WO2022048186A1 - 振动监控系统、风力发电系统及风电场 - Google Patents

振动监控系统、风力发电系统及风电场 Download PDF

Info

Publication number
WO2022048186A1
WO2022048186A1 PCT/CN2021/093782 CN2021093782W WO2022048186A1 WO 2022048186 A1 WO2022048186 A1 WO 2022048186A1 CN 2021093782 W CN2021093782 W CN 2021093782W WO 2022048186 A1 WO2022048186 A1 WO 2022048186A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
wind
vibration
generation module
monitoring system
Prior art date
Application number
PCT/CN2021/093782
Other languages
English (en)
French (fr)
Inventor
成骁彬
许移庆
蒋勇
Original Assignee
上海电气风电集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电气风电集团股份有限公司 filed Critical 上海电气风电集团股份有限公司
Publication of WO2022048186A1 publication Critical patent/WO2022048186A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics

Definitions

  • Embodiments of the present invention relate to the technical field of wind power generation, and in particular, to a vibration monitoring system for a wind power generating set, a wind power generation system and a wind farm.
  • Wind turbines are large-scale equipment that convert wind energy into electrical energy, and are usually installed in areas with abundant wind energy resources. In order to detect potential failures of the wind turbine in advance and ensure the normal operation of the wind turbine, it is necessary to monitor the state of the wind turbine, especially the vibration condition.
  • condition monitoring system Condition Monitoring System
  • CMS Condition Monitoring System
  • the existing CMS vibration system is a separate entity and is generally provided by the supplier.
  • the CMS vibration system is not strongly coupled with the wind turbine, and some design properties and operating data of the wind turbine cannot be fed back to the existing
  • the independent CMS vibration system has the problem of low accuracy, which increases its misjudgment rate.
  • the purpose of the embodiments of the present invention is to provide a vibration monitoring system, a wind power generation system and a wind farm for wind turbines, which can monitor the wind turbines more effectively and improve the precise control of the wind turbines.
  • the vibration monitoring system includes a main controller on the wind turbine, a vibration sensor installed on the wind turbine, a collector on the wind turbine, and a server.
  • the collector is connected with the vibration sensor and communicated with the main controller, the collector obtains the vibration data of the wind turbine through the vibration sensor, and obtains the vibration data from the main controller.
  • the server includes a state indicator generation module and a health indicator generation module.
  • the state index generation module is connected in communication with the collector, and the state index generation module generates a state index of the wind turbine with a power label based on the vibration data and main control power data of the wind turbine.
  • the health index generation module is connected in communication with the main controller, and the health index generation module generates the health index of the wind turbine based on the state index of the wind turbine with a power tag.
  • the main controller performs corresponding control on the wind power generator set based on the health index of the wind power generator set.
  • the wind power generation system includes a wind turbine and a vibration monitoring system for the wind turbine as described above.
  • the wind farm includes a plurality of wind turbines and a vibration monitoring system for the wind turbines.
  • the vibration monitoring system includes a main controller located on each wind turbine generator set, a vibration sensor installed on each wind turbine generator set, a collector located on each wind turbine generator set, and a server.
  • the collectors on each wind turbine are respectively connected to their vibration sensors and communicated with their main controller.
  • the collector obtains the vibration data of each wind turbine through the vibration sensor, and obtains the vibration data from the main controller.
  • the server includes a status indicator generation module and a health indicator generation module.
  • the state index generation module is connected in communication with the collector of each wind turbine, and the state index generation module is used to generate the wind power generation of each wind turbine based on the vibration data and main control power data of each wind turbine. Status indicators for the unit with power labels.
  • the health index generation module is connected in communication with the main controller of each wind turbine generator set, and the health index generation module generates the each wind turbine generator set based on the state index of each wind turbine generator set with the power label. Health indicators of wind turbines. Wherein, the main controller of each wind power generating set performs corresponding control on each wind power generating set based on the health index of each wind power generating set.
  • the vibration monitoring system for wind turbines, the wind power generation system, and the wind farm according to the embodiments of the present invention generate more accurate health indicators of the wind turbines through the HI generation module, and create a higher-dimensional alarm strategy, so as to more effectively Monitor the wind turbines, improve the accuracy of judging the operating conditions of the wind turbines, and reduce the misjudgment rate of the wind turbines.
  • FIG. 1 is a schematic diagram of a wind turbine
  • FIG. 2 is a schematic block diagram of a vibration monitoring system for a wind turbine according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a communication connection between a wind turbine and a server according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a wind farm according to an embodiment of the present invention.
  • FIG. 1 discloses a schematic perspective view of a wind turbine 100 .
  • the wind turbine 100 includes a plurality of blades 101 , a nacelle 102 , a hub 103 and a tower 104 .
  • a tower 104 extends upward from a foundation (not shown), a nacelle 102 is mounted on the top of the tower 104 , a hub 103 is mounted on one end of the nacelle 102 , and a plurality of blades 101 are mounted on the hub 103 .
  • FIG. 2 discloses a schematic block diagram of the vibration monitoring system 2 for the wind turbine 100 according to an embodiment of the present invention.
  • a vibration monitoring system 2 for a wind turbine 100 includes a main controller 21 located on the wind turbine 100, a vibration sensor 22 installed on the wind turbine 100, The collector 23 on the generator set 100 and the server 24 communicating with the wind generator set 100 .
