WO2022048485A1 - 系统级芯片及其工作模式管理方法、智能穿戴设备 - Google Patents

系统级芯片及其工作模式管理方法、智能穿戴设备 Download PDF

Info

Publication number
WO2022048485A1
WO2022048485A1 PCT/CN2021/114648 CN2021114648W WO2022048485A1 WO 2022048485 A1 WO2022048485 A1 WO 2022048485A1 CN 2021114648 W CN2021114648 W CN 2021114648W WO 2022048485 A1 WO2022048485 A1 WO 2022048485A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsystem
control subsystem
functional
mode
interrupt signal
Prior art date
Application number
PCT/CN2021/114648
Other languages
English (en)
French (fr)
Inventor
张慧敏
饶国明
肖正飞
陈波
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Priority to US18/043,665 priority Critical patent/US20230385229A1/en
Publication of WO2022048485A1 publication Critical patent/WO2022048485A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3278Power saving in modem or I/O interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7807System on chip, i.e. computer system on a single chip; System in package, i.e. computer system on one or more chips in a single package
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/329Power saving characterised by the action undertaken by task scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3209Monitoring remote activity, e.g. over telephone lines or network connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3228Monitoring task completion, e.g. by use of idle timers, stop commands or wait commands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3243Power saving in microcontroller unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates to the field of chip technology, and in particular, to a system-on-chip (SoC), a work mode management method thereof, and an intelligent wearable device.
  • SoC system-on-chip
  • Smart wearable device is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as watches, bracelets, glasses, clothing, etc.
  • wearable devices such as watches, bracelets, glasses, clothing, etc.
  • smart watches are the most widely used type of smart wearable devices.
  • the technical problem to be solved by the present disclosure is to provide a system-level chip, a working mode management method thereof, and an intelligent wearable device in order to overcome the defect that the existing power saving technology cannot meet the needs of users.
  • a first aspect of the present disclosure provides a method for managing a working mode of a system-on-chip, where the system-on-chip includes a main control subsystem, a sub-control subsystem and a plurality of functional subsystems; the method includes the following steps:
  • the main control subsystem controls the functional subsystem to perform corresponding functions, and responds to interrupt signals from the functional subsystem and the secondary control subsystem;
  • the secondary control subsystem responds to the interrupt signal of the functional subsystem, and the main control subsystem is prohibited from responding to the interrupt signal of the functional subsystem;
  • the main control subsystem In the ultra-low power consumption mode, the main control subsystem is powered off, and the secondary control subsystem responds to the interrupt signal of the functional subsystem;
  • the main control subsystem In the working mode, if the main control subsystem does not receive data sent by any functional subsystem within a period of time, it switches to the sleep mode;
  • the sub-control subsystem In the sleep mode, if the sub-control subsystem detects the interrupt signal of the functional subsystem, it switches to the working mode, and if the interrupt signal of the functional subsystem is not detected and the preset conditions are met, it switches to Ultra low power mode;
  • the sub-control subsystem In the ultra-low power consumption mode, if the sub-control subsystem detects the interrupt signal of the functional subsystem or does not meet the preset condition, it controls the main control subsystem to power on and switch to the working mode .
  • both the primary control subsystem and the secondary control subsystem are connected to an external operating device
  • the main control subsystem In the working mode, if the main control subsystem does not receive data sent by any functional subsystem within a period of time, it switches to the sleep mode and replaces it with:
  • the main control subsystem In the working mode, if the main control subsystem does not receive data sent by any functional subsystem or the user's operation on the external operating device within a period of time, switch to the sleep mode;
  • the sub-control subsystem In the sleep mode, if the sub-control subsystem detects the interrupt signal of the functional subsystem, it switches to the working mode, and replaces it with:
  • the sub-control subsystem In the sleep mode, if the sub-control subsystem detects the interrupt signal of the functional subsystem or the user's operation on the external operating device, it switches to the working mode.
  • the interrupt signal and the user's operation on the external operating device and if the preset conditions are met, switch to the ultra-low power consumption mode;
  • the secondary control subsystem In the ultra-low power consumption mode, if the secondary control subsystem detects the interrupt signal of the functional subsystem or does not meet the preset conditions, it controls the main control subsystem to power on and switch To work mode, replace with:
  • the secondary control subsystem In the ultra-low power consumption mode, if the secondary control subsystem detects the interrupt signal of the functional subsystem, the user's operation on the external operating device or does not meet the preset condition, it controls the primary control subsystem.
  • the control system is powered on and switched to working mode.
  • the preset condition is that the system time reaches a preset time.
  • the secondary control subsystem is connected to an external sensor, and the method further includes:
  • the sub-control subsystem receives detection data from the external sensor.
  • the method further includes:
  • the secondary control subsystem In the ultra-low power consumption mode, if the secondary control subsystem detects that the detected data is abnormal, it controls the main control subsystem to power on and switch to the working mode.
  • the preset condition is that the detection data is lower than a certain value.
  • a second aspect of the present disclosure provides a system-on-chip, including a main control subsystem, a sub-control subsystem, and multiple functional subsystems;
  • the main control subsystem is configured to control the functional subsystem to perform corresponding functions, and to respond to interrupt signals of the functional subsystem and the secondary control subsystem;
  • the secondary control subsystem is configured to respond to the interrupt signal of the functional subsystem, and the main control subsystem is configured to disable responding to the interrupt signal of the functional subsystem;
  • the main control subsystem is configured to power down, and the secondary control subsystem is configured to respond to an interrupt signal of the functional subsystem;
  • the main control subsystem is configured to switch to the sleep mode if no data sent by any functional subsystem is received within a period of time;
  • the sub-control subsystem is configured to switch to the working mode if an interrupt signal of the functional subsystem is detected, and if the interrupt signal of the functional subsystem is not detected and a preset condition is satisfied, Then switch to ultra-low power consumption mode;
  • the secondary control subsystem is configured to control the primary control subsystem to power on and switch over if an interrupt signal of the functional subsystem is detected or the preset condition is not satisfied. to work mode.
  • both the primary control subsystem and the secondary control subsystem are connected to an external operating device
  • the main control subsystem is configured to switch to the sleep mode if no data sent by any functional subsystem or user's operation on the external operating device is received within a period of time;
  • the sub-control subsystem is configured to switch to the working mode if an interrupt signal of the function subsystem or an operation by a user on the external operating device is detected, and if the function is not detected
