WO2022049743A1 - Travel control method for autonomous carrier vehicle, autonomous carrier vehicle, and conveyance system - Google Patents

Travel control method for autonomous carrier vehicle, autonomous carrier vehicle, and conveyance system Download PDF

Info

Publication number
WO2022049743A1
WO2022049743A1 PCT/JP2020/033689 JP2020033689W WO2022049743A1 WO 2022049743 A1 WO2022049743 A1 WO 2022049743A1 JP 2020033689 W JP2020033689 W JP 2020033689W WO 2022049743 A1 WO2022049743 A1 WO 2022049743A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport vehicle
main body
carriage
respect
vehicle main
Prior art date
Application number
PCT/JP2020/033689
Other languages
French (fr)
Japanese (ja)
Inventor
健太 水井
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2020/033689 priority Critical patent/WO2022049743A1/en
Priority to JP2022546833A priority patent/JPWO2022049743A1/ja
Priority to DE112020007392.0T priority patent/DE112020007392T5/en
Publication of WO2022049743A1 publication Critical patent/WO2022049743A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles

Definitions

  • the present invention relates to a traveling control method for an autonomous transport vehicle, an autonomous transport vehicle and a transport system, and more particularly to a travel control method for an autonomous transport vehicle that tow a carriage and autonomously travels, an autonomous transport vehicle and a transport system thereof. ..
  • Japanese Patent No. 6362418 discloses an autonomous transport vehicle that tows a trolley and autonomously travels.
  • This autonomous carrier is configured to efficiently travel at bends such as corners by disconnecting the bogie and reconnecting it with the bogie when traveling at bends such as corners. There is.
  • the present invention has been made to solve the above-mentioned problems, and one object of the present invention is to produce the bogie while suppressing the overturning of the bogie at a bending point when the bogie is towed by the main body of the transport vehicle. It is to provide a traveling control method of an autonomous transport vehicle, an autonomous transport vehicle, and a transport system capable of enhancing the productivity.
  • the travel control method of the autonomous transport vehicle is a travel control method of the autonomous transport vehicle that tows the carriage and autonomously travels, and is a step of acquiring the state of the carriage and the state of the carriage. Based on the above, a step of detecting the relative posture of the bogie with respect to the main body of the transport vehicle and a step of controlling the traveling speed of the main body of the transport vehicle based on the relative posture of the bogie with respect to the main body of the transport vehicle are provided.
  • the step of detecting the relative posture of the carriage with respect to the carrier body based on the state of the carriage and the carriage with respect to the carrier body A step for controlling the traveling speed of the main body of the transport vehicle based on the relative posture is provided.
  • the step of acquiring the state of the bogie includes the step of acquiring the state of the characteristic point of the bogie, and the relative posture of the bogie with respect to the main body of the transport vehicle is determined.
  • the detection step includes a step of detecting the relative posture of the bogie with respect to the carrier main body based on the state of the feature points of the bogie.
  • the feature point of the dolly includes a marker provided on the dolly.
  • the relative posture of the carriage with respect to the transport vehicle body includes information on the inclination angle of the carriage with respect to the transport vehicle body, and controls the travel speed of the transport vehicle body.
  • the step to be performed includes a step of controlling the traveling speed of the transport vehicle main body based on the information of the inclination angle of the bogie with respect to the transport vehicle main body.
  • the step of controlling the traveling speed of the transport vehicle body is the traveling speed of the transport vehicle body so that the transport vehicle body decelerates based on the information of the inclination angle of the carriage with respect to the transport vehicle body in the horizontal plane.
  • the step of controlling the traveling speed of the carrier body is the step of controlling the traveling speed of the carriage with respect to the carrier body in the vertical plane. It includes a step of controlling the traveling speed of the transport vehicle body so that the transport vehicle body stops based on the information of the inclination angle.
  • a step of acquiring information on the tilt angle of the transport vehicle body in the vertical plane is further provided, and a step of controlling the traveling speed of the transport vehicle main body is a step of tilting the carriage with respect to the transport vehicle main body in the vertical plane.
  • a step of controlling the traveling speed of the transport vehicle body is a step of tilting the carriage with respect to the transport vehicle main body in the vertical plane.
  • the step of controlling the traveling speed of the transport vehicle main body is at least one of the shape of the carriage, the weight of the carriage, and the position of the center of gravity of the carriage.
  • a step of controlling the traveling speed of the main body of the transport vehicle is included.
  • the transport vehicle main body or the carriage includes a connecting portion connecting the transport vehicle main body and the carriage, and the transport vehicle main body drives the connecting portion. It further includes a step of controlling the relative posture of the bogie with respect to the transport vehicle main body in the horizontal plane by driving the connecting portion by the drive unit when the bogie is towed by the transport vehicle main body including the drive unit.
  • the transport vehicle body can be driven while controlling the relative posture of the carriage with respect to the transport vehicle body in the horizontal plane.
  • the running stability of the transport vehicle body can be improved as compared with the case where the relative posture of the carriage with respect to the transport vehicle body in the horizontal plane cannot be controlled.
  • the step of controlling the relative posture of the bogie with respect to the transport vehicle body in the horizontal plane is such that the movement of the bogie due to inertia is canceled by driving the connecting portion by the drive unit when the transport vehicle body turns. , Including the step of controlling the relative posture of the bogie with respect to the main body of the carrier in the horizontal plane.
  • the transport vehicle main body preferably further includes a stopper that restricts the movement of the connecting portion, and controls the relative posture of the carriage with respect to the transport vehicle main body in a horizontal plane.
  • the step to be performed includes a step of controlling the relative posture of the carriage with respect to the transport vehicle main body in the horizontal plane by driving the connecting portion by the driving portion within the angle range limited by the stopper.
  • the step of controlling the traveling speed of the transport vehicle main body is the relative posture of the carriage with respect to the transport vehicle main body by controlling the traveling speed of the transport vehicle main body. It includes a step of acquiring the correction time required for the correction and a step of detecting an abnormality in running based on the comparison between the correction time and the reference correction time.
  • the step of controlling the traveling speed of the transport vehicle main body further includes a step of learning the reference correction time based on the correction time.
  • the reference correction time can be updated by learning.
  • the updated reference correction time makes it possible to detect running abnormalities more accurately.
  • the step for learning the reference correction time is the relative posture of the carriage with respect to the transport vehicle body, the traveling speed of the transport vehicle body, the weight of the carriage, or the traveling direction of the transport vehicle body.
  • Each includes a step of learning the reference correction time.
  • the traveling control method of the autonomous transport vehicle preferably, when the transport vehicle main body and the carriage are connected, the step of moving the transport vehicle main body to the connection position with the carriage is performed based on the state of the carriage. Further prepare. With this configuration, the transport vehicle body and the carriage can be automatically connected. As a result, it is possible to automate from the connection between the transport vehicle main body and the bogie to the towing running of the bogie by the transport vehicle main body.
  • the autonomous transport vehicle is an autonomous transport vehicle that pulls the bogie and autonomously travels, and is a state acquisition unit that acquires the state of the bogie and a bogie acquired by the state acquisition unit. It is provided with a control unit that detects the relative posture of the bogie with respect to the main body of the transport vehicle based on the state and controls the traveling speed of the main body of the transport vehicle based on the relative posture of the bogie with respect to the main body of the transport vehicle.
  • the relative posture of the bogie with respect to the transport vehicle main body is detected and the relative posture of the bogie with respect to the transport vehicle main body is detected.
  • a control unit for controlling the traveling speed of the main body of the transport vehicle is provided based on the relative posture of the bogie.
  • the traveling speed of the transport vehicle body is uniformly reduced when the carriage is towed by the transport vehicle body, an unnecessary decrease in the traveling speed does not occur.
  • the traveling speed of the main body of the transport vehicle is increased according to the change in the relative posture of the bogie with respect to the main body of the transport vehicle due to the abnormal posture of the bogie. It can also be changed appropriately. This also makes it possible to prevent the trolley from tipping over when the trolley is towed by the transport vehicle main body.
  • the state acquisition unit is configured to acquire the state of the feature point of the bogie
  • the control unit is the feature of the bogie acquired by the state acquisition unit. It is configured to detect the relative posture of the bogie with respect to the main body of the transport vehicle based on the state of the points.
  • the relative posture of the carriage with respect to the main body of the carriage can be easily detected by simply acquiring the state of the feature points of the carriage.
  • it is not necessary to provide the bogie with a sensor or the like for detecting the posture it is possible to detect the relative posture of the bogie while making the bogie a simple structure.
  • the transport system includes a trolley, an autonomous transport vehicle that pulls the trolley and autonomously travels, and a control device that transmits a command to the autonomous transport vehicle.
  • a control device that transmits a command to the autonomous transport vehicle.
  • the state acquisition unit that acquires the state of the trolley and the state of the trolley acquired by the state acquisition unit
  • the relative posture of the trolley with respect to the transport vehicle body is detected, and the relative posture of the trolley with respect to the transport vehicle body is used.
  • a transport vehicle control unit that controls the traveling speed of the transport vehicle main body, and the like.
  • the relative posture of the carriage with respect to the transport vehicle body is detected based on the state of the carriage acquired by the state acquisition unit, and the carriage with respect to the transport vehicle body is detected.
  • a transport vehicle control unit that controls the traveling speed of the transport vehicle main body based on the relative posture is provided.
  • the traveling speed of the transport vehicle body is uniformly reduced when the carriage is towed by the transport vehicle body, an unnecessary decrease in the traveling speed does not occur.
  • the traveling speed of the main body of the transport vehicle is increased according to the change in the relative posture of the bogie with respect to the main body of the transport vehicle due to the abnormal posture of the bogie. It can also be changed appropriately. This also makes it possible to prevent the trolley from tipping over when the trolley is towed by the transport vehicle main body.
  • the state acquisition unit is configured to acquire the state of the feature point of the bogie
  • the transport vehicle control unit is the feature of the bogie acquired by the state acquisition unit. It is configured to detect the relative posture of the bogie with respect to the main body of the transport vehicle based on the state of the points.
  • the relative posture of the carriage with respect to the main body of the carriage can be easily detected by simply acquiring the state of the feature points of the carriage.
  • it is not necessary to provide the bogie with a sensor or the like for detecting the posture it is possible to detect the relative posture of the bogie while making the bogie a simple structure.
  • a traveling control method for an autonomous transport vehicle capable of increasing productivity while suppressing the bogie from tipping over at a bending point is autonomous.
  • a type transfer vehicle and a transfer system can be provided.
  • the transfer system 100 is a system used in a manufacturing factory.
  • the manufacturing factory in which the transfer system 100 is used is not particularly limited, but may be, for example, a substrate manufacturing factory that manufactures a substrate by mounting an electronic component on a printed circuit board.
  • the transport system 100 includes a server 10, an autonomous transport vehicle 20, and a carriage 30.
  • the autonomous transport vehicle 20 and the trolley 30 are shown one by one in FIG. 1, in an actual manufacturing factory, a plurality of autonomous transport vehicles 20 and trolleys 30 are provided.
  • the server 10 is an example of a "control device" in the claims.
  • the server 10 is configured to transmit a command to the autonomous carrier 20.
  • the server 10 is composed of, for example, a personal computer.
  • the server 10 includes a control unit 11, a storage unit 12, a display unit 13, an operation unit 14, and a communication unit 15.
  • the control unit 11 is a control circuit that controls each unit of the server 10.
  • the control unit 11 includes a CPU (Central Processing Unit) and a memory.
  • the control unit 11 is configured to control transmission of a command to the autonomous carrier 20 based on a manufacturing plan, user input, and the like.
  • the storage unit 12 includes a rewritable storage medium such as a flash memory, and is configured to be able to store various types of information.
  • the storage unit 12 stores information on the manufacturing plan, information on the autonomous transport vehicle 20, information on the trolley 30, and the like.
  • the display unit 13 includes, for example, a liquid crystal display unit, and is configured to be capable of displaying various types of information.
  • the operation unit 14 includes an input unit such as a mouse and a keyboard, and is configured to be able to accept user input operations.
  • the communication unit 15 is configured to be able to send and receive information to and from the autonomous carrier 20.
  • the communication unit 15 is a wireless communication unit for wireless communication.
  • the server 10 is communicably connected to the autonomous carrier 20 via a network.
  • the autonomous transport vehicle 20 is configured to tow the carriage 30 to autonomously travel. Specifically, the autonomous transport vehicle 20 is configured to transport articles used in a manufacturing factory by towing a carriage 30 and autonomously traveling.
  • the autonomous transport vehicle 20 includes a plurality of (four) drive wheels 20a, a plurality of (four) drive wheel motors 20b, a drive wheel control unit 20c, and a connecting unit 20d. And a connecting portion motor 20e, and a pair of stoppers 20f.
  • the autonomous transport vehicle 20 includes a control unit 21, an image pickup unit 22, a communication unit 23, a battery 24, a tilt sensor 25, and a storage unit 26. These configurations are provided in the transport vehicle main body 27.
  • a plurality (4) drive wheels 20a and a plurality (4) drive wheel motors 20b are shown one by one.
  • the control unit 21 is an example of the "transport vehicle control unit” in the claims.
  • the connecting unit motor 20e is an example of the "driving unit” in the claims.
  • the image pickup unit 22 is an example of the "state acquisition unit” in the claims.
  • the plurality of drive wheels 20a are configured to drive the transport vehicle main body 27.
  • the plurality of drive wheels 20a are configured so that the transport vehicle main body 27 can travel straight or turn.
  • Two driving wheels 20a are provided on each of the left and right sides of the transport vehicle main body 27.
  • the plurality of drive wheel motors 20b are configured to drive the plurality of drive wheels 20a.
  • the plurality of drive wheel motors 20b are provided so as to correspond to the plurality of drive wheels 20a.
  • the drive wheel control unit 20c is configured to control a plurality of drive wheel motors 20b based on a command from the control unit 21 to control the traveling direction and traveling speed of the transport vehicle main body 27 by the plurality of driving wheels 20a. Has been done.
  • the connecting portion 20d is a connecting member that connects the transport vehicle main body 27 and the carriage 30.
  • the connecting portion 20d is configured to connect the transport vehicle body 27 and the carriage 30 so as to be rotatable around the rotation axis C extending in the vertical direction (Z direction) with the connection point on the transport vehicle body 27 side as the center of rotation.
  • the connecting portion motor 20e is configured to drive the connecting portion 20d.
  • the connecting portion motor 20e is configured to rotate the connecting portion 20d around the rotation axis C based on a command from the control unit 21.
  • the pair of stoppers 20f are configured to limit the movement of the connecting portion 20d.
  • the pair of stoppers 20f are provided on both sides of the connecting portion 20d.
  • the pair of stoppers 20f are provided in a V shape with the connecting portion 20d interposed therebetween.
  • the control unit 21 is configured to control each unit of the autonomous transport vehicle 20.
  • the control unit 21 includes a CPU (Central Processing Unit) and a memory.
  • the control unit 21 is configured to control the drive wheel motor 20b via the drive wheel control unit 20c to control the autonomous traveling of the autonomous transport vehicle 20.
  • control unit 21 is configured to autonomously drive the autonomous transport vehicle 20 to the destination based on a command from the server 10.
  • the control unit 21 autonomously drives the autonomous transport vehicle 20 to the standby position of the trolley 30 based on a command from the server 10.
  • the control unit 21 autonomously drives the autonomous transport vehicle 20 to the warehouse in which the article to be transported is stored while the carriage 30 is towed based on the command from the server 10.
  • the control unit 21 autonomously drives the autonomous transport vehicle 20 to the transport position of the article in a state where the carriage 30 containing the article to be transported is towed based on the command from the server 10.
  • the image pickup unit 22 is configured to acquire the state of the trolley 30. Specifically, the image pickup unit 22 is configured to acquire the state of the feature point 31 of the carriage 30.
  • the imaging unit 22 is configured to acquire the state of the feature point 31 of the trolley 30 as an image pickup result by imaging the feature point 31 of the trolley 30.
  • the image pickup unit 22 includes a camera.
  • the image pickup unit 22 is provided at a position where the feature point 31 of the carriage 30 can be imaged.
  • the image pickup unit 22 is provided on a portion of the transport vehicle main body 27 on the carriage 30 side.
  • the communication unit 23 is configured to be able to send and receive information to and from the server 10.
  • the communication unit 23 is a wireless communication unit for wireless communication.
  • the autonomous carrier 20 is communicably connected to the server 10 via a network.
  • the battery 24 is configured to supply electric power to each part of the autonomous carrier 20.
  • the battery 24 includes a rechargeable battery.
  • the autonomous transport vehicle 20 autonomously travels by the electric power of the battery 24.
  • the tilt sensor 25 is configured to acquire the tilt angle in the vertical plane of the autonomous transport vehicle 20 and transmit it to the control unit 21.
  • the tilt sensor 25 includes, for example, a gyro sensor.
  • the storage unit 26 includes a rewritable storage medium such as a flash memory, and is configured to be able to store various types of information.
  • the storage unit 26 stores information on the autonomous transport vehicle 20, information on the trolley 30, and the like.
  • the dolly 30 is configured to accommodate articles used in the manufacturing plant. As shown in FIG. 4, the dolly 30 includes a feature point 31, an accommodating portion 32, and a plurality (four) wheels 33.
  • the feature point 31 includes a marker provided on the dolly 30.
  • the marker is not particularly limited, but can be formed by, for example, sheet metal.
  • the feature point 31 is provided at a position where the image pickup unit 22 of the autonomous transport vehicle 20 can take an image.
  • the feature point 31 is provided on the portion of the carriage 30 on the autonomous carrier 20 side. As shown in FIG. 5, a pattern is attached to the feature point 31.
  • the pattern of the feature point 31 can be formed by a laser when the feature point 31 is made of sheet metal.
  • the pattern of the feature point 31 is configured so that the shape seen from the autonomous transport vehicle 20 changes according to the change in the relative posture of the carriage 30 with respect to the transport vehicle main body 27.
  • the pattern of the feature point 31 is composed of a two-dimensional code including the identification information of the dolly 30.
  • the control unit 21 of the autonomous transport vehicle 20 can acquire the identification information of the trolley 30 based on the image pickup result of the feature point 31 by the image pickup unit 22. Further, the control unit 21 of the autonomous transport vehicle 20 obtains information on the trolley 30 such as the shape of the trolley 30, the weight of the trolley 30, and the position of the center of gravity of the trolley 30 from the server 10 based on the identification information of the trolley 30. It can be obtained.
  • the accommodating portion 32 is configured to be capable of accommodating articles.
  • the accommodating portion 32 is formed in a concave shape.
  • the plurality of wheels 33 are configured to drive the carriage 30 by towing by the autonomous transport vehicle 20.
  • the plurality of wheels 33 are provided as universal wheels. Two wheels 33 are provided on each of the left and right sides of the carriage 30.
  • the control unit 21 detects the relative posture of the trolley 30 with respect to the transport vehicle main body 27 based on the state of the trolley 30 acquired by the image pickup unit 22, and also detects the relative posture of the trolley 30 with respect to the transport vehicle main body 27. It is configured to control the traveling speed of the transport vehicle main body 27 based on the relative posture of the carriage 30 with respect to the transport vehicle main body 27. Specifically, the control unit 21 is configured to detect the relative posture of the trolley 30 with respect to the transport vehicle main body 27 based on the state of the feature point 31 of the trolley 30 acquired by the imaging unit 22.
  • the feature point 31 In a state where the carriage 30 is towed straight by the transport vehicle main body 27, the feature point 31 is located in the center of the image pickup result, and the feature point 31 is reflected without being tilted. Further, when the carriage 30 is tilted in the horizontal plane and is towed by the transport vehicle main body 27, the feature point 31 is located at a position deviated from the center in the imaging result, and the feature point 31 is tilted in the depth direction. It is reflected. Further, in a state where the bogie 30 is tilted in the vertical plane and is towed by the transport vehicle main body 27, the feature point 31 is located at the center in the imaging result and the feature point 31 is in a plane orthogonal to the depth direction. It looks tilted. The relative posture of the carriage 30 with respect to the transport vehicle main body 27 can be detected by utilizing the change in the state of the feature points 31. Note that FIG. 6 exaggerates the state in which the bogie 30 is tilted in the vertical plane for ease of understanding.
  • the relative posture of the trolley 30 with respect to the transport vehicle main body 27 includes information on the inclination angle of the trolley 30 with respect to the transport vehicle main body 27.
  • the relative posture of the trolley 30 with respect to the transport vehicle main body 27 is information on the inclination angle ⁇ of the trolley 30 with respect to the transport vehicle main body 27 in the horizontal plane and the inclination angle ⁇ of the trolley 30 with respect to the transport vehicle main body 27 in the vertical plane. Contains information about.
  • the control unit 21 is configured to control the traveling speed of the transport vehicle main body 27 based on the information of the inclination angle of the carriage 30 with respect to the transport vehicle main body 27. Specifically, the control unit 21 controls the traveling speed of the transport vehicle body 27 so that the transport vehicle body 27 decelerates based on the information of the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle body 27 in the horizontal plane. It is configured as follows. More specifically, the control unit 21 is configured to control the traveling speed of the transport vehicle main body 27 by the following equation (1). The control unit 21 is configured to control the traveling speed of the transport vehicle main body 27 so that the traveling speed decreases as the inclination angle ⁇ increases according to the following equation (1).
  • Vc V ⁇ ⁇ 1-k ⁇ sin ( ⁇ ) ⁇ ⁇ ⁇ ⁇ (1) here, Vc: Correction speed V: Normal speed k: Correction coefficient ⁇ : The inclination angle of the carriage with respect to the transport vehicle main body in the horizontal plane.
  • the normal speed V and the correction coefficient k can be determined in advance by an experiment or the like.
  • the normal speed V is not particularly limited, but may be, for example, about 2 m / s.
  • the correction coefficient k is not particularly limited, but may be, for example, a value such that the correction speed Vc is 1 m / s or less.
  • the normal speed V is the traveling speed of the transport vehicle main body 27 in a state where the carriage 30 is towed straight by the transport vehicle main body 27.
  • control unit 21 controls the traveling speed of the transport vehicle body 27 so that the transport vehicle body 27 stops based on the information of the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle body 27 in the vertical plane. It is configured. Specifically, the control unit 21 includes information on the tilt angle ⁇ of the carriage 30 with respect to the transport vehicle body 27 in the vertical plane and information on the tilt angle ⁇ of the transport vehicle main body 27 in the vertical plane acquired by the tilt sensor 25. Based on the above, the traveling speed of the transport vehicle main body 27 is controlled so that the transport vehicle main body 27 stops.
  • the control unit 21 acquires the difference ( ⁇ ) between the tilt angle ⁇ and the tilt angle ⁇ as the true tilt angle ⁇ t of the carriage 30 in the vertical plane. Then, the control unit 21 detects whether or not the true inclination angle ⁇ t exceeds the reference angle (threshold value). When the control unit 21 detects that the true inclination angle ⁇ t exceeds the reference angle, the control unit 21 controls the traveling speed of the transport vehicle main body 27 so that the transport vehicle main body 27 stops. At this time, the control unit 21 controls the traveling speed of the transport vehicle main body 27 so that the transport vehicle main body 27 gradually decelerates and stops. Further, when the control unit 21 detects that the true inclination angle ⁇ t does not exceed the reference angle, the control unit 21 controls to continue the traveling of the transport vehicle main body 27.
  • the reference angle can be determined in advance by an experiment or the like.
  • the control unit 21 controls the traveling speed of the transport vehicle main body 27 in consideration of at least one of the shape of the carriage 30, the weight of the carriage 30, and the position of the center of gravity of the carriage 30. It is configured as follows. For example, in consideration of the shape of the carriage 30, the control unit 21 reduces the traveling speed of the transport vehicle main body 27 when the width of the carriage 30 is large as compared with the case of the carriage 30 having a small width. Similarly, in consideration of the shape of the carriage 30, the control unit 21 increases the traveling speed of the transport vehicle main body 27 when the width of the carriage 30 is small as compared with the case of the carriage 30 having a large width.
  • control unit 21 considers the weight of the trolley 30 and reduces the traveling speed of the transport vehicle main body 27 when the trolley 30 is heavy as compared with the case where the trolley 30 is light in weight. Similarly, in consideration of the weight of the trolley 30, the control unit 21 increases the traveling speed of the transport vehicle main body 27 when the weight of the trolley 30 is small as compared with the case of the trolley 30 having a large weight.
  • control unit 21 considers the position of the center of gravity of the bogie 30 and, when the position of the center of gravity of the bogie 30 is on the left side, the transport vehicle main body when turning counterclockwise as compared with the case where the bogie 30 turns clockwise. Decrease the traveling speed of 27.
  • control unit 21 considers the position of the center of gravity of the trolley 30 on the right side, and the transport vehicle main body 27 when the trolley 30 turns clockwise as compared with the case where the trolley 30 turns counterclockwise. Reduce the running speed of.
  • the control unit 21 drives (rotates) the connecting portion 20d by the connecting portion motor 20e when the carriage 30 is towed by the transport vehicle main body 27, whereby the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is driven (rotated). It is configured to control the relative posture of. Specifically, the control unit 21 drives (rotates) the connecting portion 20d by the connecting portion motor 20e when the transport vehicle main body 27 turns, so that the movement of the carriage 30 due to inertia is canceled, and the transport is carried out in the horizontal plane. It is configured to control the relative posture of the bogie 30 with respect to the car body 27.
  • the inertial force acting on the carriage 30 when the transport vehicle main body 27 turns can be expressed by the following equation (2).
  • Fj m ⁇ a ⁇ ⁇ ⁇ (2) here,
  • the weight m the total weight of the weight of the trolley 30 and the weight of the article is used when the article is being transported, and the weight of the trolley 30 is used when the article is not being transported.
  • the weight of the dolly 30 can be acquired from the server 10 based on the identification information of the dolly 30. Further, the weight of the article can be obtained by specifying the article based on the content of the command (content of the task) from the server 10.
  • the acceleration a can be obtained from the turning speed of the transport vehicle main body 27 by using a conversion table. Alternatively, the acceleration a can be acquired from the time change of the state of the feature point 31 of the carriage 30 acquired by the imaging unit 22.
  • the dynamic frictional force acting on the carriage 30 can be expressed by the following equation (3).
  • F ⁇ ⁇ m ⁇ g ⁇ ⁇ ⁇ (3) here,
  • the dynamic friction coefficient ⁇ can be obtained by the user inputting the dynamic friction coefficient of the floor surface.
  • the weight m can be obtained as in the case of the above formula (2).
  • the gravitational acceleration g can be obtained as a known value.
  • the control unit 21 sets the driving direction of the connecting unit 20d (the direction opposite to the direction in which the inertia works) so as to cancel the difference (Fg-F) between the inertial force Fg and the dynamic friction force F. Determine the drive distance (drive angle). Then, the control unit 21 controls the connection unit 20d to be driven by the connection unit motor 20e so as to rotate by the determined drive distance (drive angle) in the determined drive direction.
  • control unit 21 drives (rotates) the connecting portion 20d by the connecting portion motor 20e within the angle range limited by the stopper 20f, so that the trolley 30 with respect to the transport vehicle main body 27 in the horizontal plane is 30. It is configured to control the relative posture of.
  • the control unit 21 is configured to drive (rotate) the connection unit 20d by the connection unit motor 20e within a range in which the connection unit 20d does not come into contact with the stopper 20f.
  • the control unit 21 is configured to acquire the correction time T required for correcting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 by controlling the traveling speed of the transport vehicle main body 27. .. Further, the control unit 21 is configured to detect an abnormality in traveling based on a comparison between the correction time T and the reference correction time. Specifically, the control unit 21 is configured to detect an abnormality in traveling by the following equation (4). The control unit 21 is configured to detect a running abnormality when the correction time T deviates from (below or exceeds) the normal range defined by the following equation (4). Te- ⁇ ⁇ T ⁇ Te + ⁇ ... (4) here, Te: Reference correction time T: Correction time ⁇ : Constant.
  • the reference correction time Te and the correction time T will be described later.
  • the constant ⁇ can be determined in advance by an experiment or the like.
  • a plurality of (four in FIG. 9) areas A are set for correcting the relative posture of the carriage 30 with respect to the transport vehicle main body 27.
  • the plurality of areas A are set as ranges of inclination angles ⁇ different from each other.
  • area 1 has a tilt angle ⁇ of 0 degrees or more and less than 5 degrees
  • area 2 has a tilt angle ⁇ of 5 degrees or more and less than 10 degrees
  • area 3 has a tilt angle ⁇ of 10 degrees or more and less than 15 degrees.
  • Area 4 is set as a range in which the inclination angle ⁇ is 15 degrees or more and less than 20 degrees.
  • the control unit 21 is configured to control to change the traveling speed of the transport vehicle main body 27 when the area A shifts from the immediately preceding area A to a different area A. Further, the control unit 21 is configured to acquire the time until the area A shifts from the immediately preceding area A to a different area A as the correction time T and store it in the storage unit 26.
  • the control unit 21 determines the relative posture (area A) of the carriage 30 with respect to the transport vehicle body 27, the traveling speed of the transport vehicle body 27, the weight of the carriage 30, or the traveling direction of the transport vehicle body 27. It is configured to learn the reference correction time Te. Therefore, when the area A shifts from the immediately preceding area A to a different area A, the control unit 21 determines the area A (tilt angle ⁇ ), the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, and the transport vehicle main body. It is configured to store the traveling direction of 27 (whether it is a right turn or a left turn) in the storage unit 26 in association with the correction time T.
  • the correction time T which is classified according to the area A, the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, or the traveling direction of the transport vehicle main body 27, is acquired. Further, the reference correction time Te, which is classified according to the area A, the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, or the traveling direction of the transport vehicle main body 27, is learned.
  • control unit 21 is configured to learn the correction coefficient k of the above equation (1) based on the correction time T. Specifically, the control unit 21 is configured to acquire the correction coefficient k as a random number in a predetermined range. Further, the control unit 21 is configured to learn and update a range of random numbers of the correction coefficient k centering on the value of the correction coefficient k that results in a smaller correction time T. This makes it possible to converge the range of random numbers with the correction coefficient k to an appropriate range.
  • the control unit 21 connects the transport vehicle main body 27 to the bogie 30 when the transport vehicle main body 27 and the bogie 30 are connected, based on the state of the bogie 30 acquired by the image pickup unit 22. It is configured to move to. Specifically, the control unit 21 attaches the transport vehicle main body 27 to the bogie 30 when the transport vehicle main body 27 and the bogie 30 are connected, based on the state of the feature point 31 of the bogie 30 acquired by the image pickup unit 22. It is configured to move to the connecting position.
  • the control unit 21 is configured to recognize the state of the feature point 31 of the carriage 30 by taking an image with the image pickup unit 22. Then, the control unit 21 is configured to bring the transport vehicle main body 27 closer to the unconnected carriage 30 by using the state of the feature point 31 of the carriage 30 as a mark. Then, when the transport vehicle main body 27 is moved to the connection position with the carriage 30, the control unit 21 is configured to control the connection between the transport vehicle main body 27 and the carriage 30 by the connecting portion 20d. The control unit 21 is configured to tow the carriage 30 connected by the connecting unit 20d and autonomously travel.
  • step S101 it is detected whether or not the towing command of the carriage 30 is received from the server 10.
  • the towing command of the trolley 30 includes information on the articles to be loaded on the trolley 30.
  • step S101 the process of step S101 is repeated. If it is detected that the towing command of the carriage 30 has been received, the process proceeds to step S102.
  • step S102 the transport vehicle main body 27 is moved to the designated position designated by the server 10.
  • step S103 the feature point 31 of the dolly 30 is recognized by making the image taken by the image pickup unit 22.
  • step S104 information on the bogie 30 (shape of the bogie 30, weight of the bogie 30, position of the center of gravity of the bogie 30, etc.) is acquired based on the feature point 31 of the bogie 30.
  • the identification information of the dolly 30 is acquired from the feature point 31 of the dolly 30.
  • the information of the dolly 30 is acquired from the server 10 based on the identification information of the dolly 30.
  • step S105 the transport vehicle main body 27 is approached to the carriage 30 with the feature point 31 of the carriage 30 as a mark.
  • step S106 it is detected whether or not the transport vehicle main body 27 has moved to the connection position with the carriage 30.
  • the process of step S106 is repeated. Further, when it is detected that the transport vehicle main body 27 has moved to the connection position with the carriage 30, the process proceeds to step S107.
  • step S107 the transport vehicle main body 27 and the carriage 30 are connected by the connecting portion 20d. Then, in step S107, the towing running of the carriage 30 by the transport vehicle main body 27 is started. After that, the automatic connection process is terminated.
  • step S111 the state of the feature point 31 of the dolly 30 is acquired by taking an image by the image pickup unit 22.
  • step S112 the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is detected based on the state of the feature point 31 of the carriage 30.
  • step S112 the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is detected based on the state of the feature point 31 of the carriage 30.
  • step S113 it is detected whether or not the area A is the first area A (the area A in which the dolly 30 is towed straight). If it is detected that the area A is the first area A, the process proceeds to step S114.
  • step S114 the traveling speed of the transport vehicle main body 27 is set to the normal speed.
  • step S115 it is detected whether or not the transportation is completed.
  • the speed control process is terminated. If it is detected that the transfer is not completed, the process returns to step S111.
  • step S113 If it is detected in step S113 that the area A is not the first area A, the process proceeds to step S116.
  • step S116 it is detected whether or not the area A is an area A different from the immediately preceding area A.
  • the process proceeds to step S115, and the same processing as described above is performed. If it is detected that the area A is different from the immediately preceding area A, the process proceeds to step S117.
  • step S117 the traveling speed of the transport vehicle main body 27 is corrected according to the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane.
  • step S117 the traveling speed of the transport vehicle main body 27 is corrected by the above equation (1).
  • step S118 the correction time T is stored in the storage unit 26. Further, in step S118, the area A (inclination angle ⁇ ), the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, and the traveling direction of the transport vehicle main body 27 are stored in the storage unit 26 in association with the correction time T. Will be done.
  • step S119 the correction time T and the reference correction time Te are compared.
  • step S120 it is detected by the above equation (4) whether or not the correction time T is within the normal range. If it is detected that the correction time T is within the normal range, the process proceeds to step S121.
  • step S121 the reference correction time Te is learned and updated by the above equation (5) based on the correction time T. Then, the process proceeds to step S115, and the same processing as described above is performed.
  • step S120 If it is detected in step S120 that the correction time T is not in the normal range, the process proceeds to step S122.
  • step S122 an abnormality notification is performed.
  • an abnormality notification is sent to the server 10. Then, the abnormality is displayed on the display unit 13 of the server 10. After that, the speed control process is terminated.
  • step S131 the state of the feature point 31 of the dolly 30 is acquired by taking an image by the image pickup unit 22.
  • step S132 the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the vertical plane is detected based on the state of the feature point 31 of the carriage 30.
  • step S132 the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle main body 27 in the vertical plane is detected based on the state of the feature point 31 of the carriage 30.
  • step S133 the tilt sensor 25 detects the tilt angle ⁇ of the transport vehicle main body 27 in the vertical plane.
  • step S135 it is detected whether or not the transportation is completed.
  • the traveling stop processing is terminated. If it is detected that the transfer is not completed, the process returns to step S131.
  • step S134 if it is detected in step S134 that the true inclination angle ⁇ t of the carriage 30 is abnormal, the process proceeds to step S136.
  • step S136 the traveling of the transport vehicle main body 27 is stopped.
  • step S1335 the transport vehicle main body 27 is gradually decelerated and the traveling of the transport vehicle main body 27 is stopped.
  • step S137 an abnormality notification is performed.
  • an abnormality notification is sent to the server 10. Then, the abnormality is displayed on the display unit 13 of the server 10. After that, the running stop process is completed.
  • connection portion control process of the autonomous transport vehicle 20 of the present embodiment will be described with reference to the flowchart. Each process of the flowchart is performed by the control unit 21.
  • step S141 the state of the feature point 31 of the dolly 30 is acquired by taking an image by the image pickup unit 22.
  • step S142 the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is detected based on the state of the feature point 31 of the carriage 30.
  • step S142 the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is detected based on the state of the feature point 31 of the carriage 30.
  • step S143 it is detected whether or not the area A is the first area A (the area A in which the dolly 30 is towed straight). If it is detected that the area A is the first area A, the process proceeds to step S144.
  • step S144 it is detected whether or not the transportation is completed.
  • the connection unit control process is terminated. If it is detected that the transport is not completed, the process returns to step S141.
  • step S143 If it is detected in step S143 that the area A is not the first area A, the process proceeds to step S145.
  • step S145 the inertial force Fj acting on the carriage 30 is acquired by the above equation (2), and the dynamic friction force F acting on the carriage 30 is acquired by the above equation (3).
  • step S146 the connecting portion 20d is driven (rotated) by the connecting portion motor 20e so as to cancel the movement of the carriage 30 due to the inertia based on the inertial force Fj and the dynamic friction force F. Then, the process proceeds to step S144, and the same processing as described above is performed.
  • the traveling control method of the autonomous transport vehicle 20 includes a step of detecting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 based on the state of the carriage 30, and a step with respect to the transport vehicle main body 27.
  • a step for controlling the traveling speed of the transport vehicle main body 27 based on the relative posture of the carriage 30 is provided.
  • the step of acquiring the state of the carriage 30 includes the step of acquiring the state of the feature point 31 of the carriage 30.
  • the step of detecting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 includes a step of detecting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 based on the state of the feature point 31 of the carriage 30.
  • the feature point 31 of the dolly 30 includes the marker provided on the dolly 30.
  • the relative posture of the trolley 30 with respect to the transport vehicle main body 27 can be detected by using a dedicated marker.
  • the relative posture of the carriage 30 with respect to the transport vehicle main body 27 can be accurately detected.
  • the relative posture of the carriage 30 with respect to the transport vehicle main body 27 includes information on the inclination angle of the carriage 30 with respect to the transport vehicle main body 27.
  • the step of controlling the traveling speed of the transport vehicle main body 27 includes a step of controlling the traveling speed of the transport vehicle main body 27 based on the information of the inclination angle of the carriage 30 with respect to the transport vehicle main body 27. Thereby, the traveling speed of the transport vehicle main body 27 can be accurately controlled based on the information of the inclination angle of the carriage 30 with respect to the transport vehicle main body 27.
  • the step of controlling the traveling speed of the transport vehicle main body 27 is performed by the transport vehicle main body 27 based on the information of the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane. It includes a step of controlling the traveling speed of the transport vehicle main body 27 so as to decelerate.
  • the traveling speed of the transport vehicle main body 27 can be appropriately reduced. As a result, the traveling speed of the transport vehicle main body 27 can be accurately controlled when the bent portion is moved.
  • the step of controlling the traveling speed of the transport vehicle main body 27 is based on the information of the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle main body 27 in the vertical plane.
  • the main body 27 can be stopped. As a result, it is possible to prevent the carriage 30 from tipping over when the carriage 30 is towed by the transport vehicle main body 27.
  • the traveling control method of the autonomous transport vehicle 20 includes a step of acquiring information on the inclination angle ⁇ of the transport vehicle main body 27 in the vertical plane. Further, the step of controlling the traveling speed of the transport vehicle main body 27 includes information on the inclination angle ⁇ of the carriage 30 with respect to the transport vehicle main body 27 in the vertical plane and information on the inclination angle ⁇ of the transport vehicle main body 27 in the vertical plane. Based on this, a step of controlling the traveling speed of the transport vehicle main body 27 is included so that the transport vehicle main body 27 stops.
  • control is performed to stop the transport vehicle body 27 based not only on the tilt angle ⁇ of the carriage 30 with respect to the transport vehicle body 27 in the vertical plane but also on the tilt angle ⁇ of the transport vehicle body 27 in the vertical plane. Can be done. As a result, the control for stopping the transport vehicle main body 27 can be accurately performed.
  • the step of controlling the traveling speed of the transport vehicle main body 27 considers at least one of the shape of the carriage 30, the weight of the carriage 30, and the position of the center of gravity of the carriage 30. Then, a step of controlling the traveling speed of the transport vehicle main body 27 is included. Thereby, the traveling speed of the transport vehicle main body 27 can be controlled in consideration of at least one of the shape of the carriage 30, the weight of the carriage 30, and the position of the center of gravity of the carriage 30, which differ depending on the type of the carriage 30. .. As a result, the traveling speed of the transport vehicle main body 27 can be appropriately controlled according to the type of the carriage 30.
  • the transport vehicle main body 27 includes a connecting portion 20d that connects the transport vehicle main body 27 and the carriage 30. Further, the transport vehicle main body 27 includes a connecting portion motor 20e that drives the connecting portion 20d. Further, the traveling control method of the autonomous transport vehicle 20 is such that when the carriage 30 is towed by the transport vehicle main body 27, the connecting portion 20d is driven by the connecting portion motor 20e so that the carriage 30 is relative to the transport vehicle main body 27 in the horizontal plane. It has a step to control the posture. As a result, the transport vehicle main body 27 can be driven while controlling the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane. As a result, the running stability of the transport vehicle main body 27 can be improved as compared with the case where the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane cannot be controlled.
  • the connecting portion 20d is driven by the connecting portion motor 20e when the transport vehicle main body 27 is turned.
  • the step of controlling the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is included so as to cancel the movement of the carriage 30 due to inertia.
  • the carriage 30 can be moved compactly when the transport vehicle main body 27 turns.
  • a running operation such as turning and turning in a narrow bent portion.
  • the transport vehicle main body 27 includes the stopper 20f that restricts the movement of the connecting portion 20d.
  • the connecting portion 20d is driven by the connecting portion motor 20e within the angle range limited by the stopper 20f, thereby transporting in the horizontal plane. It includes a step of controlling the relative posture of the bogie 30 with respect to the car body 27. Thereby, when the connecting portion 20d is driven by the connecting portion motor 20e, the connecting portion 20d can be driven so as not to come into contact with the stopper 20f.
  • the step of controlling the traveling speed of the transport vehicle main body 27 is necessary for correcting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 by controlling the traveling speed of the transport vehicle main body 27. It includes a step of acquiring the corrected correction time T and a step of detecting an abnormality in running based on the comparison between the correction time T and the reference correction time Te. Thereby, it is possible to detect an abnormality in running caused by an abnormality such as an abnormality on the floor surface and an abnormality on the wheels of the bogie 30. As a result, when a running abnormality is detected, the running abnormality can be quickly resolved.
  • the step of controlling the traveling speed of the transport vehicle main body 27 includes a step of learning the reference correction time Te based on the correction time T.
  • the reference correction time Te can be updated by learning.
  • the updated reference correction time Te makes it possible to detect running abnormalities more accurately.
  • the step of learning the reference correction time Te is the relative posture of the carriage 30 with respect to the transport vehicle main body 27, the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, or the transport vehicle.
  • a step of learning the reference correction time Te is included for each traveling direction of the main body 27. Thereby, the reference correction time Te can be learned for each case. As a result, it is possible to detect the abnormality of running more accurately according to each case by the reference correction time Te divided into cases.
  • the traveling control method of the autonomous transport vehicle 20 is based on the state of the carriage 30, and when the transport vehicle main body 27 and the carriage 30 are connected, the transport vehicle main body 27 is connected to the carriage 30. It is provided with a step of moving to a connection position with. As a result, the transport vehicle main body 27 and the carriage 30 can be automatically connected. As a result, it is possible to automate from the connection between the transport vehicle main body 27 and the carriage 30 to the towing running of the carriage 30 by the transport vehicle main body 27.
  • the autonomous transport vehicle is provided with four drive wheels, but the present invention is not limited to this.
  • the autonomous carrier vehicle may include a plurality of drive wheels other than four.
  • the autonomous carrier vehicle may be provided with universal wheels in addition to the drive wheels.
  • the autonomous transport vehicle includes an image pickup unit as a state acquisition unit of the present invention
  • the autonomous carrier may include a state acquisition unit other than an image pickup unit such as a three-dimensional shape measurement unit using a laser.
  • the pattern of the feature points may be formed by a three-dimensional shape such as unevenness.
  • an imaging unit (state acquisition unit) and a feature point are provided one by one, but the present invention is not limited to this.
  • a plurality of state acquisition units and a plurality of feature points may be provided.
  • the autonomous transport vehicle 20 is provided with a plurality (two) image pickup units 22.
  • the carriage 30 is provided with a plurality (two) feature points 31.
  • the states of the plurality of feature points 31 can be acquired, the relative posture of the carriage 30 with respect to the transport vehicle main body 27 can be detected more accurately based on the states of the plurality of feature points 31.
  • the feature points include a marker provided on the carriage, but the present invention is not limited to this.
  • the feature point may include a characteristic shape portion such as a corner portion of the carriage.
  • the traveling speed of the transport vehicle body is controlled with respect to the tilt angle of the carriage with respect to the transport vehicle body in the horizontal plane, and the traveling speed of the transport vehicle body is controlled with respect to the tilt angle of the carriage with respect to the transport vehicle body in the vertical plane.
  • the present invention is not limited to this. In the present invention, of the control of the traveling speed of the transport vehicle body with respect to the tilt angle of the carriage with respect to the transport vehicle body in the horizontal plane and the control of the traveling speed of the transport vehicle body with respect to the tilt angle of the carriage with respect to the transport vehicle body in the vertical plane. Only one of the above may be performed.
  • the transport vehicle main body may be stopped based only on the information of the inclination angle of the carriage with respect to the transport vehicle main body in the vertical plane.
  • the dolly may include a connecting portion.
  • the autonomous transport vehicle is provided with a connecting portion motor
  • the present invention is not limited to this.
  • the autonomous carrier vehicle does not have to be provided with a connecting motor.
  • the autonomous transport vehicle is provided with a pair (two) of stoppers
  • the present invention is not limited to this.
  • the autonomous carrier may be provided with a plurality of stoppers other than one or two. Further, the autonomous carrier vehicle does not have to be provided with a stopper.
  • the reference correction time may be a fixed value.
  • the transport vehicle main body is moved to the connection position with the carriage when the transport vehicle main body and the carriage are connected based on the state of the carriage, but the present invention is not limited to this. .. In the present invention, it is not necessary to move the transport vehicle main body to the connection position with the carriage when the transport vehicle main body and the carriage are connected based on the state of the carriage.
  • control processing has been described using a flow-driven flow in which the control processing is sequentially performed along the processing flow, but the present invention is not limited to this.
  • the control process may be performed by an event-driven type (event-driven type) process in which the process is executed in event units. In this case, it may be completely event-driven, or it may be a combination of event-driven and flow-driven.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

This travel control method for an autonomous carrier vehicle (20) is for controlling traveling of an autonomous carrier vehicle that autonomously travels while towing a carriage (30), said method comprising: a step for acquiring a state of the carriage; a step for detecting a relative attitude of the carriage with respect to a carrier vehicle body (27) on the basis of the state of the carriage; and a step for controlling traveling speed of the carrier vehicle body on the basis of the relative attitude of the carriage with respect to the carrier vehicle body.

