WO2022048198A1 - 一种电磁矫形装置及矫形方法 - Google Patents

一种电磁矫形装置及矫形方法 Download PDF

Info

Publication number
WO2022048198A1
WO2022048198A1 PCT/CN2021/095989 CN2021095989W WO2022048198A1 WO 2022048198 A1 WO2022048198 A1 WO 2022048198A1 CN 2021095989 W CN2021095989 W CN 2021095989W WO 2022048198 A1 WO2022048198 A1 WO 2022048198A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
magnetic field
orthopedic
uniform pressure
electromagnetic
Prior art date
Application number
PCT/CN2021/095989
Other languages
English (en)
French (fr)
Inventor
李亮
张子轩
赖智鹏
郑宇�
李昌兴
韩小涛
曹全梁
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2022048198A1 publication Critical patent/WO2022048198A1/zh
Priority to ZA2022/10357A priority Critical patent/ZA202210357B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/14Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces applying magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/10Die sets; Pillar guides

Definitions

  • the invention belongs to the technical field of metal forming and manufacturing, and more particularly, relates to an electromagnetic orthopedic device and an orthopedic method.
  • the use of uniform pressure to drive the coil is an effective method.
  • the electromagnetic forming of plate parts there are the following common problems: (1) In the one-time forming method, the plate part may have a certain error in the size of the plate part and the mold size due to insufficient discharge energy or springback of the material, or due to the discharge energy.
  • the present invention provides an electromagnetic orthopedic device and a orthopedic method, the purpose of which is to drive the coil with the uniform pressure during the electromagnetic orthopedic process of the plate or the subsequent orthopedic process of multiple forming.
  • a magnetic field shaper is added between the workpieces to be orthopedic to fill the air gap between the coil and the workpiece, so as to enhance the magnetic field strength during the orthopedic process, improve the electromagnetic force generated in the orthopedic area of the workpiece, and improve the accuracy of the workpiece orthopedic, thereby solving the current problem.
  • an electromagnetic orthopedic device comprising: a uniform pressure driving coil, a magnetic field shaper, a conductive channel and a mold;
  • the uniform pressure driving coil is arranged inside the conductive channel; the conductive channel is located above the workpiece to be orthopedic, and forms a conductive loop with the workpiece to be orthopedic; the magnetic field shaper is arranged between the uniform pressure driving coil and the workpiece. between the workpieces to be orthopedic; the workpiece to be orthopedic is located above the mold;
  • the uniform pressure driving coil is used to generate a pulsed magnetic field around it through pulse current discharge, and the pulsed magnetic field generates induced eddy currents on the surface of the magnetic field shaper; the magnetic field shaper is used to cooperate with the uniform pressure driving coil An induced current is generated in the conductive loop, and the induced current generates a pulsed electromagnetic force on the to-be-formed area of the to-be-orthopedic workpiece; the to-be-formed area of the to-be-orthopedic workpiece is deformed to mold;
  • the mold is used to constrain the shaped shape of the workpiece to be orthopedic.
  • a power source is further included, and the power source is used for providing pulse current to the uniform pressure driving coil to drive the uniform pressure driving coil to generate a pulsed magnetic field.
  • the shape of the upper surface of the magnetic field shaper is the same as the shape of the lower surface of the uniform force driving coil.
  • the inner contour of the conductive channel is the same as the outer contour of the uniform force driving coil.
  • the magnetic field shaper is fixedly connected to the uniform force driving coil or the magnetic field shaper is fixedly connected to the conductive channel, so that the magnetic field shaper can maintain a fixed position during the forming process of the workpiece to be orthopedic. .
  • a plurality of the magnetic field shapers and a plurality of the power sources are also included; the plurality of the power sources respectively supply power to the plurality of the magnetic field shapers.
  • an electromagnetic orthopedic method comprising the following steps:
  • the magnetic field shaper is placed between the uniform pressure drive coil and the workpiece to be orthopedic, and is fixedly connected to the conductive channel;
  • the power supply discharges the uniform pressure drive coil to generate a pulsed magnetic field, thereby generating an induced eddy current on the surface of the magnetic field shaper, and the pulsed current and the induced eddy current are connected between the workpiece to be rectified and the conductive channel Induced current is generated in the formed conductive circuit, so that electromagnetic force is generated on the forming area of the workpiece to be orthopedic to drive the workpiece to be orthopedic to deform.
  • Steps S4 and S5 are repeated until the workpiece to be orthopedic is completely fitted with the mold.
  • the gap between the magnetic field shaper and the uniform force driving coil and the workpiece to be orthopedic is kept small enough to maximize the electromagnetic force generated on the workpiece to be orthopedic.
  • the strength of the forming magnetic field can be enhanced in the subsequent orthopedic process of electromagnetic orthopedic or multiple incremental forming by using a uniform pressure driving coil, thereby effectively realizing plate orthopedic;
  • the present invention can effectively regulate the spatial distribution of the orthopedic magnetic field, improve the accuracy of plate orthopedics, and can meet complex forming requirements; Applicable to various drive coils, reducing the design and manufacturing cost of the drive coil under different requirements, thereby reducing the manufacturing cost of the electromagnetic orthopedic device;
  • the present invention achieves more precise regulation of the temporal and spatial distribution of the shaping magnetic field by using multiple separate magnetic field shapers and multiple uniform pressure driving coils powered by multiple power sources to meet more complex and precise orthopedic requirements. .
  • FIG. 1 is a schematic structural diagram of an electromagnetic orthopedic device according to an embodiment of the present invention.
  • FIG. 2 is a structural side view of a coil-magnetic field shaper-conductive channel system according to an embodiment of the present invention
  • FIG. 3 is a top view of the structure of a coil-magnetic field shaper-conductive channel system according to an embodiment of the present invention
  • Figure 4 (a) is a schematic diagram before electromagnetic orthopedic in Example 1 of the present invention.
  • Figure 4(b) is a schematic diagram after electromagnetic orthopedic in Example 1 of the present invention.
  • Fig. 5 (a) is the schematic diagram when not orthopedic in embodiment 2 of the present invention.
  • 5(b) and 5(c) are schematic diagrams of multiple incremental forming in the second embodiment of the present invention.
  • Fig. 5 (d) is the schematic diagram after the electromagnetic orthopedic is completed in the second embodiment of the present invention.
  • Fig. 6 (a) is the schematic diagram before not orthopedic in the third embodiment of the present invention.