  • the sub-control subsystem is configured to control the system if an interrupt signal of the functional subsystem, an operation performed by a user on the external operating device or the preset condition is not satisfied,
  • the main control subsystem is powered on and switched to the working mode.
  • the secondary control subsystem is connected to an external sensor, and the secondary control subsystem is configured to receive detection data from the external sensor.
  • a third aspect of the present disclosure provides a smart wearable device, including the system-on-chip as described in the second aspect.
  • the positive improvement effect of the present disclosure is that: by alternately responding to the interrupt signal of the functional subsystem by the main control subsystem and the sub-control subsystem, three modes are provided for the system level chip, specifically the working mode, the sleep mode and the ultra-low power consumption mode , On the premise of meeting the normal function requirements of the system-level chip, the power consumption of the system-level chip is saved to the greatest extent.
  • FIG. 1 is a schematic structural diagram of a system-on-chip according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a flowchart of a method for managing a working mode of a system-on-chip according to Embodiment 1 of the present disclosure.
  • FIG. 1 is a schematic structural diagram for illustrating a system-on-chip.
  • the working mode management method of the system-on-chip provided in this embodiment can be applied to the system-on-chip shown in FIG. 1 .
  • the system-on-chip includes a main control subsystem, a sub-control subsystem and multiple functional subsystems. Wherein, the main control subsystem and the sub-control subsystem are respectively connected to the functional subsystem through an interrupt line, and the main control subsystem and the sub-control subsystem are connected through an interrupt line.
  • This embodiment provides a working mode management method of a system-on-chip, as shown in FIG. 2 .
  • Step S100 the main control subsystem controls the functional subsystem to perform corresponding functions, and responds to interrupt signals from the functional subsystem and the secondary control subsystem.
  • the wireless Modem subsystem includes a wireless Modem, which is used to implement functions such as answering/making a call, and a mobile data network.
  • Wireless Modem is generally composed of baseband processing, modulation and demodulation, signal amplification and filtering, equalization and other parts, and is used to wirelessly transmit digital signals of data communication on analog channels with limited bandwidth.
  • the Bluetooth subsystem is used to implement wireless communication with external devices within a short distance.
  • the Wi-Fi (wireless communication technology) subsystem is used to realize the function of wireless Internet access.
  • the GPS (Global Positioning System, Global Positioning System) subsystem is used to realize the function of real-time positioning and navigation in the global scope.
  • the camera subsystem includes a camera to capture still images or video.
  • Step S101 judging whether the main control subsystem has received data sent by any functional subsystem within a period of time, if so, return to step S100 , if not, switch to sleep mode.
  • the period of time can be set according to specific conditions, for example, set to 1 minute.
  • Step S200 the secondary control subsystem responds to the interrupt signal of the functional subsystem, and the main control subsystem is prohibited from responding to the interrupt signal of the functional subsystem.
  • the interrupt port connecting the main control subsystem and each functional subsystem is disabled and enabled, so that the main control subsystem cannot respond to the interrupt signal sent by each functional subsystem.
  • Step S201 judging whether the sub-control subsystem detects the interrupt signal of the functional subsystem, if so, switch to the working mode, and if not, execute step S202;
  • Step S202 judging whether a preset condition is satisfied, if yes, switching to the ultra-low power consumption mode, and if not, returning to step S200 .
  • the above-mentioned preset condition is that the system time reaches the preset time.
  • the preset time is two in the morning. In sleep mode, if the system time reaches two in the morning, it will switch to ultra-low power consumption mode.
  • the secondary control subsystem is connected to an external sensor, and the above method further includes: the secondary control subsystem receives detection data from the external sensor.
  • the above-mentioned preset condition is that the detection data of the external sensor is lower than a certain value.
  • the sub-control subsystem is connected to the heart rate sensor, and if the heart rate data detected by the heart rate sensor is lower than 60 beats/min, it switches to the ultra-low power consumption mode.
  • Step S300 the main control subsystem is powered off, and the secondary control subsystem responds to the interrupt signal of the functional subsystem.
  • the main control subsystem first controls some functional subsystems to power off, for example, outputting a preset level to its power domain, and then powers off by itself.
  • the wireless Modem subsystem is in a power-down state, that is, it cannot receive/make calls.
  • the main control subsystem, the secondary control subsystem, and the functional subsystem all have independent power domains, that is, each subsystem can be powered on or powered off independently , do not affect each other.
  • the main control subsystem outputs a preset level signal to the power domain of the functional subsystem to control the power-on or power-off of the functional subsystem.
  • the secondary control subsystem outputs a preset level signal to the power supply domain of the primary control subsystem to control the power-on of the primary control subsystem.
  • Step S301 judging whether the sub-control subsystem detects the interrupt signal of the functional subsystem or does not meet the preset condition, if so, control the main control subsystem to power on and switch to the working mode, if No, return to step S300.
  • the secondary control subsystem in the ultra-low power consumption mode, if the secondary control subsystem detects that the detection data of the external sensor is abnormal, it controls the main control subsystem to power on and switch to the working mode .
  • the sub-control subsystem is connected to the heart rate sensor, and if the sub-control subsystem detects that the heart rate data exceeds 120 times/min, it controls the main control subsystem to power on and switch to the working mode.
  • both the above-mentioned main control subsystem and the sub-control subsystem are connected to an external operating device.
  • step S101 is replaced by the following step S101':
  • Step S101' judge whether the main control subsystem has received data sent by any functional subsystem or the user's operation on the external operating device within a period of time, if so, return to step S100, if not, switch to step S100. sleep mode.
  • step S201 In the sleep mode, the above step S201 is replaced by the following step S201':
  • Step S201' judging whether the sub-control subsystem detects the interrupt signal of the functional subsystem or the user's operation on the external operating device, if so, switch to the working mode, and if not, execute step S202.
  • step S301 is replaced by the following step S301':
  • Step S301' judging whether the sub-control subsystem detects the interrupt signal of the functional subsystem, the user's operation on the external operating device or does not meet the preset condition, and if so, controls the main control
  • the subsystem is powered on and switched to the working mode, if not, the process returns to step S300.
  • the external operating device includes a touch screen, and the user can perform operations such as clicking, touching, sliding, and the like on the touch screen.
  • the main control subsystem In the working mode, the main control subsystem is used to receive the user's touch operation on the touch screen, and in the sleep mode and the ultra-low power consumption mode, the sub-control subsystem is used to receive the user's touch operation on the touch screen.
