WO2022048548A1 - 多链路设备的信道接入方法及相关装置 - Google Patents

多链路设备的信道接入方法及相关装置 Download PDF

Info

Publication number
WO2022048548A1
WO2022048548A1 PCT/CN2021/115829 CN2021115829W WO2022048548A1 WO 2022048548 A1 WO2022048548 A1 WO 2022048548A1 CN 2021115829 W CN2021115829 W CN 2021115829W WO 2022048548 A1 WO2022048548 A1 WO 2022048548A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
frame
link device
ppdu
length
Prior art date
Application number
PCT/CN2021/115829
Other languages
English (en)
French (fr)
Inventor
郭宇宸
李云波
李伊青
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21863612.4A priority Critical patent/EP4195857A4/en
Priority to CN202180065143.9A priority patent/CN116508394A/zh
Priority to KR1020237010503A priority patent/KR20230057450A/ko
Priority to CA3191675A priority patent/CA3191675A1/en
Priority to MX2023002630A priority patent/MX2023002630A/es
Priority to AU2021336597A priority patent/AU2021336597A1/en
Priority to JP2023514977A priority patent/JP2023540326A/ja
Publication of WO2022048548A1 publication Critical patent/WO2022048548A1/zh
Priority to US18/177,987 priority patent/US20230209600A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a channel access method and related apparatus of a multi-link device.
  • a wireless communication device With the development of wireless communication technology, more and more wireless communication devices support multi-link communication, such as simultaneous communication on 2.4GHz, 5GHz and 6GHz frequency bands, or simultaneous communication on different channels of the same frequency band.
  • Such a wireless communication device is usually called a multi-link device (MLD).
  • MLD multi-link device
  • a multi-link device can use multiple links for parallel communication, so that the transmission rate is greatly improved.
  • multi-link devices can communicate through multiple links in parallel to increase the transmission rate, when the frequency separation between the multiple frequency bands supported by extremely high throughput (EHT) multi-link devices is close, the Sending a signal on one frequency band affects reception on the other frequency band.
  • EHT extremely high throughput
  • an EHT multi-link device transmits on link 1. Since the frequency interval between link 1 and link 2 is small, the signal transmitted on link 1 will cause channel interference on link 2, affecting the link. Channel 2 accesses and receives information, so this device cannot independently perform transmit and receive operations in multiple frequency bands at the same time to avoid mutual interference.
  • the EHT multi-link device can have the ability to transmit and receive at the same time (Simultaneous transmitting and receiving, STR), and can have the ability to transmit and receive at the same time (Not Simultaneous transmitting and receiving, non-STR).
  • non-STR MLD When a non-STR capable MLD (referred to as non-STR MLD) is sent on one link, it is in a blind state (blindness period or CCA) because interference affects the clear channel assessment (CCA) on other links. Called deaf period), the blind state means that it cannot listen to any information on the channel or cannot listen to any information on the channel. Therefore, when the non-STR MLD is in a blind state on some links, how the non-STR MLD performs channel access on these links becomes an urgent problem to be solved.
  • CCA clear channel assessment
  • Embodiments of the present application provide a channel access method and related apparatus for a multi-link device, which can improve the efficiency of channel access when the non-STR MLD is in a blind state/self-interference state.
  • the present application provides a channel access method for a multi-link device, the method comprising: when the length of the first PPDU sent by the first multi-link device on the first link is less than or equal to a first value , the first multi-link device does not start the media synchronization delay timer on the second link, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the fact that the first multi-link device does not start the media synchronization delay timer on the second link includes: when the first multi-link device performs channel competition on the second link, evaluating the energy used by the CCA for the idle channel
  • the detection threshold is set to the first threshold, and the first threshold is -62dBm; or, after the backoff counter on the second link of the first multi-link device backs off to 0, it is allowed to send any other than the RTS frame and the MU-RTS frame. other frames.
  • the CCA when the length of the PPDU sent on one link is less than or equal to a certain value, the media synchronization delay timer is not started on the other link, or when channel contention is performed on the other link, the CCA
  • the adopted energy detection threshold is set to -62dBm, or it is unnecessary to use RTS frames on the other link for channel protection/channel availability testing, thereby improving the channel access efficiency of the first multi-link device on the other link or the channel access success rate, or improve the channel access opportunity of the first multi-link device on another link.
  • the method further includes: receiving the first value by the first multilink device.
  • the first value may be carried in a beacon frame, and may also be carried in an association response frame or a reassociation response frame.
  • the first value may be carried in a multi-link element, an extremely high throughput operation element, or a newly defined element.
  • the method further includes: when the length of the first PPDU is greater than the first value, the first multilink device determines the media synchronization corresponding to the length of the first PPDU the initial value of the delay timer, and start the media synchronization delay timer on the second link with the initial value.
  • the method further includes: the first multilink device receives first indication information, where the first indication information is used to indicate the length of a physical layer protocol data unit (PPDU) and a media synchronization delay timer The mapping relationship between the initial values of .
  • PPDU physical layer protocol data unit
  • the initial value of the media synchronization delay timer is determined according to the length of the first PPDU, so that the setting of the media synchronization delay timer is more flexible.
  • the method further includes: when the length of the first PPDU is greater than the first value, the first multi-link device enables the media synchronization on the second link Delay timer; within the time period counted by the media synchronization delay timer, if the first multi-link device performs channel competition on the second link, the energy used by the CCA on the second link is detected
  • the threshold is set to a threshold value corresponding to the length of the first PPDU.
  • the method further includes: the first multi-link device receives second indication information, where the second indication information is used to indicate that the length of the PPDU is different from that of the PPDU. Mapping relationship between energy detection thresholds.
  • the energy detection threshold is determined according to the length of the first PPDU, so that the channel access mechanism on the second link is more flexible, thereby improving the channel access efficiency.
  • the present application provides a first multi-link device or a chip in the first multi-link device, such as a Wi-Fi chip.
  • the first multilink device may be a non-STR MLD.
  • the first multi-link device includes: a processing unit configured to disable media on the second link when the length of the first PPDU sent by the first multi-link device on the first link is less than or equal to the first value A synchronization delay timer, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the above-mentioned processing unit is specifically configured to set the energy detection threshold used by the CCA for the idle channel evaluation on the second link as the first threshold, and the first threshold is -62dBm.
  • the above-mentioned first multi-link device further includes a transceiving unit configured to transmit other frames except the RTS frame and the MU-RTS frame after the backoff counter on the second link backs off to 0.
  • the above-mentioned first multi-link device further includes a transceiver unit, and the transceiver unit is further configured to receive the first value.
  • the first value may be carried in a beacon frame, and may also be carried in an association response frame or a reassociation response frame.
  • the first value may be carried in a multi-link element, an extremely high throughput operation element, or a newly defined element.
  • the above processing unit is further configured to: when the length of the first PPDU is greater than the first value, determine a media synchronization delay timer corresponding to the length of the first PPDU and start the media synchronization delay timer on the second link with the initial value.
  • the above-mentioned first multi-link device further includes a transceiver unit, and the transceiver unit is further configured to: receive first indication information, where the first indication information is used to indicate the difference between the length of the PPDU and the initial value of the media synchronization delay timer. mapping relationship between.
  • the above processing unit is further configured to: when the length of the first PPDU is greater than the first value, start the media synchronization delay timer on the second link ; In the time period of this media synchronization delay timer, if the first multi-link device performs channel competition on this second link, then the energy detection threshold adopted by CCA on the second link is set to this Threshold value corresponding to the length of the first PPDU.
  • the above-mentioned first multi-link device further includes a transceiver unit, and the transceiver unit is further configured to: the first multi-link device receives second indication information, and the second indication information is used to indicate the length of the PPDU and the energy detection threshold. mapping relationship between.
  • the present application provides a channel access method for a multi-link device, the method comprising: when the type of the first frame sent by the first multi-link device on the first link is the first type, the first A multi-link device does not start the media synchronization delay timer on the second link, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the fact that the first multi-link device does not start the media synchronization delay timer on the second link includes: when the first multi-link device performs channel competition on the second link, evaluating the energy used by the CCA for the idle channel
  • the detection threshold is set to the first threshold, and the first threshold is -62dBm; or, after the backoff counter on the second link of the first multi-link device backs off to 0, it is allowed to send any other than the RTS frame and the MU-RTS frame. other frames.
  • the type of the first frame is the first type: request to send (request to send, RTS) frame, multiple user request to send (multiple user RTS, MU-RTS) frame, Power save-Poll (PS-Poll) frame, CTS frame, status report (buffer status report, BSR) frame, bandwidth query report (bandwidth query report, BQR) frame, null data packet (null data) packet, NDP) frame, acknowledgement (acknowledge, ACK) frame, (block ACK, BA) block acknowledgement frame.
  • the above-mentioned first frame is a request to send (request to send, RTS) frame or a multiple user request to send (multiple user RTS, MU-RTS) frame. If the first multi-link device does not receive a clear to send (CTS) frame on the first link within a preset time, the first multi-link device does not open media on the second link Synchronization delay timer.
  • RTS request to send
  • MU-RTS multiple user request to send
  • the foregoing first frame is a power save-poll (Power save-Poll, PS-Poll) frame. If the first multi-link device does not receive a PS-Poll frame allowed to send on the first link within a preset time, the first multi-link device does not start the media synchronization delay timer on the second link device.
  • a PS-Poll frame allowed to send on the first link within a preset time
  • the first multi-link device does not start the media synchronization delay timer on the second link device.
  • the above-mentioned first frame is a CTS frame.
  • the method further includes: the first multi-link device receives the RTS frame or the MU-RTS frame on the first link.
  • the above-mentioned first frame is a status report BSR frame.
  • the method further includes: the first multilink device receives a status report polling BSRP trigger frame on the first link.
  • the above-mentioned first frame is a bandwidth query report BQR frame.
  • the method further includes: the first multi-link device receives a bandwidth query report polling BQRP trigger frame on the first link.
  • the above-mentioned first frame is a null data packet NDP frame.
  • the method further includes: the first multi-link device receives a beamforming report polling BFRP trigger frame on the first link.
  • the foregoing first frame is an ACK frame or a BA frame.
  • the first multilink device receives the data frame or the management frame on the first link.
  • the present application provides a first multi-link device or a chip in the first multi-link device, such as a Wi-Fi chip.
  • the first multilink device may be a non-STR MLD.
  • the first multi-link device includes: a processing unit configured to, when the type of the first frame sent by the first multi-link device on the first link is the first type, the first multi-link device on the second link The media synchronization delay timer is not started on the road, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the above-mentioned processing unit is specifically configured to set the energy detection threshold used by the CCA for the idle channel evaluation on the second link as the first threshold, and the first threshold is -62dBm.
  • the above-mentioned first multi-link device further includes a transceiving unit configured to transmit other frames except the RTS frame and the MU-RTS frame after the backoff counter on the second link backs off to 0.
  • the type of the first frame is the first type: request to send (request to send, RTS) frame, multiple user request to send (multiple user RTS, MU-RTS) frame, Power save-Poll (PS-Poll) frame, CTS frame, status report (buffer status report, BSR) frame, bandwidth query report (bandwidth query report, BQR) frame, null data packet (null data) packet, NDP) frame, acknowledgement (acknowledge, ACK) frame, (block ACK, BA) block acknowledgement frame.
  • the above-mentioned first frame is an RTS frame or a MU-RTS frame.
  • the above processing unit is specifically used for: when the first multi-link device does not receive a clear to send (CTS) frame on the first link within a preset time, the media is not opened on the second link Synchronization delay timer.
  • CTS clear to send
  • the above-mentioned first frame is a PS-Poll frame.
  • the above-mentioned processing unit is specifically used for: when the first multi-link device does not receive a PS-Poll frame allowed to be sent on the first link within a preset time, the media synchronization delay timer is not started on the second link .
  • the above-mentioned first frame is a CTS frame.
  • the first multi-link device further includes a transceiving unit configured to: receive the RTS frame or the MU-RTS frame on the first link.
  • the above-mentioned first PPDU is a status report BSR frame.
  • the first multi-link device further includes a transceiving unit, and the transceiving unit is configured to: receive a status report polling BSRP trigger frame on the first link.
  • the above-mentioned first PPDU is a bandwidth query report BQR frame.
  • the first multi-link device further includes a transceiving unit, which is configured to: receive a bandwidth query report polling BQRP trigger frame on the first link.
  • the above-mentioned first PPDU is a null data packet NDP frame.
  • the first multi-link device further includes a transceiver unit configured to: receive a beamforming report polling BFRP trigger frame on the first link.
  • the above-mentioned first PPDU is an ACK frame or a BA frame.
  • the first multi-link device further includes a transceiver unit, which is used for: receiving a data frame or a management frame on the first link.
  • the present application provides a method for determining an initial duration of a media synchronization delay timer, the method comprising: a first multilink device receiving first indication information, where the first indication information is used to indicate that the length of the PPDU is synchronized with the media The mapping relationship between the initial values (or initial durations) of the delay timer; the first multi-link device determines the media synchronization time corresponding to the length of the first PPDU according to the length of the first PPDU sent on the first link The initial value of the delay timer is used to determine whether to start the media synchronization delay timer on the second link. The first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the first multi-link device determines whether to enable the media synchronization delay timer on the second link according to the initial value of the media synchronization delay timer corresponding to the length of the first PPDU.
  • the first multi-link device does not start the media synchronization delay timer on the second link. If the determined initial value of the media synchronization delay timer is equal to 0, the first multi-link device starts the media synchronization delay timer with the initial value on the second link.
  • the first multi-link device when the first multi-link device starts the mediumSyncDelay timer on the second link, it can be understood (or can be described as): during the period of time counted by the mediumSyncDelay timer, the first multi-link device can start the mediumSyncDelay timer on the second link.
  • a more conservative channel access mechanism is used on the link.
  • a more conservative signal access mechanism includes but is not limited to: 1) Using a lower energy detection threshold (here refers to an ED threshold lower than -62dBm) to determine whether the channel is busy. 2) RTS frames must be sent to test channel availability.
  • the present application provides a method for determining the initial duration of a media synchronization delay timer.
  • the method includes: a second multilink device generates and sends first indication information, where the first indication information is used to indicate that the length of the PPDU is equal to the length of the PPDU.
  • the present application provides a first multi-link device or a chip in the first multi-link device, such as a Wi-Fi chip.
  • the first multilink device may be a non-STR MLD.
  • the communication device includes: a transceiver unit for receiving first indication information, where the first indication information is used to indicate the mapping relationship between the length of the PPDU and the initial value of the media synchronization delay timer; The length of the first PPDU sent on the link determines the initial value of the media synchronization delay timer corresponding to the length of the first PPDU.
  • the communication device cannot transmit and receive simultaneously on the first link and the second link.
  • the above processing unit is further configured to determine whether to enable the media synchronization delay timer on the second link according to the initial value of the media synchronization delay timer corresponding to the length of the first PPDU.
  • the above processing unit is specifically configured to: if the determined initial value of the media synchronization delay timer is equal to 0, do not start the media synchronization delay timer on the second link; if the determined media synchronization delay timer is If the initial value of the synchronization delay timer is equal to 0, the media synchronization delay timer is started on the second link.
  • the present application provides a second multi-link device or a chip in the second multi-link device, such as a Wi-Fi chip.
  • the second multilink device may be an MLD of STR.
  • the communication device includes: a processing unit configured to generate first indication information, where the first indication information is used to indicate a mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer; a transceiver unit, for sending the first indication information.
  • the present application provides a method for determining an energy detection threshold in a CCA process, the method comprising: a first multilink device receiving second indication information, where the second indication information is used to indicate a distance between a PPDU length and an energy detection threshold
  • the first multi-link device sends the first PPDU on the first link; the first multi-link device determines the corresponding length of the first PPDU according to the length of the first PPDU sent on the first link.
  • the energy detection threshold is used to determine whether to start the media synchronization delay timer on the second link.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the first multi-link device determines whether to enable the media synchronization delay timer on the second link according to an energy detection threshold corresponding to the length of the first PPDU.
  • the first multi-link device does not start the media synchronization delay timer on the second link. If the determined energy detection threshold is less than -62dBm, the first multi-link device starts the media synchronization delay timer on the second link.
  • the present application provides a method for determining an energy detection threshold in a CCA process, the method comprising: a second multilink device generates and sends second indication information, where the second indication information is used to indicate the length of the PPDU and the energy detection threshold the mapping relationship between them.
  • the present application provides a first multi-link device or a chip in the first multi-link device, such as a Wi-Fi chip.
  • the first multilink device may be a non-STR MLD.
  • the communication device includes: a transceiver unit for receiving second indication information, where the second indication information is used to indicate the mapping relationship between the PPDU length and the energy detection threshold; a processing unit for The length of the first PPDU determines an energy detection threshold corresponding to the length of the first PPDU, and the energy detection threshold is used to determine whether to start the media synchronization delay timer on the second link.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the above processing unit is further configured to determine whether to start the media synchronization delay timer on the second link according to the energy detection threshold corresponding to the length of the first PPDU.
  • the communication device cannot transmit and receive simultaneously on the first link and the second link.
  • the above processing unit is specifically configured to: if the determined energy detection threshold is equal to -62dBm, the first multi-link device does not start the media synchronization delay timer on the second link; If the energy detection threshold is less than -62dBm, the first multi-link device starts the media synchronization delay timer on the second link.
  • the present application provides a second multi-link device or a chip in the second multi-link device, such as a Wi-Fi chip.
  • the second multilink device may be an MLD of STR.
  • the communication device includes: a processing unit for generating second indication information, where the second indication information is used to indicate the mapping relationship between the length of the PPDU and the energy detection threshold; and a transceiver unit for sending the second indication information.
  • the present application provides a first multilink device, including a processor.
  • a transceiver is also included.
  • the processor is configured to not start the media synchronization delay timer on the second link when the length of the first PPDU sent by the first multi-link device on the first link is less than or equal to the first value, wherein the first A multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the processor is configured to, when the type of the first frame sent by the first multi-link device on the first link is the first type, the first multi-link device on the second link The media synchronization delay timer is not started, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is configured to receive first indication information, where the first indication information is used to indicate the mapping relationship between the PPDU length and the initial value (or initial duration) of the media synchronization delay timer; the The processor is configured to determine, according to the length of the first PPDU sent on the first link, an initial value of the media synchronization delay timer corresponding to the length of the first PPDU.
  • the communication device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is configured to receive second indication information, where the second indication information is used to indicate the mapping relationship between the PPDU length/byte length and the energy detection threshold; the processor is configured to The length of the first PPDU sent on the link determines the energy detection threshold corresponding to the length of the first PPDU, and the energy detection threshold is used to determine whether to start the media synchronization delay timer on the second link.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the present application provides a second multilink device including a processor and a transceiver.
  • the processor is used to generate first indication information, where the first indication information is used to indicate the mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer; the transceiver is used to send the first indication information.
  • the processor is configured to generate second indication information, where the second indication information is used to indicate the mapping relationship between the length of the PPDU and the energy detection threshold; the transceiver is used to send the second indication information.
  • the present application provides a first multi-link device
  • the first multi-link device can exist in the form of a chip
  • the structure of the first multi-link device includes an input and output interface and a processing circuit.
  • the input and output interface is used for receiving the code instruction and transmitting it to the processing circuit
  • the processing circuit is used for not starting the media synchronization delay timer on the second link when the length of the first PPDU is less than or equal to the first value, Wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the input and output interface is used for receiving the code instruction and transmitting it to the processing circuit, and the processing circuit is used for when the type of the first frame sent by the first multi-link device on the first link is In the first type, the first multi-link device does not start the media synchronization delay timer on the second link, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is used to receive the first indication information
  • the input and output interface is used to receive the first indication information from the transceiver, and send the first indication information to the processing circuit for processing to obtain the The mapping relationship between the PPDU length indicated by the first indication information and the initial value (or initial duration) of the media synchronization delay timer;
  • the processing circuit is used to determine the length of the first PPDU sent on the first link.
  • the initial value of the media synchronization delay timer corresponding to the length of the first PPDU, where the initial value is used to determine whether to start the media synchronization delay timer on the second link.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is used to receive the second indication information
  • the input and output interface is used to receive the second indication information from the transceiver, and send the second indication information to the processing circuit for processing to obtain the The mapping relationship between the PPDU length indicated by the second indication information and the energy detection threshold
  • the processing circuit is configured to determine the energy detection threshold corresponding to the length of the first PPDU according to the length of the first PPDU sent on the first link , the energy detection threshold is used to determine whether to start the media synchronization delay timer on the second link.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the present application provides a second multi-link device
  • the second multi-link device can exist in the form of a chip product
  • the structure of the second multi-link device includes an input and output interface and a processing circuit.
  • the input and output interface is used for receiving a code instruction and transmitting it to the processing circuit
  • the processing circuit is used for generating first indication information, where the first indication information is used for indicating the length of the PPDU and the initial value (or initial value of the media synchronization delay timer) of the timer. duration);
  • the input and output interface is used for sending the first indication information to the transceiver, and the transceiver is used for sending the first indication information.
  • the I/O interface is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used to generate second indication information, where the second indication information is used to indicate the difference between the length of the PPDU and the energy detection threshold
  • the mapping relationship between; the input and output interface is used for sending the second indication information to the transceiver, and the transceiver is used for sending the second indication information.
  • the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed on a computer, the computer is made to execute the above-mentioned first aspect, or the above-mentioned third aspect, Or the method described in the above fifth aspect, or the above seventh aspect, or the above ninth aspect, or the above tenth aspect.
  • the present application provides a computer program product comprising program instructions, which, when run on a computer, enables the computer to execute the above-mentioned first aspect, or the above-mentioned third aspect, or the above-mentioned fifth aspect, or the above-mentioned seventh aspect aspect, or the method of the ninth aspect above, or the method of the tenth aspect above.
  • the efficiency of channel access can be improved when the non-STR MLD is in a blind state/self-interference state.
  • Fig. 1 is a schematic diagram of non-AP MLD and AP MLD communication provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • 3a is a schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • FIG. 3b is another schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a channel access method for a multi-link device provided by an embodiment of the present application
  • FIG. 5 is another schematic flowchart of a channel access method for a multi-link device provided by an embodiment of the present application
  • 6a is a schematic diagram of a frame structure of a multi-link element provided by an embodiment of the present application.
  • 6b is a schematic diagram of a frame structure of an EHT operation element provided by an embodiment of the present application.
  • 6c is a schematic diagram of a frame structure of a non-STR MLD parameter set element provided by the present application.
  • FIG. 7 is a schematic flowchart of a method for determining an initial duration of a media synchronization delay timer provided by an embodiment of the present application
  • FIG. 8 is a schematic diagram of a mapping relationship between a PPDU length and an initial value of a media synchronization delay timer provided by an embodiment of the present application;
  • FIG. 9 is a schematic flowchart of a method for determining an energy detection threshold in a CCA process provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a mapping relationship between a PPDU length and an energy detection threshold provided by an embodiment of the present application
  • FIG. 11 is a schematic structural diagram of a first multi-link device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a second multi-link device provided by an embodiment of the present application.
  • the following describes the system architecture and/or application scenarios of the channel access methods for multi-link devices provided by the embodiments of the present application. It is understandable that the system architecture and/or application scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a channel access method applied to a non-STR MLD, which can improve the efficiency of channel access when the non-STR MLD is in a blind state/self-interference state.
  • the channel access method of the multi-link device may be implemented by a communication device in a wireless communication system or a chip or processor in the communication device, and the communication device may be a wireless communication device that supports parallel transmission of multiple links, such as , the communication device may be referred to as a multi-link device or a multi-band device. Compared with communication devices that only support single-link transmission, multi-link devices have higher transmission efficiency and greater throughput.
  • a multi-link device includes one or more affiliated stations (affiliated STAs), and an affiliated station is a logical station that can work on a link or a frequency band or a channel.
  • the affiliated station may be an access point (access point, AP) or a non-access point station (non-access point station, non-AP STA).
  • this application refers to a multi-link device whose subordinate site is an AP as a multi-link AP or multi-link AP device or AP multi-link device (AP multi-link device, AP MLD), and the subordinate site is A multi-link device of a non-AP STA is called a multi-link non-AP or a multi-link non-AP device or a non-AP multi-link device (non-AP multi-link device, non-AP MLD).
  • a multi-link device may include multiple logical sites, each logical site works on one link, but allows multiple logical sites to work on the same link.
  • FIG. 1 is a schematic diagram of communication between a non-AP MLD and an AP MLD provided by an embodiment of the present application.
  • AP MLD includes AP1, AP2,...,APn;
  • non-AP MLD includes STA1, STA2,...,STAn.
  • AP MLD and non-AP MLD can communicate in parallel using link 1, link 2, ..., link n.
  • STA1 in non-AP MLD establishes association relationship with AP1 in AP MLD
  • STA2 in non-AP MLD establishes association relationship with AP2 in AP MLD
  • STAn in non-AP MLD establishes association relationship with APn in AP MLD Wait.
