of 500 ° C or higher is an average of 10 ⁇ 5 ° C / min.
  • the tube body having an average crystal grain size of 150 ⁇ m or more after the heating test according to the aluminum alloy extrusion tube for a heat exchanger of the present invention has the Mn content in the aluminum alloy ingot to be subjected to hot extrusion as a predetermined content. That is, an aluminum alloy containing 0.20 to 0.90% by mass of Mn, having a Ti content of 0.10% by mass or less, and being composed of the balance Al and unavoidable impurities is subjected to hot extrusion. It is introduced by using it as an ingot, more preferably, by subjecting the aluminum alloy ingot to the above homogenization treatment before subjecting it to hot extrusion, or by setting the ingot temperature at the time of hot extrusion to 480 ° C. or higher. It is obtained by reducing the machining strain.
  • the aluminum alloy extruded tube for a heat exchanger of the present invention has a higher strength than a tube whose tube body is made of pure aluminum because the tube body is made of an aluminum alloy containing Mn. Further, in the aluminum alloy extruded tube for a heat exchanger of the present invention, since the tube body is made of an aluminum alloy containing Mn, Mn is solidly dissolved in the aluminum matrix, so that the tube body is made of pure aluminum. In comparison, the potential becomes noble in the deep part, and the potential difference from the fin material and the tube surface tends to be large as described later, which is advantageous from the viewpoint of preventing corrosion penetration of the tube body.
  • the coating film contains Al—Si alloy brazing filler metal powder and Zn-free fluoride-based flux powder, preferably Al—Si alloy brazing filler metal powder.
  • each powder exerts its respective function and interacts with each other to exert a synergistic effect. Has excellent waxing resistance and corrosion resistance.
  • the Al—Si alloy brazing filler metal powder contained in the coating film is melted only by the Al—Si alloy brazing filler metal powder itself by heating at the time of brazing, and is outside the tube. Since liquid phase brazing is generated on the surface, the tube can be joined to fins and headers, and since the tube wall thickness is not reduced during brazing, the tube can be thinned.
  • the aluminum alloy extruded tube for heat exchanger of the present invention does not melt the outer surface at the time of brazing, so that the strength is high even if the wall thickness is thin.
  • the Zn-free fluoride-based flux powder contained in the coating film is an oxide film on the surface of the Al—Si alloy brazed powder and oxidation of the outer surface of the tube during brazing. By breaking the film first, brazing is possible immediately after the Al—Si alloy powder is melted.
  • the sprayed Zn diffuses from the outer surface of the tube body to the deep part to form a sacrificial layer, and the tube itself exhibits a sacrificial anticorrosion effect.
  • Zn concentration in the molten brazing is reduced, and it has excellent corrosion resistance.
  • Zn is present on the outer surface of the tube body, but the Zn sprayed on the tube body is deeply formed from the outer surface of the tube body during brazing. Since it diffuses into, the amount of Zn present on the outer surface of the tube body immediately before the wax melts decreases. Therefore, in the aluminum alloy extrusion tube for heat exchanger of the present invention, Zn is not concentrated in the molten wax during fret formation.
  • the fillets do not preferentially corrode, so that the fins do not fall off from the tube surface for a long period of time, and the heat exchange performance is improved. Not only can the deterioration of the aluminum be prevented, but also the anticorrosion effect of the tube by the fins can be obtained for a long period of time. Therefore, the aluminum alloy extruded tube for a heat exchanger of the present invention has excellent corrosion resistance.
  • the heat exchanger of the present invention is a brazing joint of the aluminum alloy extrusion tube for the heat exchanger of the present invention and fins made of an aluminum alloy containing Zn.
  • the average crystal grain size of the aluminum alloy forming the tube body is 150 ⁇ m or more. It is a heat exchanger characterized by.
  • the aluminum alloy extrusion tube for the heat exchanger of the present invention and fins made of an aluminum alloy containing Zn are joined by brazing.
  • the fin made of a Zn-containing aluminum alloy according to the heat exchanger of the present invention is formed of the aluminum alloy.
  • the aluminum alloy forming the fin material is not particularly limited as long as it has sufficient strength and corrosion resistance for a heat exchanger, and for example, it has a Mn content of 0.8 to 1.5% by mass and a Zn content. Examples thereof include aluminum alloys having an amount of 0.5 to 2.5% by mass, a Cu content of 0.20% by mass or less, and the balance Al and unavoidable impurities.
  • the fin made of a Zn-containing aluminum alloy according to the heat exchanger of the present invention may be a known fin as long as it has sufficient strength and corrosion resistance for the heat exchanger.
  • fins made of an aluminum alloy containing Zn are brought into contact with the aluminum alloy extrusion tube for the heat exchanger of the present invention, and then other members such as a header are assembled and heated. It is produced by brazing.
  • the heating temperature, heating time, and atmosphere at the time of brazing are not particularly limited, and the brazing method is also not particularly limited.
  • the heating temperature of the brazing is, for example, 590 to 610 ° C.
  • the heating time of the brazing is, for example, 15 minutes to 45 minutes
  • the atmosphere of the brazing is, for example, a nitrogen gas atmosphere or argon. Gas atmosphere, etc.
  • the heat exchanger of the present invention is brazed using the aluminum alloy extruded tube for the heat exchanger of the present invention as the tube material, it is joined to the fins without reducing the tube wall thickness at the time of brazing. Is. Therefore, the heat exchanger of the present invention has high strength even if it is thin. Further, since the heat exchanger of the present invention is brazed using the aluminum alloy extruded tube for the heat exchanger of the present invention as the tube material, it is difficult for Zn to concentrate in the molten wax during fillet formation. The fins do not easily come off over a long period of time, and the fins protect them from corrosion, resulting in excellent corrosion resistance.
  • the obtained paste was applied to the flat surface of the tube body using a roll coater to form a coating film of the coating amount shown in Table 2, and the coating film was formed on the aluminum alloy extrusion tube for heat exchanger.
  • the average crystal grain size after the heating test, the brazing property, and the corrosion resistance were evaluated. The results are shown in Table 3.
  • a plate having a thickness of 0.1 mm made of an aluminum alloy having Mn: 1.2% by mass and Zn: 1.5% by mass was corrugated to prepare fins having a corrugated shape.
  • the fin pitch was 3 mm and the fin height was 7 mm.
  • the fins were laminated so as to be sandwiched between tubes at the top and bottom, and assembled into a predetermined shape.
  • the tubes and fins are heated in a nitrogen gas atmosphere, and the temperature rise rate is 30 ° C./min on average up to 500 ° C., and 10 ° C./min on average in the temperature range of 500 ° C. or higher.
  • the temperature was lowered to room temperature and brazing was performed to join the tubes and fins to obtain a mini core simulating a heat exchanger.
  • the brazing property was evaluated using the obtained mini core.
  • the results are shown in Table 3.
  • the heat history for producing the mini core corresponds to the heat history of the heating test.
  • the average crystal grain size after brazing was sufficiently large, but the Al—Si alloy brazing material powder was insufficient, and sufficient fillets could not be formed, resulting in a failure. ..
  • the average crystal grain size after brazing was as small as 120 ⁇ m, and erosion occurred around the fillet after brazing. Although the fillet was formed, its size was small and the joint strength of the fins was insufficient, so there was a concern that the fins would peel off at an early stage during actual use, so it was rejected.
  • the result of the corrosion resistance test showed that the fins did not peel off and had good corrosion resistance. The corrosion resistance test was carried out only in Reference Example 1 and Comparative Example 3 in which the fin and the tube were joined.
  • Example 1 ⁇ Making a tube> No. in Table 1
  • the billet having the chemical composition shown in 1 was heated at 600 ° C. for 10 hours to perform a homogenization treatment, and then the billet having been homogenized was cooled to room temperature. The billet was then reheated to 450 ° C. for hot extrusion. Next, immediately after the hot extrusion processing, Zn spraying was applied to the outer surface of the tube with the aim of spraying amount shown in Table 4, and the cross section perpendicular to the extrusion direction showed a flat shape, and a plurality of refrigerant flow paths were formed. In preparation for this, a Zn sprayed layer forming tube main body having Zn sprayed on the surface was produced.
  • Al—Si alloy brazing powder, Zn-free fluoride-based flux powder and binder were mixed with a solvent to prepare a paste for forming a coating film.
  • the obtained paste was applied onto the Zn sprayed layer of the Zn sprayed layer forming tube body using a roll coater, and No. 1 in Table 2 was applied.
  • a coating film having a coating amount shown in I was formed, and an aluminum alloy extruded tube for a heat exchanger on which the coating film was formed was obtained.
  • fins were produced in the same manner as in the above reference example. Next, as shown in FIG. 1, the fins were laminated so as to be sandwiched between tubes, and assembled into a predetermined shape.
  • the tubes and fins are heated in a nitrogen gas atmosphere, and the temperature rise rate is 30 ° C./min on average up to 500 ° C., and 10 ° C./min on average in the temperature range of 500 ° C. or higher.
  • the temperature rise rate is 30 ° C./min on average up to 500 ° C., and 10 ° C./min on average in the temperature range of 500 ° C. or higher.
  • the temperature was lowered to room temperature and brazing was performed to join the tubes and fins to obtain a mini core simulating a heat exchanger.
  • the brazing property was evaluated using the obtained mini core.
  • the results are shown in Table 4.
  • the heat history for producing the mini core corresponds to the heat history of the heating test.
  • Example 1 Zn spraying was possible without any problem, the average crystal grain size after brazing was sufficiently large at 400 ⁇ m or more, no brazing problem occurred, no erosion occurred, and the results were acceptable. .. Moreover, since the wall thickness of the tube after brazing did not change significantly as compared with the wall thickness before brazing, it was confirmed that no significant melting occurred. Further, as a result of the corrosion resistance test, the fins were not peeled off and had good corrosion resistance. On the other hand, in Comparative Example 1, since the target amount of Zn spraying was small, stable spraying was difficult, and a sample could not be prepared, resulting in a failure.

Abstract

An extruded tube of an aluminum alloy and for a heat exchanger and characterized by having a tube body comprising an aluminum alloy containing Mn, a Zn thermal sprayed layer formed on the outer surface of the tube body, and a coating film formed on the outer surface of the Zn thermal sprayed layer, wherein the coating film contains an Al-Si alloy brazing material powder, a fluoride flux powder that does not include Zn, and a binder, and in a heating test for measuring the average crystal grain size after holding at 600°C ±10°C for three minutes and then cooling to room temperature, the average crystal grain size of the tube body after the heating test is 150 μm or greater. By means of the present invention, it is possible to provide an aluminum alloy extruded tube that is for a heat exchanger for an automobile and that enables fins and the tube to be joined without reducing the wall thickness of the tube during brazing, and that has excellent brazing ability, and for which the fins do not easily detach over a long period of time, and that has excellent corrosion resistance due to protection from corrosion provided by the fins.