  • the external operating device further includes keys, and the user can perform operations such as pressing once, pressing twice, short pressing or long pressing on the keys.
  • the main control subsystem In the working mode, the main control subsystem is used to receive the user's operation of the button, and in the sleep mode and the ultra-low power consumption mode, the sub-control subsystem is used to receive the user's operation of the button.
  • the main control subsystem can complete complex multimedia system applications, and can completely respond to user operations, and can even execute complex user application programs.
  • the sub-control subsystem is mainly used for AOD display and control of various external sensors when the main control subsystem is dormant. Therefore, the main frequency, memory consumption and power consumption of the MCU (Micro Control Unit) in the main control subsystem are higher than the main frequency, memory consumption and power consumption of the MCU in the sub-control subsystem.
  • the main control subsystem and the sub-control subsystem by alternately responding to the interrupt signal of the functional subsystem by the main control subsystem and the sub-control subsystem, three modes are provided for the system-level chip, specifically the working mode, the sleep mode and the ultra-low power consumption mode.
  • the power consumption of the system-on-chip is saved to the greatest extent.
  • This embodiment provides a system-level chip, including a main control subsystem, a sub-control subsystem, and multiple functional subsystems.
  • the main control subsystem is configured to control the functional subsystem to perform corresponding functions, and to respond to interrupt signals of the functional subsystem and the secondary control subsystem.
  • the secondary control subsystem is configured to respond to the interrupt signal of the functional subsystem, and the main control subsystem is configured to disable responding to the interrupt signal of the functional subsystem.
  • the primary control subsystem is configured to power down, and the secondary control subsystem is configured to respond to an interrupt signal of the functional subsystem.
  • the main control subsystem is configured to switch to the sleep mode if no data sent by any functional subsystem is received for a period of time.
  • the sub-control subsystem is configured to switch to the working mode if an interrupt signal of the functional subsystem is detected, and if the interrupt signal of the functional subsystem is not detected and a preset condition is satisfied, switch to ultra-low power mode.
  • the secondary control subsystem is configured to control the primary control subsystem to power on and switch over if an interrupt signal of the functional subsystem is detected or the preset condition is not satisfied. to work mode.
  • both the main control subsystem and the secondary control subsystem are connected to an external operating device.
  • the main control subsystem is configured to switch to the sleep mode if no data sent by any functional subsystem or user's operation on the external operating device is received for a period of time.
  • the sub-control subsystem is configured to switch to the working mode if an interrupt signal of the function subsystem or an operation by a user on the external operating device is detected, and if the function is not detected.
  • the interrupt signal of the subsystem and the user's operation on the external operating device meet the preset conditions, and then switch to the ultra-low power consumption mode.
  • the sub-control subsystem is configured to control the system if an interrupt signal of the functional subsystem, an operation performed by a user on the external operating device or the preset condition is not satisfied,
  • the main control subsystem is powered on and switched to the working mode.
  • the above-mentioned preset condition is that the system time reaches the preset time.
  • the secondary control subsystem is connected to an external sensor, and the secondary control subsystem is configured to receive detection data from the external sensor.
  • the above-mentioned preset condition is that the detection data of the external sensor is lower than a certain value.
  • the secondary control subsystem in the ultra-low power consumption mode, if the secondary control subsystem detects that the detection data of the external sensor is abnormal, it controls the main control subsystem to power on and switch to the working mode .
  • the main control subsystem and the sub-control subsystem by alternately responding to the interrupt signal of the functional subsystem by the main control subsystem and the sub-control subsystem, three modes are provided for the system-level chip, specifically the working mode, the sleep mode and the ultra-low power consumption mode.
  • the power consumption of the system-on-chip is saved to the greatest extent.
  • the system-on-chip further includes SRAM (Static Random-Access Memory, static random access memory), DRAM (Dynamic Random Access Memory, dynamic random access memory), ROM (Read-Only Memory) Memory, read-only memory) and power management chips.
  • SRAM Static Random-Access Memory, static random access memory
  • DRAM Dynamic Random Access Memory
  • ROM Read-Only Memory
  • the SRAM, the main control subsystem, the sub-control subsystem, and multiple functional subsystems are integrated into one chip, and packaged with the DRAM, ROM, and power management chip through SIP to obtain the system of this embodiment. level chip.
  • PCB printed Circuit Board, printed circuit board
  • SIP packaging is an electronic device packaging solution, which integrates multiple functional chips, including processors, memory and other functional chips in one package, thereby realizing a basically complete function.
  • the ePoP (Embedded Package on Package) packaging process is first used to stack ROM and DRAM on a chip that integrates SRAM, main control subsystem, sub-control subsystem and all functional subsystems
  • the FCCSP (FlipChip Chip Scale Package, a chip-scale package) packaging process is used to integrate it with the power management chip, thereby obtaining the system-on-chip of this embodiment.
  • the above-mentioned system-on-chip is embedded with an RTOS operating system.
  • RTOS operating system is a lightweight microkernel operating system that can be applied to MCU controllers to provide microsecond-level response speed, which belongs to ultra-low power consumption operating system.
  • Each subsystem of the above-mentioned system-on-chip includes a processor, such as a lightweight MCU.
  • each MCU is embedded with an RTOS operating system.
  • part of the MCU in the system-on-chip has an RTOS operating system embedded in it. Specifically, it can be designed according to the resources required by each subsystem to realize different functions.
  • a lightweight MCU and an ultra-low power consumption RTOS operating system are used, which can further reduce the power consumption of the system-on-chip.
  • This embodiment provides a smart wearable device, including the system-on-chip as described in Embodiment 2.
  • the above-mentioned smart wearable device further includes a touch screen and a plurality of sensors, wherein the touch screen and the sensors are respectively electrically connected to the system-on-chip.
  • the user can operate the content displayed by the smart wearable device through the touch screen, and the smart wearable device makes different responses based on different operations of the user.
  • the above-mentioned sensors include heart rate sensors, acceleration sensors, gyroscope sensors, and the like.
  • the sub-control subsystem in the system-on-chip is used to realize the functions of Sensor Hub, including real-time control of sensors, and fusion of data from different types of sensors to realize functions that can only be achieved by combining multiple sensor data.
  • the above-mentioned smart wearable device is a smart watch, such as an adult smart watch, a children's smart watch, an elderly smart watch, and the like.
  • the above-mentioned smart wearable device may also be a smart bracelet, smart glasses, smart clothing, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Sources (AREA)