Description

自律型搬送車の走行制御方法、自律型搬送車および搬送システムDriving control method for autonomous transport vehicles, autonomous transport vehicles and transport systems
 この発明は、自律型搬送車の走行制御方法、自律型搬送車および搬送システムに関し、特に、台車をけん引して自律走行する自律型搬送車の走行制御方法、自律型搬送車およびその搬送システムに関する。 The present invention relates to a traveling control method for an autonomous transport vehicle, an autonomous transport vehicle and a transport system, and more particularly to a travel control method for an autonomous transport vehicle that tow a carriage and autonomously travels, an autonomous transport vehicle and a transport system thereof. ..
 従来、台車をけん引して自律走行する自律型搬送車が知られている。このような方法は、たとえば、特許第6362418号公報に開示されている。 Conventionally, an autonomous transport vehicle that tows a dolly and runs autonomously is known. Such a method is disclosed, for example, in Japanese Patent No. 6362418.
 上記特許第6362418号公報には、台車をけん引して自律走行する自律型搬送車が開示されている。この自律型搬送車は、曲がり角などの屈曲箇所を走行する際、台車の切り離しと、台車との再連結とを行うことにより、曲がり角などの屈曲箇所の走行を効率的に行うように構成されている。 The above-mentioned Japanese Patent No. 6362418 discloses an autonomous transport vehicle that tows a trolley and autonomously travels. This autonomous carrier is configured to efficiently travel at bends such as corners by disconnecting the bogie and reconnecting it with the bogie when traveling at bends such as corners. There is.
特許第6362418号公報Japanese Patent No. 6362418
 しかしながら、上記特許第6362418号公報に記載された自律型搬送車では、曲がり角などの屈曲箇所で、台車の切り離しと、台車との再連結とを行うため、屈曲箇所の移動に時間がかかり、製造工場などで使用する場合には、生産性が低下するという不都合がある。そこで、自律型搬送車と台車とを切り離さずに自律型搬送車により台車をけん引した状態で、屈曲箇所を走行することが考えられる。 However, in the autonomous transport vehicle described in Japanese Patent No. 6362418, since the bogie is disconnected and reconnected at the bent portion such as a corner, it takes time to move the bent portion and is manufactured. When used in factories, there is the inconvenience of reduced productivity. Therefore, it is conceivable to drive the vehicle at the bent portion while towing the bogie by the autonomous transport vehicle without separating the autonomous transport vehicle and the bogie.
 しかしながら、この場合には、台車の非けん引時と同様の高い走行速度で、台車をけん引した状態の自律型搬送車が屈曲個所を走行すると、屈曲箇所で台車が大きく振れて、台車が転倒する可能性がある。そこで、自律型搬送車による台車のけん引時には、自律型搬送車の走行速度を一律に低下させることが考えられる。 However, in this case, when the autonomous transport vehicle in the state of towing the bogie travels at the bent point at the same high running speed as when the bogie is not towed, the bogie shakes greatly at the bent point and the bogie falls. there is a possibility. Therefore, when towing the bogie by the autonomous carrier, it is conceivable that the traveling speed of the autonomous carrier is uniformly reduced.
 しかしながら、この場合には、屈曲個所での台車の転倒を抑制することができる一方、自律型搬送車の走行速度の低下に起因して生産性が低下する。このため、自律型搬送車(搬送車本体)による台車のけん引時に、屈曲個所での台車の転倒を抑制しつつ、生産性を高めることが困難であるという問題点がある。 However, in this case, while it is possible to suppress the overturning of the bogie at the bent point, the productivity is lowered due to the decrease in the traveling speed of the autonomous carrier. For this reason, there is a problem that it is difficult to increase productivity while suppressing the overturning of the bogie at the bending point when towing the bogie by the autonomous transport vehicle (transport vehicle main body).
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、搬送車本体による台車のけん引時に、屈曲個所での台車の転倒を抑制しつつ、生産性を高めることが可能な自律型搬送車の走行制御方法、自律型搬送車および搬送システムを提供することである。 The present invention has been made to solve the above-mentioned problems, and one object of the present invention is to produce the bogie while suppressing the overturning of the bogie at a bending point when the bogie is towed by the main body of the transport vehicle. It is to provide a traveling control method of an autonomous transport vehicle, an autonomous transport vehicle, and a transport system capable of enhancing the productivity.
 この発明の第1の局面による自律型搬送車の走行制御方法は、台車をけん引して自律走行する自律型搬送車の走行制御方法であって、台車の状態を取得するステップと、台車の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するステップと、搬送車本体に対する台車の相対姿勢に基づいて、搬送車本体の走行速度を制御するステップと、を備える。 The travel control method of the autonomous transport vehicle according to the first aspect of the present invention is a travel control method of the autonomous transport vehicle that tows the carriage and autonomously travels, and is a step of acquiring the state of the carriage and the state of the carriage. Based on the above, a step of detecting the relative posture of the bogie with respect to the main body of the transport vehicle and a step of controlling the traveling speed of the main body of the transport vehicle based on the relative posture of the bogie with respect to the main body of the transport vehicle are provided.
 この発明の第1の局面による自律型搬送車の走行制御方法では、上記のように、台車の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するステップと、搬送車本体に対する台車の相対姿勢に基づいて、搬送車本体の走行速度を制御するステップと、を設ける。これにより、曲がり角などの屈曲箇所の移動時に搬送車本体に対する台車の相対姿勢の変化が発生した場合に、搬送車本体に対する台車の相対姿勢の変化に応じて、搬送車本体の走行速度を適切に変化させることができる。その結果、搬送車本体による台車のけん引時に搬送車本体の走行速度を一律に低下させる場合と異なり、不必要な走行速度の低下が発生しない。これにより、搬送車本体による台車のけん引時に、屈曲個所での台車の転倒を抑制しつつ、生産性を高めることができる。また、搬送車本体による台車のけん引時に台車の姿勢に異常が発生した場合に、搬送車本体の走行速度を適切に変化させることもできる。これによっても、搬送車本体による台車のけん引時の台車の転倒を抑制することができる。 In the traveling control method of the autonomous carrier according to the first aspect of the present invention, as described above, the step of detecting the relative posture of the carriage with respect to the carrier body based on the state of the carriage and the carriage with respect to the carrier body A step for controlling the traveling speed of the main body of the transport vehicle based on the relative posture is provided. As a result, when a change in the relative posture of the bogie with respect to the transport vehicle body occurs when moving a bent part such as a corner, the traveling speed of the transport vehicle body is appropriately adjusted according to the change in the relative posture of the bogie with respect to the transport vehicle body. Can be changed. As a result, unlike the case where the traveling speed of the transport vehicle body is uniformly reduced when the carriage is towed by the transport vehicle body, an unnecessary decrease in the traveling speed does not occur. As a result, when the bogie is towed by the main body of the transport vehicle, it is possible to increase the productivity while suppressing the bogie from tipping over at the bending point. Further, when an abnormality occurs in the posture of the carriage when the carriage is towed by the carrier body, the traveling speed of the carrier body can be appropriately changed. This also makes it possible to prevent the trolley from tipping over when the trolley is towed by the transport vehicle main body.
 上記第1の局面による自律型搬送車の走行制御方法において、好ましくは、台車の状態を取得するステップは、台車の特徴点の状態を取得するステップを含み、搬送車本体に対する台車の相対姿勢を検出するステップは、台車の特徴点の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するステップを含む。このように構成すれば、単に台車の特徴点の状態を取得するだけで、搬送車本体に対する台車の相対姿勢を簡単に検出することができる。また、台車に姿勢を検出するセンサなどを設ける必要がないので、台車を簡易な構造にしながら台車の相対姿勢を検出することができる。 In the traveling control method of the autonomous transport vehicle according to the first aspect, preferably, the step of acquiring the state of the bogie includes the step of acquiring the state of the characteristic point of the bogie, and the relative posture of the bogie with respect to the main body of the transport vehicle is determined. The detection step includes a step of detecting the relative posture of the bogie with respect to the carrier main body based on the state of the feature points of the bogie. With this configuration, the relative posture of the carriage with respect to the main body of the carriage can be easily detected by simply acquiring the state of the feature points of the carriage. Further, since it is not necessary to provide the bogie with a sensor or the like for detecting the posture, it is possible to detect the relative posture of the bogie while making the bogie a simple structure.
 この場合、好ましくは、台車の特徴点は、台車に設けられたマーカを含む。このように構成すれば、台車の角部などの形状を特徴点として利用する場合と異なり、専用のマーカを利用して、搬送車本体に対する台車の相対姿勢を検出することができる。その結果、搬送車本体に対する台車の相対姿勢を精度よく検出することができる。 In this case, preferably, the feature point of the dolly includes a marker provided on the dolly. With this configuration, unlike the case where the shape of the corners of the bogie is used as a feature point, it is possible to detect the relative posture of the bogie with respect to the main body of the transport vehicle by using a dedicated marker. As a result, the relative posture of the bogie with respect to the main body of the transport vehicle can be accurately detected.
 上記第1の局面による自律型搬送車の走行制御方法において、好ましくは、搬送車本体に対する台車の相対姿勢は、搬送車本体に対する台車の傾斜角度の情報を含み、搬送車本体の走行速度を制御するステップは、搬送車本体に対する台車の傾斜角度の情報に基づいて、搬送車本体の走行速度を制御するステップを含む。このように構成すれば、搬送車本体に対する台車の傾斜角度の情報に基づいて、搬送車本体の走行速度を精度よく制御することができる。 In the traveling control method of the autonomous transport vehicle according to the first aspect, preferably, the relative posture of the carriage with respect to the transport vehicle body includes information on the inclination angle of the carriage with respect to the transport vehicle body, and controls the travel speed of the transport vehicle body. The step to be performed includes a step of controlling the traveling speed of the transport vehicle main body based on the information of the inclination angle of the bogie with respect to the transport vehicle main body. With this configuration, the traveling speed of the transport vehicle body can be accurately controlled based on the information on the inclination angle of the bogie with respect to the transport vehicle body.
 この場合、好ましくは、搬送車本体の走行速度を制御するステップは、水平面内における搬送車本体に対する台車の傾斜角度の情報に基づいて、搬送車本体が減速するように、搬送車本体の走行速度を制御するステップを含む。このように構成すれば、曲がり角などの屈曲箇所の移動時に、水平面内における搬送車本体に対する台車の傾斜角度に変化が発生した場合に、水平面内における搬送車本体に対する台車の傾斜角度の変化に応じて、搬送車本体の走行速度を適切に減速させることができる。その結果、屈曲箇所の移動時に、搬送車本体の走行速度を精度よく制御することができる。 In this case, preferably, the step of controlling the traveling speed of the transport vehicle body is the traveling speed of the transport vehicle body so that the transport vehicle body decelerates based on the information of the inclination angle of the carriage with respect to the transport vehicle body in the horizontal plane. Includes steps to control. With this configuration, when the tilt angle of the bogie with respect to the transport vehicle body in the horizontal plane changes when the bending point such as a corner is moved, the tilt angle of the bogie with respect to the transport vehicle main body in the horizontal plane changes. Therefore, the traveling speed of the transport vehicle body can be appropriately reduced. As a result, the traveling speed of the transport vehicle main body can be accurately controlled when the bent portion is moved.
 上記搬送車本体に対する台車の相対姿勢が搬送車本体に対する台車の傾斜角度の情報を含む構成において、好ましくは、搬送車本体の走行速度を制御するステップは、鉛直面内における搬送車本体に対する台車の傾斜角度の情報に基づいて、搬送車本体が停止するように、搬送車本体の走行速度を制御するステップを含む。このように構成すれば、たとえば台車の車輪の異常に起因して台車の姿勢に異常が発生し、鉛直面内における搬送車本体に対する台車の傾斜角度に変化が発生した場合に、搬送車本体を停止させることができる。これにより、搬送車本体による台車のけん引時の台車の転倒を抑制することができる。 In the configuration in which the relative posture of the carriage with respect to the carrier body includes information on the inclination angle of the carriage with respect to the carrier body, preferably, the step of controlling the traveling speed of the carrier body is the step of controlling the traveling speed of the carriage with respect to the carrier body in the vertical plane. It includes a step of controlling the traveling speed of the transport vehicle body so that the transport vehicle body stops based on the information of the inclination angle. With this configuration, for example, when an abnormality occurs in the posture of the bogie due to an abnormality in the wheels of the bogie, and the tilt angle of the bogie with respect to the bogie body in the vertical plane changes, the bogie body can be moved. It can be stopped. As a result, it is possible to prevent the bogie from tipping over when the bogie is towed by the transport vehicle main body.
 この場合、好ましくは、鉛直面内における搬送車本体の傾斜角度の情報を取得するステップをさらに備え、搬送車本体の走行速度を制御するステップは、鉛直面内における搬送車本体に対する台車の傾斜角度の情報と、鉛直面内における搬送車本体の傾斜角度の情報とに基づいて、搬送車本体が停止するように、搬送車本体の走行速度を制御するステップを含む。このように構成すれば、鉛直面内における搬送車本体に対する台車の傾斜角度だけでなく、鉛直面内における搬送車本体の傾斜角度にも基づいて、搬送車本体を停止する制御を行うことができる。その結果、搬送車本体を停止する制御を精度よく行うことができる。 In this case, preferably, a step of acquiring information on the tilt angle of the transport vehicle body in the vertical plane is further provided, and a step of controlling the traveling speed of the transport vehicle main body is a step of tilting the carriage with respect to the transport vehicle main body in the vertical plane. Including a step of controlling the traveling speed of the transport vehicle body so that the transport vehicle body stops based on the information of the above and the information of the inclination angle of the transport vehicle body in the vertical plane. With this configuration, it is possible to control to stop the transport vehicle body based not only on the tilt angle of the carriage with respect to the transport vehicle body in the vertical plane but also on the tilt angle of the transport vehicle body in the vertical plane. .. As a result, it is possible to accurately control the stop of the transport vehicle main body.
 上記第1の局面による自律型搬送車の走行制御方法において、好ましくは、搬送車本体の走行速度を制御するステップは、台車の形状、台車の重量、および、台車の重心位置のうちの少なくとも1つを考慮して、搬送車本体の走行速度を制御するステップを含む。このように構成すれば、台車の種類によって異なる台車の形状、台車の重量、および、台車の重心位置のうちの少なくとも1つを考慮して、搬送車本体の走行速度を制御することができる。その結果、台車の種類に応じて、搬送車本体の走行速度を適切に制御することができる。 In the traveling control method of the autonomous transport vehicle according to the first aspect, preferably, the step of controlling the traveling speed of the transport vehicle main body is at least one of the shape of the carriage, the weight of the carriage, and the position of the center of gravity of the carriage. In consideration of this, a step of controlling the traveling speed of the main body of the transport vehicle is included. With this configuration, the traveling speed of the transport vehicle body can be controlled in consideration of at least one of the shape of the carriage, the weight of the carriage, and the position of the center of gravity of the carriage, which differ depending on the type of the carriage. As a result, the traveling speed of the transport vehicle main body can be appropriately controlled according to the type of the carriage.
 上記第1の局面による自律型搬送車の走行制御方法において、好ましくは、搬送車本体または台車は、搬送車本体と台車とを連結する連結部を含み、搬送車本体は、連結部を駆動する駆動部を含み、搬送車本体による台車のけん引時に、駆動部により連結部を駆動することにより、水平面内における搬送車本体に対する台車の相対姿勢を制御するステップをさらに備える。このように構成すれば、水平面内における搬送車本体に対する台車の相対姿勢を制御しつつ、搬送車本体を走行させることができる。その結果、水平面内における搬送車本体に対する台車の相対姿勢を制御できない場合に比べて、搬送車本体の走行の安定性を高めることができる。 In the traveling control method of the autonomous transport vehicle according to the first aspect, preferably, the transport vehicle main body or the carriage includes a connecting portion connecting the transport vehicle main body and the carriage, and the transport vehicle main body drives the connecting portion. It further includes a step of controlling the relative posture of the bogie with respect to the transport vehicle main body in the horizontal plane by driving the connecting portion by the drive unit when the bogie is towed by the transport vehicle main body including the drive unit. With this configuration, the transport vehicle body can be driven while controlling the relative posture of the carriage with respect to the transport vehicle body in the horizontal plane. As a result, the running stability of the transport vehicle body can be improved as compared with the case where the relative posture of the carriage with respect to the transport vehicle body in the horizontal plane cannot be controlled.
 この場合、好ましくは、水平面内における搬送車本体に対する台車の相対姿勢を制御するステップは、搬送車本体の旋回時に、駆動部により連結部を駆動することにより、慣性による台車の動きを打ち消すように、水平面内における搬送車本体に対する台車の相対姿勢を制御するステップを含む。このように構成すれば、搬送車本体の旋回時に、慣性により台車が振られるように動くことを抑制することができる。その結果、搬送車本体の旋回時に、台車をコンパクトに動かすことができる。これにより、狭い屈曲箇所での旋回および折り返しなどの走行動作を容易に行うことができる。 In this case, preferably, the step of controlling the relative posture of the bogie with respect to the transport vehicle body in the horizontal plane is such that the movement of the bogie due to inertia is canceled by driving the connecting portion by the drive unit when the transport vehicle body turns. , Including the step of controlling the relative posture of the bogie with respect to the main body of the carrier in the horizontal plane. With this configuration, it is possible to prevent the carriage from moving so as to be shaken by inertia when the transport vehicle body is turned. As a result, the dolly can be moved compactly when the main body of the transport vehicle turns. As a result, it is possible to easily perform a running operation such as turning and turning in a narrow bent portion.
 上記搬送車本体が連結部を駆動する駆動部を含む構成において、好ましくは、搬送車本体は、連結部の移動を制限するストッパをさらに含み、水平面内における搬送車本体に対する台車の相対姿勢を制御するステップは、ストッパにより制限された角度範囲内において、駆動部により連結部を駆動することにより、水平面内における搬送車本体に対する台車の相対姿勢を制御するステップを含む。このように構成すれば、駆動部による連結部の駆動時に、ストッパに接触しないように、連結部を駆動することができる。その結果、駆動部による連結部の駆動時に、連結部とストッパとが接触することに起因して、連結部とストッパとの両方に負荷がかかることを抑制することができる。また、ストッパを設けることにより、連結部の移動を制限することができる。その結果、連結部の移動を制限することにより、台車の移動を所定の範囲に制限することができる。 In the configuration in which the transport vehicle main body includes a drive unit for driving the connecting portion, the transport vehicle main body preferably further includes a stopper that restricts the movement of the connecting portion, and controls the relative posture of the carriage with respect to the transport vehicle main body in a horizontal plane. The step to be performed includes a step of controlling the relative posture of the carriage with respect to the transport vehicle main body in the horizontal plane by driving the connecting portion by the driving portion within the angle range limited by the stopper. With this configuration, the connecting portion can be driven so as not to come into contact with the stopper when the connecting portion is driven by the driving unit. As a result, it is possible to prevent a load from being applied to both the connecting portion and the stopper due to the contact between the connecting portion and the stopper when the connecting portion is driven by the driving portion. Further, by providing a stopper, the movement of the connecting portion can be restricted. As a result, by limiting the movement of the connecting portion, the movement of the dolly can be restricted to a predetermined range.
 上記第1の局面による自律型搬送車の走行制御方法において、好ましくは、搬送車本体の走行速度を制御するステップは、搬送車本体の走行速度の制御による、搬送車本体に対する台車の相対姿勢の補正に要した補正時間を取得するステップと、補正時間と基準補正時間との比較に基づいて、走行の異常を検出するステップと、を含む。このように構成すれば、床面の異常および台車の車輪の異常などの異常に起因した走行の異常を検出することができる。その結果、走行の異常を検出した場合、走行の異常を迅速に解消することができる。 In the traveling control method of the autonomous transport vehicle according to the first aspect, preferably, the step of controlling the traveling speed of the transport vehicle main body is the relative posture of the carriage with respect to the transport vehicle main body by controlling the traveling speed of the transport vehicle main body. It includes a step of acquiring the correction time required for the correction and a step of detecting an abnormality in running based on the comparison between the correction time and the reference correction time. With this configuration, it is possible to detect a running abnormality caused by an abnormality such as an abnormality on the floor surface and an abnormality on the wheels of the bogie. As a result, when a running abnormality is detected, the running abnormality can be quickly resolved.
 この場合、好ましくは、搬送車本体の走行速度を制御するステップは、補正時間に基づいて、基準補正時間を学習するステップをさらに含む。このように構成すれば、学習により基準補正時間を更新することができる。その結果、更新した基準補正時間により、走行の異常をより精度よく検出することができる。 In this case, preferably, the step of controlling the traveling speed of the transport vehicle main body further includes a step of learning the reference correction time based on the correction time. With this configuration, the reference correction time can be updated by learning. As a result, the updated reference correction time makes it possible to detect running abnormalities more accurately.
 上記基準補正時間を学習する構成において、好ましくは、基準補正時間を学習するステップは、搬送車本体に対する台車の相対姿勢、搬送車本体の走行速度、台車の重量、または、搬送車本体の進行方向ごとに、基準補正時間を学習するステップを含む。このように構成すれば、場合分けして基準補正時間を学習することができる。その結果、場合分けした基準補正時間により、個々の場合に応じて、走行の異常をより一層精度よく検出することができる。 In the configuration for learning the reference correction time, preferably, the step for learning the reference correction time is the relative posture of the carriage with respect to the transport vehicle body, the traveling speed of the transport vehicle body, the weight of the carriage, or the traveling direction of the transport vehicle body. Each includes a step of learning the reference correction time. With this configuration, the reference correction time can be learned for each case. As a result, it is possible to detect running abnormalities with higher accuracy according to each case by the reference correction time divided into cases.
 上記第1の局面による自律型搬送車の走行制御方法において、好ましくは、台車の状態に基づいて、搬送車本体と台車との連結時に、搬送車本体を台車との連結位置に移動させるステップをさらに備える。このように構成すれば、搬送車本体と台車とを自動連結することができる。その結果、搬送車本体と台車との連結から、搬送車本体による台車のけん引走行までを自動化することができる。 In the traveling control method of the autonomous transport vehicle according to the first aspect, preferably, when the transport vehicle main body and the carriage are connected, the step of moving the transport vehicle main body to the connection position with the carriage is performed based on the state of the carriage. Further prepare. With this configuration, the transport vehicle body and the carriage can be automatically connected. As a result, it is possible to automate from the connection between the transport vehicle main body and the bogie to the towing running of the bogie by the transport vehicle main body.
 この発明の第2の局面による自律型搬送車は、台車をけん引して自律走行する自律型搬送車であって、台車の状態を取得する状態取得部と、状態取得部により取得された台車の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するとともに、搬送車本体に対する台車の相対姿勢に基づいて、搬送車本体の走行速度を制御する制御部と、を備える。 The autonomous transport vehicle according to the second aspect of the present invention is an autonomous transport vehicle that pulls the bogie and autonomously travels, and is a state acquisition unit that acquires the state of the bogie and a bogie acquired by the state acquisition unit. It is provided with a control unit that detects the relative posture of the bogie with respect to the main body of the transport vehicle based on the state and controls the traveling speed of the main body of the transport vehicle based on the relative posture of the bogie with respect to the main body of the transport vehicle.