Description

アルミニウム合金押出チューブ及び熱交換器Aluminum alloy extrusion tube and heat exchanger
 本発明は、自動車用熱交換器に用いられるアルミニウム合金製の押出チューブ及びそれを使用する熱交換器に関する。 The present invention relates to an aluminum alloy extruded tube used in an automobile heat exchanger and a heat exchanger using the same.
 エバポレータ、コンデンサなどの自動車用アルミニウム合金製熱交換器には、軽量であり、高い熱伝導性を有するアルミニウム合金が多用されている。熱交換器は、冷媒が流通するチューブと、冷媒とチューブ外側の空気との間で熱交換するためのフィンとを有しており、チューブとフィンとがろう付により接合されている。そして、チューブとフィンとのろう付には、フッ化物系のフラックスが用いられることが多い。 Aluminum alloys that are lightweight and have high thermal conductivity are often used in heat exchangers made of aluminum alloys for automobiles such as evaporators and capacitors. The heat exchanger has a tube through which the refrigerant flows and fins for heat exchange between the refrigerant and the air outside the tube, and the tube and the fins are joined by brazing. Fluoride-based flux is often used for brazing between the tube and the fins.
 自動車用熱交換器に用いられるチューブは、前述の通り熱交換を行うために、ろう付によりフィンと接合されるので、フィン側又はチューブ側にろう材を設ける必要があるため、フィン側又はチューブ側にろう材をクラッドしたクラッド材が使用されることが多く、クラッド材の製造コストや材料コストが高くなるという課題がある。 Since the tube used in the heat exchanger for automobiles is joined to the fin by brazing in order to exchange heat as described above, it is necessary to provide a brazing material on the fin side or the tube side, so that the fin side or the tube A clad material in which a brazing material is clad on the side is often used, and there is a problem that the manufacturing cost and the material cost of the clad material are high.
 フィン側にろう材を設けたクラッド材を用いた場合、チューブ材の使用量に対してフィン材の使用量が多いため、製造コストや材料コストの低減が困難である。それに対して、チューブ側にろう材を設ける場合には、フィン材にクラッド材を用いる必要がなくなるため、コスト低減の余地がある。 When a clad material with a brazing material on the fin side is used, it is difficult to reduce the manufacturing cost and the material cost because the amount of the fin material used is larger than the amount of the tube material used. On the other hand, when the brazing material is provided on the tube side, it is not necessary to use a clad material for the fin material, so there is room for cost reduction.
 チューブ側にろう材を設ける従来技術としては、例えば、チューブの外表面に、Si(シリコン)粉末とZn含有フラックスとバインダとが含まれてなるフラックス層を形成させる技術が提案されている(特許文献1)。上記の組成を有するフラックス層は、ろう材成分、Zn及びフラックス成分の全てを一度の付着工程で同時に付着させることができる。また、フィン側にろう材を設ける必要がないため、ベアフィン材を用いてフィンを作製することができる。これらの結果、コスト低減を図ることができる。 As a conventional technique for providing a brazing filler metal on the tube side, for example, a technique for forming a flux layer containing Si (silicon) powder, a Zn-containing flux, and a binder on the outer surface of the tube has been proposed (patented). Document 1). In the flux layer having the above composition, all of the brazing filler metal component, Zn and the flux component can be simultaneously bonded in one bonding step. Further, since it is not necessary to provide a brazing material on the fin side, the fin can be manufactured using the bare fin material. As a result, cost reduction can be achieved.
 ここで、特許文献1のフラックス層のように、KZnF等のZnを含有する化合物をフラックスとして用いる場合、以下の反応式によりフラックス成分及びZnが生成される。
   6KZnF+4Al→3KAlF+KAlF+6Zn(555℃以上)
Here, when a Zn-containing compound such as KZnF 3 is used as the flux as in the flux layer of Patent Document 1, the flux component and Zn are generated by the following reaction formula.
6KZnF 3 + 4Al → 3KAlF 4 + K 3 AlF 6 + 6Zn (555 ° C or higher)
 上記反応式から、Zn含有フラックスは、単体ではZn及びフラックス成分としては機能せず、チューブのAl(アルミニウム)との反応によりZnを析出すると共にフラックス成分であるフルオロアルミン酸カリウムを生成することにより、Zn及びフラックス成分として機能する。そのため、Zn含有フラックスを用いる場合には、フラックス層とチューブとの界面、即ちチューブの外表面近傍で上記の反応が進行する。 From the above reaction formula, the Zn-containing flux does not function as Zn and a flux component by itself, but by reacting with Al (aluminum) of the tube, Zn is precipitated and potassium fluoroaluminate, which is a flux component, is generated. , Zn and functions as a flux component. Therefore, when a Zn-containing flux is used, the above reaction proceeds at the interface between the flux layer and the tube, that is, near the outer surface of the tube.
 また、特許文献2では、ろう材粉末としてSiを含む合金粉末を使用した技術も提案されている。 Further, Patent Document 2 also proposes a technique using an alloy powder containing Si as a brazing filler metal powder.
国際公開2011/090059号International Publication 2011/090059 特開2018-118318JP-A-2018-118318
 近年、環境負荷を低減させるために、構成部品の軽量化により自動車の燃費を向上させる要求や、部品の長寿命化により製品としての材料使用量を低減する要求が高まっている。そのため、従来よりも肉厚の薄いチューブを用いることや、そのようなチューブを用いた熱交換器において、従来よりも高い耐食性を有することが強く求められている。 In recent years, in order to reduce the environmental load, there is an increasing demand to improve the fuel efficiency of automobiles by reducing the weight of components and to reduce the amount of materials used as products by extending the life of parts. Therefore, it is strongly required to use a tube thinner than the conventional one and to have a higher corrosion resistance than the conventional one in a heat exchanger using such a tube.
 このことは、チューブの薄肉化が可能であることだけでなく、チューブ自体が犠牲防食作用を有することと同時に、腐食環境にさらされた後でもフィンがチューブ表面から脱落することなく、長い期間に亘ってチューブ表面を防食する必要があることを意味する。 This not only allows the tube to be thinner, but also has a sacrificial anticorrosive effect on the tube itself, and at the same time, the fins do not fall off the tube surface even after being exposed to a corrosive environment for a long period of time. This means that the surface of the tube needs to be protected from corrosion.
 しかしながら、特許文献1の手法では、塗料中に含まれる純Si粉末がチューブ表面のアルミニウムと共晶溶融させてAl-Si合金の液相ろうを生成することから、チューブ表面の一部がろうとして消耗することになる。このため、ろう付加熱中のチューブ貫通を防ぐためにチューブ肉厚を一定以上確保する必要があり、チューブの薄肉化に貢献するとは言い難い。 However, in the method of Patent Document 1, since the pure Si powder contained in the paint is eutectic-melted with the aluminum on the tube surface to form a liquid phase wax of an Al—Si alloy, a part of the tube surface is about to try. It will be exhausted. Therefore, it is necessary to secure a certain thickness or more of the tube in order to prevent the tube from penetrating during the waxing heat, and it cannot be said that it contributes to the thinning of the tube.
 さらに、塗料中に含まれる純Si粉末は、チューブ表面のアルミニウムと共晶溶融して生成するAl-Si合金の液相ろうがフィンとチューブの接触部に流動してフィレットを形成することになる。このとき、粗大なSi粒が混入していると、粗大なSi粒の表面とチューブ表面のアルミニウムと共晶溶融した液相ろうが毛細管現象によって速やかにフィンとチューブの接触部に流動するため、小さくなったSi粒の周囲がチューブ表面から離れ、液相ろうが流出したチューブ表面に凹み部を形成し、Si粒と接する凹み部の底でさらなる共晶溶融が進行することになる。そうすると深い溶融穴を形成することになり、チューブ本体に貫通孔が発生するおそれが生じる。 Further, the pure Si powder contained in the paint is eutectic-melted with aluminum on the surface of the tube, and the liquid phase wax of the Al—Si alloy flows to the contact portion between the fin and the tube to form a fillet. .. At this time, if coarse Si particles are mixed, the liquid phase wax that is eutectic-melted with the aluminum on the surface of the coarse Si particles and the surface of the tube rapidly flows to the contact portion between the fin and the tube due to the capillary phenomenon. The periphery of the reduced Si grains is separated from the tube surface, a dent is formed on the surface of the tube from which the liquid phase wax has flowed out, and further eutectic melting proceeds at the bottom of the dent in contact with the Si grains. Then, a deep melting hole is formed, and there is a possibility that a through hole may be generated in the tube body.
 特許文献1では、それ以下の粒径を有する粒子の累積体積が全粒子の99%となる粒径(99%粒径、D99)の5倍以上となる粗大粒の含有量が1ppm未満であるSi粉末を用いて、上記課題を解決しようとしているが、粗大粒子の混入を1ppm未満にするための課題も生じていた。 In Patent Document 1, the content of coarse particles having a cumulative volume of particles having a particle size smaller than that, which is 5 times or more the particle size (99% particle size, D99), which is 99% of the total particles, is less than 1 ppm. We are trying to solve the above problem by using Si powder, but there is also a problem to reduce the mixing of coarse particles to less than 1 ppm.
 さらに前述したフラックスの反応により液相の生成直前にチューブ外表面でZnが析出する反応が進行していることから、生成した液相には高濃度のZnが含まれることとなる。このZnはチューブ外表面に拡散してZn拡散層を形成し、犠牲防食層として機能することでチューブの耐食性を向上させる一方、フィンとチューブの間に形成されたフィレット中に濃縮する。この場合、フィレットの電位が最も卑になることで、腐食環境にさらされた際にフィレットが優先的に腐食して消耗し、フィンの脱落を生じ、早期に熱交換性能が低下するとともに、フィンによりチューブが防食されなくなることでチューブに早期貫通が生じ得ることを意味する。 Furthermore, since the reaction of Zn precipitation on the outer surface of the tube immediately before the formation of the liquid phase due to the above-mentioned flux reaction is proceeding, the generated liquid phase contains high-concentration Zn. This Zn diffuses to the outer surface of the tube to form a Zn diffusion layer, which functions as a sacrificial anticorrosion layer to improve the corrosion resistance of the tube, while concentrating in the fillet formed between the fin and the tube. In this case, since the potential of the fillet becomes the lowest, the fillet is preferentially corroded and consumed when exposed to a corrosive environment, causing the fins to fall off, resulting in early deterioration of heat exchange performance and fins. This means that the tube is no longer protected against corrosion, which can lead to premature penetration of the tube.
 また、特許文献2の手法においては、ろう材粉末のうちSiを含む合金としてAl-Si合金粉末が例に挙げられている。塗装チューブにろう材としてAl-Si合金粉末を用いた場合、純Si粉末の場合と異なりチューブ表面にエロージョンを生じ、ろう付中に減肉する懸念があるが、この技術ではその対策が記載されておらず、実用的であるとは言い難いものである。 Further, in the method of Patent Document 2, Al—Si alloy powder is mentioned as an example as an alloy containing Si among the brazing filler metal powders. When Al-Si alloy powder is used as the brazing material for the coated tube, there is a concern that erosion will occur on the tube surface and the wall thickness will be reduced during brazing, unlike the case of pure Si powder. It is hard to say that it is practical.
 従って、本発明の目的は、ろう付時に粗大Si粒によってチューブに貫通孔を生じるリスクをなくすと共に、チューブ肉厚を減少させることなくフィンとチューブが接合され、ろう付性が良好であり、且つ、長期間に亘ってフィンが脱落し難く、主にフィンにより防食されることで優れた耐食性を有する自動車用熱交換器用のアルミニウム合金押出チューブ及び該アルミニウム合金押出チューブが用いられている熱交換器を提供することにある。 Therefore, an object of the present invention is to eliminate the risk of forming through holes in the tube due to coarse Si particles during brazing, and to join the fins and the tube without reducing the tube wall thickness, and the brazing property is good. Aluminum alloy extruded tubes for automobile heat exchangers, which have excellent corrosion resistance mainly because the fins are hard to fall off for a long period of time and are mainly protected by the fins, and heat exchangers in which the aluminum alloy extruded tubes are used. Is to provide.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、チューブ本体と、チューブ本体の外表面に形成されているZn溶射層と、Zn溶射層の表面に塗布された塗膜と、を有するアルミニウム合金押出チューブにおいて、チューブ本体として、600℃±10℃で3分間保持し、室温まで冷却した後の平均結晶粒径を測定する加熱試験で、平均結晶粒径が150μm以上となるような結晶組織のアルミニウム合金で形成されたものを採用し、Znをチューブ本体に溶射してZn溶射層を形成させ、且つ、Zn溶射層の外表面に、Al-Si合金からなるろう材粉末及びZn非含有フッ化物系フラックス粉末を塗布することにより、ろう付中にチューブ表面が溶融されないため、ろう付中にチューブ肉厚が減少されず、ろう付中にエロージョンが発生し難くなるため、ろう付性が良好であり、且つ、ろう付時にフィレットにZnが濃縮し難いため、ろう付後のフィレットにZnが濃縮することがないことを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventors have made a tube body, a Zn sprayed layer formed on the outer surface of the tube body, and a coating film applied to the surface of the Zn sprayed layer. In a heating test in which the zinc alloy extruded tube is held at 600 ° C. ± 10 ° C. for 3 minutes and cooled to room temperature, the average crystal grain size is measured to be 150 μm or more. A brazing material made of an Al—Si alloy is adopted on the outer surface of the Zn sprayed layer by spraying Zn onto the tube body to form a Zn sprayed layer. By applying the powder and Zn-free fluoride-based flux powder, the tube surface is not melted during brazing, so that the tube wall thickness is not reduced during brazing and erosion is less likely to occur during brazing. Since the brazing property is good and it is difficult for Zn to concentrate in the fillet during brazing, it was found that Zn does not concentrate in the fillet after brazing, and the present invention has been completed.
 上記本発明の課題は、以下の本発明によって解決される。
 すなわち、本発明(1)は、自動車用熱交換器に用いられるアルミニウム合金製の押出チューブであり、
 Mnを含有するアルミニウム合金からなるチューブ本体と、
 該チューブ本体の外表面に形成されているZn溶射層と、
 該Zn溶射層の外表面に形成されている塗膜と、
を有し、
 該塗膜は、Al-Si合金ろう材粉末と、Zn非含有フッ化物系フラックス粉末と、バインダと、を含有しており、
 600℃±10℃で3分間保持し、室温まで冷却した後の平均結晶粒径を測定する加熱試験において、加熱試験後のチューブ本体の平均結晶粒径が150μm以上であること、を特徴とする熱交換器用アルミニウム合金押出チューブを提供するものである。
The above-mentioned problem of the present invention is solved by the following invention.
That is, the present invention (1) is an aluminum alloy extruded tube used in an automobile heat exchanger.
A tube body made of an aluminum alloy containing Mn,
The Zn sprayed layer formed on the outer surface of the tube body and
The coating film formed on the outer surface of the Zn sprayed layer and
Have,
The coating film contains an Al—Si alloy brazing powder, a Zn-free fluoride-based flux powder, and a binder.
In a heating test in which the average crystal grain size is measured after holding at 600 ° C. ± 10 ° C. for 3 minutes and cooling to room temperature, the average crystal grain size of the tube body after the heating test is 150 μm or more. It provides an aluminum alloy extruded tube for a heat exchanger.
 また、本発明(2)は、前記Mnを含有するアルミニウム合金が、0.20~0.90質量%のMnを含有し、Ti含有量が0.10質量%以下であり、残部Al及び不可避不純物からなるアルミニウム合金であることを特徴とする(1)の熱交換器用アルミニウム合金押出チューブを提供するものである。 Further, in the present invention (2), the Mn-containing aluminum alloy contains 0.20 to 0.90% by mass of Mn, the Ti content is 0.10% by mass or less, and the balance Al and unavoidable. The present invention provides the aluminum alloy extrusion tube for a heat exchanger according to (1), which is an aluminum alloy composed of impurities.