  • the vibration sensor 22 installed on the wind turbine generator set 100 and the collector 23 located on the wind turbine generator set 100 are the CMS hardware 26 (as shown in FIG. 3 ).
  • the vibration sensor 22 may include an acceleration sensor 221 and a rotational speed sensor 222 .
  • the collector 23 is connected to the vibration sensor 22 and communicated with the main controller 21 .
  • data exchange can be performed between the collector 23 and the main controller 21 by establishing a Modbus TCP communication connection.
  • the communication connection between the collector 23 and the main controller 21 in the embodiment of the present invention is not limited to the ModbusTCP communication protocol, and other communication protocols, such as the opc communication protocol, may also be used.
  • the collector 23 can acquire the vibration data of the wind turbine generator set 100 through the vibration sensor 22 , and can acquire the main control power data of the wind turbine generator set 100 from the main controller 21 .
  • the collector 23 may collect vibration data and main control power data of the wind turbine 100 every predetermined time, for example, every 1 s.
  • the server 24 includes a state index (Condition Index, CI) generating module 241 and a health index (Health Index, HI) generating module 242 .
  • the CI generation module 241 may be connected in communication with the collector 23 , and the CI generation module 241 may generate a state indicator of the wind turbine 100 with a power tag based on the vibration data and the main control power data of the wind turbine 100 .
  • the CI generation module 241 in the server 24 generates a state indicator with a power tag of the wind turbine 100 based on the vibration data and the main control power data of the wind turbine 100.
  • the CI generation module 241 may include: The vibration data of the generator set 100 generates the state indicators of the wind generator set 100 , and the state indicators of the wind generator set 100 may be grouped based on the power segment in which the master control power data is located.
  • the operating state of the wind turbine 100 may also be different. For example, at medium and high wind speeds, the wind turbine 100 is When the wind turbine 100 operates in a full-power state, the vibration energy of the wind turbine 100 is large; and at a low wind speed, the wind turbine 100 operates in an unloaded state, and at this time, the vibration energy of the wind turbine 100 is small. Therefore, the generated state indicators of the wind turbines 100 are further grouped by dividing the main control function data collected in each time period into power segments.
  • the state indicators of the wind turbines 100 with high power can be divided into group, the state indicators of the wind turbines 100 with low power are grouped into one group, so that the operation data of the wind turbines 100 and the state indicators of the wind turbines 100 can be well combined, and the CMS hardware is added. 26 Strong coupling with wind turbine 100 .
  • the wind turbine 100 there are various state indicators of the wind turbine 100, such as, but not limited to, at least one of vibration time domain data, vibration frequency domain data, vibration envelope spectrum data, and vibration characteristic values of the wind turbine 100.
  • the vibration characteristic value is at least one of the characteristic parameters such as peak value, kurtosis, root mean square, etc., which are converted from time domain conversion of the collected vibration data.
  • the peak value is the characteristic parameter of detecting shock vibration
  • the root mean square is the characteristic parameter of surface pitting.
  • the health index of the wind turbine 100 may include, but is not limited to, at least one of the health index of the bearing and the health index of the gearbox, for example.
  • the HI generation module 242 in the server 24 is communicatively connected to the main controller 21.
  • the HI generation module 242 can communicate with the main controller 21 through the ModbusTCP communication protocol or other communication protocols, such as the opc communication protocol.
  • the HI generation module 242 may generate a health indicator for the wind turbine 100 based on the power tagged state indicator of the wind turbine 100 .
  • the HI generation module 242 can use Python to call the status indicator of the wind turbine 100 with the power tag in the CI generation module 241 .
  • a Python customized algorithm is pre-stored in the HI generation module 242, and the HI generation module 242 can generate the health index of the wind turbine 100 through the pre-stored Python customized algorithm based on the state index of the wind turbine 100 with a power label.
  • the HI generation module 242 of the embodiment of the present invention can generate a more accurate health index of the wind turbine 100 through the pre-stored Python custom algorithm, so as to create a higher latitude alarm index and improve the operational status of the wind turbine 100. The accuracy of the judgment can reduce the misjudgment rate of the wind turbine generator 100 .
  • the health indicators of the wind turbine 100 are generated by a plurality of status indicators through the HI generation module 242, and the HI generation module 242 processes these status indicators into one health indicator.
  • a plurality of state indicators will be normalized before being input to the HI generation module 242.
  • the indicators are also fixed in the interval of 0-1 through normalization processing, so as to facilitate the health Interpretation and visualization of indicators.
  • the main controller 21 may control the wind power generator set 100 accordingly based on the health index of the wind power generator set 100 generated by the HI generation module 242 . Since the data is further processed by the HI generating module 242 to generate a more accurate health index of the wind turbine 100 , the main controller 21 can perform a more accurate calculation on the wind turbine 100 according to the health index of the wind turbine 100 . control, effectively improving the good monitoring ability of the wind turbine generator set 100 .
  • FIG. 3 shows a schematic diagram of the communication connection between the wind turbine generator 100 and the server 24 according to an embodiment of the present invention.
  • the CMS hardware 26 on the wind turbine 100 is connected to the main controller 21 through a network cable, so that the CMS hardware 26 and the main controller 21 can interact.