 この発明の第2の局面による自律型搬送車では、上記のように、状態取得部により取得された台車の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するとともに、搬送車本体に対する台車の相対姿勢に基づいて、搬送車本体の走行速度を制御する制御部を設ける。これにより、曲がり角などの屈曲箇所の移動時に搬送車本体に対する台車の相対姿勢の変化が発生した場合に、搬送車本体に対する台車の相対姿勢の変化に応じて、搬送車本体の走行速度を適切に変化させることができる。その結果、搬送車本体による台車のけん引時に搬送車本体の走行速度を一律に低下させる場合と異なり、不必要な走行速度の低下が発生しない。これにより、搬送車本体による台車のけん引時に、屈曲個所での台車の転倒を抑制しつつ、生産性を高めることが可能な自律型搬送車を提供することができる。また、搬送車本体による台車のけん引時に台車の姿勢に異常が発生した場合に、台車の姿勢の異常に起因した搬送車本体に対する台車の相対姿勢の変化に応じて、搬送車本体の走行速度を適切に変化させることもできる。これによっても、搬送車本体による台車のけん引時の台車の転倒を抑制することができる。 In the autonomous transport vehicle according to the second aspect of the present invention, as described above, based on the state of the bogie acquired by the state acquisition unit, the relative posture of the bogie with respect to the transport vehicle main body is detected and the relative posture of the bogie with respect to the transport vehicle main body is detected. A control unit for controlling the traveling speed of the main body of the transport vehicle is provided based on the relative posture of the bogie. As a result, when a change in the relative posture of the bogie with respect to the transport vehicle body occurs when moving a bent part such as a corner, the traveling speed of the transport vehicle body is appropriately adjusted according to the change in the relative posture of the bogie with respect to the transport vehicle body. Can be changed. As a result, unlike the case where the traveling speed of the transport vehicle body is uniformly reduced when the carriage is towed by the transport vehicle body, an unnecessary decrease in the traveling speed does not occur. As a result, it is possible to provide an autonomous transport vehicle capable of increasing productivity while suppressing the bogie from tipping over at a bending point when the bogie is towed by the transport vehicle main body. In addition, when an abnormality occurs in the posture of the bogie when the bogie is towed by the main body of the transport vehicle, the traveling speed of the main body of the transport vehicle is increased according to the change in the relative posture of the bogie with respect to the main body of the transport vehicle due to the abnormal posture of the bogie. It can also be changed appropriately. This also makes it possible to prevent the trolley from tipping over when the trolley is towed by the transport vehicle main body.
 上記第2の局面による自律型搬送車において、好ましくは、状態取得部は、台車の特徴点の状態を取得するように構成されており、制御部は、状態取得部により取得された台車の特徴点の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するように構成されている。このように構成すれば、単に台車の特徴点の状態を取得するだけで、搬送車本体に対する台車の相対姿勢を簡単に検出することができる。また、台車に姿勢を検出するセンサなどを設ける必要がないので、台車を簡易な構造にしながら台車の相対姿勢を検出することができる。 In the autonomous transport vehicle according to the second aspect, preferably, the state acquisition unit is configured to acquire the state of the feature point of the bogie, and the control unit is the feature of the bogie acquired by the state acquisition unit. It is configured to detect the relative posture of the bogie with respect to the main body of the transport vehicle based on the state of the points. With this configuration, the relative posture of the carriage with respect to the main body of the carriage can be easily detected by simply acquiring the state of the feature points of the carriage. Further, since it is not necessary to provide the bogie with a sensor or the like for detecting the posture, it is possible to detect the relative posture of the bogie while making the bogie a simple structure.
 この発明の第3の局面による搬送システムは、台車と、台車をけん引して自律走行する自律型搬送車と、自律型搬送車に指令を送信する制御装置と、を備え、自律型搬送車は、台車の状態を取得する状態取得部と、状態取得部により取得された台車の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するとともに、搬送車本体に対する台車の相対姿勢に基づいて、搬送車本体の走行速度を制御する搬送車制御部と、を含む。 The transport system according to the third aspect of the present invention includes a trolley, an autonomous transport vehicle that pulls the trolley and autonomously travels, and a control device that transmits a command to the autonomous transport vehicle. Based on the state acquisition unit that acquires the state of the trolley and the state of the trolley acquired by the state acquisition unit, the relative posture of the trolley with respect to the transport vehicle body is detected, and the relative posture of the trolley with respect to the transport vehicle body is used. , A transport vehicle control unit that controls the traveling speed of the transport vehicle main body, and the like.
 この発明の第3の局面による搬送システムでは、上記のように、状態取得部により取得された台車の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するとともに、搬送車本体に対する台車の相対姿勢に基づいて、搬送車本体の走行速度を制御する搬送車制御部を設ける。これにより、曲がり角などの屈曲箇所の移動時に搬送車本体に対する台車の相対姿勢の変化が発生した場合に、搬送車本体に対する台車の相対姿勢の変化に応じて、搬送車本体の走行速度を適切に変化させることができる。その結果、搬送車本体による台車のけん引時に搬送車本体の走行速度を一律に低下させる場合と異なり、不必要な走行速度の低下が発生しない。これにより、搬送車本体による台車のけん引時に、屈曲個所での台車の転倒を抑制しつつ、生産性を高めることが可能な搬送システムを提供することができる。また、搬送車本体による台車のけん引時に台車の姿勢に異常が発生した場合に、台車の姿勢の異常に起因した搬送車本体に対する台車の相対姿勢の変化に応じて、搬送車本体の走行速度を適切に変化させることもできる。これによっても、搬送車本体による台車のけん引時の台車の転倒を抑制することができる。 In the transport system according to the third aspect of the present invention, as described above, the relative posture of the carriage with respect to the transport vehicle body is detected based on the state of the carriage acquired by the state acquisition unit, and the carriage with respect to the transport vehicle body is detected. A transport vehicle control unit that controls the traveling speed of the transport vehicle main body based on the relative posture is provided. As a result, when a change in the relative posture of the bogie with respect to the transport vehicle body occurs when moving a bent part such as a corner, the traveling speed of the transport vehicle body is appropriately adjusted according to the change in the relative posture of the bogie with respect to the transport vehicle body. Can be changed. As a result, unlike the case where the traveling speed of the transport vehicle body is uniformly reduced when the carriage is towed by the transport vehicle body, an unnecessary decrease in the traveling speed does not occur. This makes it possible to provide a transport system capable of increasing productivity while suppressing the bogie from tipping over at a bent point when the bogie is towed by the transport vehicle main body. In addition, when an abnormality occurs in the posture of the bogie when the bogie is towed by the main body of the transport vehicle, the traveling speed of the main body of the transport vehicle is increased according to the change in the relative posture of the bogie with respect to the main body of the transport vehicle due to the abnormal posture of the bogie. It can also be changed appropriately. This also makes it possible to prevent the trolley from tipping over when the trolley is towed by the transport vehicle main body.
 上記第3の局面による搬送システムにおいて、好ましくは、状態取得部は、台車の特徴点の状態を取得するように構成されており、搬送車制御部は、状態取得部により取得された台車の特徴点の状態に基づいて、搬送車本体に対する台車の相対姿勢を検出するように構成されている。このように構成すれば、単に台車の特徴点の状態を取得するだけで、搬送車本体に対する台車の相対姿勢を簡単に検出することができる。また、台車に姿勢を検出するセンサなどを設ける必要がないので、台車を簡易な構造にしながら台車の相対姿勢を検出することができる。 In the transport system according to the third aspect, preferably, the state acquisition unit is configured to acquire the state of the feature point of the bogie, and the transport vehicle control unit is the feature of the bogie acquired by the state acquisition unit. It is configured to detect the relative posture of the bogie with respect to the main body of the transport vehicle based on the state of the points. With this configuration, the relative posture of the carriage with respect to the main body of the carriage can be easily detected by simply acquiring the state of the feature points of the carriage. Further, since it is not necessary to provide the bogie with a sensor or the like for detecting the posture, it is possible to detect the relative posture of the bogie while making the bogie a simple structure.
 本発明によれば、上記のように、搬送車本体による台車のけん引時に、屈曲個所での台車の転倒を抑制しつつ、生産性を高めることが可能な自律型搬送車の走行制御方法、自律型搬送車および搬送システムを提供することができる。 According to the present invention, as described above, when the bogie is towed by the main body of the transport vehicle, a traveling control method for an autonomous transport vehicle capable of increasing productivity while suppressing the bogie from tipping over at a bending point is autonomous. A type transfer vehicle and a transfer system can be provided.
一実施形態による搬送システムを示すブロック図である。It is a block diagram which shows the transport system by one Embodiment. 一実施形態によるサーバを示すブロック図である。It is a block diagram which shows the server by one Embodiment. 一実施形態による自律型搬送車を示すブロック図である。It is a block diagram which shows the autonomous transport vehicle by one Embodiment. 一実施形態による台車の特徴点を示す模式図である。It is a schematic diagram which shows the characteristic point of the bogie according to one Embodiment. 一実施形態による台車の特徴点の状態の取得を説明するための模式図である。It is a schematic diagram for demonstrating the acquisition of the state of the characteristic point of a carriage by one Embodiment. 一実施形態による台車を真直ぐけん引している状態、台車を水平面内において傾いてけん引している状態、および、台車を円直面内において傾いてけん引している状態を説明するための模式図である。It is a schematic diagram for demonstrating the state which the dolly is towed straight, the state which the dolly is tilted and towed in a horizontal plane, and the state which the dolly is tilted and towed in a circular plane according to one embodiment. .. 一実施形態による連結部の駆動制御を説明するための模式図である。It is a schematic diagram for demonstrating the drive control of the connection part by one Embodiment. 一実施形態による走行速度制御時の補正時間を説明するための模式図である。It is a schematic diagram for demonstrating the correction time at the time of traveling speed control by one Embodiment. 一実施形態による走行速度制御時のエリアを説明するための模式図である。It is a schematic diagram for demonstrating the area at the time of traveling speed control by one Embodiment. 一実施形態による自律型搬送車の自動連結制御を説明するための図である。It is a figure for demonstrating the automatic connection control of an autonomous transport vehicle by one Embodiment. 一実施形態による自律型搬送車の自動連結処理を説明するためのフローチャートである。It is a flowchart for demonstrating the automatic connection processing of the autonomous transport vehicle by one Embodiment. 一実施形態による自律型搬送車の速度制御処理を説明するためのフローチャートである。It is a flowchart for demonstrating the speed control process of the autonomous transport vehicle by one Embodiment. 図13の続きのフローチャートである。It is a continuation flowchart of FIG. 一実施形態による自律型搬送車の走行停止処理を説明するためのフローチャートである。It is a flowchart for demonstrating the traveling stop processing of an autonomous transport vehicle by one Embodiment. 一実施形態による自律型搬送車の連結部制御処理を説明するためのフローチャートである。It is a flowchart for demonstrating the connection part control process of the autonomous transport vehicle by one Embodiment. 一実施形態の変形例による台車の特徴点の状態の取得を説明するための模式図である。It is a schematic diagram for demonstrating the acquisition of the state of the characteristic point of a bogie by the modification of one Embodiment.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Hereinafter, embodiments embodying the present invention will be described with reference to the drawings.
(基板製造システムの構成)
 図1を参照して、本発明の実施形態による搬送システム100の構成について説明する。
(Configuration of board manufacturing system)
The configuration of the transport system 100 according to the embodiment of the present invention will be described with reference to FIG.
 本実施形態による搬送システム100は、製造工場において用いられるシステムである。搬送システム100が用いられる製造工場は、特に限られないが、たとえば、プリント基板に電子部品を実装することにより、基板を製造する基板製造工場であり得る。搬送システム100は、図1に示すように、サーバ10と、自律型搬送車20と、台車30と、を備えている。なお、図1では、自律型搬送車20と台車30とが1つずつ図示されているが、実際の製造工場においては、自律型搬送車20と台車30とは、複数ずつ設けられている。また、サーバ10は、請求の範囲の「制御装置」の一例である。 The transfer system 100 according to this embodiment is a system used in a manufacturing factory. The manufacturing factory in which the transfer system 100 is used is not particularly limited, but may be, for example, a substrate manufacturing factory that manufactures a substrate by mounting an electronic component on a printed circuit board. As shown in FIG. 1, the transport system 100 includes a server 10, an autonomous transport vehicle 20, and a carriage 30. In addition, although the autonomous transport vehicle 20 and the trolley 30 are shown one by one in FIG. 1, in an actual manufacturing factory, a plurality of autonomous transport vehicles 20 and trolleys 30 are provided. Further, the server 10 is an example of a "control device" in the claims.
(サーバの構成)
 図1に示すように、サーバ10は、自律型搬送車20に指令を送信するように構成されている。サーバ10は、たとえば、パーソナルコンピュータにより構成されている。図2に示すように、サーバ10は、制御部11と、記憶部12と、表示部13と、操作部14と、通信部15と、を備えている。
(Server configuration)
As shown in FIG. 1, the server 10 is configured to transmit a command to the autonomous carrier 20. The server 10 is composed of, for example, a personal computer. As shown in FIG. 2, the server 10 includes a control unit 11, a storage unit 12, a display unit 13, an operation unit 14, and a communication unit 15.
 制御部11は、サーバ10の各部を制御する制御回路である。制御部11は、CPU(Central Processing Unit)およびメモリを含んでいる。制御部11は、製造計画およびユーザの入力などに基づいて、自律型搬送車20に指令を送信する制御を行うように構成されている。記憶部12は、フラッシュメモリなどの書き換え可能な記憶媒体を含み、各種の情報を記憶可能に構成されている。記憶部12には、製造計画の情報、自律型搬送車20の情報、および、台車30の情報などが記憶される。 The control unit 11 is a control circuit that controls each unit of the server 10. The control unit 11 includes a CPU (Central Processing Unit) and a memory. The control unit 11 is configured to control transmission of a command to the autonomous carrier 20 based on a manufacturing plan, user input, and the like. The storage unit 12 includes a rewritable storage medium such as a flash memory, and is configured to be able to store various types of information. The storage unit 12 stores information on the manufacturing plan, information on the autonomous transport vehicle 20, information on the trolley 30, and the like.
 表示部13は、たとえば液晶表示部を含み、各種の情報を表示可能に構成されている。操作部14は、マウスおよびキーボードなどの入力部を含み、ユーザの入力操作を受付可能に構成されている。通信部15は、自律型搬送車20との間で情報を送受信可能に構成されている。通信部15は、無線通信するための無線通信部である。サーバ10は、ネットワークを介して、自律型搬送車20と通信可能に接続されている。 The display unit 13 includes, for example, a liquid crystal display unit, and is configured to be capable of displaying various types of information. The operation unit 14 includes an input unit such as a mouse and a keyboard, and is configured to be able to accept user input operations. The communication unit 15 is configured to be able to send and receive information to and from the autonomous carrier 20. The communication unit 15 is a wireless communication unit for wireless communication. The server 10 is communicably connected to the autonomous carrier 20 via a network.
(自律型搬送車の構成)
 次に、自律型搬送車20の構成について説明する。
(Configuration of autonomous transport vehicle)
Next, the configuration of the autonomous transport vehicle 20 will be described.
 自律型搬送車20は、台車30をけん引して自律走行するように構成されている。具体的には、自律型搬送車20は、台車30をけん引して自律走行することにより、製造工場において使用される物品を搬送するように構成されている。 The autonomous transport vehicle 20 is configured to tow the carriage 30 to autonomously travel. Specifically, the autonomous transport vehicle 20 is configured to transport articles used in a manufacturing factory by towing a carriage 30 and autonomously traveling.
 図3および図4に示すように、自律型搬送車20は、複数(4つ)の駆動輪20aと、複数(4つ)の駆動輪モータ20bと、駆動輪制御部20cと、連結部20dと、連結部モータ20eと、一対のストッパ20fとを備えている。また、自律型搬送車20は、制御部21と、撮像部22と、通信部23と、バッテリ24と、傾きセンサ25と、記憶部26とを備えている。これらの構成は、搬送車本体27に設けられている。なお、図3では、便宜上、複数(4つ)の駆動輪20aと、複数(4つ)の駆動輪モータ20bとを1つずつ図示している。また、制御部21は、請求の範囲の「搬送車制御部」の一例である。また、連結部モータ20eは、請求の範囲の「駆動部」の一例である。また、撮像部22は、請求の範囲の「状態取得部」の一例である。 As shown in FIGS. 3 and 4, the autonomous transport vehicle 20 includes a plurality of (four) drive wheels 20a, a plurality of (four) drive wheel motors 20b, a drive wheel control unit 20c, and a connecting unit 20d. And a connecting portion motor 20e, and a pair of stoppers 20f. Further, the autonomous transport vehicle 20 includes a control unit 21, an image pickup unit 22, a communication unit 23, a battery 24, a tilt sensor 25, and a storage unit 26. These configurations are provided in the transport vehicle main body 27. In FIG. 3, for convenience, a plurality (4) drive wheels 20a and a plurality (4) drive wheel motors 20b are shown one by one. Further, the control unit 21 is an example of the "transport vehicle control unit" in the claims. Further, the connecting unit motor 20e is an example of the "driving unit" in the claims. Further, the image pickup unit 22 is an example of the "state acquisition unit" in the claims.
 複数の駆動輪20aは、搬送車本体27を走行させるように構成されている。複数の駆動輪20aは、搬送車本体27を直進または旋回させることが可能なように構成されている。複数の駆動輪20aは、搬送車本体27の左右にそれぞれ2つずつ設けられている。複数の駆動輪モータ20bは、複数の駆動輪20aを駆動するように構成されている。複数の駆動輪モータ20bは、複数の駆動輪20aに対応するように設けられている。駆動輪制御部20cは、制御部21からの指令に基づいて、複数の駆動輪モータ20bを制御して、複数の駆動輪20aによる搬送車本体27の走行方向および走行速度を制御するように構成されている。 The plurality of drive wheels 20a are configured to drive the transport vehicle main body 27. The plurality of drive wheels 20a are configured so that the transport vehicle main body 27 can travel straight or turn. Two driving wheels 20a are provided on each of the left and right sides of the transport vehicle main body 27. The plurality of drive wheel motors 20b are configured to drive the plurality of drive wheels 20a. The plurality of drive wheel motors 20b are provided so as to correspond to the plurality of drive wheels 20a. The drive wheel control unit 20c is configured to control a plurality of drive wheel motors 20b based on a command from the control unit 21 to control the traveling direction and traveling speed of the transport vehicle main body 27 by the plurality of driving wheels 20a. Has been done.
 連結部20dは、搬送車本体27と台車30とを連結する連結部材である。連結部20dは、搬送車本体27側の連結箇所を回転中心として、上下方向(Z方向)に延びる回転軸線C周りに回転可能に、搬送車本体27と台車30とを連結するように構成されている。連結部モータ20eは、連結部20dを駆動するように構成されている。連結部モータ20eは、制御部21からの指令に基づいて、回転軸線C周りに連結部20dを回転させるように構成されている。一対のストッパ20fは、連結部20dの移動を制限するように構成されている。一対のストッパ20fは、連結部20dの両側に設けられている。一対のストッパ20fは、連結部20dを挟んで、V字状に設けられている。 The connecting portion 20d is a connecting member that connects the transport vehicle main body 27 and the carriage 30. The connecting portion 20d is configured to connect the transport vehicle body 27 and the carriage 30 so as to be rotatable around the rotation axis C extending in the vertical direction (Z direction) with the connection point on the transport vehicle body 27 side as the center of rotation. ing. The connecting portion motor 20e is configured to drive the connecting portion 20d. The connecting portion motor 20e is configured to rotate the connecting portion 20d around the rotation axis C based on a command from the control unit 21. The pair of stoppers 20f are configured to limit the movement of the connecting portion 20d. The pair of stoppers 20f are provided on both sides of the connecting portion 20d. The pair of stoppers 20f are provided in a V shape with the connecting portion 20d interposed therebetween.
 制御部21は、自律型搬送車20の各部を制御するように構成されている。制御部21は、CPU(Central Processing Unit)およびメモリを含んでいる。制御部21は、駆動輪制御部20cを介して駆動輪モータ20bを制御して、自律型搬送車20の自律走行を制御するように構成されている。 The control unit 21 is configured to control each unit of the autonomous transport vehicle 20. The control unit 21 includes a CPU (Central Processing Unit) and a memory. The control unit 21 is configured to control the drive wheel motor 20b via the drive wheel control unit 20c to control the autonomous traveling of the autonomous transport vehicle 20.
 また、制御部21は、サーバ10からの指令に基づいて、自律型搬送車20を目的地まで自律走行させるように構成されている。たとえば、制御部21は、サーバ10からの指令に基づいて、台車30の待機位置まで自律型搬送車20を自律走行させる。また、たとえば、制御部21は、サーバ10からの指令に基づいて、台車30をけん引した状態で、搬送対象の物品が格納された倉庫まで自律型搬送車20を自律走行させる。また、たとえば、制御部21は、サーバ10からの指令に基づいて、搬送対象の物品を収容した台車30をけん引した状態で、物品の搬送位置まで自律型搬送車20を自律走行させる。 Further, the control unit 21 is configured to autonomously drive the autonomous transport vehicle 20 to the destination based on a command from the server 10. For example, the control unit 21 autonomously drives the autonomous transport vehicle 20 to the standby position of the trolley 30 based on a command from the server 10. Further, for example, the control unit 21 autonomously drives the autonomous transport vehicle 20 to the warehouse in which the article to be transported is stored while the carriage 30 is towed based on the command from the server 10. Further, for example, the control unit 21 autonomously drives the autonomous transport vehicle 20 to the transport position of the article in a state where the carriage 30 containing the article to be transported is towed based on the command from the server 10.
 撮像部22は、台車30の状態を取得するように構成されている。具体的には、撮像部22は、台車30の特徴点31の状態を取得するように構成されている。撮像部22は、台車30の特徴点31を撮像することにより、台車30の特徴点31の状態を撮像結果として取得するように構成されている。撮像部22は、カメラを含んでいる。撮像部22は、台車30の特徴点31を撮像可能な位置に設けられている。撮像部22は、搬送車本体27の台車30側の部分に設けられている。 The image pickup unit 22 is configured to acquire the state of the trolley 30. Specifically, the image pickup unit 22 is configured to acquire the state of the feature point 31 of the carriage 30. The imaging unit 22 is configured to acquire the state of the feature point 31 of the trolley 30 as an image pickup result by imaging the feature point 31 of the trolley 30. The image pickup unit 22 includes a camera. The image pickup unit 22 is provided at a position where the feature point 31 of the carriage 30 can be imaged. The image pickup unit 22 is provided on a portion of the transport vehicle main body 27 on the carriage 30 side.
 通信部23は、サーバ10との間で情報を送受信可能に構成されている。通信部23は、無線通信するための無線通信部である。自律型搬送車20は、ネットワークを介して、サーバ10と通信可能に接続されている。バッテリ24は、自律型搬送車20の各部に電力を供給するように構成されている。バッテリ24は、充電可能な電池を含んでいる。バッテリ24の電力により、自律型搬送車20は、自律走行する。傾きセンサ25は、自律型搬送車20の鉛直面内における傾斜角度を取得して、制御部21に送信するように構成されている。傾きセンサ25は、たとえば、ジャイロセンサを含んでいる。記憶部26は、フラッシュメモリなどの書き換え可能な記憶媒体を含み、各種の情報を記憶可能に構成されている。記憶部26には、自律型搬送車20の情報、および、台車30の情報などが記憶される。 The communication unit 23 is configured to be able to send and receive information to and from the server 10. The communication unit 23 is a wireless communication unit for wireless communication. The autonomous carrier 20 is communicably connected to the server 10 via a network. The battery 24 is configured to supply electric power to each part of the autonomous carrier 20. The battery 24 includes a rechargeable battery. The autonomous transport vehicle 20 autonomously travels by the electric power of the battery 24. The tilt sensor 25 is configured to acquire the tilt angle in the vertical plane of the autonomous transport vehicle 20 and transmit it to the control unit 21. The tilt sensor 25 includes, for example, a gyro sensor. The storage unit 26 includes a rewritable storage medium such as a flash memory, and is configured to be able to store various types of information. The storage unit 26 stores information on the autonomous transport vehicle 20, information on the trolley 30, and the like.
(台車の構成)
 次に、台車30の構成について説明する。
(Structure of dolly)
Next, the configuration of the carriage 30 will be described.