 また、本発明(3)は、前記チューブ本体のZn溶射量が、3.0~8.0g/mであることを特徴とする(1)又は(2)の熱交換器用アルミニウム合金押出チューブ。 Further, the present invention (3) is characterized in that the amount of Zn sprayed from the tube body is 3.0 to 8.0 g / m 2 , and the aluminum alloy extruded tube for the heat exchanger according to (1) or (2). ..
 また、本発明(4)は、前記Al-Si合金ろう材粉末の塗布量が10.0~25.0g/mであり、前記Zn非含有フッ化物系フラックス粉末の塗布量が3.0~12.0g/mであり、前記バインダの塗布量が1.0~13.0g/mであることを特徴とする(1)~(3)の熱交換器用アルミニウム合金押出チューブを提供するものである。 Further, in the present invention (4), the coating amount of the Al—Si alloy brazing filler metal powder is 10.0 to 25.0 g / m 2 , and the coating amount of the Zn-free fluoride-based flux powder is 3.0. Provided are the aluminum alloy extruded tubes for heat exchangers (1) to (3), wherein the amount is 12.0 g / m 2 and the coating amount of the binder is 1.0 to 13.0 g / m 2 . It is something to do.
 また、本発明(5)は、(1)~(4)いずれかの熱交換器用アルミニウム合金押出チューブと、Znを含有するアルミニウム合金からなるフィンと、のろう付接合物であり、
 チューブ本体を形成しているアルミニウム合金の平均結晶粒径が150μm以上であること、
を特徴とする熱交換器を提供するものである。
Further, the present invention (5) is a brazing joint of an aluminum alloy extrusion tube for a heat exchanger according to any one of (1) to (4), fins made of an aluminum alloy containing Zn, and a brazing joint.
The average crystal grain size of the aluminum alloy forming the tube body is 150 μm or more.
It is intended to provide a heat exchanger characterized by.
 本発明によれば、ろう付時にチューブ肉厚を減少させることなくフィンとチューブが接合され、ろう付性が良好であり、且つ、長期間に亘ってフィンが脱落し難く、フィンにより防食されることで優れた耐食性を有する自動車用熱交換器用のアルミニウム合金押出チューブ及び該アルミニウム合金押出チューブが用いられている熱交換器を提供することができる。 According to the present invention, the fins and the tube are joined without reducing the tube wall thickness at the time of brazing, the brazing property is good, the fins are hard to fall off for a long period of time, and the fins prevent corrosion. Therefore, it is possible to provide an aluminum alloy extruded tube for an automobile heat exchanger having excellent corrosion resistance and a heat exchanger in which the aluminum alloy extruded tube is used.
実施例で作製するミニコアを示す模式図である。It is a schematic diagram which shows the mini core produced in an Example.
 本発明のアルミニウム合金押出チューブは、自動車用熱交換器に用いられるアルミニウム合金製の押出チューブであり、
 Mnを含有するアルミニウム合金からなるチューブ本体と、
 該チューブ本体の外表面に形成されているZn溶射層と、
 該Zn溶射層の外表面に形成されている塗膜と、
を有し、
 該塗膜は、Al-Si合金ろう材粉末と、Zn非含有フッ化物系フラックス粉末と、バインダと、を含有しており、
 600℃±10℃で3分間保持し、室温まで冷却した後の平均結晶粒径を測定する加熱試験において、加熱試験後のチューブ本体の平均結晶粒径が150μm以上であること、を特徴とする熱交換器用アルミニウム合金押出チューブである。
The aluminum alloy extrusion tube of the present invention is an aluminum alloy extrusion tube used in an automobile heat exchanger.
A tube body made of an aluminum alloy containing Mn,
The Zn sprayed layer formed on the outer surface of the tube body and
The coating film formed on the outer surface of the Zn sprayed layer and
Have,
The coating film contains an Al—Si alloy brazing powder, a Zn-free fluoride-based flux powder, and a binder.
In a heating test in which the average crystal grain size is measured after holding at 600 ° C. ± 10 ° C. for 3 minutes and cooling to room temperature, the average crystal grain size of the tube body after the heating test is 150 μm or more. Aluminum alloy extrusion tube for heat exchanger.
 本発明の熱交換器用アルミニウム合金押出チューブは、アルミニウム合金により形成されており、アルミニウム合金を押出成形することにより作製されたアルミニウム合金製のチューブである。そして、本発明のアルミニウム合金押出チューブは、フィン等とろう付されることにより、自動車用熱交換器において、冷媒が流通するチューブに用いられる。 The aluminum alloy extrusion tube for a heat exchanger of the present invention is formed of an aluminum alloy, and is a tube made of an aluminum alloy manufactured by extrusion molding the aluminum alloy. The aluminum alloy extruded tube of the present invention is used for a tube through which a refrigerant flows in a heat exchanger for automobiles by being brazed with fins or the like.
 本発明のアルミニウム合金押出チューブは、Mnを含有するアルミニウム合金からなるチューブ本体と、チューブ本体の外表面に形成されているZn溶射層と、Zn溶射層の外表面に形成されている塗膜と、を有する。つまり、アルミニウム合金で形成されているチューブ本体には、Zn溶射層及び塗膜が、チューブ本体-Zn溶射層-塗膜の順に積層されている。 The aluminum alloy extruded tube of the present invention includes a tube body made of an aluminum alloy containing Mn, a Zn sprayed layer formed on the outer surface of the tube body, and a coating film formed on the outer surface of the Zn sprayed layer. , Have. That is, the Zn sprayed layer and the coating film are laminated in the order of the tube body-Zn spraying layer-coating film on the tube body formed of the aluminum alloy.
 本発明のアルミニウム合金押出チューブに係るチューブ本体は、Mnを含有するアルミニウム合金により形成されている。Mnは、アルミニウム母相中に固溶することにより、強度を向上させる作用を有し、また、電位を貴にする効果も有する。 The tube body of the aluminum alloy extruded tube of the present invention is formed of an aluminum alloy containing Mn. Mn has an effect of improving the strength by being dissolved in the aluminum matrix, and also has an effect of making the electric potential noble.
 チューブ本体を形成するMnを含有するアルミニウム合金は、0.20~0.90質量%のMnを含有し、Ti含有量が0.10質量%以下であり、残部Al及び不可避不純物からなるアルミニウム合金であることが好ましい。 The Mn-containing aluminum alloy forming the tube body contains 0.20 to 0.90% by mass of Mn, has a Ti content of 0.10% by mass or less, and is an aluminum alloy composed of the balance Al and unavoidable impurities. Is preferable.
 チューブ本体を形成するMnを含有するアルミニウム合金中、Mn含有量は、好ましくは0.20~0.90質量%、より好ましくは0.30~0.80質量%である。Mnを含有するアルミニウム合金中のMn含有量が、上記範囲にあることにより、十分な強度向上効果及びチューブ深部における電位貴化効果を得ることができる。一方、アルミニウム合金中のMn含有量が、上記範囲未満だと、上記効果が得られ難く、また、上記範囲を超えると、後述する熱間加工以前の工程で母相中にAl-Mn析出物を生じ、これが粒界の移動を抑制することで、ろう付後の結晶組織が微細となり、前述のようなろう付不具合を生じ得、また、更に、押出加工における加工性が低くなり、チューブ本体の生産性が低くなるおそれがある。 The Mn content in the Mn-containing aluminum alloy forming the tube body is preferably 0.20 to 0.90% by mass, more preferably 0.30 to 0.80% by mass. When the Mn content in the Mn-containing aluminum alloy is within the above range, a sufficient strength improving effect and a potential nourizing effect in the deep part of the tube can be obtained. On the other hand, if the Mn content in the aluminum alloy is less than the above range, it is difficult to obtain the above effect, and if it exceeds the above range, Al—Mn precipitates are deposited in the matrix in the step before hot working described later. By suppressing the movement of grain boundaries, the crystal structure after brazing becomes finer, which may cause the above-mentioned brazing defects, and further, the workability in extrusion processing becomes low, and the tube body May reduce productivity.
 チューブ本体を形成するMnを含有するアルミニウム合金中、Ti含有量は、好ましくは0.10質量%以下、より好ましくは0.001~0.08質量%である。Mnを含有するアルミニウム合金中のTi含有量が、上記範囲にあることにより、鋳造時の組織を微細にすることができる。一方、アルミニウム合金中のTi含有量が、上記範囲を超えると、鋳造時に巨大結晶物が生成し、健全なチューブ本体の製造が困難となるおそれがあり、また、押出多穴管の場合には、晶出したTiがダイスとの間に摩擦を生じさせ、生産性や工具寿命を低下させるおそれがある。 The Ti content in the Mn-containing aluminum alloy forming the tube body is preferably 0.10% by mass or less, more preferably 0.001 to 0.08% by mass. When the Ti content in the Mn-containing aluminum alloy is within the above range, the structure at the time of casting can be made finer. On the other hand, if the Ti content in the aluminum alloy exceeds the above range, huge crystals may be formed during casting, which may make it difficult to manufacture a sound tube body, and in the case of an extruded multi-hole tube. , Crystallized Ti may cause friction with the die, which may reduce productivity and tool life.
 チューブ本体としては、上記のMnを含有するアルミニウム合金の化学成分に調整され鋳造されたアルミニウム合金鋳塊、すなわち、0.20~0.90質量%、好ましくは0.30~0.80質量%のMnを含有し、Ti含有量が0.10質量%以下、好ましくは0.001~0.08質量%であり、残部Al及び不可避不純物からなるアルミニウム合金の鋳塊に、以下の均質化処理が施されたアルミニウム合金を用いて、熱間押出加工されたものであることが好ましい。 The tube body is an aluminum alloy ingot adjusted to the chemical composition of the above Mn-containing aluminum alloy and cast, that is, 0.20 to 0.90% by mass, preferably 0.30 to 0.80% by mass. Mn is contained, the Ti content is 0.10% by mass or less, preferably 0.001 to 0.08% by mass, and the ingot of an aluminum alloy composed of the balance Al and unavoidable impurities is subjected to the following homogenization treatment. It is preferably hot-extruded using the aluminum alloy that has been subjected to the above.
 均質化処理としては、以下の第一の形態の均質化処理及び第二の形態の均質化処理が挙げられる。 Examples of the homogenization treatment include the following homogenization treatment of the first form and the homogenization treatment of the second form.
 第一の形態の均質化処理では、所定の化学組成を有するアルミニウム合金鋳塊を、400~650℃で2時間以上保持する。第一の形態の均質化処理における処理温度は、400~650℃、好ましくは430~620℃である。均質化処理の処理温度が、上記範囲にあることにより、鋳造時に形成される粗大な晶出物を分解あるいは粒状化させ、鋳造時に生じた偏析層などの不均一な組織を均一化させることができる。その結果、押出加工時の抵抗を低減して押出性を向上させることができ、また、押出後の製品の表面粗度を小さくすることができる。一方、均質化処理の処理温度が、上記範囲未満だと、粗大な晶出物や上記の不均一な組織が残存するおそれがあり、押出製の低下や表面粗度の増大を招くおそれがあり、また、上記範囲を超えると、鋳塊の溶融を招くおそれがある。均質化処理の処理時間は、2時間以上、好ましくは5時間以上である。均質化処理の処理時間が、上記範囲であることにより、均質化が十分となる。また、均質化処理の処理時間は、24時間を超えても、均質化の効果が飽和するため、24時間以下が好ましい。 In the homogenization treatment of the first form, the aluminum alloy ingot having a predetermined chemical composition is held at 400 to 650 ° C. for 2 hours or more. The treatment temperature in the homogenization treatment of the first form is 400 to 650 ° C, preferably 430 to 620 ° C. When the treatment temperature of the homogenization treatment is within the above range, the coarse crystallized material formed during casting can be decomposed or granulated, and the non-uniform structure such as the segregated layer generated during casting can be homogenized. can. As a result, the resistance during extrusion processing can be reduced to improve the extrudability, and the surface roughness of the product after extrusion can be reduced. On the other hand, if the treatment temperature of the homogenization treatment is lower than the above range, coarse crystallization and the above-mentioned non-uniform structure may remain, which may lead to a decrease in extrusion and an increase in surface roughness. Further, if it exceeds the above range, the ingot may be melted. The treatment time of the homogenization treatment is 2 hours or more, preferably 5 hours or more. When the processing time of the homogenization treatment is within the above range, the homogenization is sufficient. Further, the treatment time of the homogenization treatment is preferably 24 hours or less because the effect of homogenization is saturated even if it exceeds 24 hours.
 第二の形態の均質化処理では、所定の化学組成を有するアルミニウム合金鋳塊を、550~650℃で2時間以上保持する第一均質化処理を行い、第一均質化処理を行った後、アルミニウム合金鋳塊を、400~550℃で3時間以上保持する第二均質化処理を行う。 In the second form of homogenization treatment, the aluminum alloy ingot having a predetermined chemical composition is held at 550 to 650 ° C. for 2 hours or more, and then the first homogenization treatment is performed, and then the first homogenization treatment is performed. The aluminum alloy ingot is subjected to a second homogenization treatment in which it is held at 400 to 550 ° C. for 3 hours or more.
 第二の形態の均質化処理に係る第一均質化処理における処理温度は、550~650℃、好ましくは580~620℃である。第一均質化処理の処理温度が、上記範囲にあることにより、鋳造時に形成される粗大な晶出物を分解あるいは粒状化させ、また、積極的に再固溶させることができる。一方、第一均質化処理の処理温度が、上記範囲未満だと、再固溶が進み難くなり、また、上記範囲を超えると、鋳塊の溶融を招くおそれがある。第一均質化処理の処理時間は、2時間以上、好ましくは5時間以上である。均質化処理の処理時間が、上記範囲であることにより、上記効果が十分となる。また、均質化処理の処理時間は、24時間を超えても、均質化の効果が飽和するため、24時間以下が好ましい。 The treatment temperature in the first homogenization treatment according to the second form of homogenization treatment is 550 to 650 ° C, preferably 580 to 620 ° C. When the treatment temperature of the first homogenization treatment is in the above range, the coarse crystallized material formed during casting can be decomposed or granulated, and can be positively re-solidified. On the other hand, if the treatment temperature of the first homogenization treatment is lower than the above range, it becomes difficult for the solid solution to proceed, and if it exceeds the above range, the ingot may be melted. The treatment time of the first homogenization treatment is 2 hours or more, preferably 5 hours or more. When the processing time of the homogenization treatment is within the above range, the above effect is sufficient. Further, the treatment time of the homogenization treatment is preferably 24 hours or less because the effect of homogenization is saturated even if it exceeds 24 hours.
 第二の形態の均質化処理に係る第二均質化処理における処理温度は、400~550℃である。第二均質化処理の処理温度が、上記範囲にあることにより、母相中に固溶しているMnを析出させ、Mnの固溶度を低下させることができる。その結果、押出加工における変形抵抗を低下させ、押出性を向上させることができる。一方、第二均質化処理の処理温度が、上記範囲未満だと、Mnの析出量が少なくなるため、変形抵抗を低下させる効果が不十分となるおそれがあり、また、上記範囲を超えると、Mnが析出し難くなるため、変形抵抗を低下させるおそれがある。第二均質化処理の処理時間は、3時間以上、好ましくは5時間以上である。第二均質化処理の処理時間が、上記範囲未満だと、Mnの析出が十分となり、変形抵抗を低下させる効果が不十分となるおそれがある。また、均質化処理の処理時間は、長い方が反応が進むため効果があるが、長すぎても効果が飽和するため、24時間以下が好ましく、15時間以下が特に好ましい。 The treatment temperature in the second homogenization treatment according to the second form of homogenization treatment is 400 to 550 ° C. When the treatment temperature of the second homogenization treatment is within the above range, Mn that is solid-solved in the matrix can be precipitated and the solid solubility of Mn can be lowered. As a result, it is possible to reduce the deformation resistance in extrusion processing and improve the extrudability. On the other hand, if the treatment temperature of the second homogenization treatment is less than the above range, the amount of Mn precipitated is small, so that the effect of lowering the deformation resistance may be insufficient, and if it exceeds the above range, the effect may be insufficient. Since Mn is less likely to precipitate, there is a risk of lowering the deformation resistance. The treatment time of the second homogenization treatment is 3 hours or more, preferably 5 hours or more. If the treatment time of the second homogenization treatment is less than the above range, the precipitation of Mn becomes sufficient, and the effect of reducing the deformation resistance may be insufficient. Further, the treatment time of the homogenization treatment is effective because the reaction proceeds when it is long, but the effect is saturated even if it is too long, so that it is preferably 24 hours or less, and particularly preferably 15 hours or less.