  • Fig. 6 (b) is the schematic diagram after the orthopedic is completed in the third embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a current waveform in a uniform pressure drive coil provided by a capacitor energy storage type power supply system in an embodiment of the present invention.
  • uniform pressure drive coil 1 magnetic field shaper 2; conductive channel 3; power source 4; workpiece to be orthopedic 5;
  • an electromagnetic orthopedic device comprising: a uniform pressure drive coil 1, a magnetic field shaper 2, a conductive channel 3 and a mold 6;
  • the uniform pressure driving coil 1 is arranged inside the conductive channel 3; the conductive channel 3 is located above the workpiece 5 to be orthopedic, and forms a conductive loop with the workpiece 5 to be orthopedic; the magnetic field shaper 2 is arranged in the between the uniform pressure drive coil 1 and the workpiece 5 to be orthopedic; the workpiece 5 to be orthopedic is located above the mold 6;
  • the uniform pressure driving coil 1 is used to generate a pulsed magnetic field around it through pulsed current discharge, and the pulsed magnetic field generates induced eddy currents on the surface of the magnetic field shaper 2; the magnetic field shaper 2 is used to interact with the uniform pressure.
  • the drive coil 1 is matched to generate an induced current in the conductive loop, and the induced current generates a pulsed electromagnetic force on the to-be-shaped area of the workpiece 5 to be orthopedic; Deformed to the mold under the action of electromagnetic force;
  • the mold 6 is used to constrain the shape of the workpiece 5 to be orthopedic.
  • the power supply 4 is further included, and the power source 4 is used for providing pulse current to the uniform pressure driving coil 1 to drive the uniform pressure driving coil 1 to generate a pulse magnetic field.
  • the shape of the upper surface of the magnetic field shaper 2 is the same as the shape of the lower surface of the uniform pressure driving coil 1 .
  • the inner contour of the conductive channel 3 is the same as the outer contour of the uniform pressure driving coil 1 .
  • the magnetic field shaper 2 is fixedly connected to the uniform pressure driving coil 1 or the magnetic field shaper 2 is fixedly connected to the conductive channel 3 , so that the magnetic field shaper 2 is fixed on the workpiece 5 to be orthopedic. Keep the position fixed during the forming process.
  • a plurality of the magnetic field shapers 2 and a plurality of the power sources 4 are also included; the plurality of the power sources respectively supply power to the plurality of the magnetic field shapers.
  • the present invention also proposes an electromagnetic orthopedic method, comprising the following steps:
  • the magnetic field shaper is placed between the uniform pressure drive coil and the workpiece to be orthopedic, and is fixedly connected to the conductive channel;
  • the power supply discharges the uniform pressure drive coil to generate a pulsed magnetic field, thereby generating an induced eddy current on the surface of the magnetic field shaper, and the pulsed current and the induced eddy current are connected between the workpiece to be rectified and the conductive channel Induced current is generated in the formed conductive circuit, so that electromagnetic force is generated on the forming area of the workpiece to be orthopedic to drive the workpiece to be orthopedic to deform.
  • Steps S4 and S5 are repeated until the workpiece to be orthopedic is completely fitted with the mold.
  • the gap between the magnetic field shaper, the uniform force driving coil and the workpiece to be orthopedic is kept small enough to maximize the electromagnetic force generated on the workpiece to be orthopedic.
  • the present invention provides an electromagnetic orthopedic device combining a uniform pressure driving coil and a magnetic field shaper, as shown in FIG. Mold 6, workpiece 5 to be orthopedic.
  • the workpiece 5 to be orthopedic and the mold 6 are placed opposite, the conductive channel 3 is placed opposite the workpiece 5 to be orthopedic, the uniform pressure driving coil 1 is placed in the middle of the conductive channel 3, the The magnetic field shaper 2 is placed between the uniform pressure driving coil 1 and the workpiece to be orthopedic 5 , and the power source 4 is electrically connected to the uniform pressure driving coil 1 .
  • the conductive channel 3 is used to form a conductive loop with the workpiece 5 to be orthopedic, and provide a blank holder force for the workpiece 5 to be orthopedic during the forming process.
  • the lateral flow of the workpiece to the inside of the mold 6 is controlled by adjusting the blank holder force, the uniform pressure driving coil 1 is used to generate a pulse current, and the magnetic field shaper 2 is used to match the uniform pressure.
  • the pressure driving coil 1 cooperates to provide the workpiece 5 to be orthopedic with pulsed electromagnetic force through electromagnetic induction to drive the workpiece to deform; the power source 4 is used to provide electricity for the device.
  • the shape of the upper surface of the magnetic field shaper 2 is the same as the shape of the lower surface of the uniform pressure driving coil 1, and the shape of the lower surface of the magnetic field shaper 2 can be determined according to The geometric shapes of the workpiece 5 to be orthopedic and the mold 6 are optimally designed.
  • the material of the magnetic field shaper 2 is selected according to the magnitude of the electrical conductivity and the strength of the material.
  • the material of the magnetic field shaper 2 is copper or aluminum alloy material.
  • the inner contour of the conductive channel 3 is the same as the outer contour of the uniform pressure driving coil 1 , so that the uniform pressure driving coil 1 can be just placed in the conductive channel 3 . , and can constrain the relative position of the two.
  • the material of the conductive channel 3 is selected according to the magnitude of the electrical conductivity and the strength of the material.
  • the material of the conductive channel 3 is copper or aluminum alloy material.
  • the pulse current passing through the lower surface of the uniform pressure driving coil 1 will induce reverse eddy currents on the upper surface of the magnetic field shaper 2 .
  • an electromagnetic repulsion force will be generated between the uniform force driving coil 1 and the magnetic field shaper 2, so it is necessary to apply an additional force between the magnetic field shaper 2 and the uniform force driving coil 1 or the conductive channel 3. location constraints.
  • the magnetic field shaper 2 and the conductive channel 3 are mechanically connected through a fixing member to avoid accidental displacement of the magnetic field shaper 2 during the forming process. It should be noted that the contact surfaces of the uniform pressure driving coil 1 , the magnetic field shaper 2 and the conductive channel 3 are all insulated from each other.
  • the electromagnetic orthopedic device may also adopt a combination of a plurality of separate magnetic field shapers and a plurality of uniform pressure driving coils that are respectively powered by a plurality of power sources.
  • an embodiment of the present invention provides an electromagnetic orthopedic device and an orthopedic method based on the device, which are used for orthopedicing a workpiece with insufficient forming accuracy caused by the rebound of a plate material.