  • multi-link devices can implement wireless communication following the IEEE 802.11 series of protocols, for example, for extremely high throughput (EHT) sites, or for sites based on IEEE 802.11be or compatible with IEEE 802.11be support, Enables communication with other devices.
  • EHT extremely high throughput
  • the channel access method for a multi-link device can be applied to a scenario in which one node communicates with one or more nodes; it can also be applied to a single-user uplink/downlink communication scenario, and a multi-user uplink/downlink communication scenario.
  • downlink communication scenarios it can also be applied to device to device (device to device, D2D) communication scenarios.
  • any of the above nodes may be AP MLD or non-AP MLD.
  • a scenario in which an AP MLD communicates with a non-AP MLD or a scenario in which an AP MLD communicates with an AP MLD, or a scenario in which a non-AP MLD communicates with a non-AP MLD; this embodiment of the present application does not do this. limited.
  • At least one node has the capability of not being able to send and receive at the same time, that is, has the non-STR capability.
  • FIG. 2 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • the wireless communication system includes at least one AP MLD and at least one non-AP MLD.
  • the AP MLD is a multi-link device that provides services for the non-AP MLD, and the non-AP MLD can communicate with the AP MLD using multiple links.
  • An AP in an AP MLD can communicate with a STA in a non-AP MLD over a link. Understandably, the numbers of AP MLDs and non-AP MLDs in FIG. 2 are only exemplary.
  • the wireless communication system includes at least one MLD capable of non-STR.
  • the multi-link device (here, it can be either a non-AP MLD or an AP MLD) is a device with wireless communication function, and the device can be a device of the whole machine, or it can be installed in the device of the whole machine.
  • the chips or processing systems, etc. in the device, the devices on which these chips or processing systems are installed can implement the methods and functions of the embodiments of the present application under the control of these chips or processing systems.
  • the non-AP multi-link device in the embodiment of the present application has a wireless transceiver function, can support 802.11 series protocols, and can communicate with the AP multi-link device or other non-AP multi-link devices.
  • a non-AP multilink device is any user communication device that allows a user to communicate with an AP and thus with a WLAN.
  • the non-AP multi-link device may be a tablet, desktop, laptop, notebook, ultra-mobile personal computer (UMPC), handheld computer, netbook, personal digital assistant (personal digital assistant) , PDA), mobile phones and other user equipment that can be networked, or IoT nodes in the Internet of Things, or in-vehicle communication devices in the Internet of Vehicles, etc.; non-AP multi-link devices can also be the chips and processing systems in these terminals.
  • AP multi-link equipment can provide services for non-AP multi-link equipment, and can support 802.11 series protocols.
  • the AP multi-link device may be a communication entity such as a communication server, router, switch, and network bridge, or the AP multi-link device may include various forms of macro base station, micro base station, relay station, etc.
  • the AP multi-link device Also chips and processing systems in these various forms of devices.
  • the 802.11 protocol may be a protocol that supports 802.11be or is compatible with 802.11be.
  • multi-link devices can support high-speed and low-latency transmission.
  • multi-link devices can also be used in more scenarios, such as sensor nodes in smart cities ( For example, smart water meters, smart electricity meters, smart air detection nodes), smart devices in smart homes (such as smart cameras, projectors, display screens, TVs, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment Terminals (such as AR, VR and other wearable devices), smart devices in smart office (such as printers, projectors, etc.), Internet of Vehicles devices in the Internet of Vehicles, and some infrastructure in daily life scenarios (such as vending machines, commercial Super self-service navigation desk, self-service cash register equipment, self-service ordering machine, etc.).
  • the specific form of the multi-link device is not limited in this embodiment of the present application, which is only an exemplary description here.
  • FIG. 3a is a schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • the IEEE 802.11 standard focuses on the 802.11 physical layer (PHY) and medium access control (MAC) layers in multilink devices.
  • PHY physical layer
  • MAC medium access control
  • the multiple STAs included in the multi-link device are independent of each other at the low MAC (low MAC) layer and the PHY layer, and are also independent of each other at the high MAC (high MAC) layer.
  • FIG. 3b is another schematic structural diagram of a multi-link device provided by an embodiment of the present application.
  • the Non-AP multi-link device may adopt a structure in which the high MAC layers are independent of each other, or may adopt a structure shared by the high MAC layers.
  • the AP multi-link device may adopt a structure shared by the high MAC layers, or may adopt a structure in which the high MAC layers are independent of each other.
  • FIG. 3 a and FIG. 3 b are only exemplary descriptions.
  • both the high MAC layer and the low MAC layer may be implemented by a processor in a chip system of a multi-link device, and may also be implemented by different processing modules in a chip system respectively.
  • the multi-link device in this embodiment of the present application may be a single-antenna device or a multi-antenna device.
  • it may be a device with more than two antennas.
  • This embodiment of the present application does not limit the number of antennas included in the multi-link device.
  • the multi-link device may allow services of the same access category (AC) to be transmitted on different links, and even allow the same data packets to be transmitted on different links; Services of the same access level are transmitted on different links, but services of different access levels are allowed to be transmitted on different links.
  • AC access category
  • the frequency band in which the multi-link device operates may include one or more frequency bands among sub 1GHz, 2.4GHz, 5GHz, 6GHz, and high frequency 60GHz.
  • non-STR MLD For non-STR MLD, when it is sent on one link (such as link 1), due to channel interference, it will cause non-STR MLD to transmit on another or more links (take link 2 as an example)
  • the channel state on link 2 produces incorrect judgments and affects the reception of overlapping basic service set (OBSS) frames on link 2 by the non-STR MLD.
  • OBSS overlapping basic service set
  • NAV network allocation vector
  • NAV can be understood as a countdown timer, which gradually decreases with the passage of time. When the countdown is 0, the medium is considered to be in an idle state. Specifically, after a station receives a frame, if the receiving address of the frame is not the station, the station can update the NAV according to the duration field in the received frame. If the receiving address of the frame is this station, it means that this station is the receiving station, and the NAV cannot be updated. Before updating the NAV, it is also possible to determine whether the value of the duration field in the current frame is greater than the current NAV value of the site, and if it is greater, update the NAV; otherwise, if it is less than or equal to, then do not update the NAV. The NAV value is counted from the end of the received frame.
  • the embodiment of the present application proposes a medium synchronization delay (mediumSyncDelay) mechanism.
  • the mechanism is as follows: after the non-STR MLD is sent on one line (such as link 1), a timer, that is, the mediumSyncDelay timer, needs to be started on the other link. During the period indicated by the mediumSyncDelay timer, the non-STR MLD needs to use a more conservative channel access mechanism on Link 2.
  • the more conservative signal access mechanism includes but is not limited to: 1) Using a lower energy detection (energy detection, ED) threshold to determine whether the channel is busy. In the channel access mechanism, -62dBm is usually used as the energy detection threshold.
  • the channel is considered to be busy.
  • a lower ED threshold than -62dBm is used, further signals in CCA detection will make the channel busy, so channel access is more conservative.
  • the lower energy detection threshold may be -82dBm or -72dBm or the like.
  • RTS request to send
  • the non-STR MLD In the above-mentioned media synchronization delay mechanism, no matter what kind of frame the non-STR MLD sends on link 1, as long as the frame is sent on link 1, the non-STR MLD will use a more accurate frame on link 2. It is a conservative channel access mechanism.
  • the frames sent by the non-STR MLD on link 1 are various, and may be control frames, data frames or management frames, and the data frames may be long frames or short frames. Therefore, when the length of the frame sent by the non-STR MLD on link 1 is shorter, the time that the non-STR MLD is in the blind state on link 2 is correspondingly shorter, and the non-STR MLD misses on link 2.
  • the likelihood (or probability) of important information such as NAV is low.
  • non-STR MLD is in a blind state on a certain link
  • STA working on the link in the non-STR MLD is in a blind state
  • blind state mentioned in this application may also be referred to as a "self-interference state” or a “unacceptable state” or a “deaf state”, etc.
  • non-STR MLD in this application may refer to an EHT MLD that cannot transmit and receive at the same time.
  • the "long frame” and “short frame” mentioned in this application are distinguished by the time length of the frame occupying the air interface.
  • a “long frame” may refer to a frame occupying the air interface for a time length greater than or equal to the preset value A
  • a “short frame” may refer to a frame occupying the air interface for a time length less than or equal to the preset value B.
  • the preset value A and the preset value B may be the same or different.
  • the preset value A may be 1ms (milliseconds)
  • the preset value B may be 100us (microseconds).
  • the embodiment of the present application provides a channel access method for a multi-link device, which can improve the channel access efficiency of the non-STR MLD on these links when the non-STR MLD is in a blind state/self-interference state.
  • the first multi-link device in this application may be a non-STR MLD; the second multi-link device may be a STR MLD.
  • the present application takes a scenario in which two MLDs communicate through two or more links as an example for description.
  • two links are taken as an example to introduce the technical solution of the present application, but the technical solution of the present application is also applicable to two MLDs supporting multiple links.
  • Embodiment 1 describes how to perform channel access on another link when a frame of a specific type is sent on one link.
  • the second embodiment describes whether it is necessary to adopt a more conservative channel access mechanism on another link according to the length of the frame sent on one link.
  • the third embodiment describes how to determine the initial duration of the mediumSyncDelay timer.
  • Embodiment 4 describes how to determine the ED threshold used in the CCA process.
  • Embodiments 1 to 4 are respectively described in detail below. It is understandable that the technical solutions described in Embodiment 1 to Embodiment 4 of the present application can be combined to form a new embodiment.
  • Embodiment 1 of the present application introduces whether a more conservative channel access mechanism needs to be adopted on another link is determined according to the type of frames sent on one link.
  • FIG. 4 is a schematic flowchart of a channel access method for a multi-link device provided by an embodiment of the present application. As shown in Figure 4, the channel access method of the multi-link device includes but is not limited to the following steps:
  • the first multi-link device when the type of the first frame sent by the first multi-link device on the first link is the first type, the first multi-link device does not start the media synchronization delay timer on the second link, and the first multi-link device does not start the media synchronization delay timer on the second link.
  • a multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the type of the first frame is the first type: request to send (request to send) frame, multiple user request to send (multiple user RTS) frame, power saving polling (Power save-Poll, PS-Poll) frame, clear to send (CTS) frame, status report (buffer status report, BSR) frame, bandwidth query report (bandwidth query report, BQR) frame, null data packet (null data) packet, NDP) frame, acknowledgment A (acknowledge, ACK) frame, block acknowledgement (block acknowledge, BA) frame.
  • the first frame is an RTS frame or a MU-RTS frame.
  • the first multi-link device sends an RTS frame or a MU-RTS frame on the first link, and the first multi-link device does not receive an allow-to-send frame within a preset time, the first multi-link device The device does not start the media synchronization delay timer (mediumSyncDelay timer) on the second link. Wherein, the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • media synchronization delay timer mediumSyncDelay timer
  • the first multi-link device finishes sending the RTS/MU-RTS frame on the first link, it adds a preset time (eg, short inter-frame space, SIFS) with a The time of the slot (slot), plus the receiving delay of the physical layer, that is, a SIFS Time+a Slot Time+a RxPHYStartDelay) does not receive the CTS frame on the first link, then the first multi-link device The mediumSyncDelay timer is not started on the second link.
  • a preset time eg, short inter-frame space, SIFS
  • the fact that the first multi-link device does not start the mediumSyncDelay timer on the second link can be understood (or can be described as): when the first multi-link device performs channel competition on the second link, the CCA operation
  • the adopted energy detection threshold is the first threshold; or, after the first multi-link device backs off to 0 on the second link, it is allowed to directly send other frames except RTS and MU-RTS frames, in other words, the first After the multi-link device backs off to 0 on the second link, it does not send an RTS/MU-RTS frame to perform channel protection/test for channel availability.
  • the first threshold may be -62dBm.
  • the reason why the first multi-link device does not receive the CTS frame within the preset time may be: (a) the first multi-link device The sent RTS frame collided with a frame sent by another device. (b) The receiver corresponding to the RTS frame sent by the first multi-link device fails to successfully receive the RTS frame. (c) The receiver corresponding to the RTS frame sent by the first multi-link device is in a busy state.
  • the first multi-link device closes (or stops, or cancels) the mediumSyncDelay timer.
  • the first multi-link device may start the mediumSyncDelay timer.
  • the first multi-link device starts the mediumSyncDelay timer on the second link, which can be understood (or can be described as): the first multi-link device adopts a more conservative channel access mechanism on the second link . That is, a lower energy detection threshold (referring to a lower energy detection threshold than -62dBm, such as -82dBm) is used to determine whether the channel is busy, and RTS/MU-RTS frames must be sent to test channel availability.
  • the number of times (or the number of times of sending the RTS/MU-RTS frame) of the trial can only be one, or a limited number of times.
  • the "RTS frame or MU-RTS frame" in the first implementation manner above can be replaced with a success rate saving polling (Power save-Poll, PS-Poll) frame, and the "CTS frame” can be replaced with a data frame or An acknowledgement (ACK) frame. Therefore, the above-mentioned first implementation manner can also be described as: if the first multi-link device sends a PS-Poll frame on the first link, and the first multi-link device does not receive a data frame within the preset time or confirmation frame, the first multi-link device does not start the media synchronization delay timer on the second link.
  • a success rate saving polling Power save-Poll, PS-Poll
  • ACK An acknowledgement
  • the first multi-link device sends a PS-Poll frame on the first link, and the first multi-link device receives a data frame or an acknowledgment frame within the preset time, the first multi-link device
  • the mediumSyncDelay timer can be started.
  • the non-STR MLD that is, the first multi-link device
  • the second link Do not start the mediumSyncDelay timer on the second link, so that the non-STR MLD performs ordinary channel competition on the second link, that is, the energy detection threshold used in CCA operation is -62dBm, or RTS/CTS frames can be used for channel protection.
  • the channel access efficiency or channel access success rate of the non-STR MLD on the second link is improved, or the channel access opportunity of the non-STR MLD on the second link is improved.
  • the first frame is a CTS frame.
  • the first multi-link device receives RTS frames or MU-RTS frames on the first link, and replies/transmits CTS frames on the first link, media synchronization is not enabled on the second link Delay timer (mediumSyncDelay timer).
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the second multilink device transmits RTS frames or MU-RTS frames on the first link.
  • the first multi-link device receives the RTS frame or the MU-RTS frame on the first link, and replies/transmits the CTS frame on the first link. After the first multi-link device sends the CTS frame on the first link, it does not start the mediumSyncDelay timer on the second link.
  • the fact that the first multi-link device does not start the mediumSyncDelay timer on the second link can be understood (or can be described as): when the first multi-link device performs channel competition on the second link, the CCA operation
  • the adopted energy detection threshold is the first threshold; or, after the first multi-link device backs off to 0 on the second link, it is allowed to directly send other frames except RTS and MU-RTS frames, in other words, the first After the multi-link device backs off to 0 on the second link, it does not send an RTS/MU-RTS frame to perform channel protection/test for channel availability.
  • the first threshold may be -62dBm.
  • the first multi-link device if the first multi-link device has started the mediumSyncDelay timer on the second link after sending the CTS frame on the first link, the first multi-link device is closed (or stopped, or canceled) The mediumSyncDelay timer.
  • the "RTS/CTS frame" in the second implementation manner above may be replaced with a status report poll trigger (buffer status report poll trigger, BSRP Trigger) frame/status report (buffer status report, BSR) frame, or Bandwidth query report poll trigger (bandwidth query report poll trigger, BQRP Trigger) frame/bandwidth query report (BQR), or beamforming report poll trigger (beamforming report poll trigger, BFRP Trigger) frame/null data packet (null data packet, NDP) frame, or data frame/acknowledge (ACK) frame, or management frame/ACK frame, or data frame/block acknowledge (BA) frame.
  • a status report poll trigger buffer status report poll trigger, BSRP Trigger
  • Bandwidth query report poll trigger bandwidth query report poll trigger, BQRP Trigger
  • beamforming report poll trigger beamforming report poll trigger
  • BFRP Trigger frame/null data packet (null data packet, NDP) frame, or data frame/acknowledge (ACK) frame, or management frame/ACK frame
  • the above-mentioned step S201 can also be described as: the first multi-link device receives the BSRP Trigger frame on the first link, and replies/transmits the BSR frame on the first link; Receive a BQRP Trigger frame on the first link, and reply/transmit a BQR frame on the first link; or, the first multi-link device receives a BFRP Trigger frame on the first link, and sends a reply/send NDP frames on the first link; or, the first multi-link device receives data frames or management frames on the first link, and replies/sends ACK frames on the first link; or, the first multi-link device Data frames are received on the first link and BA frames are replied/transmitted on the first link.
  • the above-mentioned second implementation manner can also be described as: after the first multi-link device sends a BSR frame or a BQR frame or an NDP frame on the first link, the media synchronization delay is not enabled on the second link. timer.
  • the first multi-link device replies/sends a CTS frame, or an NDP frame, or a BSR frame, or a BQR frame, or an ACK frame, or a BA frame on the first link
  • the first multi-link device is The first link is in the receiving state, so the reception on the first link does not affect the channel contention on the second link.
  • the first multi-link device can perform common channel competition on the second link, that is, the energy detection threshold used in the CCA operation is -62dBm, or the RTS/CTS frame may not be used for channel protection.
  • the non-STR MLD that is, the first multi-link device
  • the mediumSyncDelay timer can improve the channel access efficiency or channel access success rate of the non-STR MLD on the second link, or improve the channel access opportunity of the non-STR MLD on the second link.
  • the media synchronization delay timer when a specific type of frame is sent, the media synchronization delay timer is not started on the second link, and the non-STR MLD can be improved when the non-STR MLD is in a blind state/self-interference state.
  • the second implementation of this application introduces how the non-STR MLD performs channel access on the second link when the length of the PPDU sent by the non-STR MLD on the first link is less than the preset value.
  • FIG. 5 is another schematic flowchart of a channel access method for a multi-link device provided by an embodiment of the present application. As shown in Figure 5, the channel access method of the multi-link device includes but is not limited to the following steps:
  • the first multi-link device when the length of the first PPDU sent by the first multi-link device on the first link is less than or equal to the first value, the first multi-link device does not start the media synchronization delay timer on the second link , wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the fact that the first multi-link device does not start the mediumSyncDelay timer on the second link can be understood (or can be described as): when the first multi-link device performs channel competition on the second link, the CCA operation
  • the adopted energy detection threshold is the first threshold; or, after the first multi-link device backs off to 0 on the second link, it is allowed to directly send other frames except RTS and MU-RTS frames, in other words, the first After the multi-link device backs off to 0 on the second link, it does not send an RTS/MU-RTS frame to perform channel protection/test for channel availability.
  • the first threshold may be -62dBm.
  • the first multi-link device if the first multi-link device has started the mediumSyncDelay timer on the second link after sending the first PPDU on the first link, it is determined that the length of the first PPDU is less than or equal to the first PPDU. value, the first multilink device closes (or stops, or cancels) the mediumSyncDelay timer.
  • the first multi-link device when the media synchronization delay timer on the second link has been started, if the length of the first PPDU sent by the first multi-link device on the first link is less than or equal to the first value , the first multi-link device does not update the media synchronization delay timer on the second link.
  • the first A multi-link device needs to update the media synchronization delay timer on the second link.
  • the first multi-link device updates the media synchronization delay timer on the second link, it can be understood as: updating the media synchronization delay timer on the second link to the media synchronization delay timer
  • the initial value when turned on is equivalent to restarting the media synchronization delay timer on the second link.
  • the first multi-link device does not update the media synchronization delay timer on the second link, which can be understood as: it does not update the media synchronization delay timer on the second link to the media synchronization delay The initial value when the timer starts.
  • the above-mentioned first value may be a fixed value specified by the protocol, such as 50us, or 100us, or 200us, or the like.
  • the first value may be 28us, which is the PPDU length when the CTS and ACK frames are sent in the 24Mbps Non-HT PPDU format, or when the CTS and ACK frames are sent in the 24Mbps Non-HT duplicate PPDU format. PPDU length.
  • the first value may be 32us, which is the length of the PPDU when the BA (block acknowledgment, block ACK) frame with a bitmap length of 64 is sent in the Non-HT PPDU format or Non-HT duplicate PPDU format of 24Mbps. .
  • the first value may be 44us, which is the PPDU length when the CTS and ACK frames are sent in the 6Mbps Non-HT PPDU format, or when the CTS and ACK frames are sent in the 6Mbps Non-HT duplicate PPDU format. PPDU length.
  • the first value may be 40us, where 40us is the PPDU length when the BA frame with the bitmap length of 256 is sent in the Non-HT PPDU format or Non-HT duplicate PPDU format of 24Mbps.
  • the first value may be 36us, where 36us is the PPDU length when the QoS-Null frame is sent in the Non-HT PPDU format or Non-HT duplicate PPDU format of 24Mbps.
  • the first value may be 68us, where 68us is the PPDU length when a BA frame with a bitmap length of 64 is sent in a 6Mbps Non-HT PPDU format or a Non-HT duplicate PPDU format.
  • the above-mentioned first value may also be determined by the access point (or AP MLD) and sent to the station (that is, the non-AP MLD).
  • the channel access method for a multi-link device in this embodiment of the present application may further include: step S202, the second multi-link device sends indication information, where the indication information is used to indicate the first value.
  • the first multilink device receives the indication information.
  • the indication information may be carried in a beacon (beacon) frame, and may also be carried in an association response frame or a reassociation response frame.
  • the above-mentioned first multi-link device may be a non-STR MLD, specifically a non-AP MLD of a non-STR.
  • the above-mentioned second multi-link device may be an STR MLD, specifically an AP MLD of an STR.
  • the indication information may be located in a multi-link element (multi-link element).
  • FIG. 6a is a schematic diagram of a frame structure of a multi-link element provided by an embodiment of the present application.
  • the multi-link element may include an element ID (element ID) field, a length (length) field, an element ID extension (element ID extension) field, a multi-link control (multi-link control) field, a media Sync delay timer threshold (mediumSyncDelay timer threshold) field, optional subelement (optional subelements) field, etc.
  • the media synchronization delay timing threshold field is used to indicate the first value.
  • the indication information may be located in an EHT operation element.
  • FIG. 6b is a schematic diagram of a frame structure of an EHT operation element provided by an embodiment of the present application.
  • the EHT operation element may include an element ID (element ID) field, a length (length) field, an element ID extension (element ID extension) field, and a media synchronization delay timer threshold (mediumSyncDelay Timer Threshold) field, etc. .
  • the media synchronization delay timing threshold field is used to indicate the first value.
  • a new information unit may also be defined to carry the indication information.
  • This new information element is used to carry the configuration parameters of the non-STR MLD.
  • the new information element may be referred to as a non-STR MLD parameter set element. It is understandable that the new information unit may have other names, which are not limited in this embodiment of the present application.
  • FIG. 6c is a schematic diagram of a frame structure of a non-STR MLD parameter set element provided by an embodiment of the present application.
  • the non-STR MLD parameter set element may include an element ID (element ID) field, a length (length) field, an element ID extension (element ID extension) field, and a media synchronization delay timer threshold (mediumSyncDelay timer). threshold) field, etc.
  • the media synchronization delay timing threshold field is used to indicate the first value.
  • the first multi-link device may start a media synchronization delay timer on the second link.
  • the first multi-link device may use a more conservative channel access mechanism on the second link.
  • the more conservative signal access mechanism includes but is not limited to: 1) Using a lower energy detection threshold (here refers to an ED threshold lower than -62dBm) to determine whether the channel is busy. 2) RTS frames must be sent to test channel availability.
  • the number of trials (or the number of times of sending an RTS frame) can only be one, or a limited number of times.
  • the operation of the first multi-link device may either not start the media synchronization delay timer on the second link;
  • the media synchronization delay timer is started on the road, and the embodiment of the present application may set the operation of the first multi-link device when the length of the first PPDU is equal to the first value according to the actual situation.
  • the first multi-link device may determine the initial value of the media synchronization delay timer corresponding to the length of the first PPDU. value, and then start the media synchronization delay timer on the second link. It is understandable that the initial value of the media synchronization delay timer started by the first multi-link device on the second link is the initial value corresponding to the determined length of the first PPDU.
  • the mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer may be specified in the standard protocol.
  • the second multi-link device before the first multi-link device sends the first PPDU on the first link, the second multi-link device sends the first indication information, and accordingly, the first multi-link device receives the first indication information, and the first multi-link device sends the first indication information.
  • An indication message is used to indicate the mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer.
  • the first multi-link device determines the energy detection threshold corresponding to the length of the first PPDU, and performs a When channel contention is performed on the second link, the energy detection threshold used in the CCA operation is set to the threshold value corresponding to the length of the first PPDU.
  • the mapping relationship between the length of the PPDU and the energy detection threshold may be specified in the standard protocol. Or, before the first multi-link device sends the first PPDU on the first link, the second multi-link device sends the second indication information, and accordingly, the first multi-link device receives the second indication information, and the first multi-link device sends the second indication information.
  • the second indication information is used to indicate the mapping relationship between the length of the PPDU and the energy detection threshold.
  • the above-mentioned first indication information and the above-mentioned second indication information may be one indication information, that is, one indication information simultaneously indicates the mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer, and the mapping relationship between PPDU length and energy detection threshold.
  • the above-mentioned first indication information and the above-mentioned second indication information are carried in one frame.
  • the CCA adopts The energy detection threshold is set to -62dBm, or RTS frames are not required to be used for channel protection/channel availability testing on another link, thereby improving the channel access efficiency or channel access efficiency of non-STR MLD on another link. increase the access success rate, or improve the channel access opportunity of the non-STR MLD on another link.
  • the above-mentioned "length of the first PPDU” can be replaced with "the length of a medium access control (medium access control, MAC) frame in the first PPDU (unit is bytes or bits)".
  • the above step S301 can be replaced with: when the length of the MAC frame in the first PPDU sent by the first multi-link device on the first link is less than or equal to the second value, the first multi-link device is in the second The media synchronization delay timer is not enabled on the link, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the channel access methods provided in the first embodiment and the second embodiment can also be applied to a scenario of a single link and multiple access channels. Taking two channels as an example, it is assumed that the AP can use two channels for channel access, but can only complete access on one of the channels at a time, and cannot access two channels at the same time. Specifically, the AP performs channel contention on a primary channel such as the first channel. When the primary channel is busy, the AP can switch to another channel (such as the second channel) for channel contention, and use the second channel for channel contention. After backoff to 0, transmission is performed on this second channel.
  • a primary channel such as the first channel.
  • the AP can switch to another channel (such as the second channel) for channel contention, and use the second channel for channel contention. After backoff to 0, transmission is performed on this second channel.
  • the embodiment of the present application proposes: when the AP sends a short frame (for example, an RTS frame, a CTS frame, a block acknowledgement (BA) frame, a BSR frame on the second channel frame, BQR frame, PS-Poll frame, NDP frame, etc.), the AP does not start a timer on the first channel.
  • the timer may be a media synchronization delay timer.
  • the embodiment of the present application further proposes: the AP sends the first PPDU on the second channel; when the PPDU length of the first PPDU is less than or equal to the first value, the AP does not enable media synchronization on the first channel Delay timer.
  • the fact that the AP does not start the timer on the first channel can be understood as (which can be described as): when the AP performs channel competition on the first channel, the energy detection threshold used by the CCA operation is the first threshold; or, the AP After backing off to 0 on the first channel, it is allowed to directly send other frames except RTS and MU-RTS frames. In other words, the AP does not send RTS/MU-RTS frames after backing off to 0 on the first channel.
  • the first threshold may be -62dBm.