Abstract

本公开公开了一种系统级芯片及其工作模式管理方法、智能穿戴设备。系统级芯片的工作模式管理方法包括以下步骤:在工作模式下,所述主控子系统控制所述功能子系统执行相应的功能,并响应所述功能子系统以及所述副控子系统的中断信号;在休眠模式下,所述副控子系统响应所述功能子系统的中断信号,所述主控子系统禁止响应所述功能子系统的中断信号;在超低功耗模式下,所述主控子系统掉电,所述副控子系统响应所述功能子系统的中断信号。本公开通过主控和副控子系统交替响应功能子系统的中断信号,为系统级芯片提供了工作模式、休眠模式以及超低功耗模式,在满足系统级芯片正常功能需求的前提下,最大限度地节省了系统级芯片的功耗。

Description

系统级芯片及其工作模式管理方法、智能穿戴设备
本申请要求申请日为2020/9/2的中国专利申请2020109112347的优先权。本申请引用上述中国专利申请的全文。
技术领域
本公开涉及芯片技术领域,特别涉及一种系统级芯片(System on Chip,SoC)及其工作模式管理方法、智能穿戴设备。
背景技术
智能穿戴设备是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如手表、手环、眼镜、服饰等。其中,智能手表是智能穿戴设备中应用最广泛的设备类型。
在智能手表的产品实现中,有目前以下两种节省功耗的方法:第一、利用AOD(Always ON Display,息屏显示技术)技术在智能手表灭屏后显示屏幕部分区域,以达到低功耗省电的目的;第二、暂时不用的子系统进入休眠模式,只消耗待机电流。由于物理尺寸的限制,智能手表往往无法装载容量稍大的电池,同时由于随身穿戴的使用方便性,用户往往期待智能手表能达到一周甚至两周才充电一次,但是上述这两种节省功耗的方法也还是远达不到用户对于智能手表长待机和长续航的需求。
发明内容
本公开要解决的技术问题是为了克服现有节省功耗技术无法达到用户需求的缺陷,提供一种系统级芯片及其工作模式管理方法、智能穿戴设备。
本公开是通过下述技术方案来解决上述技术问题:
本公开的第一方面提供一种系统级芯片的工作模式管理方法,所述系统 级芯片包括主控子系统、副控子系统以及多个功能子系统;所述方法包括以下步骤:
在工作模式下,所述主控子系统控制所述功能子系统执行相应的功能,并响应所述功能子系统以及所述副控子系统的中断信号;
在休眠模式下,所述副控子系统响应所述功能子系统的中断信号,所述主控子系统禁止响应所述功能子系统的中断信号;
在超低功耗模式下,所述主控子系统掉电,所述副控子系统响应所述功能子系统的中断信号;
在工作模式下,若所述主控子系统在一段时间内未接收到任何功能子系统发送的数据,则切换至休眠模式;
在休眠模式下,若所述副控子系统检测到所述功能子系统的中断信号,则切换至工作模式,若未检测到所述功能子系统的中断信号且满足预设条件,则切换至超低功耗模式;
在超低功耗模式下,若所述副控子系统检测到所述功能子系统的中断信号或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
在一些实施例中,所述主控子系统和所述副控子系统均与外部操作设备连接;
将所述在工作模式下,若所述主控子系统在一段时间内未接收到任何功能子系统发送的数据,则切换至休眠模式,替换为:
在工作模式下,若所述主控子系统在一段时间内未接收到任何功能子系统发送的数据或者用户在所述外部操作设备上的操作,则切换至休眠模式;
将所述在休眠模式下,若所述副控子系统检测到所述功能子系统的中断信号,则切换至工作模式,替换为:
在休眠模式下,若所述副控子系统检测到所述功能子系统的中断信号或者用户在所述外部操作设备上的操作,则切换至工作模式,若未检测到所述功能子系统的中断信号以及用户在所述外部操作设备上的操作,且满足预设 条件,则切换至超低功耗模式;
将所述在超低功耗模式下,若所述副控子系统检测到所述功能子系统的中断信号或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式,替换为:
在超低功耗模式下,若所述副控子系统检测到所述功能子系统的中断信号、用户在所述外部操作设备上的操作或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
在一些实施例中,所述预设条件为系统时间达到预设时间。
在一些实施例中,所述副控子系统与外部传感器连接,所述方法还包括:
所述副控子系统接收所述外部传感器的检测数据。
在一些实施例中,所述方法还包括:
在超低功耗模式下,若所述副控子系统检测到所述检测数据异常,则控制所述主控子系统上电,并切换至工作模式。
在一些实施例中,所述预设条件为所述检测数据低于一定值。
本公开的第二方面提供一种系统级芯片,包括主控子系统、副控子系统以及多个功能子系统;
在工作模式下,所述主控子系统被配置为控制所述功能子系统执行相应的功能,并响应所述功能子系统以及所述副控子系统的中断信号;
在休眠模式下,所述副控子系统被配置为响应所述功能子系统的中断信号,所述主控子系统被配置为禁止响应所述功能子系统的中断信号;
在超低功耗模式下,所述主控子系统被配置为掉电,所述副控子系统被配置为响应所述功能子系统的中断信号;
在工作模式下,所述主控子系统被配置为若在一段时间内未接收到任何功能子系统发送的数据,则切换至休眠模式;
在休眠模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号,则切换至工作模式,若未检测到所述功能子系统的中断信号且满足 预设条件,则切换至超低功耗模式;
在超低功耗模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
在一些实施例中,所述主控子系统和所述副控子系统均与外部操作设备连接;
在工作模式下,所述主控子系统被配置为若在一段时间内未接收到任何功能子系统发送的数据或者用户在所述外部操作设备上的操作,则切换至休眠模式;
在休眠模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号或者用户在所述外部操作设备上的操作,则切换至工作模式,若未检测到所述功能子系统的中断信号以及用户在所述外部操作设备上的操作,且满足预设条件,则切换至超低功耗模式;