  • the electromagnetic orthopedic device includes: a uniform pressure drive coil 1, a magnetic field shaper 2, a conductive channel 3, a power source 4, a workpiece to be orthopedic 5 and a mold 6.
  • the uniform pressure driving coil 1 is a uniform pressure coil wound with a single layer of copper wire.
  • the cross-sectional size of the wire is 2mm ⁇ 4mm, with a total of 18 turns; the contour of the lower surface of the magnetic field shaper 2 is the same as the inner contour of the mold, and the material is copper.
  • the inner contour of the conductive channel 3 is the same as the outer surface contour of the uniform pressure driving coil 1, and the material is copper;
  • the power supply 4 is a capacitor energy storage type power supply system, and the provided coil waveform As shown in FIG. 7 ;
  • the workpiece 51 is a long straight plate that springs back after forming, and the material is aluminum alloy;
  • the inner contour busbar of the mold 6 is arched, and the material is high-strength mold steel.
  • the method for electromagnetic orthopedics includes the following steps:
  • the uniform pressure driving coil 1 is placed in the middle of the conductive channel 3, and is electrically connected with the power supply 4;
  • the magnetic field shaper 2 is placed between the uniform pressure driving coil 1 and the workpiece 51, and the gap between the magnetic field shaper 2 and the uniform pressure driving coil 1 and the workpiece 51 is as small as possible under the premise of considering the insulation requirements, so that the The electromagnetic force generated on the workpiece 51 is maximized.
  • the magnetic field shaper 2 is mechanically connected to the conductive channel 3 to constrain its position;
  • the uniform pressure driving coil 1 is discharged through the power supply 4 to generate a pulse current, which excites a strong pulsed magnetic field around it, and then induces eddy currents on the surface of the magnetic field shaper 2.
  • the pulse current in the uniform pressure driving coil 1 and the magnetic field shaper 2 The eddy current on the surface induces current in the conductive loop formed by the workpiece 51 and the conductive channel 3 , thereby generating electromagnetic force on the forming area of the workpiece 51 to drive the workpiece 51 to deform at high speed to correct the springback error to the workpiece 52 .
  • an embodiment of the present invention provides an electromagnetic orthopedic device and an orthopedic method based on the device, which are used to perform multiple incremental forming on a long straight plate member.
  • the electromagnetic orthopedic device includes: a uniform pressure drive coil 1, a magnetic field shaper 2, a conductive channel 3, a power source 4, a workpiece 5 and a mold 6.
  • the uniform pressure driving coil 1 is a uniform pressure coil wound with a single layer of copper wire.
  • the cross-sectional size of the wire is 2mm ⁇ 4mm, with a total of 18 turns; the contour of the lower surface of the magnetic field shaper 2 is the same as the inner contour of the mold, and the material is copper.
  • the inner contour of the conductive channel 3 is the same as the outer surface contour of the uniform pressure driving coil 1, and the material is copper;
  • the power supply 4 is a capacitor energy storage type power supply system, and the provided coil waveform As shown in FIG. 7 ;
  • the workpiece 51 is a long straight plate to be formed, and the material is aluminum alloy;
  • the inner contour generatrix of the mold 6 is arched, and the material is high-strength mold steel.
  • the uniform pressure driving coil 1 is placed in the middle of the conductive channel 3, and is electrically connected with the power supply 4;
  • the uniform pressure driving coil 1 is discharged through the power supply 4, and electromagnetic force is generated to drive the workpiece 51 to be preformed to the workpiece 52;
  • the magnetic field shaper 2 is placed between the uniform pressure drive coil 1 and the workpiece 52, and the gap between the magnetic field shaper 2 and the workpiece 52 is as small as possible under the premise of considering the insulation requirements, so that the electromagnetic field generated on the workpiece 52 is as small as possible. force maximization.
  • the magnetic field shaper 2 is mechanically connected to the conductive channel 3 to constrain its position;
  • the uniform pressure driving coil 1 is discharged through the power supply 4, and an electromagnetic force is generated to drive the workpiece 52 to undergo high-speed deformation so as to be orthopedic to the workpiece 53;
  • Steps (5) and (6) are repeated until the plate molding effect is good to the workpiece 54 .
  • an embodiment of the present invention provides an electromagnetic orthopedic device and an orthopedic method based on the device, which are used to form local complex features on a pre-shaped workpiece.
  • the electromagnetic orthopedic device includes: a uniform pressure driving coil 1 , a magnetic field shaper 2 , a conductive channel 3 , a power source 4 , a workpiece 5 and a mold 6 .
  • the uniform pressure driving coil 1 is a uniform pressure coil wound with a single layer of copper wire.
  • the cross-sectional size of the wire is 2mm ⁇ 4mm, with a total of 18 turns.
  • the contour of the lower surface of the magnetic field shaper 2 is the same as the general contour of the inner surface of the mold.
  • the shaper 2 and the conductive channel 3 are mechanically connected to constrain their position; the inner contour of the conductive channel 3 is the same as the outer surface contour of the uniform pressure drive coil 1, and the material is copper; the power supply 4 is a capacitor energy storage type power supply system, provided by The coil waveform is shown in Figure 7; the workpiece 51 is a pre-formed long straight plate, and the material is aluminum alloy; the inner contour busbar of the mold 6 is an arch with local sharp corners, and the material is high-strength mold steel.
  • the orthopedic method for local complex features includes the following steps:
  • the uniform pressure driving coil 1 is placed in the middle of the conductive channel 3, and is electrically connected with the power supply 4;
  • the magnetic field shaper 2 is placed between the uniform pressure driving coil 1 and the workpiece 51, and the gap between the magnetic field shaper 2 and the uniform pressure driving coil 1 and the workpiece 51 is as small as possible under the premise of considering the insulation requirements, so that the The electromagnetic force generated on the workpiece 51 is maximized.
  • the magnetic field shaper 2 is mechanically connected to the conductive channel 3 to constrain its position;
  • the uniform pressure driving coil 1 is discharged through the power supply 4 to generate a pulse current, which excites a strong pulsed magnetic field around it, and then induces eddy currents on the surface of the magnetic field shaper 2.
  • the pulse current in the uniform pressure driving coil 1 and the magnetic field shaper 2 The eddy current on the surface induces a current in the conductive loop formed by the workpiece 51 and the conductive channel 3 , thereby generating electromagnetic force on the forming area of the workpiece 51 to drive the workpiece 51 to deform at high speed to complete the forming of local complex features to the workpiece 52 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