  • the second channel in this embodiment of the present application is equivalent to the first link in the foregoing first and second embodiments, and the first channel in this embodiment of the present application is equivalent to the foregoing first and second embodiments. the second link.
  • the channel access method provided in the embodiments of the present application can also be applied to the scenarios of single link and multiple access channels, which expands the scenarios of the method and can also improve the channel access efficiency or channel access efficiency of the AP on the first channel. Access success rate.
  • the third embodiment of the present application provides a method for determining the initial duration of a media synchronization delay timer.
  • the initial duration of the media synchronization delay timer is determined by the length of the frame sent on the first link (or the second channel).
  • FIG. 7 is a schematic flowchart of a method for determining an initial duration of a media synchronization delay timer provided by an embodiment of the present application. As shown in FIG. 7 , the method for determining the initial duration of the media synchronization delay timer includes but is not limited to the following steps:
  • the second multilink device sends first indication information, where the first indication information is used to indicate the mapping relationship between the length of the PPDU/byte length and the initial value (or initial duration) of the media synchronization delay timer.
  • the second multi-link device may be an AP MLD, and the AP MLD has the STR capability.
  • the link through which the AP MLD sends the first indication information may be the first link or another link, which is not limited in this embodiment of the present application.
  • the above-mentioned first indication information may be used to indicate the mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer.
  • FIG. 8 is a schematic diagram of a mapping relationship between a PPDU length and an initial value of a media synchronization delay timer provided by an embodiment of the present application.
  • the length of the PPDU is in the range of 0 to 100us (microseconds) (ie interval [0,100us], or interval (0,100us), or interval (0,100us], or interval [0,100us))
  • the media The initial value of the synchronization delay timer is 0ms.
  • the media synchronization delay timer When the length of the PPDU is in the range of 100us to 1ms (that is, the interval [100us, 1000us], or the interval (100us, 1000us), or the interval (100us, 1000us], or the interval [100us, 1000us)), the media synchronization delay timer The initial value is 3ms. When the length of the PPDU is greater than or equal to 1ms, the initial value of the media synchronization delay timer is 6ms.
  • mapping relationship shown in FIG. 8 can be summarized as shown in Table 1 below.
  • mapping relationships shown in FIG. 8 and Table 1 are only examples, and in practical applications, the mapping relationships may be determined according to actual application scenarios.
  • the initial value of the media synchronization delay timer is 0ms; when the length of the PPDU is greater than or equal to 50us and less than or equal to 200us, the initial value of the media synchronization delay timer is 1ms;
  • the initial value of the media synchronization delay timer is 3ms; when the PPDU length is greater than or equal to 500us, the initial value of the media synchronization delay timer is 5ms. This embodiment of the present application does not limit this.
  • the foregoing first indication information may include an array.
  • the array (0,100,0) indicates that when the length of the PPDU is in the range of 0 to 100us, the initial value of the media synchronization delay timer is 0ms; the array (100,1000,3) indicates that the length of the PPDU is in the range of 100us to 1ms. , the initial value of the media synchronization delay timer is 3ms; array (1000, maximum PPDU length, 6), indicating that when the PPDU length is within the range of 1ms to the maximum PPDU length, the initial value of the media synchronization delay timer is 6ms.
  • the maximum PPDU length is specified by the standard protocol.
  • the above-mentioned first indication information may include two fields, the first field is used to determine N intervals, and the second field is used to indicate the media synchronization delay timer corresponding to each interval in the N intervals. initial value.
  • the first field may include N+1 subfields, the values of the N+1 subfields increase monotonically, and the values of two adjacent subfields may determine an interval, so N+1 subfields may determine N an interval.
  • the value of the first subfield is 0; the value of the N+1th subfield is the maximum PPDU length, or a value larger than the maximum PPDU length, such as 6ms.
  • the first subfield (or the N+1th subfield) may not be carried in the first field.
  • the second field includes N subfields, and the value of one subfield represents the initial value of the media synchronization delay timer corresponding to one interval.
  • the first multilink device receives the first indication information.
  • the first multi-link device determines, according to the length of the first PPDU sent on the first link, an initial value of the media synchronization delay timer corresponding to the length of the first PPDU, where the initial value is used to determine the second Whether the media synchronization delay timer is enabled on the link.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the first multi-link device may be a non-AP MLD, and the non-AP MLD has a non-STR capability.
  • the first multilink device may determine the first multilink device according to the mapping relationship between the PPDU length indicated by the first indication information and the initial value (or initial duration) of the media synchronization delay timer, and the PPDU length of the first PPDU.
  • the initial value (or initial duration) of the media synchronization delay timer corresponding to the PPDU length of a PPDU.
  • the mapping relationship is shown in Table 1 above. Assuming that the length of the first PPDU is 200us, the initial value (or initial duration) of the media synchronization delay timer is 3ms.
  • the first multi-link device determines whether to enable the media synchronization delay timer on the second link according to the initial value (or initial duration) of the media synchronization delay timer corresponding to the length of the first PPDU. device.
  • the first multi-link device does not start the media synchronization delay timer on the second link. If the initial value (or initial duration) of the media synchronization delay timer is greater than 0, the first multi-link device starts the media synchronization delay timer on the second link, and the initial value of the media synchronization delay timer is The value/initial duration is the value determined in the above step S404.
  • the first multi-link device when the first multi-link device starts the mediumSyncDelay timer on the second link, it can be understood (or can be described as): during the period of time counted by the mediumSyncDelay timer, the first multi-link device can start the mediumSyncDelay timer on the second link.
  • a more conservative channel access mechanism is used on the link.
  • a more conservative signal access mechanism includes but is not limited to: 1) Using a lower energy detection threshold (here refers to an ED threshold lower than -62dBm) to determine whether the channel is busy. 2) RTS frames must be sent to test channel availability.
  • the number of trials (or the number of times of sending an RTS frame) can only be one, or a limited number of times.
  • the first multi-link device does not start the mediumSyncDelay timer on the second link, which can be understood as (or can be described as): when the first multi-link device performs channel contention on the second link, the CCA operation adopts the
  • the energy detection threshold is the first threshold; or, after the first multi-link device backs off to 0 on the second link, it is allowed to directly send other frames except the RTS and MU-RTS frames.
  • the first threshold may be -62dBm.
  • the method for determining the initial duration of the media synchronization delay timer may also be applied to a scenario of a single link and multiple access channels.
  • the first channel in the scenario of single link and multiple access channels is equivalent to the above-mentioned second link
  • the second channel in the scenario of single link and multiple access channels is equivalent to the above-mentioned first link, It will not be repeated here.
  • the first indication information is used to indicate the mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer, so that the first multi-link device can make the first multi-link device according to this mapping relationship and the first
  • the length of the first PPDU sent on a link determines the initial value of the media synchronization delay timer corresponding to the length of the first PPDU, and when the initial value is equal to 0, the mediumSyncDelay timer is not started on the second link , when the initial value is greater than 0, start the mediumSyncDelay timer on the second link.
  • Different PPDU lengths correspond to different initial values of the mediumSyncDelay timer, which makes the setting of the mediumSyncDelay timer more flexible and can improve the channel access efficiency.
  • the mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer may be specified in a standard protocol.
  • the method for determining the initial duration of the media synchronization delay timer shown in FIG. 7 may not include steps S301 and S302. That is, the method for determining the initial duration of the media synchronization delay timer may include step S303.
  • Embodiment 4 of the present application provides a method for determining an energy detection threshold in a CCA process.
  • the method for determining the energy detection threshold in the CCA process determines the ED threshold used in the CCA process when backoff is performed on the second link during the mediumSyncDelay period by the length of the frame sent on the first link (or the second channel). the size of.
  • FIG. 9 is a schematic flowchart of a method for determining an energy detection threshold in a CCA process provided by an embodiment of the present application. As shown in Figure 9, the method for determining the energy detection threshold in the CCA process includes but is not limited to the following steps:
  • the second multi-link device sends second indication information, where the second indication information is used to indicate the mapping relationship between the length of the PPDU and the energy detection threshold.
  • the second multi-link device may be an AP MLD, and the AP MLD has the STR capability.
  • the link through which the AP MLD sends the second indication information may be the first link or another link, which is not limited in this embodiment of the present application.
  • the above-mentioned second indication information may be used to indicate the mapping relationship between the length of the PPDU and the energy detection threshold.
  • FIG. 10 is a schematic diagram of a mapping relationship between a PPDU length and an energy detection threshold provided by an embodiment of the present application.
  • the energy The detection threshold is -62dBm.
  • the energy detection threshold is -72dBm.
  • the energy detection threshold is -82dBm.
  • mapping relationship shown in FIG. 10 can be summarized as shown in Table 2 below.
  • mapping relationships shown in FIG. 10 and Table 2 are only examples, and in practical applications, the mapping relationships may be determined according to actual application scenarios.
  • the energy detection threshold is -62dBm
  • the energy detection threshold is -67dBm
  • the PPDU length is greater than or equal to 200us and less than or equal to At 500us
  • the energy detection threshold is -72dBm
  • the energy detection threshold is -82dBm. This embodiment of the present application does not limit this.
  • the foregoing second indication information may include an array.
  • the array (0,100,-62) indicates that when the PPDU length is in the range of 0 to 100us, the energy detection threshold is -62dBm;
  • the array (100,1000,-72) indicates that when the PPDU length is in the range of 100us to 1ms, the energy detection threshold is -62dBm;
  • the detection threshold is -72dBm;
  • the array (1000, the maximum PPDU length, -82) indicates that when the PPDU length is within the range of 1ms to the maximum PPDU length, the energy detection threshold is -62dBm.
  • the maximum PPDU length is specified by the standard protocol.
  • the above-mentioned second indication information may include two fields, the first field is used to determine N intervals, and the second field is used to indicate the energy detection threshold corresponding to each interval in the N intervals.
  • the first field may include N+1 subfields, the values of the N+1 subfields increase monotonically, and the values of two adjacent subfields may determine an interval, so N+1 subfields may determine N an interval.
  • the value of the first subfield is 0; the value of the N+1th subfield is the maximum PPDU length, or a value larger than the maximum PPDU length, such as 6ms.
  • the first subfield (or the N+1th subfield) may not be carried in the first field.
  • the second field includes N subfields, and the value of one subfield represents an energy detection threshold corresponding to an interval.
  • the first multilink device receives the second indication information.
  • the first multi-link device determines, according to the length of the first PPDU sent on the first link, an energy detection threshold corresponding to the length of the first PPDU, where the energy detection threshold is used to determine whether the first PPDU is sent on the second link. Start the media synchronization delay timer.
  • the first multi-link device may be a non-AP MLD, and the non-AP MLD has a non-STR capability.
  • the first multilink device may determine the energy detection threshold corresponding to the length of the first PPDU according to the mapping relationship between the length of the PPDU indicated by the second indication information and the energy detection threshold and the length of the first PPDU. For example, the mapping relationship is shown in Table 2 above. Assuming that the length of the first PPDU is 200us, the energy detection threshold is -72dBm.
  • the first multi-link device determines whether to start the media synchronization delay timer on the second link according to an energy detection threshold corresponding to the length of the first PPDU. Specifically, if the energy detection threshold determined in the above step S403 is equal to -62dBm, the first multi-link device does not start the media synchronization delay timer on the second link. If the energy detection threshold determined in the above step S403 is less than -62dBm, the first multi-link device starts the media synchronization delay timer on the second link.
  • the energy detection threshold used by the CCA is set to the energy detection threshold corresponding to the length of the first PPDU (that is, the energy detection threshold determined in step S504 above).
  • the first multi-link device starts the mediumSyncDelay timer on the second link, which can be understood (or can be described as): during the mediumSyncDelay period, the first multi-link device can use a more conservative method on the second link.
  • channel access mechanism includes but is not limited to: 1) Using a lower energy detection threshold (here refers to an ED threshold lower than -62dBm) to determine whether the channel is busy. 2) RTS frames must be sent to test channel availability.
  • the number of trials (or the number of times of sending an RTS frame) can only be one, or a limited number of times.
  • the first multi-link device does not start the mediumSyncDelay timer on the second link, which can be understood as (or can be described as): when the first multi-link device performs channel contention on the second link, the CCA operation adopts the
  • the energy detection threshold is the first threshold; or, after the first multi-link device backs off to 0 on the second link, it is allowed to directly send other frames except the RTS and MU-RTS frames.
  • the first threshold may be -62dBm.
  • the method for determining the energy detection threshold in the CCA process can also be applied to a scenario of a single link and multiple access channels.
  • the first channel in the scenario of single link and multiple access channels is equivalent to the above-mentioned second link
  • the second channel in the scenario of single link and multiple access channels is equivalent to the above-mentioned first link
  • the second indication information is used to indicate the mapping relationship between the length of the PPDU and the energy detection threshold, so that the first multi-link device sends the length of the first PPDU on the first link according to the mapping relationship and the first link. , determine the energy detection threshold corresponding to the length of the first PPDU, and when the energy detection threshold is equal to -62dBm, do not start the mediumSyncDelay timer on the second link, when the energy detection threshold is less than -62dBm, on the second link Start the mediumSyncDelay timer.
  • Different PPDU lengths correspond to different energy detection thresholds, so that the channel access mechanism on the second link is more flexible, and the channel access efficiency can be improved.
  • the mapping relationship between the PPDU length and the energy detection threshold may be specified in a standard protocol.
  • the method for determining the energy detection threshold in the CCA process shown in FIG. 9 may not include steps S401 and S402. That is, the method for determining the energy detection threshold in the CCA process may include step S403.
  • the first indication information in the foregoing Embodiment 3 and the second indication information in the foregoing Embodiment 4 may be the same indication information, or the first indication information and the second indication information are carried in the same frame. Therefore, the foregoing third embodiment and the foregoing fourth embodiment may be combined into one embodiment.
  • the second multi-link device sends indication information, the indication information is used to indicate the mapping relationship between the PPDU length and the initial value (or initial duration) of the media synchronization delay timer, and the relationship between the PPDU length and the energy detection threshold
  • the first multi-link device receives the indication information; the first multi-link device sends the first PPDU on the first link; the first multi-link device determines the first PPDU according to the length of the first PPDU The initial value of the media synchronization delay timer corresponding to the length of a PPDU, and the energy detection threshold corresponding to the length of the first PPDU.
  • the first multi-link device may also determine whether to use the second link according to the energy detection threshold corresponding to the length of the first PPDU or the initial value of the media synchronization delay timer corresponding to the length of the first PPDU. Whether to enable the media synchronization delay timer on the road.
  • the communication device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • FIG. 11 is a schematic structural diagram of a first multi-link device provided by an embodiment of the present application.
  • the first multi-link device includes: a transceiver unit 11 and a processing unit 12 .
  • the processing unit 12 is configured to, when the length of the first PPDU sent by the first multi-link device on the first link is less than or equal to the first value, when media synchronization is not enabled on the second link delay timer, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the above-mentioned processing unit 12 is specifically configured to set the energy detection threshold used in the CCA operation as the first threshold when performing channel competition on the second link.
  • the above-mentioned transceiver unit 11 is configured to send frames other than RTS and MU-RTS frames after backing off to 0 on the second link.
  • the first threshold may be -62dBm.
  • first multi-link device in this design can correspondingly execute the foregoing second embodiment, and the above-mentioned operations or functions of each unit in the first multi-link device are respectively for realizing the first multi-link in the foregoing second embodiment. Corresponding operations of the link device are not repeated here for brevity.
  • the processing unit 12 is configured to, when the type of the first frame sent by the first multi-link device on the first link is the first type, the first multi-link device does not The media synchronization delay timer is started, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the above-mentioned processing unit 12 is specifically configured to set the energy detection threshold used in the CCA operation as the first threshold when performing channel competition on the second link.
  • the above-mentioned transceiver unit 11 is further configured to send frames other than RTS and MU-RTS frames after backing off to 0 on the second link.
  • the first threshold may be -62dBm.
  • first multi-link device in this design can correspondingly execute the foregoing first embodiment, and the above-mentioned operations or functions of each unit in the first multi-link device are respectively for realizing the first multi-link in the foregoing embodiment 1. Corresponding operations of the link device are not repeated here for brevity.
  • the transceiver unit 11 is used to receive first indication information, where the first indication information is used to indicate the mapping relationship between the length of the PPDU and the initial value of the media synchronization delay timer; the processing unit 12 is used to The length of the first PPDU sent on the first link, to determine the initial value of the media synchronization delay timer corresponding to the length of the first PPDU, and the initial value is used to determine whether to enable the media synchronization on the second link Delay timer.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the processing unit 12 is further configured to determine whether to enable the media synchronization delay timer on the second link according to the initial value of the media synchronization delay timer corresponding to the length of the first PPDU.
  • the above processing unit 12 is specifically configured to: if the determined initial value of the media synchronization delay timer is equal to 0, do not start the media synchronization delay timer on the second link; if the determined initial value of the media synchronization delay timer is equal to 0 If the initial value of the media synchronization delay timer is equal to 0, the media synchronization delay timer is started on the second link.
  • first multi-link device in this design can correspondingly execute the foregoing third embodiment, and the above-mentioned operations or functions of each unit in the first multi-link device are respectively for realizing the first multi-link in the foregoing third embodiment. Corresponding operations of the link device are not repeated here for brevity.
  • the transceiver unit 11 is used to receive second indication information, the second indication information is used to indicate the mapping relationship between the length of the PPDU and the energy detection threshold; the processing unit 12 is used to transmit according to the first link.
  • the length of the first PPDU is determined, and the initial value of the media synchronization delay timer corresponding to the length of the first PPDU is determined.
  • the communication device cannot transmit and receive simultaneously on the first link and the second link.
  • the above processing unit 12 is further configured to determine whether to enable the media synchronization delay timer on the second link according to the energy detection threshold corresponding to the length of the first PPDU.
  • the above-mentioned processing unit 12 is specifically configured to: if the determined energy detection threshold is equal to -62dBm, the first multi-link device does not start the media synchronization delay timer on the second link; The energy detection threshold is less than -62dBm, then the first multi-link device starts the media synchronization delay timer on the second link.
  • first multi-link device in this design can correspondingly execute the foregoing fourth embodiment, and the above operations or functions of each unit in the first multi-link device are respectively to implement the first multi-link in the foregoing fourth embodiment. Corresponding operations of the link device are not repeated here for brevity.
  • FIG. 12 is a schematic structural diagram of a second multi-link device provided by an embodiment of the present application.
  • the second multi-link device includes: a processing unit 21 and a transceiver unit 22 .
  • the processing unit 21 is used to generate first indication information, where the first indication information is used to indicate the mapping relationship between the length of the PPDU and the initial value (or initial duration) of the media synchronization delay timer; the transceiver unit 22, for sending the first indication information.
  • the second multi-link device in this design can correspondingly execute the foregoing third embodiment, and the above-mentioned operations or functions of each unit in the second multi-link device are to implement the second multi-link device in the foregoing third embodiment, respectively. Corresponding operations of the link device are not repeated here for brevity.
  • the processing unit 21 is used to generate second indication information, where the second indication information is used to indicate the mapping relationship between the PPDU length and the energy detection threshold; the transceiver unit 22 is used to send the second indication information .
  • the second multi-link device in this design can correspondingly execute the foregoing Embodiment 4, and the above operations or functions of each unit in the second multi-link device are to implement the second multi-link device in the foregoing Embodiment 4 respectively. Corresponding operations of the link device are not repeated here for brevity.
  • the first multi-link device and the second multi-link device according to the embodiments of the present application have been described above, and possible product forms of the first and second multi-link devices are described below. It should be understood that any product that has the function of the first multi-link device described in FIG. 11 and any product that has the function of the second multi-link device described in FIG. 12 falls into the category. The protection scope of the embodiments of the present application. It should also be understood that the following description is only an example, and the product forms of the first multi-link device and the second multi-link device in the embodiments of the present application are not limited thereto.
  • the first multi-link device and the second multi-link device described in the embodiments of the present application may be implemented by a general bus architecture.
  • a first multilink device includes a processor and a transceiver in interconnected communication with the processor.
  • the processor is configured to disable media synchronization delay timing on the second link when the length of the first PPDU sent by the first multi-link device on the first link is less than or equal to the first value.
  • a device wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is configured to send the first PPDU on the first link;
  • the processor is configured to not start the media synchronization delay timer on the second link when the type of the first frame sent by the first multi-link device on the first link is the first type, The first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is used to receive first indication information, and the first indication information is used to indicate the mapping relationship between the length of the PPDU and the initial value of the media synchronization delay timer; the processor is used to The length of the first PPDU sent on the second link determines the initial value of the media synchronization delay timer corresponding to the length of the first PPDU, and the initial value is used to determine whether to enable the media synchronization delay timer on the second link. .
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is used to receive second indication information, and the second indication information is used to indicate the mapping relationship between the PPDU length/byte length and the energy detection threshold;
  • the length of the first PPDU is determined, and the initial value of the media synchronization delay timer corresponding to the length of the first PPDU is determined.
  • the communication device cannot transmit and receive simultaneously on the first link and the second link.
  • a second multilink device includes a processor and a transceiver in interconnected communication with the processor.
  • the processor is used to generate first indication information, and the first indication information is used to indicate the mapping relationship between the PPDU length and the initial value (or initial duration) of the media synchronization delay timer; the transceiver is used for Send the first indication information.
  • the processor is configured to generate second indication information, where the second indication information is used to indicate the mapping relationship between the PPDU length and the energy detection threshold; the transceiver is used to send the second indication information.
  • the first multi-link device and the second multi-link device described in the embodiments of the present application may be implemented by chips.
  • the chip implementing the first multi-link device includes a processing circuit and an input and output interface that is internally connected and communicated with the processing circuit.
  • the I/O interface is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used to disable media synchronization on the second link when the length of the first PPDU is less than or equal to the first value A delay timer, wherein the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the input and output interface is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used for when the type of the first frame sent by the first multi-link device on the first link is the first type When the first multi-link device does not start the media synchronization delay timer on the second link, the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is used to receive the first indication information
  • the input and output interface is used to receive the first indication information from the transceiver, and send the first indication information to the processing circuit for processing to obtain the first indication
  • the mapping relationship between the length of the PPDU indicated by the information and the initial value (or initial duration) of the media synchronization delay timer; the processing circuit is used to determine the first PPDU according to the length of the first PPDU sent on the first link
  • the initial value of the media synchronization delay timer corresponding to the length of , where the initial value is used to determine whether to start the media synchronization delay timer on the second link.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the transceiver is used to receive the second indication information
  • the input and output interface is used to receive the second indication information from the transceiver, and send the second indication information to the processing circuit for processing to obtain the second indication
  • the mapping relationship between the length of the PPDU indicated by the information and the energy detection threshold; the processing circuit is used to determine the energy detection threshold corresponding to the length of the first PPDU according to the length of the first PPDU sent on the first link.
  • the detection threshold is used to determine whether to start the media synchronization delay timer on the second link.
  • the first multi-link device cannot transmit and receive simultaneously on the first link and the second link.
  • the chip implementing the second multi-link device includes a processing circuit and an input and output interface that is internally connected and communicated with the processing circuit.
  • the input and output interface is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used to generate first indication information, and the first indication information is used to indicate the length of the PPDU and the media synchronization delay timer.
  • the input and output interface is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used to generate second indication information, where the second indication information is used to indicate the difference between the length of the PPDU and the energy detection threshold.
  • a mapping relationship the input and output interface is used for sending the second indication information to the transceiver, and the transceiver is used for sending the second indication information.
  • the first multi-link device and the second multi-link device described in the embodiments of the present application may also be implemented using the following: one or more FPGAs (Field Programmable Gate Arrays), A PLD (Programmable Logic Device), controller, state machine, gate logic, discrete hardware components, any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • FPGAs Field Programmable Gate Arrays
  • PLD Programmable Logic Device
  • controller state machine
  • gate logic discrete hardware components
  • discrete hardware components any other suitable circuit, or any combination of circuits capable of performing the various functions described throughout this application.
  • Embodiments of the present application further provide a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are executed on a computer, the computer can execute the method in any of the foregoing embodiments.
  • Embodiments of the present application also provide a computer program product, which, when the computer program product runs on a computer, causes the computer to execute the method in any of the foregoing embodiments.
  • An embodiment of the present application further provides a communication device, which can exist in the form of a chip, and the structure of the device includes a processor and an interface circuit, and the processor is used to communicate with other devices through a receiving circuit, so that the device performs the above-mentioned The method of any of the embodiments.
  • the steps of the methods or algorithms described in conjunction with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), electrically erasable programmable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage medium may reside in an ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • the functions described in this application may be implemented in hardware, software, firmware, or any combination thereof.
  • the functions When implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Abstract