在超低功耗模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号、用户在所述外部操作设备上的操作或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
在一些实施例中,所述副控子系统与外部传感器连接,所述副控子系统被配置为接收所述外部传感器的检测数据。
本公开的第三方面提供一种智能穿戴设备,包括如第二方面所述的系统级芯片。
本公开的积极进步效果在于:通过主控子系统和副控子系统交替响应功能子系统的中断信号,为系统级芯片提供了三种模式,具体为工作模式、休眠模式以及超低功耗模式,在满足系统级芯片正常功能需求的前提下,最大限度地节省了系统级芯片的功耗。
附图说明
图1为本公开实施例1提供的一种系统级芯片的结构示意图。
图2为本公开实施例1提供的一种系统级芯片的工作模式管理方法的流程图。
具体实施方式
下面通过实施例的方式进一步说明本公开,但并不因此将本公开限制在所述的实施例范围之中。
实施例1
图1是用于示出一种系统级芯片的结构示意图。本实施例提供的系统级芯片的工作模式管理方法可以应用于图1所示的系统级芯片。如图1所示,系统级芯片包括主控子系统、副控子系统以及多个功能子系统。其中,主控子系统和副控子系统分别通过中断线与所述功能子系统连接,主控子系统与副控子系统通过中断线连接。
本实施例提供一种系统级芯片的工作模式管理方法,如图2所示。
在工作模式下,执行以下步骤:
步骤S100、所述主控子系统控制所述功能子系统执行相应的功能,并响应所述功能子系统以及所述副控子系统的中断信号。
本实施例中,不同的功能子系统用于实现不同的功能,功能子系统仅在需要时才打开进行工作,不需要时则进入休眠状态,只保持微弱的待机电流,甚至需要断电,以彻底节省功耗。例如无线Modem子系统包括无线Modem,用于实现接听/拨打电话、移动数据网络等功能。无线Modem一般由基带处理、调制解调、信号放大和滤波、均衡等几部分组成,用于将数据通信的数字信号在具有有限带宽的模拟信道上进行无线传输。蓝牙子系统用于实现与短距离内的外部设备进行无线通信功能。Wi-Fi(无线通信技术)子系统用于实现无线上网功能。GPS(Global Positioning System,全球定位系统)子系统用于实现在全球范围内实时定位、导航的功能。相机子系统包括摄像头,用 于捕获静态图像或视频。
步骤S101、判断主控子系统在一段时间内是否接收到任何功能子系统发送的数据,若是,则返回步骤S100,若否,则切换至休眠模式。其中,一段时间可以根据具体情况进行设置,例如设为1分钟。
在休眠模式下,执行以下步骤:
步骤S200、所述副控子系统响应所述功能子系统的中断信号,所述主控子系统禁止响应所述功能子系统的中断信号。在具体实施的一个例子中,将主控子系统与各个功能子系统连接的中断口禁止使能,从而使主控子系统无法响应各功能子系统发送的中断信号。
步骤S201、判断所述副控子系统是否检测到所述功能子系统的中断信号,若是,则切换至工作模式,若否,则执行步骤S202;
步骤S202、判断是否满足预设条件,若是,则切换至超低功耗模式,若否,则返回步骤S200。
在可选的一种实施方式中,上述预设条件为系统时间达到预设时间。在一个具体的例子中,预设时间为凌晨两点。在休眠模式下,若系统时间达到凌晨两点,则切换至超低功耗模式。
在可选的一种实施方式中,所述副控子系统与外部传感器连接,上述方法还包括:所述副控子系统接收所述外部传感器的检测数据。
在可选的另一种实施方式中,上述预设条件为外部传感器的检测数据低于一定值。在一个具体的例子中,副控子系统与心率传感器连接,若心率传感器检测的心率数据低于60次/分钟,则切换至超低功耗模式。
在超低功耗模式下,执行以下步骤:
步骤S300、所述主控子系统掉电,所述副控子系统响应所述功能子系统的中断信号。
在步骤S300可选的一种实施方式中,为了节省更多的功耗,主控子系统先控制部分功能子系统掉电,例如向其电源域输出预设电平,然后再自行 掉电。在超低功耗模式的一个例子中,无线Modem子系统处于掉电状态,即无法进行接听/拨打电话。
在可选的一种实施方式中,所述主控子系统、所述副控子系统以及所述功能子系统均具有独立的电源域,也就是说,各个子系统可以独立上电或掉电,互不影响。在一个具体的例子中,主控子系统向功能子系统的电源域输出预设电平信号,以控制功能子系统的上电或掉电。在另一个具体的例子中,副控子系统向主控子系统的电源域输出预设电平信号,以控制主控子系统的上电。
步骤S301、判断是否所述副控子系统检测到所述功能子系统的中断信号或不满足所述预设条件,若是,则控制所述主控子系统上电,并切换至工作模式,若否,则返回步骤S300。
在可选的一种实施方式中,在超低功耗模式下,若所述副控子系统检测到外部传感器的检测数据异常,则控制所述主控子系统上电,并切换至工作模式。在一个具体的例子中,副控子系统与心率传感器连接,若副控子系统检测到心率数据超过120次/分钟,则控制主控子系统上电,并切换至工作模式。
在可选的一种实施方式中,上述主控子系统和所述副控子系统均与外部操作设备连接。
在工作模式下,将上述步骤S101替换为以下步骤S101’:
步骤S101’、判断所述主控子系统在一段时间内是否接收到任何功能子系统发送的数据或者用户在所述外部操作设备上的操作,若是,则返回步骤S100,若否,则切换至休眠模式。
在休眠模式下,将上述步骤S201替换为以下步骤S201’:
步骤S201’、判断所述副控子系统是否检测到所述功能子系统的中断信号或者用户在所述外部操作设备上的操作,若是,则切换至工作模式,若否,则执行步骤S202。
在超低功耗模式下,将上述步骤S301替换为以下步骤S301’:
步骤S301’、判断是否所述副控子系统检测到所述功能子系统的中断信号、用户在所述外部操作设备上的操作或不满足所述预设条件,若是,则控制所述主控子系统上电,并切换至工作模式,若否,则返回步骤S300。
在一个例子中,外部操作设备包括触摸屏,用户可以在触摸屏上执行点击、触摸、滑动等操作。在工作模式下,主控子系统用于接收用户在触摸屏上的触摸操作,在休眠模式和超低功耗模式下,副控子系统用于接收用户在触摸屏上的触摸操作。
在另一个例子中,外部操作设备还包括按键,用户可以对按键执行按下一次、按下两次、短按或者长按等操作。在工作模式下,主控子系统用于接收用户对按键的操作,在休眠模式和超低功耗模式下,副控子系统用于接收用户对按键的操作。