一种电磁矫形装置,包括匀压力驱动线圈(1)、磁场整形器(2)、导电通道(3)和模具(6);匀压力驱动线圈设置于导电通道的内部;导电通道与待矫形工件(5)形成导电回路;磁场整形器设置于匀压力驱动线圈与待矫形工件之间;匀压力驱动线圈通过脉冲电流放电在其周围产生脉冲磁场,脉冲磁场在磁场整形器的表面产生感应涡流;磁场整形器与匀压力驱动线圈相配合在导电回路中产生感应电流,感应电流在待矫形工件的待成形区域上产生脉冲电磁力;待矫形工件的待成形区域在脉冲电磁力作用下变形至模具。以及一种电磁矫形装置的矫形方法。该矫形装置和矫形方法可以通过对磁场整形器的优化设计灵活、精准地调控工件的矫形或多次成形过程,有效降低成形装置的设计难度和制造成本。

Description

一种电磁矫形装置及矫形方法 【技术领域】
本发明属于金属成形制造技术领域,更具体地,涉及一种电磁矫形装置及矫形方法。
【背景技术】
轻质合金材料的使用为汽车、航空航天等领域的工业生产轻量化提供了有效的实现途径。同时,由于常用的轻质合金材料如铝合金、钛合金等在常温下成形性能较差,塑性较低,弹性模量小,采用传统加工工艺效果并不理想。研究表明,高速成形能有效改善轻质合金在常温下的成形性能。因此,电磁成形技术已被广泛应用于铝合金等轻质合金材料的加工领域中。
在非轴对称板件的电磁成形技术中,使用匀压力驱动线圈是一种行之有效的方法。在板件的电磁成形中,存在以下常见问题:(1)在一次成形方法中,板件可能会由于放电能量不足或材料的回弹导致板件尺寸与模具尺寸出现一定误差,也可能由于放电能量过大导致板件与模具发生碰撞出现局部的起皱;(2)在多次渐进成形方法中,初次成形后板件局部尚未贴模,进行后续成形时板件局部区域与线圈之间距离被拉大,成形过程中产生的磁场强度会显著降低,导致成形所需的电磁力可能不足,影响板件成形精度;(3)由于板件成形过程中磁场的空间分布难以精确控制,实现复杂要求的成形工艺(如局部复杂特征的成形)较为困难。对于上述问题,使用特殊形状驱动线圈的方法会使线圈设计难度增大,导致制造成本增加,灵活性差,线圈的适用范围单一等问题出现。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种电磁矫形装置及矫形方法,其目的在于在板件电磁矫形过程或多次成形的后续矫形过 程中,通过在匀压力驱动线圈与待矫形工件之间加入磁场整形器,填充线圈与工件之间的气隙,从而增强矫形过程中的磁场强度,提高了工件矫形区域产生的电磁力,改善了工件矫形的精度,由此解决现有技术在电磁矫形的成形过程中磁场空间分布难以控制,需要设计特殊形状的驱动线圈的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种电磁矫形装置,包括:匀压力驱动线圈、磁场整形器、导电通道和模具;
所述匀压力驱动线圈设置于所述导电通道的内部;所述导电通道位于待矫形工件上方,并与所述待矫形工件形成导电回路;所述磁场整形器设置于所述匀压力驱动线圈与所述待矫形工件之间;所述待矫形工件位于所述模具的上方;
所述匀压力驱动线圈用于通过脉冲电流放电在其周围产生脉冲磁场,所述脉冲磁场在所述磁场整形器的表面产生感应涡流;所述磁场整形器用于与所述匀压力驱动线圈相配合在所述导电回路中产生感应电流,所述感应电流在所述待矫形工件的待成形区域上产生脉冲电磁力;所述待矫形工件的待成形区域在所述脉冲电磁力的作用下变形至模具;
所述模具用于约束所述待矫形工件的成形形状。
优选地,还包括电源,所述电源用于为所述匀压力驱动线圈提供脉冲电流以驱动所述匀压力驱动线圈产生脉冲磁场。
优选地,所述磁场整形器的上表面形状与所述匀压力驱动线圈下表面形状相同。
优选地,所述导电通道的内部轮廓与所述匀压力驱动线圈的外部轮廓相同。
优选地,所述磁场整形器与所述匀压力驱动线圈固定连接或所述磁场整形器与所述导电通道固定连接,以使所述磁场整形器在所述待矫形工件成形过程中保持位置固定。
优选地,还包括多个所述磁场整形器和多个所述电源;多个所述电源分别对多个所述磁场整形器供电。
按照本发明的另一方面,提供了一种电磁矫形方法,包括以下步骤:
S1,将待矫形工件放置于模具上;
S2,将导电通道放置于所述待矫形工件上,并向所述导电通道施加载荷以对所述待矫形工件提供压边力;
S3,将匀压力驱动线圈放置于所述导电通道的内部并连接于电源;
S4,将磁场整形器放置于匀压力驱动线圈与所述待矫形工件之间,并与所述导电通道固定连接;
S5,所述电源对所述匀压力驱动线圈放电,使其产生脉冲磁场,进而在所述磁场整形器表面产生感应涡流,所述脉冲电流和所述感应涡流在待矫形工件与所述导电通道构成的导电回路中产生感应电流,从而在所述待矫形工件的成形区域上产生电磁力驱动所述待矫形工件发生形变。
优选地,还包括以下步骤:
重复步骤S4和S5直至待矫形工件与模具完全贴合。
优选地,所述磁场整形器与所述匀压力驱动线圈和所述待矫形工件之间的间隙保持足够小,以使所述待矫形工件上产生的电磁力最大。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1、本发明通过加入磁场整形器,可以在使用匀压力驱动线圈进行电磁矫形或多次渐进成形的后续矫形过程中增强成形磁场强度,有效实现板件矫形;