 第二の形態の均質化処理において、第一均質化処理と第二均質化処理とを、連続して行ってもよいし、あるいは、第一均質化処理を行った後、一旦、鋳塊を冷却してから、第二均質化処理を行ってもよい。なお、第一均質化処理と第二均質化処理とを連続して行うとは、第一均質化処理が完了した後に、鋳塊の温度を、第二均質化処理の処理温度よりも低い温度に冷却することなく、第二均質化処理の処理温度に達したときに、第二均質化処理を開始するという意味である。また、第一均質化処理を行った後、一旦、鋳塊を冷却してから、第二均質化処理を行う場合には、例えば、第一均質化処理を行った後、鋳塊を200℃以下まで冷却した後に再加熱し、第二均質化処理を行う。 In the homogenization treatment of the second form, the first homogenization treatment and the second homogenization treatment may be continuously performed, or after the first homogenization treatment, the ingot is once formed. After cooling, the second homogenization treatment may be performed. In addition, when the first homogenization treatment and the second homogenization treatment are continuously performed, the temperature of the ingot is set to a temperature lower than the treatment temperature of the second homogenization treatment after the first homogenization treatment is completed. It means that the second homogenization treatment is started when the treatment temperature of the second homogenization treatment is reached without cooling to. Further, when the ingot is once cooled after the first homogenization treatment and then the second homogenization treatment is performed, for example, after the first homogenization treatment, the ingot is heated to 200 ° C. After cooling to the following, it is reheated to perform a second homogenization treatment.
 上記第一の形態の均質化処理又は第二の形態の均質化処理が施されたアルミニウム合金鋳塊を、熱間押出加工する方法は、特に制限されない。熱間押出加工の加工温度は、例えば、400~550℃である。 The method of hot extrusion of the aluminum alloy ingot that has been subjected to the homogenization treatment of the first form or the homogenization treatment of the second form is not particularly limited. The processing temperature for hot extrusion is, for example, 400 to 550 ° C.
 チューブ本体の形態は、特に制限されず、用途や要求される特性に応じて、適宜選択される。チューブ本体としては、例えば、押出加工により形成され、内部に複数の冷媒流路を有し、押出方向に垂直な断面の形状が扁平な形状である押出扁平多穴管が挙げられる。また、チューブ本体は、例えば、単純な筒状等の形状であってもよい。筒状のチューブは、押出加工により製造されたものであってもよい。 The form of the tube body is not particularly limited, and is appropriately selected according to the application and required characteristics. Examples of the tube main body include an extruded flat multi-hole tube which is formed by extrusion processing, has a plurality of refrigerant flow paths inside, and has a flat cross-sectional shape perpendicular to the extrusion direction. Further, the tube body may have a simple cylindrical shape or the like. The tubular tube may be manufactured by extrusion.
 本発明のアルミニウム合金押出チューブに係るZn溶射層は、チューブ本体の外表面に形成されている。つまり、本発明のアルミニウム合金押出チューブでは、Zn溶射層は、チューブ本体と塗膜の間に配置されている。チューブ本体の外表面に溶射されたZnは、ろう付中にチューブ本体の外表面から深部へと拡散していく。そして、ろう付中に、溶射されたZnがチューブ本体の外表面から深部へ拡散することで、犠牲層を形成し、チューブ単体として犠牲防食効果を発揮し、同時に溶融ろう中へのZn濃縮が低減され、優れた耐食性を有する。 The Zn sprayed layer according to the aluminum alloy extruded tube of the present invention is formed on the outer surface of the tube body. That is, in the aluminum alloy extruded tube of the present invention, the Zn sprayed layer is arranged between the tube body and the coating film. Zn sprayed on the outer surface of the tube body diffuses from the outer surface of the tube body to the deep part during brazing. Then, during brazing, the sprayed Zn diffuses from the outer surface of the tube body to the deep part to form a sacrificial layer, exerting a sacrificial anticorrosion effect as a single tube, and at the same time, Zn concentration in the molten wax is performed. It is reduced and has excellent corrosion resistance.
 Zn溶射量は、好ましくは3.0~8.0g/m、特に好ましくは3.0~7.0g/mである。Zn溶射量が上記範囲未満のものを製造しようとすると、安定したアーク放電を継続することができず、製造が困難であり、また、Zn溶射量が上記範囲を超えると、ろう付中にZnがチューブ本体の深部へ拡散せずに、外表面に残留するZnが多くなるため、ろう付中のフィレットへのZnの濃縮が生じ、耐食性が低くなるおそれがある。 The amount of Zn sprayed is preferably 3.0 to 8.0 g / m 2 , and particularly preferably 3.0 to 7.0 g / m 2 . If an attempt is made to manufacture a product having a Zn sprayed amount less than the above range, stable arc discharge cannot be continued and manufacturing is difficult. If the Zn sprayed amount exceeds the above range, Zn is generated during brazing. However, the amount of Zn remaining on the outer surface increases without diffusing into the deep part of the tube body, so that Zn is concentrated in the fillet during brazing, and the corrosion resistance may be lowered.
 Mnを含有するアルミニウム合金からなるチューブ本体の外表面に、Znを溶射してZn溶射層を形成するZn溶射方法としては、特に制限されない。Zn溶射方法としては、従来行われている溶射方法を適宜用いることができる。例えば、2本のZn線を接近させて高圧電流を印加し、Zn線間でアーク放電させて、Zn線の先端が溶融し、高圧の不活性ガスを吹き付けることでZn亜鉛を吹き飛ばし、その先にチューブ本体を通過させることで、チューブ外表面に溶融Znを付着させる方法である。溶射に用いられる素線としては、製造が容易であることから、純Zn線が好ましく用いられる。なお、Zn線は溶融に伴い、順次送ることで、アーク放電を継続させることができるので、長手方向に連続して均一なZn溶射層を形成することができる。 The Zn spraying method for forming a Zn sprayed layer by spraying Zn on the outer surface of a tube body made of an aluminum alloy containing Mn is not particularly limited. As the Zn spraying method, a conventional thermal spraying method can be appropriately used. For example, two Zn wires are brought close to each other, a high-voltage current is applied, and an arc is discharged between the Zn wires to melt the tip of the Zn wire and blow off Zn zinc by blowing a high-voltage inert gas. This is a method of adhering molten Zn to the outer surface of the tube by passing the tube body through the tube body. As the wire used for thermal spraying, pure Zn wire is preferably used because it is easy to manufacture. Since the Zn wire is continuously sent as it melts, the arc discharge can be continued, so that a uniform Zn sprayed layer can be formed continuously in the longitudinal direction.
 本発明のアルミニウム合金押出チューブに係る塗膜は、Zn溶射層の外表面に形成されている。つまり、本発明のアルミニウム合金押出チューブにおいて、塗膜は、Zn溶射層の面のうち、チューブ本体側とは反対側の面に形成されている。塗膜は、Al-Si合金ろう材粉末、Zn非含有フッ化物系フラックス粉末及びバインダを含有している。 The coating film of the aluminum alloy extruded tube of the present invention is formed on the outer surface of the Zn sprayed layer. That is, in the aluminum alloy extruded tube of the present invention, the coating film is formed on the surface of the Zn sprayed layer opposite to the tube main body side. The coating film contains Al—Si alloy brazing powder, Zn-free fluoride-based flux powder, and binder.
 Al-Si合金ろう材粉末は、粉末状のAlとSiの合金である。Al-Si合金ろう材粉末は、ろう付時の加熱により、Al-Si合金ろう材粉末自身のみで溶融し、チューブ外表面に液相ろうを生じる。このことにより、チューブをフィンやヘッダと接合させることができる。Al-Si合金ろう材粉末は、Alを含有しているので、ろう付時のろう材によるチューブ外表面の溶融が起こり難い。 Al-Si alloy brazing material powder is a powdery alloy of Al and Si. The Al—Si alloy brazing material powder is melted only by the Al—Si alloy brazing material powder itself by heating at the time of brazing, and liquid phase wax is generated on the outer surface of the tube. This allows the tube to be joined to the fins and headers. Since the Al—Si alloy brazing material powder contains Al, it is difficult for the brazing material to melt the outer surface of the tube during brazing.
 Al-Si合金ろう材粉末を構成するAlとSiの合金中、Siの含有量は、好ましくは5.0~20.0質量%、特に好ましくは7.0~15.0質量%である。AlとSiの合金中のAlの含有量が上記範囲にあることにより、ろう付時にチューブ外表面の溶融によるチューブ肉厚の減少が起こり難くなると共に、ろう付性が良好になる。 The content of Si in the alloy of Al and Si constituting the Al—Si alloy brazing filler metal powder is preferably 5.0 to 20.0% by mass, and particularly preferably 7.0 to 15.0% by mass. When the Al content in the alloy of Al and Si is within the above range, the tube wall thickness is less likely to decrease due to melting of the outer surface of the tube during brazing, and the brazing property is improved.
 Al-Si合金ろう材粉末の塗布量は、好ましくは10.0~25.0g/m、特に好ましくは12.0~20.0g/mである。Al-Si合金ろう材粉末の塗布量が上記範囲にあることにより、ろう付性が良好になる。一方、Al-Si合金ろう材粉末の塗布量が、上記範囲未満だと、液相ろうの量が不十分となり、接合不良を生じ易くなり、また、上記範囲を超えると、塗膜厚さが過度に厚くなり、ろう付後のコアの寸法変化が生じ、ろう付性が低くなり易くなる。 The coating amount of the Al—Si alloy brazing filler metal powder is preferably 10.0 to 25.0 g / m 2 , and particularly preferably 12.0 to 20.0 g / m 2 . When the coating amount of the Al—Si alloy brazing material powder is within the above range, the brazing property is improved. On the other hand, if the coating amount of the Al—Si alloy brazing material powder is less than the above range, the amount of liquid phase brazing becomes insufficient and bonding failure is likely to occur, and if it exceeds the above range, the coating thickness becomes thick. It becomes excessively thick, the dimensional change of the core after brazing occurs, and the brazing property tends to be low.
 Zn非含有フッ化物系フラックス粉末は、ろう付時にフラックスとして機能し、ろう付加熱中に溶融して、Al-Si合金ろう材粉末やチューブ外表面の酸化皮膜を破壊し、液相ろう生成後に、直ちにろう付が進行することを可能にする。Zn非含有フッ化物系フラックス粉末は、粉末状であり且つZnを含有しないフッ化物である。なお、本発明において、「Zn非含有」、「Znを含有しない」とは、電子線マイクロアナライザによる分析において、Zn量が検出下限未満であることを指す。 The Zn-free fluoride-based flux powder functions as a flux during brazing and melts during brazing heat to destroy the Al—Si alloy brazing material powder and the oxide film on the outer surface of the tube. Allows immediate progress of brazing. The Zn-free fluoride-based flux powder is a fluoride that is in the form of powder and does not contain Zn. In the present invention, "Zn-free" and "Zn-free" mean that the amount of Zn is less than the lower limit of detection in the analysis by the electron probe microanalyzer.
 Zn非含有フッ化物系フラックス粉末を構成するZn非含有フッ化物としては、例えば、KAlF、KAlF、KAlF等のK-Al-F系化合物が挙げられる。また、これらの他に、Zn非含有フッ化物としては、CaF、LiF等のフラックスも挙げられる。 Examples of the Zn-free fluoride constituting the Zn-free fluoride-based flux powder include K-Al-F compounds such as KAlF 4 , K 2 AlF 5 , and K 3 AlF 6 . In addition to these, fluxes such as CaF 2 and LiF can also be mentioned as Zn-free fluoride.
 Zn非含有フッ化物系フラックス粉末の塗布量は、好ましくは3.0~12.0g/m、特に好ましくは4.0~10.0g/mである。Zn非含有フッ化物系フラックス粉末の塗布量が上記範囲にあることにより、ろう付時の酸化皮膜の破壊効果が十分となる。一方、Zn非含有フッ化物系フラックス粉末の塗布量が、上記範囲未満だと、フラックス成分が不足するため、酸化皮膜の破壊が不十分となり、ろう付性が低くなり易く、また、上記範囲を超えると、塗膜厚さが過度に厚くなり、ろう付後のコアの寸法変化が生じ、ろう付性が低くなり易くなる。 The coating amount of the Zn-free fluoride-based flux powder is preferably 3.0 to 12.0 g / m 2 , and particularly preferably 4.0 to 10.0 g / m 2 . When the coating amount of the Zn-free fluoride-based flux powder is within the above range, the effect of destroying the oxide film during brazing is sufficient. On the other hand, if the coating amount of the Zn-free fluoride-based flux powder is less than the above range, the flux component is insufficient, so that the oxide film is not sufficiently destroyed and the brazing property tends to be low. If it exceeds, the thickness of the coating film becomes excessively thick, the dimensional change of the core after brazing occurs, and the brazing property tends to be lowered.
 バインダは、Al-Si合金ろう材粉末及びZn非含有フッ化物系フラックス粉末を、チューブ本体の表面に付着させるものである。バインダとしては、例えば、アクリル系樹脂、ウレタン系樹脂等が挙げられる。 The binder adheres Al—Si alloy brazing powder and Zn-free fluoride-based flux powder to the surface of the tube body. Examples of the binder include an acrylic resin and a urethane resin.
 バインダの塗布量は、好ましくは1.0~13.0g/mである。バインダの塗布量が上記範囲にあることにより、Al-Si合金ろう材粉末及びZn非含有フッ化物系フラックス粉末を、チューブ本体の表面に良好に付着させることができる。一方、バインダの塗布量が、上記範囲未満だと、塗膜の剥離が生じ易くなり、また、上記範囲を超えると、バインダの熱分解が不十分となり、ろう付の際に未分解のバインダ等が残留し、ろう付性が低くなるおそれがある。 The amount of the binder applied is preferably 1.0 to 13.0 g / m 2 . When the amount of the binder applied is within the above range, the Al—Si alloy brazing material powder and the Zn-free fluoride-based flux powder can be satisfactorily adhered to the surface of the tube body. On the other hand, if the coating amount of the binder is less than the above range, the coating film is likely to be peeled off, and if it exceeds the above range, the thermal decomposition of the binder becomes insufficient, and the undecomposed binder or the like is formed during brazing. May remain and the brazing property may decrease.
 チューブ本体の表面に形成されているZn溶射層の表面に、塗膜を形成させる方法としては、例えば、Al-Si合金ろう材粉末、Zn非含有フッ化物系フラックス粉末及びバインダを、溶剤に混合し、得られるペーストをZn溶射層の表面に塗布した後、溶剤を乾燥して除去することにより、塗膜を形成させる方法が挙げられる。Al-Si合金ろう材粉末及びZn非含有フッ化物系フラックス粉末を、溶剤に混合する前に、予め、Al-Si合金ろう材粉末と、Zn非含有フッ化物系フラックス粉末と、を混合して、Al-Si合金ろう材粉末及びZn非含有フッ化物系フラックス粉末の混合粉末にしてから、得られる混合粉末をバインダと共に、溶剤に混合してもよい。チューブ本体の表面への上記ペーストの塗布には、例えば、ロールコート法等が用いられる。 As a method of forming a coating film on the surface of the Zn sprayed layer formed on the surface of the tube body, for example, an Al—Si alloy brazing material powder, a Zn-free fluoride-based flux powder and a binder are mixed with a solvent. Then, a method of forming a coating film by applying the obtained paste to the surface of the Zn spraying layer and then drying and removing the solvent can be mentioned. Before mixing the Al—Si alloy brazing material powder and the Zn-free fluoride-based flux powder with the solvent, the Al—Si alloy brazing material powder and the Zn-free fluoride-based flux powder are mixed in advance. , Al—Si alloy brazing powder and Zn-free fluoride-based flux powder may be mixed, and then the obtained mixed powder may be mixed with a binder together with a binder. For example, a roll coating method or the like is used to apply the paste to the surface of the tube body.