本实施方式中,主控子系统可完成复杂的多媒体系统应用,并能完整的响应用户操作,甚至能执行复杂的用户应用程序。副控子系统主要用于主控子系统休眠时的AOD显示和各种外部传感器的控制。因此,主控子系统中MCU(Micro Control Unit,微控制单元)的主频、内存消耗以及功耗均高于副控子系统中MCU的主频、内存消耗以及功耗。
本实施例中,通过主控子系统和副控子系统交替响应功能子系统的中断信号,为系统级芯片提供了三种模式,具体为工作模式、休眠模式以及超低功耗模式,在满足系统级芯片正常功能需求的前提下,最大限度地节省了系统级芯片的功耗。
实施例2
本实施例提供一种系统级芯片,包括主控子系统、副控子系统以及多个功能子系统。
在工作模式下,所述主控子系统被配置为控制所述功能子系统执行相应的功能,并响应所述功能子系统以及所述副控子系统的中断信号。
在休眠模式下,所述副控子系统被配置为响应所述功能子系统的中断信号,所述主控子系统被配置为禁止响应所述功能子系统的中断信号。
在超低功耗模式下,所述主控子系统被配置为掉电,所述副控子系统被配置为响应所述功能子系统的中断信号。
在工作模式下,所述主控子系统被配置为若在一段时间内未接收到任何功能子系统发送的数据,则切换至休眠模式。
在休眠模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号,则切换至工作模式,若未检测到所述功能子系统的中断信号且满足预设条件,则切换至超低功耗模式。
在超低功耗模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
在可选的一种实施方式中,所述主控子系统和所述副控子系统均与外部操作设备连接。
在工作模式下,所述主控子系统被配置为若在一段时间内未接收到任何功能子系统发送的数据或者用户在所述外部操作设备上的操作,则切换至休眠模式。
在休眠模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号或者用户在所述外部操作设备上的操作,则切换至工作模式,若未检测到所述功能子系统的中断信号以及用户在所述外部操作设备上的操作,且满足预设条件,则切换至超低功耗模式。
在超低功耗模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号、用户在所述外部操作设备上的操作或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
在可选的一种实施方式中,上述预设条件为系统时间达到预设时间。
在可选的一种实施方式中,所述副控子系统与外部传感器连接,所述副 控子系统被配置为接收所述外部传感器的检测数据。
在可选的另一种实施方式中,上述预设条件为外部传感器的检测数据低于一定值。
在可选的一种实施方式中,在超低功耗模式下,若所述副控子系统检测到外部传感器的检测数据异常,则控制所述主控子系统上电,并切换至工作模式。
本实施例中,通过主控子系统和副控子系统交替响应功能子系统的中断信号,为系统级芯片提供了三种模式,具体为工作模式、休眠模式以及超低功耗模式,在满足系统级芯片正常功能需求的前提下,最大限度地节省了系统级芯片的功耗。
在可选的一种实施方式中,上述系统级芯片还包括SRAM(Static Random-Access Memory,静态随机存取存储器)、DRAM(Dynamic Random Access Memory,动态随机存取存储器)、ROM(Read-Only Memory,只读存储器)和电源管理芯片。在一个具体的例子中,将SRAM、主控子系统、副控子系统以及多个功能子系统集成于一个芯片内,并与DRAM、ROM以及电源管理芯片通过SIP封装,得到本实施例的系统级芯片。通过将各子系统以及存储器集成于一个芯片中,不仅能够降低功耗和成本,还可以降低PCB(Printed Circuit Board,印制电路板)布板所需的空间。其中,SIP封装是一种电子器件封装方案,将多种功能芯片,包括处理器、存储器等功能芯片集成在一个封装内,从而实现一个基本完整的功能。
在一个具体的例子中,首先采用ePoP(Embedded Package on Package,嵌入式堆叠封装)封装工艺,将ROM与DRAM堆叠在集成了SRAM、主控子系统、副控子系统以及所有功能子系统的芯片之上,再采用FCCSP(FlipChip Chip Scale Package,一种芯片级封装)封装工艺将其与电源管理芯片集成在一起,从而得到本实施例的系统级芯片。
在可选的一种实施方式中,上述系统级芯片内嵌有RTOS操作系统。其 中,不同于Android、Windows、IOS等智能操作系统,RTOS操作系统是一种轻量级的微内核操作系统,可以应用于MCU控制器上,提供微秒级的响应速度,属于超低功耗的操作系统。上述系统级芯片的每个子系统中均包括处理器,例如为轻量级的MCU。在一个例子中,每个MCU均内嵌有RTOS操作系统。在另一个例子中,系统级芯片中的部分MCU中内嵌有RTOS操作系统。具体可以根据各子系统实现不同功能所需要的资源等进行设计。本实施方式中采用轻量级的MCU和超低功耗的RTOS操作系统,能够进一步降低系统级芯片的功耗。
实施例3
本实施例提供一种智能穿戴设备,包括如实施例2所述的系统级芯片。
在可选的一些实施方式中,上述智能穿戴设备还包括触摸屏和多个传感器,其中,所述触摸屏和所述传感器分别与所述系统级芯片电连接。本实施方式中,用户可以通过触摸屏对智能穿戴设备显示的内容进行操作,智能穿戴设备基于用户的不同操作做出不同的响应。
在可选的一些实施方式中,上述传感器包括心率传感器、加速度传感器、陀螺仪传感器等。其中,系统级芯片中的副控子系统用于实现Sensor Hub的功能,具体包括对传感器进行实时控制,以及将不同类型传感器的数据进行融合,实现多种传感器数据结合才能实现的功能等。
在可选的一种实施方式中,上述智能穿戴设备为智能手表,例如成人智能手表、儿童智能手表、老人智能手表等。
在可选的一些实施方式中,上述智能穿戴设备还可以为智能手环、智能眼镜、智能服饰等。
虽然以上描述了本公开的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本公开的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本公开的保护范围由所附权利要求书限定。