  • the CMS hardware 26 can be connected to the ring network switch 27 through the main controller 21, the ring network switch 27 is connected to the fan ring network 28, and the CI generation module 241 in the server 24 is connected to the fan ring network 28 through the ring network switch 29, so that the CMS can be established. Communication connection between the hardware 26 and the CI generation module 241 .
  • the main controller 21 is connected to the fan ring network 28 through the ring network switch 27, and the HI generation module 242 is connected to the fan ring network 28 through the ring network switch 29, so that the communication connection between the main controller 21 and the HI generation module 242 can be established.
  • the server 24 further includes a CMS database 244 , the status indicators of the wind turbines 100 generated by the CI generation module 241 and the health indicators of the wind turbines 100 generated by the HI generation module 242 May be stored in the CMS database 244.
  • the HI generation module 242 may further generate a corresponding alarm strategy based on the health index of the wind turbine 100 , and save the corresponding alarm strategy in the CMS database 244 .
  • the alarm strategy generated by the HI generation module 242 can be written to the main controller 21 , and the main controller 21 can control the wind turbine generator 100 accordingly according to the alarm strategy generated by the HI generation module 242 .
  • the health index of the wind turbine 100 may be, for example, a number in the range of 0-1.
  • the HI generation module 242 generates a corresponding alarm strategy based on the health index of the wind turbine 100 may include: when the health index of the wind turbine 100 is greater than a first alarm threshold, such as 0.5, generating a first alarm record, For example the yellow alarm wire.
  • the HI generation module 242 generates a corresponding alarm strategy based on the health index of the wind turbine 100 may further include: when the health index of the wind turbine 100 is greater than the second alarm threshold, generating a different alarm record than the first alarm record
  • the second alarm record, the second alarm threshold is greater than the first alarm threshold, the second alarm threshold can be 0.7, for example, the second alarm record can be set as a red alarm line, so as to generate a more urgent alarm than the first alarm record.
  • the shutdown code can be generated after the HI generation module 242 generates a predetermined number of alarm records. At this time, the main controller 21 will The wind turbine 100 is controlled to stop according to the stop code.
  • the vibration monitoring system 2 of the embodiment of the present invention further includes a SCADA (Supervisory Control And Data Acquisition, supervisory control and data acquisition) system 25 .
  • SCADA Supervisory Control And Data Acquisition, supervisory control and data acquisition
  • the SCADA system 25 is connected in communication with the CMS database 244, and the data stored in the CMS database 244 can be displayed on the interface of the SCADA system 25, so that the wind farm operation and maintenance personnel can check at any time.
  • Embodiments of the present invention also provide a wind power generation system.
  • the wind power generation system includes a wind power generator set 100 and the vibration monitoring system 2 for the wind power generator set 100 as described in the above embodiments.
  • the wind power generation system generates more accurate health indicators of the wind power generator set 100 through the HI generation module 242, and creates a higher-dimensional alarm strategy, so that the wind power generator set 100 can be monitored more effectively, and the wind power generator set 100 can be monitored more effectively.
  • the accuracy of judging the operating conditions of the generator set 100 reduces the misjudgment rate of the wind generator set 100 .
  • FIG. 4 discloses a schematic diagram of a wind farm 300 according to an embodiment of the present invention.
  • a wind farm 300 according to an embodiment of the present invention includes a plurality of wind turbines 100 and a vibration monitoring system 2 for the wind turbines 100 .
  • the vibration monitoring system 2 includes a main controller 21 located on each wind turbine generator set 100 , a CMS hardware 26 installed on each wind turbine generator set 100 , and a server 24 communicatively connected to each wind turbine generator set 100 .
  • the CMS hardware 26 includes vibration sensors 22 and collectors 23 located on each wind turbine 100 .
  • the collectors 23 on each wind turbine generator set 100 are respectively connected to their vibration sensors 22 and communicated with their main controller 21 .
  • the main control power data of each wind turbine generator 100 is obtained in the .
  • the server 24 includes a CI generation module 241 and an HI generation module 242 .
  • the CI generation module 241 in the server 24 is connected in communication with the collector 23 of each wind turbine 100, and the CI generation module 241 can generate each wind turbine 100 based on the vibration data and main control power data of each wind turbine 100. Status indicators with power labels.
  • the HI generation module 242 in the server 24 is connected in communication with the main controller 21 of each wind turbine generator 100 , and the HI generation module 242 can generate each wind turbine generator based on the status index of each wind turbine generator 100 with a power tag. 100 health indicators.
  • the main controller 21 of each wind power generator set 100 may control each wind power generator set 100 accordingly based on the health index of each wind power generator set 100 .
  • server 24 also includes a CMS database 244 .
  • the state index of the wind turbine 100 generated by the CI generation module 241 and the health index of the wind turbine 100 generated by the HI generation module 242 may be stored in the CMS database 244 .
  • the wind farm 300 of the embodiment of the present invention further includes a SCADA system 25 .
  • the SCADA system 25 is connected in communication with the CMS database 244, and the data stored in the CMS database 244 can be displayed on the interface of the SCADA system 25 for the wind farm operation and maintenance personnel to view.
  • the wind farm 300 in the embodiment of the present invention has beneficial technical effects similar to those of the above-mentioned wind power generation system, and thus will not be repeated here.