 本発明の熱交換器用アルミニウム合金押出チューブは、600℃±10℃で3分間保持し、室温まで冷却した後の平均結晶粒径を測定する加熱試験において、加熱試験後のチューブ本体の平均結晶粒径が150μm以上である。つまり、本発明の熱交換器用アルミニウム合金押出チューブは、600℃±10℃で3分間保持し、室温まで冷却することにより、チューブ本体の平均結晶粒径が150μm以上となるような、結晶組織を有している。熱交換器用アルミニウム合金押出チューブを、600℃±10℃で3分間保持し、室温まで冷却した後の平均結晶粒径を測定する加熱試験したときのチューブ本体の平均結晶粒径が150μm以上であることにより、ろう付加熱中に、液相ろうが結晶粒界を浸食する所謂エロージョンが発生し難く、チューブ肉厚の減少やチューブの貫通が起こり難くなり、また、ろう量の減少による接合不良が起こり難くなるので、ろう付性が良好になる。 The aluminum alloy extruded tube for a heat exchanger of the present invention is held at 600 ° C. ± 10 ° C. for 3 minutes, and in a heating test for measuring the average crystal grain size after cooling to room temperature, the average crystal grain of the tube body after the heating test is performed. The diameter is 150 μm or more. That is, the aluminum alloy extruded tube for a heat exchanger of the present invention has a crystal structure in which the average crystal grain size of the tube body becomes 150 μm or more by holding at 600 ° C. ± 10 ° C. for 3 minutes and cooling to room temperature. Have. The average crystal grain size of the tube body is 150 μm or more when the aluminum alloy extruded tube for a heat exchanger is held at 600 ° C. ± 10 ° C. for 3 minutes and the average crystal grain size is measured after cooling to room temperature. As a result, so-called erosion in which the liquid phase wax erodes the crystal grain boundaries is less likely to occur during the wax addition heat, the tube wall thickness is less likely to decrease and the tube is less likely to penetrate, and bonding failure occurs due to the decrease in the wax amount. Since it becomes difficult, the waxability becomes good.
 本発明の熱交換器用アルミニウム合金押出チューブに係る加熱試験後の平均結晶粒径が150μm以上となるチューブ本体は、ろう付加熱前の平均結晶粒径が、ろう付加熱中にエロージョンが発生し難くなる程度に大きいので、ろう付加熱中にエロージョンが起こり難い。そのため、600℃±10℃で3分間保持し、室温まで冷却した後の平均結晶粒径を測定する加熱試験において、加熱試験後のチューブ本体の平均結晶粒径が150μm以上である本発明の熱交換器用アルミニウム合金押出チューブは、ろう付加熱中にエロージョンが起こり難い。 In the tube body of the aluminum alloy extrusion tube for a heat exchanger of the present invention having an average crystal grain size of 150 μm or more after the heating test, the average crystal grain size before the brazing heat addition is less likely to cause erosion during the brazing heat addition. Since it is large enough, erosion is unlikely to occur during wax addition heat. Therefore, in the heating test in which the average crystal grain size is measured after holding at 600 ° C. ± 10 ° C. for 3 minutes and cooling to room temperature, the heat of the present invention in which the average crystal grain size of the tube body after the heating test is 150 μm or more. Aluminum alloy extrusion tubes for exchangers are less prone to erosion during brazing heat addition.
 本発明の熱交換器用アルミニウム合金押出チューブに係る加熱試験は、先ず、本発明の熱交換器用アルミニウム合金押出チューブを、加熱して昇温し、昇温過程において、600℃±10℃の保持温度まで加熱し、次いで、600℃±10℃で3分間保持し、次いで、室温まで冷却する加熱試験を行い、次いで、加熱試験後の本発明の熱交換器用アルミニウム合金押出チューブのチューブ本体の平均結晶粒径を測定する試験である。なお、チューブ本体の平均結晶粒径の測定方法は、試験片を電解研磨した後、倍率50~100倍の偏光顕微鏡により、各断面の顕微鏡像を得て、円相当径を測定する方法が挙げられる。また、加熱試験の昇温過程における昇温速度については、500℃までの温度域が平均30±10℃/分の昇温速度であり、500℃以上の温度域が平均10±5℃/分の昇温速度である。 In the heating test of the aluminum alloy extrusion tube for a heat exchanger of the present invention, first, the aluminum alloy extrusion tube for a heat exchanger of the present invention is heated to raise the temperature, and in the heating process, the holding temperature is 600 ° C. ± 10 ° C. Heated to This is a test for measuring the particle size. As a method for measuring the average crystal grain size of the tube body, a method of electrolytically polishing the test piece, obtaining a microscope image of each cross section with a polarizing microscope having a magnification of 50 to 100 times, and measuring the equivalent circle diameter is mentioned. Be done. Regarding the heating rate in the heating process of the heating test, the temperature range up to 500 ° C is an average heating rate of 30 ± 10 ° C / min, and the temperature range of 500 ° C or higher is an average of 10 ± 5 ° C / min. The rate of temperature rise.
 本発明の熱交換器用アルミニウム合金押出チューブに係る加熱試験後の平均結晶粒径が150μm以上となるチューブ本体は、熱間押出に供するアルミニウム合金鋳塊中のMn含有量を所定の含有量とすること、好ましくは0.20~0.90質量%のMnを含有し、Ti含有量が0.10質量%以下であり、残部Al及び不可避不純物からなるアルミニウム合金を、熱間押出に供するアルミニウム合金鋳塊として用いること、より好ましくは、更に、熱間押出に供する前に、アルミニウム合金鋳塊に上記均質化処理を施すことや、熱間押出時の鋳塊温度を480℃以上とし、導入される加工ひずみを低減することにより得られる。 The tube body having an average crystal grain size of 150 μm or more after the heating test according to the aluminum alloy extrusion tube for a heat exchanger of the present invention has the Mn content in the aluminum alloy ingot to be subjected to hot extrusion as a predetermined content. That is, an aluminum alloy containing 0.20 to 0.90% by mass of Mn, having a Ti content of 0.10% by mass or less, and being composed of the balance Al and unavoidable impurities is subjected to hot extrusion. It is introduced by using it as an ingot, more preferably, by subjecting the aluminum alloy ingot to the above homogenization treatment before subjecting it to hot extrusion, or by setting the ingot temperature at the time of hot extrusion to 480 ° C. or higher. It is obtained by reducing the machining strain.
 本発明の熱交換器用アルミニウム合金押出チューブは、チューブ本体がMnを含有するアルミニウム合金からなるので、チューブ本体が純アルミニウムからなるチューブに比べ、強度が高くなる。また、本発明の熱交換器用アルミニウム合金押出チューブは、チューブ本体がMnを含有するアルミニウム合金からなるので、Mnがアルミニウム母相中に固溶しているので、チューブ本体が純アルミニウムからなるチューブに比べ、電位が深部において貴になり、フィン材や後述するようにチューブ表面との電位差が大きくなりやすいため、チューブ本体の腐食貫通を防止する観点から有利となる。 The aluminum alloy extruded tube for a heat exchanger of the present invention has a higher strength than a tube whose tube body is made of pure aluminum because the tube body is made of an aluminum alloy containing Mn. Further, in the aluminum alloy extruded tube for a heat exchanger of the present invention, since the tube body is made of an aluminum alloy containing Mn, Mn is solidly dissolved in the aluminum matrix, so that the tube body is made of pure aluminum. In comparison, the potential becomes noble in the deep part, and the potential difference from the fin material and the tube surface tends to be large as described later, which is advantageous from the viewpoint of preventing corrosion penetration of the tube body.
 本発明の熱交換器用アルミニウム合金押出チューブは、塗膜が、Al-Si合金ろう材粉末及びZn非含有フッ化物系フラックス粉末を含有することにより、好ましくはAl-Si合金ろう材粉末を、10.0~25.0g/m、特に好ましくは12.0~20.0g/mの塗布量で、且つ、Zn非含有フッ化物系フラックス粉末を、3.0~12.0g/m、特に好ましくは4.0~10.0g/mの塗布量で含有することにより、それぞれの粉末がそれぞれの機能を発揮すると共に、相互に作用して相乗的な効果を発揮することにより、優れたろう付性及び耐食性を有する。 In the aluminum alloy extrusion tube for a heat exchanger of the present invention, the coating film contains Al—Si alloy brazing filler metal powder and Zn-free fluoride-based flux powder, preferably Al—Si alloy brazing filler metal powder. A coating amount of 0.0 to 25.0 g / m 2 , particularly preferably 12.0 to 20.0 g / m 2 , and a Zn-free fluoride-based flux powder of 3.0 to 12.0 g / m 2 . In particular, by containing it in a coating amount of 4.0 to 10.0 g / m 2 , each powder exerts its respective function and interacts with each other to exert a synergistic effect. Has excellent waxing resistance and corrosion resistance.
 本発明の熱交換器用アルミニウム合金押出チューブでは、塗膜に含有されているAl-Si合金ろう材粉末が、ろう付時の加熱により、Al-Si合金ろう材粉末自身のみで溶融し、チューブ外表面に液相ろうを生じるので、チューブをフィンやヘッダと接合させることができ、また、ろう付中にチューブ肉厚を減少させないため、チューブを薄肉化することができる。 In the aluminum alloy extrusion tube for a heat exchanger of the present invention, the Al—Si alloy brazing filler metal powder contained in the coating film is melted only by the Al—Si alloy brazing filler metal powder itself by heating at the time of brazing, and is outside the tube. Since liquid phase brazing is generated on the surface, the tube can be joined to fins and headers, and since the tube wall thickness is not reduced during brazing, the tube can be thinned.
 以上のことから、本発明の熱交換器用アルミニウム合金押出チューブは、ろう付時に外表面の溶融を生じないため、薄肉であっても強度が高くなる。 From the above, the aluminum alloy extruded tube for heat exchanger of the present invention does not melt the outer surface at the time of brazing, so that the strength is high even if the wall thickness is thin.
 本発明の熱交換器用アルミニウム合金押出チューブでは、塗膜に含有されているZn非含有フッ化物系フラックス粉末が、ろう付時に、Al-Si合金ろう付粉末表面の酸化皮膜及びチューブ外表面の酸化皮膜を先に破壊することで、Al-Si合金粉末の溶融後直ちにろう付を可能にしている。 In the aluminum alloy extrusion tube for a heat exchanger of the present invention, the Zn-free fluoride-based flux powder contained in the coating film is an oxide film on the surface of the Al—Si alloy brazed powder and oxidation of the outer surface of the tube during brazing. By breaking the film first, brazing is possible immediately after the Al—Si alloy powder is melted.
 本発明の熱交換器用アルミニウム合金押出チューブでは、ろう付中に、溶射されたZnがチューブ本体の外表面から深部へ拡散することで、犠牲層を形成し、チューブ単体として犠牲防食効果を発揮し、同時に溶融ろう中へのZn濃縮が低減され、優れた耐食性を有する。 In the aluminum alloy extruded tube for heat exchanger of the present invention, during brazing, the sprayed Zn diffuses from the outer surface of the tube body to the deep part to form a sacrificial layer, and the tube itself exhibits a sacrificial anticorrosion effect. At the same time, Zn concentration in the molten brazing is reduced, and it has excellent corrosion resistance.
 また、塗膜中に純Zn粉末等を含有するチューブをろう付して得られた熱交換器の場合、フィレット形成時に溶融ろう中のZnが濃縮し、フィレットの電位が最も卑になる。この場合、熱交換器が腐食環境下にさらされるとフィレット部の腐食が最も早く進行するため、フィレットが消失することで、フィンがチューブから脱落する。その結果、熱交換性能が大きく低下し、更に、フィンによるチューブの防食作用が失われるため、早期にチューブの貫通を生じ易くなる。 Further, in the case of a heat exchanger obtained by brazing a tube containing pure Zn powder or the like in a coating film, Zn in the molten brazing is concentrated at the time of fillet formation, and the potential of the fillet becomes the lowest. In this case, when the heat exchanger is exposed to a corrosive environment, the fillet portion is corroded fastest, so that the fillet disappears and the fins fall off from the tube. As a result, the heat exchange performance is greatly deteriorated, and further, the anticorrosion action of the tube by the fins is lost, so that the tube is likely to penetrate at an early stage.
 それに対して、本発明の熱交換器用アルミニウム合金押出チューブでは、チューブ本体の外表面にZnが存在しているものの、チューブ本体に溶射されたZnは、ろう付中にチューブ本体の外表面から深部へと拡散していくため、ろう溶融直前にチューブ本体の外表面に存在するZnは少なくなる。そのため、本発明の熱交換器用アルミニウム合金押出チューブでは、フレット形成時に溶融ろう中へのZnの濃縮を生じない。そのため、本発明の熱交換器用アルミニウム合金押出チューブをろう付して得られる熱交換器では、フィレットが優先的に腐食しないため、長期間に亘ってチューブ表面からフィンが脱落せず、熱交換性能の低下を防止できるだけでなく、フィンによるチューブの防食作用が長期間得られる。このようなことから、本発明の熱交換器用アルミニウム合金押出チューブは、優れた耐食性を有する。 On the other hand, in the aluminum alloy extruded tube for heat exchanger of the present invention, Zn is present on the outer surface of the tube body, but the Zn sprayed on the tube body is deeply formed from the outer surface of the tube body during brazing. Since it diffuses into, the amount of Zn present on the outer surface of the tube body immediately before the wax melts decreases. Therefore, in the aluminum alloy extrusion tube for heat exchanger of the present invention, Zn is not concentrated in the molten wax during fret formation. Therefore, in the heat exchanger obtained by brazing the aluminum alloy extruded tube for the heat exchanger of the present invention, the fillets do not preferentially corrode, so that the fins do not fall off from the tube surface for a long period of time, and the heat exchange performance is improved. Not only can the deterioration of the aluminum be prevented, but also the anticorrosion effect of the tube by the fins can be obtained for a long period of time. Therefore, the aluminum alloy extruded tube for a heat exchanger of the present invention has excellent corrosion resistance.
 本発明の熱交換器は、上記本発明の熱交換器用アルミニウム合金押出チューブと、Znを含有するアルミニウム合金からなるフィンと、のろう付接合物であり、
 チューブ本体を形成しているアルミニウム合金の平均結晶粒径が150μm以上であること、
を特徴とする熱交換器である。
The heat exchanger of the present invention is a brazing joint of the aluminum alloy extrusion tube for the heat exchanger of the present invention and fins made of an aluminum alloy containing Zn.
The average crystal grain size of the aluminum alloy forming the tube body is 150 μm or more.
It is a heat exchanger characterized by.
 本発明の熱交換器は、上記本発明の熱交換器用アルミニウム合金押出チューブと、Znを含有するアルミニウム合金からなるフィンと、が、ろう付により接合されたものである。 In the heat exchanger of the present invention, the aluminum alloy extrusion tube for the heat exchanger of the present invention and fins made of an aluminum alloy containing Zn are joined by brazing.
 本発明の熱交換器に係るZnを含有するアルミニウム合金からなるフィンは、アルミニウム合金により形成されている。フィン材を形成するアルミニウム合金は、特に制限されず、熱交換器用として十分な強度及び耐食性を有するものであればよいが、例えば、Mn含有量が0.8~1.5質量%、Zn含有量が0.5~2.5質量%、Cu含有量が0.20質量%以下であり、残部Al及び不可避不純物からなるアルミニウム合金が挙げられる。また、本発明の熱交換器に係るZnを含有するアルミニウム合金からなるフィンは、熱交換器用として十分な強度及び耐食性を有するものであれば、公知のフィンであってもよい。 The fin made of a Zn-containing aluminum alloy according to the heat exchanger of the present invention is formed of the aluminum alloy. The aluminum alloy forming the fin material is not particularly limited as long as it has sufficient strength and corrosion resistance for a heat exchanger, and for example, it has a Mn content of 0.8 to 1.5% by mass and a Zn content. Examples thereof include aluminum alloys having an amount of 0.5 to 2.5% by mass, a Cu content of 0.20% by mass or less, and the balance Al and unavoidable impurities. Further, the fin made of a Zn-containing aluminum alloy according to the heat exchanger of the present invention may be a known fin as long as it has sufficient strength and corrosion resistance for the heat exchanger.