Claims (10)

  1. 一种系统级芯片的工作模式管理方法,其特征在于,所述系统级芯片包括主控子系统、副控子系统以及多个功能子系统;所述方法包括以下步骤:
    在工作模式下,所述主控子系统控制所述功能子系统执行相应的功能,并响应所述功能子系统以及所述副控子系统的中断信号;
    在休眠模式下,所述副控子系统响应所述功能子系统的中断信号,所述主控子系统禁止响应所述功能子系统的中断信号;
    在超低功耗模式下,所述主控子系统掉电,所述副控子系统响应所述功能子系统的中断信号;
    在工作模式下,若所述主控子系统在一段时间内未接收到任何功能子系统发送的数据,则切换至休眠模式;
    在休眠模式下,若所述副控子系统检测到所述功能子系统的中断信号,则切换至工作模式,若未检测到所述功能子系统的中断信号且满足预设条件,则切换至超低功耗模式;
    在超低功耗模式下,若所述副控子系统检测到所述功能子系统的中断信号或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
  2. 如权利要求1所述的方法,其特征在于,所述主控子系统和所述副控子系统均与外部操作设备连接;
    将所述在工作模式下,若所述主控子系统在一段时间内未接收到任何功能子系统发送的数据,则切换至休眠模式,替换为:
    在工作模式下,若所述主控子系统在一段时间内未接收到任何功能子系统发送的数据或者用户在所述外部操作设备上的操作,则切换至休眠模式;
    将所述在休眠模式下,若所述副控子系统检测到所述功能子系统的中断信号,则切换至工作模式,替换为:
    在休眠模式下,若所述副控子系统检测到所述功能子系统的中断信号或 者用户在所述外部操作设备上的操作,则切换至工作模式,若未检测到所述功能子系统的中断信号以及用户在所述外部操作设备上的操作,且满足预设条件,则切换至超低功耗模式;
    将所述在超低功耗模式下,若所述副控子系统检测到所述功能子系统的中断信号或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式,替换为:
    在超低功耗模式下,若所述副控子系统检测到所述功能子系统的中断信号、用户在所述外部操作设备上的操作或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
  3. 如权利要求1所述的方法,其特征在于,所述预设条件为系统时间达到预设时间。
  4. 如权利要求1所述的方法,其特征在于,所述副控子系统与外部传感器连接,所述方法还包括:
    所述副控子系统接收所述外部传感器的检测数据。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    在超低功耗模式下,若所述副控子系统检测到所述检测数据异常,则控制所述主控子系统上电,并切换至工作模式。
  6. 如权利要求4所述的方法,其特征在于,所述预设条件为所述检测数据低于一定值。
  7. 一种系统级芯片,其特征在于,包括主控子系统、副控子系统以及多个功能子系统;
    在工作模式下,所述主控子系统被配置为控制所述功能子系统执行相应的功能,并响应所述功能子系统以及所述副控子系统的中断信号;
    在休眠模式下,所述副控子系统被配置为响应所述功能子系统的中断信号,所述主控子系统被配置为禁止响应所述功能子系统的中断信号;
    在超低功耗模式下,所述主控子系统被配置为掉电,所述副控子系统被 配置为响应所述功能子系统的中断信号;
    在工作模式下,所述主控子系统被配置为若在一段时间内未接收到任何功能子系统发送的数据,则切换至休眠模式;
    在休眠模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号,则切换至工作模式,若未检测到所述功能子系统的中断信号且满足预设条件,则切换至超低功耗模式;
    在超低功耗模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
  8. 如权利要求7所述的系统级芯片,其特征在于,所述主控子系统和所述副控子系统均与外部操作设备连接;
    在工作模式下,所述主控子系统被配置为若在一段时间内未接收到任何功能子系统发送的数据或者用户在所述外部操作设备上的操作,则切换至休眠模式;
    在休眠模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号或者用户在所述外部操作设备上的操作,则切换至工作模式,若未检测到所述功能子系统的中断信号以及用户在所述外部操作设备上的操作,且满足预设条件,则切换至超低功耗模式;
    在超低功耗模式下,所述副控子系统被配置为若检测到所述功能子系统的中断信号、用户在所述外部操作设备上的操作或不满足所述预设条件,则控制所述主控子系统上电,并切换至工作模式。
  9. 如权利要求7所述的系统级芯片,其特征在于,所述副控子系统与外部传感器连接,所述副控子系统被配置为接收所述外部传感器的检测数据。
  10. 一种智能穿戴设备,其特征在于,包括如权利要求7-9中任一项所述的系统级芯片。
PCT/CN2021/114648 2020-09-02 2021-08-26 系统级芯片及其工作模式管理方法、智能穿戴设备 WO2022048485A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/043,665 US20230385229A1 (en) 2020-09-02 2021-08-26 System-on-chip and method for managing working mode thereof, and smart wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010911234.7 2020-09-02
CN202010911234.7A CN112000216B (zh) 2020-09-02 2020-09-02 系统级芯片及其工作模式管理方法、智能穿戴设备