 台車30は、製造工場において使用される物品を収容するように構成されている。図4に示すように、台車30は、特徴点31と、収容部32と、複数(4つ)の車輪33とを備えている。 The dolly 30 is configured to accommodate articles used in the manufacturing plant. As shown in FIG. 4, the dolly 30 includes a feature point 31, an accommodating portion 32, and a plurality (four) wheels 33.
 特徴点31は、台車30に設けられたマーカを含んでいる。マーカは、特に限られないが、たとえば、板金により形成可能である。また、特徴点31は、自律型搬送車20の撮像部22により撮像可能な位置に設けられている。特徴点31は、台車30の自律型搬送車20側の部分に設けられている。図5に示すように、特徴点31には、模様が付されている。特徴点31の模様は、特徴点31が板金製である場合、レーザにより形成可能である。特徴点31の模様は、搬送車本体27に対する台車30の相対姿勢の変化に応じて、自律型搬送車20から見た形状が変化するように構成されている。また、特徴点31の模様は、台車30の識別情報を含む2次元コードにより構成されている。自律型搬送車20の制御部21は、撮像部22による特徴点31の撮像結果に基づいて、台車30の識別情報を取得可能である。また、自律型搬送車20の制御部21は、台車30の識別情報に基づいて、サーバ10から、台車30の形状、台車30の重量、および、台車30の重心位置などの台車30の情報を取得可能である。 The feature point 31 includes a marker provided on the dolly 30. The marker is not particularly limited, but can be formed by, for example, sheet metal. Further, the feature point 31 is provided at a position where the image pickup unit 22 of the autonomous transport vehicle 20 can take an image. The feature point 31 is provided on the portion of the carriage 30 on the autonomous carrier 20 side. As shown in FIG. 5, a pattern is attached to the feature point 31. The pattern of the feature point 31 can be formed by a laser when the feature point 31 is made of sheet metal. The pattern of the feature point 31 is configured so that the shape seen from the autonomous transport vehicle 20 changes according to the change in the relative posture of the carriage 30 with respect to the transport vehicle main body 27. Further, the pattern of the feature point 31 is composed of a two-dimensional code including the identification information of the dolly 30. The control unit 21 of the autonomous transport vehicle 20 can acquire the identification information of the trolley 30 based on the image pickup result of the feature point 31 by the image pickup unit 22. Further, the control unit 21 of the autonomous transport vehicle 20 obtains information on the trolley 30 such as the shape of the trolley 30, the weight of the trolley 30, and the position of the center of gravity of the trolley 30 from the server 10 based on the identification information of the trolley 30. It can be obtained.
 図4に示すように、収容部32は、物品を収容可能に構成されている。収容部32は、凹状に形成されている。複数の車輪33は、自律型搬送車20によるけん引により台車30を走行させるように構成されている。複数の車輪33は、自在輪として設けられている。複数の車輪33は、台車30の左右にそれぞれ2つずつ設けられている。 As shown in FIG. 4, the accommodating portion 32 is configured to be capable of accommodating articles. The accommodating portion 32 is formed in a concave shape. The plurality of wheels 33 are configured to drive the carriage 30 by towing by the autonomous transport vehicle 20. The plurality of wheels 33 are provided as universal wheels. Two wheels 33 are provided on each of the left and right sides of the carriage 30.
(搬送車本体の走行速度の制御)
 次に、搬送車本体27の走行速度の制御について説明する。
(Control of running speed of the carrier body)
Next, the control of the traveling speed of the transport vehicle main body 27 will be described.
 ここで、本実施形態では、図6に示すように、制御部21は、撮像部22により取得された台車30の状態に基づいて、搬送車本体27に対する台車30の相対姿勢を検出するとともに、搬送車本体27に対する台車30の相対姿勢に基づいて、搬送車本体27の走行速度を制御するように構成されている。具体的には、制御部21は、撮像部22により取得された台車30の特徴点31の状態に基づいて、搬送車本体27に対する台車30の相対姿勢を検出するように構成されている。 Here, in the present embodiment, as shown in FIG. 6, the control unit 21 detects the relative posture of the trolley 30 with respect to the transport vehicle main body 27 based on the state of the trolley 30 acquired by the image pickup unit 22, and also detects the relative posture of the trolley 30 with respect to the transport vehicle main body 27. It is configured to control the traveling speed of the transport vehicle main body 27 based on the relative posture of the carriage 30 with respect to the transport vehicle main body 27. Specifically, the control unit 21 is configured to detect the relative posture of the trolley 30 with respect to the transport vehicle main body 27 based on the state of the feature point 31 of the trolley 30 acquired by the imaging unit 22.
 搬送車本体27により台車30が真直ぐけん引されている状態では、撮像結果において中央に特徴点31が位置するとともに、特徴点31が傾かずに映る。また、台車30が水平面内において傾いた状態で搬送車本体27によりけん引されている状態では、特徴点31が撮像結果において中央からずれた位置に位置するとともに、特徴点31が奥行方向に傾いて映る。また、台車30が鉛直面内において傾いた状態で搬送車本体27によりけん引されている状態では、特徴点31が撮像結果において中央に位置するとともに、特徴点31が奥行方向に直交する面内において傾いて映る。これらの特徴点31の状態の変化を利用して、搬送車本体27に対する台車30の相対姿勢を検出可能である。なお、図6では、理解の容易化のため、台車30が鉛直面内において傾いた状態を誇張して図示している。 In a state where the carriage 30 is towed straight by the transport vehicle main body 27, the feature point 31 is located in the center of the image pickup result, and the feature point 31 is reflected without being tilted. Further, when the carriage 30 is tilted in the horizontal plane and is towed by the transport vehicle main body 27, the feature point 31 is located at a position deviated from the center in the imaging result, and the feature point 31 is tilted in the depth direction. It is reflected. Further, in a state where the bogie 30 is tilted in the vertical plane and is towed by the transport vehicle main body 27, the feature point 31 is located at the center in the imaging result and the feature point 31 is in a plane orthogonal to the depth direction. It looks tilted. The relative posture of the carriage 30 with respect to the transport vehicle main body 27 can be detected by utilizing the change in the state of the feature points 31. Note that FIG. 6 exaggerates the state in which the bogie 30 is tilted in the vertical plane for ease of understanding.
 搬送車本体27に対する台車30の相対姿勢は、搬送車本体27に対する台車30の傾斜角度の情報を含んでいる。具体的には、搬送車本体27に対する台車30の相対姿勢は、水平面内における搬送車本体27に対する台車30の傾斜角度γの情報と、鉛直面内における搬送車本体27に対する台車30の傾斜角度θの情報とを含んでいる。 The relative posture of the trolley 30 with respect to the transport vehicle main body 27 includes information on the inclination angle of the trolley 30 with respect to the transport vehicle main body 27. Specifically, the relative posture of the trolley 30 with respect to the transport vehicle main body 27 is information on the inclination angle γ of the trolley 30 with respect to the transport vehicle main body 27 in the horizontal plane and the inclination angle θ of the trolley 30 with respect to the transport vehicle main body 27 in the vertical plane. Contains information about.
 制御部21は、搬送車本体27に対する台車30の傾斜角度の情報に基づいて、搬送車本体27の走行速度を制御するように構成されている。具体的には、制御部21は、水平面内における搬送車本体27に対する台車30の傾斜角度γの情報に基づいて、搬送車本体27が減速するように、搬送車本体27の走行速度を制御するように構成されている。より具体的には、制御部21は、以下の式(1)により、搬送車本体27の走行速度を制御するように構成されている。制御部21は、以下の式(1)により、傾斜角度γが大きくなるにつれて、走行速度が小さくなるように、搬送車本体27の走行速度を制御するように構成されている。
Vc=V×{1-k×sin(γ)} ・・・(1)
ここで、
Vc:補正速度
V:通常速度
k:補正係数
γ:水平面内における搬送車本体に対する台車の傾斜角度
である。
The control unit 21 is configured to control the traveling speed of the transport vehicle main body 27 based on the information of the inclination angle of the carriage 30 with respect to the transport vehicle main body 27. Specifically, the control unit 21 controls the traveling speed of the transport vehicle body 27 so that the transport vehicle body 27 decelerates based on the information of the inclination angle γ of the carriage 30 with respect to the transport vehicle body 27 in the horizontal plane. It is configured as follows. More specifically, the control unit 21 is configured to control the traveling speed of the transport vehicle main body 27 by the following equation (1). The control unit 21 is configured to control the traveling speed of the transport vehicle main body 27 so that the traveling speed decreases as the inclination angle γ increases according to the following equation (1).
Vc = V × {1-k × sin (γ)} ・ ・ ・ (1)
here,
Vc: Correction speed V: Normal speed k: Correction coefficient γ: The inclination angle of the carriage with respect to the transport vehicle main body in the horizontal plane.
 通常速度Vおよび補正係数kは、実験などにより予め決定しておくことができる。通常速度Vは、特に限られないが、たとえば、2m/s程度であり得る。また、補正係数kは、特に限られないが、たとえば、補正速度Vcが1m/s以下になる程度の値であり得る。また、通常速度Vは、搬送車本体27により台車30が真直ぐけん引されている状態の搬送車本体27の走行速度である。 The normal speed V and the correction coefficient k can be determined in advance by an experiment or the like. The normal speed V is not particularly limited, but may be, for example, about 2 m / s. The correction coefficient k is not particularly limited, but may be, for example, a value such that the correction speed Vc is 1 m / s or less. Further, the normal speed V is the traveling speed of the transport vehicle main body 27 in a state where the carriage 30 is towed straight by the transport vehicle main body 27.
 また、制御部21は、鉛直面内における搬送車本体27に対する台車30の傾斜角度θの情報に基づいて、搬送車本体27が停止するように、搬送車本体27の走行速度を制御するように構成されている。具体的には、制御部21は、鉛直面内における搬送車本体27に対する台車30の傾斜角度θの情報と、傾きセンサ25により取得した鉛直面内における搬送車本体27の傾斜角度δの情報とに基づいて、搬送車本体27が停止するように、搬送車本体27の走行速度を制御するように構成されている。 Further, the control unit 21 controls the traveling speed of the transport vehicle body 27 so that the transport vehicle body 27 stops based on the information of the inclination angle θ of the carriage 30 with respect to the transport vehicle body 27 in the vertical plane. It is configured. Specifically, the control unit 21 includes information on the tilt angle θ of the carriage 30 with respect to the transport vehicle body 27 in the vertical plane and information on the tilt angle δ of the transport vehicle main body 27 in the vertical plane acquired by the tilt sensor 25. Based on the above, the traveling speed of the transport vehicle main body 27 is controlled so that the transport vehicle main body 27 stops.
 まず、制御部21は、傾斜角度θと、傾斜角度δとの差分(θ-δ)を、鉛直面内における台車30の真の傾斜角度θtとして取得する。そして、制御部21は、真の傾斜角度θtが基準角度(しきい値)を超えるか否かを検出する。制御部21は、真の傾斜角度θtが基準角度を超えることを検出した場合、搬送車本体27が停止するように、搬送車本体27の走行速度を制御する。この際、制御部21は、搬送車本体27が徐々に減速して停止するように、搬送車本体27の走行速度を制御する。また、制御部21は、真の傾斜角度θtが基準角度を超えないことを検出した場合、搬送車本体27の走行を継続する制御を行う。なお、基準角度は、実験などにより予め決定しておくことができる。 First, the control unit 21 acquires the difference (θ−δ) between the tilt angle θ and the tilt angle δ as the true tilt angle θt of the carriage 30 in the vertical plane. Then, the control unit 21 detects whether or not the true inclination angle θt exceeds the reference angle (threshold value). When the control unit 21 detects that the true inclination angle θt exceeds the reference angle, the control unit 21 controls the traveling speed of the transport vehicle main body 27 so that the transport vehicle main body 27 stops. At this time, the control unit 21 controls the traveling speed of the transport vehicle main body 27 so that the transport vehicle main body 27 gradually decelerates and stops. Further, when the control unit 21 detects that the true inclination angle θt does not exceed the reference angle, the control unit 21 controls to continue the traveling of the transport vehicle main body 27. The reference angle can be determined in advance by an experiment or the like.
 また、本実施形態では、制御部21は、台車30の形状、台車30の重量、および、台車30の重心位置のうちの少なくとも1つを考慮して、搬送車本体27の走行速度を制御するように構成されている。たとえば、制御部21は、台車30の形状を考慮して、台車30の幅が大きい場合、幅が小さい台車30の場合に比べて、搬送車本体27の走行速度を小さくする。同様に、制御部21は、台車30の形状を考慮して、台車30の幅が小さい場合、幅が大きい台車30の場合に比べて、搬送車本体27の走行速度を大きくする。 Further, in the present embodiment, the control unit 21 controls the traveling speed of the transport vehicle main body 27 in consideration of at least one of the shape of the carriage 30, the weight of the carriage 30, and the position of the center of gravity of the carriage 30. It is configured as follows. For example, in consideration of the shape of the carriage 30, the control unit 21 reduces the traveling speed of the transport vehicle main body 27 when the width of the carriage 30 is large as compared with the case of the carriage 30 having a small width. Similarly, in consideration of the shape of the carriage 30, the control unit 21 increases the traveling speed of the transport vehicle main body 27 when the width of the carriage 30 is small as compared with the case of the carriage 30 having a large width.
 また、たとえば、制御部21は、台車30の重量を考慮して、台車30の重量が大きい場合、重量が小さい台車30の場合に比べて、搬送車本体27の走行速度を小さくする。同様に、制御部21は、台車30の重量を考慮して、台車30の重量が小さい場合、重量が大きい台車30の場合に比べて、搬送車本体27の走行速度を大きくする。 Further, for example, the control unit 21 considers the weight of the trolley 30 and reduces the traveling speed of the transport vehicle main body 27 when the trolley 30 is heavy as compared with the case where the trolley 30 is light in weight. Similarly, in consideration of the weight of the trolley 30, the control unit 21 increases the traveling speed of the transport vehicle main body 27 when the weight of the trolley 30 is small as compared with the case of the trolley 30 having a large weight.
 また、たとえば、制御部21は、台車30の重心位置を考慮して、台車30の重心位置が左側にある場合、右回りに旋回する場合に比べて、左回りに旋回する場合の搬送車本体27の走行速度を小さくする。同様に、制御部21は、台車30の重心位置を考慮して、台車30の重心位置が右側にある場合、左回りに旋回する場合に比べて、右回りに旋回する場合の搬送車本体27の走行速度を小さくする。 Further, for example, the control unit 21 considers the position of the center of gravity of the bogie 30 and, when the position of the center of gravity of the bogie 30 is on the left side, the transport vehicle main body when turning counterclockwise as compared with the case where the bogie 30 turns clockwise. Decrease the traveling speed of 27. Similarly, in consideration of the position of the center of gravity of the trolley 30, the control unit 21 considers the position of the center of gravity of the trolley 30 on the right side, and the transport vehicle main body 27 when the trolley 30 turns clockwise as compared with the case where the trolley 30 turns counterclockwise. Reduce the running speed of.
(連結部の駆動制御)
 次に、連結部20dの駆動制御について説明する。
(Drive control of connecting part)
Next, the drive control of the connecting portion 20d will be described.
 図7に示すように、制御部21は、搬送車本体27による台車30のけん引時に、連結部モータ20eにより連結部20dを駆動(回転)することにより、水平面内における搬送車本体27に対する台車30の相対姿勢を制御するように構成されている。具体的には、制御部21は、搬送車本体27の旋回時に、連結部モータ20eにより連結部20dを駆動(回転)することにより、慣性による台車30の動きを打ち消すように、水平面内における搬送車本体27に対する台車30の相対姿勢を制御するように構成されている。 As shown in FIG. 7, the control unit 21 drives (rotates) the connecting portion 20d by the connecting portion motor 20e when the carriage 30 is towed by the transport vehicle main body 27, whereby the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is driven (rotated). It is configured to control the relative posture of. Specifically, the control unit 21 drives (rotates) the connecting portion 20d by the connecting portion motor 20e when the transport vehicle main body 27 turns, so that the movement of the carriage 30 due to inertia is canceled, and the transport is carried out in the horizontal plane. It is configured to control the relative posture of the bogie 30 with respect to the car body 27.
 ここで、搬送車本体27の旋回時に台車30に働く慣性力は、以下の式(2)により表すことができる。
Fj=m×a ・・・(2)
ここで、
Fj:台車に働く慣性力
m:台車の重量
a:台車の回転方向の加速度
である。
Here, the inertial force acting on the carriage 30 when the transport vehicle main body 27 turns can be expressed by the following equation (2).
Fj = m × a ・ ・ ・ (2)
here,
Fj: Inertial force acting on the trolley m: Weight of the trolley a: Acceleration in the rotation direction of the trolley.
 重量mとしては、物品搬送中の場合には、台車30の重量と物品の重量との合計の重量を用い、物品搬送中でない場合には、台車30の重量を用いる。台車30の重量は、台車30の識別情報に基づいて、サーバ10から取得可能である。また、物品の重量は、サーバ10からの指令の内容(タスクの内容)に基づいて、物品を特定して、その重量を取得可能である。加速度aは、搬送車本体27の旋回速度から換算テーブルを用いて取得可能である。あるいは、加速度aは、撮像部22により取得した台車30の特徴点31の状態の時間変化から取得可能である。 As the weight m, the total weight of the weight of the trolley 30 and the weight of the article is used when the article is being transported, and the weight of the trolley 30 is used when the article is not being transported. The weight of the dolly 30 can be acquired from the server 10 based on the identification information of the dolly 30. Further, the weight of the article can be obtained by specifying the article based on the content of the command (content of the task) from the server 10. The acceleration a can be obtained from the turning speed of the transport vehicle main body 27 by using a conversion table. Alternatively, the acceleration a can be acquired from the time change of the state of the feature point 31 of the carriage 30 acquired by the imaging unit 22.
 また、台車30に働く動摩擦力は、以下の式(3)により表すことができる。
F=μ×m×g ・・・(3)
ここで、
F:台車に働く動摩擦力
μ:動摩擦係数
m:台車の重量
g:重力加速度
である。
Further, the dynamic frictional force acting on the carriage 30 can be expressed by the following equation (3).
F = μ × m × g ・ ・ ・ (3)
here,
F: Dynamic friction force acting on the trolley μ: Dynamic friction coefficient m: Weight of the trolley g: Gravity acceleration.
 動摩擦係数μは、ユーザが床面の動作摩擦係数を入力することにより、取得可能である。重量mは、上記式(2)の場合と同様に、取得可能である。重力加速度gは、既知の値として取得可能である。 The dynamic friction coefficient μ can be obtained by the user inputting the dynamic friction coefficient of the floor surface. The weight m can be obtained as in the case of the above formula (2). The gravitational acceleration g can be obtained as a known value.
 搬送車本体27の旋回時には、台車30は、上記式(2)で求まる慣性力Fjと、上記式(3)で求まる動摩擦力Fとによって決定される力によって、回転方向に振られてしまう。このため、制御部21は、慣性力Fgと動摩擦力Fとの差分(Fg-F)に対して、この差分を打ち消すような連結部20dの駆動方向(慣性が働くのとは反対方向)と駆動距離(駆動角度)とを決定する。そして、制御部21は、決定した駆動方向に、決定した駆動距離(駆動角度)だけ回転するように、連結部モータ20eにより連結部20dを駆動する制御を行う。 When the transport vehicle body 27 turns, the carriage 30 is swung in the rotational direction by a force determined by the inertial force Fj obtained by the above formula (2) and the dynamic friction force F obtained by the above formula (3). Therefore, the control unit 21 sets the driving direction of the connecting unit 20d (the direction opposite to the direction in which the inertia works) so as to cancel the difference (Fg-F) between the inertial force Fg and the dynamic friction force F. Determine the drive distance (drive angle). Then, the control unit 21 controls the connection unit 20d to be driven by the connection unit motor 20e so as to rotate by the determined drive distance (drive angle) in the determined drive direction.
 また、本実施形態では、制御部21は、ストッパ20fにより制限された角度範囲内において、連結部モータ20eにより連結部20dを駆動(回転)することにより、水平面内における搬送車本体27に対する台車30の相対姿勢を制御するように構成されている。制御部21は、連結部20dがストッパ20fに接触しない範囲内において、連結部モータ20eにより連結部20dを駆動(回転)するように構成されている。 Further, in the present embodiment, the control unit 21 drives (rotates) the connecting portion 20d by the connecting portion motor 20e within the angle range limited by the stopper 20f, so that the trolley 30 with respect to the transport vehicle main body 27 in the horizontal plane is 30. It is configured to control the relative posture of. The control unit 21 is configured to drive (rotate) the connection unit 20d by the connection unit motor 20e within a range in which the connection unit 20d does not come into contact with the stopper 20f.
(走行速度制御時の補正時間)
 次に、搬送車本体27の走行速度制御時の補正時間について説明する。
(Correction time when controlling the running speed)
Next, the correction time at the time of traveling speed control of the transport vehicle main body 27 will be described.
 図8に示すように、制御部21は、搬送車本体27の走行速度の制御による、搬送車本体27に対する台車30の相対姿勢の補正に要した補正時間Tを取得するように構成されている。また、制御部21は、補正時間Tと基準補正時間との比較に基づいて、走行の異常を検出するように構成されている。具体的には、制御部21は、以下の式(4)により、走行の異常を検出するように構成されている。制御部21は、補正時間Tが以下の式(4)により定められた正常範囲を外れる(下回るまたは上回る)場合、走行の異常を検出するように構成されている。
Te-α<T<Te+α ・・・(4)
ここで、
Te:基準補正時間
T:補正時間
α:定数
である。
As shown in FIG. 8, the control unit 21 is configured to acquire the correction time T required for correcting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 by controlling the traveling speed of the transport vehicle main body 27. .. Further, the control unit 21 is configured to detect an abnormality in traveling based on a comparison between the correction time T and the reference correction time. Specifically, the control unit 21 is configured to detect an abnormality in traveling by the following equation (4). The control unit 21 is configured to detect a running abnormality when the correction time T deviates from (below or exceeds) the normal range defined by the following equation (4).
Te-α <T <Te + α ... (4)
here,
Te: Reference correction time T: Correction time α: Constant.
 基準補正時間Teおよび補正時間Tについては、後述する。定数αは、実験などにより予め決定しておくことができる。 The reference correction time Te and the correction time T will be described later. The constant α can be determined in advance by an experiment or the like.
 また、図9に示すように、搬送車本体27に対する台車30の相対姿勢の補正には、複数(図9では、4つ)のエリアAが設定されている。複数のエリアAは、互いに異なる傾斜角度γの範囲として設定されている。たとえば、エリア1が、傾斜角度γが0度以上5度未満の範囲、エリア2が、傾斜角度γが5度以上10度未満の範囲、エリア3が、傾斜角度γが10度以上15度未満の範囲、エリア4が、傾斜角度γが15度以上20度未満の範囲として、設定されている。 Further, as shown in FIG. 9, a plurality of (four in FIG. 9) areas A are set for correcting the relative posture of the carriage 30 with respect to the transport vehicle main body 27. The plurality of areas A are set as ranges of inclination angles γ different from each other. For example, area 1 has a tilt angle γ of 0 degrees or more and less than 5 degrees, area 2 has a tilt angle γ of 5 degrees or more and less than 10 degrees, and area 3 has a tilt angle γ of 10 degrees or more and less than 15 degrees. Area 4 is set as a range in which the inclination angle γ is 15 degrees or more and less than 20 degrees.
 制御部21は、エリアAが直前のエリアAから異なるエリアAに移行した場合、搬送車本体27の走行速度を変更する制御を行うように構成されている。また、制御部21は、エリアAが直前のエリアAから異なるエリアAに移行するまでの時間を、補正時間Tとして取得して記憶部26に記憶するように構成されている。 The control unit 21 is configured to control to change the traveling speed of the transport vehicle main body 27 when the area A shifts from the immediately preceding area A to a different area A. Further, the control unit 21 is configured to acquire the time until the area A shifts from the immediately preceding area A to a different area A as the correction time T and store it in the storage unit 26.
 また、本実施形態では、制御部21は、補正時間Tに基づいて、基準補正時間Teを学習するように構成されている。具体的には、制御部21は、以下の式(5)により、基準補正時間Teを学習して更新するように構成されている。制御部21は、以下の式(5)により、基準補正時間Teを、複数の補正時間Tの平均値として学習して更新するように構成されている。制御部21は、以下の式(5)により、基準補正時間Teを、補正が完了すると予想される予想補正完了時間として取得するように構成されている。
Te=ΣTn/n ・・・(5)
ここで、
Te:基準補正時間
Tn:n番目に取得した補正時間
n:補正時間の番号 
である。
Further, in the present embodiment, the control unit 21 is configured to learn the reference correction time Te based on the correction time T. Specifically, the control unit 21 is configured to learn and update the reference correction time Te by the following equation (5). The control unit 21 is configured to learn and update the reference correction time Te as an average value of a plurality of correction times T by the following equation (5). The control unit 21 is configured to acquire the reference correction time Te as the expected correction completion time expected to be completed by the following equation (5).
Te = ΣTn / n ... (5)
here,
Te: Reference correction time Tn: Nth acquired correction time n: Correction time number
Is.