2、本发明通过对磁场整形器几何形状的改变,可以有效调控矫形磁场的空间分布,提高板件矫形的精度,能够满足复杂的成形需求;与使用特殊形状的驱动线圈相比,本发明可以适用于各种驱动线圈,降低了不同需求下驱动线圈的设计制造成本,从而降低了电磁矫形装置的制造成本;
3、本发明通过采用多个分离式的磁场整形器,以及多个电源供电的多个匀压力驱动线圈相配合,实现对成形磁场的时空分布更精准的调控,以满足更复杂精确的矫形要求。
【附图说明】
图1是本发明实施例的电磁矫形装置的结构示意图;
图2是本发明实施例的线圈-磁场整形器-导电通道系统的结构侧视图;
图3是本发明实施例的线圈-磁场整形器-导电通道系统的结构俯视图;
图4(a)是本发明实施例1中的电磁矫形前的示意图;
图4(b)是本发明实施例1中的电磁矫形后的示意图;
图5(a)是本发明实施例2中未矫形时的示意图;
图5(b)和图5(c)是本发明第二实施例中多次渐进成形的示意图;
图5(d)是本发明第二实施例中电磁矫形完成后的示意图;
图6(a)是本发明第三实施例中未矫形前的示意图;
图6(b)是本发明第三实施例中矫形完成后的示意图;
图7是本发明实施例中电源采用电容储能型电源系统提供的匀压力驱动线圈中电流波形示意图。
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:匀压力驱动线圈1;磁场整形器2;导电通道3;电源4;待矫形工件5;模具6。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1-3所示,本发明提出了一种电磁矫形装置,包括:匀压力驱动 线圈1、磁场整形器2、导电通道3和模具6;
所述匀压力驱动线圈1设置于所述导电通道3的内部;所述导电通道3位于待矫形工件5上方,并与所述待矫形工件5形成导电回路;所述磁场整形器2设置于所述匀压力驱动线圈1与所述待矫形工件5之间;所述待矫形工件5位于所述模具6的上方;
所述匀压力驱动线圈1用于通过脉冲电流放电在其周围产生脉冲磁场,所述脉冲磁场在所述磁场整形器2的表面产生感应涡流;所述磁场整形器2用于与所述匀压力驱动线圈1相配合在所述导电回路中产生感应电流,所述感应电流在所述待矫形工件5的待成形区域上产生脉冲电磁力;所述待矫形工件5的待成形区域在所述脉冲电磁力的作用下变形至模具;
所述模具6用于约束所述待矫形工件5的成形形状。
具体的,还包括电源4,所述电源4用于为所述匀压力驱动线圈1提供脉冲电流以驱动所述匀压力驱动线圈1产生脉冲磁场。
具体的,所述磁场整形器2的上表面形状与所述匀压力驱动线圈1下表面形状相同。
具体的,所述导电通道3的内部轮廓与所述匀压力驱动线圈1的外部轮廓相同。
具体的,所述磁场整形器2与所述匀压力驱动线圈1固定连接或所述磁场整形器2与所述导电通道3固定连接,以使所述磁场整形器2在所述待矫形工件5成形过程中保持位置固定。
具体的,还包括多个所述磁场整形器2和多个所述电源4;多个所述电源分别对多个所述磁场整形器供电。
本发明还提出了一种电磁矫形方法,包括以下步骤:
S1,将待矫形工件放置于模具上;
S2,将导电通道放置于所述待矫形工件上,并向所述导电通道施加载荷以对所述待矫形工件提供压边力;
S3,将匀压力驱动线圈放置于所述导电通道的内部并连接于电源;
S4,将磁场整形器放置于匀压力驱动线圈与所述待矫形工件之间,并与所述导电通道固定连接;
S5,所述电源对所述匀压力驱动线圈放电,使其产生脉冲磁场,进而在所述磁场整形器表面产生感应涡流,所述脉冲电流和所述感应涡流在待矫形工件与所述导电通道构成的导电回路中产生感应电流,从而在所述待矫形工件的成形区域上产生电磁力驱动所述待矫形工件发生形变。
具体的,还包括以下步骤:
重复步骤S4和S5直至待矫形工件与模具完全贴合。
具体的,所述磁场整形器与所述匀压力驱动线圈和所述待矫形工件之间的间隙保持足够小,以使所述待矫形工件上产生的电磁力最大。
更进一步的说明,本发明提供了一种匀压力驱动线圈与磁场整形器结合的电磁矫形装置,如图1所示,包括匀压力驱动线圈1、电源4、磁场整形器2、导电通道3、模具6、待矫形工件5。其中,所述待矫形工件5和所述模具6相对放置,所述导电通道3与所述待矫形工件5相对放置,所述匀压力驱动线圈1置于所述导电通道3的中间,所述磁场整形器2置于所述匀压力驱动线圈1与所述待矫形工件5之间,所述电源4与所述匀压力驱动线圈1电气连接。所述导电通道3用于与所述待矫形工件5形成导电回路,并在成形过程中为所述待矫形工件5提供压边力。需要说明的是,在成形过程中通过调节压边力控制工件向所述模具6内部的横向流动量,所述匀压力驱动线圈1用于产生脉冲电流,所述磁场整形器2用于与匀压力驱动线圈1配合通过电磁感应为所述待矫形工件5提供脉冲电磁力以驱动工件形变;所述电源4用于为装置提供电量。