Abstract

一种用于风力发电机组(100)的振动监控系统(2),振动监控系统(2)包括位于风力发电机组(100)上的主控制器(21)、振动传感器(22)和采集器(23)以及服务器(24)。采集器(23)与振动传感器(22)连接并与主控制器(21)通讯连接,采集器(23)通过振动传感器(22)获取风力发电机组(100)的振动数据,并从主控制器(21)中获取风力发电机组(100)的主控功率数据。服务器(24)包括CI生成模块(241)及HI生成模块(242)。CI生成模块(241)与采集器(23)通讯连接,并基于风力发电机组(100)的振动数据及主控功率数据生成风力发电机组(100)带有功率标签的状态指标。HI生成模块(242)与主控制器(21)通讯连接,并基于风力发电机组(100)带有功率标签的状态指标来生成风力发电机组(100)的健康指标。主控制器(21)基于风力发电机组(100)的健康指标来对风力发电机组(100)进行相应的控制。提高了对风力发电机组(100)运行状况判断的准确度,减少了对风力发电机组(100)的误判率。还公开了一种包括振动监控系统(2)的风力发电系统以及风电场(300)。

Description

振动监控系统、风力发电系统及风电场 技术领域
本发明实施例涉及风力发电技术领域,尤其涉及一种用于风力发电机组的振动监控系统、风力发电系统及风电场。
背景技术
随着煤炭、石油等能源的逐渐枯竭,人类越来越重视可再生能源的利用。风能作为一种清洁的可再生能源越来越受到世界各国的重视。伴随着风电技术的不断发展,风力发电机组在电力系统中的应用日益增加。风力发电机组是将风能转化为电能的大型设备,通常设置于风能资源丰富的地区。为了能够提前发现风力发电机组的潜在故障,保证风力发电机组的正常运行,需要对风力发电机组的状态,尤其是振动状况进行监控。
目前,通常是通过风力发电机组的状态监控系统(Condition Monitoring System,CMS)来对风力发电机组的振动状态进行监控。然而,现有的CMS振动系统是一个单独的个体,一般由供应商提供,CMS振动系统并没有与风力发电机组进行强耦合,风力发电机组的一些设计属性、运行数据等不能反馈给现有的独立CMS振动系统,存在准确率不高的问题,从而增加其误判率。
发明内容
本发明实施例的目的在于提供一种用于风力发电机组的振动监控系统、风力发电系统及风电场,能够更加有效地对风力发电机组进行监控,提高对风力发电机组的精确控制。
本发明实施例的一个方面提供一种用于风力发电机组的振动监控系统。所述振动监控系统包括位于所述风力发电机组上的主控制器、安装于所述风力发电机组上的振动传感器、位于所述风力发电机组上的采集器以及服务器。所述采集器与所述振动传感器连接并与所述主控制器通讯连接,所述采集器通过所述振动传感器获取所述风力发电机组的振动数据,并从所述主控制器中获取所述风力发电机组的主控功率数据。所述服务器包括状态指标生成模块及健康指标生成模块。所述状态指标生成模块与所述采集器通讯连接,所述状态指标生成模块基于所述风力发电机组的振动数据及主控功率数据生成所述风力发电机组带有功率标签的状态指标。所述健康指标生成模块与所述主控制器通讯连接,所述健康指标生成模块基于所述风力发电机组带有功率标签的状态指标来生成所述风力发电机组的健康指标。其中,所述主控制器基于所述风力发电机组的健康指标来对所述风力发电机组进行相应的控制。
本发明实施例的另一个方面还提供一种风力发电系统。所述风力发电系统包括风力发电机组及如上所述的用于风力发电机组的振动监控系统。
本发明实施例的又一个方面还提供一种风电场。所述风电场包括多台风力发电机组以及 用于风力发电机组的振动监控系统。所述振动监控系统包括位于每一台风力发电机组上的主控制器、安装于所述每一台风力发电机组上的振动传感器、位于所述每一台风力发电机组上的采集器以及服务器。各台风力发电机组上的采集器分别与其振动传感器连接并与其主控制器通讯连接,所述采集器通过所述振动传感器获取各台风力发电机组的振动数据,并从所述主控制器中获取各台风力发电机组的主控功率数据。所述服务器包括状态指标生成模块及健康指标生成模块。所述状态指标生成模块与所述每一台风力发电机组的采集器通讯连接,所述状态指标生成模块用于基于各台风力发电机组的振动数据及主控功率数据生成所述各台风力发电机组带有功率标签的状态指标。所述健康指标生成模块与所述每一台风力发电机组的主控制器通讯连接,所述健康指标生成模块基于所述各台风力发电机组带有所述功率标签的状态指标来生成所述各台风力发电机组的健康指标。其中,所述各台风力发电机组的主控制器基于所述各台风力发电机组的健康指标来对所述各台风力发电机组进行相应的控制。
本发明实施例的用于风力发电机组的振动监控系统、风力发电系统及风电场通过HI生成模块生成更为准确的风力发电机组的健康指标,营造更高维度的报警策略,从而能够更加有效地对风力发电机组进行监控,提高对风力发电机组运行状况判断的准确度,减少对风力发电机组的误判率。
附图说明
图1为一种风力发电机组的示意图;
图2为本发明一个实施例的用于风力发电机组的振动监控系统的示意性框图;
图3为本发明一个实施例的风力发电机组与服务器通讯连接的示意图;
图4为本发明一个实施例的风电场的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本发明相一致的所有实施例。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置的例子。