本申请涉及无线通信领域,比如应用于支持802.11be标准的无线局域网中,尤其涉及一种多链路设备的信道接入方法及相关装置。该方法包括:当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。采用本申请实施例,可以在non-STR MLD处于盲状态/自干扰状态的情况下,提高信道接入的效率。

Description

多链路设备的信道接入方法及相关装置
本申请要求于2020年9月4日提交中国国家知识产权局、申请号为202010924423.8、申请名称为“多链路设备的信道接入方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种多链路设备的信道接入方法及相关装置。
背景技术
随着无线通信技术的发展,越来越多的无线通信设备支持多链路通信,例如同时在2.4GHz,5GHz以及6GHz频段上进行通信,或者同时在同一频段的不同信道上进行通信等。这种无线通信设备通常称为多链路设备(multi-link device,MLD),显然,多链路设备可采用多条链路并行通信使得传输的速率得到大幅度提升。
虽然多链路设备可通过多条链路并行通信来提升传输速率,但极高吞吐率(extremely high throughput,EHT)多链路设备所支持的多个频段之间的频率间隔较近时,在一个频段上发送信号会影响在另一个频段上接收信号。比如,EHT多链路设备在链路1上进行发送,由于链路1与链路2之间的频率间隔较小,因此链路1上的发送信号会对链路2产生信道干扰,影响链路2上的信道接入和接收信息,因此这个设备不能独立地在多个频段同时执行发送和接收操作,以避免互相干扰。根据目前802.11TGbe标准组的进展,定义了EHT多链路设备可具备能够同时收发(Simultaneous transmitting and receiving,STR)能力,以及可具备不能同时收发(Not Simultaneous transmitting and receiving,non-STR)能力。
具备non-STR能力的MLD(简称non-STR MLD)在一条链路上发送时,因为干扰影响了其他链路上的空闲信道评估(clear channel assessment,CCA),而处于盲状态(blindness period或称作deaf period),盲状态是指无法侦听信道上的任何信息或者侦听不到信道上的任何信息。所以,当non-STR MLD在某些链路上处于盲状态时,non-STR MLD在这些链路上如何进行信道接入就成为了亟待解决的问题。
发明内容
本申请实施例提供一种多链路设备的信道接入方法及相关装置,可以在non-STR MLD处于盲状态/自干扰状态的情况下,提高信道接入的效率。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请提供一种多链路设备的信道接入方法,该方法包括:当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
其中,第一多链路设备在第二链路上不开启媒体同步时延计时器包括:第一多链路设备在第二链路上进行信道竞争时,将空闲信道评估CCA所采用的能量检测门限设置为第一门限,该第一门限为-62dBm;或者,第一多链路设备在该第二链路上的退避计数器退避到0后,允许发送除RTS帧和MU-RTS帧之外的其他帧。
本方案在一条链路上发送的PPDU的长度小于或等于某个值时,在另一条链路上不开启 媒体同步时延计时器,或在另一条链路上进行信道竞争时,将CCA所采用的能量检测门限设置为-62dBm,或在另一条链路上无需采用RTS帧来进行信道保护/信道可用性的试探,从而提高第一多链路设备在另一条链路上的信道接入效率或信道接入成功率,或提升第一多链路设备在另一链路上的信道接入机会。
结合第一方面,在一种可能的实现方式中,该方法还包括:第一多链路设备接收第一值。该第一值可以携带在信标帧中,还可以携带在关联响应帧或重关联响应帧中。
可选的,该第一值可以携带在多链路元素,或极高吞吐率操作元素,或新定义的一个元素中。
结合第一方面,在一种可能的实现方式中,该方法还包括:当该第一PPDU的长度大于该第一值时,第一多链路设备确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,并在该第二链路上以该初始值开启该媒体同步时延计时器。
可选的,该方法还包括:第一多链路设备接收第一指示信息,该第一指示信息用于指示物理协议数据单元(physical layer protocol data unit,PPDU)长度与媒体同步时延计时器的初始值之间的映射关系。
本方案根据第一PPDU的长度,来确定媒体同步时延计时器的初始值,使得媒体同步时延计时器的设置更灵活。
结合第一方面,在一种可能的实现方式中,该方法还包括:当该第一PPDU的长度大于该第一值时,第一多链路设备在该第二链路上开启该媒体同步延时计时器;在该媒体同步延时计时器计时的时间段内,如果第一多链路设备在该第二链路上进行信道竞争,则将第二链路上CCA所采用的能量检测门限设置为该第一PPDU的长度对应的门限值。
可选的,第一多链路设备在第一链路上发送第一PPDU之前,该方法还包括:第一多链路设备接收第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系。
本方案根据第一PPDU的长度,来确定能量检测门限,使得第二链路上的信道接入机制更灵活,从而提高信道接入效率。
第二方面,本申请提供一种第一多链路设备或第一多链路设备中的芯片,比如Wi-Fi芯片。第一多链路设备可以是non-STR的MLD。该第一多链路设备包括:处理单元用于当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中该第一多链路设备在该第一链路和该第二链路上不能同时收发。
其中,上述处理单元具体用于将第二链路上的空闲信道评估CCA所采用的能量检测门限设置为第一门限,该第一门限为-62dBm。或者,上述第一多链路设备还包括收发单元,该收发单元,用于在该第二链路上的退避计数器退避到0后,发送除RTS帧和MU-RTS帧之外的其他帧。
结合第二方面,在一种可能的实现方式中,上述第一多链路设备还包括收发单元,该收发单元还用于接收第一值。该第一值可以携带在信标帧中,还可以携带在关联响应帧或重关联响应帧中。
可选的,该第一值可以携带在多链路元素,或极高吞吐率操作元素,或新定义的一个元素中。
结合第二方面,在一种可能的实现方式中,上述处理单元还用于:当该第一PPDU的长度大于该第一值时,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,并在该第二链路上以该初始值开启该媒体同步时延计时器。
可选的,上述第一多链路设备还包括收发单元,该收发单元还用于:接收第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值之间的映射关系。
结合第二方面,在一种可能的实现方式中,上述处理单元还用于:当该第一PPDU的长度大于该第一值时,在该第二链路上开启该媒体同步延时计时器;在该媒体同步延时计时器计时的时间段内,如果第一多链路设备在该第二链路上进行信道竞争,则将第二链路上CCA所采用的能量检测门限设置为该第一PPDU的长度对应的门限值。
可选的,上述第一多链路设备还包括收发单元,该收发单元还用于:第一多链路设备接收第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系。
第三方面,本申请提供一种多链路设备的信道接入方法,该方法包括:当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
其中,第一多链路设备在第二链路上不开启媒体同步时延计时器包括:第一多链路设备在第二链路上进行信道竞争时,将空闲信道评估CCA所采用的能量检测门限设置为第一门限,该第一门限为-62dBm;或者,第一多链路设备在该第二链路上的退避计数器退避到0后,允许发送除RTS帧和MU-RTS帧之外的其他帧。
可选的,上述第一帧为以下任一帧时,该第一帧的类型为第一类型:请求发送(request to send,RTS)帧、多用户请求发送(multiple user RTS,MU-RTS)帧、功率节省轮询(Power save-Poll,PS-Poll)帧、CTS帧、状态报告(buffer status report,BSR)帧、带宽查询报告(bandwidth query report,BQR)帧、空数据分组(null data packet,NDP)帧、确认(acknowledge,ACK)帧、(block ACK,BA)块确认帧。
可选的,上述第一帧是请求发送(request to send,RTS)帧或多用户请求发送(multiple user RTS,MU-RTS)帧。如果第一多链路设备在预设时间内未接收到所述第一链路上的允许发送(clear to send,CTS)帧,则第一多链路设备在第二链路上不开启媒体同步时延计时器。
可选的,上述第一帧是功率节省轮询(Power save-Poll,PS-Poll)帧。如果第一多链路设备在预设时间内未接收到所述第一链路上的允许发送PS-Poll帧,则第一多链路设备在第二链路上不开启媒体同步时延计时器。
可选的,上述第一帧是CTS帧。第一多链路设备在第一链路上发送第一PPDU之前,该方法还包括:第一多链路设备在第一链路上接收RTS帧或MU-RTS帧。
可选的,上述第一帧是状态报告BSR帧。第一多链路设备在第一链路上发送第一PPDU之前,该方法还包括:第一多链路设备在第一链路上接收状态报告轮询BSRP触发帧。
可选的,上述第一帧是带宽查询报告BQR帧。第一多链路设备在第一链路上发送第一PPDU之前,该方法还包括:第一多链路设备在第一链路上接收带宽查询报告轮询BQRP触发帧。
可选的,上述第一帧是空数据分组NDP帧。第一多链路设备在第一链路上发送第一PPDU之前,该方法还包括:第一多链路设备在第一链路上接收波束成形报告轮询BFRP触发帧。
可选的,上述第一帧是ACK帧或BA帧。第一多链路设备在第一链路上发送第一PPDU之前,第一多链路设备在第一链路上接收数据帧或管理帧。
第四方面,本申请提供一种第一多链路设备或第一多链路设备中的芯片,比如Wi-Fi芯片。第一多链路设备可以是non-STR的MLD。该第一多链路设备包括:处理单元,用于当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时 收发。
其中,上述处理单元具体用于将第二链路上的空闲信道评估CCA所采用的能量检测门限设置为第一门限,该第一门限为-62dBm。或者,上述第一多链路设备还包括收发单元,该收发单元,用于在该第二链路上的退避计数器退避到0后,发送除RTS帧和MU-RTS帧之外的其他帧。
可选的,上述第一帧为以下任一帧时,该第一帧的类型为第一类型:请求发送(request to send,RTS)帧、多用户请求发送(multiple user RTS,MU-RTS)帧、功率节省轮询(Power save-Poll,PS-Poll)帧、CTS帧、状态报告(buffer status report,BSR)帧、带宽查询报告(bandwidth query report,BQR)帧、空数据分组(null data packet,NDP)帧、确认(acknowledge,ACK)帧、(block ACK,BA)块确认帧。
可选的,上述第一帧是RTS帧或MU-RTS帧。上述处理单元具体用于:当第一多链路设备在预设时间内未接收到该第一链路上的允许发送(clear to send,CTS)帧时,在第二链路上不开启媒体同步时延计时器。
可选的,上述第一帧是PS-Poll帧。上述处理单元具体用于:当第一多链路设备在预设时间内未接收到该第一链路上的允许发送PS-Poll帧,在第二链路上不开启媒体同步时延计时器。
可选的,上述第一帧是CTS帧。所述第一多链路设备还包括收发单元,该收发单元用于:在第一链路上接收RTS帧或MU-RTS帧。
可选的,上述第一PPDU是状态报告BSR帧。所述第一多链路设备还包括收发单元,该收发单元用于:在第一链路上接收状态报告轮询BSRP触发帧。
可选的,上述第一PPDU是带宽查询报告BQR帧。所述第一多链路设备还包括收发单元,该收发单元用于:在第一链路上接收带宽查询报告轮询BQRP触发帧。
可选的,上述第一PPDU是空数据分组NDP帧。所述第一多链路设备还包括收发单元,该收发单元用于:在第一链路上接收波束成形报告轮询BFRP触发帧。
可选的,上述第一PPDU是ACK帧或BA帧。所述第一多链路设备还包括收发单元,该收发单元用于:在第一链路上接收数据帧或管理帧。
第五方面,本申请提供一种媒体同步时延计时器的初始时长确定方法,该方法包括:第一多链路设备接收第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;第一多链路设备根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,该初始值用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
可选的,第一多链路设备根据该第一PPDU的长度对应的媒体同步时延计时器的初始值,确定在第二链路上是否开启该媒体同步时延计时器。
可选的,如果确定出的媒体同步时延计时器的初始值等于0,则第一多链路设备在第二链路上不开启该媒体同步时延计时器。如果确定出的媒体同步时延计时器的初始值等于0,则第一多链路设备在第二链路上以该初始值开启该媒体同步时延计时器。
其中,第一多链路设备在第二链路上开启mediumSyncDelay计时器,可以理解为(或者可以描述为):在mediumSyncDelay计时器计时的这段时间内,第一多链路设备可以在第二链路上采用更为保守的信道接入机制。更为保守的信接入机制包括但不限于:1)采用更低的能量检测门限(这里指比-62dBm更低的ED门限)来判断信道是否繁忙。2)必须发送RTS 帧,来进行信道可用性的试探。
本方案中,不同的PPDU长度/字节长度,对应mediumSyncDelay计时器的不同初始值,使得mediumSyncDelay计时器的设置更灵活,可以提高信道接入效率。
第六方面,本申请提供一种媒体同步时延计时器的初始时长确定方法,该方法包括:第二多链路设备生成并发送第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系。
第七方面,本申请提供一种第一多链路设备或第一多链路设备中的芯片,比如Wi-Fi芯片。第一多链路设备可以是non-STR的MLD。该通信装置包括:收发单元,用于接收第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值之间的映射关系;处理单元,用于根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值。该通信装置在该第一链路和该第二链路上不能同时收发。
可选的,上述处理单元,还用于根据该第一PPDU的长度对应的媒体同步时延计时器的初始值,确定在第二链路上是否开启该媒体同步时延计时器。
可选的,上述处理单元,具体用于:如果确定出的媒体同步时延计时器的初始值等于0,则在第二链路上不开启该媒体同步时延计时器;如果确定出的媒体同步时延计时器的初始值等于0,则在第二链路上开启该媒体同步时延计时器。
第八方面,本申请提供一种第二多链路设备或第二多链路设备中的芯片,比如Wi-Fi芯片。第二多链路设备可以是STR的MLD。该通信装置包括:处理单元,用于生成第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;收发单元,用于发送该第一指示信息。
第九方面,本申请提供一种CCA过程中能量检测门限确定方法,该方法包括:第一多链路设备接收第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系;第一多链路设备在第一链路上发送第一PPDU;第一多链路设备根据该第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的能量检测门限,该能量检测门限用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
可选的,第一多链路设备根据该第一PPDU的长度对应的能量检测门限,确定在第二链路上是否开启该媒体同步时延计时器。
可选的,如果确定出的能量检测门限等于-62dBm,则第一多链路设备在第二链路上不开启该媒体同步时延计时器。如果确定出的能量检测门限小于-62dBm,则第一多链路设备在第二链路上开启该媒体同步时延计时器。
本方案中,不同的PPDU长度/字节长度,对应不同的能量检测门限,使得第二链路上的信道接入机制更灵活,可以提高信道接入效率。
第十方面,本申请提供一种CCA过程中能量检测门限确定方法,该方法包括:第二多链路设备生成并发送第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系。
第十一方面,本申请提供一种第一多链路设备或第一多链路设备中的芯片,比如Wi-Fi芯片。第一多链路设备可以是non-STR的MLD。该通信装置包括:收发单元,用于接收第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系;处理单元,用于根据该第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的能量检测门限,该能量检测门限用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路 设备在该第一链路和该第二链路上不能同时收发。
可选的,上述处理单元,还用于根据该第一PPDU的长度对应的能量检测门限,确定在第二链路上是否开启该媒体同步时延计时器。该通信装置在该第一链路和该第二链路上不能同时收发。
可选的,上述处理单元,具体用于:如果确定出的能量检测门限等于-62dBm,则第一多链路设备在第二链路上不开启该媒体同步时延计时器;如果确定出的能量检测门限小于-62dBm,则第一多链路设备在第二链路上开启该媒体同步时延计时器。
第十二方面,本申请提供一种第二多链路设备或第二多链路设备中的芯片,比如Wi-Fi芯片。第二多链路设备可以是STR的MLD。该通信装置包括:处理单元,用于生成第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系;收发单元,用于发送该第二指示信息。
第十三方面,本申请提供一种第一多链路设备,包括处理器。可选的,还包括收发器。该处理器用于当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中该第一多链路设备在该第一链路和该第二链路上不能同时收发。
在一种可能的设计中,该处理器用于当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
在一种可能的设计中,该收发器用于接收第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;该处理器用于根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值。该通信装置在该第一链路和该第二链路上不能同时收发。
在一种可能的设计中,该收发器用于接收第二指示信息,该第二指示信息用于指示PPDU长度/字节长度与能量检测门限之间的映射关系;该处理器用于根据该第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的能量检测门限,该能量检测门限用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
第十四方面,本申请提供一种第二多链路设备,包括处理器和收发器。该处理器用于生成第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;该收发器用于发送该第一指示信息。
在一种可能的设计中,该处理器用于生成第二指示信息,该第二指示信息用于指示PPDU长度/与能量检测门限之间的映射关系;该收发器用于发送该第二指示信息。
第十五方面,本申请提供一种第一多链路设备,该第一多链路设备可以以芯片的产品形态存在,该第一多链路设备的结构中包括输入输出接口和处理电路。该输入输出接口用于接收代码指令并传输至该处理电路,该处理电路用于当第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中该第一多链路设备在该第一链路和该第二链路上不能同时收发。
在一种可能的设计中,该输入输出接口用于接收代码指令并传输至该处理电路,该处理电路用于当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
在一种可能的设计中,收发机用于接收第一指示信息,该输入输出接口用于从该收发机接收第一指示信息,并将该第一指示信息发送至该处理电路处理,得到该第一指示信息指示的PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;该处理电路用于根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,所述初始值用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
在一种可能的设计中,收发机用于接收第二指示信息,该输入输出接口用于从该收发机接收第二指示信息,并将该第二指示信息发送至该处理电路处理,得到该第二指示信息指示的PPDU长度与能量检测门限之间的映射关系;该处理电路用于根据该第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的能量检测门限,该能量检测门限用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
第十六方面,本申请提供一种第二多链路设备,该第二多链路设备可以以芯片的产品形态存在,该第二多链路设备的结构中包括输入输出接口和处理电路。该输入输出接口用于接收代码指令并传输至该处理电路,该处理电路用于生成第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;该输入输出接口用于将该第一指示信息发送至收发机,该收发机用于发送该第一指示信息。
在一种可能的设计中,该输入输出接口用于接收代码指令并传输至该处理电路,该处理电路用于生成第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系;该输入输出接口用于将该第二指示信息发送至收发机,该收发机用于发送该第二指示信息。
第十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述第一方面、或上述第三方面、或上述第五方面、或上述第七方面、或上述第九方面、或上述第十方面所述的方法。
第十八方面,本申请提供一种包含程序指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、或上述第三方面、或上述第五方面、或上述第七方面、或上述第九方面、或上述第十方面所述的方法。
实施本申请实施例,可以在non-STR MLD处于盲状态/自干扰状态的情况下,提高信道接入的效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的non-AP MLD与AP MLD通信的一示意图;
图2是本申请实施例提供的无线通信系统的一架构示意图;
图3a是本申请实施例提供的多链路设备的一结构示意图;
图3b是本申请实施例提供的多链路设备的另一结构示意图;
图4是本申请实施例提供的多链路设备的信道接入方法的一示意流程图;
图5是本申请实施例提供的多链路设备的信道接入方法的另一示意流程图;
图6a是本申请是实施例提供的多链路元素的帧结构示意图;
图6b是本申请是实施例提供的EHT操作元素的帧结构示意图;
图6c是本申请是实施例提供的non-STR MLD参数集元素的帧结构示意图;
图7是本申请实施例提供的媒体同步时延计时器的初始时长确定方法的示意流程图;
图8是本申请实施例提供的PPDU长度与媒体同步时延计时器的初始值之间的映射关系示意图;
图9是本申请实施例提供的CCA过程中能量检测门限确定方法的示意流程图;
图10是本申请实施例提供的PPDU长度与能量检测门限之间的映射关系示意图;
图11是本申请实施例提供的第一多链路设备的结构示意图;
图12是本申请实施例提供的第二多链路设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为便于理解本申请实施例的提供的多链路设备的信道接入方法,下面将对本申请实施例提供的多链路设备的信道接入方法的系统架构和/或应用场景进行说明。可理解的,本申请实施例描述的系统架构和/或应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例提供一种应用于non-STR MLD中的信道接入方法,该方法可以在non-STR MLD处于盲状态/自干扰状态的情况下,提高信道接入的效率。该多链路设备的信道接入方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现,该通信设备可以是一种支持多条链路并行传输的无线通信设备,例如,该通信设备可以称为多链路设备或多频段设备。相比于仅支持单条链路传输的通信设备来说,多链路设备具有更高的传输效率和更大的吞吐率。
多链路设备包括一个或多个隶属的站点(affiliated STA),隶属的站点是一个逻辑上的站点,可以工作在一条链路或一个频段或一个信道上。其中,隶属的站点可以为接入点(access point,AP)或非接入点站点(non-access point station,non-AP STA)。为描述方便,本申请将隶属的站点为AP的多链路设备称为多链路AP或多链路AP设备或AP多链路设备(AP multi-link device,AP MLD),隶属的站点为non-AP STA的多链路设备称为多链路non-AP或多链路non-AP设备或non-AP多链路设备(non-AP multi-link device,non-AP MLD)。
可选的,一个多链路设备可包括多个逻辑站点,每个逻辑站点工作在一条链路上,但允许多个逻辑站点工作在同一条链路上。
可选的,non-AP MLD中的一个或多个STA可以与AP MLD中的一个或多个AP之间建立关联关系之后进行通信。参见图1,图1是本申请实施例提供的non-AP MLD与AP MLD通信的一示意图。如图1所示,AP MLD包括AP1,AP2,…,APn;non-AP MLD包括STA1,STA2,…,STAn。AP MLD和non-AP MLD可以采用链路1,链路2,…,链路n并行进行通信。non-AP MLD中的STA1与AP MLD中的AP1建立关联关系,non-AP MLD中的STA2与AP MLD中的AP2建立关联关系,non-AP MLD中的STAn与AP MLD中的APn建立关联关系等。
可选的,多链路设备可以遵循IEEE 802.11系列协议实现无线通信,例如,遵循极高吞吐率(extremely high throughput,EHT)的站点,或遵循基于IEEE 802.11be或兼容支持IEEE 802.11be的站点,实现与其他设备的通信。
本申请实施例提供的多链路设备的信道接入方法可以应用于一个节点与一个或多个节点 进行通信的场景中;也可以应用于单用户的上行/下行通信场景,多用户的上行/下行通信场景中;还可以应用于设备到设备(device to device,D2D)的通信场景中。
其中,上述任一节点可以是AP MLD,也可以是non-AP MLD。例如,AP MLD与non-AP MLD进行通信的场景;或者,AP MLD与AP MLD进行通信的场景,或者,non-AP MLD与non-AP MLD进行通信的场景;本申请实施例对此不做限定。