 また、本実施形態では、制御部21は、搬送車本体27に対する台車30の相対姿勢(エリアA)、搬送車本体27の走行速度、台車30の重量、または、搬送車本体27の進行方向ごとに、基準補正時間Teを学習するように構成されている。このため、制御部21は、エリアAが直前のエリアAから異なるエリアAに移行した際、エリアA(傾斜角度γ)、搬送車本体27の走行速度、台車30の重量、および、搬送車本体27の進行方向(右旋回、または、左旋回のいずれであるか)を、補正時間Tと対応付けて記憶部26に記憶するように構成されている。これにより、エリアA、搬送車本体27の走行速度、台車30の重量、または、搬送車本体27の進行方向ごとに場合分けされた、補正時間Tが取得される。また、エリアA、搬送車本体27の走行速度、台車30の重量、または、搬送車本体27の進行方向ごとに場合分けされた、基準補正時間Teが学習される。 Further, in the present embodiment, the control unit 21 determines the relative posture (area A) of the carriage 30 with respect to the transport vehicle body 27, the traveling speed of the transport vehicle body 27, the weight of the carriage 30, or the traveling direction of the transport vehicle body 27. It is configured to learn the reference correction time Te. Therefore, when the area A shifts from the immediately preceding area A to a different area A, the control unit 21 determines the area A (tilt angle γ), the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, and the transport vehicle main body. It is configured to store the traveling direction of 27 (whether it is a right turn or a left turn) in the storage unit 26 in association with the correction time T. As a result, the correction time T, which is classified according to the area A, the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, or the traveling direction of the transport vehicle main body 27, is acquired. Further, the reference correction time Te, which is classified according to the area A, the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, or the traveling direction of the transport vehicle main body 27, is learned.
 また、制御部21は、補正時間Tに基づいて、上記式(1)の補正係数kを学習するように構成されている。具体的には、制御部21は、予め決められた範囲の乱数として、補正係数kを取得するように構成されている。また、制御部21は、補正時間Tがより小さい結果になった補正係数kの値を中心として、補正係数kの乱数の範囲を学習して更新するように構成されている。これにより、補正係数kの乱数の範囲を、適切な範囲に収束させることが可能である。 Further, the control unit 21 is configured to learn the correction coefficient k of the above equation (1) based on the correction time T. Specifically, the control unit 21 is configured to acquire the correction coefficient k as a random number in a predetermined range. Further, the control unit 21 is configured to learn and update a range of random numbers of the correction coefficient k centering on the value of the correction coefficient k that results in a smaller correction time T. This makes it possible to converge the range of random numbers with the correction coefficient k to an appropriate range.
(自律型搬送車の自動連結制御)
 次に、自律型搬送車20の自動連結制御について説明する。
(Automatic connection control of autonomous transport vehicle)
Next, the automatic connection control of the autonomous transport vehicle 20 will be described.
 図10に示すように、制御部21は、撮像部22により取得された台車30の状態に基づいて、搬送車本体27と台車30との連結時に、搬送車本体27を台車30との連結位置に移動させるように構成されている。具体的には、制御部21は、撮像部22により取得された台車30の特徴点31の状態に基づいて、搬送車本体27と台車30との連結時に、搬送車本体27を台車30との連結位置に移動させるように構成されている。 As shown in FIG. 10, the control unit 21 connects the transport vehicle main body 27 to the bogie 30 when the transport vehicle main body 27 and the bogie 30 are connected, based on the state of the bogie 30 acquired by the image pickup unit 22. It is configured to move to. Specifically, the control unit 21 attaches the transport vehicle main body 27 to the bogie 30 when the transport vehicle main body 27 and the bogie 30 are connected, based on the state of the feature point 31 of the bogie 30 acquired by the image pickup unit 22. It is configured to move to the connecting position.
 制御部21は、撮像部22により撮像することにより、台車30の特徴点31の状態を認識するように構成されている。そして、制御部21は、台車30の特徴点31の状態を目印として、搬送車本体27を未連結の台車30に接近させるように構成されている。そして、制御部21は、搬送車本体27を台車30との連結位置まで移動させると、連結部20dにより、搬送車本体27と台車30とを連結する制御を行うように構成されている。そして、制御部21は、連結部20dにより連結した台車30をけん引して、自律走行するように構成されている。 The control unit 21 is configured to recognize the state of the feature point 31 of the carriage 30 by taking an image with the image pickup unit 22. Then, the control unit 21 is configured to bring the transport vehicle main body 27 closer to the unconnected carriage 30 by using the state of the feature point 31 of the carriage 30 as a mark. Then, when the transport vehicle main body 27 is moved to the connection position with the carriage 30, the control unit 21 is configured to control the connection between the transport vehicle main body 27 and the carriage 30 by the connecting portion 20d. The control unit 21 is configured to tow the carriage 30 connected by the connecting unit 20d and autonomously travel.
(自律型搬送車の自動連結処理)
 次に、本実施形態の自律型搬送車20の自動連結処理をフローチャートに基づいて説明する。なお、フローチャートの各処理は、制御部21により行われる。
(Automatic connection processing of autonomous transport vehicles)
Next, the automatic connection processing of the autonomous transport vehicle 20 of the present embodiment will be described with reference to the flowchart. Each process of the flowchart is performed by the control unit 21.
 図11に示すように、まず、ステップS101において、サーバ10から台車30のけん引指令を受信したか否かが検出される。台車30のけん引指令は、台車30に積載する物品の情報を含んでいる。台車30のけん引指令を受信していないことが検出された場合、ステップS101の処理を繰り返す。また、台車30のけん引指令を受信したことが検出された場合、ステップS102に進む。 As shown in FIG. 11, first, in step S101, it is detected whether or not the towing command of the carriage 30 is received from the server 10. The towing command of the trolley 30 includes information on the articles to be loaded on the trolley 30. When it is detected that the towing command of the carriage 30 has not been received, the process of step S101 is repeated. If it is detected that the towing command of the carriage 30 has been received, the process proceeds to step S102.
 そして、ステップS102において、サーバ10により指示された指示位置に搬送車本体27が移動される。 Then, in step S102, the transport vehicle main body 27 is moved to the designated position designated by the server 10.
 そして、ステップS103において、撮像部22により撮像させることにより、台車30の特徴点31が認識される。 Then, in step S103, the feature point 31 of the dolly 30 is recognized by making the image taken by the image pickup unit 22.
 そして、ステップS104において、台車30の特徴点31に基づいて、台車30の情報(台車30の形状、台車30の重量、および、台車30の重心位置など)が取得される。具体的には、ステップS104では、台車30の特徴点31から、台車30の識別情報が取得される。そして、台車30の識別情報に基づいて、サーバ10から台車30の情報が取得される。 Then, in step S104, information on the bogie 30 (shape of the bogie 30, weight of the bogie 30, position of the center of gravity of the bogie 30, etc.) is acquired based on the feature point 31 of the bogie 30. Specifically, in step S104, the identification information of the dolly 30 is acquired from the feature point 31 of the dolly 30. Then, the information of the dolly 30 is acquired from the server 10 based on the identification information of the dolly 30.
 そして、ステップS105において、台車30の特徴点31を目印に搬送車本体27が台車30に接近される。 Then, in step S105, the transport vehicle main body 27 is approached to the carriage 30 with the feature point 31 of the carriage 30 as a mark.
 そして、ステップS106において、搬送車本体27が台車30との連結位置まで移動したか否かが検出される。搬送車本体27が台車30との連結位置まで移動していないことが検出された場合、ステップS106の処理が繰り返される。また、搬送車本体27が台車30との連結位置まで移動したことが検出された場合、ステップS107に進む。 Then, in step S106, it is detected whether or not the transport vehicle main body 27 has moved to the connection position with the carriage 30. When it is detected that the transport vehicle main body 27 has not moved to the connection position with the carriage 30, the process of step S106 is repeated. Further, when it is detected that the transport vehicle main body 27 has moved to the connection position with the carriage 30, the process proceeds to step S107.
 そして、ステップS107において、搬送車本体27と台車30とが連結部20dにより連結される。そして、ステップS107では、搬送車本体27による台車30のけん引走行が開始される。その後、自動連結処理が終了される。 Then, in step S107, the transport vehicle main body 27 and the carriage 30 are connected by the connecting portion 20d. Then, in step S107, the towing running of the carriage 30 by the transport vehicle main body 27 is started. After that, the automatic connection process is terminated.
(自律型搬送車の速度制御処理)
 次に、本実施形態の自律型搬送車20の速度制御処理をフローチャートに基づいて説明する。なお、フローチャートの各処理は、制御部21により行われる。
(Speed control processing of autonomous transport vehicle)
Next, the speed control process of the autonomous transport vehicle 20 of the present embodiment will be described with reference to the flowchart. Each process of the flowchart is performed by the control unit 21.
 図12に示すように、まず、ステップS111において、撮像部22により撮像されることにより、台車30の特徴点31の状態が取得される。 As shown in FIG. 12, first, in step S111, the state of the feature point 31 of the dolly 30 is acquired by taking an image by the image pickup unit 22.
 そして、ステップS112において、台車30の特徴点31の状態に基づいて、水平面内における搬送車本体27に対する台車30の相対姿勢が検出される。ステップS112では、台車30の特徴点31の状態に基づいて、水平面内における搬送車本体27に対する台車30の傾斜角度γが検出される。 Then, in step S112, the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is detected based on the state of the feature point 31 of the carriage 30. In step S112, the inclination angle γ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is detected based on the state of the feature point 31 of the carriage 30.
 そして、ステップS113において、エリアAが1番目のエリアA(台車30が真直ぐけん引されている状態のエリアA)であるか否かが検出される。エリアAが1番目のエリアAであることが検出された場合、ステップS114に進む。 Then, in step S113, it is detected whether or not the area A is the first area A (the area A in which the dolly 30 is towed straight). If it is detected that the area A is the first area A, the process proceeds to step S114.
 そして、ステップS114において、搬送車本体27の走行速度が通常速度に設定される。 Then, in step S114, the traveling speed of the transport vehicle main body 27 is set to the normal speed.
 そして、ステップS115において、搬送終了であるか否かが検出される。搬送終了であることが検出された場合、速度制御処理が終了される。また、搬送終了でないことが検出された場合、ステップS111に戻る。 Then, in step S115, it is detected whether or not the transportation is completed. When it is detected that the transport is completed, the speed control process is terminated. If it is detected that the transfer is not completed, the process returns to step S111.
 また、ステップS113において、エリアAが1番目のエリアAでないことが検出された場合、ステップS116に進む。 If it is detected in step S113 that the area A is not the first area A, the process proceeds to step S116.
 そして、ステップS116において、エリアAが直前のエリアAと異なるエリアAであるか否かが検出される。エリアAが直前のエリアAと異なるエリアAでないことが検出された場合、ステップS115に進み、上記と同様の処理が行われる。また、エリアAが直前のエリアAと異なるエリアAであることが検出された場合、ステップS117に進む。 Then, in step S116, it is detected whether or not the area A is an area A different from the immediately preceding area A. When it is detected that the area A is not an area A different from the immediately preceding area A, the process proceeds to step S115, and the same processing as described above is performed. If it is detected that the area A is different from the immediately preceding area A, the process proceeds to step S117.
 そして、図13に示すように、ステップS117において、水平面内における搬送車本体27に対する台車30の傾斜角度γに応じて、搬送車本体27の走行速度が補正される。ステップS117では、上記式(1)により、搬送車本体27の走行速度が補正される。 Then, as shown in FIG. 13, in step S117, the traveling speed of the transport vehicle main body 27 is corrected according to the inclination angle γ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane. In step S117, the traveling speed of the transport vehicle main body 27 is corrected by the above equation (1).
 そして、ステップS118において、補正時間Tが記憶部26に記憶される。また、ステップS118では、エリアA(傾斜角度γ)、搬送車本体27の走行速度、台車30の重量、および、搬送車本体27の進行方向が、補正時間Tと対応付けて記憶部26に記憶される。 Then, in step S118, the correction time T is stored in the storage unit 26. Further, in step S118, the area A (inclination angle γ), the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, and the traveling direction of the transport vehicle main body 27 are stored in the storage unit 26 in association with the correction time T. Will be done.
 そして、ステップS119において、補正時間Tと基準補正時間Teとが比較される。 Then, in step S119, the correction time T and the reference correction time Te are compared.
 そして、ステップS120において、上記式(4)により、補正時間Tが正常範囲であるか否かが検出される。補正時間Tが正常範囲であることが検出された場合、ステップS121に進む。 Then, in step S120, it is detected by the above equation (4) whether or not the correction time T is within the normal range. If it is detected that the correction time T is within the normal range, the process proceeds to step S121.
 そして、ステップS121において、補正時間Tに基づいて、上記式(5)により、基準補正時間Teが学習されて更新される。そして、ステップS115に進み、上記と同様の処理が行われる。 Then, in step S121, the reference correction time Te is learned and updated by the above equation (5) based on the correction time T. Then, the process proceeds to step S115, and the same processing as described above is performed.
 また、ステップS120において、補正時間Tが正常範囲でないことが検出された場合、ステップS122に進む。 If it is detected in step S120 that the correction time T is not in the normal range, the process proceeds to step S122.
 そして、ステップS122において、異常通知が行われる。ステップS122では、たとえば、サーバ10に異常通知が行われる。そして、サーバ10の表示部13に、異常が表示される。その後、速度制御処理が終了される。 Then, in step S122, an abnormality notification is performed. In step S122, for example, an abnormality notification is sent to the server 10. Then, the abnormality is displayed on the display unit 13 of the server 10. After that, the speed control process is terminated.
(自律型搬送車の走行停止処理)
 次に、本実施形態の自律型搬送車20の走行停止処理をフローチャートに基づいて説明する。なお、フローチャートの各処理は、制御部21により行われる。
(Traveling stop processing of autonomous transport vehicle)
Next, the traveling stop processing of the autonomous transport vehicle 20 of the present embodiment will be described with reference to the flowchart. Each process of the flowchart is performed by the control unit 21.
 図14に示すように、まず、ステップS131において、撮像部22により撮像されることにより、台車30の特徴点31の状態が取得される。 As shown in FIG. 14, first, in step S131, the state of the feature point 31 of the dolly 30 is acquired by taking an image by the image pickup unit 22.
 そして、ステップS132において、台車30の特徴点31の状態に基づいて、鉛直面内における搬送車本体27に対する台車30の相対姿勢が検出される。ステップS132では、台車30の特徴点31の状態に基づいて、鉛直面内における搬送車本体27に対する台車30の傾斜角度θが検出される。 Then, in step S132, the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the vertical plane is detected based on the state of the feature point 31 of the carriage 30. In step S132, the inclination angle θ of the carriage 30 with respect to the transport vehicle main body 27 in the vertical plane is detected based on the state of the feature point 31 of the carriage 30.
 そして、ステップS133において、傾きセンサ25により、鉛直面内における搬送車本体27の傾斜角度δが検出される。 Then, in step S133, the tilt sensor 25 detects the tilt angle δ of the transport vehicle main body 27 in the vertical plane.
 そして、ステップS134において、台車30の真の傾斜角度θt(=θ-δ)が異常であるか否かが検出される。台車30の真の傾斜角度θtが異常でないことが検出された場合、ステップS135に進む。 Then, in step S134, it is detected whether or not the true inclination angle θt (= θ−δ) of the carriage 30 is abnormal. If it is detected that the true inclination angle θt of the carriage 30 is not abnormal, the process proceeds to step S135.
 そして、ステップS135において、搬送終了であるか否かが検出される。搬送終了であることが検出された場合、走行停止処理が終了される。また、搬送終了でないことが検出された場合、ステップS131に戻る。 Then, in step S135, it is detected whether or not the transportation is completed. When it is detected that the transportation is completed, the traveling stop processing is terminated. If it is detected that the transfer is not completed, the process returns to step S131.
 また、ステップS134において、台車30の真の傾斜角度θtが異常であることが検出された場合、ステップS136に進む。 Further, if it is detected in step S134 that the true inclination angle θt of the carriage 30 is abnormal, the process proceeds to step S136.
 そして、ステップS136において、搬送車本体27の走行が停止される。ステップS135では、搬送車本体27を徐々に減速させるとともに、搬送車本体27の走行が停止される。 Then, in step S136, the traveling of the transport vehicle main body 27 is stopped. In step S135, the transport vehicle main body 27 is gradually decelerated and the traveling of the transport vehicle main body 27 is stopped.
 そして、ステップS137において、異常通知が行われる。ステップS137では、たとえば、サーバ10に異常通知が行われる。そして、サーバ10の表示部13に、異常が表示される。その後、走行停止処理が終了される。 Then, in step S137, an abnormality notification is performed. In step S137, for example, an abnormality notification is sent to the server 10. Then, the abnormality is displayed on the display unit 13 of the server 10. After that, the running stop process is completed.
(自律型搬送車の連結部制御処理)
 次に、本実施形態の自律型搬送車20の連結部制御処理をフローチャートに基づいて説明する。なお、フローチャートの各処理は、制御部21により行われる。
(Control processing of the connection part of the autonomous carrier)
Next, the connection portion control process of the autonomous transport vehicle 20 of the present embodiment will be described with reference to the flowchart. Each process of the flowchart is performed by the control unit 21.
 図15に示すように、まず、ステップS141において、撮像部22により撮像されることにより、台車30の特徴点31の状態が取得される。 As shown in FIG. 15, first, in step S141, the state of the feature point 31 of the dolly 30 is acquired by taking an image by the image pickup unit 22.
 そして、ステップS142において、台車30の特徴点31の状態に基づいて、水平面内における搬送車本体27に対する台車30の相対姿勢が検出される。ステップS142では、台車30の特徴点31の状態に基づいて、水平面内における搬送車本体27に対する台車30の傾斜角度γが検出される。 Then, in step S142, the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is detected based on the state of the feature point 31 of the carriage 30. In step S142, the inclination angle γ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is detected based on the state of the feature point 31 of the carriage 30.
 そして、ステップS143において、エリアAが1番目のエリアA(台車30が真直ぐけん引されている状態のエリアA)であるか否かが検出される。エリアAが1番目のエリアAであることが検出された場合、ステップS144に進む。 Then, in step S143, it is detected whether or not the area A is the first area A (the area A in which the dolly 30 is towed straight). If it is detected that the area A is the first area A, the process proceeds to step S144.
 そして、ステップS144において、搬送終了であるか否かが検出される。搬送終了であることが検出された場合、連結部制御処理が終了される。また、搬送終了でないことが検出された場合、ステップS141に戻る。 Then, in step S144, it is detected whether or not the transportation is completed. When it is detected that the transport is completed, the connection unit control process is terminated. If it is detected that the transport is not completed, the process returns to step S141.
 また、ステップS143において、エリアAが1番目のエリアAでないことが検出された場合、ステップS145に進む。 If it is detected in step S143 that the area A is not the first area A, the process proceeds to step S145.
 そして、ステップS145において、上記式(2)により台車30に働く慣性力Fjが取得されるとともに、上記式(3)により台車30に働く動摩擦力Fが取得される。 Then, in step S145, the inertial force Fj acting on the carriage 30 is acquired by the above equation (2), and the dynamic friction force F acting on the carriage 30 is acquired by the above equation (3).
 そして、ステップS146において、慣性力Fjと、動摩擦力Fとに基づいて、慣性による台車30の動きを打ち消すように、連結部モータ20eにより連結部20dが駆動(回転)される。そして、ステップS144に進み、上記と同様の処理が行われる。 Then, in step S146, the connecting portion 20d is driven (rotated) by the connecting portion motor 20e so as to cancel the movement of the carriage 30 due to the inertia based on the inertial force Fj and the dynamic friction force F. Then, the process proceeds to step S144, and the same processing as described above is performed.
(本実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
(Effect of this embodiment)
In this embodiment, the following effects can be obtained.
 本実施形態では、上記のように、自律型搬送車20の走行制御方法に、台車30の状態に基づいて、搬送車本体27に対する台車30の相対姿勢を検出するステップと、搬送車本体27に対する台車30の相対姿勢に基づいて、搬送車本体27の走行速度を制御するステップと、を設ける。これにより、曲がり角などの屈曲箇所の移動時に搬送車本体27に対する台車30の相対姿勢の変化が発生した場合に、搬送車本体27に対する台車30の相対姿勢の変化に応じて、搬送車本体27の走行速度を適切に変化させることができる。その結果、搬送車本体27による台車30のけん引時に搬送車本体27の走行速度を一律に低下させる場合と異なり、不必要な走行速度の低下が発生しない。これにより、搬送車本体27による台車30のけん引時に、屈曲個所での台車30の転倒を抑制しつつ、生産性を高めることができる。また、搬送車本体27による台車30のけん引時に台車30の姿勢に異常が発生した場合に、搬送車本体27の走行速度を適切に変化させることもできる。これによっても、搬送車本体27による台車30のけん引時の台車30の転倒を抑制することができる。 In the present embodiment, as described above, the traveling control method of the autonomous transport vehicle 20 includes a step of detecting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 based on the state of the carriage 30, and a step with respect to the transport vehicle main body 27. A step for controlling the traveling speed of the transport vehicle main body 27 based on the relative posture of the carriage 30 is provided. As a result, when a change in the relative posture of the trolley 30 with respect to the transport vehicle main body 27 occurs when moving a bent portion such as a corner, the transport vehicle main body 27 responds to the change in the relative posture of the trolley 30 with respect to the transport vehicle main body 27. The traveling speed can be changed appropriately. As a result, unlike the case where the traveling speed of the transport vehicle main body 27 is uniformly reduced when the carriage 30 is towed by the transport vehicle main body 27, an unnecessary decrease in the traveling speed does not occur. As a result, when the carriage 30 is towed by the transport vehicle main body 27, the productivity can be improved while suppressing the carriage 30 from tipping over at the bent portion. Further, when an abnormality occurs in the posture of the carriage 30 when the carriage 30 is towed by the carrier body 27, the traveling speed of the carrier body 27 can be appropriately changed. This also makes it possible to prevent the carriage 30 from tipping over when the carriage 30 is towed by the transport vehicle main body 27.
 また、本実施形態では、上記のように、台車30の状態を取得するステップは、台車30の特徴点31の状態を取得するステップを含む。また、搬送車本体27に対する台車30の相対姿勢を検出するステップは、台車30の特徴点31の状態に基づいて、搬送車本体27に対する台車30の相対姿勢を検出するステップを含む。これにより、単に台車30の特徴点31の状態を取得するだけで、搬送車本体27に対する台車30の相対姿勢を簡単に検出することができる。また、台車30に姿勢を検出するセンサなどを設ける必要がないので、台車30を簡易な構造にしながら台車30の相対姿勢を検出することができる。 Further, in the present embodiment, as described above, the step of acquiring the state of the carriage 30 includes the step of acquiring the state of the feature point 31 of the carriage 30. Further, the step of detecting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 includes a step of detecting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 based on the state of the feature point 31 of the carriage 30. As a result, the relative posture of the carriage 30 with respect to the transport vehicle main body 27 can be easily detected by simply acquiring the state of the feature point 31 of the carriage 30. Further, since it is not necessary to provide the trolley 30 with a sensor for detecting the posture, it is possible to detect the relative posture of the trolley 30 while making the trolley 30 a simple structure.
 また、本実施形態では、上記のように、台車30の特徴点31は、台車30に設けられたマーカを含む。これにより、台車30の角部などの形状を特徴点31として利用する場合と異なり、専用のマーカを利用して、搬送車本体27に対する台車30の相対姿勢を検出することができる。その結果、搬送車本体27に対する台車30の相対姿勢を精度よく検出することができる。 Further, in the present embodiment, as described above, the feature point 31 of the dolly 30 includes the marker provided on the dolly 30. As a result, unlike the case where the shape of the corner portion of the trolley 30 is used as the feature point 31, the relative posture of the trolley 30 with respect to the transport vehicle main body 27 can be detected by using a dedicated marker. As a result, the relative posture of the carriage 30 with respect to the transport vehicle main body 27 can be accurately detected.
 また、本実施形態では、上記のように、搬送車本体27に対する台車30の相対姿勢は、搬送車本体27に対する台車30の傾斜角度の情報を含む。また、搬送車本体27の走行速度を制御するステップは、搬送車本体27に対する台車30の傾斜角度の情報に基づいて、搬送車本体27の走行速度を制御するステップを含む。これにより、搬送車本体27に対する台車30の傾斜角度の情報に基づいて、搬送車本体27の走行速度を精度よく制御することができる。 Further, in the present embodiment, as described above, the relative posture of the carriage 30 with respect to the transport vehicle main body 27 includes information on the inclination angle of the carriage 30 with respect to the transport vehicle main body 27. Further, the step of controlling the traveling speed of the transport vehicle main body 27 includes a step of controlling the traveling speed of the transport vehicle main body 27 based on the information of the inclination angle of the carriage 30 with respect to the transport vehicle main body 27. Thereby, the traveling speed of the transport vehicle main body 27 can be accurately controlled based on the information of the inclination angle of the carriage 30 with respect to the transport vehicle main body 27.