在本发明实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。除非另作定义,本发明实施例使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“多个”或者“若干”表示两个及两个以上。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“包括”或者“包含”等类似词语意指 出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。在本发明说明书和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
图1揭示了一种风力发电机组100的立体示意图。如图1所示,风力发电机组100包括多个叶片101、机舱102、轮毂103及塔架104。塔架104从基础(未图示)向上延伸,机舱102安装在塔架104的顶端,轮毂103安装在机舱102的一端,多个叶片101安装在轮毂103上。
图2揭示了本发明一个实施例的用于风力发电机组100的振动监控系统2的示意性框图。如图2所示,本发明一个实施例的用于风力发电机组100的振动监控系统2包括位于风力发电机组100上的主控制器21、安装于风力发电机组100上的振动传感器22、位于风力发电机组100上的采集器23及与风力发电机组100进行通讯的服务器24。其中,安装于风力发电机组100上的振动传感器22及位于风力发电机组100上的采集器23为CMS硬件26(如图3所示)。在一个实施例中,振动传感器22可以包括加速度传感器221和转速传感器222。采集器23与振动传感器22连接并与主控制器21通讯连接。例如,采集器23与主控制器21之间可以通过建立ModbusTCP通讯连接来进行数据的交互。然而,本发明实施例的采集器23与主控制器21之间的通讯连接并不局限于ModbusTCP通讯协议,也可以采用其他的通讯协议,例如opc通讯协议等。采集器23可以通过振动传感器22获取风力发电机组100的振动数据,并可以从主控制器21中获取风力发电机组100的主控功率数据。例如,采集器23可以每隔预定时间,例如每1s采集风力发电机组100的振动数据和主控功率数据。
服务器24包括状态指标(Condition Index,CI)生成模块241及健康指标(Health Index,HI)生成模块242。CI生成模块241可以与采集器23通讯连接,CI生成模块241可以基于风力发电机组100的振动数据及主控功率数据生成风力发电机组100带有功率标签的状态指标。
在一些实施例中,服务器24中的CI生成模块241基于风力发电机组100的振动数据及主控功率数据生成风力发电机组100带有功率标签的状态指标例如可以包括:CI生成模块241可以基于风力发电机组100的振动数据生成风力发电机组100的状态指标,并且,可以基于主控功率数据所在功率段对风力发电机组100的状态指标进行分组。
由于风力发电机组100在实际运行的时段中,外界环境的风力可能是实时变化的,因此,风力发电机组100的运行状态也可能会是不同的,例如,在中高风速下,风力发电机组100是以满发状态进行运转,此时,风力发电机组100的振动能量大;而在低风速下,风力发电机组100是以不满发状态进行运转,此时,风力发电机组100的振动能量小。因此,通过对 每个时间段内采集的主控功能数据进行功率段划分来进一步对生成的风力发电机组100的状态指标进行分组,例如可以将功率大的风力发电机组100的状态指标分为一组,将功率小的风力发电机组100的状态指标分为一组,从而,能够将风力发电机组100的运行数据与风力发电机组100的状态指标二者很好地结合在一起,增加了CMS硬件26与风力发电机组100的强耦合。
在一些实施例中,风力发电机组100的状态指标有多种,例如可以包括但不限于风力发电机组100的振动时域数据、振动频域数据、振动包络谱数据和振动特征值中的至少一个,其中振动特征值为将采集的振动数据进行时域转换而转换成的峰值、峭度、均方根等特征参数的其中至少一个。其中,峰值为检测冲击振动的特征参数;均方根为表面点蚀的特征参数。风力发电机组100的健康指标例如可以包括但不限于轴承的健康指标和齿轮箱的健康指标中的至少一个。
服务器24中的HI生成模块242与主控制器21通讯连接,例如,HI生成模块242可以通过ModbusTCP通讯协议或者其他的通讯协议,例如opc通讯协议等与主控制器21进行通讯连接。HI生成模块242可以基于风力发电机组100带有功率标签的状态指标来生成风力发电机组100的健康指标。在一个实施例中,HI生成模块242可以通过Python来调用CI生成模块241中的风力发电机组100带有功率标签的状态指标。在HI生成模块242中预存Python客制算法,HI生成模块242可以基于风力发电机组100带有功率标签的状态指标通过预存的该Python客制算法来生成风力发电机组100的健康指标。本发明实施例的HI生成模块242通过预存的该Python客制算法,可以生成更为准确的风力发电机组100的健康指标,从而可以营造更高纬度的报警指标,提高对风力发电机组100运行状况判断的准确度,减少对风力发电机组100的误判率。在一个实施例中,风力发电机组100的健康指标由多个状态指标通过HI生成模块242生成,HI生成模块242将这些状态指标处理为一个健康指标。为了提高精度,多个状态指标在输入HI生成模块242之前,会进行归一化处理,HI生成模块242输出后,亦通过归一化处理将其指标固化在0-1区间内,以便于健康指标的解读与可视化。
主控制器21可以基于HI生成模块242生成的风力发电机组100的健康指标来对风力发电机组100进行相应的控制。由于通过HI生成模块242对数据的进一步处理生成更为准确的风力发电机组100的健康指标,因此,主控制器21可以根据风力发电机组100的该健康指标对风力发电机组100进行更为准确的控制,有效提高了对风力发电机组100的良好监控能力。