可选的,上述任一场景中存在至少一个节点具备不能同时收发能力,即具备non-STR能力。
可选的,为便于描述,下文以AP MLD与non-AP MLD进行通信的场景为例,对本申请的系统架构进行说明。本申请实施例提供的多链路设备的信道接入方法可以应用于无线局域网(wireless local area network,WLAN)中。参见图2,图2是本申请实施例提供的无线通信系统的一架构示意图。如图2所示,该无线通信系统包括至少一个AP MLD和至少一个non-AP MLD。其中,AP MLD是为non-AP MLD提供服务的多链路设备,non-AP MLD可以与AP MLD之间采用多条链路进行通信。AP MLD中的一个AP可以与non-AP MLD中的一个STA通过一条链路进行通信。可理解的,图2中AP MLD和non-AP MLD的个数,仅是示例性的。可选的,该无线通信系统中包括至少一个MLD具备non-STR能力。
示例性的,多链路设备(这里既可以是non-AP MLD,也可以是AP MLD)为具有无线通信功能的装置,该装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在这些芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,本申请实施例中的non-AP多链路设备具有无线收发功能,可以支持802.11系列协议,可以与AP多链路设备或其他non-AP多链路设备进行通信。例如,non-AP多链路设备是允许用户与AP通信进而与WLAN通信的任何用户通信设备。例如,non-AP多链路设备可以为平板电脑、桌面型、膝上型、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)、手机等可以联网的用户设备,或物联网中的物联网节点,或车联网中的车载通信装置等;non-AP多链路设备还可以为上述这些终端中的芯片和处理系统。AP多链路设备可以为non-AP多链路设备提供服务的装置,可以支持802.11系列协议。例如,AP多链路设备可以为通信服务器、路由器、交换机、网桥等通信实体,或,AP多链路设备可以包括各种形式的宏基站,微基站,中继站等,当然AP多链路设备还可以为这些各种形式的设备中的芯片和处理系统。其中,802.11协议可以为支持802.11be或兼容802.11be的协议。
可理解的,多链路设备可以支持高速率低时延的传输,随着无线局域网应用场景的不断演进,多链路设备还可以应用于更多场景中,比如为智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中智能设备(比如,打印机,投影仪等),车联网中的车联网设备,日常生活场景中的一些基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等)。本申请实施例中对于多链路设备的具体形式不做限定,在此仅是示例性说明。
可选的,参见图3a,图3a是本申请实施例提供的多链路设备的一结构示意图。IEEE 802.11标准关注多链路设备中的802.11物理层(physical layer,PHY)和介质介入控制(medium access control,MAC)层部分。如图3a所示,多链路设备包括的多个STA在低MAC(low MAC)层和PHY层互相独立,在高MAC(high MAC)层也互相独立。参见图3b,图3b是本申请实施例提供的多链路设备的另一结构示意图。如图3b所示,多链路设备中包括的多个STA 在低MAC(low MAC)层和PHY层互相独立,共用高MAC(high MAC)层。当然,Non-AP多链路设备可以是采用高MAC层相互独立的结构,也可以是采用高MAC层共用的结构。同理,AP多链路设备可以是采用高MAC层共用的结构,也可以是采用高MAC层相互独立的结构。本申请实施例对于多链路设备的内部结构示意图并不进行限定,图3a和图3b仅是示例性说明。示例性的,该高MAC层或低MAC层都可以由多链路设备的芯片系统中的一个处理器实现,还可以分别由一个芯片系统中的不同处理模块实现。
示例性的,本申请实施例中的多链路设备可以是单个天线的设备,也可以是多天线的设备。例如,可以是两个以上天线的设备。本申请实施例对于多链路设备包括的天线数目不做限定。在本申请的实施例中,多链路设备可以允许同一接入等级(access category,AC)的业务在不同链路上传输,甚至允许相同的数据包在不同链路上传输;也可以不允许同一接入等级的业务在不同链路上传输,但允许不同接入等级的业务在不同的链路上传输。
多链路设备工作的频段可以包括sub 1GHz、2.4GHz、5GHz、6GHz以及高频60GHz中的一个或多个频段。
对于non-STR MLD而言,当其在一条链路(如链路1)上发送时,由于信道干扰,将导致non-STR MLD对另一条或多条链路(以链路2为例)上的信道状态产生错误的判断,并且会影响non-STR MLD对链路2上的重叠基本服务集(overlapped basic service set,OBSS)帧的接收。该OBSS帧用于站点更新网络分配矢量(network allocation vector,NAV)。所以,non-STR MLD在一条链路上发送结束之前,在其他链路上可能会错过OBSS帧,从而错过NAV的更新,导致non-STR MLD在链路1上发送结束后,在链路2上进行信道竞争并接入信道,在链路2上发送的数据与接收OBSS帧发生碰撞,称为盲问题或自干扰问题。
可理解的,NAV可以理解成一个倒计时计时器,随时间的流逝逐渐减少,当倒计时为0时,则认为介质处于空闲状态。具体地,当一个站点接收到一个帧后,如果该帧的接收地址不是该站点,则该站点可以根据接收到的帧中的持续时间(duration)字段来更新NAV。如果该帧的接收地址是该站点,说明该站点为接收站点,则不可以更新NAV。其中,在更新NAV之前,还可以判断当前帧中duration字段的数值是否大于站点当前的NAV数值,如果大于则更新NAV;反之,如果小于或等于,则不更新NAV。NAV数值从接收帧的结束时刻开始算起的。
为了解决non-STR MLD的盲问题,本申请实施例提出媒体同步时延(mediumSyncDelay)机制。该机制具体为:non-STR MLD在一条线路(如链路1)上进行发送后,需要在另一条链路上开启一个计时器,即mediumSyncDelay计时器。在该mediumSyncDelay计时器所示的这段时间内,non-STR MLD需在链路2上采用更为保守的信道接入机制。其中,更为保守的信接入机制包括但不限于:1)采用更低的能量检测(energy detection,ED)门限来判断信道是否繁忙。在信道接入机制中,通常采用-62dBm作为能量检测门限。若检测到信道上的能量超过此门限,即超过-62dBm,则认为信道繁忙。当采用比-62dBm更低的ED门限时,CCA检测中更远处的信号会使得信道繁忙,因此信道接入更为保守。其中,所述更低的能量检测门限可以是-82dBm或-72dBm等。2)必须发送请求发送(request to send,RTS)帧,来进行信道可用性的试探。可选的,进行试探的次数(或发送RTS帧的次数)只能是1次,或者是有限次。
在上述媒体同步时延机制中,不管non-STR MLD在链路1上发送的是哪种帧,只要在链路上1进行了发送,就会使得non-STR MLD在链路2上采用更为保守的信道接入机制。然而, non-STR MLD在链路1上发送的帧多种多样,可能是控制帧、数据帧或管理帧,数据帧又可能是长帧、或短帧。故,当non-STR MLD在链路1上发送的帧的长度较短时,non-STR MLD在链路2上处于盲状态的时间相应也较短,non-STR MLD在链路2上错过重要信息(如NAV)的可能性(或概率)较低。因此,该媒体同步时延机制中只要non-STR MLD在链路1上进行了发送,就必须限制non-STR MLD在链路2上的信道接入,将导致链路2上的信道接入效率低、或信道接入成功率低、或信道接入机会减少。
其中,本申请中“non-STR MLD在某条链路上处于盲状态”,还可以理解为,non-STR MLD中工作在该条链路上的STA处于盲状态。
可理解的,本申请提及的“盲状态”也可以称为“自干扰状态”或“无法接收的状态”或“聋状态”等。
可理解的,本申请中的“non-STR MLD”可以指具备不能同时收发能力的EHT MLD。
可理解的,本申请提及的“长帧”和“短帧”是以帧占据空口的时间长度来区分。例如,“长帧”可以指占据空口的时间长度大于或等于预设值A的帧,“短帧”可以指占据空口的时间长度小于或等于预设值B的帧。其中,预设值A和预设值B可以相同,也可以不相同。例如,预设值A可以是1ms(毫秒),预设值B可以是100us(微秒)。
本申请实施例提供一种多链路设备的信道接入方法,可以在non-STR MLD处于盲状态/自干扰状态的情况下,提高non-STR MLD在这些链路上的信道接入效率或信道接入成功率,或提升non-STR MLD在这些链路上的信道接入机会。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
可理解的,本申请中的第一多链路设备可以是non-STR MLD;第二多链路设备可以是STR MLD。为便于后续描述,本申请以两个MLD通过两条或多条链路进行通信的场景为例进行说明。在下述实施例中以两条链路为例对本申请的技术方案进行介绍,但本申请的技术方案也适用于支持多条链路的两个MLD。
本申请提供的技术方案通过实施例一至实施例四进行阐述。其中,实施例一阐述在一条链路上发送特定类型的帧时,在另一条链路上如何进行信道接入。实施例二阐述根据一条链路上发送的帧的长短来判断是否需要在另一条链路上采用更为保守的信道接入机制。实施例三阐述mediumSyncDelay计时器的初始时长如何确定。实施例四阐述CCA过程中采用的ED门限如何确定。
下面分别对实施例一至实施例四进行详细说明。可理解的,本申请实施例一至实施例四所描述的技术方案可以任一组合形成新的实施例。
实施例一
本申请实施例一介绍根据一条链路上发送的帧的类型,来判断是否需要在另一条链路上采用更保守的信道接入机制。
参见图4,图4是本申请实施例提供的多链路设备的信道接入方法的一示意流程图。如图4所示,该多链路设备的信道接入方法包括但不限于以下步骤:
S101,当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,第一多链路设备在第二链路上不开启媒体同步时延计时器,第一多链路设备在该第一链路和该第二链路上不能同时收发。
其中,上述第一帧为以下任一帧时,该第一帧的类型为第一类型:请求发送(request to  send)帧、多用户请求发送(multiple user RTS)帧、功率节省轮询(Power save-Poll,PS-Poll)帧、允许发送(clear to send,CTS)帧、状态报告(buffer status report,BSR)帧、带宽查询报告(bandwidth query report,BQR)帧、空数据分组(null data packet,NDP)帧、确认A(acknowledge,ACK)帧、块确认(block acknowledge,BA)帧。
第一种实现方式中,该第一帧是RTS帧或MU-RTS帧。具体地,若第一多链路设备在第一链路上发送RTS帧或MU-RTS帧,且第一多链路设备在预设时间内未接收到允许发送帧,则第一多链路设备在第二链路上不开启媒体同步时延计时器(mediumSyncDelay timer)。其中,第一多链路设备在该第一链路和该第二链路上不能同时收发。换句话说,如果第一多链路设备在第一链路上发送完RTS/MU-RTS帧后,在预设时间(比如,短帧间间隔(short inter-frame space,SIFS)加上一个时隙(slot)的时间,再加上物理层接收时延,即a SIFS Time+a Slot Time+a RxPHYStartDelay)内未接收到该第一链路上的CTS帧,则第一多链路设备在第二链路上不开启mediumSyncDelay计时器。
其中,第一多链路设备在第二链路上不开启mediumSyncDelay计时器,可以理解为(或者可以描述为):第一多链路设备在第二链路上进行信道竞争时,CCA操作所采用的能量检测门限为第一门限;或者,第一多链路设备在第二链路上退避到0后,允许直接发送除RTS和MU-RTS帧外的其他帧,换句话说,第一多链路设备在第二链路上退避到0后,不发送RTS/MU-RTS帧来进行信道保护/进行信道可用性的试探。该第一门限可以是-62dBm。
可理解的,第一多链路设备在该预设时间(如a SIFS Time+a Slot Time+a RxPHY Start Delay)内没有接收到CTS帧的原因可能是:(a)第一多链路设备发送的RTS帧与其他设备发送的帧出现冲突。(b)第一多链路设备发送的RTS帧对应的接收者未能成功接收该RTS帧。(c)第一多链路设备发送的RTS帧对应的接收者处于繁忙状态。
可选的,如果第一多链路设备在第一链路上发送完RTS/MU-RTS帧后,已经在第二链路上开启了mediumSyncDelay计时器,并且第一多链路设备在该预设时间内未接收到CTS帧,则第一多链路设备关闭(或停止,或取消)该mediumSyncDelay计时器。
可选的,如果第一多链路设备在该预设时间内接收到CTS帧,则第一多链路设备可以开启mediumSyncDelay计时器。其中,第一多链路设备在第二链路上开启mediumSyncDelay计时器,可以理解为(或者可以描述为):第一多链路设备在第二链路上采用更为保守的信道接入机制。即,采用更低的能量检测门限(指比-62dBm更低的能量检测门限,如-82dBm)来判断信道是否繁忙,且必须发送RTS/MU-RTS帧,来进行信道可用性的试探。可选的,进行试探的次数(或发送RTS/MU-RTS帧的次数)只能是1次,或者是有限次。
可选的,上述第一种实现方式中的“RTS帧或MU-RTS帧”可以替换成功率节省轮询(Power save-Poll,PS-Poll)帧,“CTS帧”可以替换成数据帧或确认(acknowledge,ACK)帧。故,上述第一种实现方式还可以描述为:若第一多链路设备在第一链路上发送PS-Poll帧,且第一多链路设备在该预设时间内未接收到数据帧或确认帧,则第一多链路设备在第二链路上不开启媒体同步时延计时器。可选的,如果第一多链路设备在第一链路上发送PS-Poll帧,第一多链路设备在该预设时间内接收到数据帧或确认帧,则第一多链路设备可以开启mediumSyncDelay计时器。
可见,本申请实施例的non-STR MLD(即第一多链路设备)在第一链路上发送了RTS(或MU-RTS)但没有收到CTS帧的情况下,在第二链路上不开启mediumSyncDelay计时器,以使non-STR MLD在第二链路上进行普通的信道竞争,即CCA操作所采用的能量检测门限是 -62dBm,或可以不采用RTS/CTS帧来进行信道保护。从而提高non-STR MLD在第二链路上的信道接入效率或信道接入成功率,或提升non-STR MLD在第二链路上的信道接入机会。
第二种实现方式中,该第一帧是CTS帧。具体地,若第一多链路设备在第一链路上接收RTS帧或MU-RTS帧,并在该第一链路上回复/发送CTS帧,则在第二链路上不开启媒体同步时延计时器(mediumSyncDelay timer)。其中,第一多链路设备在该第一链路和该第二链路上不能同时收发。换句话说,第二多链路设备在第一链路上发送RTS帧或MU-RTS帧。相应地,第一多链路设备在该第一链路上接收到该RTS帧或MU-RTS帧,并在该第一链路上回复/发送CTS帧。第一多链路设备在该第一链路上发送CTS帧后,不在第二链路上不开启mediumSyncDelay计时器。
其中,第一多链路设备在第二链路上不开启mediumSyncDelay计时器,可以理解为(或者可以描述为):第一多链路设备在第二链路上进行信道竞争时,CCA操作所采用的能量检测门限为第一门限;或者,第一多链路设备在第二链路上退避到0后,允许直接发送除RTS和MU-RTS帧外的其他帧,换句话说,第一多链路设备在第二链路上退避到0后,不发送RTS/MU-RTS帧来进行信道保护/进行信道可用性的试探。该第一门限可以是-62dBm。
可选的,如果第一多链路设备在第一链路上发送CTS帧后,已经在第二链路上开启了mediumSyncDelay计时器,则第一多链路设备关闭(或停止,或取消)该mediumSyncDelay计时器。
可选的,上述第二种实现方式中的“RTS/CTS帧”可以替换成状态报告轮询触发(buffer status report poll trigger,BSRP Trigger)帧/状态报告(buffer status report,BSR)帧,或带宽查询报告轮询触发(bandwidth query report poll trigger,BQRP Trigger)帧/带宽查询报告(bandwidth query report,BQR),或波束成形报告轮询触发(beamforming report poll trigger,BFRP Trigger)帧/空数据分组(null data packet,NDP)帧,或数据帧/确认(acknowledge,ACK)帧,或管理帧/ACK帧,或数据帧/块确认(block acknowledge,BA)帧。故,上述步骤S201还可以描述为:第一多链路设备在第一链路上接收BSRP Trigger帧,并在该第一链路上回复/发送BSR帧;或者,第一多链路设备在第一链路上接收BQRP Trigger帧,并在该第一链路上回复/发送BQR帧;或者,第一多链路设备在第一链路上接收BFRP Trigger帧,并在该第一链路上回复/发送NDP帧;或者,第一多链路设备在第一链路上接收数据帧或管理帧,并在该第一链路上回复/发送ACK帧;或者,第一多链路设备在第一链路上接收数据帧,并在该第一链路上回复/发送BA帧。相应地,上述第二种实现方式中也可以描述为:第一多链路设备在该第一链路上发送BSR帧或BQR帧或NDP帧后,不在第二链路上开启媒体同步时延计时器。
可理解的,第一多链路设备在第一链路上回复/发送CTS帧、或NDP帧、或BSR帧、或BQR帧、或ACK帧、或BA帧后,第一多链路设备在第一链路上处于接收状态,故第一链路上的接收不会影响第二链路上的信道竞争。第一多链路设备在第二链路上可以进行普通的信道竞争,即CCA操作所采用的能量检测门限是-62dBm,或可以不采用RTS/CTS帧来进行信道保护。
可见,本申请实施例的non-STR MLD(即第一多链路设备)在第一链路上接收到RTS(或MU-RTS)帧,回复CTS帧后,在第二链路上不开启mediumSyncDelay计时器,可以提高non-STR MLD在第二链路上的信道接入效率或信道接入成功率,或提升non-STR MLD在第二链路上的信道接入机会。
本申请实施例在发送特定类型的帧时,在第二链路不开启媒体同步延时计时器,可以在non-STR MLD处于盲状态/自干扰状态的情况下,提高non-STR MLD在这些链路上的信道接入效率或信道接入成功率,或提升non-STR MLD在这些链路上的信道接入机会。
实施例二
本申请实施二介绍non-STR MLD在第一链路上发送的PPDU的长度小于预设值时,non-STR MLD如何在第二链路上进行信道接入。
参见图5,图5是本申请实施例提供的多链路设备的信道接入方法的另一示意流程图。如图5所示,该多链路设备的信道接入方法包括但不限于以下步骤:
S201,当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
其中,第一多链路设备在第二链路上不开启mediumSyncDelay计时器,可以理解为(或者可以描述为):第一多链路设备在第二链路上进行信道竞争时,CCA操作所采用的能量检测门限为第一门限;或者,第一多链路设备在第二链路上退避到0后,允许直接发送除RTS和MU-RTS帧外的其他帧,换句话说,第一多链路设备在第二链路上退避到0后,不发送RTS/MU-RTS帧来进行信道保护/进行信道可用性的试探。该第一门限可以是-62dBm。
可选的,如果第一多链路设备在第一链路上发送第一PPDU后,已经在第二链路上开启了mediumSyncDelay计时器,则判断出上述第一PPDU的长度小于或等于第一值时,第一多链路设备关闭(或停止,或取消)该mediumSyncDelay计时器。
可选的,在第二链路上的媒体同步时延计时器已经开启的情况下,如果第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,则第一多链路设备不更新该第二链路上的媒体同步时延计时器。
可选的,在第二链路上的媒体同步时延计时器已经开启的情况下,如果第一多链路设备在第一链路上发送的PPDU的长度大于该第一值时,则第一多链路设备需要更新该第二链路上的媒体同步时延计时器。其中,第一多链路设备更新该第二链路上的媒体同步时延计时器,可以理解为:将该第二链路上的媒体同步时延计时器更新为这个媒体同步时延计时器开启时的初始值,相当于重新开启该第二链路上的媒体同步时延计时器。反之,第一多链路设备不更新该第二链路上的媒体同步时延计时器,可以理解为:不将该第二链路上的媒体同步时延计时器更新为这个媒体同步时延计时器开启时的初始值。
可选的,上述第一值可以是协议规定的固定值,比如50us、或100us或200us等。
可选的,第一值可以是28us,该28us是CTS和ACK帧采用24Mbps的Non-HT PPDU格式发送时的PPDU长度,或是CTS和ACK帧采用24Mbps的Non-HT duplicate PPDU格式发送时的PPDU长度。
可选的,第一值可以是32us,该32us是比特位图长度为64的BA(块确认,block ACK)帧采用24Mbps的Non-HT PPDU格式或Non-HT duplicate PPDU格式发送时的PPDU长度。
可选的,第一值可以是44us,该44us是CTS和ACK帧采用6Mbps的Non-HT PPDU格式发送时的PPDU长度,或是CTS和ACK帧采用6Mbps的Non-HT duplicate PPDU格式发送时的PPDU长度。
可选的,第一值可以是40us,该40us是比特位图长度为256的BA帧采用24Mbps的Non-HT PPDU格式或Non-HT duplicate PPDU格式发送时的PPDU长度。
可选的,第一值可以是36us,该36us是QoS-Null帧采用24Mbps的Non-HT PPDU格式或Non-HT duplicate PPDU格式发送时的PPDU长度。
可选的,第一值可以是68us,该68us是比特位图长度为64的BA帧采用6Mbps的Non-HT PPDU格式或Non-HT duplicate PPDU格式发送时的PPDU长度。
可选的,上述第一值还可以是接入点(或AP MLD)确定,并发送给站点(即non-AP MLD)的。具体地,在步骤S201之前,本申请实施例中多链路设备的信道接入方法还可以包括:步骤S202,第二多链路设备发送指示信息,该指示信息用于指示第一值。相应地,第一多链路设备接收该指示信息。该指示信息可以携带在信标(beacon)帧中,还可以携带在关联响应帧或重关联响应帧中。上述第一多链路设备可以是non-STR MLD,具体可以是non-STR的non-AP MLD。上述第二多链路设备可以是STR MLD,具体可以是STR的AP MLD。
其中,一种实现方式,该指示信息可以位于多链路元素(multi-link element)中。参见图6a,图6a是本申请是实施例提供的多链路元素的帧结构示意图。如图6a所示,该多链路元素可以包括元素标识(element ID)字段、长度(length)字段、元素标识扩展(element ID extension)字段、多链路控制(multi-link control)字段、媒体同步时延计时门限(mediumSyncDelay timer threshold)字段、可选的子元素(optional subelements)字段等。该媒体同步时延计时门限字段用于指示第一值。
另一种实现方式,该指示信息可以位于EHT操作元素(EHT operation element)中。参见图6b,图6b是本申请是实施例提供的EHT操作元素的帧结构示意图。如图6b所示,该EHT操作元素可以包括元素标识(element ID)字段、长度(length)字段、元素标识扩展(element ID extension)字段、以及媒体同步时延计时门限(mediumSyncDelay timer threshold)字段等。该媒体同步时延计时门限字段用于指示第一值。
又一种实现方式,还可以定义一种新的信息单元来携带该指示信息。该新的信息单元用于携带non-STR MLD的配置参数。可选地,该新的信息单元可以称为non-STR MLD参数集元素(non-STR MLD parameter set element)。可理解的,该新的信息单元可以有其他名称,本申请实施例对此不做限定。参见图6c,图6c是本申请是实施例提供的non-STR MLD参数集元素的帧结构示意图。如图6c所示,该non-STR MLD参数集元素可以包括元素标识(element ID)字段、长度(length)字段、元素标识扩展(element ID extension)字段、以及媒体同步时延计时门限(mediumSyncDelay timer threshold)字段等。该媒体同步时延计时门限字段用于指示第一值。
可选的,当上述第一PPDU的长度大于上述第一值时,第一多链路设备可以在该第二链路上开启媒体同步时延计时器。在该媒体同步时延计时器计时的这段时间内,第一多链路设备可以在第二链路上采用更为保守的信道接入机制。其中,更为保守的信接入机制包括但不限于:1)采用更低的能量检测门限(这里指比-62dBm更低的ED门限)来判断信道是否繁忙。2)必须发送RTS帧,来进行信道可用性的试探。可选的,进行试探的次数(或发送RTS帧的次数)只能是1次,或者是有限次。可理解的,当第一PPDU的长度等于该第一值时,第一多链路设备的操作既可以是在第二链路上不开启媒体同步时延计时器;也可以是在第二链路上开启媒体同步时延计时器,本申请实施例可根据实际情况设定当第一PPDU的长度等于该第一值时,第一多链路设备的操作。
可选的,第一多链路设备在该第二链路上开启媒体同步时延计时器之前,第一多链路设备可以确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,再在该第二链路上开启该媒体同步时延计时器。可理解的,第一多链路设备在第二链路上开启的媒体同步时延计 时器的初始值是确定出的第一PPDU的长度对应的初始值。
其中,标准协议中可以规定PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系。或者,第一多链路设备在第一链路上发送第一PPDU之前,第二多链路设备发送第一指示信息,相应地,第一多链路设备接收该第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系。
可选的,第一多链路设备在该第二链路上开启媒体同步时延计时器之后或者同时,第一多链路设备确定该第一PPDU的长度对应的能量检测门限,并在该第二链路上进行信道竞争时,将CCA操作所采用的能量检测门限设置为该第一PPDU的长度对应的门限值。
其中,标准协议中可以规定PPDU长度与能量检测门限之间的映射关系。或者,第一多链路设备在第一链路上发送第一PPDU之前,第二多链路设备发送第二指示信息,相应地,第一多链路设备接收该第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系。
可理解的,上述第一指示信息和上述第二指示信息可以是一个指示信息,即一个指示信息同时指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系、和PPDU长度与能量检测门限之间的映射关系。换句话说,上述第一指示信息和上述第二指示信息携带在一个帧中。