 また、本実施形態では、上記のように、搬送車本体27の走行速度を制御するステップは、水平面内における搬送車本体27に対する台車30の傾斜角度γの情報に基づいて、搬送車本体27が減速するように、搬送車本体27の走行速度を制御するステップを含む。これにより、曲がり角などの屈曲箇所の移動時に、水平面内における搬送車本体27に対する台車30の傾斜角度γに変化が発生した場合に、水平面内における搬送車本体27に対する台車30の傾斜角度γの変化に応じて、搬送車本体27の走行速度を適切に減速させることができる。その結果、屈曲箇所の移動時に、搬送車本体27の走行速度を精度よく制御することができる。 Further, in the present embodiment, as described above, the step of controlling the traveling speed of the transport vehicle main body 27 is performed by the transport vehicle main body 27 based on the information of the inclination angle γ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane. It includes a step of controlling the traveling speed of the transport vehicle main body 27 so as to decelerate. As a result, when the tilt angle γ of the carriage 30 with respect to the transport vehicle body 27 in the horizontal plane changes when the bending point such as a corner is moved, the change in the tilt angle γ of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane. Therefore, the traveling speed of the transport vehicle main body 27 can be appropriately reduced. As a result, the traveling speed of the transport vehicle main body 27 can be accurately controlled when the bent portion is moved.
 また、本実施形態では、上記のように、搬送車本体27の走行速度を制御するステップは、鉛直面内における搬送車本体27に対する台車30の傾斜角度θの情報に基づいて、搬送車本体27が停止するように、搬送車本体27の走行速度を制御するステップを含む。これにより、たとえば台車30の車輪33の異常に起因して台車30の姿勢に異常が発生し、鉛直面内における搬送車本体27に対する台車30の傾斜角度θに変化が発生した場合に、搬送車本体27を停止させることができる。これにより、搬送車本体27による台車30のけん引時の台車30の転倒を抑制することができる。 Further, in the present embodiment, as described above, the step of controlling the traveling speed of the transport vehicle main body 27 is based on the information of the inclination angle θ of the carriage 30 with respect to the transport vehicle main body 27 in the vertical plane. Includes a step of controlling the traveling speed of the transport vehicle body 27 so that As a result, for example, when an abnormality occurs in the posture of the trolley 30 due to an abnormality in the wheels 33 of the trolley 30, and the inclination angle θ of the trolley 30 with respect to the transport vehicle main body 27 in the vertical plane changes. The main body 27 can be stopped. As a result, it is possible to prevent the carriage 30 from tipping over when the carriage 30 is towed by the transport vehicle main body 27.
 また、本実施形態では、上記のように、自律型搬送車20の走行制御方法は、鉛直面内における搬送車本体27の傾斜角度δの情報を取得するステップを備える。また、搬送車本体27の走行速度を制御するステップは、鉛直面内における搬送車本体27に対する台車30の傾斜角度θの情報と、鉛直面内における搬送車本体27の傾斜角度δの情報とに基づいて、搬送車本体27が停止するように、搬送車本体27の走行速度を制御するステップを含む。これにより、鉛直面内における搬送車本体27に対する台車30の傾斜角度θだけでなく、鉛直面内における搬送車本体27の傾斜角度δにも基づいて、搬送車本体27を停止する制御を行うことができる。その結果、搬送車本体27を停止する制御を精度よく行うことができる。 Further, in the present embodiment, as described above, the traveling control method of the autonomous transport vehicle 20 includes a step of acquiring information on the inclination angle δ of the transport vehicle main body 27 in the vertical plane. Further, the step of controlling the traveling speed of the transport vehicle main body 27 includes information on the inclination angle θ of the carriage 30 with respect to the transport vehicle main body 27 in the vertical plane and information on the inclination angle δ of the transport vehicle main body 27 in the vertical plane. Based on this, a step of controlling the traveling speed of the transport vehicle main body 27 is included so that the transport vehicle main body 27 stops. As a result, control is performed to stop the transport vehicle body 27 based not only on the tilt angle θ of the carriage 30 with respect to the transport vehicle body 27 in the vertical plane but also on the tilt angle δ of the transport vehicle body 27 in the vertical plane. Can be done. As a result, the control for stopping the transport vehicle main body 27 can be accurately performed.
 また、本実施形態では、上記のように、搬送車本体27の走行速度を制御するステップは、台車30の形状、台車30の重量、および、台車30の重心位置のうちの少なくとも1つを考慮して、搬送車本体27の走行速度を制御するステップを含む。これにより、台車30の種類によって異なる台車30の形状、台車30の重量、および、台車30の重心位置のうちの少なくとも1つを考慮して、搬送車本体27の走行速度を制御することができる。その結果、台車30の種類に応じて、搬送車本体27の走行速度を適切に制御することができる。 Further, in the present embodiment, as described above, the step of controlling the traveling speed of the transport vehicle main body 27 considers at least one of the shape of the carriage 30, the weight of the carriage 30, and the position of the center of gravity of the carriage 30. Then, a step of controlling the traveling speed of the transport vehicle main body 27 is included. Thereby, the traveling speed of the transport vehicle main body 27 can be controlled in consideration of at least one of the shape of the carriage 30, the weight of the carriage 30, and the position of the center of gravity of the carriage 30, which differ depending on the type of the carriage 30. .. As a result, the traveling speed of the transport vehicle main body 27 can be appropriately controlled according to the type of the carriage 30.
 また、本実施形態では、上記のように、搬送車本体27は、搬送車本体27と台車30とを連結する連結部20dを含む。また、搬送車本体27は、連結部20dを駆動する連結部モータ20eを含む。また、自律型搬送車20の走行制御方法は、搬送車本体27による台車30のけん引時に、連結部モータ20eにより連結部20dを駆動することにより、水平面内における搬送車本体27に対する台車30の相対姿勢を制御するステップを備える。これにより、水平面内における搬送車本体27に対する台車30の相対姿勢を制御しつつ、搬送車本体27を走行させることができる。その結果、水平面内における搬送車本体27に対する台車30の相対姿勢を制御できない場合に比べて、搬送車本体27の走行の安定性を高めることができる。 Further, in the present embodiment, as described above, the transport vehicle main body 27 includes a connecting portion 20d that connects the transport vehicle main body 27 and the carriage 30. Further, the transport vehicle main body 27 includes a connecting portion motor 20e that drives the connecting portion 20d. Further, the traveling control method of the autonomous transport vehicle 20 is such that when the carriage 30 is towed by the transport vehicle main body 27, the connecting portion 20d is driven by the connecting portion motor 20e so that the carriage 30 is relative to the transport vehicle main body 27 in the horizontal plane. It has a step to control the posture. As a result, the transport vehicle main body 27 can be driven while controlling the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane. As a result, the running stability of the transport vehicle main body 27 can be improved as compared with the case where the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane cannot be controlled.
 また、本実施形態では、上記のように、水平面内における搬送車本体27に対する台車30の相対姿勢を制御するステップは、搬送車本体27の旋回時に、連結部モータ20eにより連結部20dを駆動することにより、慣性による台車30の動きを打ち消すように、水平面内における搬送車本体27に対する台車30の相対姿勢を制御するステップを含む。これにより、搬送車本体27の旋回時に、慣性により台車30が振られるように動くことを抑制することができる。その結果、搬送車本体27の旋回時に、台車30をコンパクトに動かすことができる。これにより、狭い屈曲箇所での旋回および折り返しなどの走行動作を容易に行うことができる。 Further, in the present embodiment, as described above, in the step of controlling the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane, the connecting portion 20d is driven by the connecting portion motor 20e when the transport vehicle main body 27 is turned. Thereby, the step of controlling the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane is included so as to cancel the movement of the carriage 30 due to inertia. As a result, it is possible to prevent the carriage 30 from moving so as to be shaken due to inertia when the transport vehicle main body 27 is turned. As a result, the carriage 30 can be moved compactly when the transport vehicle main body 27 turns. As a result, it is possible to easily perform a running operation such as turning and turning in a narrow bent portion.
 また、本実施形態では、上記のように、搬送車本体27は、連結部20dの移動を制限するストッパ20fを含む。また、水平面内における搬送車本体27に対する台車30の相対姿勢を制御するステップは、ストッパ20fにより制限された角度範囲内において、連結部モータ20eにより連結部20dを駆動することにより、水平面内における搬送車本体27に対する台車30の相対姿勢を制御するステップを含む。これにより、連結部モータ20eによる連結部20dの駆動時に、ストッパ20fに接触しないように、連結部20dを駆動することができる。その結果、連結部モータ20eによる連結部20dの駆動時に、連結部20dとストッパ20fとが接触することに起因して、連結部20dとストッパ20fとの両方に負荷がかかることを抑制することができる。また、ストッパ20fを設けることにより、連結部20dの移動を制限することができる。その結果、連結部20dの移動を制限することにより、台車30の移動を所定の範囲に制限することができる。 Further, in the present embodiment, as described above, the transport vehicle main body 27 includes the stopper 20f that restricts the movement of the connecting portion 20d. Further, in the step of controlling the relative posture of the carriage 30 with respect to the transport vehicle main body 27 in the horizontal plane, the connecting portion 20d is driven by the connecting portion motor 20e within the angle range limited by the stopper 20f, thereby transporting in the horizontal plane. It includes a step of controlling the relative posture of the bogie 30 with respect to the car body 27. Thereby, when the connecting portion 20d is driven by the connecting portion motor 20e, the connecting portion 20d can be driven so as not to come into contact with the stopper 20f. As a result, it is possible to suppress that a load is applied to both the connecting portion 20d and the stopper 20f due to the contact between the connecting portion 20d and the stopper 20f when the connecting portion 20d is driven by the connecting portion motor 20e. can. Further, by providing the stopper 20f, the movement of the connecting portion 20d can be restricted. As a result, by limiting the movement of the connecting portion 20d, the movement of the carriage 30 can be restricted to a predetermined range.
 また、本実施形態では、上記のように、搬送車本体27の走行速度を制御するステップは、搬送車本体27の走行速度の制御による、搬送車本体27に対する台車30の相対姿勢の補正に要した補正時間Tを取得するステップと、補正時間Tと基準補正時間Teとの比較に基づいて、走行の異常を検出するステップと、を含む。これにより、床面の異常および台車30の車輪の異常などの異常に起因した走行の異常を検出することができる。その結果、走行の異常を検出した場合、走行の異常を迅速に解消することができる。 Further, in the present embodiment, as described above, the step of controlling the traveling speed of the transport vehicle main body 27 is necessary for correcting the relative posture of the carriage 30 with respect to the transport vehicle main body 27 by controlling the traveling speed of the transport vehicle main body 27. It includes a step of acquiring the corrected correction time T and a step of detecting an abnormality in running based on the comparison between the correction time T and the reference correction time Te. Thereby, it is possible to detect an abnormality in running caused by an abnormality such as an abnormality on the floor surface and an abnormality on the wheels of the bogie 30. As a result, when a running abnormality is detected, the running abnormality can be quickly resolved.
 また、本実施形態では、上記のように、搬送車本体27の走行速度を制御するステップは、補正時間Tに基づいて、基準補正時間Teを学習するステップを含む。これにより、学習により基準補正時間Teを更新することができる。その結果、更新した基準補正時間Teにより、走行の異常をより精度よく検出することができる。 Further, in the present embodiment, as described above, the step of controlling the traveling speed of the transport vehicle main body 27 includes a step of learning the reference correction time Te based on the correction time T. Thereby, the reference correction time Te can be updated by learning. As a result, the updated reference correction time Te makes it possible to detect running abnormalities more accurately.
 また、本実施形態では、上記のように、基準補正時間Teを学習するステップは、搬送車本体27に対する台車30の相対姿勢、搬送車本体27の走行速度、台車30の重量、または、搬送車本体27の進行方向ごとに、基準補正時間Teを学習するステップを含む。これにより、場合分けして基準補正時間Teを学習することができる。その結果、場合分けした基準補正時間Teにより、個々の場合に応じて、走行の異常をより一層精度よく検出することができる。 Further, in the present embodiment, as described above, the step of learning the reference correction time Te is the relative posture of the carriage 30 with respect to the transport vehicle main body 27, the traveling speed of the transport vehicle main body 27, the weight of the carriage 30, or the transport vehicle. A step of learning the reference correction time Te is included for each traveling direction of the main body 27. Thereby, the reference correction time Te can be learned for each case. As a result, it is possible to detect the abnormality of running more accurately according to each case by the reference correction time Te divided into cases.
 また、本実施形態では、上記のように、自律型搬送車20の走行制御方法は、台車30の状態に基づいて、搬送車本体27と台車30との連結時に、搬送車本体27を台車30との連結位置に移動させるステップを備える。これにより、搬送車本体27と台車30とを自動連結することができる。その結果、搬送車本体27と台車30との連結から、搬送車本体27による台車30のけん引走行までを自動化することができる。 Further, in the present embodiment, as described above, the traveling control method of the autonomous transport vehicle 20 is based on the state of the carriage 30, and when the transport vehicle main body 27 and the carriage 30 are connected, the transport vehicle main body 27 is connected to the carriage 30. It is provided with a step of moving to a connection position with. As a result, the transport vehicle main body 27 and the carriage 30 can be automatically connected. As a result, it is possible to automate from the connection between the transport vehicle main body 27 and the carriage 30 to the towing running of the carriage 30 by the transport vehicle main body 27.
(変形例)
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
(Modification example)
It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The scope of the present invention is shown by the scope of claims rather than the description of the above-described embodiment, and further includes all modifications (modifications) within the meaning and scope equivalent to the scope of claims.
 たとえば、上記実施形態では、自律型搬送車が、4つの駆動輪を備えている例を示したが、本発明はこれに限られない。本発明では、自律型搬送車が、4つ以外の複数の駆動輪を備えていてもよい。また、自律型搬送車が、駆動輪に加えて、自在輪を備えていてもよい。 For example, in the above embodiment, an example in which the autonomous transport vehicle is provided with four drive wheels is shown, but the present invention is not limited to this. In the present invention, the autonomous carrier vehicle may include a plurality of drive wheels other than four. Further, the autonomous carrier vehicle may be provided with universal wheels in addition to the drive wheels.
 また、上記実施形態では、自律型搬送車が、撮像部を、本発明の状態取得部として備えている例を示したが、本発明はこれに限られない。本発明では、自律型搬送車が、レーザを用いた3次元形状計測部などの撮像部以外を、状態取得部として備えていてもよい。この場合、特徴点の模様を、凹凸などの3次元形状により形成すればよい。 Further, in the above embodiment, an example is shown in which the autonomous transport vehicle includes an image pickup unit as a state acquisition unit of the present invention, but the present invention is not limited to this. In the present invention, the autonomous carrier may include a state acquisition unit other than an image pickup unit such as a three-dimensional shape measurement unit using a laser. In this case, the pattern of the feature points may be formed by a three-dimensional shape such as unevenness.
 また、上記実施形態では、撮像部(状態取得部)と、特徴点とが、1つずつ設けられている例を示したが、本発明はこれに限られない。本発明では、状態取得部と、特徴点とが、複数ずつ設けられていてもよい。図16に示す変形例では、自律型搬送車20に、複数(2つ)の撮像部22が設けられている。また、台車30に、複数(2つ)の特徴点31が設けられている。この場合、複数の特徴点31の状態を取得することができるので、複数の特徴点31の状態に基づいて、搬送車本体27に対する台車30の相対姿勢をより精度よく検出することができる。 Further, in the above embodiment, an example is shown in which an imaging unit (state acquisition unit) and a feature point are provided one by one, but the present invention is not limited to this. In the present invention, a plurality of state acquisition units and a plurality of feature points may be provided. In the modified example shown in FIG. 16, the autonomous transport vehicle 20 is provided with a plurality (two) image pickup units 22. Further, the carriage 30 is provided with a plurality (two) feature points 31. In this case, since the states of the plurality of feature points 31 can be acquired, the relative posture of the carriage 30 with respect to the transport vehicle main body 27 can be detected more accurately based on the states of the plurality of feature points 31.
 また、上記実施形態では、特徴点が、台車に設けられたマーカを含んでいる例を示したが、本発明はこれに限られない。本発明では、特徴点が、台車の角部などの特徴的な形状部分を含んでいてもよい。 Further, in the above embodiment, an example is shown in which the feature points include a marker provided on the carriage, but the present invention is not limited to this. In the present invention, the feature point may include a characteristic shape portion such as a corner portion of the carriage.
 また、上記実施形態では、水平面内における搬送車本体に対する台車の傾斜角度に対する搬送車本体の走行速度の制御と、鉛直面内における搬送車本体に対する台車の傾斜角度に対する搬送車本体の走行速度の制御と、を行う例を示したが、本発明はこれに限られない。本発明では、水平面内における搬送車本体に対する台車の傾斜角度に対する搬送車本体の走行速度の制御と、鉛直面内における搬送車本体に対する台車の傾斜角度に対する搬送車本体の走行速度の制御とのうちのいずれか一方のみを行ってもよい。 Further, in the above embodiment, the traveling speed of the transport vehicle body is controlled with respect to the tilt angle of the carriage with respect to the transport vehicle body in the horizontal plane, and the traveling speed of the transport vehicle body is controlled with respect to the tilt angle of the carriage with respect to the transport vehicle body in the vertical plane. However, the present invention is not limited to this. In the present invention, of the control of the traveling speed of the transport vehicle body with respect to the tilt angle of the carriage with respect to the transport vehicle body in the horizontal plane and the control of the traveling speed of the transport vehicle body with respect to the tilt angle of the carriage with respect to the transport vehicle body in the vertical plane. Only one of the above may be performed.
 また、上記実施形態では、鉛直面内における搬送車本体に対する台車の傾斜角度の情報と、鉛直面内における搬送車本体の傾斜角度の情報とに基づいて、搬送車本体を停止させる例を示したが、本発明はこれに限られない。本発明では、鉛直面内における搬送車本体に対する台車の傾斜角度の情報のみに基づいて、搬送車本体を停止させてもよい。 Further, in the above embodiment, an example of stopping the transport vehicle main body based on the information of the tilt angle of the carriage with respect to the transport vehicle main body in the vertical plane and the information of the tilt angle of the transport vehicle main body in the vertical plane is shown. However, the present invention is not limited to this. In the present invention, the transport vehicle main body may be stopped based only on the information of the inclination angle of the carriage with respect to the transport vehicle main body in the vertical plane.
 また、上記実施形態では、台車の形状、台車の重量、および、台車の重心位置のうちの少なくとも1つを考慮して、搬送車本体の走行速度を制御する例を示したが、本発明はこれに限られない。本発明では、搬送車本体の走行速度の制御において、台車の形状、台車の重量、および、台車の重心位置を考慮しなくてもよい。 Further, in the above embodiment, an example of controlling the traveling speed of the transport vehicle main body in consideration of at least one of the shape of the carriage, the weight of the carriage, and the position of the center of gravity of the carriage has been shown. Not limited to this. In the present invention, it is not necessary to consider the shape of the carriage, the weight of the carriage, and the position of the center of gravity of the carriage in controlling the traveling speed of the carrier body.
 また、上記実施形態では、自律型搬送車が、連結部を備えている例を示したが、本発明はこれに限られない。本発明では、台車が、連結部を備えていてもよい。 Further, in the above embodiment, an example in which the autonomous transport vehicle is provided with a connecting portion is shown, but the present invention is not limited to this. In the present invention, the dolly may include a connecting portion.
 また、上記実施形態では、自律型搬送車が、連結部モータを備えている例を示したが、本発明はこれに限られない。本発明では、自律型搬送車が、連結部モータを備えていなくてもよい。 Further, in the above embodiment, an example in which the autonomous transport vehicle is provided with a connecting portion motor is shown, but the present invention is not limited to this. In the present invention, the autonomous carrier vehicle does not have to be provided with a connecting motor.
 また、上記実施形態では、自律型搬送車が、一対(2つ)のストッパを備えている例を示したが、本発明はこれに限られない。本発明では、自律型搬送車が、1つまたは2つ以外の複数のストッパを備えていてもよい。また、自律型搬送車が、ストッパを備えていなくてもよい。 Further, in the above embodiment, an example in which the autonomous transport vehicle is provided with a pair (two) of stoppers is shown, but the present invention is not limited to this. In the present invention, the autonomous carrier may be provided with a plurality of stoppers other than one or two. Further, the autonomous carrier vehicle does not have to be provided with a stopper.
 また、上記実施形態では、補正時間を取得するとともに、補正時間に基づいて、走行の異常を検出する例を示したが、本発明はこれに限られない。本発明では、補正時間を取得しなくてもよい。 Further, in the above embodiment, an example of acquiring a correction time and detecting a running abnormality based on the correction time has been shown, but the present invention is not limited to this. In the present invention, it is not necessary to acquire the correction time.
 また、上記実施形態では、補正時間に基づいて、基準補正時間を学習する例を示したが、本発明はこれに限られない。本発明では、基準補正時間が、固定の値であってもよい。 Further, in the above embodiment, an example of learning the reference correction time based on the correction time is shown, but the present invention is not limited to this. In the present invention, the reference correction time may be a fixed value.
 また、上記実施形態では、台車の状態に基づいて、搬送車本体と台車との連結時に、搬送車本体を台車との連結位置に移動させる例を示したが、本発明はこれに限られない。本発明では、台車の状態に基づいて、搬送車本体と台車との連結時に、搬送車本体を台車との連結位置に移動させなくてもよい。 Further, in the above embodiment, an example is shown in which the transport vehicle main body is moved to the connection position with the carriage when the transport vehicle main body and the carriage are connected based on the state of the carriage, but the present invention is not limited to this. .. In the present invention, it is not necessary to move the transport vehicle main body to the connection position with the carriage when the transport vehicle main body and the carriage are connected based on the state of the carriage.
 また、上記実施形態では、説明の便宜上、制御処理を処理フローに沿って順番に処理を行うフロー駆動型のフローを用いて説明したが、本発明はこれに限られない。本発明では、制御処理を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。 Further, in the above embodiment, for convenience of explanation, the control processing has been described using a flow-driven flow in which the control processing is sequentially performed along the processing flow, but the present invention is not limited to this. In the present invention, the control process may be performed by an event-driven type (event-driven type) process in which the process is executed in event units. In this case, it may be completely event-driven, or it may be a combination of event-driven and flow-driven.
 10 サーバ(制御装置)
 20 自律型搬送車
 20d 連結部
 20e 連結部モータ(駆動部)
 20f ストッパ
 21 制御部(搬送車制御部)
 22 撮像部(状態取得部)
 27 搬送車本体
 30 台車
 31 特徴点
 100 搬送システム
 T 補正時間
 Te 基準補正時間
 γ 水平面内における搬送車本体に対する台車の傾斜角度
 δ 鉛直面内における搬送車本体の傾斜角度
 θ 鉛直面内における搬送車本体に対する台車の傾斜角度
10 Server (control device)
20 Autonomous transport vehicle 20d Connecting part 20e Connecting part Motor (driving part)
20f Stopper 21 Control unit (conveyor vehicle control unit)
22 Imaging unit (state acquisition unit)
27 Transport vehicle body 30 Truck 31 Feature points 100 Transport system T Correction time Te Reference correction time γ Tilt angle of the truck with respect to the transport vehicle body in the horizontal plane δ Tilt angle of the transport vehicle body in the vertical plane θ Tilt angle of the transport vehicle body in the vertical plane θ Tilt angle of the trolley with respect to