图3揭示了本发明一个实施例的风力发电机组100与服务器24通讯连接的示意图。如图3所示,风力发电机组100上的CMS硬件26通过网线与主控制器21连接,从而CMS硬件26与主控制器21之间可以进行交互。CMS硬件26可以通过主控制器21与环网交换机27连接,环网交换机27连接到风机环网28,服务器24中的CI生成模块241通过环网交换机29连接风机环网28,从而可以建立CMS硬件26与CI生成模块241之间的通讯连接。主控制器21通过环网交换机27连接到风机环网28,HI生成模块242通过环网交换机29连接到风机环网28,从而可以建立主控制器21与HI生成模块242之间的通讯连接。
如图2和图3所示,在一些实施例中,服务器24还包括CMS数据库244,CI生成模块241生成的风力发电机组100的状态指标及HI生成模块242生成的风力发电机组100的健康指标可以保存于CMS数据库244中。
在一些实施例中,HI生成模块242还可以进一步基于风力发电机组100的健康指标生成相应的报警策略,并将相应的报警策略保存于CMS数据库244中。HI生成模块242生成的报警策略可以写入到主控制器21,主控制器21可以根据HI生成模块242生成的报警策略来对风力发电机组100进行相应的控制。
风力发电机组100的健康指标例如可以为0-1范围的数字。在一个实施例中,HI生成模块242基于风力发电机组100的健康指标生成相应的报警策略可以包括:在风力发电机组100的健康指标大于第一报警阈值,例如0.5时,生成第一报警记录,例如黄色报警线。
在另一个实施例中,HI生成模块242基于风力发电机组100的健康指标生成相应的报警策略还可以包括:在风力发电机组100的健康指标大于第二报警阈值时,生成不同于第一报警记录的第二报警记录,第二报警阈值大于第一报警阈值,第二报警阈值例如可以为0.7,第二报警记录例如可以设为红色报警线,从而产生较第一报警记录更为紧迫的报警。
由于风力发电机组100的停机是非常严重的事情,为了严格控制风力发电机组100的停机,可以在HI生成模块242生成预定数量的报警记录后再产生停机码,此时,主控制器21才会根据停机码来控制风力发电机组100停机。
本发明实施例的振动监控系统2还包括SCADA(Supervisory Control And Data Acquisition,监视控制及数据采集)系统25。SCADA系统25与CMS数据库244通讯连接,CMS数据库244中保存的数据可展示在SCADA系统25的界面上,从而可以供风场运维人员随时查看。
本发明实施例还提供了一种风力发电系统。该风力发电系统包括风力发电机组100及如上各个实施例所述的用于风力发电机组100的振动监控系统2。
本发明实施例的风力发电系统通过HI生成模块242生成更为准确的风力发电机组100的健康指标,营造更高维度的报警策略,从而能够更加有效地对风力发电机组100进行监控,提高对风力发电机组100运行状况判断的准确度,减少对风力发电机组100的误判率。
本发明实施例还提供了一种风电场300。图4揭示了本发明一个实施例的风电场300的示意图。如图4所示,本发明一个实施例的风电场300包括多台风力发电机组100及用于风力发电机组100的振动监控系统2。该振动监控系统2包括位于每一台风力发电机组100上的主控制器21、安装于每一台风力发电机组100上的CMS硬件26以及可与每一台风力发电机组100通讯连接的服务器24。CMS硬件26包括位于每一台风力发电机组100上的振动传感器22和采集器23。
各台风力发电机组100上的采集器23分别与其振动传感器22连接并与其主控制器21通讯连接,采集器23通过振动传感器22获取各台风力发电机组100的振动数据,并从主控制 器21中获取各台风力发电机组100的主控功率数据。
服务器24包括CI生成模块241及HI生成模块242。服务器24中的CI生成模块241与每一台风力发电机组100的采集器23通讯连接,CI生成模块241可以基于各台风力发电机组100的振动数据及主控功率数据生成各台风力发电机组100带有功率标签的状态指标。服务器24中的HI生成模块242与每一台风力发电机组100的主控制器21通讯连接,HI生成模块242可以基于各台风力发电机组100带有功率标签的状态指标来生成各台风力发电机组100的健康指标。
各台风力发电机组100的主控制器21可以基于各台风力发电机组100的健康指标来对各台风力发电机组100进行相应的控制。
在一些实施例中,服务器24还包括CMS数据库244。CI生成模块241生成的风力发电机组100的状态指标和HI生成模块242生成的风力发电机组100的健康指标可以保存于CMS数据库244中。
本发明实施例的风电场300还包括SCADA系统25。SCADA系统25与CMS数据库244通讯连接,CMS数据库244中保存的数据可展示在SCADA系统25的界面上以供风场运维人员查看。
本发明实施例的风电场300具有与上述的风力发电系统相类似的有益技术效果,故,在此不再赘述。
以上对本发明实施例所提供的用于风力发电机组的振动监控系统、风力发电系统及风电场进行了详细的介绍。本文中应用了具体个例对本发明实施例的用于风力发电机组的振动监控系统、风力发电系统及风电场进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想,并不用以限制本发明。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明的精神和原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也均应落入本发明所附权利要求书的保护范围内。