更进一步的说明,如图2和图3所示,所述磁场整形器2的上表面形状与所述匀压力驱动线圈1的下表面形状相同,所述磁场整形器2的下表面形状可根据所述待矫形工件5和所述模具6的几何形状进行优化设计。
具体的,根据电导率的大小和材料强度的高低来选取所述磁场整形器2的材料。
可选地,所述磁场整形器2的材料为铜或铝合金材料。
更进一步的说明,如图2所示,所述导电通道3的内部轮廓与所述匀压力驱动线圈1的外部轮廓相同,以使所述匀压力驱动线圈1可以恰好置于所述导电通道3中,并可以约束二者的相对位置。
具体的,根据电导率的大小和材料强度的高低来选取所述导电通道3的材料。
可选地,所述导电通道3的材料为铜或铝合金材料。
更进一步的说明,在成形过程中,所述匀压力驱动线圈1的下表面通过的脉冲电流会在所述磁场整形器2的上表面感应出反向涡流。从而会在所述匀压力驱动线圈1和磁场整形器2之间产生电磁排斥力,因此需要对所述磁场整形器2与所述匀压力驱动线圈1或所述导电通道3之间施加额外的位置约束。具体的,在本发明的实施例中,将所述磁场整形器2与所述导电通道3通过固定件进行机械连接,以避免所述磁场整形器2在成形过程中出现意外的位移。需要说明的是,所述匀压力驱动线圈1、所述磁场整形器2和所述导电通道3相互之间的接触面均绝缘。
更进一步的说明,本发明的实施例中,所述电磁矫形装置还可以采用分离式的多个磁场整形器组合,以及由多个电源分别进行供电的多个匀压力驱动线圈相配合。通过对电源、驱动线圈,磁场整形器进行优化配置,实现对成形磁场的时空分布更精准的调控,以满足更复杂精确的成形要求。
通过下面具体实施例对本发明的技术方案作进一步描述:
实施例1
如图4所示,本发明的一个实施例提供了一种电磁矫形装置及基于所述装置的矫形方法,用于对板件材料回弹导致的成形精度不足的工件进行矫形。所述电磁矫形装置包括:匀压力驱动线圈1、磁场整形器2、导电通 道3、电源4、待矫形工件5和模具6。其中匀压力驱动线圈1为铜导线单层缠绕的匀压力线圈,导线截面尺寸为2mm×4mm,共18匝;磁场整形器2的下表面轮廓与模具内轮廓相同,材料为铜,磁场整形器2与导电通道3之间进行机械连接,以约束其位置;导电通道3内轮廓与匀压力驱动线圈1外表面轮廓相同,材料为铜;电源4为电容储能型电源系统,提供的线圈波形如图7所示;工件51为成形后出现回弹的长直板件,材料为铝合金;模具6内轮廓母线为拱形,材料为高强度模具钢。
对于电磁矫形方法包括以下步骤:
(1)将预成形后出现回弹的工件51和模具6相对放置;
(2)将导电通道3置于工件51之上,并向导电通道3施加载荷以对工件51提供压边力;
(3)将匀压力驱动线圈1置于导电通道3中间,并与电源4进行电气连接;
(4)将磁场整形器2置于匀压力驱动线圈1与工件51之间,磁场整形器2与匀压力驱动线圈1和工件51之间的间隙在考虑绝缘要求的前提下尽量小,以使工件51上产生的电磁力最大化。磁场整形器2与导电通道3进行机械连接以约束其位置;
(5)通过电源4对匀压力驱动线圈1放电,产生脉冲电流,在周围激发脉冲强磁场,进而在磁场整形器2表面感应出涡流,匀压力驱动线圈1中的脉冲电流与磁场整形器2表面的涡流在工件51与导电通道3构成的导电回路中感应出电流,从而在工件51的成形区域上产生电磁力驱动工件51发生高速变形以矫正回弹误差至工件52。
实施例2
如图5所示,本发明的一个实施例提供了一种电磁矫形装置及基于所述装置的矫形方法,用于对长直板件进行多次渐进成形。电磁矫形装置包括:匀压力驱动线圈1、磁场整形器2、导电通道3、电源4、工件5和模 具6。其中匀压力驱动线圈1为铜导线单层缠绕的匀压力线圈,导线截面尺寸为2mm×4mm,共18匝;磁场整形器2的下表面轮廓与模具内轮廓相同,材料为铜,磁场整形器2与导电通道3之间进行机械连接,以约束其位置;导电通道3内轮廓与匀压力驱动线圈1外表面轮廓相同,材料为铜;电源4为电容储能型电源系统,提供的线圈波形如图7所示;工件51为待成形的长直板件,材料为铝合金;模具6内轮廓母线为拱形,材料为高强度模具钢。
对于多次渐进矫形方法包括以下步骤:
(1)将待成形的工件51和模具6相对放置;
(2)将导电通道3置于工件51之上,并向导电通道3施加载荷以对工件51提供压边力;
(3)将匀压力驱动线圈1置于导电通道3中间,并与电源4进行电气连接;
(4)通过电源4对匀压力驱动线圈1放电,产生电磁力驱动工件51进行预成形至工件52;
(5)将磁场整形器2置于匀压力驱动线圈1与工件52之间,磁场整形器2与工件52之间的间隙在考虑绝缘要求的前提下尽量小,以使工件52上产生的电磁力最大化。磁场整形器2与导电通道3进行机械连接以约束其位置;
(6)通过电源4对匀压力驱动线圈1放电,产生电磁力驱动工件52发生高速变形以进行矫形至工件53;
(7)重复步骤(5)(6)直至板件贴模效果良好至工件54。
实施例3