 本発明の熱交換器は、上記本発明の熱交換器用アルミニウム合金押出チューブに、Znを含有するアルミニウム合金からなるフィンを当接させた後、ヘッダ等の他の部材を組み付け、これらを加熱して、ろう付することにより作製される。ろう付に際しての加熱温度、加熱時間、雰囲気は、特に制限されず、ろう付方法も、特に制限されない。ろう付の加熱温度は、例えば、590~610℃であり、また、ろう付の加熱時間は、例えば、15分~45分であり、また、ろう付の雰囲気は、例えば、窒素ガス雰囲気、アルゴンガス雰囲気等である。 In the heat exchanger of the present invention, fins made of an aluminum alloy containing Zn are brought into contact with the aluminum alloy extrusion tube for the heat exchanger of the present invention, and then other members such as a header are assembled and heated. It is produced by brazing. The heating temperature, heating time, and atmosphere at the time of brazing are not particularly limited, and the brazing method is also not particularly limited. The heating temperature of the brazing is, for example, 590 to 610 ° C., the heating time of the brazing is, for example, 15 minutes to 45 minutes, and the atmosphere of the brazing is, for example, a nitrogen gas atmosphere or argon. Gas atmosphere, etc.
 本発明の熱交換器は、チューブ材として、本発明の熱交換器用アルミニウム合金押出チューブを用いて、ろう付されたものなので、ろう付時にチューブ肉厚を減少させることなくフィンと接合されたものである。そのため、本発明の熱交換器は、薄肉であっても強度が高い。また、本発明の熱交換器は、チューブ材として、本発明の熱交換器用アルミニウム合金押出チューブを用いて、ろう付されたものなので、フィレット形成時に溶融ろうへのZnの濃縮が起こり難いので、長期間に亘ってフィンが脱落し難く、フィンにより防食されることで優れた耐食性を有する。 Since the heat exchanger of the present invention is brazed using the aluminum alloy extruded tube for the heat exchanger of the present invention as the tube material, it is joined to the fins without reducing the tube wall thickness at the time of brazing. Is. Therefore, the heat exchanger of the present invention has high strength even if it is thin. Further, since the heat exchanger of the present invention is brazed using the aluminum alloy extruded tube for the heat exchanger of the present invention as the tube material, it is difficult for Zn to concentrate in the molten wax during fillet formation. The fins do not easily come off over a long period of time, and the fins protect them from corrosion, resulting in excellent corrosion resistance.
 以下に、実施例を示して、本発明を具体的に説明するが、本発明は、以下に示す実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples shown below.
(参考例及び比較例)
<チューブの作製>
 表1に示す化学成分を有するビレットを、600℃で10時間加熱して、均質化処理を行い、次いで、均質化処理が完了したビレットを室温まで冷却した。次いで、ビレットを450℃まで再加熱し、熱間押出加工を行い、押出方向に垂直な断面が扁平な形状を呈し、複数の冷媒流路を備えたチューブ本体を作製した。
 また、Al-Si合金ろう材粉末、Zn非含有フッ化物系フラックス粉末及びバインダを溶剤に混合し、塗膜形成用のペーストを調製した。次いで、得られたペーストを、上記チューブ本体の平坦面に、ロールコーターを用いて塗布し、表2に示す塗布量の塗膜を形成させ、塗膜が形成された熱交換器用アルミニウム合金押出チューブを得た。
 次いで、加熱試験後の平均結晶粒径の評価、ろう付性の評価、耐食性の評価を行った。その結果を表3に示す。
(Reference example and comparative example)
<Making a tube>
The billets having the chemical components shown in Table 1 were heated at 600 ° C. for 10 hours to perform a homogenization treatment, and then the billets having been homogenized were cooled to room temperature. Next, the billet was reheated to 450 ° C. and hot extrusion was performed to prepare a tube body having a flat cross section perpendicular to the extrusion direction and having a plurality of refrigerant channels.
Further, Al—Si alloy brazing powder, Zn-free fluoride-based flux powder and binder were mixed with a solvent to prepare a paste for forming a coating film. Next, the obtained paste was applied to the flat surface of the tube body using a roll coater to form a coating film of the coating amount shown in Table 2, and the coating film was formed on the aluminum alloy extrusion tube for heat exchanger. Got
Next, the average crystal grain size after the heating test, the brazing property, and the corrosion resistance were evaluated. The results are shown in Table 3.
・Al-Si合金ろう材粉末:Si含有量12.0質量%
・Zn非含有フッ化物系フラックス粉末:K-Al-F系フラックス、電子性マイクロアナライザ分析によるZn分析において、Znは検出下限未満であった。
・バインダ:アクリル樹脂
-Al-Si alloy brazing powder: Si content 12.0% by mass
-Zn-free fluoride-based flux powder: K-Al-F-based flux, Zn was below the lower limit of detection in Zn analysis by electronic microanalyzer analysis.
・ Binder: Acrylic resin
<フィンの作製>
 Mn:1.2質量%、Zn:1.5質量%のアルミニウム合金からなる厚さ0.1mmの板材に、コルゲート加工を施し、コルゲート形状を有するフィンを作製した。なお、フィンピッチは3mm、フィン高さは7mmであった。
<Making fins>
A plate having a thickness of 0.1 mm made of an aluminum alloy having Mn: 1.2% by mass and Zn: 1.5% by mass was corrugated to prepare fins having a corrugated shape. The fin pitch was 3 mm and the fin height was 7 mm.
<ミニコア作製及び加熱試験>
 図1に示すように、フィンの上下をチューブで挟む形で積層し、所定の形状に組み付けた。この状態で、窒素ガス雰囲気下で、チューブ及びフィンを加熱し、500℃までは、平均30℃/分の昇温速度で、500℃以上の温度域では、平均10℃/分の昇温速度で600℃まで昇温させ、600℃で3分間保持した後、室温まで降温させて、ろう付を行うことにより、チューブ及びフィンを接合し、熱交換器を模擬したミニコアを得た。
 得られたミニコアを用いて、ろう付性の評価を行った。その結果を表3に示す。
 なお、ミニコア作製のための熱履歴は、加熱試験の熱履歴に相当する。
<Mini core fabrication and heating test>
As shown in FIG. 1, the fins were laminated so as to be sandwiched between tubes at the top and bottom, and assembled into a predetermined shape. In this state, the tubes and fins are heated in a nitrogen gas atmosphere, and the temperature rise rate is 30 ° C./min on average up to 500 ° C., and 10 ° C./min on average in the temperature range of 500 ° C. or higher. After raising the temperature to 600 ° C. and holding at 600 ° C. for 3 minutes, the temperature was lowered to room temperature and brazing was performed to join the tubes and fins to obtain a mini core simulating a heat exchanger.
The brazing property was evaluated using the obtained mini core. The results are shown in Table 3.
The heat history for producing the mini core corresponds to the heat history of the heating test.
<加熱試験後の平均結晶粒径の評価及びろう付性の評価>
 ろう付後のチューブの断面観察を行い、エッチングを施し、平均結晶粒径を測定した。測定は、試験片を電解研磨した後、倍率100倍の偏光顕微鏡により、各断面の顕微鏡像を得て、円相当径を測定して行った。
 また、目視観察により、フィンの接合状態、変色等の外観不良の有無、フィンの溶融の有無、チューブ表面のエロージョンの有無を確認した。
<Evaluation of average crystal grain size and brazing property after heating test>
The cross section of the tube after brazing was observed, etching was performed, and the average crystal grain size was measured. The measurement was carried out by electrolytically polishing the test piece, obtaining a microscope image of each cross section with a polarizing microscope having a magnification of 100 times, and measuring the equivalent circle diameter.
In addition, by visual observation, it was confirmed whether or not the fins were joined, whether or not there was an appearance defect such as discoloration, whether or not the fins were melted, and whether or not there was erosion on the tube surface.
<耐食性の評価>
 各試験体に、ASTM-G85-Annex A3に規定されたSWAAT試験を960時間実施した。試験完了後の試験材を目視で観察することにより、フィンの剥離の有無を判定した。
<Evaluation of corrosion resistance>
Each test piece was subjected to the SWAAT test specified in ASTM-G85-Annex A3 for 960 hours. By visually observing the test material after the test was completed, it was determined whether or not the fins were peeled off.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<評価結果>
 参考例1は、ろう付後の平均結晶粒径が400μm以上と充分大きく、ろう付不具合を生じず、エロージョンも生じず、合格であった。また、ろう付後のチューブの肉厚は、ろう付前の肉厚と比べて、大きく変化していないことから、顕著な溶融が起こっていないことが確認された。また、耐食性試験の結果、フィン剥がれが生じておらず、良好な耐食性を有していた。
 一方、比較例1は、ろう付後の平均結晶粒径は充分に大きかったが、フラックス粉末が不足しており、Al-Si合金ろう材粉末及びチューブ外表面の酸化皮膜破壊が不充分であったため、フィレットが形成されず、不合格であった。
 比較例2は、同様にろう付後の平均結晶粒径は充分に大きかったが、Al-Si合金ろう材粉末が不足しており、充分なフィレットを形成することできず、不合格であった。
 比較例3は、ろう付後の平均結晶粒径が120μmと小さく、ろう付後にフィレット周辺でエロージョンが生じていた。フィレットは形成されていたものの、そのサイズが小さく、フィンの接合強度が不足しているため、実使用時に早期にフィンの剥離を生じる懸念があり、不合格とした。また、耐食性試験の結果は、フィン剥がれが生じておらず、良好な耐食性を有していた。
 なお、耐食性試験については、フィンとチューブが接合された参考例1及び比較例3のみで実施した。
<Evaluation result>
In Reference Example 1, the average crystal grain size after brazing was sufficiently large at 400 μm or more, no brazing problem occurred, no erosion occurred, and the result was acceptable. Moreover, since the wall thickness of the tube after brazing did not change significantly as compared with the wall thickness before brazing, it was confirmed that no significant melting occurred. Further, as a result of the corrosion resistance test, the fins were not peeled off and had good corrosion resistance.
On the other hand, in Comparative Example 1, the average crystal grain size after brazing was sufficiently large, but the flux powder was insufficient, and the Al—Si alloy brazing powder and the oxide film on the outer surface of the tube were not sufficiently destroyed. Therefore, the fillet was not formed and it was rejected.
Similarly, in Comparative Example 2, the average crystal grain size after brazing was sufficiently large, but the Al—Si alloy brazing material powder was insufficient, and sufficient fillets could not be formed, resulting in a failure. ..
In Comparative Example 3, the average crystal grain size after brazing was as small as 120 μm, and erosion occurred around the fillet after brazing. Although the fillet was formed, its size was small and the joint strength of the fins was insufficient, so there was a concern that the fins would peel off at an early stage during actual use, so it was rejected. In addition, the result of the corrosion resistance test showed that the fins did not peel off and had good corrosion resistance.
The corrosion resistance test was carried out only in Reference Example 1 and Comparative Example 3 in which the fin and the tube were joined.
(実施例1~4)
<チューブの作製>
 表1のNo.1に示す化学成分を有するビレットを、600℃で10時間加熱して、均質化処理を行い、次いで、均質化処理が完了したビレットを室温まで冷却した。次いで、ビレットを450℃まで再加熱し、熱間押出加工を行った。次いで、熱間押出加工の直後に、チューブの外表面に対し、表4に示す溶射量狙いで、Zn溶射を施し、押出方向に垂直な断面が扁平な形状を呈し、複数の冷媒流路を備え、該表面にZn溶射が施されたZn溶射層形成チューブ本体を作製した。
 また、Al-Si合金ろう材粉末、Zn非含有フッ化物系フラックス粉末及びバインダを溶剤に混合し、塗膜形成用のペーストを調製した。次いで、得られたペーストを、上記Zn溶射層形成チューブ本体のZn溶射層上に、ロールコーターを用いて塗布し、表2のNo.Iに示す塗布量の塗膜を形成させ、塗膜が形成された熱交換器用アルミニウム合金押出チューブを得た。
 次いで、上記参考例と同様にしてフィンを作製した。
 次いで、図1に示すように、フィンの上下をチューブで挟む形で積層し、所定の形状に組み付けた。この状態で、窒素ガス雰囲気下で、チューブ及びフィンを加熱し、500℃までは、平均30℃/分の昇温速度で、500℃以上の温度域では、平均10℃/分の昇温速度で600℃まで昇温させ、600℃で3分間保持した後、室温まで降温させて、ろう付を行うことにより、チューブ及びフィンを接合し、熱交換器を模擬したミニコアを得た。
 得られたミニコアを用いて、ろう付性の評価を行った。その結果を表4に示す。
 なお、ミニコア作製のための熱履歴は、加熱試験の熱履歴に相当する。
(Examples 1 to 4)
<Making a tube>
No. in Table 1 The billet having the chemical composition shown in 1 was heated at 600 ° C. for 10 hours to perform a homogenization treatment, and then the billet having been homogenized was cooled to room temperature. The billet was then reheated to 450 ° C. for hot extrusion. Next, immediately after the hot extrusion processing, Zn spraying was applied to the outer surface of the tube with the aim of spraying amount shown in Table 4, and the cross section perpendicular to the extrusion direction showed a flat shape, and a plurality of refrigerant flow paths were formed. In preparation for this, a Zn sprayed layer forming tube main body having Zn sprayed on the surface was produced.
Further, Al—Si alloy brazing powder, Zn-free fluoride-based flux powder and binder were mixed with a solvent to prepare a paste for forming a coating film. Next, the obtained paste was applied onto the Zn sprayed layer of the Zn sprayed layer forming tube body using a roll coater, and No. 1 in Table 2 was applied. A coating film having a coating amount shown in I was formed, and an aluminum alloy extruded tube for a heat exchanger on which the coating film was formed was obtained.
Next, fins were produced in the same manner as in the above reference example.
Next, as shown in FIG. 1, the fins were laminated so as to be sandwiched between tubes, and assembled into a predetermined shape. In this state, the tubes and fins are heated in a nitrogen gas atmosphere, and the temperature rise rate is 30 ° C./min on average up to 500 ° C., and 10 ° C./min on average in the temperature range of 500 ° C. or higher. After raising the temperature to 600 ° C. and holding at 600 ° C. for 3 minutes, the temperature was lowered to room temperature and brazing was performed to join the tubes and fins to obtain a mini core simulating a heat exchanger.
The brazing property was evaluated using the obtained mini core. The results are shown in Table 4.
The heat history for producing the mini core corresponds to the heat history of the heating test.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の実施例1及び2は、問題なくZn溶射が可能であり、ろう付後の平均結晶粒径が400μm以上と充分大きく、ろう付不具合を生じず、エロージョンも生じず、合格であった。また、ろう付後のチューブの肉厚は、ろう付前の肉厚と比べて、大きく変化していないことから、顕著な溶融が起こっていないことが確認された。また、耐食性試験の結果、フィン剥がれが生じておらず、良好な耐食性を有していた。
 一方、比較例1では、狙いのZn溶射量が少ないため、安定した溶射が困難であり、試料を作製することができず、不合格であった。
 比較例2は、問題なくZn溶射が可能であり、ろう付後の平均結晶粒径が400μm以上と充分大きく、ろう付不具合を生じず、エロージョンも生じず、合格であった。しかし、耐食性試験後に、フィン剥が生じており、耐久性が不合格であった。
In Examples 1 and 2 of the present invention, Zn spraying was possible without any problem, the average crystal grain size after brazing was sufficiently large at 400 μm or more, no brazing problem occurred, no erosion occurred, and the results were acceptable. .. Moreover, since the wall thickness of the tube after brazing did not change significantly as compared with the wall thickness before brazing, it was confirmed that no significant melting occurred. Further, as a result of the corrosion resistance test, the fins were not peeled off and had good corrosion resistance.
On the other hand, in Comparative Example 1, since the target amount of Zn spraying was small, stable spraying was difficult, and a sample could not be prepared, resulting in a failure.
In Comparative Example 2, Zn spraying was possible without any problem, the average crystal grain size after brazing was sufficiently large at 400 μm or more, no brazing problem occurred, no erosion occurred, and the result was acceptable. However, after the corrosion resistance test, fin peeling occurred and the durability was unacceptable.