可见,本申请实施例通过约束non-STR MLD在一条链路上发送短帧后,在另一条链路上不开启mediumSyncDelay计时器,或在另一条链路上进行信道竞争时,将CCA所采用的能量检测门限设置为-62dBm,或在另一条链路上无需采用RTS帧来进行信道保护/信道可用性的试探,从而提高non-STR MLD在另一条链路上的信道接入效率或信道接入成功率,或提升non-STR MLD在另一链路上的信道接入机会。
作为一个可选实施例,上述“第一PPDU的长度”可以替换成“第一PPDU中媒体接入控制(medium access control,MAC)帧的长度(单位为字节或比特)”。相应地,上述步骤S301可以替换成:当第一多链路设备在第一链路上发送的第一PPDU中MAC帧的长度小于或等于第二值时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
作为另一个可选实施例,前述实施例一和实施例二提供的信道接入方法还可以应用于单链路、多接入信道的场景。以两个信道为例,假设AP可使用2个信道进行信道接入,但一次只能在其中一个信道上完成接入,不能同时接入2个信道。具体地,AP在主信道(primary channel)如第一信道上进行信道竞争,当主信道繁忙时,AP可以切换到另一个信道(如第二信道)上进行信道竞争,并且在该第二信道上退避到0之后,在该第二信道上进行发送。
针对上述单链路、多接入信道的场景,本申请实施例提出:当AP在该第二信道上发送短帧(比如,RTS帧,CTS帧,块确认(block acknowledge,BA)帧,BSR帧,BQR帧,PS-Poll帧,NDP帧等)后,AP不在该第一信道上开启计时器。该计时器可以是媒体同步时延计时器。可选的,本申请实施例还提出:AP在该第二信道上发送第一PPDU;当该第一PPDU的PPDU长度小于或等于第一值时,AP在该第一信道上不开启媒体同步时延计时器。
可选的,AP不在该第一信道上开启计时器可以理解为(可以描述为):AP在第一信道上进行信道竞争时,CCA操作所采用的能量检测门限为第一门限;或者,AP在第一信道上退避到0后,允许直接发送除RTS和MU-RTS帧外的其他帧,换句话说,AP在第一信道上退避到0后,不发送RTS/MU-RTS帧来进行信道保护/进行信道可用性的试探。该第一门限可以 是-62dBm。
可理解的,本申请实施例中的第二信道相当于前述实施例一和实施例二中的第一链路,本申请实施例中的第一信道相当于前述实施例一和实施例二中的第二链路。
可见,本申请实施例提供的信道接入方法还可以适用于单链路、多接入信道的场景,扩展了该方法的场景,也可以提高AP在第一信道上的信道接入效率或信道接入成功率。
实施例三
本申请实施例三提供一种媒体同步时延计时器的初始时长确定方法。该媒体同步时延计时器的初始时长确定方法通过第一链路(或第二信道)上发送的帧的长度,来确定媒体同步时延计时器的初始时长。
参见图7,图7是本申请实施例提供的媒体同步时延计时器的初始时长确定方法的示意流程图。如图7所示,该媒体同步时延计时器的初始时长确定方法包括但不限于以下步骤:
S301,第二多链路设备发送第一指示信息,该第一指示信息用于指示PPDU长度/字节长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系。
具体地,第二多链路设备可以是AP MLD,且该AP MLD具备STR能力。AP MLD发送第一指示信息的链路可以是第一链路,也可以是其他链路,本申请实施例对此不做限定。上述第一指示信息可以用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系。
一个示例中,参见图8,图8是本申请实施例提供的PPDU长度与媒体同步时延计时器的初始值之间的映射关系示意图。如图8所示,PPDU长度在0到100us(微秒)范围内(即区间[0,100us]、或区间(0,100us)、或区间(0,100us]、或区间[0,100us))时,媒体同步时延计时器的初始值为0ms。PPDU长度在100us到1ms范围内(即区间[100us,1000us]、或区间(100us,1000us)、或区间(100us,1000us]、或区间[100us,1000us))时,媒体同步时延计时器的初始值为3ms。PPDU长度大于或等于1ms时,媒体同步时延计时器的初始值为6ms。
其中,图8所示映射关系可以总结为下述表1所示。
表1
PPDU长度 媒体同步时延计时器的初始值(或初始时长)
<=100us 0
>=100us且<=1ms 3ms
>=1ms 6ms
可理解的,图8和表1所示的映射关系仅是示例,在实际应用中,可以根据实际应用场景确定映射关系。例如,还可以是PPDU长度小于或等于50us时,媒体同步时延计时器的初始值为0ms;PPDU长度大于或等于50us且小于或等于200us时,媒体同步时延计时器的初始值为1ms;PPDU长度大于或等于200us且小于或等于500us时,媒体同步时延计时器的初始值为3ms;PPDU长度大于或等于500us时,媒体同步时延计时器的初始值为5ms。本申请实施例对此不做限定。
可选的,上述第一指示信息可以包括数组。例如,数组(0,100,0),表示PPDU长度在0到100us范围内时,媒体同步时延计时器的初始值是0ms;数组(100,1000,3),表示PPDU长度在100us到1ms范围内时,媒体同步时延计时器的初始值是3ms;数组(1000,最大的PPDU长度,6),表示PPDU长度在1ms到最大的PPDU长度范围内时,媒体同步时延计时器的初始 值是6ms。其中,最大的PPDU长度由标准协议规定。
可选的,上述第一指示信息可以包括两个字段,第一个字段用于确定N个区间,第二个字段用于指示该N个区间中每个区间对应的媒体同步时延计时器的初始值。
其中,该第一个字段可以包括N+1个子字段,该N+1个子字段的取值单调递增,相邻的两个子字段的取值可以确定一个区间,因此N+1个子字段可以确定N个区间。例如,第一个子字段的值为0;第N+1个子字段的值为最大的PPDU长度,或者比最大的PPDU长度更大的一个数值,例如6ms。可选地,该第一个子字段(或第N+1个子字段)可以不携带于第一个字段中。
该第二个字段包括N个子字段,一个子字段的值表示一个区间对应的媒体同步时延计时器的初始值。
S302,第一多链路设备接收该第一指示信息。
S303,第一多链路设备根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,该初始值用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
具体地,第一多链路设备可以是non-AP MLD,且该non-AP MLD具备non-STR能力。第一多链路设备可以根据该第一指示信息指示的PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系、和该第一PPDU的PPDU长度,确定该第一PPDU的PPDU长度对应的媒体同步时延计时器的初始值(或初始时长)。例如,该映射关系如上述表1所示,假设第一PPDU的长度为200us,则媒体同步时延计时器的初始值(或初始时长)是3ms。
可选的,第一多链路设备根据该第一PPDU的长度对应的媒体同步时延计时器的初始值(或初始时长),确定在该第二链路上是否开启该媒体同步时延计时器。
具体地,如果上述媒体同步时延计时器的初始值(或初始时长)等于0,则第一多链路设备在第二链路上不开启该媒体同步时延计时器。如果该媒体同步时延计时器的初始值(或初始时长)大于0,则第一多链路设备在第二链路上开启该媒体同步时延计时器,该媒体同步时延计时器的初始值/初始时长为上述步骤S404确定出的值。
其中,第一多链路设备在第二链路上开启mediumSyncDelay计时器,可以理解为(或者可以描述为):在mediumSyncDelay计时器计时的这段时间内,第一多链路设备可以在第二链路上采用更为保守的信道接入机制。更为保守的信接入机制包括但不限于:1)采用更低的能量检测门限(这里指比-62dBm更低的ED门限)来判断信道是否繁忙。2)必须发送RTS帧,来进行信道可用性的试探。可选的,进行试探的次数(或发送RTS帧的次数)只能是1次,或者是有限次。
第一多链路设备在第二链路上不开启mediumSyncDelay计时器,可以理解为(或者可以描述为):第一多链路设备在第二链路上进行信道竞争时,CCA操作所采用的能量检测门限为第一门限;或者,第一多链路设备在第二链路上退避到0后,允许直接发送除RTS和MU-RTS帧外的其他帧。该第一门限可以是-62dBm。
可理解的,本申请实施例提供的媒体同步时延计时器的初始时长确定方法,也可以应用于单链路、多接入信道的场景中。其中,单链路、多接入信道的场景中的第一信道等价于上述第二链路,单链路、多接入信道的场景中的第二信道等价于上述第一链路,此处不再赘述。
可见,本申请实施例通过第一指示信息来指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系,以使第一多链路设备根据这个映射关系和第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,并 在初始值等于0时,在第二链路上不开启mediumSyncDelay计时器,在初始值大于0时,在第二链路上开启mediumSyncDelay计时器。不同的PPDU长度,对应mediumSyncDelay计时器的不同初始值,使得mediumSyncDelay计时器的设置更灵活,可以提高信道接入效率。
作为一个可选实施例,PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系,可以是标准协议中规定的。当该映射关系在标准协议中规定时,图7所示的媒体同步时延计时器的初始时长确定方法可以不包括步骤S301和步骤S302。即:该媒体同步时延计时器的初始时长确定方法可以包括步骤S303。
实施例四
本申请实施例四提供一种CCA过程中能量检测门限确定方法。该CCA过程中能量检测门限确定方法通过在第一链路(或第二信道)上发送的帧的长度,来确定mediumSyncDelay期间,在第二链路上进行退避时,CCA过程中采用的ED门限的大小。
参见图9,图9是本申请实施例提供的CCA过程中能量检测门限确定方法的示意流程图。如图9所示,该CCA过程中能量检测门限确定方法包括但不限于以下步骤:
S401,第二多链路设备发送第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系。
具体地,第二多链路设备可以是AP MLD,且该AP MLD具备STR能力。AP MLD发送第二指示信息的链路可以是第一链路,也可以是其他链路,本申请实施例对此不做限定。上述第二指示信息可以用于指示PPDU长度与能量检测门限之间的映射关系。
一个示例中,参见图10,图10是本申请实施例提供的PPDU长度与能量检测门限之间的映射关系示意图。如图10所示,PPDU长度在0到100us(微秒)范围内(即区间[0,100us]、或区间(0,100us)、或区间(0,100us]、或区间[0,100us))时,能量检测门限为-62dBm。PPDU长度在100us到1ms范围内(即区间[100us,1000us]、或区间(100us,1000us)、或区间(100us,1000us]、或区间[100us,1000us))时,能量检测门限为-72dBm。PPDU长度大于或等于1ms时,能量检测门限为-82dBm。
其中,图10所示映射关系可以总结为下述表2所示。
表2
PPDU时长 能量检测门限
<=100us -62dBm
>=100us且<=1ms -72dBm
>=1ms -82dBm
可理解的,图10和表2所示的映射关系仅是示例,在实际应用中,可以根据实际应用场景确定映射关系。例如,还可以是PPDU长度小于或等于50us时,能量检测门限为-62dBm;PPDU长度大于或等于50us且小于或等于200us时,能量检测门限为-67dBm;PPDU长度大于或等于200us且小于或等于500us时,能量检测门限为-72dBm;PPDU长度大于或等于500us时,能量检测门限为-82dBm。本申请实施例对此不做限定。
可选的,上述第二指示信息可以包括数组。例如,数组(0,100,-62),表示PPDU长度在0到100us范围内时,能量检测门限为-62dBm;数组(100,1000,-72),表示PPDU长度在100us到1ms范围内时,能量检测门限为-72dBm;数组(1000,最大的PPDU长度,-82),表示PPDU长度在1ms到最大的PPDU长度范围内时,能量检测门限为-62dBm。其中,最大的PPDU长 度由标准协议规定。
可选的,上述第二指示信息可以包括两个字段,第一个字段用于确定N个区间,第二个字段用于指示该N个区间中每个区间对应的能量检测门限。
其中,该第一个字段可以包括N+1个子字段,该N+1个子字段的取值单调递增,相邻的两个子字段的取值可以确定一个区间,因此N+1个子字段可以确定N个区间。例如,第一个子字段的值为0;第N+1个子字段的值为最大的PPDU长度,或者比最大的PPDU长度更大的一个数值,例如6ms。可选地,该第一个子字段(或第N+1个子字段)可以不携带于第一个字段中。
该第二个字段包括N个子字段,一个子字段的值表示一个区间对应的能量检测门限。
S402,第一多链路设备接收该第二指示信息。
S403,第一多链路设备根据该第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的能量检测门限,该能量检测门限用于确定在第二链路上是否开启该媒体同步时延计时器。
具体地,第一多链路设备可以是non-AP MLD,且该non-AP MLD具备non-STR能力。第一多链路设备可以根据该第二指示信息指示的PPDU长度与能量检测门限之间的映射关系和该第一PPDU的长度,确定该第一PPDU的长度对应的能量检测门限。例如,该映射关系如上述表2所示,假设第一PPDU的长度为200us,则能量检测门限为-72dBm。
可选的,第一多链路设备根据该第一PPDU的长度对应的能量检测门限,确定在该第二链路上是否开启该媒体同步时延计时器。具体地,如果上述步骤S403确定出的能量检测门限等于-62dBm,则第一多链路设备在第二链路上不开启该媒体同步时延计时器。如果上述步骤S403确定出的能量检测门限小于-62dBm,则第一多链路设备在第二链路上开启该媒体同步时延计时器。如果第一多链路设备在该第二链路上开启了该媒体同步时延计时器,说明第二链路处于mediumSyncDelay期间,则第一多链路设备在第二链路上进行信道竞争时,将CCA所采用的能量检测门限设置为该第一PPDU的长度对应的能量检测门限(即上述步骤S504确定出的能量检测门限)。
其中,第一多链路设备在第二链路上开启mediumSyncDelay计时器,可以理解为(或者可以描述为):在mediumSyncDelay期间,第一多链路设备可以在第二链路上采用更为保守的信道接入机制。更为保守的信接入机制包括但不限于:1)采用更低的能量检测门限(这里指比-62dBm更低的ED门限)来判断信道是否繁忙。2)必须发送RTS帧,来进行信道可用性的试探。可选的,进行试探的次数(或发送RTS帧的次数)只能是1次,或者是有限次。
第一多链路设备在第二链路上不开启mediumSyncDelay计时器,可以理解为(或者可以描述为):第一多链路设备在第二链路上进行信道竞争时,CCA操作所采用的能量检测门限为第一门限;或者,第一多链路设备在第二链路上退避到0后,允许直接发送除RTS和MU-RTS帧外的其他帧。该第一门限可以是-62dBm。
可理解的,本申请实施例提供的CCA过程中能量检测门限确定方法,也可以应用于单链路、多接入信道的场景中。其中,单链路、多接入信道的场景中的第一信道等价于上述第二链路,单链路、多接入信道的场景中的第二信道等价于上述第一链路,此处不再赘述。
可见,本申请实施例通过第二指示信息来指示PPDU长度与能量检测门限之间的映射关系,以使第一多链路设备根据这个映射关系和第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的能量检测门限,并在能量检测门限等于-62dBm时,不在第二链路上开启mediumSyncDelay计时器,在能量检测门限小于-62dBm时,在第二链路上开启 mediumSyncDelay计时器。不同的PPDU长度,对应不同的能量检测门限,使得第二链路上的信道接入机制更灵活,可以提高信道接入效率。
作为一个可选实施例,PPDU长度与能量检测门限之间的映射关系,可以是标准协议中规定的。当该映射关系在标准协议中规定时,图9所示的CCA过程中能量检测门限确定方法,可以不包括步骤S401和步骤S402。即:该CCA过程中能量检测门限确定方法可以包括步骤S403。
作为另一个可选实施例,前述实施例三中的第一指示信息与前述实施例四中的第二指示信息可以是一个指示信息,或者说第一指示信息和第二指示信息携带在同一个帧中。因此,前述实施例三和前述实施例四可以合并成一个实施例。具体为:第二多链路设备发送指示信息,该指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系,和PPDU长度与能量检测门限之间的映射关系;第一多链路设备接收该指示信息;第一多链路设备在第一链路上发送第一PPDU;第一多链路设备根据该第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值、和该第一PPDU的长度对应的能量检测门限。可选的,第一多链路设备还可以根据该第一PPDU的长度对应的能量检测门限、或该第一PPDU的长度对应的媒体同步时延计时器的初始值,确定在该第二链路上是否开启该媒体同步时延计时器。
上述内容详细阐述了本申请提供的方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对通信设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,参见图11,图11是本申请实施例提供的第一多链路设备的结构示意图。如图11所示,该第一多链路设备包括:收发单元11和处理单元12。
一种设计中,处理单元12,用于当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中该第一多链路设备在该第一链路和该第二链路上不能同时收发。
其中,上述处理单元12,具体用于在第二链路上进行信道竞争时,将CCA操作所采用的能量检测门限设置为第一门限。或者,上述收发单元11,用于在第二链路上退避到0后,发送除RTS和MU-RTS帧外的其他帧。该第一门限可以是-62dBm。
应理解,该种设计中的第一多链路设备可对应执行前述实施例二,并且该第一多链路设备中的各个单元的上述操作或功能分别为了实现前述实施例二中第一多链路设备的相应操作,为了简洁,在此不再赘述。
一种设计中,处理单元12,用于当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
其中,上述处理单元12,具体用于在第二链路上进行信道竞争时,将CCA操作所采用的能量检测门限设置为第一门限。或者,上述收发单元11,还用于在第二链路上退避到0后, 发送除RTS和MU-RTS帧外的其他帧。该第一门限可以是-62dBm。
应理解,该种设计中的第一多链路设备可对应执行前述实施例一,并且该第一多链路设备中的各个单元的上述操作或功能分别为了实现前述实施例一中第一多链路设备的相应操作,为了简洁,在此不再赘述。
一种设计中,收发单元11,用于接收第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值之间的映射关系;处理单元12,用于根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,所述初始值用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
可选的,上述处理单元12,还用于根据该第一PPDU的长度对应的媒体同步时延计时器的初始值,确定在第二链路上是否开启该媒体同步时延计时器。
可选的,上述处理单元12,具体用于:如果确定出的媒体同步时延计时器的初始值等于0,则在第二链路上不开启该媒体同步时延计时器;如果确定出的媒体同步时延计时器的初始值等于0,则在第二链路上开启该媒体同步时延计时器。
应理解,该种设计中的第一多链路设备可对应执行前述实施例三,并且该第一多链路设备中的各个单元的上述操作或功能分别为了实现前述实施例三中第一多链路设备的相应操作,为了简洁,在此不再赘述。
一种设计中,收发单元11,用于接收第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系;处理单元12,用于根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值。该通信装置在该第一链路和该第二链路上不能同时收发。
可选的,上述处理单元12,还用于根据该第一PPDU的长度对应的能量检测门限,确定在第二链路上是否开启该媒体同步时延计时器。
可选的,上述处理单元12,具体用于:如果确定出的能量检测门限等于-62dBm,则第一多链路设备在第二链路上不开启该媒体同步时延计时器;如果确定出的能量检测门限小于-62dBm,则第一多链路设备在第二链路上开启该媒体同步时延计时器。
应理解,该种设计中的第一多链路设备可对应执行前述实施例四,并且该第一多链路设备中的各个单元的上述操作或功能分别为了实现前述实施例四中第一多链路设备的相应操作,为了简洁,在此不再赘述。
参见图12,图12是本申请实施例提供的第二多链路设备的结构示意图。如图12所示,该第二多链路设备包括:处理单元21和收发单元22。
一种设计中,处理单元21,用于生成第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;收发单元22,用于发送该第一指示信息。
应理解,该种设计中的第二多链路设备可对应执行前述实施例三,并且该第二多链路设备中的各个单元的上述操作或功能分别为了实现前述实施例三中第二多链路设备的相应操作,为了简洁,在此不再赘述。
另一种设计中,处理单元21,用于生成第二指示信息,该第二指示信息用于指示PPDU 长度与能量检测门限之间的映射关系;收发单元22,用于发送该第二指示信息。
应理解,该种设计中的第二多链路设备可对应执行前述实施例四,并且该第二多链路设备中的各个单元的上述操作或功能分别为了实现前述实施例四中第二多链路设备的相应操作,为了简洁,在此不再赘述。
以上介绍了本申请实施例的第一多链路设备和第二多链路设备,以下介绍所述第一多链路设备和第二多链路设备可能的产品形态。应理解,但凡具备上述图11所述的第一多链路设备的功能的任何形态的产品,但凡具备上述图12所述的第二多链路设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一多链路设备和第二多链路设备的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的第一多链路设备和第二多链路设备,可以由一般性的总线体系结构来实现。
第一多链路设备,包括处理器和与所述处理器内部连接通信的收发器。
一种设计中,该处理器用于当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。可选的,该收发器用于在第一链路上发送第一PPDU;
一种设计中,该处理器用于当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
一种设计中,该收发器用于接收第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值之间的映射关系;该处理器用于根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,所述初始值用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
一种设计中,该收发器用于接收第二指示信息,该第二指示信息用于指示PPDU长度/字节长度与能量检测门限之间的映射关系;该处理器用于根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值。该通信装置在该第一链路和该第二链路上不能同时收发。
第二多链路设备,包括处理器和与所述处理器内部连接通信的收发器。
一种设计中,该处理器用于生成第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;该收发器用于发送该第一指示信息。
另一种设计中,该处理器用于生成第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系;该收发器用于发送该第二指示信息。
作为一种可能的产品形态,本申请实施例所述的第一多链路设备和第二多链路设备,可以由芯片来实现。
实现第一多链路设备的芯片包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该输入输出接口用于接收代码指令并传输至该处理电路,该处理电路用于当第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中该第一多链路设备在该第一链路和该第二链路上不能同时收发。
一种设计中,该输入输出接口用于接收代码指令并传输至该处理电路,该处理电路用于当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,第一多链路设备在第二链路上不开启媒体同步时延计时器,其中第一多链路设备在该第一链路和该第二链路上不能同时收发。
一种设计中,收发机用于接收第一指示信息,该输入输出接口用于从该收发机接收第一指示信息,并将该第一指示信息发送至该处理电路处理,得到该第一指示信息指示的PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;该处理电路用于根据第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的媒体同步时延计时器的初始值,所述初始值用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
一种设计中,收发机用于接收第二指示信息,该输入输出接口用于从该收发机接收第二指示信息,并将该第二指示信息发送至该处理电路处理,得到该第二指示信息指示的PPDU长度与能量检测门限之间的映射关系;该处理电路用于根据该第一链路上发送的第一PPDU的长度,确定该第一PPDU的长度对应的能量检测门限,该能量检测门限用于确定在第二链路上是否开启该媒体同步时延计时器。第一多链路设备在该第一链路和该第二链路上不能同时收发。
实现第二多链路设备的芯片包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该输入输出接口用于接收代码指令并传输至该处理电路,该处理电路用于生成第一指示信息,该第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值(或初始时长)之间的映射关系;该输入输出接口用于将该第一指示信息发送至收发机,该收发机用于发送该第一指示信息。
另一种设计中,该输入输出接口用于接收代码指令并传输至该处理电路,该处理电路用于生成第二指示信息,该第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系;该输入输出接口用于将该第二指示信息发送至收发机,该收发机用于发送该第二指示信息。
作为一种可能的产品形态,本申请实施例所述的第一多链路设备和第二多链路设备,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
应理解,上述各种产品形态的通信装置,具有上述方法实施例中第一多链路设备或第二多链路设备的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器 (Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (30)