Claims (19)

  1.  台車をけん引して自律走行する自律型搬送車の走行制御方法であって、
     前記台車の状態を取得するステップと、
     前記台車の状態に基づいて、搬送車本体に対する前記台車の相対姿勢を検出するステップと、
     前記搬送車本体に対する前記台車の相対姿勢に基づいて、前記搬送車本体の走行速度を制御するステップと、を備える、自律型搬送車の走行制御方法。
    It is a running control method for autonomous transport vehicles that tow a dolly and run autonomously.
    The step of acquiring the state of the dolly and
    A step of detecting the relative posture of the dolly with respect to the main body of the dolly based on the state of the dolly.
    A traveling control method for an autonomous transport vehicle, comprising: a step of controlling a traveling speed of the transport vehicle main body based on a relative posture of the carriage with respect to the transport vehicle main body.
  2.  前記台車の状態を取得するステップは、前記台車の特徴点の状態を取得するステップを含み、
     前記搬送車本体に対する前記台車の相対姿勢を検出するステップは、前記台車の特徴点の状態に基づいて、前記搬送車本体に対する前記台車の相対姿勢を検出するステップを含む、請求項1に記載の自律型搬送車の走行制御方法。
    The step of acquiring the state of the dolly includes a step of acquiring the state of the feature point of the dolly.
    The first aspect of the present invention, wherein the step of detecting the relative posture of the carriage with respect to the transport vehicle main body includes a step of detecting the relative posture of the carriage with respect to the transport vehicle main body based on the state of the feature points of the carriage. Travel control method for autonomous vehicles.
  3.  前記台車の特徴点は、前記台車に設けられたマーカを含む、請求項2に記載の自律型搬送車の走行制御方法。 The feature of the trolley is the traveling control method of the autonomous transport vehicle according to claim 2, which includes a marker provided on the trolley.
  4.  前記搬送車本体に対する前記台車の相対姿勢は、前記搬送車本体に対する前記台車の傾斜角度の情報を含み、
     前記搬送車本体の走行速度を制御するステップは、前記搬送車本体に対する前記台車の傾斜角度の情報に基づいて、前記搬送車本体の走行速度を制御するステップを含む、請求項1~3のいずれか1項に記載の自律型搬送車の走行制御方法。
    The relative posture of the dolly with respect to the carrier body includes information on the inclination angle of the dolly with respect to the carrier body.
    Any of claims 1 to 3, wherein the step of controlling the traveling speed of the transport vehicle main body includes a step of controlling the traveling speed of the transport vehicle main body based on the information of the inclination angle of the carriage with respect to the transport vehicle main body. The traveling control method for an autonomous carrier according to item 1.
  5.  前記搬送車本体の走行速度を制御するステップは、水平面内における前記搬送車本体に対する前記台車の傾斜角度の情報に基づいて、前記搬送車本体が減速するように、前記搬送車本体の走行速度を制御するステップを含む、請求項4に記載の自律型搬送車の走行制御方法。 The step of controlling the traveling speed of the transport vehicle body is to reduce the traveling speed of the transport vehicle body so that the transport vehicle body decelerates based on the information of the inclination angle of the carriage with respect to the transport vehicle body in the horizontal plane. The traveling control method for an autonomous carrier according to claim 4, which comprises a step of controlling.
  6.  前記搬送車本体の走行速度を制御するステップは、鉛直面内における前記搬送車本体に対する前記台車の傾斜角度の情報に基づいて、前記搬送車本体が停止するように、前記搬送車本体の走行速度を制御するステップを含む、請求項4または5に記載の自律型搬送車の走行制御方法。 The step of controlling the traveling speed of the transport vehicle body is the traveling speed of the transport vehicle body so that the transport vehicle body stops based on the information of the inclination angle of the carriage with respect to the transport vehicle body in the vertical plane. The traveling control method for an autonomous carrier according to claim 4 or 5, which comprises a step of controlling.
  7.  鉛直面内における前記搬送車本体の傾斜角度の情報を取得するステップをさらに備え、
     前記搬送車本体の走行速度を制御するステップは、鉛直面内における前記搬送車本体に対する前記台車の傾斜角度の情報と、鉛直面内における前記搬送車本体の傾斜角度の情報とに基づいて、前記搬送車本体が停止するように、前記搬送車本体の走行速度を制御するステップを含む、請求項6に記載の自律型搬送車の走行制御方法。
    Further provided with a step of acquiring information on the tilt angle of the carrier body in a vertical plane.
    The step of controlling the traveling speed of the transport vehicle body is based on the information of the inclination angle of the carriage with respect to the transport vehicle body in the vertical plane and the information of the inclination angle of the transport vehicle main body in the vertical plane. The traveling control method for an autonomous transport vehicle according to claim 6, further comprising a step of controlling the traveling speed of the transport vehicle main body so that the transport vehicle main body stops.
  8.  前記搬送車本体の走行速度を制御するステップは、前記台車の形状、前記台車の重量、および、前記台車の重心位置のうちの少なくとも1つを考慮して、前記搬送車本体の走行速度を制御するステップを含む、請求項1~7のいずれか1項に記載の自律型搬送車の走行制御方法。 The step of controlling the traveling speed of the transport vehicle main body controls the traveling speed of the transport vehicle main body in consideration of at least one of the shape of the carriage, the weight of the carriage, and the position of the center of gravity of the carriage. The traveling control method for an autonomous carrier according to any one of claims 1 to 7, which comprises the step of performing.
  9.  前記搬送車本体または前記台車は、前記搬送車本体と前記台車とを連結する連結部を含み、
     前記搬送車本体は、前記連結部を駆動する駆動部を含み、
     前記搬送車本体による前記台車のけん引時に、前記駆動部により前記連結部を駆動することにより、水平面内における前記搬送車本体に対する前記台車の相対姿勢を制御するステップをさらに備える、請求項1~8のいずれか1項に記載の自律型搬送車の走行制御方法。
    The transport vehicle body or the carriage includes a connecting portion that connects the transport vehicle body and the carriage.
    The transport vehicle main body includes a drive unit that drives the connection unit, and includes a drive unit.
    Claims 1 to 8 further include a step of controlling the relative posture of the trolley with respect to the transport vehicle main body in a horizontal plane by driving the connecting portion by the driving portion when the trolley is towed by the transport vehicle main body. The traveling control method for an autonomous carrier according to any one of the above items.
  10.  水平面内における前記搬送車本体に対する前記台車の相対姿勢を制御するステップは、前記搬送車本体の旋回時に、前記駆動部により前記連結部を駆動することにより、慣性による前記台車の動きを打ち消すように、水平面内における前記搬送車本体に対する前記台車の相対姿勢を制御するステップを含む、請求項9に記載の自律型搬送車の走行制御方法。 The step of controlling the relative posture of the bogie with respect to the transport vehicle body in the horizontal plane is such that the movement of the bogie due to inertia is canceled by driving the connecting portion by the drive unit when the transport vehicle main body turns. The traveling control method for an autonomous transport vehicle according to claim 9, further comprising a step of controlling the relative posture of the carriage with respect to the transport vehicle main body in a horizontal plane.
  11.  前記搬送車本体は、前記連結部の移動を制限するストッパをさらに含み、
     水平面内における前記搬送車本体に対する前記台車の相対姿勢を制御するステップは、前記ストッパにより制限された角度範囲内において、前記駆動部により前記連結部を駆動することにより、水平面内における前記搬送車本体に対する前記台車の相対姿勢を制御するステップを含む、請求項9または10に記載の自律型搬送車の走行制御方法。
    The transport vehicle body further includes a stopper that limits the movement of the connecting portion.
    The step of controlling the relative posture of the bogie with respect to the transport vehicle body in the horizontal plane is to drive the connecting portion by the drive unit within the angle range limited by the stopper, thereby driving the transport vehicle main body in the horizontal plane. The traveling control method for an autonomous carrier according to claim 9 or 10, comprising a step of controlling the relative posture of the carriage with respect to the vehicle.
  12.  前記搬送車本体の走行速度を制御するステップは、
     前記搬送車本体の走行速度の制御による、前記搬送車本体に対する前記台車の相対姿勢の補正に要した補正時間を取得するステップと、
     前記補正時間と基準補正時間との比較に基づいて、走行の異常を検出するステップと、を含む、請求項1~11のいずれか1項に記載の自律型搬送車の走行制御方法。
    The step of controlling the traveling speed of the carrier body is
    A step of acquiring the correction time required for correcting the relative posture of the bogie with respect to the transport vehicle body by controlling the traveling speed of the transport vehicle body, and
    The traveling control method for an autonomous carrier according to any one of claims 1 to 11, further comprising a step of detecting an abnormality in traveling based on a comparison between the correction time and a reference correction time.
  13.  前記搬送車本体の走行速度を制御するステップは、前記補正時間に基づいて、前記基準補正時間を学習するステップをさらに含む、請求項12に記載の自律型搬送車の走行制御方法。 The traveling control method for an autonomous transport vehicle according to claim 12, wherein the step of controlling the traveling speed of the transport vehicle main body further includes a step of learning the reference correction time based on the correction time.
  14.  前記基準補正時間を学習するステップは、前記搬送車本体に対する前記台車の相対姿勢、前記搬送車本体の走行速度、前記台車の重量、または、前記搬送車本体の進行方向ごとに、前記基準補正時間を学習するステップを含む、請求項13に記載の自律型搬送車の走行制御方法。 The step of learning the reference correction time is the reference correction time for each of the relative posture of the carriage with respect to the transport vehicle body, the traveling speed of the transport vehicle body, the weight of the carriage, or the traveling direction of the transport vehicle body. 13. The traveling control method for an autonomous carrier according to claim 13, which comprises a step of learning.
  15.  前記台車の状態に基づいて、前記搬送車本体と前記台車との連結時に、前記搬送車本体を前記台車との連結位置に移動させるステップをさらに備える、請求項1~14のいずれか1項に記載の自律型搬送車の走行制御方法。 The invention according to any one of claims 1 to 14, further comprising a step of moving the transport vehicle main body to a connection position with the carriage when the transport vehicle main body and the carriage are connected based on the state of the carriage. The described method for controlling the traveling of an autonomous transport vehicle.
  16.  台車をけん引して自律走行する自律型搬送車であって、
     前記台車の状態を取得する状態取得部と、
     前記状態取得部により取得された前記台車の状態に基づいて、搬送車本体に対する前記台車の相対姿勢を検出するとともに、前記搬送車本体に対する前記台車の相対姿勢に基づいて、前記搬送車本体の走行速度を制御する制御部と、を備える、自律型搬送車。
    It is an autonomous transport vehicle that tows a dolly and runs autonomously.
    A state acquisition unit that acquires the state of the dolly, and
    Based on the state of the trolley acquired by the state acquisition unit, the relative posture of the trolley with respect to the transport vehicle main body is detected, and the traveling of the transport vehicle main body is based on the relative posture of the trolley with respect to the transport vehicle main body. An autonomous carrier equipped with a control unit that controls speed.
  17.  前記状態取得部は、前記台車の特徴点の状態を取得するように構成されており、
     前記制御部は、前記状態取得部により取得された前記台車の特徴点の状態に基づいて、前記搬送車本体に対する前記台車の相対姿勢を検出するように構成されている、請求項16に記載の自律型搬送車。
    The state acquisition unit is configured to acquire the state of the feature point of the bogie.
    16. Autonomous carrier.
  18.  台車と、
     前記台車をけん引して自律走行する自律型搬送車と、
     前記自律型搬送車に指令を送信する制御装置と、を備え、
     前記自律型搬送車は、
     前記台車の状態を取得する状態取得部と、
     前記状態取得部により取得された前記台車の状態に基づいて、搬送車本体に対する前記台車の相対姿勢を検出するとともに、前記搬送車本体に対する前記台車の相対姿勢に基づいて、前記搬送車本体の走行速度を制御する搬送車制御部と、を含む、搬送システム。
    With a dolly
    An autonomous carrier that tows the dolly and runs autonomously,
    A control device for transmitting a command to the autonomous carrier is provided.
    The autonomous transport vehicle is
    A state acquisition unit that acquires the state of the dolly, and
    Based on the state of the trolley acquired by the state acquisition unit, the relative posture of the trolley with respect to the transport vehicle main body is detected, and the traveling of the transport vehicle main body is based on the relative posture of the trolley with respect to the transport vehicle main body. A transport system, including a transport vehicle control unit that controls speed.
  19.  前記状態取得部は、前記台車の特徴点の状態を取得するように構成されており、
     前記搬送車制御部は、前記状態取得部により取得された前記台車の特徴点の状態に基づいて、前記搬送車本体に対する前記台車の相対姿勢を検出するように構成されている、請求項18に記載の搬送システム。
    The state acquisition unit is configured to acquire the state of the feature point of the bogie.
    15. Described transport system.
PCT/JP2020/033689 2020-09-04 2020-09-04 Travel control method for autonomous carrier vehicle, autonomous carrier vehicle, and conveyance system WO2022049743A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/033689 WO2022049743A1 (en) 2020-09-04 2020-09-04 Travel control method for autonomous carrier vehicle, autonomous carrier vehicle, and conveyance system
JP2022546833A JPWO2022049743A1 (en) 2020-09-04 2020-09-04
DE112020007392.0T DE112020007392T5 (en) 2020-09-04 2020-09-04 Driving control method for an autonomous transport vehicle, autonomous transport vehicle and transport system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/033689 WO2022049743A1 (en) 2020-09-04 2020-09-04 Travel control method for autonomous carrier vehicle, autonomous carrier vehicle, and conveyance system