Claims (5)

  1.  自動車用熱交換器に用いられるアルミニウム合金製の押出チューブであり、
     Mnを含有するアルミニウム合金からなるチューブ本体と、
     該チューブ本体の外表面に形成されているZn溶射層と、
     該Zn溶射層の外表面に形成されている塗膜と、
    を有し、
     該塗膜は、Al-Si合金ろう材粉末と、Zn非含有フッ化物系フラックス粉末と、バインダと、を含有しており、
     600℃±10℃で3分間保持し、室温まで冷却した後の平均結晶粒径を測定する加熱試験において、加熱試験後のチューブ本体の平均結晶粒径が150μm以上であること、を特徴とする熱交換器用アルミニウム合金押出チューブ。
    An aluminum alloy extruded tube used in automobile heat exchangers.
    A tube body made of an aluminum alloy containing Mn,
    The Zn sprayed layer formed on the outer surface of the tube body and
    The coating film formed on the outer surface of the Zn sprayed layer and
    Have,
    The coating film contains an Al—Si alloy brazing powder, a Zn-free fluoride-based flux powder, and a binder.
    In a heating test in which the average crystal grain size is measured after holding at 600 ° C. ± 10 ° C. for 3 minutes and cooling to room temperature, the average crystal grain size of the tube body after the heating test is 150 μm or more. Aluminum alloy extrusion tube for heat exchanger.
  2.  前記Mnを含有するアルミニウム合金が、0.20~0.90質量%のMnを含有し、Ti含有量が0.10質量%以下であり、残部Al及び不可避不純物からなるアルミニウム合金であることを特徴とする請求項1記載の熱交換器用アルミニウム合金押出チューブ。 The aluminum alloy containing Mn is an aluminum alloy containing 0.20 to 0.90% by mass of Mn, a Ti content of 0.10% by mass or less, and the balance Al and unavoidable impurities. The aluminum alloy extrusion tube for a heat exchanger according to claim 1.
  3.  前記チューブ本体のZn溶射量が、3.0~8.0g/mであることを特徴とする請求項1又は2記載の熱交換器用アルミニウム合金押出チューブ。 The aluminum alloy extruded tube for a heat exchanger according to claim 1 or 2, wherein the amount of Zn sprayed from the tube body is 3.0 to 8.0 g / m 2 .
  4.  前記Al-Si合金ろう材粉末の塗布量が10.0~25.0g/mであり、前記Zn非含有フッ化物系フラックス粉末の塗布量が3.0~12.0g/mであり、前記バインダの塗布量が1.0~13.0g/mであることを特徴とする請求項1~3いずれか1項記載の熱交換器用アルミニウム合金押出チューブ。 The coating amount of the Al—Si alloy brazing filler metal powder is 10.0 to 25.0 g / m 2 , and the coating amount of the Zn-free fluoride-based flux powder is 3.0 to 12.0 g / m 2 . The aluminum alloy extrusion tube for a heat exchanger according to any one of claims 1 to 3, wherein the amount of the binder applied is 1.0 to 13.0 g / m 2 .
  5.  請求項1~4いずれか1項記載の熱交換器用アルミニウム合金押出チューブと、Znを含有するアルミニウム合金からなるフィンと、のろう付接合物であり、
     チューブ本体を形成しているアルミニウム合金の平均結晶粒径が150μm以上であること、
    を特徴とする熱交換器。
    A brazed joint of the aluminum alloy extrusion tube for a heat exchanger according to any one of claims 1 to 4 and fins made of an aluminum alloy containing Zn.
    The average crystal grain size of the aluminum alloy forming the tube body is 150 μm or more.
    A heat exchanger featuring.
PCT/JP2021/029860 2020-09-02 2021-08-16 Aluminum alloy extruded tube and heat exchanger WO2022050030A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020147698A JP2022042318A (en) 2020-09-02 2020-09-02 Aluminum alloy extruded tube and heat exchanger
JP2020-147698 2020-09-02