Publications (1)

Publication Number Publication Date
WO2022048485A1 true WO2022048485A1 (zh) 2022-03-10

Family

ID=73465227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114648 WO2022048485A1 (zh) 2020-09-02 2021-08-26 系统级芯片及其工作模式管理方法、智能穿戴设备

Country Status (3)

Country Link
US (1) US20230385229A1 (zh)
CN (1) CN112000216B (zh)
WO (1) WO2022048485A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112000216B (zh) * 2020-09-02 2022-08-23 展讯通信(上海)有限公司 系统级芯片及其工作模式管理方法、智能穿戴设备
CN112783274B (zh) * 2021-01-29 2023-03-14 展讯通信(上海)有限公司 智能手表及其控制装置、控制方法
CN115484577A (zh) * 2021-06-15 2022-12-16 Oppo广东移动通信有限公司 控制方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727171A (zh) * 2008-10-14 2010-06-09 上海摩波彼克半导体有限公司 嵌入式系统中降低cpu功耗的实现方法
US20140068289A1 (en) * 2012-08-28 2014-03-06 Noah B. Beck Mechanism for reducing interrupt latency and power consumption using heterogeneous cores
CN104375623A (zh) * 2014-11-28 2015-02-25 北京华网汇通技术服务有限公司 一种穿戴式智能设备及其节电控制方法
CN105511584A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 一种移动终端中管理传感单元的装置和方法
CN106200853A (zh) * 2016-07-02 2016-12-07 上海与德通讯技术有限公司 一种唤醒电路及唤醒方法
CN110908496A (zh) * 2019-11-28 2020-03-24 出门问问信息科技有限公司 一种系统交互方法及可穿戴设备
CN112000216A (zh) * 2020-09-02 2020-11-27 展讯通信(上海)有限公司 系统级芯片及其工作模式管理方法、智能穿戴设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5061034B2 (ja) * 2008-06-05 2012-10-31 株式会社リコー 情報処理装置、情報処理装置の制御方法、プログラム及び記録媒体
JP5448403B2 (ja) * 2008-09-29 2014-03-19 キヤノン株式会社 通信装置及びその制御方法、並びにコンピュータプログラム
KR101512493B1 (ko) * 2009-02-06 2015-04-15 삼성전자주식회사 저전력 시스템온칩
CN102566739B (zh) * 2012-01-06 2014-11-26 威盛电子股份有限公司 多核处理器系统及其动态电源管理方法与控制装置
CN105573463A (zh) * 2014-10-17 2016-05-11 深圳市中兴微电子技术有限公司 一种功耗管理方法及装置
CN106556424B (zh) * 2016-10-18 2019-10-29 上海斐讯数据通信技术有限公司 一种智能可穿戴设备及其节能运行方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727171A (zh) * 2008-10-14 2010-06-09 上海摩波彼克半导体有限公司 嵌入式系统中降低cpu功耗的实现方法
US20140068289A1 (en) * 2012-08-28 2014-03-06 Noah B. Beck Mechanism for reducing interrupt latency and power consumption using heterogeneous cores
CN105511584A (zh) * 2014-09-24 2016-04-20 中兴通讯股份有限公司 一种移动终端中管理传感单元的装置和方法
CN104375623A (zh) * 2014-11-28 2015-02-25 北京华网汇通技术服务有限公司 一种穿戴式智能设备及其节电控制方法
CN106200853A (zh) * 2016-07-02 2016-12-07 上海与德通讯技术有限公司 一种唤醒电路及唤醒方法
CN110908496A (zh) * 2019-11-28 2020-03-24 出门问问信息科技有限公司 一种系统交互方法及可穿戴设备
CN112000216A (zh) * 2020-09-02 2020-11-27 展讯通信(上海)有限公司 系统级芯片及其工作模式管理方法、智能穿戴设备

Also Published As

Publication number Publication date
US20230385229A1 (en) 2023-11-30
CN112000216B (zh) 2022-08-23
CN112000216A (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
WO2022048485A1 (zh) 系统级芯片及其工作模式管理方法、智能穿戴设备
US8001406B2 (en) Method and apparatus for managing power of portable information device
CN102778943B (zh) 状态控制方法、装置及便携终端
JP2020507870A (ja) 電子デバイスおよび装置の電力消費を削減する方法
EP2291719A1 (en) Integrated circuit with secondary-memory controller for providing a sleep state for reduced power consumption and method therefor
TWI541641B (zh) 電子裝置及其省電管理方法
CN110568921B (zh) 一种降低芯片功耗的方法
CN101916138A (zh) 中央处理器工作状态和睡眠状态切换的方法和装置
WO2024169295A1 (zh) 一种唤醒方法及电子设备
CN107493595A (zh) 一种低功耗安全认证装置及控制方法
WO2022127341A1 (zh) 系统切换方法、装置、设备及存储介质
CN107295618A (zh) 多模终端通信方法、多模终端及计算机可读存储介质
CN111782281B (zh) 一种数据处理方法、装置以及计算机可读存储介质
CN114430542A (zh) 一种节能方法及终端设备
WO2022048452A1 (zh) 系统级芯片以及智能穿戴设备
CN205263518U (zh) 一种低功耗智能蓝牙手表
CN114816031A (zh) 终端设备的省电方法、终端设备及介质
CN110764398A (zh) 一种智能手表及其模式切换方法
CN115599447A (zh) 节能方法、节能设备、电子设备及计算机存储介质
WO2024032140A1 (zh) 息屏显示方法、装置、设备及存储介质
CN116700585B (zh) 熄屏控制方法、电子设备及存储介质
CN212302476U (zh) 系统级芯片以及智能穿戴设备
CN220964973U (zh) 一种智能待机电视机
WO2023124622A1 (zh) 通信连接的维持方法、装置、设备、存储介质及程序产品
CN214252911U (zh) 一种异构的低功耗智能手表

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863551

Country of ref document: EP

Kind code of ref document: A1