Publications (1)

Publication Number Publication Date
WO2022049743A1 true WO2022049743A1 (en) 2022-03-10

Family

ID=80490728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033689 WO2022049743A1 (en) 2020-09-04 2020-09-04 Travel control method for autonomous carrier vehicle, autonomous carrier vehicle, and conveyance system

Country Status (3)

Country Link
JP (1) JPWO2022049743A1 (en)
DE (1) DE112020007392T5 (en)
WO (1) WO2022049743A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929246U (en) * 1972-06-05 1974-03-13
JPH0840037A (en) * 1994-08-02 1996-02-13 Nippondenso Co Ltd Car height adjusting device
JP2002122458A (en) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd Gas cut-off device
JP2016217144A (en) * 2015-05-14 2016-12-22 株式会社ケーヒン Fuel injection control device
JP6362418B2 (en) * 2014-05-23 2018-07-25 株式会社日立産機システム Carriage transport system, transport vehicle, and cart transport method
JP2019139549A (en) * 2018-02-13 2019-08-22 セイコーエプソン株式会社 System and method for controlling travel of transport vehicles
JP2020067702A (en) * 2018-10-22 2020-04-30 株式会社Ihi Inclination detector and transport system
JP2020118586A (en) * 2019-01-25 2020-08-06 株式会社豊田中央研究所 Moving vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929246U (en) * 1972-06-05 1974-03-13
JPH0840037A (en) * 1994-08-02 1996-02-13 Nippondenso Co Ltd Car height adjusting device
JP2002122458A (en) * 2000-10-13 2002-04-26 Matsushita Electric Ind Co Ltd Gas cut-off device
JP6362418B2 (en) * 2014-05-23 2018-07-25 株式会社日立産機システム Carriage transport system, transport vehicle, and cart transport method
JP2016217144A (en) * 2015-05-14 2016-12-22 株式会社ケーヒン Fuel injection control device
JP2019139549A (en) * 2018-02-13 2019-08-22 セイコーエプソン株式会社 System and method for controlling travel of transport vehicles
JP2020067702A (en) * 2018-10-22 2020-04-30 株式会社Ihi Inclination detector and transport system
JP2020118586A (en) * 2019-01-25 2020-08-06 株式会社豊田中央研究所 Moving vehicle

Also Published As

Publication number Publication date
JPWO2022049743A1 (en) 2022-03-10
DE112020007392T5 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
AU2022201542B2 (en) Free ranging automated guided vehicle and operational system
US10793369B2 (en) Conveyor system for autonomous robot
EP3660619B1 (en) Two wheel automatic guided vehicles used in combination
US20170083020A1 (en) Actively balanced mobile drive unit
JP7230918B2 (en) Transport robot, transport system, and transport method
KR20200025102A (en) Mobile robot including a suspension module
CN116745226A (en) Transport vehicle and method for transporting a load unit to a vehicle
US11845415B2 (en) AGV having dynamic safety zone
WO2022049743A1 (en) Travel control method for autonomous carrier vehicle, autonomous carrier vehicle, and conveyance system
WO2020179386A1 (en) Moving body control method, moving body control system, and program
JP7485446B2 (en) TRANSPORT SYSTEM, TRANSPORT ROBOT, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM
JP7226451B2 (en) Transport system, transport robot, control device, control method, and program
JP2022146514A (en) Unmanned guided vehicle, unmanned guided vehicle system, and conveying program
WO2022264673A1 (en) Travel system
US20220073105A1 (en) Traveling parameter optimization system and traveling parameter optimization method
JP2021178561A (en) Connector, connected mobile device, autonomous mobile device and guide system
JP2022045454A (en) Automatic travelling system and travelling instruction method
WO2024009342A1 (en) Conveyance device and control method thereof
EP4235335A1 (en) Automatic moving device and control method for automatic moving device
JP7397045B2 (en) Unmanned conveyance device
WO2023182502A1 (en) Data processing device, mobile object system, mobile object, data processing method, program, and storage medium
JP6076292B2 (en) Automatic guided vehicle, control device and control method thereof
KR20230086379A (en) Autonomous driving unmanned transport vehicle capable of combining by loader capacity using multiple inertial measurement unit and camera sensor fusion-based location recognition
JPS61259307A (en) Unmanned carrier
CN113501273A (en) Transfer device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546833

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112020007392

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952478

Country of ref document: EP

Kind code of ref document: A1