Publications (1)

Publication Number Publication Date
WO2022050030A1 true WO2022050030A1 (en) 2022-03-10

Family

ID=80491701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029860 WO2022050030A1 (en) 2020-09-02 2021-08-16 Aluminum alloy extruded tube and heat exchanger

Country Status (2)

Country Link
JP (1) JP2022042318A (en)
WO (1) WO2022050030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114951609A (en) * 2022-04-13 2022-08-30 佛山市陶本科技有限公司 Foamed aluminum plate with uniform closed pores and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278779A (en) * 1994-04-06 1995-10-24 Mitsubishi Alum Co Ltd Production of heat exchanger
JPH11790A (en) * 1997-06-10 1999-01-06 Mitsubishi Alum Co Ltd Filler metal coated al or al alloy extruding tube for heat exchanger
JP2013204070A (en) * 2012-03-27 2013-10-07 Mitsubishi Alum Co Ltd Extruded heat-conducting tube for heat-exchanger and manufacturing method therefor
WO2018147375A1 (en) * 2017-02-13 2018-08-16 株式会社Uacj Aluminum extruded flat perforated pipe exhibiting excellent brazing properties and outer-surface corrosion resistance, and aluminum heat exchanger obtained using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278779A (en) * 1994-04-06 1995-10-24 Mitsubishi Alum Co Ltd Production of heat exchanger
JPH11790A (en) * 1997-06-10 1999-01-06 Mitsubishi Alum Co Ltd Filler metal coated al or al alloy extruding tube for heat exchanger
JP2013204070A (en) * 2012-03-27 2013-10-07 Mitsubishi Alum Co Ltd Extruded heat-conducting tube for heat-exchanger and manufacturing method therefor
WO2018147375A1 (en) * 2017-02-13 2018-08-16 株式会社Uacj Aluminum extruded flat perforated pipe exhibiting excellent brazing properties and outer-surface corrosion resistance, and aluminum heat exchanger obtained using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114951609A (en) * 2022-04-13 2022-08-30 佛山市陶本科技有限公司 Foamed aluminum plate with uniform closed pores and preparation method thereof
CN114951609B (en) * 2022-04-13 2024-04-19 佛山市陶本科技有限公司 Foamed aluminum plate with uniform closed pores and preparation method thereof

Also Published As

Publication number Publication date
JP2022042318A (en) 2022-03-14

Similar Documents

Publication Publication Date Title
JP5750237B2 (en) Method for producing aluminum alloy heat exchanger
EP3459676B1 (en) Brazing sheet for flux-free brazing, flux-free brazing method and method for producing heat exchanger
JP5670100B2 (en) Method for producing aluminum alloy heat exchanger
JP5302751B2 (en) Aluminum alloy clad material for heat exchanger
CN1982047B (en) Method of producing an aluminum alloy brazing sheet
KR102296371B1 (en) Heat exchanger tube, heat exchanger, and brazing paste
JP4636520B2 (en) Brazing material for aluminum brazing sheet for heat exchanger and method for producing the same
CN109070278B (en) Brazing sheet
JP2010255013A (en) Clad material of aluminum alloy for heat exchanger and method for manufacturing the same
JP4577634B2 (en) Aluminum alloy extruded tube with brazing filler metal for heat exchanger
JP6109615B2 (en) Aluminum alloy fin clad material for brazing
WO2022050030A1 (en) Aluminum alloy extruded tube and heat exchanger
JP5632140B2 (en) Aluminum alloy automotive heat exchanger and method of manufacturing the same
WO2010150728A1 (en) Heat exchanger made from aluminum alloy, and process for production of coolant passage tube for use in the heat exchanger
WO2022050029A1 (en) Aluminum alloy extruded tube and heat exchanger
JP2013086103A (en) Aluminum alloy brazing sheet
JP6226642B2 (en) Brazing method of aluminum alloy material and manufacturing method of brazing structure
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
WO2023021915A1 (en) Aluminum alloy extruded tube and heat exchanger
JP2013103265A (en) Aluminum alloy brazing sheet and brazing method
JP4552818B2 (en) Manufacturing method of liquid cooling parts made of aluminum alloy
JP6976041B2 (en) Heat exchanger
JP2004156108A (en) Aluminum clad material for brazing
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
WO2022138171A1 (en) Heat exchanger, heat-exchanger tube material, and heat-exchanger fin material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864088

Country of ref document: EP

Kind code of ref document: A1