  1. 一种多链路设备的信道接入方法,其特征在于,包括:
    当第一多链路设备在第一链路上发送的第一物理层协议数据单元PPDU的长度小于或等于第一值时,所述第一多链路设备在第二链路上不开启媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  2. 一种多链路设备的信道接入方法,其特征在于,包括:
    在第二链路上的媒体同步计时器已经开启的情况下,如果第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值,则所述第一多链路设备不更新所述第二链路上的媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  3. 根据权利要求1所述的方法,其特征在于,所述第一多链路设备在第二链路上不开启媒体同步时延计时器包括:
    将第二链路上的空闲信道评估CCA所采用的能量检测门限设置为第一门限,所述第一门限为-62dBm;
    或者,所述第一多链路设备在所述第二链路上的退避计数器退避到0后,发送除RTS帧和MU-RTS帧之外的其他帧。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一多链路设备接收第一值,所述第一值携带在信标帧、或关联响应帧、或重关联响应帧中。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一PPDU的长度大于所述第一值时,所述第一多链路设备确定所述第一PPDU的长度对应的媒体同步时延计时器的初始值,并在所述第二链路上以所述初始值开启所述媒体同步时延计时器。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    第一多链路设备接收第一指示信息,所述第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值之间的映射关系。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一PPDU的长度大于所述第一值时,所述第一多链路设备在所述第二链路上开启所述媒体同步延时计时器;
    在所述媒体同步延时计时器计时的时间段内,若所述第一多链路设备在所述第二链路上进行信道竞争,则将所述第二链路上的CCA所采用的能量检测门限设置为所述第一PPDU的长度对应的门限值。
  8. 根据权利要求7所述的方法,其特征在于,所述第一多链路设备在第一链路上发送第 一PPDU之前,所述方法还包括:
    第一多链路设备接收第二指示信息,所述第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系。
  9. 一种多链路设备的信道接入方法,其特征在于,包括:
    当第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,所述第一多链路设备在第二链路上不开启媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  10. 根据权利要求9所述的方法,其特征在于,所述第一帧为以下任一帧时,所述第一帧的类型为第一类型:请求发送RTS帧、多用户请求发送MU-RTS帧、功率节省轮询PS-Poll帧、允许发送CTS帧、状态报告BSR帧、带宽查询报告BQR帧、空数据分组NDP帧、确认ACK帧、块确认BA帧。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一多链路设备在第二链路上不开启媒体同步时延计时器包括:
    将第二链路上的空闲信道评估CCA所采用的能量检测门限设置为第一门限,所述第一门限为-62dBm;
    或者,所述第一多链路设备在所述第二链路上的退避计数器退避到0后,发送除RTS帧和MU-RTS帧之外的其他帧。
  12. 一种第一多链路设备,其特征在于,包括:
    处理单元,用于当所述第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  13. 一种第一多链路设备,其特征在于,包括:
    处理单元,用于在第二链路上的媒体同步计时器已经开启的情况下,当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,不更新所述第二链路上的媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  14. 根据权利要求12所述的第一多链路设备,其特征在于,所述处理单元具体用于:
    将第二链路上的空闲信道评估CCA所采用的能量检测门限设置为第一门限,所述第一门限为-62dBm;
    或者,所述第一多链路设备还包括收发单元,所述收发单元,用于在所述第二链路上的退避计数器退避到0后,发送除RTS帧和MU-RTS帧之外的其他帧。
  15. 根据权利要求12-14中任一项所述的第一多链路设备,其特征在于,所述第一多链路设备还包括收发单元,所述收发单元,用于接收第一值,所述第一值携带在信标帧、或关联响应帧、或重关联响应帧中。
  16. 根据权利要求12-15任一项所述的第一多链路设备,其特征在于,所述处理单元还用于:当所述第一PPDU的长度大于所述第一值时,确定所述第一PPDU的长度对应的媒体同步时延计时器的初始值,并在所述第二链路上以所述初始值开启所述媒体同步时延计时器。
  17. 根据权利要求16所述的第一多链路设备,其特征在于,所述第一多链路设备还包括 收发单元,所述收发单元用于接收第一指示信息,所述第一指示信息用于指示PPDU长度与媒体同步时延计时器的初始值之间的映射关系。
  18. 根据权利要求12-17任一项所述的第一多链路设备,其特征在于,所述处理单元,还用于:
    当所述第一PPDU的长度大于所述第一值时,在所述第二链路上开启所述媒体同步延时计时器;
    在所述媒体同步延时计时器计时的时间段内,若所述通信装置在所述第二链路上进行信道竞争,则将所述第二链路上的CCA所采用的能量检测门限设置为所述第一PPDU的长度对应的门限值。
  19. 根据权利要求18所述的第一多链路设备,其特征在于,所述第一多链路设备还包括收发单元,所述收发单元,用于接收第二指示信息,所述第二指示信息用于指示PPDU长度与能量检测门限之间的映射关系。
  20. 一种第一多链路设备,其特征在于,包括:
    处理单元,用于当所述第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,所述第一多链路设备在第二链路上不开启媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  21. 根据权利要求20所述的第一多链路设备,其特征在于,所述第一帧为以下任一帧时,所述第一帧的类型为第一类型:请求发送RTS、多用户请求发送帧MU-RTS、功率节省轮询PS-Poll帧、CTS帧、状态报告BSR帧、带宽查询报告BQR帧、空数据分组NDP帧、确认ACK帧、块确认BA帧。
  22. 根据权利要求20或21所述的第一多链路设备,其特征在于,所述处理单元具体用于将第二链路上的空闲信道评估CCA所采用的能量检测门限设置为第一门限,所述第一门限为-62dBm;
    或者,所述第一多链路设备还包括收发单元,所述收发单元,用于在所述第二链路上的退避计数器退避到0后,发送除RTS帧和MU-RTS帧之外的其他帧。
  23. 一种第一多链路设备,其特征在于,包括处理器,所述处理器用于当所述第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  24. 一种第一多链路设备,其特征在于,包括处理器,所述处理器用于当所述第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,所述第一多链路设备在第二链路上不开启媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  25. 一种第一多链路设备,其特征在于,包括处理器,所述处理器用于在第二链路上的媒体同步计时器已经开启的情况下,当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,不更新所述第二链路上的媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  26. 一种第一多链路设备,其特征在于,包括输入输出接口和处理电路,所述输入输出接口用于接收代码指令并传输至所述处理电路,所述处理电路用于当第一PPDU的长度小于或等于第一值时,在第二链路上不开启媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  27. 一种第一多链路设备,其特征在于,包括输入输出接口和处理电路,所述输入输出接口用于接收代码指令并传输至所述处理电路,所述处理电路用于当所述第一多链路设备在第一链路上发送的第一帧的类型为第一类型时,在第二链路上不开启媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  28. 一种第一多链路设备,其特征在于,包括输入输出接口和处理电路,所述输入输出接口用于接收代码指令并传输至所述处理电路,所述处理电路用于在第二链路上的媒体同步计时器已经开启的情况下,当第一多链路设备在第一链路上发送的第一PPDU的长度小于或等于第一值时,不更新所述第二链路上的媒体同步时延计时器,其中所述第一多链路设备在所述第一链路和所述第二链路上不能同时收发。
  29. 一种计算机可读存储介质,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
  30. 一种包含程序指令的计算机程序产品,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-11任一项所述的方法。
PCT/CN2021/115829 2020-09-04 2021-08-31 多链路设备的信道接入方法及相关装置 WO2022048548A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP21863612.4A EP4195857A4 (en) 2020-09-04 2021-08-31 CHANNEL ACCESS METHOD FOR A MULTILINK DEVICE AND ASSOCIATED APPARATUS
CN202180065143.9A CN116508394A (zh) 2020-09-04 2021-08-31 多链路设备的信道接入方法及相关装置
KR1020237010503A KR20230057450A (ko) 2020-09-04 2021-08-31 멀티-링크 디바이스에 대한 채널 액세스 방법 및 관련 장치
CA3191675A CA3191675A1 (en) 2020-09-04 2021-08-31 Channel access method for multi-link device and related apparatus
MX2023002630A MX2023002630A (es) 2020-09-04 2021-08-31 Método de acceso de canal para dispositivo multienlace y aparato relacionado.
AU2021336597A AU2021336597A1 (en) 2020-09-04 2021-08-31 Channel access method for multi-link device and related apparatus
JP2023514977A JP2023540326A (ja) 2020-09-04 2021-08-31 マルチ・リンク・デバイスのチャネル・アクセス方法及び関連装置
US18/177,987 US20230209600A1 (en) 2020-09-04 2023-03-03 Channel Access Method for Multi-Link Device and Related Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010924423.8A CN114143900A (zh) 2020-09-04 2020-09-04 多链路设备的信道接入方法及相关装置
CN202010924423.8 2020-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/177,987 Continuation US20230209600A1 (en) 2020-09-04 2023-03-03 Channel Access Method for Multi-Link Device and Related Apparatus