如图6所示,本发明的一个实施例提供了一种电磁矫形装置及基于所述装置的矫形方法,用于对预成形后的工件进行局部复杂特征成形。电磁矫形装置包括:匀压力驱动线圈1、磁场整形器2、导电通道3、电源4、 工件5和模具6。其中匀压力驱动线圈1为铜导线单层缠绕的匀压力线圈,导线截面尺寸为2mm×4mm,共18匝;磁场整形器2的下表面轮廓与模具内表面大体轮廓相同,材料为铜,磁场整形器2与导电通道3之间进行机械连接,以约束其位置;导电通道3内轮廓与匀压力驱动线圈1外表面轮廓相同,材料为铜;电源4为电容储能型电源系统,提供的线圈波形如图7所示;工件51为预成形后的长直板件,材料为铝合金;模具6内轮廓母线为局部带有尖角的拱形,材料为高强度模具钢。
对于局部复杂特征矫形方法包括以下步骤:
(1)将预成形后的工件51和模具6相对放置;
(2)将导电通道3置于工件51之上,并向导电通道3施加载荷以对工件51提供压边力;
(3)将匀压力驱动线圈1置于导电通道3中间,并与电源4进行电气连接;
(4)将磁场整形器2置于匀压力驱动线圈1与工件51之间,磁场整形器2与匀压力驱动线圈1和工件51之间的间隙在考虑绝缘要求的前提下尽量小,以使工件51上产生的电磁力最大化。磁场整形器2与导电通道3进行机械连接以约束其位置;
(5)通过电源4对匀压力驱动线圈1放电,产生脉冲电流,在周围激发脉冲强磁场,进而在磁场整形器2表面感应出涡流,匀压力驱动线圈1中的脉冲电流与磁场整形器2表面的涡流在工件51与导电通道3构成的导电回路中感应出电流,从而在工件51的成形区域上产生电磁力驱动工件51发生高速变形以完成局部复杂特征成形至工件52。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种电磁矫形装置,其特征在于,包括:匀压力驱动线圈(1)、磁场整形器(2)、导电通道(3)和模具(6);
    所述匀压力驱动线圈(1)设置于所述导电通道(3)的内部;所述导电通道(3)位于待矫形工件(5)上方,并与所述待矫形工件(5)形成导电回路;所述磁场整形器(2)设置于所述匀压力驱动线圈(1)与所述待矫形工件(5)之间;所述待矫形工件(5)位于所述模具(6)的上方;
    所述匀压力驱动线圈(1)用于通过脉冲电流放电在其周围产生脉冲磁场,所述脉冲磁场在所述磁场整形器(2)的表面产生感应涡流;所述磁场整形器(2)用于与所述匀压力驱动线圈(1)相配合在所述导电回路中产生感应电流,所述感应电流在所述待矫形工件(5)的待成形区域上产生脉冲电磁力;所述待矫形工件(5)的待成形区域在所述脉冲电磁力的作用下变形至模具;
    所述模具(6)用于约束所述待矫形工件(5)的成形形状。
  2. 根据权利要求1所述的一种电磁矫形装置,其特征在于,还包括电源(4),所述电源(4)用于为所述匀压力驱动线圈(1)提供脉冲电流以驱动所述匀压力驱动线圈(1)产生脉冲磁场。
  3. 根据权利要求2所述的一种电磁矫形装置,其特征在于,所述磁场整形器(2)与所述匀压力驱动线圈(1)固定连接或所述磁场整形器(2)与所述导电通道(3)固定连接,以使所述磁场整形器(2)在所述待矫形工件(5)成形过程中保持位置固定。
  4. 根据权利要求2或3所述的一种电磁矫形装置,其特征在于,还包括多个所述磁场整形器(2)和多个所述电源(4);多个所述电源分别对多个所述磁场整形器供电。
  5. 一种基于权利要求1-4任一项所述的电磁矫形装置的矫形方法,其特征在于,包括以下步骤:
    S1,将待矫形工件放置于模具上;
    S2,将导电通道放置于所述待矫形工件上,并向所述导电通道施加载荷以对所述待矫形工件提供压边力;
    S3,将匀压力驱动线圈放置于所述导电通道的内部并连接于电源;
    S4,将磁场整形器放置于匀压力驱动线圈与所述待矫形工件之间,并与所述导电通道固定连接;
    S5,所述电源对所述匀压力驱动线圈放电,使其产生脉冲磁场,进而在所述磁场整形器表面产生感应涡流,所述脉冲电流和所述感应涡流在待矫形工件与所述导电通道构成的导电回路中产生感应电流,从而在所述待矫形工件的成形区域上产生电磁力驱动所述待矫形工件发生形变。
  6. 根据权利要求5所述的一种电磁矫形方法,其特征在于,还包括以下步骤:
    重复步骤S4和S5直至待矫形工件与模具完全贴合。
  7. 根据权利要求5或6所述的一种电磁矫形方法,其特征在于,所述磁场整形器与所述匀压力驱动线圈和所述待矫形工件之间的间隙保持足够小,以使所述待矫形工件上产生的电磁力最大。
PCT/CN2021/095989 2020-09-02 2021-05-26 一种电磁矫形装置及矫形方法 WO2022048198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/10357A ZA202210357B (en) 2020-09-02 2022-09-19 Electromagnetic shape righting device and shape righting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010910854.9 2020-09-02
CN202010910854.9A CN112275887B (zh) 2020-09-02 2020-09-02 一种电磁矫形装置及矫形方法