Claims (17)

  1. 一种用于风力发电机组的振动监控系统,包括:
    主控制器,位于所述风力发电机组上;
    振动传感器,安装于所述风力发电机组上;
    采集器,位于所述风力发电机组上,所述采集器与所述振动传感器连接并与所述主控制器通讯连接,所述采集器通过所述振动传感器获取所述风力发电机组的振动数据,并从所述主控制器中获取所述风力发电机组的主控功率数据;以及
    服务器,其包括:
    状态指标生成模块,与所述采集器通讯连接,所述状态指标生成模块基于所述风力发电机组的振动数据及主控功率数据生成所述风力发电机组带有功率标签的状态指标;及
    健康指标生成模块,与所述主控制器通讯连接,所述健康指标生成模块基于所述风力发电机组带有功率标签的状态指标来生成所述风力发电机组的健康指标,
    其中,所述主控制器基于所述风力发电机组的健康指标来对所述风力发电机组进行相应的控制。
  2. 如权利要求1所述的振动监控系统,其特征在于:所述振动传感器包括加速度传感器和转速传感器。
  3. 如权利要求1所述的振动监控系统,其特征在于:所述采集器每隔预定时间采集所述风力发电机组的所述振动数据和所述主控功率数据。
  4. 如权利要求1所述的振动监控系统,其特征在于:所述状态指标生成模块用于基于所述风力发电机组的振动数据及主控功率数据生成所述风力发电机组带有所述功率标签的状态指标包括:
    所述状态指标生成模块基于所述风力发电机组的振动数据生成所述风力发电机组的状态指标;及
    基于所述主控功率数据所在功率段对所述风力发电机组的状态指标进行分组。
  5. 如权利要求1所述的振动监控系统,其特征在于:所述健康指标生成模块通过Python来调用所述状态指标生成模块中的所述风力发电机组带有功率标签的状态指标。
  6. 如权利要求5所述的振动监控系统,其特征在于:所述健康指标生成模块基于所述风力发电机组带有所述功率标签的状态指标通过预存的Python客制算法来生成所述风力发电机组的健康指标。
  7. 如权利要求1所述的振动监控系统,其特征在于:所述服务器还包括CMS数据库,所述风力发电机组的状态指标、所述风力发电机组的健康指标保存于所述CMS数据库中。
  8. 如权利要求7所述的振动监控系统,其特征在于:所述健康指标生成模块还基于所述风力发电机组的健康指标生成相应的报警策略,并保存于所述CMS数据库中。
  9. 如权利要求8所述的振动监控系统,其特征在于:所述健康指标生成模块基于 所述风力发电机组的健康指标生成相应的报警策略包括:
    在所述风力发电机组的健康指标大于第一报警阈值时,生成第一报警记录。
  10. 如权利要求9所述的振动监控系统,其特征在于:所述健康指标生成模块基于所述风力发电机组的健康指标生成相应的报警策略还包括:
    在所述风力发电机组的健康指标大于第二报警阈值时,生成不同于所述第一报警记录的第二报警记录,所述第二报警阈值大于所述第一报警阈值。
  11. 如权利要求7所述的振动监控系统,其特征在于:还包括:
    SCADA系统,与所述CMS数据库通讯连接,所述CMS数据库中保存的数据可展示在所述SCADA系统的界面上以供运维人员查看。
  12. 如权利要求1所述的振动监控系统,其特征在于:所述风力发电机组的状态指标包括所述风力发电机组的振动时域数据、振动频域数据、振动包络谱数据和振动特征值中的至少一个。
  13. 如权利要求1所述的振动监控系统,其特征在于:所述风力发电机组的健康指标包括轴承的健康指标和齿轮箱的健康指标中的至少一个。
  14. 一种风力发电系统,包括风力发电机组及如权利要求1至13中任一项所述的用于风力发电机组的振动监控系统。
  15. 一种风电场,其包括多台风力发电机组,还包括用于风力发电机组的振动监控系统,所述振动监控系统包括:
    位于每一台风力发电机组上的主控制器;
    安装于所述每一台风力发电机组上的振动传感器;
    位于所述每一台风力发电机组上的采集器,各台风力发电机组上的采集器分别与其振动传感器连接并与其主控制器通讯连接,所述采集器通过所述振动传感器获取各台风力发电机组的振动数据,并从所述主控制器中获取各台风力发电机组的主控功率数据;以及
    服务器,其包括:
    状态指标生成模块,与所述每一台风力发电机组的采集器通讯连接,所述状态指标生成模块用于基于各台风力发电机组的振动数据及主控功率数据生成所述各台风力发电机组带有功率标签的状态指标;及
    健康指标生成模块,与所述每一台风力发电机组的主控制器通讯连接,所述健康指标生成模块基于所述各台风力发电机组带有所述功率标签的状态指标来生成所述各台风力发电机组的健康指标,
    其中,所述各台风力发电机组的主控制器基于所述各台风力发电机组的健康指标来对所述各台风力发电机组进行相应的控制。
  16. 如权利要求15所述的风电场,其特征在于:所述服务器还包括CMS数据库,所述风力发电机组的状态指标、所述风力发电机组的健康指标保存于所述CMS数据库中。
  17. 如权利要求16所述的风电场,其特征在于:还包括:
    SCADA系统,与所述CMS数据库通讯连接,所述CMS数据库中保存的数据可展示在所述SCADA系统的界面上以供运维人员查看。
PCT/CN2021/093782 2020-09-07 2021-05-14 振动监控系统、风力发电系统及风电场 WO2022048186A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010927889.3A CN112177863A (zh) 2020-09-07 2020-09-07 振动监控系统、风力发电系统及风电场
CN202010927889.3 2020-09-07

Publications (1)

Publication Number Publication Date
WO2022048186A1 true WO2022048186A1 (zh) 2022-03-10

Family

ID=73924854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093782 WO2022048186A1 (zh) 2020-09-07 2021-05-14 振动监控系统、风力发电系统及风电场

Country Status (2)

Country Link
CN (1) CN112177863A (zh)
WO (1) WO2022048186A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112177863A (zh) * 2020-09-07 2021-01-05 上海电气风电集团股份有限公司 振动监控系统、风力发电系统及风电场
CN113435705A (zh) * 2021-06-02 2021-09-24 上海电气风电集团股份有限公司 轴承监测方法及其系统及计算机可读存储介质
CN114281013A (zh) * 2021-08-30 2022-04-05 武钢集团昆明钢铁股份有限公司 一种高精准风机轴振动保护控制装置及其方法
CN113982850B (zh) * 2021-09-10 2023-11-10 大唐国信滨海海上风力发电有限公司 融合高低频信号的风机综合健康分析方法及系统
CN113775481A (zh) * 2021-09-24 2021-12-10 上海电气风电集团股份有限公司 Cms振动保护方法及其装置及计算机可读存储介质
CN113982852B (zh) * 2021-10-15 2024-02-27 上海电气风电集团股份有限公司 风场系统
EP4345298A1 (en) * 2022-01-30 2024-04-03 Goldwind Science & Technology Co., Ltd. Detection method for wind driven generator, and related apparatus
CN114593021A (zh) * 2022-02-28 2022-06-07 西安培华学院 一种基于云服务的监控风力发电叶轮电机工作的系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900079A (zh) * 2009-05-25 2010-12-01 维斯塔斯风力系统集团公司 用于控制风力涡轮机的操作的方法和系统
CN102748214A (zh) * 2012-07-10 2012-10-24 国电联合动力技术有限公司 耦合于控制系统的风电机组状态监测与故障诊断系统
CN102768115A (zh) * 2012-06-27 2012-11-07 华北电力大学 一种风电机组齿轮箱健康状态实时动态监控方法
CN103321839A (zh) * 2012-03-20 2013-09-25 华锐风电科技(集团)股份有限公司 风机振动监测方法及系统、风机监控器
CN107061186A (zh) * 2017-06-09 2017-08-18 北京金风慧能技术有限公司 风力发电机组振动异常预警方法和装置
US20170350370A1 (en) * 2016-06-02 2017-12-07 Doosan Heavy Industries & Construction Co., Ltd. Wind farm supervision monitoring method
CN110905732A (zh) * 2018-09-17 2020-03-24 中车株洲电力机车研究所有限公司 风电机组风轮不平衡的辨识方法、系统及储存介质
CN112177863A (zh) * 2020-09-07 2021-01-05 上海电气风电集团股份有限公司 振动监控系统、风力发电系统及风电场