Publications (1)

Publication Number Publication Date
WO2022048548A1 true WO2022048548A1 (zh) 2022-03-10

Family

ID=80438410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115829 WO2022048548A1 (zh) 2020-09-04 2021-08-31 多链路设备的信道接入方法及相关装置

Country Status (9)

Country Link
US (1) US20230209600A1 (zh)
EP (1) EP4195857A4 (zh)
JP (1) JP2023540326A (zh)
KR (1) KR20230057450A (zh)
CN (3) CN116390264A (zh)
AU (1) AU2021336597A1 (zh)
CA (1) CA3191675A1 (zh)
MX (1) MX2023002630A (zh)
WO (1) WO2022048548A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043694A1 (ko) * 2022-08-24 2024-02-29 현대자동차주식회사 Mlsr 동작을 지원하는 무선랜에서 저전력 동작을 위한 방법 및 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117730623A (zh) * 2022-07-18 2024-03-19 北京小米移动软件有限公司 通信方法及电子设备、存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226641B1 (en) * 2014-11-19 2023-08-09 Atlas Global Technologies LLC Method and apparatus for processing ppdu based on bbs identification information in high efficiency wireless lan
US10135651B2 (en) * 2015-06-24 2018-11-20 Newracom, Inc. Enhanced clear channel assessment

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JASON YUCHEN GUO (HUAWEI TECHNOLOGIES CO. LTD.): "pdt-mlo-short-frame-in-blindness-issue", IEEE DRAFT; 11-21-0267-03-00BE-PDT-MLO-SHORT-FRAME-IN-BLINDNESS-ISSUE, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT, no. 3, 29 April 2021 (2021-04-29), Piscataway, NJ USA , pages 1 - 3, XP068179999 *
JASON YUCHEN GUO ET AL.: "Short Frame in Blindness Issue of NSTR MLD", DOC.: IEEE 802.11-21/0266R0, 26 January 2021 (2021-01-26), XP068178842 *
LI YIQING ET AL.: "Further Discussion about Blindness for Non-STR MLD", DOC.: IEEE 802.11-20/1365R0, 18 August 2020 (2020-08-18), XP068174811 *
LI YIQING ET AL.: "Further Discussion about Blindness for Non-STR MLD", DOC.: IEEE 802.11-20/1365R1, 18 August 2020 (2020-08-18), XP068175017 *
See also references of EP4195857A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043694A1 (ko) * 2022-08-24 2024-02-29 현대자동차주식회사 Mlsr 동작을 지원하는 무선랜에서 저전력 동작을 위한 방법 및 장치

Also Published As

Publication number Publication date
EP4195857A1 (en) 2023-06-14
CA3191675A1 (en) 2022-03-10
CN116390264A (zh) 2023-07-04
KR20230057450A (ko) 2023-04-28
CN114143900A (zh) 2022-03-04
JP2023540326A (ja) 2023-09-22
MX2023002630A (es) 2023-06-08
CN116508394A (zh) 2023-07-28
EP4195857A4 (en) 2024-01-17
AU2021336597A1 (en) 2023-04-13
US20230209600A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US11516841B2 (en) Enhanced high-throughput multi-link channel access and operation
US9635614B2 (en) Power management method for station in wireless LAN system and station that supports same
WO2022042268A1 (zh) 多链路通信的链路指示方法及相关装置
WO2021228085A1 (zh) 多链路通信方法及相关装置
WO2022057901A1 (zh) 无线局域网中的信道接入方法及相关装置
WO2022048548A1 (zh) 多链路设备的信道接入方法及相关装置
CN105830506A (zh) 在支持用于下行链路的信道的无线lan系统中的功率减少模式操作方法及其装置
WO2022033283A1 (zh) 一种信道竞争方法及相关装置
KR20230116722A (ko) Emlsr 동작을 지원하는 무선랜에서 저지연 통신을 위한 방법 및 장치
US20240089785A1 (en) Method and device for receiving downlink traffic in communication system supporting multiple links
EP4258799A1 (en) Method and device for low latency communication in communication system supporting multiple links
WO2021254467A1 (zh) 多链路设备的信道接入方法及相关装置
CN112788791B (zh) 多链路信道存取方法
CN116368914A (zh) 对移动软接入点多链路设备的二级链路接入
WO2023236821A1 (zh) 多链路通信方法及装置
WO2024031694A1 (zh) 一种信道使用方法及装置、设备、存储介质
WO2024031687A1 (zh) 一种信道使用方法及装置、设备、存储介质
EP4262270A1 (en) Method and device for receiving downlink traffic in communication system supporting multiple links
EP4247048A1 (en) Trigger frame sending method and apparatus
WO2022198546A1 (en) Methods, apparatuses and systems for triggered transmission opportunity (txop) sharing
US20220400500A1 (en) Enabling legacy (non-eht) stations to operate on the conditional link of a soft ap mld
CN117796020A (zh) 用于支持多链路的通信系统中的nstr通信的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514977

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3191675

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023004052

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202180065143.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021863612

Country of ref document: EP

Effective date: 20230309

ENP Entry into the national phase

Ref document number: 20237010503

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021336597

Country of ref document: AU

Date of ref document: 20210831

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023004052

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230303