Publications (1)

Publication Number Publication Date
WO2022048198A1 true WO2022048198A1 (zh) 2022-03-10

Family

ID=74419717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095989 WO2022048198A1 (zh) 2020-09-02 2021-05-26 一种电磁矫形装置及矫形方法

Country Status (3)

Country Link
CN (1) CN112275887B (zh)
WO (1) WO2022048198A1 (zh)
ZA (1) ZA202210357B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072834A1 (en) * 2022-09-28 2024-04-04 Belvac Production Machinery, Inc. Systems, devices, and methods for electromagnetic forming articles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275887B (zh) * 2020-09-02 2022-03-18 华中科技大学 一种电磁矫形装置及矫形方法
CN113333561B (zh) * 2021-05-13 2022-02-11 华中科技大学 一种基于导电通道的电磁成形装置及成形方法
CN114309232B (zh) * 2021-12-27 2022-08-16 华中科技大学 一种金属板材的微流道圆角校形装置及方法
CN114453519B (zh) * 2021-12-27 2023-06-30 鹤壁天淇汽车模具有限公司 一种高强板汽车覆盖件模具反折成型制造方法
CN114713702B (zh) * 2022-03-24 2023-05-30 华中科技大学 一种基于电爆炸的金属加工工件矫形加工装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200911405A (en) * 2007-09-10 2009-03-16 Metal Ind Res & Dev Ct Electromagnetic forming device for metal sheet
US20090090162A1 (en) * 2007-10-05 2009-04-09 Gm Global Technology Operations, Inc. Driver plate for electromagnetic forming of sheet metal
CN103341546A (zh) * 2013-07-15 2013-10-09 哈尔滨工业大学 一种轻合金壳体成形件磁脉冲成形装置及方法
CN206731895U (zh) * 2017-05-02 2017-12-12 三峡大学 一种改善电磁成形工件贴模性的装置
CN108856443A (zh) * 2018-06-13 2018-11-23 中南大学 一种提供持续电磁力的电磁成形装置及方法
CN109647963A (zh) * 2018-12-27 2019-04-19 华中科技大学 一种电磁矫形装置及矫形方法
CN109865760A (zh) * 2018-12-19 2019-06-11 华中科技大学 一种基于模块化集磁器的电磁成形装置及方法
CN110560547A (zh) * 2019-08-14 2019-12-13 武汉理工大学 异向电流作用下金属板料匀压力电磁成形装置及方法
CN112275887A (zh) * 2020-09-02 2021-01-29 华中科技大学 一种电磁矫形装置及矫形方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3196649A (en) * 1962-02-16 1965-07-27 Advanced Kinetics Inc Devices for metal-forming by magnetic tension
CN102263272B (zh) * 2011-06-14 2013-07-03 哈尔滨工业大学 燃料电池金属双极板的电磁力驱动软模成形方法
CN102248059B (zh) * 2011-06-16 2013-07-24 华中科技大学 多级多向电磁成形方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200911405A (en) * 2007-09-10 2009-03-16 Metal Ind Res & Dev Ct Electromagnetic forming device for metal sheet
US20090090162A1 (en) * 2007-10-05 2009-04-09 Gm Global Technology Operations, Inc. Driver plate for electromagnetic forming of sheet metal
CN103341546A (zh) * 2013-07-15 2013-10-09 哈尔滨工业大学 一种轻合金壳体成形件磁脉冲成形装置及方法
CN206731895U (zh) * 2017-05-02 2017-12-12 三峡大学 一种改善电磁成形工件贴模性的装置
CN108856443A (zh) * 2018-06-13 2018-11-23 中南大学 一种提供持续电磁力的电磁成形装置及方法
CN109865760A (zh) * 2018-12-19 2019-06-11 华中科技大学 一种基于模块化集磁器的电磁成形装置及方法
CN109647963A (zh) * 2018-12-27 2019-04-19 华中科技大学 一种电磁矫形装置及矫形方法
CN110560547A (zh) * 2019-08-14 2019-12-13 武汉理工大学 异向电流作用下金属板料匀压力电磁成形装置及方法
CN112275887A (zh) * 2020-09-02 2021-01-29 华中科技大学 一种电磁矫形装置及矫形方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024072834A1 (en) * 2022-09-28 2024-04-04 Belvac Production Machinery, Inc. Systems, devices, and methods for electromagnetic forming articles

Also Published As

Publication number Publication date
CN112275887A (zh) 2021-01-29
CN112275887B (zh) 2022-03-18
ZA202210357B (en) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2022048198A1 (zh) 一种电磁矫形装置及矫形方法
CN103480751B (zh) 增量成形装置及利用这种增量成形装置进行增量成形的方法
WO2017071294A1 (zh) 一种多工位连续热冲压生产线及方法
US10987755B2 (en) Method and apparatus for distortion control on additively manufactured parts using wire feed and magnetic pulses
CN108723164B (zh) 一种传热板成形装置和成形方法
CN110014067B (zh) 一种均压力线圈式的电磁成形装置和成形方法
CN103464564B (zh) 铝合金筋板的电磁成形装置及成形方法
CN103341546A (zh) 一种轻合金壳体成形件磁脉冲成形装置及方法
CN107139517A (zh) 一种难变形材料的非轴对称件的拉深成形装置及方法
CN109647963A (zh) 一种电磁矫形装置及矫形方法
CN105598250B (zh) 蒙皮壁板的磁脉冲局部加载成形装置及成形方法
WO2022236849A1 (zh) 一种基于导电通道的电磁成形装置及成形方法
CN105855336A (zh) 铝合金车身异型变截面管材结构件热成形方法
CN106676437A (zh) 一种铝合金贮箱瓜瓣凸孔装置及凸孔方法
CN110102608A (zh) 一种板料高精度u形弯曲的成形装置及方法
US11471926B2 (en) Electromagnetic manufacturing method and forming device of mesoscale plate
CN207266988U (zh) 一种金属板件的电磁成形装置
CN111112435B (zh) 空心金属板件快速成形方法及成形装置
CN110394391A (zh) 一种利用二维电流场改善镁合金拉深性能的装置及方法
CN103817197B (zh) 一种电磁成形装置及方法
CN110788217A (zh) 一种用于型材热拉弯的框板式模具
CN102941253B (zh) 基于电磁辅助成形的零件组装方法及装置
CN112439827B (zh) 一种电磁翻边成形装置及方法
JP2004209486A (ja) 自動車パネルの成形方法
KR101574774B1 (ko) 통전 성형용 프레스 금형

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863268

Country of ref document: EP

Kind code of ref document: A1