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226102A (zh) * 2007-01-15 2008-07-23 新疆风能有限责任公司 变负载机械故障诊断方法
CN101672723A (zh) * 2009-10-28 2010-03-17 北京中能联创风电技术有限公司 一种风电机组振动分析故障诊断方法和系统
CN103901828B (zh) * 2012-12-27 2018-06-22 北京万源工业有限公司 一种用于风力发电场的监控系统
CN103712792B (zh) * 2013-12-16 2016-01-20 西安交通大学 一种针对风电齿轮箱的故障诊断方法
CN104111154B (zh) * 2014-06-23 2016-08-24 北京金风科创风电设备有限公司 风力发电机组的振动趋势分析方法和振动趋势分析系统
WO2017101945A1 (en) * 2015-12-18 2017-06-22 Vestas Wind Systems A/S Estimation of power quality at point of common coupling
CN108204834B (zh) * 2016-12-19 2020-12-08 北京金风科创风电设备有限公司 风力发电机组的状态监测方法及装置
JP7164468B2 (ja) * 2018-07-13 2022-11-01 Ntn株式会社 状態監視装置および状態監視システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900079A (zh) * 2009-05-25 2010-12-01 维斯塔斯风力系统集团公司 用于控制风力涡轮机的操作的方法和系统
CN103321839A (zh) * 2012-03-20 2013-09-25 华锐风电科技(集团)股份有限公司 风机振动监测方法及系统、风机监控器
CN102768115A (zh) * 2012-06-27 2012-11-07 华北电力大学 一种风电机组齿轮箱健康状态实时动态监控方法
CN102748214A (zh) * 2012-07-10 2012-10-24 国电联合动力技术有限公司 耦合于控制系统的风电机组状态监测与故障诊断系统
US20170350370A1 (en) * 2016-06-02 2017-12-07 Doosan Heavy Industries & Construction Co., Ltd. Wind farm supervision monitoring method
CN107061186A (zh) * 2017-06-09 2017-08-18 北京金风慧能技术有限公司 风力发电机组振动异常预警方法和装置
CN110905732A (zh) * 2018-09-17 2020-03-24 中车株洲电力机车研究所有限公司 风电机组风轮不平衡的辨识方法、系统及储存介质
CN112177863A (zh) * 2020-09-07 2021-01-05 上海电气风电集团股份有限公司 振动监控系统、风力发电系统及风电场

Also Published As

Publication number Publication date
CN112177863A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2022048186A1 (zh) 振动监控系统、风力发电系统及风电场
CN100476651C (zh) 大型海上风力发电场监控系统
CN107829884B (zh) 一种风力发电机塔筒健康状态监测方法和专用检测系统
CA2858702C (en) Methods and systems for detecting wind turbine rotor blade damage
CN202326011U (zh) 一种风电机组的状态监测与故障诊断系统
CN102620807A (zh) 风力发电机状态监测系统及方法
CN107798462A (zh) 一种风电场风力发电机组运行异常监测与性能评估系统
CN103343728A (zh) 风力发电机组远程在线多模式健康状态监测与故障诊断系统
CN103835882A (zh) 大型风力发电机组状态监测与故障诊断系统
CN106762452B (zh) 基于数据驱动的风机主控系统故障诊断和在线监测方法
CN103217291A (zh) 一种风力发电机组故障诊断方法及系统
CN201835985U (zh) 嵌入式监测仪表及其风力发电机组
CN112003564B (zh) 基于智能终端的分布式光伏系统支路功率异常预警方法
CN104533730A (zh) 一种风力发电机组状态监测系统
CN115013259A (zh) 一种风机叶片健康监测系统
CN108644070A (zh) 一种风力发电机组桨叶叶根螺栓断裂在线定时检测方法及系统
Sayed et al. Wind power plants control systems based on scada system
CN105041571A (zh) 预测风速风向的智能控制系统及其控制方法
CN202453182U (zh) 一种风电机组齿轮箱故障诊断装置
CN108708833A (zh) 一种风力发电机组桨叶叶根螺栓断裂实时监控方法及系统
CN110608133B (zh) 一种海上风力发电控制系统及方法
CN209764419U (zh) 风电机组齿轮箱故障诊断装置
CN111594396A (zh) 一种风电机组状态监控系统
CN108825449B (zh) 风力发电机组飞车预警方法和装置
CN211819803U (zh) 基于机舱式测风激光雷达的组网系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21863256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21863256

Country of ref document: EP

Kind code of ref document: A1